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Abstract
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Essays on Volatility Timing and Centrality-Driven Liquidity in Equity and
Cryptocurrency Markets

by Yue Zhang

This thesis includes three substantive chapters that collectively explore key aspects of
risk and asset pricing across different markets. Two chapters empirically study the
volatility timing effects in equity and cryptocurrency markets. Another chapter studies
the relationship between stock liquidity and centrality based on mutual funds’ common
ownership of stocks. These chapters, while examining distinct markets and aspects, are
unified by their emphasis on the connection among volatility, liquidity, and the com-
pensation demanded by risk-averse investors for higher risks associated with volatility
and illiquidity. Chapter 3 exploits the low-risk anomaly in the stock market and the em-
pirically successful volatility timing strategy, improving portfolio returns and investor
utility by constructing portfolios using option-based forward-looking volatility which
better incorporates market expectations on risks. Chapter 4 develops a stock-level
Connectedness-Weighted-Eigenvector-Centrality (CWEC) measure that proxies stocks’
importance in the broad financial network by considering the strength of each link
between pairwise stocks and the importance of each stock’s neighbour in the network.
Through panel regressions, vector autoregression analyses, and impulse response func-
tions, this chapter demonstrates that stock centrality appears to have a preponderant
effect on illiquidity and highlights the market’s differentiated perception of stocks with
varying centrality levels. Chapter 5 confirms the presence of the risk anomaly in the
cryptocurrency market and examines the realised volatility timing strategy under spe-
cific market conditions. This chapter provides empirical insights into the nuanced ef-
fectiveness of volatility timing in a speculative and sentiment-driven market environ-
ment. Overall, this thesis provides rich empirical evidence on volatility and liquidity
risk management and portfolio allocation, affording researchers and practitioners valu-
able insights into the asset pricing topics.

http://www.southampton.ac.uk




v

Contents

List of Figures vii

List of Tables ix

Declaration of Authorship xi

Acknowledgements xiii

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Option-based volatility timing . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Liquidity of central stocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Volatility timing in Cryptocurrency markets . . . . . . . . . . . . . . . . . 8
1.5 Schematic representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Methodology 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Realised volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Implied volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Volatility timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Risk-adjusted performance measures . . . . . . . . . . . . . . . . . . . . . 18
2.6 Common ownership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7 Eigenvector Centrality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.8 Amihud illiquidity ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.9 Illiquidity premium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Option-based Volatility Timing 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Test portfolios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 Portfolio constructions . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.3 Spanning regressions . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.1 Risk timing strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.2 Spanning regressions . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.3 Out-of-sample strategy performance . . . . . . . . . . . . . . . . . 49
3.4.4 Transaction costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



vi CONTENTS

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Liquidity of Central Stocks 55
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 Data and Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.1 Data and sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.2 Stock-level measures . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.3 Modelling the relationship between centrality and illiquidity . . 68

4.4 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4.1 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4.2 Relationship between CWEC and illiquidity . . . . . . . . . . . . 73
4.4.3 Valuation of Centrality . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Volatility Timing in Cryptocurrency Markets 87
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3 Data and Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.1 Data overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.2 Return scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3.3 Spanning regressions . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4 Empirical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.4.1 RV sorts and direct comparisons . . . . . . . . . . . . . . . . . . . 98
5.4.2 Max sorts and spanning regressions . . . . . . . . . . . . . . . . . 101
5.4.3 FFR sorts and spanning regressions . . . . . . . . . . . . . . . . . 105
5.4.4 Market sentiment and risk anomaly . . . . . . . . . . . . . . . . . 108

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 Concluding Remarks 113
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.2 Future research direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Appendix A Additional Results in Option-based Volatility Riming 117

Appendix B Additional Results in Liquidity of Central Stocks 139

Appendix C Additional Results in Volatility Timing in Cryptocurrency Markets149

References 153



vii

List of Figures

4.1 Centrality measures and connectedness . . . . . . . . . . . . . . . . . . . 68
4.2 Industry CWEC heatmap . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3 Illiquidity, CWEC, and bank lending tightness . . . . . . . . . . . . . . . 76
4.4 Impulse Response Function: The GFC . . . . . . . . . . . . . . . . . . . . 78
4.5 Local Projection Impulse Response Function . . . . . . . . . . . . . . . . 79

5.1 Cumulative returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Appendix B.1 Impulse Response Function (Connectedness) . . . . . . . . . . 145
Appendix B.2 Impulse Response Function: The GFC (Connectedness) . . . . 146
Appendix B.3 Local Projection Impulse Response Function (Connectedness) 147





ix

List of Tables

3.1 Risk-sorted portfolios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Performance measures for equally-weighted portfolios . . . . . . . . . . 37
3.3 Performance measures for leverage-sorted portfolios . . . . . . . . . . . 38
3.4 Spanning regressions for full sample . . . . . . . . . . . . . . . . . . . . . 39
3.5 Spanning regressions for equally weighted portfolios: The Global Finan-

cial Crisis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6 Spanning regressions for leverage-sorted portfolios . . . . . . . . . . . . 42
3.7 Spanning regressions for leverage-sorted portfolios: The Global Finan-

cial Crisis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.8 Risk timing for leverage and performance ratios double-sorted portfolios 44
3.9 The Moreira and Muir (2017)’s volatility timing strategy based on re-

alised variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.10 The Frazzini and Pedersen (2014)’s betting-against-beta strategy . . . . . 47
3.11 The Ang et al. (2006)’s idiosyncratic volatility strategy . . . . . . . . . . . 48
3.12 Out-of-sample performance . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.13 Transaction costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Summary statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Panel Regressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3 CWEC Sorts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4 Fama-Macbeth regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.5 Fama-Macbeth regression with CWEC sorts . . . . . . . . . . . . . . . . . 82
4.6 CWEC and stock returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.7 CWEC and stock returns regressions with CWEC sorts . . . . . . . . . . 84
4.8 Betting against CWEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1 RV sorts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2 Direct comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3 Max sorts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.4 Max-sorted spanning regression . . . . . . . . . . . . . . . . . . . . . . . 104
5.5 FFR sorts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.6 FFR-sorted spanning regression . . . . . . . . . . . . . . . . . . . . . . . . 107
5.7 Sentiment sorts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.8 Sentiment-classified spanning regression . . . . . . . . . . . . . . . . . . 111

Appendix A.1 Performance measures for equally-weighted portfolios with
aggregate-level risk timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Appendix A.2 Sharpe ratios for leverage-sorted portfolios with aggregate-
level risk timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



x LIST OF TABLES

Appendix A.3 Sortino ratios for leverage-sorted portfolios with aggregate-
level risk timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Appendix A.4 Calmar ratios for leverage-sorted portfolios with aggregate-
level risk timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Appendix A.5 Sharpe ratios for portfolios of financial and non-financial entities122
Appendix A.6 Sharpe ratios for size-sorted portfolios . . . . . . . . . . . . . . 123
Appendix A.7 Sharpe ratios for credit rating portfolios . . . . . . . . . . . . . 124
Appendix A.8 Spanning regression controlling for skewness and MAX . . . 126
Appendix A.9 Spanning regressions for equally weighted portfolios with aggregate-

level risk timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Appendix A.10 Spanning regressions for equally weighted portfolios with aggregate-

level risk timing: the Global Financial Crisis . . . . . . . . . . . . . . . . . 128
Appendix A.11 Spanning regressions for leverage-sorted portfolios with aggregate-

level risk timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Appendix A.12 Spanning regressions for leverage-sorted portfolios with aggregate-

level risk timing: COVID-19 . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Appendix A.13 Spanning regressions for leverage-sorted portfolios with aggregate-

level risk timing: The Global Financial Crisis . . . . . . . . . . . . . . . . 131
Appendix A.14 Spanning regressions for industry portfolios . . . . . . . . . . 132
Appendix A.15 Spanning regressions for size-sorted portfolios . . . . . . . . . 133
Appendix A.16 Spanning regressions for credit rating portfolios . . . . . . . . 134
Appendix A.17 The Frazzini and Pedersen (2014)’s betting-against-beta strategy135
Appendix A.18 Betting-against-implied-beta strategy . . . . . . . . . . . . . . 136
Appendix A.19 Out-of-sample forecast errors . . . . . . . . . . . . . . . . . . . 137

Appendix B.1 Panel Regressions (Connectedness) . . . . . . . . . . . . . . . 140
Appendix B.2 Connectedness Sorts . . . . . . . . . . . . . . . . . . . . . . . . 141
Appendix B.3 Fama-Macbeth regression (Connectedness) . . . . . . . . . . . 142
Appendix B.4 Connectedness and stock returns . . . . . . . . . . . . . . . . . 143
Appendix B.5 Betting against connectedness . . . . . . . . . . . . . . . . . . 144

Appendix C.1 Volatility timing premium correlations . . . . . . . . . . . . . 150
Appendix C.2 VIX sorts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Appendix C.3 VIX-sorted spanning regression . . . . . . . . . . . . . . . . . 152



xi

Declaration of Authorship

I declare that this thesis and the work presented in it is my own and has been generated
by me as the result of my own original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a research degree
at this University;

2. Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated;

3. Where I have consulted the published work of others, this is always clearly at-
tributed;

4. Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work;

5. I have acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself;

7. Parts of this work have been published as:

Kita, Arben and Ronchetti, Diego and Zhang, Yue, Option-Based Volatility Tim-
ing (March 17, 2023). Available at SSRN: http://dx.doi.org/10.2139/ssrn.4391540

Kita, Arben and Zhang, Yue, Liquidity of Central Stocks (December 26, 2024).
Available at SSRN: http://dx.doi.org/10.2139/ssrn.5072373

Signed:.......................................................................... Date:..................





xiii

Acknowledgements

I am deeply indebted to many individuals who have supported, guided, and inspired
me through my PhD journey.

First and foremost, I would like to express my deepest gratitude to my supervisors,
Dr. Arben Kita, Dr. Ahmad Maaitah, and Dr. Yun Luo. Their unwavering support,
insightful guidance, and constant encouragement have been the foundation of my aca-
demic work and personal growth. I feel incredibly fortunate to have learned from
their profound expertise and to have been encouraged every step of the way. I am sin-
cerely thankful to Dr. Diego Ronchetti, whose valuable insights and contributions have
greatly enriched this journey. I also thank the examiners of my thesis, Professor Tapas
Mishra and Dr. Fotios Papadimitriou, for their thoughtful comments and suggestions.

I extend my heartfelt thanks to my family and friends, whose constant love and sup-
port have been a source of strength throughout my journey. To my parents, I owe an
immeasurable debt for their endless support and encouragement, which illuminated
my path even during the toughest times.

All the wonderful moments and enjoyable times that I have spent with my friends and
the Soton family have created lasting and imperishable memories. This journey has
been demanding but deeply rewarding, and I remain forever grateful to all who have
contributed to its success. Thank you for being an integral part of this chapter of my
life.





xv

To my beloved parents and the fabulous world.





1

Chapter 1

Introduction



2 Chapter 1. Introduction

1.1 Overview

There are three substantive chapters in this dissertation. Chapter 3 and 5 study the
volatility timing effects in equity and cryptocurrency markets. Chapter 4 focuses on
the liquidity of connected stocks based on mutual funds’ common ownership. Each
of these chapters studies the topics of asset pricing from complementary angles in dif-
ferent markets. Volatility can hardly be separated from liquidity. Risk-averse investors
require higher returns as compensation for both volatility and illiquidity. Volatility cap-
tures the probability of large upside or downside price moves, translating directly into
potential losses, while illiquidity imposes the risk of forced sales at a discount. Thus,
both volatility and liquidity contribute to asset pricing.

Furthermore, the price changes due to liquidity can amplify volatility. As an example,
if an open-end fund offers redemption on a frequent basis while holding illiquid assets,
the volatility in asset markets tends to increase due to a higher probability of investor
runs and asset fire sales (IMF, 2022). Those open-end funds will be subject to a liquid-
ity mismatch between assets and liabilities if they hold assets which cannot be quickly
liquidated without a material loss of value. This mismatch brings risks as investors can
redeem shares from these funds at current net asset value, but the funds are not able
to repay the redemption and have to sell their assets at a discount, putting downward
pressure on the asset prices and causing potential investor runs and higher volatilities.
The shock impact would then be amplified. Additionally, stock liquidity is crucial for
volatility management. A higher transaction cost and liquidity or leverage constraint
may impair the effectiveness of the volatility timing strategy (Moreira and Muir, 2017).
On the other hand, heightened volatility often widens the bid–ask spread, thereby es-
calating trading costs and contributing to market illiquidity (Liu, 2006). The volatility
timing strategy requires regular position adjustments, which also directly affect the
trading volume and bid-ask spreads. Marshall et al. (2011) and Chung and Zhang
(2014) claim that the bid-ask spread has been widely used as a popular benchmark
for transaction costs and measurement of stock illiquidity. Integrating these considera-
tions is therefore essential when evaluating the true net benefit of any volatility-driven
trading approach.

Beyond the traditional stock market, the cryptocurrency market provides a modern
laboratory for these dynamics. Determining whether the linear relationship between
risk and reward holds within digital asset markets is crucial for understanding both
the inherent characteristics of cryptocurrencies and the behaviour of their investors.
By applying a volatility-timing strategy designed to exploit any divergence from the
expected risk-reward trade-off, we can rigorously test for such anomalies. The effec-
tiveness of this approach will not only shed light on the validity of conventional risk
models in a new asset class but may also offer practical guidance for market partici-
pants seeking to optimise their returns under rapidly shifting volatility regimes.
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Therefore, volatility and liquidity are both typical sources of risk, and their importance
and relationship in different markets highlight the tight connection among the chapters
in this dissertation.

1.2 Option-based volatility timing

Since Sharpe (1964)’s seminal paper, the capital asset pricing model (CAPM) has been
widely applied in research and practical investments such as evaluating investment
portfolio performance and estimating the cost of capital in decades (Fama and French,
2004). This model proposes a positive linear relationship between asset returns and
risks, as presented by the security market line (SML). To make this simple model better
evaluate market portfolios, some more complex linear models are proposed, generat-
ing better proxies in empirical tests.1 However, in fact, asset risk and returns do not
always move hand in hand as predicted by the theories. The imperfect relationship
between stock risks (volatility or beta) and risk-adjusted returns has been documented
in the literature.2 It has been revealed that stocks with low return risks achieve higher
risk-adjusted returns, which is known as the low-risk anomaly. Blitz and van Vliet
(2007) and Baker et al. (2011) propose that the low-risk anomaly is slightly stronger
when based on volatility instead of stock beta. Depending on the empirical evidence of
low-risk anomaly and volatility persistence in the short run in the stock market, Mor-
eira and Muir (2017) find that realised volatility-timing strategy exploiting the low-risk
anomaly generate significant alphas, higher Sharpe ratios, and increased utility gains
for mean-variance investors. Cederburg et al. (2020) apply Moreira and Muir (2017)’s
approach on a larger sample and conclude that the realised volatility-managed strategy
is overstated. The literature focuses on using backwards-looking risk measures such as
realised volatility and lacks consideration of the assets’ idiosyncratic characteristics.

Chapter 3 aims to comprehensively examine the effectiveness of stock-level risk-neutral
volatility timing strategy in improving investment portfolio risk-adjusted returns. This
sheds new light on stock option’s important role in risk management and portfolio
allocation. The objectives thus include studying the option-based volatility (Implied
volatility (IV), Martin and Wagner (2019) MW, and Chabi-Yo et al. (2023) GLB) timing
strategy’s performance under portfolios constructed by different formation approaches
and constructing portfolios on the firm-level risk factor basis, which improves the re-
sults from the conventional portfolios constructed at the macro-level in the literature
with the assumption that the factors are well diversified.

1See Fama and French (1993, 2015) and Carhart (1997) for example.
2See Haugen and Heins (1975), Ang et al. (2006, 2009) for example.
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We follow the spirit of Moreira and Muir (2017) and Cederburg et al. (2020) to con-
struct volatility-managed portfolios by scaling excess returns with the reciprocal of cor-
responding variances, keeping the unconditional variances unchanged. However, we
make several essential departures from the conventional approach. First, we scale the
stock returns according to their volatilities rather than conventionally focusing on the
factor level. Second, based on the stock-level analyses, instead of backwards-looking
realised volatilities (RV), we use option-based volatilities including implied volatilities
(IV), Martin and Wagner (2019)’s measure (MW), and Chabi-Yo et al. (2023)’s Gener-
alised Lower Bound measure (GLB). These option-based volatilities contain the market-
consensus forward-looking risk and return information derived from option market
prices. Our approach thus enables investors to flexibly tailor their investment themes
according to their risk-reward preference and avoid huge transaction costs to follow
macro factors.

The empirical analyses start by confirming the low-risk anomaly in our sample stocks.
The sample stocks are first sorted into equally weighted quartile portfolios according
to their realised volatilities. The patterns indicate that the imperfect relationship does
exist in our sample. On average, stocks with higher realised volatilities representing
more risks fail to achieve higher returns. Based on the low-risk anomaly and empirical
evidence of volatility persistency in the short term, we adjust the weights of stocks
in portfolios according to their risk-neutral volatility measures. This is distinguished
from the literature in terms of using forward-looking volatility measures in portfolio
optimisation. The forward-looking measures are derived from equity option market
prices, which contain information on investors’ expectations of future stock returns
and risks. IV is a popular risk-neutral return variation measure derived from market-
observable option prices. MW and GLB are beneficial to the timing strategy regarding
the investors’ concern for fast-changing return volatility and return tails, respectively.
IV, MW, and GLB are referred to as risk-neutral measures that comprehensively project
stock return risk characteristics. Thus, this option-based volatility timing approach
diverges from conventional two-moment analyses that entirely focus on returns and
variances. Conventional realised volatility conveys past risks which do not correctly
reflect investors’ expectations and other potential issues such as leverage and liquidity
constraints. Realised volatility is also delicate to extreme events such as significant
portfolio rebalancing.

Besides using forward-looking risk measures, this study applies the weight adjustment
to individual stocks instead of macro-level factors, so this study does not rely on the
presumption of perfect portfolio diversification when an individual component’s id-
iosyncratic return distribution is fat-tailed. This helps to take advantage of the crucial
information implied by equity option prices. Also, the stock-level timing approach en-
ables investors to flexibly tailor their portfolios according to their own risk preferences
and risk-return requirements. Thus, the forward-looking stock-level method minimises
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realised volatility’s limitations, contains richer expected movement information, pro-
vides more flexibility to investors, and requires lower rebalancing frequency.

After the return scaling and the formation of the portfolios in our sample of 1137
S&P500 historical constituents from January 1996 to December 2021, the scaled and
unscaled returns, Sharpe ratios, Sortino measures, and Calmar measures are directly
compared across different sub-samples and portfolios, which spanning regressions are
also replicated in. Direct comparisons and spanning regressions generate consistent re-
sults that timing risk-neutral volatilities at the firm level reaches the best performance
improvement. As a benchmark of beta risk management, we repeat the betting-against-
beta strategy with realised betas introduced by Frazzini and Pedersen (2014). Instead
of realised betas, we also apply the option-implied betas (Buss and Vilkov, 2012) to the
betting-against-beta strategy with our sampled firms and reveal that option-implied
betas improve the beta management strategy performance. The improved results gen-
erated by forward-looking volatility timing at the firm level are robust when the strat-
egy is subject to realistic transaction costs, controlling for Fama-French-Carhart 4 fac-
tors (Carhart, 1997) and Schneider et al. (2020)’s ex-ante skewness, and across all sub-
samples and sorted portfolios.

This chapter contributes to the literature by providing empirical evidence that tra-
ditional systematic risk factors fail to explain low-risk anomalies. This study intro-
duces an ex-ante risk management strategy for equity portfolios to determine portfolio
weights with option-implied volatility. This strategy exploits the market’s expectations
of firm-level volatility and future stock returns, outperforming conventional ex-post
volatility timing approach and popular factor pricing models. The forward-looking
measures are particularly effective in adjusting portfolio weights during uncertain pe-
riods. Firm fundamentals such as capital structure matter for the risk timing effective-
ness, especially when the market is distressed. The excess returns obtained from this
strategy survive from transaction cost tests. This chapter thus sheds new light on in-
formative options’ contribution to the return moment insights and offers a new risk
management and portfolio rebalancing approach.

1.3 Liquidity of central stocks

Although there has been a bunch of literature focusing on the financial interlinkages
and commonality in liquidity, the studies fail to reach a consensus on both possible
channels of influence3. Also, a comprehensive study of the relationship between the

3One strand of the literature such as Rubin (2007), Kamara et al. (2008), Koch et al. (2016), Agarwal et al.
(2018), Deng et al. (2018), and Bradrania et al. (2021) finds the causality runs from financial interlinkages
to liquidity, while the other strand such as Edelen (1999), Mitchell et al. (2002), and Teo (2011) shows that
institutional investors have incentives to adjust their investment positions, which affects stocks’ connect-
edness, to match their liquidity needs.
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interlinkages and stock liquidity is still insufficient. The gap arises mainly from the dif-
ficulty of mapping complex and timely dynamic financial connections. Besides, equity
has remained the dominant investment target of US mutual funds in the last decades
when the mutual fund scale quickly rose4, implying systematic risk challenges through
mutual funds’ equity ownership.

Chapter 4 aims to derive an informative stock centrality measure in the financial net-
work and discover the centrality properties regarding the relationship with stock liq-
uidity and contribution to returns. Indeed, the insights into stock centrality, liquidity,
and returns help researchers and practitioners better understand stock’s importance in
the broad network and how its role will affect the liquidity and returns that are cru-
cial in the asset pricing topic. The objectives thus include introducing a stock-level
Connectedness-Weighted-Eigenvector-Centrality (CWEC) measure generated from the
mutual fund common ownership to stocks, studying the relationship between stock
centrality and illiquidity, and figuring market’s different views on different stock cen-
trality levels.

The empirical studies start by identifying the comprehensive quarterly pairwise com-
binations of stocks owned by mutual funds according to their common ownership. We
introduce a two-step process to derive the stock-level CWEC. First, we follow Antón
and Polk (2014) to compute the stock pairwise connectedness as the proportion of each
pair of stocks’ market capitalisation owned by a particular mutual fund in a cross-
section and then rank-transform and standardise the connectedness. Second, we use
the pairwise connectedness derived in the first step as the weight of each edge between
pairs of stocks to compute the eigenvector centrality for each stock in the connected
map. The CWEC thus departs from conventional pairwise studies by introducing a
stock-level centrality measure weighted by stock connectedness, considering both the
strength of the links related to the stock and the importance of the stock’s neighbours
and affording a fair measurement of stocks’ importance in the financial network.

This chapter focuses on the large US stocks owned by the top US funds which cover
the majority of the market from January 1999 to June 2022. This is informed by the
theory that the largest firms are the most important participants in the market (Gabaix,
2011). Given the notion that market prices of large firms best disclose stock connections,
this unique method provides a new and effective way to explain stock networks and
liquidity. The largest stocks filtered in our sample guarantee that stocks are strongly
connected in the network, addressing the concern that eigenvector centrality has lim-
itations in effectively showing the peripheral node importance (Buraschi and Tebaldi,
2024).

The illiquidity measure proposed by Amihud (2002), which is adopted in this chapter,
has been widely used in the literature and empirically proved effective. The Amihud

4The data is from the 2000 and 2023 Investment Company Institute Factbook.
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measure is computed as the quotient of average absolute stock daily returns and stock
daily trading volume, implying the return sensitivity to transactions. A larger Amihud
measure refers to higher price fluctuation given the same amount of transactions and
thus lower liquidity.

The stock-level centrality measure with a large universe of sample stocks enables us to
study the relationship between stock centrality and liquidity, for which the literature
has not reached a consensus as discussed in the context. The panel regressions with
stock-level variables indicate stock centrality and illiquidity have statistically signifi-
cant effects on each other. The bilateral effect provides motivations for further Vec-
tor Autoregression (VAR) analysis. Ang et al. (2006)’s stock idiosyncratic volatilities,
VIX index, and money supply shock are controlled in the VAR model in this chapter.
Since the idiosyncratic volatility is generated from the market-observable price regres-
sions against Fama and French (1993) factors, the volatility adds market expectations
to fundamental characteristics, basically containing comprehensive idiosyncratic infor-
mation. VIX and money supply change stand for macro controls. The VIX index signals
the market sentiment to the S&P500 price changes, which is important in the model as
the sample covers highly uncertain periods with prominent risks. The money supply
shock represents the overall market liquidity condition, which is a critical determi-
nant of the financial intermediary’s funding tightness and investment decisions. These
micro- and macro-level control variables include abundant elements that could influ-
ence stock liquidity. The VAR results indicate that only the stock centrality effect on
illiquidity is statistically significant. The IRF and replicated analyses for GFC-separated
periods further confirm stock centrality’s preponderant effect on stock’s illiquidity. Af-
ter that, according to the time-series centrality, illiquidity, and bank lending tightness
plots, when the market funding liquidity tightens, stock centrality and illiquidity do
not react consistently. The stock centrality shows ”sticky” properties and is less corre-
lated to the market funding liquidity. This sheds new light on the VAR and IRF results
regarding that mutual funds are reluctant to alter their investment portfolio positions
since the fund managers tend to stay at their familiarised and historical investment
strategies, minimising the uncertainty caused by asymmetric information and transac-
tion costs.

Tightly following the relationship analyses, this chapter then discovers whether the
market views stocks’ centrality differently. We sort stock centrality levels into quar-
tile portfolios and compare the stock illiquidity, idiosyncratic volatilities, and Fama-
French-Carhart 4 factor (Carhart, 1997) alphas to look for any centrality pricing evi-
dence in the market. The sorting results indicate that stocks with higher centrality tend
to be more liquid and yield lower excess returns which are attributed to investors’ de-
mand for liquidity risk compensation and fairer prices of more connected, liquid, and
popular stocks. The premium of stock centrality is then supported by the statistically
significant βCWEC coefficients in the Fama and MacBeth (1973) regressions. We then run
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the predictive regressions of stock centrality on excess returns. The regressions gener-
ate significant coefficients, indicating that stock centrality is potentially a state variable.
The potential evidence of centrality premium and centrality predictive power to excess
returns motivate the betting-against-centrality (BAC) strategy to analyse the feasibility
of making a profit by trading against centrality. The BAC factor is constructed by long-
ing the lowest-connected stocks and shorting the highest-connected stocks with equal
weights. The factor is regressed against Fama-French-Carhart 4 factors (Carhart, 1997).
The insignificant alphas underscore the centrality’s stickiness revealed and discussed
in previous analyses. That is, investors can hardly exploit the pricing gap among stocks
with different centrality levels, especially when the profits are subject to some condi-
tions such as transaction costs.

This chapter contributes to the literature by first deriving the CWEC. CWEC exploits
the connectedness and eigenvector centrality to capture the strength of each edge be-
tween pairwise nodes and the importance of each node’s neighbours in the financial
network which has not been studied in traditional pairwise correlation analyses. Re-
lying on the fair stock-level centrality measure, this chapter reveals stock centrality’s
inverse relationship with and preponderant effect on stock illiquidity by sorting sam-
ple stocks into CWEC quartiles and applying statistical approaches such as VAR and
IRF. Other results indicate that stock centrality is viewed differently in the market and
appears to be a priced risk source. The empirical evidence affords researchers and prac-
titioners deeper insights into characteristics of stock centrality and liquidity as well as
their roles as priced risk factors, thus being indicative of risk management.

1.4 Volatility timing in Cryptocurrency markets

The cryptocurrency market inefficiency has been widely documented in the literature5.
Some studies also reveal a speculative nature of the cryptocurrency market6, which is
relevant to the prevailing price mismatch and risk anomalies as studied by Leong and
Kwok (2023). While the cryptocurrency market discrepancy between risk and return
has been discovered, the strategies seeking excess returns based on the anomalies are
still insufficiently studied.

Based on the empirically successful stock volatility timing strategy developed by Mor-
eira and Muir (2017), this chapter aims to study the risk anomaly and realised volatility
timing strategy in the cryptocurrency market.7 Adopting a similar strategy for cryp-
tocurrency markets, we not only provide empirical evidence of risk timing but also

5See Al-Yahyaee et al. (2018), Caporale et al. (2018), Charfeddine and Maouchi (2019), Hu et al. (2019),
Jiang et al. (2018), Kristoufek (2018), and Zhang et al. (2018) for example

6See Cheah and Fry (2015), Baur et al. (2018), and Babiak and Bianchi (2023) for example.
7Chapter 5 also follows Moreira and Muir (2017) and Cederburg et al. (2020) volatility timing approach

as in Chapter 3, but Chapter 5 is closer to the traditional approach in terms of using realised volatilities to
scale the index excess returns.
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introduce a new approach that can potentially generate excess returns. The separate
analyses considering cryptocurrency sizes, lottery preference, penny stock compar-
isons, market turmoil, market funding liquidity, and market sentiments afford a deeper
understanding of risk anomaly properties and volatility timing effectiveness with dif-
ferent systematic conditions in the cryptocurrency market.

The empirical studies are based on indices constructed by cryptocurrencies with dif-
ferent market capitalisations representing overall market performance. The realised
volatility sorted portfolios indicate that the risk anomaly appears in the cryptocurrency
market, implying that higher volatility exposures are inadequately compensated by re-
turns. To assess risk management efficacy, we apply the realised volatility timing strat-
egy, which is empirically successful in stock markets, to the cryptocurrency indices. Di-
rect comparisons of scaled and unscaled returns, alongside risk-adjusted performance
metrics (Sharpe and Sortino ratios), demonstrate the strategy’s conditional effective-
ness. Spanning regressions further investigate the drivers of volatility timing success.
While portfolio sorting provides some evidence of volatility timing utility and hints
at investor lottery preferences, the regression results fail to discover a systematic link
between lottery-driven demand and volatility timing effectiveness.

Subsequent analyses replicate the timing method across the subsets of different cryp-
tocurrency indices and market liquidity conditions, isolating the two-year COVID pe-
riod. The realised volatility timing approach successfully generates significant alphas
under elevated funding liquidity during market turmoil, with amplified effectiveness
observed among smaller cryptocurrencies. The alphas are significant with specific con-
ditions which lead to prominent risk anomalies. All the following conditions collec-
tively contribute to the risk anomaly and significant alphas. First, cryptocurrencies’
perceived hedging properties motivate risk-averse investors to enter the cryptocur-
rency market during highly uncertain periods. Second, lower federal fund rates im-
ply a more prosperous market and active trading. Third, smaller cryptocurrencies are
less exposed and thus have more potential to generate excess returns. Being different
from cryptocurrencies, penny stocks lack safe-haven attributes and contain other risks
such as default risks that make investors require extra compensation. Therefore, the
volatility timing approach reaches different results in cryptocurrency and penny stock
markets. This contrast underscores how volatility timing’s success is contingent on
market-specific risk-return dynamics and investor behavioural biases.

To further inspect the risk anomaly and realised volatility timing properties in the cryp-
tocurrency market, we replicate the sorting and spanning regression analyses with con-
sideration of sentiment indicators for the overall global financial market and cryptocur-
rency market respectively in this chapter. This new comparison between sentiment
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indicators in different markets which has never been conducted in the literature is mo-
tivated by some empirical evidence that the cryptocurrency market is driven by emo-
tional and speculative transactions8. This analysis thus affords insights into cryptocur-
rency return and risk relationships as well as realised volatility timing effectiveness.
Results reveal that significant alphas are generated by the realised volatility timing ap-
proach only for large cryptocurrencies during the growth stage of the overall global
financial market sentiment. The new inflows to the cryptocurrency market tend to
choose large cryptocurrencies and lead to more prominent risk anomalies. Otherwise,
adjusting the investment positions according to past observed information in such a
highly speculative market cannot effectively improve the excess returns compared to
unmanaged portfolios.

This chapter contributes to the literature mainly in three ways. First, the risk anomaly
evident in both the literature and the preliminary analysis and empirical evidence of
volatility persistence in the short run in the cryptocurrency market (Zhang and Zhao,
2023) enable us to apply the empirically successful realised volatility timing strategy,
which has not been tried in previous literature. Timing cryptocurrency volatility ex-
ploits the risk anomaly, being indicative of the strategy’s effectiveness in yielding al-
phas and crucial to interested academic researchers and practitioners. The second main
contribution of this chapter is the separate analyses of subsets according to cryptocur-
rency sizes, recent maximum returns, market funding conditions, market sentiment,
and different macro environments. The separated analyses further test the anomaly
and timing strategy’s effectiveness and help to reveal the investor behaviour which
leads to the phenomenon. Besides, the studies are also replicated on the penny stock in-
dex for comparisons to the cryptocurrency market, as both markets are notable for their
speculative nature. This extended approach replication on the penny stock index dis-
closes the difference between cryptocurrency and other speculative assets, providing
a more comprehensive understanding of the cryptocurrency market properties. This
chapter overall provides portfolio managers references to boost returns by adjusting
their crypto allocations in specific periods, allows risk teams to tailor strategies to ac-
count for sudden volatility surges, and gives regulators clearer visibility into the factors
that trigger dramatic price movements.

1.5 Schematic representation

Chapter 1 is an introduction of the thesis, separately highlighting the research context,
research aims, methods, findings, and main contributions for each project.

Chapter 2 discusses the main background concepts and methods used in this thesis.

8See Cheah and Fry (2015), Baur et al. (2018), Babiak and Bianchi (2023), and Zhao et al. (2024) for
example.
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Chapter 3 analyses the effectiveness of realised and option-based volatility timing meth-
ods and different portfolio formation approaches.

Chapter 4 investigates the relationship between stock centrality and stock liquidity and
market attitude to stocks with different centrality levels.

Chapter 5 explores the risk anomaly and volatility timing strategy effectiveness in the
cryptocurrency market under different market conditions.

Chapter 6 concludes the chapters, critically examines the thesis, and makes some rec-
ommendations for future research.
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Chapter 2

Methodology
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2.1 Introduction

This chapter introduces the major background concepts and empirical methods ap-
plied in Chapter 3, 4, and 5. The background concepts in this chapter heavily draw on
Anderson et al. (2009), Foucault et al. (2013), and Hull (2021), incorporating some mi-
nor adjustments. The major empirical methods follow the spirit of Moreira and Muir
(2017), Cederburg et al. (2020), and Antón and Polk (2014)’s studies.

In Chapter 3, the forward-looking option-based implied volatility instead of conven-
tional realised volatility in the literature is used for the timing strategy. Also in Chap-
ter 5, the empirically effective realised volatility timing strategy in the stock market is
transplanted in the cryptocurrency market. I thus first introduce the important con-
cepts of realised volatility and implied volatility in Section 2.2 and 2.3, respectively,
which are tightly followed by Section 2.4 where we illustrate the volatility timing strat-
egy proposed by Moreira and Muir (2017). I also demonstrate the characteristics of the
risk-adjusted ratios used in the direct comparisons of unscaled and volatility-managed
portfolio performance in Section 2.5. After that, Chapter 4 proposes a two-step pro-
cess to derive a stock-level Connectedness-Weighted-Eigenvector-Centrality measure
originated from Antón and Polk (2014)’s common ownership and proxy the illiquidity
by the empirically popular and effective Amihud (2002) measurement. So I briefly in-
troduce the concepts of common ownership, eigenvector centrality, and Amihud ratio
in Section 2.6, 2.7, and 2.8. To highlight the contribution of the stock-level centrality
in Chapter 4 which affords the analyses with stock characteristics such as illiquidity, I
refer to a basic liquidity premium model in Section 2.9. These concepts and methods
help us better understand the contribution of the studies in this thesis to asset pricing
topics.

2.2 Realised volatility

Since actual realisations of return volatility are not directly observable as raw returns,
relying on strong parametric assumptions to infer the volatility has been a common so-
lution to the return volatility latency. In contrast, without transaction costs, the volatil-
ity of realised returns may be measured without error by using continuously observed
prices and realised returns. Realised variation is conceptually connected to the cumula-
tive expected return variation with an arbitrage-free diffusive data-generating process
over a particular period, avoiding strong auxiliary assumptions. This approach devel-
ops rapidly and is widely applied due to the better availability of high-quality trans-
action data for many financial assets, especially for liquid markets with high trading
frequency and low transaction costs.
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The notion of realised volatility is tightly connected to arbitrarily high-frequency data
observations. Although we are only able to sample at discrete intervals, it is reasonable
to study volatility in a continuous framework. In a continuous-time diffusive frame-
work, we assume the absence of price jumps for the sake of simplicity, along with the
presumption of a frictionless market, for the martingale asset logarithmic price s which
rules out arbitrage opportunities,

dst = µtdt + σtdWt, 0 ≤ t ≤ T, (2.1)

where µtdt and σtdWt are the drift and diffusion functions respectively. Wt is a standard
Brownian motion process. The µt and σt represent the instantaneous conditional mean
and return volatility of the asset. µt and σt are both predictable processes with finite
variation and strictly positive and square-integrable, respectively. For continuously
compounded return from t − h to t,

r(t, h) = s(t)− s(t − h) =
∫ t

t−h
µ(τ)dτ +

∫ t

t−h
σ(τ)dW(τ), 0 ≤ h ≤ t. (2.2)

Since the mean term (µtdt) is of lower order than the diffusion function (σtdWt), the
mean term can effectively be omitted when the high-frequency returns are integrated
over a short period, h. Thus, the quadratic variation (QV(t, h)) coincides with the inte-
grated variance (IV(t, h))1,

QV(t, h) = IV(t, h) =
∫ t

t−h
σ2(τ)dτ. (2.3)

The quadratic variation can be well estimated by the corresponding cumulative square
return process without microstructure noise and measurement error. Consider a parti-
tion t − h + j

n , j = 1, ..., n · h of the [t − h, t] interval. The asset return realised volatility
(RV) is

RV(t, h; n) =
n·h
∑
j=1

r
(

t − h +
j
n

,
1
n

)2

. (2.4)

Also,

RV(t, h; n) −→ QV(t, h), as n → ∞. (2.5)

1The coincidence between QV and IV does not hold for more general return process such as the
stochastic volatility jump-diffusion model.
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Therefore, when the sampling frequency n increases to infinite, semimartingale theory
ensures that the RV converges in probability to QV which is defined in Equation (2.3).

2.3 Implied volatility

As an alternative approach to the common ones making strong parametric assump-
tions, implied volatility relies on option pricing models and market observable prices.2

Implied volatility is forward-looking and reflects the market consensus about the corre-
sponding stock volatility, which cannot be figured out by backwards-looking measures
such as historical volatilities3. This property provides us with the incentive to time
implied volatility in Chapter 3.

The most prominent option pricing model is derived by Black and Scholes (1973). With
the assumptions of permitted short selling, no transaction costs or taxes, non-dividend-
paying securities, absent arbitrage opportunity, continuous security trading, and a per-
sistent risk-free rate, the Black-Scholes-Merton pricing formulas for European call and
put options are

c(s, t) = sN(d1)− Ke−r(T−t)N(d2) (2.6)

p(s, t) = Ke−r(T−t)N(−d2)− sN(−d1), (2.7)

where

d1 =
1

σ
√

T − t

[
ln

( s
K

)
+

(
r +

σ2

2

)
(T − t)

]
d2 =

1
σ
√

T − t

[
ln

( s
K

)
+

(
r − σ2

2

)
(T − t)

]
= d1 − σ

√
T − t.

The function N(·) refers to the cumulative probability distribution for the variable
which follows a standard normal distribution. The variables c and p are European
call and put options; s is the stock price. K is the strike price; r is the risk-free rate with
a continuous compound; T − t is the time to the option maturity.

2This approach thus generally fails to provide unbiased forecasts of the underlying asset volatility as
it still depends on pricing models and relates to a volatility risk premium which may change along with
time.

3Historical volatility is computed as the standard deviation of a rolling sample return. It can provide
volatility information as volatility is persistent, but volatility’s mean-reverting property implies that the
historical volatility measure is not optimal and unbiased.
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As σ of the stock price is the parameter in the Black-Scholes-Merton pricing formulas
that cannot be directly observed in the market, computing the volatility implied by the
market-observable option prices becomes a common approach. Since it is complicated
to invert Equation (2.6) to make a function f (σ) expressed by the rest of the variables,
an iterative trial method is normally applied to approach the implied volatility.

2.4 Volatility timing

Besides the empirical evidence that stocks with lower risks achieve abnormally higher
returns (low-risk anomaly)4, based on other evidence that volatility does not predict
returns and is persistent in the short run, Moreira and Muir (2017) construct portfolios
by timing realised volatilities to improve investors’ utility:

RRV
t+1 =

c

R̂V2
t

Rt+1, (2.8)

where

R̂V2
t =

22
Dt

Dt

∑
d=1

(rd
t )

2.

RRV
t+1 and Rt+1 are the realised volatility managed and buy-and-hold portfolio returns in

month t + 1, respectively. The constant c is used for making unscaled and scaled return

variances the same for each company. Formally, c is defined as c =

√
var(Rt+1)

var
Rt+1
R̂V2

t

. Dt is

number of daily observations in month t. Let d = 1, ..., Dt in month t. In this setting,
c

R̂V2
t

implies the required leverage in month t + 1. This volatility timing approach thus

exploits the information of realised volatility in the last period.

The spanning regressions are applied to inspect the effectiveness of volatility timing:

RRV
t = α + βRt + ϵt. (2.9)

Moreira and Muir (2017) claim that a statistically significant positive α indicates that
the scaled portfolio has a higher Sharpe ratio than the unscaled one’s, thus delivering
utility gains to mean-variance investors. However, Cederburg et al. (2020) emphasise
the importance of considering β, the estimated coefficient of the independent variable.
They argue that the estimated coefficient is equivalent to the unconditional correla-
tion coefficient between the scaled and unscaled returns (β̂ = ρ̂). Consequently, the
advantage of a positive constant is partially offset by a reduction in the Sharpe ratio.

4The empirical evidence appears in both stock and cryptocurrency markets. Chapter 3 and 5 have
discussed this in detail.
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Nevertheless, the inclusion of (positively weighted) scaled and unscaled factors could
expand the mean-variance frontier (Gibbons et al., 1989).

2.5 Risk-adjusted performance measures

The first risk-adjusted ratio is the Sharpe ratio (SR), popularly used as a risk-adjusted
return measurement. It is defined as the ratio of an asset or a portfolio’s excess returns
over its volatility measure:

Sharpe ratio =
Ra − r f

σa
, (2.10)

where Ra is the realised or expected return of the asset, σa is the asset return volatility,
and r f is the risk-free rate. The numerator generally represents the asset risk premium
over a safe asset such as a treasury bill. The ratio thus implies how much excess returns
an investor can gain when taking one unit of the volatility (risk). However, the standard
deviation used in Equation (2.10) presumes that the market views price movements in
either a positive or negative direction indifferently, which in fact does not hold for most
investors.

As an alternative risk-adjusted return measurement, Sortino ratio is computed as the
ratio of the asset excess return over the asset downside volatility:

Sortino ratio =
Ra − r f

σd
, (2.11)

where Ra is the asset’s realized or expected return, σd is the downside volatility of the
asset return, and r f is the risk-free rate. Since the Sortino ratio only considers the nega-
tive price deviation, it sometimes better recognises risk-adjusted asset performance, as
a positive price deviation is viewed as an award.

Another risk-adjusted performance measurement is the Calmar ratio, which uses the
maximum price drop instead of volatilities as the risk measure:

Calmar ratio =
Ra − r f

Maximum Drawdown
. (2.12)

The Calmar ratio is simpler to calculate and understand. The maximum price draw-
down explicitly shows the risk of the asset or portfolio.

Each of these risk-adjusted ratios highlights a different aspect of performance. The
Sharpe ratio provides a straightforward benchmark for reward per unit of total variabil-
ity, though it does not distinguish between upside and downside swings. The Sortino
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ratio builds on this by considering only downside deviations relative to a chosen min-
imum acceptable return, gently steering attention toward undesirable outcomes. The
Calmar ratio brings in a drawdown-focused view that helps measure how well a strat-
egy deals with its largest setbacks. Taken together, these three ratios balance compara-
bility, downside emphasis, and drawdown resilience for a well-rounded assessment5.

2.6 Common ownership

Inspired by the empirical evidence that stock returns comove beyond their fundamen-
tals due to institutional features that significantly affect stock discount rates, Antón
and Polk (2014) propose a new approach relying on mutual fund flow to gauge the
institution-based comovement. The stock-level Connectedness-Weighted-Eigenvector-
Centrality measure applied in Chapter 4 is derived from this approach. Formally, af-
ter comprehensive stock pairwise combinations have been discovered in the sample,
Antón and Polk (2014)’s common ownership is measured by the total value of the pair
of stocks owned by a common fund, scaled by the total market capitalisation of this
pair of stocks. For a paired stock i and j,

FCAPij,q =
∑F

f=1

(
S f

i,qPi,q + S f
j,qPj,q

)
Si,qPi,q + Sj,qPj,q

, (2.13)

where S f
i,q is stock i’s number of shares held by fund f at quarter q traded at price Pi,q.

Si,q is the total shares outstanding of stock i, and similar for stock j. This measurement
enables researchers to study the comovements of characteristics for the pairs of stocks
such as the pairwise stock liquidity commonality based on correlations. This method
comprehensively considers all the nodes in the sample and weights their linkages by
mutual funds’ ownership, shedding new light on financial networks and linkages.

2.7 Eigenvector Centrality

The eigenvector centrality measure is based on the idea that a node is important in the
network if it is linked to other important nodes (Bonacich, 2007). Assume a network
constructed by a set of nodes N = 1, 2, ..., n. Let A = ai,j

6, where i, j ∈ N and i ̸= j,

5More specialised metrics, such as the Homm and Pigorsch (2012) economic performance measures,
can offer deeper insights, but they also tend to require richer data sets and more intricate calibration,
which can complicate broad empirical application in the thesis setting.

6For undirected graphs as the connectedness-derived financial network studies in this thesis, where
edges do not have a direction and the connection between pairwise nodes is bidirectional or mutual, it
does not matter to use ai,j or aj,i.
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denote the network’s adjacency matrix. The eigenvector centrality ci of a node i is
defined as

ci =
1
λ

N

∑
k

ai,jcj, (2.14)

where the scalar, λ, is the largest eigenvalue associated with the adjacency matrix, A.

λc = cA

Therefore, each node i’s eigenvector centrality is directly related to its neighbouring
nodes’ total centrality. A node is considered more important in the network if it is
connected to more nodes and more important nodes.

2.8 Amihud illiquidity ratio

Liquidity can be measured in different dimensions such as trading costs, depth avail-
able for large orders, trading speed, protection against execution risk, and so on. Mar-
ket participants are willing to apply trading strategies to minimize illiquidity’s influ-
ence on their portfolios. For researchers and regulators, understanding liquidity mea-
surements affords them insights into the relationship between market structure and
performance. As discussed in Chapter 4, Amihud (2002)’s illiquidity ratio has been
widely adopted in the literature and proven effective in measuring price impact which
is one of the major sources of illiquidity. Formally, Amihud (2002) ratio, It, is defined
as

It =
|rt|
Volt

, (2.15)

where |rt| is the stock return and Volt is the trading volume over the time period t. This
measure quantifies the price changes given the amount of the trading volume, where a
larger It indicates higher levels of illiquidity.

2.9 Illiquidity premium

In Chapter 4, transforming Antón and Polk (2014)’s concept of mutual fund common
ownership from a pairwise level to a stock level offers significant advantages, partic-
ularly in studying stock connectedness and its effects on stock illiquidity which is a
critical factor in asset pricing. Given its substantial impact on asset returns, illiquidity
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has been extensively examined by both researchers and practitioners. The first rea-
son is that investors have to pay transaction costs which reduce their effective asset
returns. Investors thus will pay less for illiquid assets, demanding an additional illiq-
uidity premium alongside the standard risk premium. Illiquidity has been attributed
to factors such as information asymmetry and search costs. Moreover, asset liquidity is
not persistent and may vary over time. These variations in asset liquidity contribute to
liquidity risk, adding to the risks inherent in financial assets. Risk-sensitive investors
demand compensation for taking liquidity risks unless the risk can be effectively di-
versified. This section presents the basic framework originally derived by Amihud and
Mendelson (1986), illustrating the liquidity effect on asset prices and required returns.

Consider a simple model in an illiquid market where an investor buys a non-dividend-
paying security and plans to sell the security after k periods. The ask price at time t can
be expressed as:

at = mt(1 +
st

2
). (2.16)

Also, for the bid price at time t:

bt = mt(1 −
st

2
). (2.17)

The at, bt, and st are the ask price, bid price, and the proportional bid-ask spread7 at
time t, respectively. mt refers to the midquote which is assumed to be equal to the se-
curity fundamental value, so mt = µt. Let r be the investor’s required rate of return per
period, which depends on the security’s risk characteristics. Thus, µt will compound at
r if the market is perfectly liquid, st = 0, at any time. As the security is bought at time
t and sold at time t + k,

at =
bt+k

(1 + r)k . (2.18)

Substitute Equation (2.16) and (2.17) into Equation (2.18) and express the asset funda-
mental value at time t as an equation:

µt =
µt+k

(1 + r)k ·
1 − st+k

2
1 + st

2
. (2.19)

The left term of Equation (2.19) is the discounted future value, while the last term is a
form of illiquidity measurement. When the spread at time t or t + k increases which

7The bid-ask spread is a measure of trading costs including brokers’ commissions and price impact
due to transactions as examples.
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refers to higher transaction costs and thus lower liquidity, the asset fundamental value
at time t decreases. To investigate the return properties, move µt+k to the left-hand side
and take the reciprocal of both sides:

(1 + R)k = (1 + r)k ·
1 + st

2

1 − st+k
2

, (2.20)

where R is the average gross return per period required by investors holding this asset.
R is surely greater than the basic return r as the right term of Equation (2.20) is larger
than 1. This difference between R and r highlights the compensation for the transaction
costs to investors.

Since the gross return R is also affected by the holding period k, the spread is assumed
to be constant to make the effect clearer. That is, st = st+k = s. From Equation (2.20),
take natural logarithm of both sides:

ln(1 + R) = ln(1 + r) +
1
k
· ln(

1 + s
2

1 − s
2
).

As d
dx ln(x + 1) = 1

x+1 and d
dx ln( 1+ x

2
1− x

2
) = 4

4−x2 , ln(x + 1) ≃ x and ln( 1+ x
2

1− x
2
) ≃ x when x is

small. Therefore, the gross return R can be approximated by:

R ≃ r +
s
k

(2.21)

R has an inverse relationship with holding period k because the transaction costs only
incur once every k periods. The positive relationship between the gross return R and
the transaction cost s has been discussed above. Therefore, the gross required return R
is the basic required return of the security r plus the liquidity risk premium s

k .
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3.1 Introduction

Literature documents that stocks featuring low return volatility or beta achieve higher
risk-adjusted returns, leading to a notion of a low-risk anomaly (LRA).1 Researchers
have highlighted how systematic and idiosyncratic risks affect this anomaly.2 The lack
of consensus regarding the economic factors behind this anomaly stems from the inher-
ent challenge of identifying the risks associated with non-normally distributed stock
returns.

This paper empirically shows how portfolio weights based on quantities obtained under
the risk-neutral probability measure (RNs) significantly enhance equity portfolio perfor-
mance. Informed by option-implied market-observable risk expectations, we dynami-
cally adjust stock weights according to their risk levels. Our approach is distinctive in
the literature because we use forward-looking risk measures to implement the portfolio
optimisation. By ex-ante risk timing at the single equity level, we leverage the forward-
looking risk-reward expectations that equity option prices convey.3 At the same time,
we retain the diversification effects for the portfolio performance by exploiting the cor-
relations in extensive equity portfolios. Moreover, our stock-level approach is informed
by the literature showing the practical limitations of the perfect portfolio diversification
assumption when the idiosyncratic return distributions are fat-tailed.4

The main point of divergence of our ex-ante risk timing strategy from previous litera-
ture is the use of forward-looking stock-level equity option prices to time risk rather than
using the ex-post portfolio realised volatility.5 Differently from the LRA literature using
realised volatilities (RV), option prices inform on investors’ expected stock return risk,

1The imperfect relationship between the risk and (risk-adjusted) returns, the LRA, was first docu-
mented by Haugen and Heins (1975), Ang et al. (2006, 2009). Blitz and van Vliet (2007) and Baker et al.
(2011) find slightly stronger results when analysing volatility rather than stocks’ beta. Recently, Asness
et al. (2020) have reported a significant alpha for portfolios sorted on stocks’ volatility.

2The literature relying on systematic risk stems from economic considerations of investors’ leverage
constraints originally theorised by Brennan (1971) and Black (1972) and empirically studied by Frazzini
and Pedersen (2014, 2022). The stream focusing on the idiosyncratic risk comes from behavioural eco-
nomic considerations of investors’ preferences for skewed assets, proposed in the works of Brunnermeier
et al. (2007) and Barberis and Huang (2008) and empirically studied by Ang et al. (2006, 2009) and Bali
et al. (2011, 2017).

3See, for example, Black (1975) and Manaster and Rendleman Jr (1982).
4The impact of not diversified shocks on aggregated measures has been studied in several contexts. For

example, Gabaix (2011) shows how, because of the fat-tailed distribution of large firms, their shocks are
persistent and thus cannot be diversified, suggesting that the granular composition of the economy mat-
ters for the total factor productivity growth. Gordy (2003) analyses diversification risk issues in granular
credit portfolios (see also Gagliardini and Gouriéroux, 2014). Ben-David et al. (2021) and Ghysels et al.
(2021) study the impact of asset management industry concentration on the equity market.

5Several authors have illustrated the advantage of option-implied measures in forecasting returns over
their counterparts under the physical probability measure, even when accounting for biases due to risk
premia. See, for example, Chang et al. (2013), DeMiguel et al. (2013), and Cremers et al. (2015). Recently,
Martin and Wagner (2019), Kadan and Tang (2020), and Chabi-Yo et al. (2023), among others, have used
options information to predict stock returns. Schneider et al. (2020) proxy a coskewness risk factor using
option prices.
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which we use to implement a risk timing strategy.6 Our ex-ante approach improves the
RVs method by including projections of investors’ preferences for assets with skewed
return moments, driving expectations away from the standard two-moment assump-
tions invoked in the LRA literature that historical prices do not capture. RVs do not
entirely reveal investors’ expectations nor account for limits to diversification or mis-
pricing likely to occur for illiquid portfolio components. Furthermore, the risk-timing
performance derives from the accuracy in assessing the portfolio risk, and portfolio re-
turn RVs are not only affected by estimation risk but also cannot tell which portfolio
constituents affect the estimation precision.7 Portfolio return RVs are also susceptible
to extreme changes in returns, inducing drastic portfolio rebalancing.8 Our forward-
looking stock-level approach is, therefore, less sensitive to these limitations of portfolio
return RVs as volatility estimators. This approach anticipates movements in the under-
lying asset prices and thus requires less frequent and substantial rebalancing, affording
investors’ risk-reward preferences to be marked.

We examine two measures of returns variability: ex-post risk timing using realised
volatility (RV) and ex-ante risk timing using implied volatility (IV). The distinction be-
tween the two measures is critical as relative successes in explaining LRA reported in
the literature use backwards-looking risk estimates to benchmark their success. At the
same time, we propose to leverage investors’ tail expectations, whose practical rele-
vance of portfolio allocation when assets have non-Gaussian return distributions has
been documented since Samuelson (1970). The RV captures all the available pricing
information observed in stock prices and is a commonly used proxy of risk in LRA lit-
erature. The forward-looking IV is the most primarily considered return variation mea-
sure under the risk-neutral probability measure. The unique attributes of these two risk
measures provide a precise framework for comparing backwards-looking risk mea-
sures commonly used in the literature with the proposed forward-looking risk mea-
sure. We then add to the analysis two recently proposed measures designed to capture
investors’ preferences for higher return moments, the MW suggested by Martin and
Wagner (2019) and the Generalised Lower Bounds (GLB) proposed by Chabi-Yo et al.
(2023). These are also forward-looking option-based risk measures.9 The MW bene-
fits the strategy implementation when the return volatilities change fast. GLB, on the
other hand, includes investors’ consideration for return tails. Together with the IV, we
conjecture that the MW and GLB provide a comprehensive risk characterisation of the
stock returns. We use each stock’s respective RV, IV, MW, and GLB information to time

6Moreira and Muir (2017) (MM) have documented that volatility-timing increases the alpha and Sharpe
ratio of equity and option portfolios without altering their payoff structure. However, we do not use
options as test assets as in MM; we use them for portfolio management. Also, strides have been made
recently in explaining the anomaly through underreaction to lousy news and arbitrage costs (Atilgan et al.,
2020) or by studying the high-income households’ investments and preferences for lottery-like assets (Bali
et al., 2023).

7DeMiguel et al. (2009), for example, show how significant estimation risk problems exist in portfolio
management. Due to the estimation risk, equally weighted portfolios often outperform optimal portfolios.

8Barroso and Detzel (2021) show how transaction costs usually nullify the extra alpha in LRA.
9We refer to IV, MW, and GLB as risk-neutral (RN) measures.
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the expected stock risk. We then group our risk-managed stocks into portfolios and
refer to these results as firm-level.10 It is important to note that our risk-timing strategy
is flexible to accommodate any portfolio creation.

We sort stocks into equally weighted volatility quartile portfolios and provide evidence
for the low-risk anomaly in our data, particularly for large and highly leveraged com-
panies. For our sample of 1137 S&P 500 constituents from January 1996 to December
2021, we obtain the highest performance improvement when we scale returns at the
firm level. Spanning regressions demonstrate that strategies obtained by stock-level
risk timing based on IV, MW, and GLB outperform those of their unscaled, RV-scaled,
and aggregate-level scaled counterparts. The ex-ante risk timing is also superior to the
methods proposed by Moreira and Muir (2017) (MM). We also repeat our strategy for
our sampled firms using option-implied betas (Buss and Vilkov, 2012) and the popular
betting-against-beta (BAB) strategy with the realised betas proposed by Frazzini and
Pedersen (2014). Comparing the results allows us to see how our stock-level ex-ante
risk timing performs when benchmarked against beta risk approaches to LRA studies.
Finally, we show how our method compares to the backwards-looking idiosyncratic
volatility timing procedure proposed by Ang et al. (2006), which we repeat for our
sampled firms.

Our results are robust when we subject our strategy to realistic transaction costs, con-
trolling for traditional Fama-French-Carhart risk factors and recently proposed ex-ante
coskewness of Schneider et al. (2020), and across different samples; we re-run parallel
analyses for equally weighted quartile portfolios sorted on firms’ leverage levels and
repeat these analyses separately for financial and non-financial firms, equally weighted
quartile portfolios formed on firms’ size and across seven credit rating portfolios. We
also repeat our analyses by isolating the Global Financial Crisis (GFC) and the COVID-
19 pandemic that drastically changed expectations and asset price dynamics.11 Addi-
tional robustness checks include double-sorted portfolios on firm leverage and volatil-
ity risk measures to achieve the highest Sharpe, Sortino and Calmar Ratios. Further-
more, we provide evidence of our strategy’s out-of-sample benefits via Clark and West
(2007)’s tests.

The remainder of the paper is organised as follows. Section 3.2 discusses the contribu-
tion to the literature. Section 3.3 describes the data and methods we use. Section 3.4
compares and discusses the results. Section 3.5 concludes.

10We also compute the cross-sectional averages of the daily RV, IV, MW, and GLB of all stocks in our
sample and use that information to time risk for each stock in our sample, i.e., scale stocks’ returns, and
then form our portfolios. We define this scaling as aggregate-level. This approach does not yield signifi-
cant alphas. We report these results in the appendix to save space.

11See, for example, Gormsen and Koijen (2020), Pagano et al. (2020), Giglio et al. (2021), and Hanspal
et al. (2021).
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3.2 Related Literature

The Capital Asset Pricing Model (CAPM) is a single market factor linear model based
on investors’ rational expectations. CAPM has been widely adopted in finance litera-
ture since it was proposed by Sharpe (1964). Based on CAPM, scholars in finance have
extended the model by more common risk factors to better explain the excess returns
of assets. Fama and French (1993) include market, size, and value as systematic factors
and propose the Fama-French three-factor model. Carhart (1997) further introduces a
momentum factor to the three-factor model. Later on, Fama and French (2015) release
a five-factor model including market, size, value, profitability, and investment as sys-
tematic factors. However, many empirical studies reveal that the risk-return relation-
ship is not linear as predicted by the asset pricing theories. Haugen and Heins (1975),
Ang et al. (2006, 2009) document the imperfect relationship between the risk and risk-
adjusted returns. That is, stocks with low return volatility or beta tend to achieve higher
risk-adjusted returns, namely the low-risk anomaly. Frazzini and Pedersen (2014), Bali
et al. (2017), and Novy-Marx and Velikov (2018) measure assets’ risks by their betas
and study beta anomalies, where stocks with high (low) beta have low (high) abnor-
mal returns. Blitz and van Vliet (2007) and Baker et al. (2011) find that the low-risk
anomaly is stronger when the risks are measured by volatility instead of beta. Asness
et al. (2020) reveal that the portfolios sorted by stock volatility can generate significant
excess returns.

Recent literature has proposed volatility-timing investment strategies where investors
can increase their utility gains by exploiting the imperfect relationship between risks
and expected returns. The volatility-timing strategy takes aggressive positions shortly
after low volatility but conservative stances after high volatility periods. Moreira and
Muir (2017), for example, find the strategy that exploits the discrepancies between
changes in volatility and expected returns can generate significant alphas, Sharpe ra-
tios, and increased utility gains for the mean-variance investor. Because the variance
is persistent in the short run, it can be forecasted. However, forecasting uncertainty at
longer time horizons is more challenging, and is barely related to future returns, which
is fundamental for long-horizon mean-variance investors. Relying on this empirical
evidence, MM propose volatility-managed portfolios to increase marginal utility for
investors. They use the inverse of realised volatilities, implying that mean-variance
investors ought to increase their exposures when the lagged volatility is low and re-
duce the risks if recent volatility is high. Assuming realised volatility to be closely re-
lated to the real conditional variance, MM’s approach generates the optimal weights for
mean-variance investors. MM’s research focuses on systematic factors which contain
general and aggregate information across different assets. They have discovered that
the realised volatility-managed portfolios do produce significant alphas across various
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factors. This contributes to the conditional relationship between risk and return, indi-
cating that applying data to the asset pricing model for those investors and researchers
with rational expectations.

Cederburg et al. (2020) (COWY) use MM’s approach over a significantly larger sample
and apply different trading strategies with those previously applied in the literature
(Barroso and Santa-Clara, 2015; Daniel and Moskowitz, 2016; Eisdorfer and Misirli,
2020). They find that the volatility-managed returns do not significantly outperform
original unscaled returns in direct comparisons, but the spanning regression results
do support the precedent study even if the sample has been significantly extended.
Moreover, they claim that the significant and positive alphas in the spanning regres-
sion results are more likely to be produced by realised volatility-managed portfolios,
which supports MM’s findings. However, they claim that the superior performance of
the volatility-managed strategy is overstated because the volatility-managed strategies
cannot be applied in real-time by investors. COWY argue that the positive alpha in the
spanning regression indicates the mean-variance frontier can be expanded by the com-
bination of scaled and unscaled portfolios instead of the scaled portfolio only. Since the
optimal weights of scaled and original factors in the combination are unknown before
the portfolio construction, investors cannot implement the volatility-managed strate-
gies in real-time. Furthermore, due to the spanning regression’s structural instability
stemming from the unstable conditional risk-return trade-off and the estimation risk
caused by unstable combination weights, the volatility-managed portfolios’ in-sample
alphas cannot be replicated in out-of-sample portfolios. In general, COWY research
conservatively and comprehensively interprets the volatility-managed portfolios and
demonstrates the practical value of these strategies.

To achieve the highest expected utility, a mean-variance investor needs to take views on
the expected values of two quantities: the future variance and the expected returns. We,
therefore, add to this literature two critical extensions. First, while we also use volatil-
ity proxies as in other volatility timing studies (Fleming et al., 2001, 2003; Moreira and
Muir, 2017; Cederburg et al., 2020; Barroso and Detzel, 2021), we note that this litera-
ture uses only backwards-looking realised volatilities to construct portfolios, relying on
the assumption that lagged volatilities are persistent in the short run. In contrast, we
utilise option-implied forward-looking volatilities information content to construct our
volatility-managed portfolio weights, since these market-observed prices incorporate
the market’s projections of risks and expectations. Chang et al. (2013), DeMiguel et al.
(2013), and Cremers et al. (2015) find that option-implied measures are advantageous
over counterparts in forecasting returns.

Second, we use better proxies to forecast the expected return. MM’s and COWY’s re-
alised volatility-timing strategy relies solely on predicting volatilities and omits the
expected return projections, which are critical for a rational mean-variance investor.
Martin and Wagner (2019), MW henceforth, introduce the volatility index MW which
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is the risk-neutral volatility derived from option prices. MW has the properties of both
risk-neutral volatilities and lower bounds of returns. This allows for a reasonable exten-
sion to Chabi-Yo et al. (2023)’s Generalised Lower Bounds (GLB). Chabi-Yo et al. (2023)
claim that GLB performs significantly better in terms of predicting returns, being rel-
atively unbiased in terms of predicting both conditional and unconditional expected
returns. Consequently, we use the IV (Implied Volatility), MW, and GLB to include the
expected return information and provide mean-variance investors with more compre-
hensive views to achieve the highest expected utility.

In addition to these two extensions, we take similar approaches as MM with some im-
provements to explain firm-level risks, which could provide broad investors with some
references to volatility timing applications in real life. Both MM and COWY analyse
volatility timing strategies by using systematic factors which contain macro informa-
tion through a variety of assets. However, the idiosyncratic risk-return relationship
is insufficiently analysed. From the perspective of investors, this kind of strategy is
hard to actually implement because they cannot afford the high costs of constructing
portfolios by macro factors. Ang et al. (2006) find that, compared to Fama and French
(1993) model, higher idiosyncratic volatilities lead to significantly lower average re-
turns, highlighting the importance of the relationship between idiosyncratic volatilities
and future stock returns. Therefore, our contribution to explaining idiosyncratic risks
with firm-level risk-neutral volatilities is meaningful.

3.3 Data

We collect daily stock prices for 1,137 companies that were constituents of the S&P 500
between January 1996 and December 2021. From these prices, we compute daily log
returns as the natural logarithm of the ratio of consecutive closing prices and aggregate
them into monthly average returns. We calculate monthly realised volatility as the
square root of the sum of squared daily returns. This approach captures the magnitude
of return fluctuations without adjusting for the mean, making it suitable for modelling
observed price variability. These return and risk measures serve as partial core inputs
to the volatility-timing strategies examined in our analysis. The 1-month T-bill is the
reference asset for excess return computation. Other data, such as the S&P, Fitch, and
Moody’s credit ratings, come from Bloomberg. Daily IV, MW, and GLB are from short-
maturity equity call and put options and serve as risk-neutral volatilities.12 We control
our regressions for the equity factors described in Fama and French (1993), Carhart
(1997), and Schneider et al. (2020).

12We thank Vilkov for providing this data. https : //os f .io/7xcqw/ (accessed 23 March 2022)
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3.3.1 Test portfolios

We scale each test portfolio weight by a risk measure, either RV, IV, MW, or GLB, and
multiply it by a normalisation constant, making the estimates of unscaled and scaled
portfolio return variances match. We analyse performance measures for risk-timing
strategies in light of the firms’ capital structures. We also form test portfolios based on
the firm’s size, seven credit ratings, and financial and non-financial entities.

The leverage ratio is computed as the current- and long-term debt divided by total
equity and current- and long-term debt. The leverage thus represents the moneyness
of the put option implicit in the firm’s debt that gains in value during times of dis-
tress and increased uncertainty for the firm. Also, as Frazzini and Pedersen (2014)
noted, high-beta stocks have embedded leverage which has economic value for in-
vestors with leverage constraints or averse to borrowing. Since one of the basic princi-
ples of economics is that expectations influence decisions, it is of practical importance
to see whether investors’ expectations expressed in the options markets, which contain
leverage options, can provide mean-variance investors with improved utility than the
traditional volatility-managed using statistical measures of volatility or even the non-
managed portfolios. To analyse the role of leverage, we divide the sample into leverage
quartile portfolios and implement the risk timing strategy separately for each portfolio.

We also analyse how our strategy performs for equities issued by firms of different
sizes. The size of a company is directly represented by the market capitalisation and
often goes hand-in-hand with leverage. Rajan and Zingales (1995), Dinlersoz et al.
(2019), and Chatterjee and Eyigungor (2022) have documented the positive relationship
between the company size and the leverage in different regions and markets. Large
firms are often heavily leveraged because of their ability to diversify the risk away.
We can see how the volatility-managed strategies perform in portfolios with different-
sized companies by separating and sorting the sampled firms into quartile portfolios
based on the market capitalisation. Combining the observations in the firm size and
the leverage quartiles, we can study how the volatility-management strategy performs
by different firms’ capital structures. This provides more comprehensive insights into
the volatility-management method. We scale the market capitalisation by one million
to reach more easily comparable numbers. We take the logarithm of the average market
capitalisation for each company and sort these into size quartile portfolios.

Next, extensive literature shows a strong relationship between credit rating and lever-
age.13 Higher ratings signal higher creditworthiness of the companies and lower bond
yields, which impacts capital structure decisions. By separating the credit ratings and

13Kisgen (2006) argues that firms’ capital structure decisions are significantly influenced by credit rat-
ings due to the trade-off between the rating upgrade benefits and the downgrade costs. Faulkender and
Petersen (2005) and Sufi (2007) also find that the leverage of rated companies is higher than those not
rated due to higher accessibility to capital. For the rated companies, Maung and Chowdhury (2014) claim
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analysing the volatility-management effects in each tranche, we can see how the rela-
tionship between credit ratings and leverages engages in volatility-management pro-
cesses. This provides us with a more comprehensive understanding of the strategy
application. We perform the risk-timing strategies for portfolios of equities issued by
firms with different credit ratings and costs of debt. We sort equities into seven credit-
rating portfolios based on the S&P, Fitch, and Moody’s ratings. We adopt the S&P
terminology to denote the credit-worthiness.

Finally, due to financial entities’ usual very high leverage, for robustness, we run sepa-
rate analyses for financial and non-financial entities to ensure that their inclusion does
not drive our results. There are 190 financial companies and 947 non-financial compa-
nies in our sample. In the appendix, we report the results for portfolios formed based
on firms’ size and credit rating, as well as financial and non-financial entities

3.3.2 Portfolio constructions

We make an essential departure from the traditional volatility-managed portfolio con-
struction by scaling returns based on firm-level risk factors instead of market factors.
This is for two reasons. First, the long-run relationship between variables often arises
from no-arbitrage or market efficiency conditions that might not necessarily hold on
firm-level and short-run. Second, because MW and GLB are computed from indi-
vidual firms’ option prices, this affords investors a market-consensus forward-looking
expected risk and stock return information allowing them to tailor their investment
themes by their risk-reward considerations. Our approach enables investors to target
stocks and corresponding weights directly rather than constructing large portfolios that
typically incur substantial transaction costs, thus affording them increased utility.

We follow Moreira and Muir (2017) and Cederburg et al. (2020) to compute the realised
volatility scaled return for each company:

R f−s
i,t+1 =

ci

R̂V2
i,t

Ri,t+1, (3.1)

where

R̂V2
i,t =

22
dt

dt

∑
i=1

(ri,t)
2.

R̂V2
i,t is the month t realised volatility of each firm i in our sample. dt is the number of

trading days in month t. ri,t is each day log return in month t. We then replace the rv
with the risk-neutral forward-looking volatilities, namely IV, MW, and GLB. Ri,t+1 and

that both rating upgrades and downgrades affect firms’ leverage, and the rating downgrade effect is long-
lasting. Aktan et al. (2019) further reveal that firms tend to be less leveraged after being upgraded to the
investment grade.
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R f−s
i,t+1 are the unscaled and firm-level volatility-scaled excess return of each company at

month t+1, respectively. The constant c is used for making unscaled and scaled return

variances the same for each company. Formally, c is defined as ci =

√
var(Rt+1)

var(
Rt+1
âv2

t
)
, where

âvt represents any firm-level RV, IV, MW, and GLB. The quotients of the constants and
different kinds of squared volatilities represent the weight of the investment position
in the related company in month t.

We apply and compare two different approaches to combine firm-level information:
firm-level scaling and aggregate-level scaling. The first approach is that all returns
are scaled by RV, IV, MW, and GLB at the individual firm level only. Then the scaled
firm excess returns are summed into portfolios based on firm characteristics. These
characteristics are firm leverage ratios, financial and non-financial industries, firm size,
and firms’ credit ratings.14 We denote these volatility-managed portfolios as firm-level
scaling portfolios.

Alternatively, we first compute the average variances (squared RV, IV, MW, or GLB) for
each portfolio formed on the firm characteristics described above. We then use these
average portfolio variances to scale the excess returns in each portfolio. We call them
aggregate-scaling returns:

av2
t,j =

∑
nj
i=1 av2

t,i

nj
, (3.2)

Ra−s
t+1,j =

cj

av2
t,j

Rt+1,j, (3.3)

where av2
t,j is the average of any one of the squared volatilities (RV, IV, MW, or GLB)

for the portfolio j at month t. av2
t,i is any squared volatility (RV, IV, MW, or GLB) of

the company i in month t. Rt+1,j is the unscaled return of the portfolio j in month t+1.
Ra−s

t+1,j is aggregate-level scaled excess return by any volatility (RV, IV, MW, or GLB) of
the portfolio j in month t+1. For each portfolio and each kind of squared volatility,

cj =

√√√√ var(Rt+1,j)

var(
Rt+1,j

av2
t,j

)
, which is used for making the unconditional variance of portfolio

returns consistent. By dividing our sample into different portfolios constructed based
on these firm characteristics, we not only gain deeper insights into the performance
of volatility-managed strategies for different firm characteristics and at the aggregate
macro level as traditionally considered in the literature, but we can also see whether our

14The four leverage and size portfolios are constructed as follows: Portfolio1 (QL) contains entities that
have up to 25% leverage or market capitalisation. The second portfolio (Q2) contains entities with leverage
or market capitalisation between 25% and 50%. The third portfolio (Q3) contains 50% to 75% and the last
is over 75% leverage or market capitalisation. The industries are divided into financial and non-financial.
The credit rating portfolios are constructed by S&P’s rating nomenclature, from AAA to CCC.
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results remain robust across different samples. We report the aggregate-level scaling
results in the appendix to save space.

We apply the volatility timing strategy based on monthly return data because higher-
frequency trading incurs high costs for investors. For robustness, we also isolate the
GFC period and split the sample into before and after January 2020, coinciding with
the start of the COVID-19 pandemic and the US elections. This approach allows us to
see how our trading strategy changes during essential structural shocks.

3.3.3 Spanning regressions

We first compute the full sample average excess returns to analyse the entire sample’s
systematic risk. This approach is similar to the typical factor scaling method used in
the literature, such as MM and COWY. We run univariate regressions for firm- and
aggregate-level managed separately and test the intercept and coefficient, similar to
the spanning regression methods used by both MM and COWY15.

R f /a−s
t = α + βRt + ϵt, (3.4)

where R f /a−s
t is the portfolio excess return in month t scaled by the squared firm- or

aggregate-level RV, IV, MW, and GLB. Rt is the corresponding unscaled excess return
in month t.

MM claim that a statistically significant positive α indicates that the scaled portfolio
exhibits a higher Sharpe ratio than the unscaled portfolio, thereby affording mean-
variance investors additional utility gains. In contrast, COWY argue that the estimated
coefficient, β, associated with the independent variable must also be considered. They
suggest that this coefficient is equivalent to the unconditional correlation coefficient be-
tween the scaled and unscaled returns (β̂ = ρ̂). Under this interpretation, the benefit
from a positive constant is partially offset by a decline in the Sharpe ratio. Nonetheless,
as demonstrated by Gibbons et al. (1989), a positively weighted combination of scaled
and unscaled factors can expand the mean-variance frontier.

Following the spanning regression, we also compute the appraisal ratio (AR), which is
the proportion of the estimated intercept and the estimated standard error of the span-
ning regression. AR measures the scale of changes on the slope of the mean-variance
efficient frontier (Gibbons et al., 1989; Moreira and Muir, 2017).

15The variables used in the spanning regression are return series, which are generally considered to be
stationary in the finance literature.
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3.4 Empirical Results

We assess the performance of our stock-level ex-ante risk timing method using option-
implied volatility and the ex-post risk timing using realised volatility. We also add two
ex-ante tail risk measures, the MW and GLB, to characterise the stock risk better. We
use the daily stock price, RV, IV, MW, and GLB of 1137 companies in the S&P 500 from
January 1996 to December 2021.16 We run parallel analyses for the total sample and
isolate the Global Financial Crisis and COVID-19. We also repeat these analyses for
quartile portfolios formed based on firms’ leverage levels. Further, we re-run these
analyses for quartile portfolios formed on firms’ size, seven credit rating portfolios
and by separating financial from non-financial firms, results of which we report in the
appendix to save space.

Low-risk anomaly for leverage, size and volatility levels

The beta anomaly implies that beta risk is overvalued in equity securities and under-
valued in debt. Baker et al. (2020) show that firms with high-risk assets reduce their cost
of capital by keeping low debt levels. On the other hand, low leverage levels for low-
risk firms imply substantial costs as they use undervalued equity. Thus, they minimise
their capital cost at much higher leverage levels. The anomaly generates a trade-off
that predicts an inverse relationship between systematic risk and leverage. Further-
more, the standard trade-off theory also implies an inverse relationship between debt
and systematic risk (Long and Malitz, 1985). We then analyse how the LRA varies
across the issuer’s capital structure and equity return volatility. To illustrate this, we
form RV, IV, MW, or GLB quartile portfolios and compute their average excess returns,
firm leverage, and size. Table 3.1 aggregates the findings.

The first column of Table 3.1 shows that the highly volatile equities have lower or neg-
ative excess returns across historical and forward-looking volatility-sorted portfolios.
The inverse relationship between risk and return provides evidence of the LRA, which
also appears to be a data feature for the forward-looking risk measures.

The second column of Table 3.1 highlights another crucial finding. Leverage appears
inversely related to risk, assessed by the RV or an RN. As discussed earlier, in struc-
tural models, leverage represents the “moneyness” of the put option implicit in a firm’s
debt. This option gains in value during distress and financial uncertainty for the firm.
Highly leveraged entities, therefore, represent at-the-money options. In contrast, low-
leverage entities would need to suffer catastrophic deterioration of their assets before
reaching default, so they are out-the-money options. Our results thus support the beta
anomaly trade-off predictions (Baker et al., 2020). The inverse relationship between

16We also use the cross-sectional averages of RV and RNs to time-risk of our sampled firms. We refer to
these results as the aggregate level, as discussed in Section 3.3.
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TABLE 3.1: Risk-sorted portfolios

This table reports the monthly average excess returns, leverages, and size proxies of equally weighted quartile portfo-
lios sorted for RV, IV, MW and GLB. The portfolios include equities of 1,137 stocks from January 1996 to December 2021.
The lowest risk quartile is denoted as “Low”, and the highest as “High”. The leverage is computed as debt-asset ratios.
The size proxy is the market capitalisation, calculated as the logarithm of the product of stock prices and outstanding
shares divided by one million.

Excess return Leverage Size

RV
Low 0.0120 0.6720 10.1270
Q2 0.0128 0.6529 10.0090
Q3 0.0118 0.6168 9.9181

High -0.0022 0.6030 9.6178

IV
Low 0.0124 0.6782 10.2018
Q2 0.0136 0.6492 10.0180
Q3 0.0093 0.6286 9.8566

High -0.0009 0.5886 9.5909

MW
Low 0.0118 0.6858 10.2087
Q2 0.0133 0.6495 10.0444
Q3 0.0095 0.6286 9.8183

High -0.0001 0.5807 9.5961

GLB
Low 0.0098 0.6732 9.9377
Q2 0.0095 0.6325 10.0049
Q3 0.0072 0.6262 9.9708

High 0.0080 0.6134 9.7576

capital structure and risk assessed by the RV or an RN is a robust feature also for the
forward-looking risk data.17

Furthermore, the last column of Table 3.1 shows that firm size moves hand-in-hand
with leverage. Larger firms tend to have more debt, as they are usually better diversi-
fied with lower default probabilities and associated bankruptcy costs, allowing them to
take on more leverage (Rajan and Zingales, 1995). This finding is also consistent with
the recent results of Kita and Tortorice (2021), who prove that the premium for bear-
ing variance risk is highest for firms with the lowest leverage. This effect is because
small firms of this type do not increase their leverage, as doing so incurs a market risk
premium.

17Choi and Richardson (2016) and Schwert and Strebulaev (2014) also find that high-leverage firms have
lower average asset volatility and beta, respectively.
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3.4.1 Risk timing strategy

As discussed, we pay particular attention to analysing the distinctive performances
between our stock-level ex-ante risk timing using IV and ex-post timing using RV. We
then add two new ex-ante measures that capture investors’ preferences for higher re-
turn moments. In addition to the statistical significance of our alphas and the appraisal
ratios, we also use three additional Performance Ratios (PR) to assess the success of
our strategy. The first is the standard Sharpe Ratio that scales the excess returns with
their total volatility. However, we conjecture that options-market information is par-
ticularly informative in capturing investors’ projections for non-Gaussian returns and
risks; thus, our results could be driven by excessive tail risk. In response, we also
control for our strategies Sortino Ratio, a risk-adjusted performance measure that eval-
uates the return of an investment relative to its downside risk (the standard deviation
of negative returns). Finally, we report the Calmar Ratio, a risk-adjusted performance
measure popular among practitioners designed to capture the downside risk. Calmar
divides the excess returns with the maximum drawdown measure, which is the largest
peak-to-trough decline in value over a specified period, in our case, a month.

Equally weighted portfolios

Table 3.2 reports the estimated PRs for equally weighted portfolios with and without
(unscaled) risk timing. Panel A refers to the entire period, and the other panels refer
to the periods before and from January 2020. The table also includes the PRs for the
risk-timing implemented based on RV and RNs. The stock-level MW-managed portfo-
lios achieved the best performance, followed by the IV- and GLB-managed ones. The
results for the period up to December 2019 are qualitatively similar. In the subsequent
period, the highest PRs are achieved by managing the portfolio using the GLBs (Panel
C). Similar results for the aggregate-level scaling are reported in the appendix to save
space.

Overall, the results reported in Table 3.2 suggest superior information for risk timing
embedded in the forward-looking option prices rather than historical portfolio values.
This information on volatility and expected return affords investors a leverage option,
providing an effective risk measure in constructing ex-ante risk-managed portfolios. In
particular, GLB’s performance is striking from January 2020 to December 2021, a pe-
riod of exceptionally high market uncertainty. GLB aims to delineate bounds on the
conditional expected excess returns, which differs from MW, which is directly tight to
variance (Martin, 2017). Models delineating practical limitations of perfect portfolio di-
versification when firm shocks are fat-tailed find support in our data. Another intrigu-
ing result is that risk timing performed by scaling returns at the firm level performs
better than those obtained by scaling at the aggregate level.
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TABLE 3.2: Performance measures for equally-weighted portfolios

This table reports the average monthly Sharpe, Sortino, and Calmar ratios of the original portfolios (“Unscaled”) and
the corresponding RV, IV, MW, and GLB risk-managed portfolios. Panel A includes the results of the whole sample
from January 1996 to December 2021, and Panels B and C do so for the sample period before or after January 2020,
respectively.

Unscaled RV IV MW GLB

Panel A: January 1996 to December 2021

Sharpe Ratio 0.1049 0.0844 0.1577 0.2035 0.1573
Sortino 0.1457 0.1222 0.2324 0.2747 0.1994
Calmar 0.4961 0.2771 0.6669 0.9203 0.7018

Panel B: January 1996 to December 2019

Sharpe Ratio 0.1049 0.0779 0.1576 0.2057 0.1518
Sortino 0.1138 0.0978 0.2114 0.2690 0.1947
Calmar 0.5073 0.2697 0.6832 0.9455 0.6936

Panel C: January 2020 to December 2021

Sharpe Ratio 0.1211 0.1382 0.1567 0.1777 0.2557
Sortino 0.1869 0.2079 0.1709 0.1813 0.1836
Calmar 0.3620 0.3655 0.4718 0.6182 0.7998

Leverage-sorted portfolios

As discussed earlier and from the results in Table 3.1, the beta anomaly generates a
trade-off between debt and equity, leading to an inverse relationship between leverage
and risk. We take leverage-sorted quartile portfolios as test assets to study this phe-
nomenon and how it impacts the performance of the ex-ante risk timing strategy. Even
controlling for leverage levels, risk timing appears more effective when based on firm-
level risk measures, especially when accounting for information from option prices.

Table 3.3 reports the monthly performance ratios of these leverage-sorted firm-level
scaled portfolios with and without risk timing. The Low, Q2, Q3, and High portfolios
contain entities that have up to 25%, between 25% and 50%, from 50% to 75%, and over
75% leverage. Over the whole sample and pre-pandemic period, the PR has a decreas-
ing tendency in the leverage level (Panels A and B). Similar to the findings in Table 3.2,
timing volatility using RVs does not augment excess returns and alphas. Differently,
risk timing based on the RNs augments the PR. In particular, the drop in pointwise PR
estimate as a function of leverage is much more severe in the RV-managed portfolios.
These portfolios experience a loss of about 50 per cent in PR compared to only a 10
to 35 per cent loss in RN-managed portfolios. The hypothesis that RNs account more
for the firm’s capital structure when flagging risk than RV appears consistent with this
finding.
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The relationship between PR and leverage level inverts during COVID-19. The results
reported in Panel C indicate an overall PR increase in the leverage level. Overall, the
RN-managed portfolios, particularly the GLB-managed ones, have the highest PR. This
finding again emphasises the advantages of measures from option prices to implement
risk-timing strategies.

TABLE 3.3: Performance measures for leverage-sorted portfolios

This table reports the average monthly Sharpe, Sortino, and Calmar ratios of the original portfolios (“Unscaled”) and
the corresponding RV, IV, MW, and GLB risk-managed portfolios. The sample consists of 1,137 stocks, cross-sectionally
aggregated in equally weighted leverage portfolio quartiles. The equities are divided into quartiles based on the av-
erage level of leverage of firms: “Low” includes firms with leverage less than 25%, “Q2” includes firms with leverage
from 25% to 50%, “Q3” includes firms with leverage from 50% to 75%, and “High” includes firms with leverage above
75%. Panel A refers to the entire sample covering January 1996 to December 2021. Panel B reports the results for the
pre-COVID-19 period. Panel C repeats the analyses from January 2020 to December 2021.

Sharpe ratio Sortino ratio Calmar measure

Low Q2 Q3 High Low Q2 Q3 High Low Q2 Q3 High

Panel A: January 1996 to December 2021

Unscaled 0.1348 0.1210 0.1022 0.0450 0.1976 0.1644 0.1432 0.0611 0.6084 0.5997 0.5024 0.1979
RV 0.1001 0.0940 0.0818 0.0525 0.1407 0.1333 0.1183 0.0798 0.4232 0.3730 0.2771 0.0537
IV 0.1742 0.1645 0.1456 0.1373 0.2491 0.2405 0.2131 0.2121 0.8047 0.7223 0.6135 0.5030

MW 0.1986 0.2135 0.1697 0.1699 0.2589 0.2808 0.2307 0.2243 0.9820 1.0043 0.7176 0.7981
GLB 0.1878 0.1528 0.1399 0.1352 0.2576 0.1921 0.1543 0.1710 0.9443 0.6532 0.6803 0.6305

Panel B: January 1996 to December 2019

Unscaled 0.1386 0.1229 0.1046 0.0353 0.1568 0.1303 0.1143 0.0393 0.6287 0.6184 0.5180 0.1867
RV 0.0936 0.0900 0.0771 0.0423 0.1081 0.1105 0.0991 0.0573 0.4201 0.3739 0.2759 0.0324
IV 0.1754 0.1652 0.1461 0.1346 0.2260 0.2193 0.1988 0.1938 0.8270 0.7433 0.6313 0.5058

MW 0.2030 0.2169 0.1687 0.1718 0.2509 0.2767 0.2215 0.2303 1.0195 1.0282 0.7059 0.8158
GLB 0.1864 0.1468 0.1339 0.1267 0.2593 0.1859 0.1503 0.1611 0.9599 0.6442 0.6689 0.6090

Panel C: January 2020 to December 2021

Unscaled 0.1336 0.1273 0.1046 0.1176 0.2085 0.1868 0.1663 0.1659 0.3653 0.3756 0.3141 0.3325
RV 0.1573 0.1312 0.1233 0.1368 0.2760 0.1971 0.1801 0.1859 0.4611 0.3613 0.2927 0.3099
IV 0.1647 0.1542 0.1389 0.1667 0.1973 0.1692 0.1458 0.1687 0.5378 0.4706 0.3993 0.4697

MW 0.1729 0.1698 0.1783 0.1481 0.2427 0.1536 0.1696 0.0980 0.5325 0.7177 0.8581 0.5849
GLB 0.2273 0.2474 0.2633 0.2805 0.1472 0.1868 0.1637 0.2160 0.7582 0.7611 0.8172 0.8885

3.4.2 Spanning regressions

To assess the success of our ex-ante risk timing strategy, we closely follow the standard
approach adopted in the literature (Moreira and Muir, 2017; Cederburg et al., 2020).
The spanning regressions are as in Equation (3.4). We consider multiple test portfolios
and all the risk timing implementations discussed so far, controlling for widely recog-
nised equity risk factors.
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Equally weighted and leverage-sorted portfolios

Table 3.4 reports the estimation results of risk-managed equally-weighted portfolio re-
turns regressed on original returns as per Equation (3.4).

TABLE 3.4: Spanning regressions for full sample

This table reports the spanning regressions of monthly portfolio excess returns, as in Equation (3.4). Panel A reports the
regression results for the entire sample, accounting for firm and month-fixed effects. The sample includes 1,137 stocks.
Panel A.1 reports the results when regressions control for the three Fama and French (1993) and Carhart (1997) risk
factors (FFC). We also control for the ex-ante coskewness risk factor proposed by Schneider et al. (2020), available only
until December 2014. Panels B and C are similar to Panel A but refer to pre- and post-pandemic periods. Including
the coskewness risk factor in Panel B yields similar results as those reported in Panel A. We do not control for the
ex-ante coskewness risk factor in Panel C due to data limitation. The alpha and appraisal ratios are annualised. Robust
standard errors are in parentheses. The R-squared is adjusted for the number of predictors. The superscripts * * *, **,
and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

RV IV MW GLB

Panel A: January 1996 - December 2021

α -0.0033* 0.0478*** 0.0335*** 0.0420***
(0.0020) (0.0017) (0.0023) (0.0021)

β 0.5926*** 0.6569*** 0.1829*** 0.3358***
(0.0013) (0.0011) (0.0015) (0.0015)

Adjusted R2 0.3522 0.4892 0.0351 0.1283
Appraisal Ratio -0.0101 0.1760 0.0900 0.1200

Panel A.1: Controlling for FFC4 and ex-ante skewness factors
α 0.0034* 0.0438*** 0.0345*** 0.0373***

(0.0021) (0.0017) (0.0024) (0.0022)
Adjusted R2 0.3568 0.4934 0.0357 0.1298

Appraisal Ratio 0.0104 0.1621 0.0926 0.1066

Panel B: January 1996 - December 2019

α -0.0015 0.0510*** 0.0351*** 0.0449***
(0.0020) (0.0017) (0.0024) (0.0023)

β 0.5956*** 0.6803*** 0.1927*** 0.3652***
(0.0014) (0.0012) (0.0017) (0.0016)

Adjusted R2 0.3459 0.4880 0.0365 0.1366
Appraisal Ratio -0.0089 0.1865 0.0927 0.1231

Panel B.1: Controlling for FFC4 factors
α 0.0035* 0.0537*** 0.0380*** 0.0439***

(0.0021) (0.0018) (0.0025) (0.0024)
Adjusted R2 0.3501 0.4941 0.0375 0.1388

Appraisal Ratio 0.0078 0.1975 0.1009 0.1212

Panel C: January 2020 - December 2021

α -0.0080 0.0090** 0.0209*** 0.0194***
(0.0080) (0.0049) (0.0080) (0.0049)

β 0.5716*** 0.4986*** 0.1156*** 0.1329***
(0.0042) (0.0026) (0.0042) (0.0026)

Adjusted R2 0.3951 0.5652 -0.0145 0.0686
Appraisal Ratio -0.0228 0.0406 0.0594 0.0895

Panel C.1: Controlling for FFC4 factors
α -0.0018 -0.0242*** 0.0104 0.0071*

(0.0083) (0.0052) (0.0086) (0.0052)
Adjusted R2 0.4331 0.5774 -0.0138 0.0833

Appraisal Ratio -0.0052 -0.1114 0.0292 0.0327
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In line with the literature, a positive intercept in the linear regression of Equation (3.4)
indicates the minimum lower bar for a successful risk-managed strategy relative to a
positive Sharpe Ratio difference in the direct comparison analyses of Section 3.4.1. As
Cederburg et al. (2020) indicate, this volatility timing can lead to a drop from about
20% in Sharpe Ratio while producing positive alpha in the spanning regressions. To
address this concern, we also include the beta estimates. A positive intercept of scaled
and original factors (with positive weight on the scaled factor) can expand the mean-
variance frontier (Gibbons et al., 1989). For the entire sample, we confirm the benefits
of ex-ante risk timing when risk is assessed by stocks’ RNs (Panel A). Only in this
case does the alpha become statistically significant at the 1% level and economically
relevant.

To gain more insights into the performance of the distinct risk timing implementations,
we compute the appraisal ratios (ARs) as

AR =
α̂

σ̂ϵ
, (3.5)

where α̂ is the estimated intercept and σ̂ϵ is the estimated standard error of the regres-
sion residuals in Equation (3.4). The large ARs of the RN-managed portfolios favour
the ex-ante risk timing in expanding the dynamic mean-variance frontier relative to the
original portfolios. More to the point, the ARs for RN-managed portfolios are solidly
larger than their counterparts managed using RVs. Our results are robust to controls
for the Fama and French (1993) and Carhart (1997) factors and when we control for the
ex-ante coskweness measure proposed by Schneider et al. (2020) (data available from
Jan 1996 to Dec 2014). Results do not qualitatively change when we disregard the pan-
demic period. Interestingly, during the COVID-19 period, the portfolio performance
improvement due to our ex-ante risk timing is less clear, as Panel C illustrates. Man-
aging the portfolio based on RVs appears detrimental when we control for standard
equity risk factors. Only the alpha for our strategy implemented by GLBs is statisti-
cally significantly positive at 10%.

These results indicate that the RN-managed portfolios appear to expand the dynamic
mean-variance frontier when the portfolio weight scaling is at the firm level. On the
other hand, this effect is not shared by the volatility-timing strategies based on RVs.
Strikingly, these findings also extend when we restrict our analyses for the Global Fi-
nancial Crisis (GFC) from July 2007 to June 2009 (Table 3.5).
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TABLE 3.5: Spanning regressions for equally weighted portfolios: The Global Finan-
cial Crisis

This table reports the results of the same spanning regressions as those in Table 3.4 focusing on just the Global Financial
Crisis from July 2007 to June 2009. The sample includes 1,137 stocks. The alpha and appraisal ratios are annualised.
Robust standard errors are in parentheses. The R-squared is adjusted for the number of predictors. The superscripts *
* *, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

RV IV MW GLB

July 2007 - June 2009

α -0.0066 0.0461*** 0.0275*** 0.0242***
(0.0053) (0.0043) (0.0040) (0.0026)

β 0.2186*** 0.3059*** 0.0384*** 0.0484***
(0.0026) (0.0021) (0.0020) (0.0013)

Adjusted R2 0.1803 0.4212 -0.0285 0.0099
Appraisal Ratio, AR -0.0281 0.2384 0.1528 0.2064

Additional controls for FFC4 and ex-ante skewness factors
α 0.0570*** 0.0806*** 0.0405*** 0.0495***

(0.0069) (0.0057) (0.0053) (0.0034)
Adjusted R2 0.1932 0.4301 -0.0272 0.0248

Appraisal Ratio, AR 0.2443 0.4200 0.2254 0.4248

Table 3.6 repeats these tests by studying the performance of our strategy for firms with
different capital structures. We sort firms into four equally weighted portfolios based
on their leverage ratios. As in the previous section, our spanning regressions control
for Fama-French-Carhart and the coskewness risk factors. While the standard trade-
off theory predicts an inverse relationship between the systematic risk and leverage,
also presented in our results reported in Table 3.3, we do not find materially different
results between different leverage levels. The RN-managed portfolios expand the dy-
namic mean-variance frontier, while the RVs, once controlled for risk factors, do not.
However, once we isolate our analyses for the GFC period, we note that highly lever-
aged entities expand the mean-variance frontier only at a 10% significance level (Table
3.7).
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TABLE 3.6: Spanning regressions for leverage-sorted portfolios

This table reports the regression results similar to Table 3.4 but for portfolios sorted on the firm’s average leverage level.
The equally weighted leverage portfolio quartiles are: less than 25% is the quartile of firms with the lowest average level
of leverage (Low), from 25% to 50% is the quartile with the second lowest (Q2), from 50% to 75% is the quartile with
the second highest (Q3), and above 75% is the quartile of firms with the highest average level of leverage (High). The
sample includes 1,137 stocks. The alpha and appraisal ratios are annualised. Robust standard errors are in parentheses.
The R-squared is adjusted for the number of predictors. The superscripts * * *, **, and * indicate statistical significance
at the 1%, 5%, and 10% levels, respectively.

Low RV IV MW GLB Q3 RV IV MW GLB

α -0.0066 0.0459*** 0.0410*** 0.0463*** -0.0076** 0.0355*** 0.0252*** 0.0369***
(0.0042) (0.0034) (0.0048) (0.0045) (0.0035) (0.0029) (0.0043) (0.0041)

β 0.5809*** 0.6826*** 0.2342*** 0.3687*** 0.6404*** 0.7185*** 0.1801*** 0.3407***
(0.0027) (0.0022) (0.0031) (0.0029) (0.0026) (0.0022) (0.0032) (0.0030)

Adjusted R2 0.3391 0.5144 0.0579 0.1516 0.4116 0.5593 0.0323 0.1265
Appraisal Ratio -0.0192 0.1642 0.1056 0.1271 -0.0266 0.1486 0.0714 0.1113

Controlling for the Fama and French (1993), Carhart (1997) and Schneider et al. (2020) factors

α 0.0093*** 0.0473*** 0.0453*** 0.0437*** 0.0012 0.0351*** 0.0272*** 0.0351***
(0.0044) (0.0036) (0.0050) (0.0047) (0.0037) (0.0031) (0.0045) (0.0043)

Adjusted R2 0.3459 0.5189 0.0596 0.1537 0.4171 0.5630 0.0326 0.1271
Appraisal Ratio 0.0274 0.1701 0.1167 0.1201 0.0044 0.1477 0.0771 0.1058

Q2 High

α -0.0082** 0.0405*** 0.0326*** 0.0322*** 0.0065 0.0638*** 0.0313*** 0.0517***
(0.0038) (0.0031) (0.0045) (0.0042) (0.0043) (0.0037) (0.0047) (0.0044)

β 0.6226*** 0.6803*** 0.1851*** 0.3460*** 0.5394*** 0.5715*** 0.1305*** 0.2965***
(0.0026) (0.0022) (0.0031) (0.0029) (0.0028) (0.0024) (0.0031) (0.0029)

Adjusted R2 0.3883 0.5315 0.0364 0.1376 0.2915 0.3848 0.0171 0.1035
Appraisal Ratio -0.0261 0.1584 0.0892 0.0937 0.0184 0.2106 0.0821 0.1430

Controlling for the Fama and French (1993), Carhart (1997) and Schneider et al. (2020) factors

α 0.0025 0.0403*** 0.0341*** 0.0300*** -0.0014 0.0475*** 0.0272*** 0.0392***
(0.0040) (0.0033) (0.0047) (0.0044) (0.0045) (0.0039) (0.0049) (0.0047)

Adjusted R2 0.3938 0.5359 0.0368 0.1392 0.2949 0.3904 0.0179 0.1061
Appraisal Ratio 0.0079 0.1585 0.0933 0.0874 -0.0040 0.1576 0.0714 0.1088
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TABLE 3.7: Spanning regressions for leverage-sorted portfolios: The Global Financial
Crisis

This table runs the same spanning regressions as those in Table 3.6 but focuses only on the Global Financial Crisis
period from July 2007 to June 2009. The sample includes 1,137 stocks. The alpha and appraisal ratios are annualised.
Robust standard errors are in parentheses. The R-squared is adjusted for the number of predictors. The superscripts *
* *, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

July 2007 - June 2009

Low RV IV MW GLB Q3 RV IV MW GLB

α 0.0065 0.0606*** 0.0387*** 0.0434*** -0.0091 0.0445*** 0.0229*** 0.0221***
(0.0118) (0.0087) (0.0098) (0.0066) (0.0102) (0.0079) (0.0065) (0.0039)

β 0.2746*** 0.4319*** 0.0783*** 0.0789*** 0.2247*** 0.3318*** 0.0386*** 0.0435***
(0.0066) (0.0048) (0.0054) (0.0037) (0.0054) (0.0042) (0.0034) (0.0021)

Adjusted R2 0.1791 0.5432 -0.0108 0.0259 0.1755 0.4753 -0.0234 0.0244
Appraisal Ratio 0.0248 0.3159 0.1784 0.2947 -0.0399 0.2543 0.1598 0.2583

Controlling for the Fama and French (1993), Carhart (1997) and Schneider et al. (2020) factors

α 0.0980*** 0.1118*** 0.0619*** 0.0860*** 0.0609*** 0.0897*** 0.0389*** 0.0452***
(0.0153) (0.0112) (0.0128) (0.0086) (0.0133) (0.0102) (0.0085) (0.0050)

Adjusted R2 0.2002 0.5570 -0.0078 0.0479 0.1940 0.4935 -0.0210 0.0447
Appraisal Ratio 0.3785 0.5922 0.2859 0.5913 0.2714 0.5215 0.2716 0.5332

Q2 High

α -0.0019 0.0449*** 0.0264*** 0.0237*** -0.0366*** 0.0089 0.0148** 0.0030
(0.0098) (0.0097) (0.0090) (0.0054) (0.0101) (0.0077) (0.0068) (0.0048)

β 0.2149*** 0.2992*** 0.0409*** 0.0404*** 0.1817*** 0.2164*** 0.0119*** 0.0395***
(0.0046) (0.0046) (0.0042) (0.0026) (0.0044) (0.0033) (0.0030) (0.0021)

Adjusted R2 0.2205 0.3788 -0.0286 -0.0046 0.1773 0.3726 -0.0410 0.0125
Appraisal Ratio -0.0087 0.2081 0.1319 0.1957 -0.1634 0.0523 0.0977 0.0286

Controlling for the Fama and French (1993), Carhart (1997) and Schneider et al. (2020) factors

α 0.0724*** 0.0811*** 0.0384*** 0.0496*** -0.0164 0.0231** 0.0184* 0.0129*
(0.0128) (0.0127) (0.0118) (0.0071) (0.0133) (0.0100) (0.0090) (0.0063)

Adjusted R2 0.2383 0.3868 -0.0268 0.0094 0.1787 0.3782 -0.0415 0.0213
Appraisal Ratio 0.3364 0.3781 0.1921 0.4134 -0.0732 0.1368 0.1220 0.1223
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Leverage and performance ratio double-sorted portfolios

We estimate the spanning regression of Equation (3.4) with multiple test portfolios,
reaching qualitatively similar conclusions as those reported in the previous section.
In the appendix, additional robustness checks are performed for financial and non-
financial firms, with portfolios sorted by firms’ size and seven credit ratings. Here, we
limit the discussion to double-sorted quartile portfolios based on leverage and perfor-
mance ratios, including Sharpe, Sortino, and Calmar measures.

TABLE 3.8: Risk timing for leverage and performance ratios double-sorted portfolios

This table reports the average monthly return for portfolios double-sorted based on leverage and Sharpe, Sortino, and
Calmar ratio in Panel A, B and C, respectively. The sample includes 1,137 firms and spans January 1996 to December
2021. We first sort all individual stock excess returns into leverage quartiles. Within each, we sort in quartiles for the
indicated performance measure. Low, Q2, Q3, and High refer to the portfolios in the lowest, second lowest, second
highest, and highest performance measure quartiles. High-Low is the difference in average return from the lowest to
the highest performance measure quartile, and t-statistic indicates its statistical significance.

Unscaled RV IV MW GLB

Panel A: Sharpe ratio sorted

Low -0.0428 -0.0865 0.0469 -0.2088 -0.0713
Q2 0.1017 0.0668 0.1396 0.1220 0.1184
Q3 0.1450 0.1297 0.1867 0.2995 0.2105

High 0.2048 0.2013 0.2605 0.3715 0.3144

High-Low 0.2476 0.2878 0.2136 0.5803 0.3856
t-stat. 6.7265 9.8588 8.4597 12.0310 8.9402

Panel B: Sortino sorted

Low -0.0585 -0.1078 0.0678 -0.2101 -0.0730
Q2 0.1468 0.0987 0.2029 0.2064 0.1566
Q3 0.2041 0.1991 0.2878 0.6368 0.3420

High 0.3088 0.3268 0.4258 0.7134 0.5577

High-Low 0.3673 0.4346 0.3580 0.9235 0.6308
t-stat. 8.4992 9.7563 8.8143 10.7720 9.0824

Panel C: Calmar sorted

Low -0.4504 -0.3142 0.0173 0.2771 0.2951
Q2 0.4618 0.2593 0.6415 0.8285 0.5522
Q3 0.5757 0.4216 0.6714 1.0173 0.7062

High 0.7706 0.6177 0.9083 1.1536 0.9084

High-Low 1.2210 0.9319 0.8911 0.8765 0.6132
t-stat. 9.0654 7.2908 5.8094 3.2512 6.2618

Table 3.8 reports the double-sorted portfolios for our ex-ante risk timing based on RNs.
We first group the stocks based on the leverage levels described in Section 3.4.1. Then,
focusing on each group singularly, we form the PR-sorted quartile portfolios: Low, Q2,
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Q3, and High portfolios are ranked from the lowest to highest ratios. Strategies with ex-
ante risk timing using idiosyncratic RNs outperform the counterpart portfolios with-
out risk timing with high statistical significance. The high-minus-low ratio difference is
positive for all risk timing implementations with high statistical significance. The im-
plementation based on MW leads to the highest ratios for the Q3 and High portfolios
and the highest high-minus-low Sharpe Ratio difference. These results substantiate the
fact that, when controlling for firm leverage levels, MW-managed portfolios perform
the best.

Alternative LRA explanations

In three horse race exercises, we check if we can explain the LRA using our data through
alternative explanations in the literature. Specifically, with our sampled firms and pe-
riod, we analyse the volatility-timing strategy of Moreira and Muir (2017) and Ceder-
burg et al. (2020), and those of Frazzini and Pedersen (2014) and Ang et al. (2006). We
control for the common Fama-French-Carhart risk factors and add the ex-ante skew-
ness factors proposed by Schneider et al. (2020). Results reported in Table 3.9 show
that the MM’s strategy yields statistically significant and positive alphas only for mo-
mentum and Betting-Against-Beta (BAB) factors. However, these results do not ex-
tend during the COVID-19 period. Table 3.10 reports the results when we implement
a betting against beta strategy similar to the one proposed by Frazzini and Pedersen
(2014). However, given the limitations of their method discussed in Novy-Marx and
Velikov (2018), we make two changes to their strategy to mitigate these biases. First,
we utilise the option-implied betas from the Buss and Vilkov (2012) method. Next,
we apply the high-beta-minus-low-beta trading strategy, which is consistent with the
strategy proposed here and similar in spirit to their original method. We find that
option-implied betas also deliver high and statistically significant alphas even when we
control for typical risk factors and co-skewness and during distressed market periods.
We also compute the BAB strategy from the original Frazzini and Pedersen (2014)’s
method. We re-run these estimates using backwards-looking realised betas and the
option-implied betas. We find that when we implement the BAB strategy with realised
beta estimates as originally implemented by Frazzini and Pedersen (2014), the BAB
strategy does not lead to significant alphas. On the other hand, option-implied betas
deliver marginally significant alphas once we control for traditional risk factors and the
coskewness. To save space, we report these results in the appendix. Finally, when we
implement Ang et al. (2006) strategy, we note that when we control for Carhart’s mo-
mentum and Schneider et al. (2020) ex-ante skewness factors, their strategy does not
yield statistically significant alphas in any of the quintile portfolios. Overall, these re-
sults indicate that the options market is particularly informative on investors’ attention
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to return tails.18

TABLE 3.9: The Moreira and Muir (2017)’s volatility timing strategy based on realised
variance

This table repeats Moreira and Muir (2017) strategy for the period January 1996 to December 2021. Regressions have the
same specification as those in Table 3.4. Panel A reports the regression results for the excess market return (MKTRF),
size (SMB), value (HML), profitability (RMW), investment (CMA), momentum (MOM), and betting-against-beta (BAB)
factors, respectively. Panel A.1 reports the results when regressions controlled for the remaining Fama and French
(2015), Carhart (1997) and Schneider et al. (2020) risk factors. Panels B and C are similar to Panel A but refer to pre- and
post-pandemic periods, not accounting for the ex-ante coskewness risk factor due to data limitation. The alpha and
appraisal ratios are annualised. Robust standard errors are in parentheses. The R-squared is adjusted for the number
of predictors. The superscripts * * *, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

MktRF SMB HML RMW CMA MOM BAB

Panel A: January 1996 - December 2021

α 2.3467 -1.4242 0.9205 2.2253 -0.9740 9.3536*** 0.1247***
(2.4221) (1.3419) (1.8987) (1.5795) (1.0591) (2.8524) (0.0180)

β 0.6331*** 0.7881*** 0.5341*** 0.5891*** 0.6791*** 0.5660*** 0.5292***
(0.0440) (0.0350) (0.0480) (0.0459) (0.0417) (0.0468) (0.0482)

Adjusted R2 0.3989 0.6198 0.2829 0.3449 0.4594 0.3181 0.2777
Appraisal Ratio 0.1927 -0.2084 0.0951 0.2787 -0.1812 0.6446 1.4210

Panel A.1: Controlling for the Fama and French (1993), Carhart (1997) and Schneider et al. (2020) factors

α 0.8076 -1.5270 0.6344 3.6283 -0.7799 10.0688*** 0.1332***
(2.0726) (1.5588) (2.7266) (2.2144) (1.3313) (3.7955) (0.0241)

Adjusted R2 0.5251 0.6191 0.2455 0.3171 0.4425 0.3116 0.2766
Appraisal Ratio 0.0955 -0.2399 0.0570 0.4088 -0.1451 0.6498 1.4283

Panel B: January 1996 - December 2019

α 3.3263 -0.7803 1.0359 2.6870 -0.7666 9.5538*** 0.1322***
(2.5347) (1.3940) (2.0205) (1.6949) (1.1112) (3.0625) (0.0192)

β 0.6622*** 0.8063*** 0.5941*** 0.5976*** 0.6844*** 0.5783*** 0.5491***
(0.0475) (0.0368) (0.0540) (0.0496) (0.0440) (0.0500) (0.0519)

Adjusted R2 0.4022 0.6252 0.2949 0.3344 0.4564 0.3167 0.2787
Appraisal Ratio 0.2709 -0.1144 0.1047 0.3259 -0.1415 0.6385 1.4706

Panel B.1: Controlling for the Fama and French (1993) and Carhart (1997) factors

α 2.3127 -0.9250 0.8490 2.8562 -1.2911 8.0081*** 0.1250***
(2.5443) (1.4183) (2.0710) (1.7464) (1.1044) (3.0478) (0.0198)

Adjusted R2 0.4121 0.6288 0.2918 0.3482 0.4933 0.3506 0.2884
Appraisal Ratio 0.1899 -0.1363 0.0857 0.3501 -0.2469 0.5490 1.3996

Panel C: January 2020 - December 2021

α -8.5457 -9.1481* -3.4995 -3.0816 -3.5826 6.2438 0.0278
(7.3284) (4.5765) (2.7493) (2.3829) (3.5334) (4.7813) (0.0279)

β 0.4777*** 0.6295*** 0.2394*** 0.5275*** 0.6177*** 0.3856*** 0.3323***
(0.1003) (0.1039) (0.0463) (0.0640) (0.1303) (0.0853) (0.0682)

Adjusted R2 0.4852 0.6084 0.5281 0.7439 0.4826 0.4578 0.4972
Appraisal Ratio -0.8701 -1.4160 -0.9056 -0.9527 -0.7171 0.9234 0.7268

Panel C.1: Controlling for the Fama and French (1993) and Carhart (1997) factors

α -8.8481 -9.4063* -6.1760** -5.0545* -5.7807 6.2150 0.0309
(7.6824) (4.8403) (2.6992) (2.6847) (3.8931) (5.2679) (0.0299)

Adjusted R2 0.4626 0.6250 0.6072 0.7534 0.4761 0.4384 0.4907
Appraisal Ratio -0.8817 -1.4877 -1.7517 -1.5925 -1.1499 0.9032 0.8022

18We further check whether including past maximum stock returns and the safe-minus-risky factors of
Bali et al. (2017) and Kapadia et al. (2019) along with the already mentioned factors affect our alpha. We
report these results in the appendix.
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TABLE 3.10: The Frazzini and Pedersen (2014)’s betting-against-beta strategy

This table reports the monthly results from option-implied beta estimates, as from Buss and Vilkov (2012), of the equally
weighted quartile portfolios for our 1,137 S&P 500 sampled firms from January 1996 to December 2021. BAB is the
betting-against-beta factor constructed by taking a long position on the low-beta portfolio and a short position on the
high-beta portfolio. This approach is similar to the original BAB strategy proposed by Frazzini and Pedersen (2014). In
the appendix, we also implement the original Frazzini and Pedersen (2014)’s approach and sort our sample firms into
deciles according to their option-implied beta estimates and the realised betas, finding some evidence of the benefits
when option-implied betas are used only. Consistent with our previous test, we add to Fama and French (1993) 3-
factors the Carhart (1997)’s momentum and the ex-ante coskewness of Schneider et al. (2020) risk factors as additional
control factors. Panels B and C are similar to Panel A but refer to pre- and post-pandemic periods, not accounting
for the ex-ante coskewness risk factor due to data limitations. The alpha and appraisal ratios are annualised. Robust
standard errors are in parentheses. The R-squared is adjusted for the number of predictors. The superscripts * * *, **,
and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Low Q2 Q3 High BAB

Panel A: January 1996 - December 2021

α 0.2076*** 0.1414** 0.0688 -0.1580*** 0.3656***
(0.0632) (0.0600) (0.0582) (0.0590) (0.0296)

Adjusted R2 0.0984 0.0795 0.1065 0.3080 0.6819
Appraisal Ratio 0.6548 0.4694 0.2355 -0.5337 2.4625

Panel A.1: Controlling for the Carhart (1997) and Schneider et al. (2020) factors
α 0.1277* 0.0697 0.0035 -0.1851*** 0.3128***

(0.0659) (0.0637) (0.0611) (0.0658) (0.0304)
Adjusted R2 0.0663 0.0815 0.1670 0.4303 0.8034

Appraisal Ratio 0.4759 0.2687 0.0142 -0.6914 2.5262

Panel B: January 1996 - December 2019

α 0.1859*** 0.1193** 0.0515 -0.1693*** 0.3552***
(0.0599) (0.0569) (0.0548) (0.0572) (0.0291)

Adjusted R2 0.0394 0.0456 0.1048 0.3456 0.7027
Appraisal Ratio 0.6427 0.4341 0.1945 -0.6135 2.5324

Panel B.1: Controlling for the Carhart (1997) factor
α 0.1687*** 0.1074* 0.0461 -0.1543*** 0.3230***

(0.0602) (0.0574) (0.0554) (0.0575) (0.0260)
Adjusted R2 0.0499 0.0496 0.1032 0.3512 0.7659

Appraisal Ratio 0.5865 0.3916 0.1740 -0.5615 2.5949

Panel C: January 2020 - December 2021

α 0.2096 0.1839 0.0665 -0.1325 0.3422**
(0.3481) (0.3375) (0.3408) (0.3359) (0.1346)

Adjusted R2 0.5027 0.4295 0.3631 0.2481 0.7193
Appraisal Ratio 0.4598 0.4158 0.1489 -0.3011 1.9399

Panel C.1: Controlling for the Carhart (1997) factor
α 0.2338 0.2106 0.0961 -0.1199 0.3537**

(0.3558) (0.3440) (0.3465) (0.3458) (0.1369)
Adjusted R2 0.4866 0.4146 0.3499 0.2130 0.7131

Appraisal Ratio 0.5046 0.4701 0.2131 -0.2662 1.9834
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TABLE 3.11: The Ang et al. (2006)’s idiosyncratic volatility strategy

This table reports the estimation results for the Ang et al. (2006)’s strategy for our sample of 1,137 from January 1996 to
December 2021. We follow Ang et al. (2006) in sorting our entire sample into quintiles according to their idiosyncratic
volatilities, denoted as “Low,” “Q2,” “Q3,” “Q4,” and “High.” The idiosyncratic volatility is defined as each stock’s
standard deviation of Fama and French (1993) 3-factor regression errors. Column ’High-Low’ represents the difference
between Portfolio High and Portfolio Low. The quintile portfolios are rebalanced each month. Panel A reports the
Fama and French (1993) 3-factor regression results for each quintile portfolio and the difference portfolio, respectively.
Panel A.1 reports the results when regressions are controlled for the Carhart (1997) momentum factor and the ex-ante
coskewness risk factor of Schneider et al. (2020). Panels B and C are similar to Panel A but refer to pre- and post-
pandemic periods and omit the ex-ante coskewness risk factor due to data limitation. The alpha and appraisal ratios
are annualised. Robust standard errors are in parentheses. The R-squared is adjusted for the number of predictors. The
superscripts * * *, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Low Q2 Q3 Q4 High High-Low

Panel A: January 1996 - December 2021

α 0.1467** 0.1406** 0.1233** 0.0961 -0.1508** -0.2974***
(0.0608) (0.0603) (0.0605) (0.0587) (0.0603) (0.0341)

Adjusted R2 0.0701 0.0760 0.0768 0.1117 0.3151 0.6140
Appraisal Ratio 0.4801 0.4639 0.4053 0.3257 -0.4976 -1.7345

Panel A.1: Controlling for the Carhart (1997) and Schneider et al. (2020) factors

α 0.0477 0.0530 0.0596 0.0722 -0.1105 -0.1581***
(0.0643) (0.0632) (0.0632) (0.0629) (0.0677) (0.0343)

Adjusted R2 0.0617 0.0923 0.1162 0.1749 0.4386 0.7590
Appraisal Ratio 0.1815 0.2056 0.2311 0.2814 -0.3997 -1.1301

Panel B: January 1996 - December 2019

α 0.1270** 0.1198** 0.1064* 0.0857 -0.1565*** -0.2836***
(0.0575) (0.0570) (0.0570) (0.0563) (0.0587) (0.0336)

Adjusted R2 0.0237 0.0413 0.0611 0.1154 0.3572 0.6222
Appraisal Ratio 0.4566 0.4348 0.3858 0.3150 -0.5514 -1.7474

Panel B.1: Controlling for the Carhart (1997) factor

α 0.1117* 0.1062* 0.0947 0.0807 -0.1416** -0.2533***
(0.0579) (0.0574) (0.0575) (0.0569) (0.0591) (0.0315)

Adjusted R2 0.0323 0.0475 0.0646 0.1135 0.3621 0.6741
Appraisal Ratio 0.4033 0.3865 0.3442 0.2962 -0.5009 -1.6808

Panel C: January 2020 - December 2021

α 0.1164 0.1418 0.0854 0.0199 -0.1872 -0.3036**
(0.3384) (0.3373) (0.3484) (0.3325) (0.3607) (0.1437)

Adjusted R2 0.4607 0.4450 0.3912 0.3232 0.0872 0.7776
Appraisal Ratio 0.2620 0.3201 0.1867 0.0455 -0.3951 -1.6082

Panel C.1: Controlling for the Carhart (1997) factor

α 0.1415 0.1704 0.1180 0.0425 -0.1776 -0.3191**
(0.3447) (0.3423) (0.3523) (0.3395) (0.3715) (0.1444)

Adjusted R2 0.4463 0.4348 0.3844 0.3024 0.0422 0.7781
Appraisal Ratio 0.3142 0.3812 0.2564 0.0958 -0.3660 -1.6922
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3.4.3 Out-of-sample strategy performance

Investors’ preferences regarding risk and expected return may vary over time. We ar-
gue that, in particular, such swings manifest more clearly during highly stressed market
periods, such as those during COVID-19. Because the time-varying weights affect the
performance of optimal portfolios out of the sample, the estimation risk in Equation
(3.4) is a genuine concern. Thus, the model estimation and over-fitting risks are crucial
in our analysis of forward-looking risk timing and realised risk measures. To address
these concerns, we check if the in-sample results of the previous sections carry on in
an out-of-sample performance analysis. For this, we use two sample periods. The first
sample covers January 1996 through December 2019, deliberately omitting the height-
ened volatility of the pandemic period. Using an expanding-window framework, we
reserve the subsequent six-, twelve-, and twenty-four-month horizons as out-of-sample
validation periods. The second sample extends from January 1996 through December
2021. In this case, we likewise employ an expanding window, but designate the final
six-, twelve-, and twenty-four-month spans for validation.

TABLE 3.12: Out-of-sample performance

This table reports the out-of-sample forecast errors for our RV-, IV-, MW-, and GLB-based ex-ante risk timing strategy in
our sample of 1,137 from January 1996 to December 2021. The in-sample regression specification is shown in Equation
(3.4) and its estimated parameters are in Table 3.4. The left side panel spans January 1996 to December 2019, thus
excluding the extreme market uncertainty of the pandemic period. We take six, twelve, and twenty-four months ahead
as the validation period. The right side panel spans January 1996 to December 2021. Here, we leave the last six, twelve,
and twenty-four months of COVID-19 as the validation period. The root mean squared error (RMSE) is computed as
the square root of the average value of the squared difference between forecasted and actual values. The mean absolute
error (MAE) is calculated as the average absolute value of the difference between forecasted and actual values. The
Mean Absolute Percent Error (MAPE) is computed as the average of the ratios of the absolute value of the difference
between forecasted and actual values and the absolute value of the actual values.

January 1996 to December 2019 January 1996 to December 2021

RV IV MW GLB RV IV MW GLB

RMSE6 0.0526 0.0356 0.0106 0.0151 0.0479 0.0083 0.0195 0.0156
RMSE12 0.0486 0.0340 0.0245 0.0139 0.0411 0.0239 0.0311 0.0269
RMSE24 0.0486 0.0335 0.0371 0.0553 0.0755 0.0663 0.0310 0.0547

MAE6 0.0312 0.0229 0.0081 0.0107 0.0314 0.0072 0.0153 0.0131
MAE12 0.0319 0.0238 0.0129 0.0102 0.0298 0.0152 0.0229 0.0191
MAE24 0.0316 0.0247 0.0207 0.0269 0.0521 0.0436 0.0239 0.0391
MAPE6 0.5202 0.2276 0.6334 0.4484 1.7887 0.2552 0.7145 2.6255

MAPE12 0.4143 0.4645 0.6653 0.4155 1.3830 0.2525 0.7801 2.6480
MAPE24 0.8330 0.5630 0.9670 0.6273 1.6260 1.1467 3.0046 9.3000

Table 3.12 reports the results for equally weighted portfolios as test assets and ex-ante
risk timing implemented by scaling returns before portfolio aggregation. The left panel
refers to the period from January 1996 to December 2019, while the other is from Jan-
uary 1996 to December 2021. We note some evidence of the out-of-sample performance
of the RN-managed portfolios. RN-managed portfolios have the lowest Root Mean
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Squared Error (RMSE) and Mean Absolute Error (MAE) in 6-, 12-, and 24-month fore-
cast periods than the RV-managed ones in the pre-pandemic period. Interestingly, ex-
cluding the COVID-19 period, the Mean Absolute Percentage Error (MAPE) is below
1 for all the risk timing implementations, indicating they are all superior to a random
walk. However, once the pandemic period is included, we find a positive out-of-sample
performance for the RN-managed portfolios. The MAPE results for the 24 months
suggest that no risk-timing strategy outperforms a random walk process. However,
IV-managed and MW-managed portfolios outperform backwards-looking RVs for the
pandemic’s last 6- and 12 months statistically significantly. This finding indicates that
option prices incorporate expectations of the underlying asset prices up to one year
ahead more promptly than the historical risk measures traditionally used in volatility
timing studies. Overall, the risk timing implementations based on options prices offer
the most accurate predictions.

We obtain qualitatively similar results for leverage-sorted portfolios as test assets. Also,
we further compare the out-of-sample results from our model with those from the
AR(1) model, both before and including the pandemic period, and report the 12-month
ahead forecast RMSEs for both models.

3.4.4 Transaction costs

The higher the portfolio weights’ volatility, the more intense the portfolio rebalancing,
and, in turn, the higher the transaction costs. A critique of the LRA based on this idea
has been put forward recently by Barroso and Detzel (2021), who find that reasonable
transaction costs usually nullify the extra alpha of volatility-timing strategies imple-
mented through portfolio return RV. Therefore, a caveat for our findings concerns the
transaction costs eroding the discussed alphas. Consequently, we check whether plau-
sible transaction costs for realistic portfolio rebalancing frequencies nullify the alpha of
our ex-ante risk timing strategy. In doing so, we move from the idea that portfolio re-
balancing depends on the investors’ characteristics, which include risk preferences, tax
considerations, and leverage constraints. In practice, several asset managers purposely
avoid frequent portfolio rebalancing.19 As RNs anticipate stock price movements, we
argue they afford look-ahead risk management with fewer total transactions. How-
ever, the relationship is complex. On the one hand, we expect RNs to contain limited
portfolio adjustments. On the other hand, we expect it will be massive if they suggest
portfolio rebalancing. From the analyses of the time-series properties of the RVs and
RNs and repeating the spanning regression estimations adding plausible transaction

19 See, for example, the Wall Street Journal article of January 6, 2023, reporting that
the most common frequency of portfolio rebalancing is yearly, at the beginning of January
https : //www.wsj.com/articles/case − against − rebalancing − your − portolio − 11673014712. Van-
guard’s research also supports the idea that annual rebalancing is optimal for most investors
https : //corporate.vanguard.com/content/corporatesite/us/en/corp/articles/tuning − f requency −
f or − rebalancing.html.
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costs, we find that risk-timing strategies based on RNs afford look-ahead risk manage-
ment with less transaction costs than RVs.

Transaction costs and leverage constraints

Risk management that cannot cope with intermediate paper losses and, therefore, sub-
jects trading to monthly rebalancing can substantially erode the extra alpha. We assess
our risk timing strategy accounting for transaction costs of either 1bps, 5bps, 10bps,
15bps, or 20bps. The 1bp and 10bps costs are informed by Fleming et al. (2003) and
Frazzini et al. (2015), respectively. We adopt a conservative standpoint and report the
results incorporating potential higher transaction costs during distressed markets. In-
formed by our strategies’ half-life test, which measures how long it takes for the risk-
managed returns to depreciate to half of their value, we consider rebalancing monthly
or every two, three and six months. Table 3.13 tabulates the results. At the 5% confi-
dence level, the alpha of an ex-ante risk timing strategy based on an RN statistically
survives up to 5bps transaction costs with monthly rebalancing.20 For the rebalanc-
ing with two to three months, our strategy survives up to 15bps transaction costs; for
semiannual rebalancing, up to 20bps transaction costs.21

All the risk timing strategy implementations are heavily penalised by leverage con-
straints. Table 3.13 includes the results when leveraging is either not allowed or per-
mitted for only up to 50%. In particular, leverage bounds strongly constrain our risk
timing strategy which is designed to exploit firm-specific information. It limits the pos-
sibility of weighting heavier stocks with low RN, thus wasting valuable option-based
details and missing timing opportunities.

20We run similar regressions as Equation (3.4), replacing the dependent variables with the net-of-cost
scaled returns. This is close to the generalised alpha approach applied by Barroso and Detzel (2021).

21With yearly rebalancing, as suggested by many practitioners, our option-based volatility timing strat-
egy survives up to 30bps transaction costs (see Footnote 19).
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TABLE 3.13: Transaction costs

This table reports the pointwise estimates of the alphas for the ex-ante risk timing strategies with and without Transac-
tion Costs (TC), which are statistically significant at the 5%-confidence level. We consider transaction costs of 1-, 5-, 10-,
15- and 20bps. The cost estimations of 1bp and 10bps are grounded in the studies of Fleming et al. (2003) and Frazzini
et al. (2015), respectively. To ensure a conservative approach, we also report the outcomes incorporating higher trans-
action costs, reflecting the potential elevated costs during distressed market conditions. We also restrict the strategies
to no and up to 50% investment leverage. Panel A reports the results for the stock-level risk timing strategies imple-
mented by RV, IV, MW, and GLB one month ahead. Panels B, C, and D repeat these analyses with rebalancing every
two, three, and six months. The rebalancing is informed by half-life analyses showing that the costs of trading effects
are absorbed by the overall portfolio performance in just over two months. The sample includes 1,137 firms and spans
January 1996 to December 2021.

Scaling factor Leverage α 1 bps 5 bps 10 bps 15 bps 20 bps

Panel A: Monthly TC
c

RV2
t

-0.0033 -0.0191 -0.0817 -0.1582 -0.2321 -0.3016

min( c
RV2

t
, 1) 0 -0.0011 -0.0118 -0.0543 -0.1065 -0.1575 -0.2068

min( c
RV2

t
, 1.5) 50% -0.0002 -0.0144 -0.0650 -0.1271 -0.1874 -0.2453

c
IV2

t
0.0478 0.0290 -0.0458 -0.1388 -0.2301 -0.3190

min( c
IV2

t
, 1) 0 0.0116 -0.0026 -0.0594 -0.1296 -0.1989 -0.2671

min( c
IV2

t
, 1.5) 50% 0.0048 -0.0031 -0.0742 -0.1624 -0.2493 -0.3345

c
MW2

t
0.0335 0.0275 0.0032 -0.0276 -0.0576 -0.0854

min( c
MW2

t
, 1) 0 -0.0066 -0.0107 -0.0274 -0.0482 -0.0684 -0.0881

min( c
MW2

t
, 1.5) 50% -0.0026 -0.0168 -0.0383 -0.0649 -0.0909 -0.1161

c
GLB2

t
0.0420 0.0309 -0.0141 -0.0693 -0.1222 -0.1715

min( c
GLB2

t
, 1) 0 0.0013 -0.0067 -0.0384 -0.0776 -0.1158 -0.1526

min( c
GLB2

t
, 1.5) 50% 0.0018 -0.0105 -0.0505 -0.0998 -0.1479 -0.1940

Panel B: Bi-monthly TC
c

RV2
t

-0.0033 -0.0120 -0.0469 -0.0902 -0.1328 -0.1742

min( c
RV2

t
, 1) 0 -0.0011 -0.0070 -0.0306 -0.0598 -0.0886 -0.1168

min( c
RV2

t
, 1.5) 50% -0.0002 -0.0088 -0.0369 -0.0718 -0.1061 -0.1397

c
IV2

t
0.0478 0.0376 -0.0032 -0.0539 -0.1038 -0.1528

min( c
IV2

t
, 1) 0 0.0116 0.0038 -0.0272 -0.0656 -0.1035 -0.1409

min( c
IV2

t
, 1.5) 50% 0.0048 0.0050 -0.0339 -0.0821 -0.1296 -0.1765

c
MW2

t
0.0335 0.0301 0.0169 0.0002 -0.0162 -0.0320

min( c
MW2

t
, 1) 0 -0.0066 -0.0088 -0.0179 -0.0291 -0.0402 -0.0511

min( c
MW2

t
, 1.5) 50% -0.0026 -0.0144 -0.0260 -0.0404 -0.0547 -0.0687

c
GLB2

t
0.0420 0.0360 0.0116 -0.0188 -0.0489 -0.0782

min( c
GLB2

t
, 1) 0 0.0013 -0.0030 -0.0203 -0.0417 -0.0629 -0.0836

min( c
GLB2

t
, 1.5) 50% 0.0018 -0.0059 -0.0276 -0.0546 -0.0812 -0.1074

Panel C: Quarterly TC
c

RV2
t

-0.0033 -0.0093 -0.0330 -0.0618 -0.0897 -0.1164

min( c
RV2

t
, 1) 0 -0.0011 -0.0051 -0.0208 -0.0401 -0.0590 -0.0775

min( c
RV2

t
, 1.5) 50% -0.0002 -0.0065 -0.0253 -0.0483 -0.0708 -0.0927

c
IV2

t
0.0478 0.0411 0.0145 -0.0181 -0.0500 -0.0810

min( c
IV2

t
, 1) 0 0.0116 0.0064 -0.0140 -0.0393 -0.0642 -0.0886

min( c
IV2

t
, 1.5) 50% 0.0048 0.0083 -0.0173 -0.0488 -0.0797 -0.1100

c
MW2

t
0.0335 0.0311 0.0216 0.0104 -0.0006 -0.0107

min( c
MW2

t
, 1) 0 -0.0066 -0.0081 -0.0143 -0.0219 -0.0294 -0.0366

min( c
MW2

t
, 1.5) 50% -0.0026 -0.0135 -0.0214 -0.0312 -0.0407 -0.0501

c
GLB2

t
0.0420 0.0380 0.0223 0.0029 -0.0160 -0.0343

min( c
GLB2

t
, 1) 0 0.0013 -0.0016 -0.0129 -0.0268 -0.0405 -0.0539

min( c
GLB2

t
, 1.5) 50% 0.0018 -0.0040 -0.0182 -0.0357 -0.0528 -0.0696

Panel D: Semi-annual TC
c

RV2
t

-0.0033 -0.0063 -0.0182 -0.0328 -0.0471 -0.0611

min( c
RV2

t
, 1) 0 -0.0011 -0.0031 -0.0111 -0.0209 -0.0306 -0.0401

min( c
RV2

t
, 1.5) 50% -0.0002 -0.0041 -0.0137 -0.0254 -0.0370 -0.0484

c
IV2

t
0.0478 0.0444 0.0307 0.0140 -0.0025 -0.0187

min( c
IV2

t
, 1) 0 0.0116 0.0090 -0.0015 -0.0143 -0.0270 -0.0396

min( c
IV2

t
, 1.5) 50% 0.0048 0.0115 -0.0015 -0.0176 -0.0335 -0.0491

c
MW2

t
0.0335 0.0322 0.0271 0.0213 0.0156 0.0100

min( c
MW2

t
, 1) 0 -0.0066 -0.0074 -0.0105 -0.0144 -0.0181 -0.0219

min( c
MW2

t
, 1.5) 50% -0.0026 -0.0125 -0.0165 -0.0215 -0.0263 -0.0311

c
GLB2

t
0.0420 0.0400 0.0317 0.0214 0.0113 0.0013

min( c
GLB2

t
, 1) 0 0.0013 -0.0002 -0.0059 -0.0130 -0.0200 -0.0269

min( c
GLB2

t
, 1.5) 50% 0.0018 -0.0022 -0.0095 -0.0184 -0.0272 -0.0359
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3.5 Conclusion

We contribute to the literature by providing empirical evidence that in the cross-section
of the returns, low-risk anomalies are a market feature that is not explained by tradi-
tional systematic risk factors. Analyses based on firms’ fundamentals indicate that the
capital structure matters for the risk timing, especially during market distressed pe-
riods when high-levered firms only marginally span the mean-variance frontier. Our
results underscore the role of the return higher moments as they appear in option prices
not captured by conventional historical risk measures. While we report results based
on the implied variance and the risk measures introduced by Martin and Wagner (2019)
and Chabi-Yo et al. (2023), our approach offers promising opportunities for advancing
our understanding of risk management and portfolio allocation that future research
can exploit.

We have demonstrated how stock-level ex-ante risk timing augments the risk-adjusted
returns of large portfolios of US equity stocks. We show how leveraging the informa-
tion on investors’ expectations of extreme returns outperforms the backwards-looking
volatility timing methods. Our strategy allows investors to take advantage of skewed
stock returns while adjusting to a more conservative approach in the face of a higher
likelihood of extreme negative returns. We show that our results are robust when we
include realistic transaction costs and across samples formed on firms’ leverage levels,
size, credit ratings and separating financial and non-financial entities. We obtain qual-
itatively similar results when we isolate the analyses for different market conditions,
the Global Financial Crisis and the COVID-19 pandemic.
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4.1 Introduction

While the significance of financial interlinkages for liquidity is widely acknowledged,
a comprehensive understanding of how these interlinkages influence stock liquidity is
lacking. This knowledge gap is primarily due to the challenge of mapping the intri-
cate and dynamic financial interconnections. The nonlinearities in financial linkages
and feedback loops further complicate the creation of simple and easily interpretable
models linking financial networks and asset liquidity. Yet, the scale of the US mutual
funds holdings is increasingly top-heavy and has increased significantly over the last
two decades from 6.8 trillion dollars in 1999 to $22.1 trillion by 2022, posing significant
liquidity and systematic risk challenges.1

This chapter contributes to the asset pricing literature by first introducing a new stock-
level centrality measure based on mutual fund common ownership, departing from
conventional studies which stay at the pairwise level. CWEC captures both the strength
of stock connections and the importance of neighbouring stocks in the financial net-
work, offering a more informative view than traditional pairwise measures. Using this
centrality metric, the chapter shows that higher stock centrality is associated with lower
illiquidity and has a persistent effect on liquidity, as demonstrated through centrality-
based portfolio sorts and statistical methods like VAR and IRF. Additionally, the find-
ings suggest that the market views and prices stocks differently based on their cen-
trality, indicating that centrality may act as a priced risk factor. These results provide
deeper insights into the roles of centrality and liquidity in financial markets and offer
practical implications for risk management and asset pricing.

This chapter considers how market-observable prices of the connected stocks via the
common funds’ ownership relate to stock liquidity. Based on the notion that finan-
cial networks are best revealed in market-observable stock prices, we propose a two-
step process by first identifying the connected pairs of stocks in comprehensive pair-
wise combinations of stocks owned by the largest US mutual funds2, and for each
stock-connected pair, computing the Antón and Polk (2014)’s connectedness measure,
namely the ratios of the total value of the two stocks held by the mutual fund and
the total market capitalisation of the two stocks from a large universe of our sam-
pled stocks.3 Second, we compute our stock-level Connectedness-value-Weighted-
Eigenvector-Centrality (CWEC) measure by augmenting the Eigenvector Centrality

1See for example the Financial Times report of June 16, 2024 https :
//www. f t.com/content/db08d94e − 1c7c − 438d − 8c9 f − 20158652452a. The data comes from the
2023 Investment Company Institute Factbook https : //www.ici.org/system/ f iles/2023 − 05/2023 −
f actbook.pd f .

2In each cross-section, two stocks are paired if they are commonly owned by at least one mutual fund.
3As in Antón and Polk (2014) we compute the standardised rank-transformed connectedness measure

in each cross-section for each stock. This ensures that our connectedness measure is not affected by the
changes in the number of mutual funds holding the stock and ensures comparability across different
cross-sections.
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measure4 with weights derived by the proportion of the holdings of US mutual funds
of the connected stocks in step one.5 In this way, each stock’s eigenvector centrality
measure is value-weighted by connectedness levels and transactions derived in step
one. Our CWEC, therefore, recognises the number of connections in a node and the im-
portance of those connections since a node connected to influential nodes is considered
more central. Moreover, because our CWEC is value-weighted and considers the entire
network structure, it helps identify essential nodes across the complex financial inter-
linked networks. In this way, we depart from Antón and Polk (2014)’s simple pair-level
correlation approach by introducing a standardised connectedness-weighted measure
of stock centrality. We argue that this approach allows for fair identification of the re-
lationships and patterns among different stocks, their connectedness level, and their
importance in the financial networks. We apply this method to our sample of 200 US
mutual funds and 608 stocks, forming 113,523 pairs from the first quarter of 1999 to the
end of the second quarter of 2022. We focus on the largest funds and stocks as these
have been shown to drive the stock markets (Jiang et al., 2024). Because their shocks
do not average out, when the firm size distribution is fat-tailed, these shocks are thus
persistent and drive the economy (Gabaix, 2011). We then proceed to study how our
CWEC relates to the changes in the liquidity of the stocks in our sample.

This framework permits us to identify the number of connections, the importance of
those connections, and the weights associated with them, allowing us to contribute
to the literature on financial networks and the commonality of liquidity. Existing lit-
erature on financial networks primarily focuses on systemic risk, market freezes, in-
vestment decisions, and corporate governance. Notable works have demonstrated the
influence of network patterns of trades on market behaviour and returns (Cohen-Cole
et al., 2014), the asymmetries in the degree of connectedness and outcomes among types
of firms (Billio et al., 2012), and the complex and mutually reinforcing nature of market
and funding liquidity (Brunnermeier and Pedersen, 2008). Recent studies have shifted
attention to firms’ idiosyncratic risk and the role of adverse asymmetric shocks in caus-
ing firm interactions (Chen et al., 2023). Recently, Buraschi and Tebaldi (2024) show
that financial interlinkages can trigger priced contagion endogenously. These accounts

4Eigenvector centrality is widely used to model networks in different disciplines. In network science,
Gutiérrez et al. (2021) experiment on resistor circuits, neural networks, and paradigmatic networks to
show the feasibility of using eigenvalue spectra to estimate resistance distance and eigenvector centrality
of a network. In neuroscience, Lohmann et al. (2010), Binnewijzend et al. (2014), and Van Duinkerken
et al. (2017) apply eigenvector centrality to map human brain networks. In biochemistry, Negre et al.
(2018) use eigenvector centrality to characterise protein allosteric pathways. In psychology, Sadria et al.
(2019) apply the eigenvector centrality on eye-gaze data to study autism spectrum disorder. In sociology,
Carrizosa et al. (2020) design a mathematical programming formulation based on eigenvector centrality
to detect key members in a social network. In Finance literature, eigenvector centrality has been used by
Evgeniou et al. (2022) to study market-timing ability and firm performance. To the best of our knowledge,
this method has not been used in modelling liquidity commonality of connected stocks in comprehensive
financial networks.

5Throughout the paper, we use interchangeably CWEC or value-weighted centrality measure. The
value refers to the dollar value held by mutual funds of stock pairs that affects the edge strength in the
financial network.
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reinforce the findings that Herskovic et al. (2020) report, showing that network effects
are essential to explaining the joint evolution of the empirical firm size and firm volatil-
ity distributions. The literature focused on the commonality of liquidity has gained
prominent attention since the seminal paper of Chordia et al. (2000), which focused
on the correlated movements in liquidity.6 A common approach in this literature is to
match the liquidity commonality via the institutional ownership or pairwise connect-
edness measure.7 However, this approach of identifying stocks’ pairwise correlation
via proportion owned by institutions to study liquidity commonality is useful only in
identifying a stock’s direct connections due to its direct relationships. Yet, it cannot
determine the connections’ influence or centrality in a network, which would allow for
a better understanding of their effects within the broader network.

Figure 4.1 highlights the differences between the simple pairwise correlation of con-
nected stocks used in the literature and our CWEC measure of stocks. When the com-
monality of liquidity is identified via pairwise correlation of connected stocks, this ap-
proach correlates strongly with the degree of centrality measure computed by counting
the number of edges connected to each stock throughout the sample. Panel A of Fig-
ure 4.1 visually presents the unweighted degree centrality and stock average pairwise
connectedness, yielding a widely dispersed pattern of a network. The pattern indi-
cates incorporating mutual funds’ ownership of stocks into the assessment of a stock’s
role within the financial network offers a qualitatively different approach compared
to merely enumerating the connections between stocks, underscoring our first step in
deriving the CWEC measure. Therefore, the conventional approach does not allow
for clearly identifying relationships and patterns in a network. Moreover, as the more
concentrated pattern in Panel B, our CWEC measure improves from stock average con-
nectedness by further considering each stock’s importance in the broad financial net-
work, allowing for better identification of relationships and patterns in the data and
identification of stock connections’ influence. This matches our second step in deriv-
ing the CWEC measure. Therefore, the CWEC two-step process visualised by Figure
4.1 sheds new light on the relationship between the stock’s centrality and liquidity and
their systematic risk importance.

The literature has no consensus on the directional relationship between the stocks’ con-
nectedness and liquidity commonality. A large body of literature shows that changes
in connectedness levels affect liquidity.8 Yet, another strand in the literature shows that

6See Hasbrouck and Seppi (2001); Coughenour and Saad (2004); Brunnermeier and Pedersen (2008);
Kamara et al. (2008); Karolyi et al. (2012); Moshirian et al. (2017); Koch et al. (2016); Deng et al. (2018),
among others.

7See Kamara et al. (2008), Antón and Polk (2014), Koch et al. (2016), Agarwal et al. (2018), Deng et al.
(2018), Bradrania et al. (2021), for example.

8Kamara et al. (2008) measure stock connectedness by the proportion of each stock’s market capitali-
sation owned by funds, showing that their stock connectedness measure affects the stock’s liquidity beta.
Deng et al. (2018) show that there’s a convex relationship between stocks’ foreign institutional ownership
and liquidity commonality. Bradrania et al. (2021) find that foreign institutional ownership affects the
liquidity risk exposure of the stocks with larger market capitalisation. Agarwal et al. (2018) adopt both
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institutional investors such as mutual and hedge funds often trade stocks in anticipa-
tion of their liquidity needs. This practice can be driven by several factors, including
investor redemptions, rebalancing portfolios, managing cash flow, or preparing for an-
ticipated market conditions.9 Therefore, the literature has not reached a consensus on
these effects, and thus, it is an empirical imperative to distinguish the nature of these
two sources of influence. When we regress our stock centrality measure on illiquid-
ity or illiquidity on stocks’ centrality levels, we observe that both have positive and
statistically significant effects on each other, presenting an apparent dichotomy. How-
ever, when we run VAR with GMM-style regressions and control for stock idiosyncratic
volatility (Ang et al., 2006), the volatility index VIX, and Money supply shock, M1, we
find clear and statistically strong evidence of the importance of the stocks’ centrality
for liquidity, but not the other way around. We also corroborate this finding in our
Impulse Response Function (IRF) analyses across the entire period of our sample and
during significant market distress periods such as the Global Financial Crisis (GFC).

When we plot the time series of our CWEC measure and illiquidity against the bank
lending tightness standards SLOOS, a proxy indicating changes in funding constraints
of institutions, we find that the CWEC and illiquidity behave differently.10 Stock illiq-
uidity reacts promptly to changes in credit availability in the market, and their corre-
lation is strong at 0.62. Conversely, stock connectedness appears much more “sticky”.
The correlation between connectedness and bank lending tightness is statistically in-
significant, shedding new light on the causality between the stocks’ connectedness and
liquidity commonality, which we explore in VAR regressions, showing that fund man-
agers potentially avoid taking additional risk, rebalancing and transaction costs, thus
affecting the liquidity of stocks.

After identifying the significant impact of stock centrality on illiquidity, an essential
risk factor, we aim to investigate whether the market perceives stocks with varying
centrality levels differently. For this, first, we sort our firms on equally weighted quar-
tile portfolios based on the stocks’ CWEC levels to see if there is any pricing evidence of
stock centrality in the markets. We find that stocks in the highest CWEC quartile portfo-
lios tend to be larger and more liquid. Their realised returns and Fama-French-Carhart

Koch et al. (2016)’s and Antón and Polk (2014)’s stock connectedness proxies and find that the measures
positively affect stock liquidity commonality. These studies are based on individual stock proportions
owned by institutions or pairwise correlation of stocks. At the same time, our connectedness measure
comes from the cross-section of all ownership of a large universe of the sampled stock.

9Edelen (1999) find that mutual funds tend to sell stocks during periods of high investor redemptions,
which can exacerbate market downturns and increase volatility. Teo (2011) find that hedge funds adjust
their holdings in response to anticipated liquidity needs and market conditions, often selling stocks to
increase their cash positions during periods of expected market stress. Mitchell et al. (2002) reveal that
institutional investors engage in rebalancing activities that involve selling stocks to meet liquidity needs
and maintain their strategic asset allocations. Financial Stability Board (2017) has highlighted the impor-
tance of liquidity management in investment funds, noting that funds may sell stocks to sustain adequate
liquidity buffers in response to anticipated or actual liquidity needs.

10SLOOS is the Federal Reserve’s quarterly Senior Loan Officer Opinion Survey on Bank Lending Prac-
tices indicating the anticipated tightening or loosening of lending criteria.
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four-factor alphas are significantly lower than those in the lowest quartile, indicating
that these large and liquid stocks are fairly priced and thus cannot offer significant
returns. We also run Fama and MacBeth (1973) regressions to find significant βCWEC

coefficients, providing some evidence of the centrality premium in the markets. Then,
we run predictive regressions of centrality on stocks’ returns, finding centrality to be a
statistically significant predictor for stock returns and, thus, potentially a state variable.

Finally, if centrality is a state variable which commands a market premium, we test
whether an investor can profitably exploit the pricing gap among different stock cen-
trality levels. Thus, we construct a betting-against-centrality (BAC) factor by taking a
long position on the stocks in the lowest CWEC quartile portfolio and a short position
on the highest quartile portfolio with equal weights. Then, we regress the BAC returns
against the Fama-French-Carhart factors. However, we fail to find statistically robust
evidence that investors can exploit the pricing gap among different stock centrality
levels. Furthermore, other real trading conditions such as transaction costs can further
erode its potential profitability.11 Overall, our results indicate that centrality is one of
the crucial determinants of stock liquidity within a broader network of stocks. This is
consistent with Buraschi and Tebaldi (2024)’s finding of network risk premium.

The remainder of the paper is organised as follows. Section 4.2 discusses the contribu-
tion to the literature. Section 4.3 describes the data and methods we use. Section 4.4
compares and discusses the results. Section 4.5 concludes.

4.2 Related Literature

Liquidity attracts much attention from researchers because of its sophisticated associa-
tion with risk and asset pricing. Brennan and Subrahmanyam (1996) claim that a higher
rate of returns should be expected for illiquid stocks. A less liquid asset is expected to
yield higher returns because investors require higher returns as compensation for tak-
ing additional risks of investing assets with less liquidity. Market illiquidity expectation
positively affects stock excess return, which partially represents an illiquidity premium
(Amihud, 2002). Amihud et al. (2005) confirm that the liquidity effect on asset pric-
ing is economically important and statistically significant. Liu (2006) also documents
that liquidity is a critical risk component in asset pricing as there is a significant liq-
uidity premium which is robust to the Capital Asset Pricing Model and Fama-French
three-factor model (Fama and French, 1993). Acharya and Pedersen (2005) propose a
liquidity-adjusted capital asset pricing model and conclude that both stock-level ex-
pected liquidity and the covariance between stock and market return and liquidity af-
fect stock required rate of return, supporting Pástor and Stambaugh (2003) findings.

11We have also replicated the strategy by constructing BAC portfolios with stock centrality levels and
different percentile portfolios. The results do not qualitatively change.
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Hameed et al. (2010) propose an asymmetric positive influence from market return to
liquidity and find that the negative returns have a much larger influence than positive
returns. The liquidity importance in asset pricing inspires our research to base on the
stock level which will be discussed in the following paragraphs.

Liquidity measurements are extensively and comprehensively studied. Liu (2006) de-
scribes liquidity from four dimensions which are trade volume with fixed cost (trading
quantity), time required for a security to be traded with fixed cost and quantity (trad-
ing speed), trade-relative expenses for a trade volume (trading costs), and influence on
price for a given trade volume (price impact). On the other hand, illiquidity is known
as the difficulty of trading securities. Amihud et al. (2005) have listed several sources
of illiquidity: exogenous unavoidable transaction costs, demand pressure or inventory
risk due to frictional scarcity of trading counterparties, information asymmetry, and
difficulty in finding a counterparty for a tailored deal. Market participants face the
trade-off between keeping exploring and trading at a discount. There are many liq-
uidity measurements developed in the literature due to their importance. We focus on
low-frequency measurements first because of their advantages, including better data
availability across different regions and time horizons. High-frequency data with the
same region and time span would require extensive computation resources and power.
Second, the low-frequency liquidity proxies match the time frame of other components
in our study. Goyenko et al. (2009) and Corwin and Schultz (2012) have proven that
low-frequency measures perform well with relatively high-frequency liquidity bench-
marks at lower costs. Our choice of frequency is a trade-off between data availability
and market microstructure capture. As there are many liquidity measurements devel-
oped, We pick and discuss some popular ones that can be allocated to the dimensions.

Amihud (2002) proposes one of the most popular liquidity measurements, the illiq-
uidity ratio, from the price impact aspect (Lou and Shu, 2017). It is defined as the
average absolute value of daily returns divided by daily trading volume. This essen-
tially gauges the price change sensitivity to the dollar trading volume. The higher
Amihud illiquidity ratio means lower stock liquidity, as a small volume change could
lead to a huge stock price movement. Similar to the data required for spread compu-
tation, the daily price and trading volume data used to compute the illiquidity ratio
are also highly available, allowing analyses through long time horizons across differ-
ent markets. Lou and Shu (2017) criticise that the Amihud illiquidity ratio captures the
liquidity premium on stock returns through the trading volume component instead
of the price impact, although they confirm that the return-to-volume ratio does per-
form well in measuring stock illiquidity. Goyenko et al. (2009) compare many low-
frequency liquidity measures with high-frequency ones. They find that low-frequency
measures can capture the key information from high-frequency transaction costs, mak-
ing the expensive high-frequency data less necessary. They also showe that among the
low-frequency measures, the Amihud illiquidity ratio works very well for measuring
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price impact. Similarly, Fong et al. (2017) compare low-frequency measures with high-
frequency benchmarks and confirm that the Amihud daily illiquidity ratio is the best
tool for tracking price impact. Their results indicate that the daily Amihud illiquidity
ratio is the best illiquidity measurement from a price impact perspective.

The literature on financial networks mainly concentrates on systemic risks, market be-
haviours, and investment decisions. Cohen-Cole et al. (2014) discover the fact that
market behaviour and returns are captured by trade network patterns. Billio et al.
(2012) find hedge funds, banks, brokers/dealers, and insurance companies are becom-
ing more interrelated, highlighting the prevailing systemic risks in finance through
complicated and timely dynamic financial networks. The attention of recent litera-
ture has shifted to firm idiosyncratic risks. Chen et al. (2023) study the contagion and
feedback effects of firms’ adverse impact on industry peers through intense compe-
tition during financial distress. Buraschi and Tebaldi (2024) reveal that financial net-
works endogenously lead to price contagion and introduce the network risk premium.
These studies support that network effects play a crucial role in understanding the
combined development of empirical distributions of firm size and volatility (Herskovic
et al., 2020). Since Chordia et al. (2000) first discovered the evidence of commonality in
liquidity in the stock market, abundant studies have focused on this important compo-
nent in finance literature.12 Kamara et al. (2008) build the bridge between institutional
ownership and stock sensitivity to systematic liquidity shocks. They recognise that
different proportions of institutional ownership can explain different liquidity betas of
firms with different sizes. Koch et al. (2016) figure out that stocks with a larger propor-
tion owned by mutual funds are more likely to co-move with those similar stocks that
also have high mutual fund ownership. Deng et al. (2018) find foreign institutional
ownership has a convex relationship with stock commonality in liquidity. Bradrania
et al. (2021) suggest that foreign institutional ownership leads to larger exposure of
stocks with higher market value to unanticipated liquidity shocks in the local market.
Especially for stocks with market value above the average level, there is a positive re-
lationship between foreign institutional ownership and stock liquidity commonality.
These studies discover the relationship between liquidity commonality and institu-
tional ownership. However, the proportion of each security owned by an institution
or a fund still stays on the individual level. Therefore, it still has limited explanatory
power for stock connectedness.

Antón and Polk (2014) develop a common ownership measurement called FCAP, com-
puted as the ratio of the common fund’s total value of pairwise stocks and their total
market capitalisations. They regress the cross-sectional realised correlations of pairwise
stock abnormal returns against their FCAPs. It is summarised that stock connectedness
is generated from their common fund owners. Pairwise connected stocks have higher

12See Hasbrouck and Seppi (2001); Coughenour and Saad (2004); Brunnermeier and Pedersen (2008);
Kamara et al. (2008); Karolyi et al. (2012); Moshirian et al. (2017); Koch et al. (2016); Deng et al. (2018) for
example.
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cross-sectional return variation correlation. When common owner funds are experienc-
ing large net inflows or outflows, the effect of common ownership will become stronger
to subsequent stock abnormal return correlations. Agarwal et al. (2018) adopt both
Koch et al. (2016) stock-level and Antón and Polk (2014) pair-level methods to examine
the relationship between ETF ownership and liquidity commonality. Unlike Antón and
Polk (2014), instead of the correlation of abnormal stock returns, Agarwal et al. (2018)
regress the cross-sectional pairwise correlations of changes in Amihud illiquidity ratios
against ETFFCAP (the common ownership as defined by Antón and Polk (2014) but for
ETF).13 Agarwal et al. (2018) view Antón and Polk (2014) approach as a complement to
Koch et al. (2016) approach, and conclude that both stock-level and pair-level methods
imply that ETF ownership has a significant positive effect on liquidity commonality
Agarwal et al. (2018) have linked direct stock connectedness, FCAP, to liquidity com-
monality. Although this is an improvement from staying on the stock-level proportion
owned by funds, the influence of stock connectedness on stock-level liquidity still has
not been sufficiently studied. Current literature either stays on the stock level, focusing
on stock proportion owned by funds and ignoring connectedness, or sticks on the pair
level anyway, studying the commonality of liquidity.

On the other hand, a popular method to measure a node’s connection strength and im-
portance in a network is the eigenvector centrality which has been adopted in different
disciplines such as biology and medicine (Lohmann et al., 2010; Binnewijzend et al.,
2014; Martı́nez et al., 2015; Van Duinkerken et al., 2017; Negre et al., 2018; Sadria et al.,
2019), social network (Carrizosa et al., 2020), and physics (Newman, 2006; Gutiérrez
et al., 2021). Regarding finance studies, Evgeniou et al. (2022) and Nezami et al. (2024)
utilise eigenvector centrality to study and model market-timing ability and firm perfor-
mance. Eigenvector centrality considers neighbours’ importance for each node when
deciding the centrality of that node. We thus propose a new stock-level Connectedness-
Weighted-Eigenvector-Centrality (CWEC) measure. CWEC considers both the strength
of each connection edge and the importance of other close nodes around. This variable
also solves the stock-level and pair-level compatibility issues and enables us to study
the relationship between stock-level liquidity and connectedness or centrality in which
the literature fails to reach a consensus. While a strand of literature supports that the
causality goes from connectedness to liquidity14, another stream of literature proposes
that the causality runs oppositely as institutional investors tend to adjust their invest-
ment allocations according to their expectations to liquidity needs. Edelen (1999) dis-
cover that during times of significant investor redemptions, mutual funds are inclined
to sell stocks, which can worsen the market situation and heighten volatility. Teo (2011)
find that hedge funds modify their portfolios based on predicted liquidity requirements

13All Kamara et al. (2008); Koch et al. (2016); Agarwal et al. (2018); Deng et al. (2018); Bradrania et al.
(2021) use Amihud illiquidity ratios as their liquidity proxies. This supports the Amihud illiquidity ratio
popularity discussed above.

14See Kamara et al. (2008), Deng et al. (2018), Agarwal et al. (2018), and Bradrania et al. (2021) as dis-
cussed above for example.
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and prevailing market conditions, often selling stocks to boost their cash reserves dur-
ing times of anticipated market turbulence. Mitchell et al. (2002) disclose that insti-
tutional investors participate in rebalancing activities, selling stocks to fulfil liquidity
requirements and keep their strategic asset allocations. This stock-level CWEC mea-
sure also enables us to apply further approaches to discover the relationship between
stock liquidity and centrality such as Vector Autoregression (VAR), Impulse Response
Function (IRF), and Granger Causality tests. Since stock-level liquidity has a direct ef-
fect on asset pricing which highlights its importance, this research thus can be useful
for researchers and practitioners interested in asset pricing.

4.3 Data and Method

4.3.1 Data and sample

Our sample includes 200 US mutual funds and 608 stocks, forming 113,523 pairs from
January 1999 to June 2022. The mutual fund ownership data comes from the Thomson
Reuters quarterly Mutual Fund Holdings database and is used to generate our value-
weighted centrality measure. We filter the mutual fund holdings data and focus on US
funds with positions on stocks from the US. Our data selection is based on two criteria.
First, we focus on US mutual funds with the top 1% total net asset at the end of each
quarter. This covers over 50% of total assets held by mutual funds in the US. Next, we
focus on US stocks whose end-of-quarter market capitalisations are larger than the top
10% stocks’ sizes traded on the NYSE. These stocks cover over 80% of the total market
capitalisations of the stocks owned by the top 1% largest funds.15 This screening criteria
affords a comprehensive modelling of the financial network and asset liquidity based
on the theory that the largest firms are the systemically most important as their shocks
are persistent and not easily diversifiable (Gabaix, 2011).

Daily stock prices, trading volumes, and market capitalisation are provided by the
CRSP database. We use these stock characteristic data to compute our stock liquidity
measures and idiosyncratic volatilities. The trading volume and market capitalisation
data also compute our value-weighted centrality measure. The Bloomberg database
provides the option-implied CBOE volatility index VIX, a common fear-gauge proxy,
and the changes in money supply in the US, the M1, our proxy for institutions’ funding
constraints.

15While this is different from Antón and Polk (2014), which uses top 50%, we balance the market cover
and computation power as the number of stocks expands the number of pairwise combinations quickly.
We have tried the top 50% largest stocks and the top 10% largest mutual funds. The funds cover over
80% of the total net assets and the stocks capture over 95% of the entire market capitalisation owned by
these mutual funds. This larger sample generates over 1.18 billion pairs, which is too computationally
extensive.
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4.3.2 Stock-level measures

We propose a two-step process to derive our stock-level Connectedness-value-Weighted-
Eigenvector-Centrality (CWEC) measure. First, we follow closely Antón and Polk (2014)
connectedness method to generate comprehensive pairwise combinations for stocks
owned by each mutual fund in each quarter to compute the connectedness measure.
For each pair of stocks owned by a mutual fund, f, we compute the sum of the market
capitalisation of the pair of stocks owned by that fund,

Connectednessij,q =
∑F

f=1

(
S f

i,qPi,q + S f
j,qPj,q

)
Si,qPi,q + Sj,qPj,q

. (4.1)

Each pair includes stock i and stock j. S f
i,q and S f

j,q are the number of shares of stock i
and j held by mutual fund f at quarter q. Pi,q and Pj,q are the trading prices of stocks
i and j. Si,q and Sj,q are outstanding shares of stock i and j. We derive the normalised
rank-transformed connectedness in each quarter for each pair of stocks to prevent this
measure from being dominated by changes in the number of mutual funds and make
the variable comparable across different cross-sections.

Then in the second step, this normalised rank-transformed connectedness measure is
used to derive the value-weighted eigenvector centrality measure for our sample as
follows:

CWECi =
1
λ ∑

j ̸=i
AijCWECj. (4.2)

The scalar λ is the eigenvalue associated with our centrality measure, CWEC. Aij is
the connectedness-value-weighted adjacency matrix corresponding to the connection
between stock i and j derived from mutual fund holdings, as from Equation (4.1). As
discussed in the introduction, eigenvector centrality has been widely adopted in the
literature in different disciplines. Our CWEC distinguishes from the literature as it
contains additional information on the edge’s strength, assigning influence scores to
nodes based on their connections, factoring in the number of connections, their impor-
tance, and the associated weights. A stock’s CWEC is proportional to the total CWEC
of its connected neighbouring stocks. In the financial network in our sample stocks,
a stock is more central if it is connected to more central ones (Bonacich, 2007). CWEC
thus captures the influence of the stock within the broader network of connected stocks.
Also, based on mutual funds’ ownership, our stock network is undirected and does not
involve negative connections.16

16In an undirected network, edges do not have directions and can be traversed in either direction.
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Our two-step process thus involves connectedness, which informs the eigenvector cen-
trality. The CWEC assigns a centrality score to each stock in the network based on the
strength of the edges between pairwise stocks and the neighbour’s centrality associ-
ated with the edge’s strength. In addition, our sampling approach is well-informed by
the theory of the persistency of the shocks of the largest firms and thus their system-
atic importance (Gabaix, 2011). We conjecture that our method is less susceptible to the
criticism that eigenvector centrality can hardly capture the roles of peripheral nodes
(Buraschi and Tebaldi, 2024).

Our CWEC measure contributes to the literature by introducing a stock-level centrality
measure not adopted in conventional studies, primarily focused on stocks’ pairwise
correlation to study liquidity commonality.17 Pairwise correlation and liquidity com-
monality studies only recognise the unweighted connections between pairwise stocks.
Our stock-level CWEC, on the other hand, is presented by the eigenvector centrality
value for each stock. Second, we diverge from the stream of literature measuring stock’s
role in a connected network implied from the proportion of the stock invested by in-
stitutions as that measure is limited only to the information on the stock’s ownership
structure.18 The stock proportion owned by institutions is subject to some biases, such
as a lack of filtering of fund characteristics and insufficient reflections on the fund’s
positions in other stocks, affecting the clear identification of the stocks’ systematic im-
portance in a complex interlinked financial network. Third, we take advantage of the
weighted eigenvector centrality, which considers the neighbours’ importance for each
node in the broad map of financial interlinkages. The weights we apply are informed
by the changes in the proportion of the total value of the two stocks held by the mutual
fund and their total market capitalisation (Antón and Polk, 2014). We conjecture that
our stock’s centrality measure is linked dynamically to the changes in stock prices and
market capitalisation. Thus, we consider it an effective direct measure of the stock’s
importance in the financial network. The centrality measure fluctuates when the con-
ditions of the other linked stocks change, providing a more accurate value-weighted
centrality measure. Therefore, our CWEC affords a fairly comparable centrality mea-
sure that takes advantage of mutual funds’ connected stock information and allows us
to study the influence of the stock’s network centrality on liquidity, which is helpful for
investors and policymakers alike.

We also compute each stock’s average connectedness and unweighted pairwise connec-
tion to make explicit comparisons with conventional pairwise correlated stock studies.
The pairwise connection of each stock is computed as the number of stock pairs that the
stock engages in, also known as degree centrality, regardless of how strong each pair’s

17See Antón and Polk (2014) and Agarwal et al. (2018) for example of pairwise correlation.
18See Kamara et al. (2008), Koch et al. (2016), Deng et al. (2018) and Bradrania et al. (2021) for example

of stock proportion owned by institutions.
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connection is.19 We plot the degree centrality, time-series average of our 608 stocks’
pairwise connection (the cross-sectional average of connectedness measure), and our
CWEC measure in Figure 4.1.

Figure 4.1 Panel A presents the unweighted pairwise connection and average connect-
edness measure. Conventional studies such as Antón and Polk (2014) and Agarwal
et al. (2018) identify the interlinkages between pairwise stocks and focus on their re-
lationship with pairwise stock return correlation or liquidity commonality at the stock
pairwise level. This is essentially similar to the degree centrality measure that recog-
nises and equally counts the edges between each pair of nodes. The dispersed pattern
in Panel A thus indicates that considering mutual funds’ ownership of stocks when
measuring a stock’s role in the financial network is qualitatively distinct from simply
counting the number of edges between stocks, highlighting the contribution of our
first step in the CWEC two-step process. On the other hand, Panel B shows the re-
lationship between our value-weighted centrality measure, CWEC, and average con-
nectedness. As discussed above, since both the CWEC and the average connectedness
originate from Antón and Polk (2014) method, containing sensitivity to situations of
other directly linked stocks in the financial network20, the CWEC is more informative
in terms of identifying each stock’s importance according to its neighbours’ importance
in the financial network. The more concentrated pattern in Panel B thus implies the im-
provement made by the second step in our CWEC two-step process. Therefore, the
dispersion in Panel A in Figure 4.1 and the concentrated pattern in Panel B highlight
the qualitative improvements that can be obtained by implying a weighted eigenvector
centrality measure with weights derived from mutual funds ownership of stocks.

Next, we measure stock illiquidity by using Amihud (2002), which is defined as the
average absolute value of daily returns divided by daily trading volume:

Amihudi,q =
1

Di,q

Di,q

∑
d=1

|Ri,q,d|
Dollarvolumei,q,d

, (4.3)

where Di,q is stock i number of trading days in quarter period q, Ri,q,d is stock i return
on day d within the quarter q, Dollarvolumei,q,d is stock i dollar value on day d in the
quarter q.

This ratio essentially gauges the price change sensitivity to the dollar trading volume.
The higher Amihud illiquidity ratio means lower stock liquidity, as a small volume
change could lead to a huge stock price movement.21

19Degree centrality of a node is defined as the number of its direct edges to other nodes. It reflects the
node’s immediate impact or risk because of its direct connections.

20Our main results also hold when we imply stock connections from the average connectedness.
21Goyenko et al. (2009) compare a wide range of low-frequency liquidity measures with high-frequency

measures and conclude that, first, high-frequency measures of transaction costs can be well captured
by low-frequency measures and thus are not worth their high costs. Second, regarding low-frequency
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FIGURE 4.1: Centrality measures and connectedness

This figure displays the scatter plots of stocks’ pairwise connection, average connectedness, and our stock
CWEC. Within our sample of 608 stocks, Panel A shows each stock’s pairwise connection and average
connectedness. Pairwise connection is measured by degree centrality which is the number of edges con-
nected to each stock throughout the entire sample period from 1999 Q1 to 2022 Q2. It is an unweighted
centrality measure counting stocks’ edges. Connectedness is defined as in Equation (4.1). Panel B presents
our CWEC and stock average connectedness. Each stock’s CWEC is derived from the two-step procedure
of computing stock average connectedness and the weighted eigenvector centrality as in Equation (4.1)
and (4.2).
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4.3.3 Modelling the relationship between centrality and illiquidity

The stocks’ value-weighted centrality measure that we derive allows us to shed new
light on its relationship with stock illiquidity, which is important for systemic risk. As
discussed earlier, the literature has not reached a consensus on the relationship between
stocks’ connectedness in the financial network and liquidity. Therefore, it is empirically
important to see how our value-weighted centrality measure relates to the stocks’ liq-
uidity. For this, we initially run predictive panel regressions of lagged CWEC on our
illiquidity measure estimated in Equation (4.3). However, we make no claims to causal-
ity in our tests, and thus, in response, we also run predictive regressions employing the
lagged illiquidity measure of Amihud (2002) as an explanatory variable on CWEC. Our
regressions also control for socks’ idiosyncratic volatility, the VIX index, and changes

measures, the Amihud illiquidity ratio performs well in measuring price impact. Fong et al. (2017) also run
comprehensive horseraces of low-frequency liquidity measurements with high-frequency benchmarks.
Their results support the strong performance of Amihud’s daily illiquidity ratio as the best illiquidity
price impact measurement. The popularity of the Amihud ratio and its empirical success make it suitable
for our study.
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in money supply, M1 (Money Shock).22 The VIX index considers historical informa-
tion and forward-looking expectations, representing overall expectations of changes in
the US stock market. Changes in M1, the most liquid market money supply indica-
tor, proxy the money shock and, thus, intermediaries’ funding constraints. The money
shock is thus an explicit indicator of overall market liquidity, which can affect all finan-
cial intermediaries’ funding conditions. Therefore, our control variables account for
both realised and expected idiosyncratic and systematic risks. Formally, our predictive
regressions are as follows:

yi,q = βi,q−1xi,q−1 + βi,q−2xi,q−2 + βi,q−3xi,q−3 +
3

∑
k=1

βkControli,q−1,k + FEi + ϵi,q, (4.4)

where y is the stock illiquidity (or CWEC), x is the corresponding CWEC (or illiquid-
ity), Controli,q−1,k are our kth control variables, namely the stock idiosyncratic volatility
, the VIX index, and the money supply shocks. FEi is the fixed effect that captures
time-invariant characteristics specific to each stock i. We run these quarterly, q, panel
regressions for each stock i.

We also refer to the bank lending tightness data from the Federal Reserve’s quarterly
Senior Loan Officer Opinion Survey (SLOOS) on Bank Lending Practices. This indicator
is useful in exploring the relationship between the expected tightening (or loosening)
of funding constraints and changes in our value-weighted centrality measure and illiq-
uidity. We thus plot SLOOS against our stock illiquidity and CWEC to investigate their
time-series relationship. Lastly, because this work’s empirical focus is to examine the
relationship between stocks’ network centrality and liquidity without making explicit
predictions on causality, it is essential to study the time-series properties of CWEC and
liquidity in a multivariate Vector Autoregressive Model (VAR). Since the panel regres-
sions confirm statistically significant mutual effects and substantial serial correlation,
we estimate a predictive VAR using the Generalised Method of Moments (as in Equa-
tion (4.4)) to ensure consistent, testable, and efficient inference on their interplay. The
Impulse Response Functions (IRF) are also applied to further explore the relationship
between stock illiquidity and CWEC. The IRF reveals the reaction of illiquidity or con-
nectedness in response to a sudden impact of a one-unit change in connectedness or
illiquidity. We separate the IRF analyses with exclusion and isolation of GFC to bet-
ter understand the relationship between illiquidity and connectedness during highly
uncertain periods.

22We follow following Ang et al. (2006) to estimate the idiosyncratic volatility, computed by using the
square root of the regression error variance, which is derived from the regressions of stock returns against
Fama-French 3 factors (Fama and French, 1993). This is our proxy for stock-specific fundamental charac-
teristics. The VIX and money shock data come from Bloomberg.
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4.4 Empirical Results

4.4.1 Preliminary results

We report the summary statistics on the number and value of stocks and mutual funds
in our sample and the combined stock pairs in Table 4.1, spanning the full period from
1999 Q1 to 2022 Q2. Separate statistics are reported for the full sample, the period
excluding the Global Financial Crisis (GFC), and the GFC period (2007 Q3 to 2009 Q2).

Panel A provides an overview of the number of stocks, stock pairs, and funds in the full
sample and each separated period. In total, 608 stocks and 200 funds form 113,523 stock
pairs across the sample. During the GFC, 225 stocks and 61 funds made 23,667 stock
pairs. Panel B summarises the average number of stocks held by each fund, the number
of funds holding the same stock, and the corresponding investment values. On aver-
age, each mutual fund invests in 62 US companies with stock positions valued at over
$21 billion, while each stock is typically owned by 14 funds. Interestingly, despite the
relatively stable average number of stocks held by each mutual fund and the number
of mutual funds investing in each stock during the GFC, there is a substantial decline in
the value of investment positions. Specifically, the average investment per mutual fund
in these stocks has decreased from approximately $22 billion to $12.5 billion. Concur-
rently, the aggregate value of each stock held by mutual funds has fallen from about $5
billion to over $3 billion. Panel C presents stock pair and pairwise connectedness dy-
namics. In Panel C, a decrease in the number of pairs of stocks owned by mutual funds
is evident, corresponding to the reduction in the number of stocks and funds during
the GFC as depicted in Panel A. Furthermore, the latter part of Panel C indicates a
decline in the pairwise connectedness, suggesting weakened linkages among stocks
during this uncertain period. The reduction in mutual funds’ investment positions and
the diminished stock connectedness underscore the financial pressures experienced by
institutions during market disruptions.
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TABLE 4.1: Summary statistics

This table reports summary statistics for 113,523 pairs of stocks created by the 608 firms owned by 200 funds in our
sample. The full sample period is from 1999 Q1 to 2022 Q2. We separately report the statistics for the full sample,
excluding the GFC, and the GFC period (from 2007 Q3 to 2009 Q2). Panel A lists the number of stocks, pairs, and
funds included in the full sample period, excluding the GFC, and the GFC period. The number of pairs is computed
as the comprehensive pairwise combination of all stocks owned by a fund in each cross-section. Panel B summarises
the number of stocks held by each fund and the number of funds which hold the same stock in our full sample and
separated periods. Panel B also reports the summary statistics of the value of stocks held by each fund and the value
owned by funds per stock in our full and separated periods. Panel C summarises the number of pairs held by each
fund and the number of pairs that a stock engages in based on our full sample and separated periods. Panel C also
includes the summary statistics of pairwise connectedness in our sample.

Panel A: Number of stocks, pairs, and funds

Period Stocks Pairs Funds

Full Sample 608 113523 200
Excluding GFC 602 110719 187

GFC 225 23667 61

Panel B: Funds and stocks

Period Mean Median SD Min Max
Number of stocks per fund

Full Sample 61.5134 45 54.6666 1 222
Excluding GFC 62.2193 46 55.6623 1 222

GFC 55.2425 43 44.4361 1 170
Number of funds per stock

Full Sample 14.0461 14 6.5989 1 41
Excluding GFC 14.0429 14 6.6927 1 41

GFC 14.0792 13 5.5739 1 34
Value of stocks held by each fund ($ in billion)

Full Sample 21.8782 10.8260 40.6653 0.0000 557.7647
Excluding GFC 22.9332 11.3874 42.5649 0.0000 557.7647

GFC 12.5073 8.5468 12.3479 0.0009 60.0423
Value owned by funds per stock ($ in billion)

Full Sample 4.9957 2.5420 8.7961 0.0003 160.5025
Excluding GFC 5.1760 2.6409 9.1271 0.0003 160.5025

GFC 3.1876 1.9760 3.7808 0.0027 27.7401

Panel C: Pairs and pairwise connectedness

Period Mean Median SD Min Max
Number of pairs per fund

Full Sample 3487.5643 1081 5271.2594 1 25651
Excluding GFC 3588.6254 1081 5407.4363 1 25651

GFC 2587.4350 990 3738.5019 1 14535
Number of pairs per stock

Full Sample 1534.7121 1481 757.4766 1 3614
Excluding GFC 1561.4346 1536 781.2873 1 3614

GFC 1266.8769 1274.5 357.4416 35 2220
Pairwise connectedness

Full Sample 0.0592 0.0537 0.0392 0.0000 0.4263
Excluding GFC 0.0601 0.0563 0.0401 0.0000 0.4263

GFC 0.0483 0.0424 0.0252 0.0000 0.2306

Figure 4.2 presents a heatmap of average CWEC values for our sample stocks, cat-
egorised by the industry sectors according to the Thomson Reuters database. The
heatmap period spans from 2006Q1 to 2009Q4, covering both the pre-crisis phase and
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the full duration of the GFC. Notably, the financial services sector experienced a sig-
nificant decline in CWEC from 2007Q2, coinciding with the early stages of the GFC
when the then Federal Reserve Chairman Ben Bernanke claimed that the US economy
would not be seriously harmed by increasing cases of mortgage defaults (CNBC, 2007).
Our CWEC measure thus tends to be an early warning identifier potentially anticipates
systematic risk concerns, signalling that the market has already priced the systematic
risk and mutual funds have invested less within this sector. The CWEC returned to
the pre-crisis level after the worst period of the economic situation in 2008Q3, in which
the Lehman Brothers collapsed and the government had to provide bailouts to oth-
ers. The centrality and systematic importance of the firms in the financial services
sector dropped significantly during the GFC because of their heavy involvement in
complicated financial products such as mortgage-backed securities and collateralised
obligations. Such high exposure makes risk-averse market participants quickly with-
draw their positions in these firms to prevent their liquidity from drying out when the
crisis contagion starts, leading to a significant decline in these firms’ centrality. In con-
trast, banks and savings institutions were supported by regulatory provisions such as
deposit insurance and emergency liquidity facilities. These regulations helped banks
preserve their core functions in the financial network during the market turmoil. Con-
sequently, the centrality of the banks and savings institutions was much more stable
than that of the financial services.
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FIGURE 4.2: Industry CWEC heatmap

This figure depicts a heatmap of the average CWEC values for our sample stocks, aggregated by indus-
try over the period 2006Q1 to 2009Q4. Industry classifications are sourced from the Thomson Reuters
database, with the first four rows representing the finance industry. Each stock’s CWEC is derived from
the two-step procedure of computing stock average connectedness and the weighted eigenvector central-
ity as in Equation (4.1) and (4.2).
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Additionally, the varying connectedness and centrality dynamics presented in Table 4.1
and Figure 4.2 during the GFC motivate us to isolate this specific period in subsequent
analyses of the relationship between CWEC and illiquidity.

4.4.2 Relationship between CWEC and illiquidity

Given the lack of consensus in existing literature regarding the causal relationship be-
tween stock connectedness or centrality and liquidity, we aim to employ the more so-
phisticated centrality measure to examine this relationship, in hopes of uncovering new
insights.
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TABLE 4.2: Panel Regressions

We run univariate and multivariate quarterly predictive regressions of illiquidity (left side) and stock Connectedness-
Weighted-Eigenvector-Centrality (CWEC, right side) in Panel A of the following specification:

yi,q = βi,q−1xi,q−1 + βi,q−2xi,q−2 + βi,q−3xi,q−3 +
3

∑
k=1

βkControli,q−1,k + FEi + ϵi,q.

y is the stock illiquidity (or CWEC), x is the corresponding CWEC (or illiquidity) and Controli,q−1,k are our kth control
variables, namely the volatilities (the square root of the variance of Fama-French three factors regression error term of
each stock, known as idiosyncratic volatility in Ang et al. (2009)), the volatility index VIX, and the changes in the money
supply, M1 (Money Shock). FEi is the fixed effect that captures time-invariant characteristics specific to each stock i. We
run these quarterly panel regressions in q for each stock i. Panel B of this table reports the results of the predictive panel
VAR with GMM-style regressions with three lags of similar specifications. The Akaike information criterion determines
the lag. The time subscripts q − 1, q − 2, and q − 3 denote lag-one, -two, and -three in the independent variables. Each
stock’s CWEC is derived from the two-step procedure of computing stock average connectedness and the weighted
eigenvector centrality as in Equation (4.1) and (4.2). Illiquidity is estimated as in Equation (4.3). The sample includes
608 stocks from 1999 Q1 to 2022 Q2. Robust standard errors are in parentheses. The superscripts ***,**, and * indicate
statistical significance at the 1%, 5%, and 10% levels, respectively.

Illiquidity CWEC

Panel A: Predictive regressions

(1) (2) (1) (2)

CWECq−1 -0.1094*** -0.1339*** Illiquidityq−1 -0.0178** -0.0391***
(0.0329) (0.0295) (0.0083) (0.0093)

CWECq−2 -0.0785** -0.0673** Illiquidityq−2 -0.0213** -0.0197*
(0.0364) (0.0327) (0.0099) (0.0101)

CWECq−3 -0.1279*** -0.1072*** Illiquidityq−3 -0.0203*** -0.0085
(0.0255) (0.0229) (0.0071) (0.0073)

Volatility 16.3518*** Volatility 1.0711***
(0.6214) (0.3374)

VIX 0.0228*** VIX 0.0008**
(0.0007) (0.0003)

Money Shock 0.0000*** Money Shock 0.0000***
(0.0000) (0.0000)

Adjusted R2 -0.0231 0.1757 -0.0248 -0.0200

Panel B: VAR regressions

CWEC 3.2830*** CWEC 1.0105***
(1.1668) (0.1339)

Illiquidity 0.6122*** Illiquidity -0.0163
(0.1628) (0.0173)

Volatility 19.3541* Volatility 1.2600
(11.2254) (1.1257)

VIX -0.0028 VIX -0.0021**
(0.0095) (0.0010)

Money shock 0.0000 Money shock 0.0000*
(0.0000) (0.0000)

We first run the panel regression as in Equation (4.4) to identify the relationship be-
tween CWEC and illiquidity. Table 4.2 Panel A reports the results, showing that both
lagged CWEC (the left side) and illiquidity (the right side) have negative and statisti-
cally significant correlations with each other. An increase in CWEC (or illiquidity) in
the last quarter is associated with lower illiquidity (or CWEC) in the current quarter.
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This statistically significant relationship between stock CWEC and illiquidity matches
the inconclusive evidence reported in the literature. The coefficient of lagged stock
centrality supports the hypothesis of the literature stream such as Kamara et al. (2008),
Koch et al. (2016), Deng et al. (2018), and Bradrania et al. (2021) revealing that stocks’
interlinkages affect liquidity or liquidity commonality. On the other hand, we disclose
the significant inverse effect of stock illiquidity on stocks’ centrality in the financial
network. Stock illiquidity’s statistically significant effect on centrality is attributed to
institutional investor behaviour. Edelen (1999), Mitchell et al. (2002), Teo (2011), and Fi-
nancial Stability Board (2017) show that institutions may adjust their investment port-
folios due to investor redemptions, portfolio rebalancing, cash flow management, and
preparation for expected market conditions according to their anticipated liquidity re-
quirements. The changes in investment portfolios could affect stock liquidity and their
centrality in the network. Our results in Table 4.2 Panel A thus highlight this clear
dichotomy reported in the literature.

The bidirectional relationship reported in Panel A in Table 4.2 also holds when we
control for both micro and macro control variables of idiosyncratic volatility, VIX, and
money shock. As discussed in Section 4.3, our control variables consider historical and
forward-looking idiosyncratic and systematic stock information. The consistently sig-
nificant coefficients thus highlight the strong relation between CWEC and illiquidity.
Since CWEC is based on mutual funds’ investment positions, the strong correlation
between CWEC and illiquidity requires further decomposition of the funds’ character-
istics as an intermediary.

Results in Panel A in Table 4.2 thus mirror the inclusive results reported in the litera-
ture on the stock ownership and liquidity commonality and their relationship. Because
our CWEC is dynamically linked to changes in stock prices and institutions’ changes in
investment portfolios, we can thus further explore how our CWEC relates to changes
in the funding constraints of institutions. In Figure 4.3, we plot the stock CWEC and
illiquidity against the SLOOS, the net percentage of banks whose credit standards on
commercial and industrial loans to large and middle-market firms are reportedly tight-
ening.23 The percentage of banks tightening credit standards indicates the changes
in the overall market funding liquidity. For stock illiquidity and the market funding
liquidity, there are two typical peaks around 2002 and 2008, highlighting the market
liquidity drought due to the .com crisis and the GFC. Stock illiquidity also increases
after 2020. For January 1999 to June 2022, the correlation between stock illiquidity
and bank lending tightness is 0.40 with a t-statistic of 4.24, showing a statistically sig-
nificant co-movement. The tightness of the bank lending standard directly influences
financial intermediary funding liquidity; when more banks raise credit standards, the
entire market contracts and liquidity dries (Brunnermeier and Pedersen, 2008). Bank

23The data is obtained from the Federal Reserve’s quarterly Senior Loan Officer Opinion Survey
(SLOOS) on Bank Lending Practices, available at https : // f red.stlouis f ed.org/searchresults/?st =
SLOOS.
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lending is among the most important funding sources for many financial market par-
ticipants, as evinced by the statistically significant positive correlation between market
overall illiquidity and stock illiquidity.

FIGURE 4.3: Illiquidity, CWEC, and bank lending tightness

This figure displays the time series of stock CWEC, illiquidity, and bank lending tightness as presented by
the blue, red, and green lines. The lending tightness is proxied by the percentage of banks reporting their
credit standards on commercial and industrial (C&I) loans to large and middle-market firms. The data
are obtained from the Federal Reserve’s quarterly Senior Loan Officer Opinion Survey on Bank Lending
Practices (SLOOS). The sample includes 608 stocks spanning from 1999 Q1 to 2022 Q2.
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Now, we focus on the dynamic relationship between the CWEC and the tightening
lending standards. For the entire period, the correlation between CWEC and SLOOS
is -0.02 with a t-statistic of -0.18, showing insufficient evidence of the co-movement
between centrality and bank lending tightness. Thus, the fluctuations of market fi-
nancing constraints significantly correlate with stock illiquidity but not stock central-
ity. Since our CWEC considers the strength of the linkage between each pair of stocks,
distinguishing our measure from conventional approaches, stock CWEC appears to be
“sticky” when facing both systematic and idiosyncratic liquidity changes. This implies
that mutual funds, in fact, do not significantly alter their positions when the market liq-
uidity condition changes. Gnabo and Soudant (2022) claim that mutual funds are reluc-
tant to deviate from their familiar and preferred investment strategy. Fund managers
tend to stay with their historical positions to minimise the information asymmetry risk
when there is an unconventional monetary policy change. Besides this, fund managers
are also concerned about portfolio rebalancing and transaction costs. Therefore, stock
centrality is significantly correlated with stock illiquidity as in the panel regressions
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reported in Panel A in Table 4.2, but behaves differently from changes in institutions’
funding constraints, possibly due to funds’ preference to maintain the investment po-
sitions during changes in the systematic liquidity conditions.

The nuanced interactions between CWEC and illiquidity reported in Panel A in Table
4.2 and Figure 4.3 inform us to explore further their time-series relationship in an unre-
stricted multivariate Vector Autoregressive (VAR) model with the Generalised Method
of Moments. The model includes the CWEC, illiquidity, and control variables simul-
taneously as in Equation (4.4). The lags are informed by Akaike information criteria.
Table 4.2 Panel B reports the VAR results. We note that the lagged CWEC still has a
statistically significant coefficient, showing a significant predictive ability on illiquid-
ity. However, as presented on the right side of the panel, the illiquidity coefficient is
no longer significant. This is indicative of the notion that its influence on centrality
does not extend in the VAR context.24 Our results therefore support the strand of liter-
ature showing changes in connectedness affect liquidity.25 The insignificant illiquidity
coefficients support our findings in Figure 4.3 and our conjecture that stock centrality
is “sticky” due to funds’ reluctance to change their investment themes and, with that,
affecting the liquidity.

Next, we compute the Impulse Response Function (IRF) to our VAR to further investi-
gate the response of CWEC (illiquidity) to a sudden shock in the other variable. Figure
4.4 presents the IRF of the endogenous variables to an orthogonalized shock to the
stock illiquidity and our value-weighted centrality measure. The graphs in the left
panel show the results of IRF applied to our entire period, excluding the GFC. The
right panels present the IRF results during the GFC period. As shown in the left panel,
an unexpected increase of one standard deviation in CWEC immediately leads to a
significant decrease in stock illiquidity. The reaction broadly depreciates and becomes
insignificant after 4 quarters. Conversely, the response of our value-weighted centrality
measure to a sudden shock in illiquidity is much weaker and does not show any clear
trend. In the right panel focusing on the GFC period, the CWECs response to the shock
in illiquidity remains flat and statistically insignificant at a 95% confidence interval.
Both VAR and IRF results are consistent and hold when we add the same idiosyncratic
and systematic control variables as in the panel regressions discussed above. The IRF
further strengthens the findings in the VAR and credit constraint plots, as discussed
above.

24We also see that CWEC Granger causes illiquidity and the inverse causality does not hold. These
results are robust to alternative identification schemes in which the variables are ordered differently in the
VAR.

25See Kamara et al. (2008), Koch et al. (2016), Agarwal et al. (2018), Deng et al. (2018), and Bradrania
et al. (2021) for example.
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FIGURE 4.4: Impulse Response Function: The GFC

This figure displays the stock illiquidity or CWEC impulse responses to a one-standard-deviation orthog-
onalised shock to the connectedness or illiquidity with isolation of the GFC. The left panel is based on our
full sample from 1999 Q1 to 2022 Q2 but excludes the GFC period from 2007 Q3 to 2009 Q2, while the
right panel is for the GFC period from 2007 Q3 to 2009 Q2. The solid line indicates the estimated impulse
response, while the shades indicate the 95% confidence interval.
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The impulse responses of stock illiquidity to centrality are attributed to mutual funds’
behaviours. Since our CWEC is based on the mutual funds’ ownership, its character-
istics imply the funds’ holding positions. Mutual funds cannot alter their positions
frequently to tightly follow stock illiquidity changes, which fail to lead to significant
centrality fluctuations. Due to transaction and other costs, they tend to keep their posi-
tions and portfolio compositions. The “stickiness” of stock centrality is also supported
by the local projection IRF with exogenous variables as displayed in Figure 4.5. When
there is a one-unit shock in the VIX and the money supply shock, illiquidity has a sta-
tistically significant response, while the centrality response curve stays flat, showing
insignificant responses to the changes in exogenous variables. This also holds when we
isolate the highly uncertain period, the GFC.
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FIGURE 4.5: Local Projection Impulse Response Function

This figure displays the response of stock illiquidity and CWEC to a one-unit shock in the VIX index and
money supply shock over a horizon of 10 quarters. The left panel is based on our full sample from 1999
Q1 to 2022 Q2 but excludes the GFC period from 2007 Q3 to 2009 Q2, while the right panel is for the GFC
period from 2007 Q3 to 2009 Q2. The solid line indicates the estimated impulse response, while the shades
indicate the 95% confidence interval.
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To conclude, the credit constraint plots reveal that changes in the market credit tight-
ness do not correlate with stock centrality. This is presumably caused by the funds’
reluctance to largely change their positions during funding liquidity changes. The VAR
and IRF analyses further support the centrality “stickiness” conjecture by establishing
the influence of stock centrality on illiquidity but not the other way around. Depend-
ing on the value-weighted centrality which departs from the literature, we firmly stand
on the stock level and reveal the relationship between stock centrality and illiquidity.
The stock-level analyses explicitly provide investors with more flexibility to tailor their
portfolios according to their liquidity preferences given the portfolio components’ cen-
trality information.

4.4.3 Valuation of Centrality

Given our discovery of centrality’s significant impact on illiquidity, which is a key risk
factor in the market, we proceed to examine whether the market treats stocks differently
based on their CWEC levels. We first construct equally weighted CWEC-sorted quartile
portfolios and analyse the median illiquidity, firm size, stock realised return, and their
alpha. Table 4.3 aggregates these findings. We note that the Amihud illiquidity ratio
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decreases monotonically from 0.0864 to 0.0524 when stocks are in the higher CWEC
quartile (the second column). The illiquidity difference between the lowest and the
highest centrality portfolios is statistically significant. The inverse relationship between
contemporaneous stock centrality and illiquidity shows that more central stocks have,
on average, higher liquidity. An interesting finding in the third column of Table 4.3
shows that firm sizes move hand in hand with their stocks’ centrality. Because our
CWEC is computed by large mutual fund ownership, a higher CWEC implies a more
central position of the stock in a network and higher investor concentration, which are
inherent properties of larger firms. These properties naturally lead to higher trading
volume, faster transactions, lower trading costs, and lower price impact (Liu, 2006).
Our results suggest that larger stocks have higher centrality measures and tend to be
more liquid.

TABLE 4.3: CWEC Sorts

This table reports the results of equally weighted CWEC-sorted quartile portfolios. We summarise the quarterly median
illiquidity measures, sizes, realised returns, and annualised Fama-French-Carhart four-factor alphas of each quartile
portfolio. Stock CWEC level is derived from the two-step procedure of computing stock average connectedness and
the weighted eigenvector centrality as in Equation (4.1) and (4.2). Illiquidity is computed as in Equation (4.3). Size
is proxied by the natural logarithm of stock market capitalisation. The realised returns are stocks’ quarterly realised
returns. The four-factor alphas are generated by regressions based on daily data in each quarter. 608 stocks from 1999
Q1 to 2022 Q2 are included in the portfolios. QL-QH represents the difference between the lowest to the highest CWEC
quartiles. The t-statistic denotes the significance of the QL-QH returns.

CWEC Illiquidity Size Realised Return α

QL 0.0864 16.8354 0.0309 0.0047
Q2 0.0725 16.9728 0.0264 0.0047
Q3 0.0626 17.1460 0.0236 -0.0011
QH 0.0524 17.4866 0.0259 -0.0026

QL-QH 0.0340 -0.6512 0.0050 0.0073
t-stat. 1.9253 -39.5000 2.9335 1.9754

Another interesting finding in Table 4.3 is the highest realised return and Fama-French-
Carhart four-factor alpha in the lowest centrality quartile portfolio.26 The gradually
decreasing alphas in the last column highlight the negative centrality and liquidity con-
tributions to stock-level excess returns. The median Fama-French-Carhart four-factor
alphas of the highest CWEC quartile subsample are also statistically significantly lower
than those in the lowest CWEC quartile. The median excess returns of the stocks in the
highest two CWEC quartile subsamples become negative. Those least popular stocks
with low centrality and liquidity tend to yield higher excess returns, as the market
demands compensation for bearing the risk of holding less central stocks that can be
liquidated at a slower pace than others. Such compensation for liquidity risks built
into asset returns has been widely recognized as a liquidity premium in the literature.

26Although both realised returns and alphas serve to measure investment performance, they provide
distinct insights. Realised returns explicitly indicate actual gain or loss achieved by investment, while
alphas reflect the investment performance relative to a benchmark (in this case, the Fama-French-Carhart
four-factor model) known as excess return.
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Pástor and Stambaugh (2003) reveal that expected stock returns cross-sectionally corre-
late with return sensitivity to overall liquidity changes. Acharya and Pedersen (2005)
propose that stock expected liquidity is one of the determinants of its required return.
Amihud (2002); Amihud et al. (2005) find liquidity premium contributes to stock re-
alised returns. Liu (2006) also discovers that liquidity risk is significantly priced and
robust to both the CAPM and the Fama-French 3-factor model. Therefore, the large
firms’ highly central stocks with lower illiquidity tend to be more popular, frequently
traded, and thus fairly priced. The abundant investor interests and transactions rep-
resented by higher centrality largely restrict the potential opportunities for generating
excess returns. This finding also agrees with the significance of the small-minus-big
(SMB) factor in the Fama and French (1993) three-factor model. The statistically sig-
nificant high-minus-low differences of returns in Table 4.3 indicate that stock centrality
could be a state variable and further motivate us to study whether the centrality is
priced.

TABLE 4.4: Fama-Macbeth regression

This table presents the results of univariate and multivariate Fama and MacBeth (1973) regressions for stock CWEC
levels. The sample is consistent with the one in Table 4.2. We add the β of idiosyncratic volatility (Volatility) as described
in Table 4.2 and Fama-French-Carhart four factors as controls. Robust standard errors are in parentheses. The sample
includes 608 stocks spanning from 1999 Q1 to 2022 Q2. The superscripts ***,**, and * indicate statistical significance at
the 1%, 5%, and 10% levels, respectively.

(1) (2)

βCWEC -0.0113** -0.0250***
(0.0044) (0.0051)

βVolatility -4.5770***
(0.6697)

βMKT 0.0116***
(0.0031)

βSMB 0.0002
(0.0014)

βHML 0.0022
(0.0016)

βUMD 0.0015
(0.0017)

Constant 0.0017 0.0061**
(0.0094) (0.0029)

AdjustedR2 0.0006 0.1893

We now analyse the economic importance of our stock centrality by applying Fama and
MacBeth (1973) two-step multifactor regression. Table 4.4 presents the results. We con-
trol for stocks’ idiosyncratic volatility and also include Fama-French-Carhart’s four fac-
tors as common pricing control factors. In the first stage of the regressions, we estimate
the return exposures to each variable, β, by running the time-series regressions of 608
stocks’ quarterly returns against the CWEC and corresponding control variables. Then,
we regress the stock returns against the βs obtained in the first step for each variable’s
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risk premium. The consistently significantly negative βCWEC coefficients indicate the
presence of a centrality risk premium. The premium remains robust after controlling
for each stock’s idiosyncratic volatility and Fama-French-Carhart’s four factors. This
finding supports the evidence on the potential role of centrality in determining stock
prices shown in Tables 4.3, 4.6, and 4.7 and reports a significant network premium also
recently reported by Buraschi and Tebaldi (2024). We also separate the sample accord-
ing to CWEC quartiles and replicate the approach applied in Table 4.4 for each quartile
subsample. Table 4.5 aggregates these results. The statistically significant negative
βCWEC coefficients in the lowest CWEC quartile are highly consistent with the results
in previous tables, implying that less central stocks tend to generate higher returns as
they incur a network premium. Peripheral stocks have less investor attention and in-
stitutional holdings and, thus, are not as fairly priced as those core and popular stocks
in the financial network.

TABLE 4.5: Fama-Macbeth regression with CWEC sorts

This table presents similar results of univariate and multivariate Fama and MacBeth (1973) regressions for stock CWEC
levels as in Table 4.4 but for each CWEC-sorted quartile from the lowest (QL) to the highest (QH). Robust standard
errors are in parentheses. The sample includes 608 stocks spanning from 1999 Q1 to 2022 Q2. The superscripts ***,**,
and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

QL Q2 Q3 QH

(1) (2) (1) (2) (1) (2) (1) (2)

βCWEC -0.0140** -0.0181*** 0.0305 0.0060 -0.0392 0.0117 0.0397 0.0763**
(0.0055) (0.0061) (0.0332) (0.0302) (0.0678) (0.0508) (0.0384) (0.0337)

βVolatility -2.0661** -3.8343*** -3.8199*** -3.8808***
(0.8158) (0.8476) (0.8076) (0.8598)

βMKT 0.0090*** 0.0211*** 0.0149** 0.0070*
(0.0027) (0.0051) (0.0061) (0.0039)

βSMB 0.0012 -0.0007 -0.0021 0.0009
(0.0017) (0.0013) (0.0023) (0.0019)

βHML 0.0044** -0.0011 -0.0006 0.0013
(0.0020) (0.0022) (0.0039) (0.0024)

βUMD -0.0004 0.0028 0.0001 0.0005
(0.0029) (0.0035) (0.0024) (0.0018)

Constant -0.0006 0.0046* 0.0246 0.0031 -0.0097 0.0093* 0.0108 0.0058**
(0.0135) (0.0025) (0.0223) (0.0038) (0.0243) (0.0050) (0.0103) (0.0028)

AdjustedR2 0.0014 0.0970 0.0063 0.1316 0.0036 0.1259 -0.0039 0.0919
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Additionally, we run the predictive regressions of stock returns against lagged CWEC
to further study CWEC’s predictive power on future returns. Table 4.6 summarises the
results. Our stock centrality measure has statistically weakly significant negative coef-
ficients in univariate and controlled regressions. We keep the same controls as in Table
4.4. The negative CWEC coefficients support the generally decreasing trend of realised
returns with more central stocks as reported in Table 4.3. We also replicate the analyses
of Table 4.6 for each CWEC quartile subsample and report the results in Table 4.7. The
univariate and controlled predictive regressions only generate statistically significant
negative CWEC coefficients in the lowest CWEC quartile. This strengthens the expla-
nation for the inverse relationship between realised return and CWEC in Table 4.3 and
the negative coefficients in Table 4.6. Less central stocks are more likely to generate
higher returns in the next quarter.

TABLE 4.6: CWEC and stock returns

In this table we regress quarterly stock returns on the lagged stock’s CWEC level. As in Model (4):

ri,q+1 = βi,qCWECi,q + βi,qVolatilityi,q +
4

∑
k=1

βkControli,q,k + FEi + ϵi,q+1.

ri,q+1 is the return of stock i in quarter q + 1, CWECi,q is the CWEC of stock i in quarter q, Controli,q,k are Fama-French-
Carhart four-factor controls at quarter q, and FEi is the fixed effect that captures time-invariant characteristics specific
to each stock i. Stock CWEC level is derived from the two-step procedure of computing stock average connectedness
and the weighted eigenvector centrality as in Equation (4.1) and (4.2). Illiquidity is proxied as in Equation (4.3). Model
(1) reports the univariate regression results, while Model (2) shows controls Fama and French (1993) three factors,
market (MKT), size (SMB), and value (HML) and Carhart (1997)’s momentum factor (UMD). Model (3) controls both
idiosyncratic volatility and Fama-French-Carhart’s four factors. Robust standard errors are in parentheses. The R-
squared values are adjusted. The sample includes 608 stocks spanning from 1999 Q1 to 2022 Q2. The superscripts * * *,
**, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively

(1) (3) (4)

CWEC -0.0178* -0.0195* -0.0180*
(0.0106) (0.0106) (0.0106)

Volatility -0.8261*
(0.4283)

MKT 0.0006 -0.0001
(0.0017) (0.0017)

SMB -0.0096*** -0.0090***
(0.0028) (0.0028)

HML -0.0194*** -0.0195***
(0.0018) (0.0018)

UMD -0.0095*** -0.0096***
(0.0015) (0.0016)

Adjusted R2 0.0723 0.0803 0.0811
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TABLE 4.7: CWEC and stock returns regressions with CWEC sorts

This table presents similar results of univariate and multivariate Fama and MacBeth (1973) regressions for stock CWEC
levels as in Table 4.6 but for each CWEC-sorted quartile from the lowest (QL) to the highest (QH). Robust standard
errors are in parentheses. The sample includes 608 stocks spanning from 1999 Q1 to 2022 Q2. The superscripts ***,**,
and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

QL Q2 Q3 QH

(1) (2) (1) (2) (1) (2) (1) (2)

CWEC -0.0286** -0.0276** -0.0509 -0.0433 -0.0036 -0.0288 0.1415 0.0987
(0.0123) (0.0121) (0.0870) (0.0868) (0.0698) (0.0695) (0.0882) (0.0881)

Volatility 0.4490 -1.8204 0.5188 -1.9282***
(0.6225) (1.1494) (0.5952) (0.6491)

MKT -0.0004 -0.0039 -0.0028 0.0002
(0.0027) (0.0045) (0.0021) (0.0024)

SMB -0.0118*** 0.0026 -0.0098*** -0.0090**
(0.0044) (0.0073) (0.0034) (0.0040)

HML -0.0311*** -0.0210*** -0.0119*** -0.0112***
(0.0028) (0.0048) (0.0022) (0.0025)

UMD -0.0054** 0.0147*** -0.0083*** -0.0092***
(0.0025) (0.0041) (0.0019) (0.0022)

AdjustedR2 0.1220 0.1560 0.4263 0.4302 0.0663 0.0767 0.0195 0.0292

After disclosing the potential pricing pattern, we want to explore whether investors can
make a profit by exploiting it. We construct quartile portfolios based on the centrality
of our sample stocks. Then, we construct our BAC factor by putting a long position
on the lowest centrality quartile portfolio and a short position on the highest one. The
stocks are equally weighted, and the portfolios are rebalanced quarterly. The BAC
factor returns are then regressed against the Fama-French-Carhart factors. Table 4.8
aggregates these results.27 The BAC factor generates an insignificant 1.07% quarterly
alpha, implying that the investors pursuing BAC strategy cannot significantly improve
the portfolio performance, especially when transaction costs are included. Overall, our
results suggest that despite the evidence of the centrality premium discussed above,
investors seeking excess returns by trading the stocks at different centrality levels are
ineffective. This finding, to a large extent, lays support to our previous results showing
that stock centrality is “sticky”. This is due to the institutions’ preferences for maintain-
ing their investment positions, which in turn does not alter stocks’ centrality position
in the financial network and, therefore, cannot yield excess returns.

27We have also replicated the analyses on quintile centrality portfolios and centrality-weighted portfo-
lios. The results do not qualitatively change.



4.5. Conclusion 85

TABLE 4.8: Betting against CWEC

This table reports the results of the betting-against-CWEC strategy which uses our sample of 608 stocks over the period
from 1999 Q1 to 2022 Q2. We sort our sample stocks into quartiles according to their CWEC, represented from QL (Low)
to QH (High). Stock CWEC level is derived from the two-step procedure of computing stock average connectedness
and the weighted eigenvector centrality as in Equation (4.1) and (4.2). The BAC denotes the betting-against-CWEC
factor. BAC is constructed by putting a long position on the lowest CWEC quartile portfolio and a short position on
the rest of the portfolios. Stocks are equally weighted. The portfolios are rebalanced each quarter. This table reports
alphas, robust standard errors, adjusted R-squared, and appraisal rations of Carhart (1997) four-factor regressions.
Robust standard errors are in parentheses. The superscripts ***,**, and * indicate statistical significance at the 1%, 5%,
and 10% levels, respectively.

QL Q2 Q3 QH BAC

α -0.0411*** -0.0320*** -0.0320*** -0.0304*** 0.0107
(0.0075) (0.0051) (0.0060) (0.0049) (0.0077)

Adjusted R2 0.6786 0.8043 0.7444 0.7955 0.1313
Appraisal Ratio -2.0772 -2.3847 -2.0015 -2.3511 0.5278

4.5 Conclusion

We contribute to the literature by first deriving the Connectedness-value-Weighted-
Eigenvector-Centrality (CWEC) measure. This is computed by the two-step process of
computing Antón and Polk (2014)’s pairwise connectedness and using the connected-
ness as the weight for eigenvector centrality. Our centrality measure includes informa-
tion on the stocks’ connections with other stocks owned by the same mutual funds and
the importance of those stocks directly connected to each stock. This stock-level infor-
mative centrality measure enables us to study the relationship between stock centrality
and illiquidity on individual stock levels. We use quarterly data of large US stocks
owned by top US mutual funds from January 1999 to June 2022.

Second, relying on the informative CWEC measure, we find that centrality affects stock
illiquidity. This contributes to the debate in the literature about the relationship be-
tween financial interlinkages and asset liquidity. Panel regression results show that
stock centrality and illiquidity have a significantly positive influence on each other,
while further VAR and IRF analyses reveal that only centrality affects liquidity. In our
sample, the stock centrality is not affected significantly when facing liquidity and other
exogenous shocks. This is also supported when we plot the time series of our cen-
trality level with changes in the funding liquidity. We conjecture that funds tend not
to frequently adjust their strategies to closely follow the liquidity fluctuations as they
are associated with asymmetric information risk and incur rebalancing and transaction
costs. The centrality sorted results indicate an inverse relationship between stock illiq-
uidity and centrality. The higher-connected stocks tend to yield lower realised returns
and alphas against Fama-French-Carhart’s four factors. This is because more connected
stocks tend to be more liquid and thus priced more fairly.
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Lastly, we find some evidence of the centrality premium by applying the centrality
portfolio sorts, Fama and MacBeth (1973) regressions, and predictive regressions. A
trading strategy that exploits the pricing gap among different stock centrality levels
fails to yield statistically significant alphas. Other realistic trading conditions such as
transaction costs further make it harder to make a profit.
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Chapter 5

Volatility Timing in Cryptocurrency
Markets
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5.1 Introduction

While the cryptocurrency pricing models are developing quickly1, abundant studies
have disclosed the persistent inefficiencies within the cryptocurrency market.2 Makarov
and Schoar (2020) find that the price mismatch in the cryptocurrency market cannot be
fixed by arbitrageurs due to the strong information barriers and transaction hurdles.
Cheah and Fry (2015), Baur et al. (2018), and Babiak and Bianchi (2023) reach the con-
sensus that speculation is one of the main purposes of cryptocurrency investors. The
cryptocurrency market’s inefficiency and speculative nature introduce risk anomalies
and the potential to seek excess returns. Leong and Kwok (2023) reveal the inverse rela-
tionship between idiosyncratic volatility and future returns in the cryptocurrency mar-
ket and explain the anomaly by statistical noises and limits-to-arbitrage theory. They
thus develop a trading strategy betting against idiosyncratic diffusive volatility3. They
claim this strategy generates statistically significant excess returns, demonstrating the
potential to exploit the mispricing. However, despite these findings, research on lever-
aging risk anomalies and addressing mispricing in the cryptocurrency market remains
insufficient, leaving significant gaps in understanding and application. Further incor-
porating a volatility-timing framework into cryptocurrency trading could therefore be
pivotal. Adapting exposure dynamically to shifting volatility regimes may not only en-
hance risk-adjusted returns but also deepen our insight into the market characteristics
and investor behaviour and preferences in this emerging asset class.

This chapter makes three key contributions to our understanding of cryptocurrency
markets. First, building on the documented risk anomaly and the well-known short-
term persistence of volatility in cryptocurrencies (Zhang and Zhao, 2023), we introduce
a realised-volatility timing strategy that hasn’t been tested before in this market. By
adjusting exposure when volatility is forecasted to rise or fall, this approach exploits
directly the market’s risk anomaly and delivers attractive risk-adjusted returns, which
could be a valuable insight for both academic researchers and market practitioners. Sec-
ond, we break down the analysis across different market conditions to see when and
where the strategy works best. We look separately at large versus small coins, cryp-
tocurrencies’ recent maximum returns, periods of high and low funding costs, shifts
in overall sentiment, and contrasting macroeconomic backdrops. These subgroup tests
not only reinforce the basic timing idea but also shed light on the underlying investor
behaviours that drive these results. Finally, we run the same tests on a penny-stock in-
dex, since both penny stocks and cryptocurrencies are known for speculative trading.
Comparing the two markets shows that timing volatility in the cryptocurrency market

1See Cong et al. (2020) and Biais et al. (2023) for example.
2See Al-Yahyaee et al. (2018), Caporale et al. (2018), Jiang et al. (2018), Kristoufek (2018), Zhang et al.

(2018), Charfeddine and Maouchi (2019), and Hu et al. (2019) for example.
3The idiosyncratic diffusive volatility is computed by the return observations lower than a threshold

which is a multiple of the return standard error. This approach filters away huge fluctuations.
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behaves differently. This broader comparison gives us a fuller picture of cryptocurren-
cies’ unique characteristics. In practical terms, these findings could provide valuable
references to help portfolio managers improve returns by dynamically scaling their
cryptocurrency exposure, risk teams adjust their strategies around volatility spikes,
and regulators better understand the conditions that lead to extreme price swings.

This study analyses the daily index data of cryptocurrencies and penny stocks, us-
ing the S&P Cryptocurrency Broad Digital Market Index (BDMI), S&P Cryptocurrency
LargeCap Index (BDMLCI), and S&P Cryptocurrency BDM Ex-LargeCap Index (BD-
MXLCI) data to proxy the overall performance of the entire cryptocurrency market,
large cryptocurrencies, and small cryptocurrencies, respectively. The analysis is fur-
ther extended to the penny stock index (PSI) for comparative purposes. We first follow
the volatility timing method applied by Moreira and Muir (2017) and Cederburg et al.
(2020) to scale the cryptocurrencies’ excess returns by the reciprocal of their rolling
monthly realised volatilities (RV), which has not been covered in previous studies.
Based on extensive evidence of volatility persistence, market inefficiencies, and risk
anomalies documented in prior researches4, this approach exploits the risk-reward
mismatches by adjusting investment position weights dynamically. Applying the em-
pirically successful volatility timing strategy in the stock market5 to the cryptocur-
rency market helps to shed new light on the characteristics of the cryptocurrency risk
anomaly and provides empirical evidence of the strategy’s effectiveness in seeking
cryptocurrency excess returns. The findings offer valuable insights for researchers and
practitioners, particularly in risk management and portfolio construction. Second, the
study conducts detailed analyses across subsets defined by cryptocurrency market cap-
italisations, recent extreme returns, market liquidity, sentiment conditions, and periods
of heightened uncertainty. These segmented analyses reveal nuanced characteristics of
cryptocurrency risk anomalies and the conditions under which volatility timing strate-
gies are most effective. Third, we adopt the same approach for the penny stock index,
leveraging the speculative and lottery-like characteristics of penny stocks often asso-
ciated with the low-price effect. This comparative perspective provides an additional
understanding of the unique features of the cryptocurrency market, offering a novel
contribution to the existing literature.

The RV-sorted results indicate that higher returns consistently fail to compensate for
higher RVs adequately and this phenomenon prevails across all cryptocurrency indices
and time period subsets. This effect agrees with the literature that the risk anomaly
exists in the cryptocurrency market. We then time the RV and scale the excess returns

4See Bariviera (2017), Phillip et al. (2018), Chaim and Laurini (2019), Al-Yahyaee et al. (2020), and Zhang
and Zhao (2023) for example of the cryptocurrency volatility memory and persistence. See Al-Yahyaee
et al. (2018), Caporale et al. (2018), Jiang et al. (2018), Kristoufek (2018), Charfeddine and Maouchi (2019),
and Hu et al. (2019) for example of cryptocurrency market inefficiency. The preliminary analyses in this
chapter also provide evidence of risk anomaly in the cryptocurrency market.

5See Moreira and Muir (2017), Cederburg et al. (2020), and the empirical results in Chapter 3 for exam-
ple.
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of our sample indices, making comparisons among their scaled and unscaled excess
returns, Sharpe ratios, and Sortino measures. The direct comparison result indicates
that the RV-timing strategy is effective for the BDMI in all subsample periods and all
indices, including PSI during the market turmoil. We further sort the indices’ returns
according to their recent extreme returns and show the positive relationship pattern
between the short-run returns and recent extreme returns. This hints at the influence of
lottery preference. However, the spanning regression within each subsample does not
provide conclusive evidence of how the lottery preference affects the volatility timing
effectiveness.

Building on the findings of Dong et al. (2022) regarding the influence of market liquid-
ity on cryptocurrency anomalies, we sort the federal funds rate (FFR) into two halves
and observe that cryptocurrencies mostly achieve higher excess returns during periods
of high liquidity. To deeply analyse the RV-scaling approach’s effectiveness on cryp-
tocurrency indices, we also run the spanning regressions of all indices’ scaled returns
against the unscaled ones for each subset separated by a two-year COVID period and
low and high FFR rates. Overall, the RV-scaling strategy proves effective for BDMI
and BDMLCI across the entire sample period. However, in subsample analyses, the
strategy generates statistically significant alphas only during periods of higher mar-
ket liquidity coinciding with heightened uncertainty, such as the COVID period. The
significant alphas imply the empirical success of the volatility timing strategy applied
in the cryptocurrency market under specific market conditions. Also, the statistically
significant higher BDMXLCI alphas generated by the RV timing approach when the
market liquidity is high during market distortion highlight the hedging properties of
the cryptocurrencies6. The panic formed in the extremely uncertain period stimulates
the demand for hedging which motivates investors to enter the cryptocurrency mar-
ket, leading to an unprecedented money injection (Kumar et al., 2022). Moreover,
the low FFR signals prosperous market conditions with high liquidity and more ac-
tive transactions. In contrast to widely traded large-cap cryptocurrencies, smaller-cap
cryptocurrencies exhibit greater potential to generate excess returns, attracting specu-
lative investors. Consequently, the heightened hedging demand, expansionary market
conditions, and the speculative appeal of smaller cryptocurrencies collectively explain
the empirical results observed in this study.

As for penny stocks, although some effects observed in the cryptocurrency market are
applicable, there are other risk factors considered by the market participants such as the
company default risk, which is less likely to exist in the cryptocurrency market. Dur-
ing periods of market distress, the market exhibits a divergent attitude toward penny
stocks. Unlike cryptocurrencies, penny stocks lack hedging properties and are more
vulnerable to heightened default risks in such scenarios. As a result, the RV-scaling

6See Dyhrberg (2016), Bouri et al. (2017), Urquhart and Zhang (2019), Jiang et al. (2021), and Melki and
Nefzi (2022) for example.



5.2. Related Literature 91

method fails to generate any significant alphas for penny stocks, even during highly
volatile periods. This underscores the fundamental differences between penny stocks
and cryptocurrencies, particularly in their risk profiles and market dynamics during
periods of uncertainty.

In addition to the lottery preference and liquidity analyses, we extend the investigation
by replicating the sorting and spanning regressions using both a global financial mar-
ket sentiment indicator and a cryptocurrency-specific sentiment indicator. This novel
comparison between sentiment indicators across different markets, which has not pre-
viously been explored in the literature, is inspired by empirical evidence suggesting
that the cryptocurrency market is significantly influenced by emotional and specula-
tive behaviour7. This investigation, therefore, offers valuable insights into the relation-
ships between cryptocurrency returns, risks, and the effectiveness of realised volatility
timing. Results indicate that the volatility timing strategy is effective only for cryp-
tocurrencies with large market capitalisation when the overall financial market is at
the growth stage. The money newly entering the cryptocurrency market tends to pick
larger and more notable cryptocurrencies. As an overview of the realised volatility tim-
ing strategy’s effectiveness in the cryptocurrency market, this approach is only effec-
tive with some specific situations that largely strengthen the risk-return anomaly. The
failure of many cases of realised volatility timing can be attributed to the backwards-
looking property which is critical in highly speculative markets influenced by market
consensus such as the cryptocurrency market. Using past information to adjust the
investment positions cannot catch the market’s live changes. This is highlighted by
all the insignificant alphas in the spanning regressions with the Crypto Fear & Greed
Index subsamples.

The remainder of this chapter is organised as follows. Section 5.2 reviews the relevant
literature in the cryptocurrency market. Section 5.3 describes and summarises the data
and method used and applied in this study. Section 5.4 reports and analyses our em-
pirical results. Finally, Section 5.5 concludes this study.

5.2 Related Literature

There is a large body of literature studying cryptocurrency pricing. Ciaian et al. (2015)
apply time-series analytical approaches on daily data for five years and disclose that
both market demand and supply forces and cryptocurrency-specific factors largely de-
termine Bitcoin prices. The impact on Bitcoin prices varies over time. Shen et al. (2020)
propose a three-factor pricing model for cryptocurrencies including market excess re-
turn, size (small-minus-big), and reversal (down-minus-up) factors. Their three-factor

7See Cheah and Fry (2015), Baur et al. (2018), Babiak and Bianchi (2023), and Zhao et al. (2024) for
further reference.
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model outperforms the traditional CAPM used in the cryptocurrency market. Liu et al.
(2022) also find that standard asset pricing models are also effective on cryptocurren-
cies. They build a three-factor model with market, size, and momentum factors and
successfully use it to capture the cryptocurrency price dynamics. Based on Shen et al.
(2020)’s study, Shahzad et al. (2021) follow Londono (2019)’s approach to measure con-
tagion factor by the large left-tail events in the cryptocurrency return disturbances and
consider the contagion measure as the fourth factor in the model. They claim that the
four-factor model has stronger explanatory power than both CAPM and Shen et al.
(2020)’s three-factor model. Chi et al. (2023) focus on cryptocurrency futures and con-
cur with the above studies in terms of the conventional asset pricing approach’s ef-
fectiveness in the cross-sectional cryptocurrency analysis. Besides the factor pricing
models, Cong et al. (2020) introduce a dynamic cryptocurrency pricing model and dis-
cover that, instead of traditional valuation methods, the demand of total heterogeneous
traders using digital platforms forms the equilibrium cryptocurrency prices. Biais et al.
(2023) propose another general equilibrium pricing model and separately attribute the
Bitcoin price to its fundamental and other extrinsic volatility. They use transaction costs
and benefits based on future prices to proxy the fundamentals which are critical in de-
termining Bitcoin returns over time. The extra price fluctuations are caused by extrinsic
volatilities.

Regarding the risk pricing in the cryptocurrency market, Zhang and Li (2020) disclose
a consistent positive relationship between idiosyncratic volatility and cryptocurrency
expected returns by conducting both portfolio and Fama and MacBeth (1973) regres-
sion analysis. Bouri et al. (2022) also find that additional risks measured by idiosyn-
cratic volatility have a positive relationship with expected cryptocurrency returns and
CAPM/Shen et al. (2020)’s three-factor model alphas, confirming that idiosyncratic
volatilities are priced in the cryptocurrency market and investors are compensated by
the risk premium. However, Bouri et al. (2022) further reveal that this positive rela-
tionship only exists on the cryptocurrencies subject to microstructure noises. Besides
idiosyncratic volatility, Zhang et al. (2021) find that the downside risks in the cryp-
tocurrency market are also priced, which can be explained by the risk-return tradeoff
and limits-to-arbitrage theories. The upside risks’ relation to expected returns depends
on the downside risk, whose premium is mostly from volatility.

Besides the exploration of the cryptocurrency pricing method, another strand of litera-
ture reveals the cryptocurrency market’s inefficiency and related properties. Urquhart
(2016) discovers strong inefficiency in the Bitcoin market over the entire sample period
from 2011 to 2017, but efficiency in the latter period. This study thus concludes that the
currently inefficient market is becoming more efficient, as Bitcoin has attracted more at-
tention regarding transactions and studies. Bariviera (2017) finds that the Bitcoin daily
returns behave more efficiently after 2014, which supports Urquhart (2016)’s findings.
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Nadarajah and Chu (2017) and Tiwari et al. (2018) follow Urquhart (2016) and find sim-
ilar results supporting the Bitcoin market efficiency. Sensoy (2019) use high-frequency
data to study the weak-firm efficiency in the Bitcoin market and also reveal that the
market efficiency improves along with time and when the data frequency is higher. Op-
positely, there is much evidence pointing to the cryptocurrency market’s inefficiency.
Al-Yahyaee et al. (2018), Jiang et al. (2018), Kristoufek (2018), and Al-Yahyaee et al.
(2020) focus on the Bitcoin market and investigate the long-term memory of Bitcoin.
They reach the consensus that the Bitcoin market is inefficient. Caporale et al. (2018),
Zhang et al. (2018), Charfeddine and Maouchi (2019), and Hu et al. (2019) also provide
evidence of market inefficiency in other cryptocurrencies such as Litecoin and Ripple.

The abundant criticism and evidence against the pricing theory development and effi-
cient market hypothesis in the cryptocurrency market introduce the potential opportu-
nities for seeking excess returns and anomalies. Cheah and Fry (2015) provide empir-
ical evidence of Bitcoin’s substantial speculative bubble and zero fundamental price.
Baur et al. (2018) find that Bitcoin is uncorrelated with conventional assets like fixed-
income securities, equity, and commodities. This property is consistent in normal and
highly uncertain periods. Baur et al. (2018) conclude that Bitcoin investors’ purpose is
mainly for speculation. Makarov and Schoar (2020) investigate the cryptocurrency arbi-
trage and price information. They disclose that the cryptocurrency market’s dispersed
characteristics result in extensive information barriers and trading obstacles, which
could cause price discrepancies that can hardly be corrected by arbitrageurs. Babiak
and Bianchi (2023) exploit the instrumental principal component analysis (IPCA) and
show that cryptocurrency returns largely depend on systematic mispricing and risk
compensation, which are dominated by cryptocurrencies’ speculative demands and
liquidity properties. Babiak and Bianchi (2023) also find that the speculative demand
significance is associated with the market consensus, implying that cryptocurrencies
may be linked to lottery-like stocks by investors. Zhao et al. (2024) provide an outline
of the strategies employed by speculative and lottery-like investors in the cryptocur-
rency market and examine the influence of their behaviour on cryptocurrency pricing.
They find that cryptocurrency investors are attracted by low-priced assets for cheap
bets, which is known as the lottery preference low-price effect.

As a contradiction to the risk pricing studies discussed above, Dong et al. (2022) dis-
close that cryptocurrency liquidity and overall efficiency are affected by systematic liq-
uidity. Many recognised anomalies in the stock market appear in the cryptocurrency
market, where the anomalies are more prominent when the cryptocurrency liquidity
condition is worse. Leong and Kwok (2023)’s study also discovers the idiosyncratic
risk anomaly in the cryptocurrency market. They reveal that idiosyncratic risks move
inversely with future returns in the cryptocurrency market. They also follow Kapadia
et al. (2019)’s spirit and decompose cryptocurrency idiosyncratic returns into jumps
and diffusive variations. The jumps are defined as the return observations over the
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threshold which is a multiple of the cryptocurrency return standard error. The rest of
the observations lower than the threshold are thus regarded as diffusion. Leong and
Kwok (2023) develop a trading strategy putting a long position on cryptocurrencies
with high idiosyncratic diffusive volatility and a short position on those with low id-
iosyncratic diffusive volatility. This strategy yields statistically significant huge neg-
ative annualised returns. The idiosyncratic jumps also present negative predictive
power to future returns but with weaker statistical significance. Leong and Kwok
(2023) attribute the low idiosyncratic risk anomaly to potential statistical confounders
and limits-to-arbitrage theory. Their investigation shows that volatility explains the
anomaly, but higher statistical moments do not and arbitrageurs may fail to correct
cryptocurrency prices due to their constraints in leverage availability and liquidity re-
quirements.

Another stream of literature reveals the volatility persistence in the cryptocurrency
market. Bariviera (2017) finds that Bitcoin volatility exhibits long memory during a
sample period from 2011 to 2017, reflecting a different dynamic process of Bitcoin prices
and volatility. Phillip et al. (2018) show that predictable patterns appear in the cryp-
tocurrency market and many stylised factors hold in the Bitcoin market such as long
memory. Chaim and Laurini (2019) also document the apparent long memory of ma-
jor cryptocurrencies. Zhang and Zhao (2023) confirm the existence of cryptocurrency
volatility persistence and further discover that cryptocurrency volatility is more corre-
lated to past positive returns.

Given the abundant evidence of risk anomaly and the volatility persistence in the
cryptocurrency market, we contribute to the literature by following Moreira and Muir
(2017)’s and Cederburg et al. (2020)’s spirits to time the cryptocurrency index volatility
to exploit the risk anomaly in the cryptocurrency market. This approach avoids the pre-
sumption of factor models’ efficiency which has to be established in regression-based
models and has been criticised by some literature. We are also inspired by the cryp-
tocurrency speculation and lottery preference behaviours discussed in the literature to
include penny stocks in our analyses. Neither volatility timing nor penny stock study
has been sufficiently studied in the cryptocurrency literature. This enables us to study
the volatility timing strategy effectiveness in highly speculative assets with evidence of
risk anomalies and whether investors can be better off with excess returns.
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5.3 Data and Method

5.3.1 Data overview

This study utilises daily data from the S&P Cryptocurrency Broad Digital Market Index
(BDMI)8, S&P Cryptocurrency LargeCap Index (BDMLCI), and S&P Cryptocurrency
BDM Ex-LargeCap Index (BDMXLCI), all obtained from S&P Global. The sample pe-
riod spans from March 2017 to December 2023. The BDMLCI and BDMXLCI represent
subsets of the BDMI. The BDMLCI includes cryptocurrencies with large market cap-
italisations, defined as the product of price and effective coin supply, and sufficient
liquidity9. Conversely, the BDMXLCI comprises the remaining digital assets, exclud-
ing those included in the BDMLCI. These indices effectively capture the performance of
the cryptocurrency market while segmenting digital assets based on their market size.
To provide a contrasting perspective, we compare the results of the cryptocurrency in-
dices with those of the Penny Stock Index (PSI). The PSI data, sourced from Bloomberg,
covers the same sample period and frequency as the cryptocurrency indices. Given
the speculative nature of the cryptocurrency market10, penny stocks, often targeted by
lottery-seeking investors, serve as a useful benchmark to highlight similarities and dif-
ferences between these asset classes. Recognising the well-documented persistence of
cryptocurrency volatility11 and the prevalence of monthly frequencies in volatility tim-
ing literature, largely due to transaction cost considerations12, we compute the monthly
realised volatilities (RV) of BDMI, BDMLCI, BDMXLCI, and PSI. These volatilities are
calculated on a rolling basis using daily observations to smooth fluctuations and pro-
vide more stable measures,

R̂V2
i,d =

21

∑
t=0

(ri,d−t)
2. (5.1)

R̂V2
i,d is the monthly realised variance of the index i, BDMI, BDMLCI, BDMXLCI, or PSI

on day d. ri,d−t is the daily logarithm excess return of the index i on day d − t. We
then sort the daily realised volatilities (RV) of BDMI, BDMLCI, BDMXLCI, and PSI into
quartiles to study the patterns of their excess returns.

8BDMI is constructed by the digital assets traded on Lukka Prime-covered exchanges,
excluding any stablecoin or other pegged assets. For the details of the selection crite-
ria, see https://www.spglobal.com/spdji/en/indices/digital-assets/sp-cryptocurrency-broad-digital-
market-index. (Accessed in January 2024)

9To be included in the BDMLCI, constituents must have a market capitalisation of at least USD 1 billion
and a three-month median daily trading value of over USD 1 million.

10See Cheah and Fry (2015) and Baur et al. (2018) for example.
11See Bariviera (2017), Phillip et al. (2018), Chaim and Laurini (2019), and Zhang and Zhao (2023) for

example.
12See Moreira and Muir (2017), and Cederburg et al. (2020) for example.



96 Chapter 5. Volatility Timing in Cryptocurrency Markets

To further analyse the risk anomaly and the effectiveness of volatility timing, we com-
pute the maximum daily return (Max) and incorporate the federal funds rate (FFR) as
proxies for lottery preferences and market liquidity, respectively. Following the ap-
proach of Bali et al. (2011), Max is calculated as the highest daily return in the previ-
ous month, using a rolling window. This measure captures the influence of extreme
positive returns, which have been shown to affect expected returns significantly (Bali
et al., 2011). In highly speculative markets such as cryptocurrency and penny stocks,
past extreme returns can be critical in shaping investment decisions. We then include
the FFR, with data sourced from the Federal Reserve Bank of New York, to account
for market funding liquidity. A higher FFR signifies tighter funding conditions and
reduced liquidity in the broader economy. Given the relatively small market capital-
isation of the cryptocurrency market compared to traditional financial markets such
as stocks and bonds, we adopt the assumption from Dong et al. (2022) that the FFR is
unaffected by cryptocurrency market activities. The FFR is utilised to evaluate index
return performance under varying systemic funding conditions. Since FFR does not
change frequently as indices, we sort and divide the FFR time series into two halves to
facilitate comparative analyses. Additionally, Huang et al. (2022) find that cryptocur-
rency assets provide diversification benefits consistently, regardless of the economic
uncertainty, while Hikouatcha et al. (2024)’s study reveals that the risk factors and pre-
miums of digital assets with a larger size are more likely to be affected by the COVID
pandemic. Thus, we follow the spirit in the literature to separately analyse the index
returns in the COVID period which spans from January 2020 to December 2021.

Given the abundant literature indicating that the cryptocurrency market is heavily in-
fluenced by emotional transactions and investor sentiment as discussed in Section 5.2,
we further incorporate two market sentiment indicators to better understand the cryp-
tocurrency market’s risk anomalies and the effectiveness of volatility timing. The first
is the SG Sentiment Indicator13, which is used to construct the SG Global Sentiment
Index. This indicator is derived from various cross-asset capital market metrics, rep-
resenting overall global financial market sentiment. It segments the market into three
phases: shrinking, intermediate, and growth. The shrinking and growth phases cor-
respond to low and high investor risk appetites, respectively. The market participants
tend to be more aggressive when there is a growth phase. The second sentiment in-
dicator is the Crypto Fear & Greed Index provided by alternative.me14. This index
focuses on the cryptocurrency market, particularly Bitcoin, and considers factors such
as volatility and market momentum. It classifies market sentiment into five categories:
extreme fear, fear, neutral, greed, and extreme greed. As Bitcoin is the largest and most
popular cryptocurrency, we use the Crypto Fear & Greed Index to proxy the overall
cryptocurrency market sentiment. By incorporating both the SG Sentiment Indicator
and the Crypto Fear & Greed Index, we aim to analyse risk anomalies and volatility

13The SG Sentiment Indicator data is available at https : //sg − global − sentiment.com/.
14The data is available from https : //alternative.me/crypto/ f ear − and − greed − index/.
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timing effects under different market conditions of general and crypto-specific market
consensus.15

5.3.2 Return scaling

As discussed in Section 5.3.1, the documented presence of risk anomalies in the cryp-
tocurrency market (Leong and Kwok, 2023) and volatility persistence (Zhang and Zhao,
2023) provide a foundation for adopting the approach of Moreira and Muir (2017).
Specifically, we scale the monthly index returns16 by the reciprocals of their realised
volatilities while maintaining the unconditional variance of the scaled returns equiva-
lent to that of the unscaled returns. This approach basically exploits the risk anomalies
in the cryptocurrency market and bets against the RV. The coefficients of the unscaled
returns are essentially the weights in the strategy.

rscaled
i,d+1 =

ci

R̂V2
i,d

ri,d+1, (5.2)

where R̂V2
i,d is computed as in Equation (5.1). rscaled

i,d+1 and ri,d+1 are scaled and unscaled
returns of index i, which can be BDMI, BDMLCI, BDMXLCI, or PSI. The constant c
keeps the scaled and unscaled return unconditional variances the same. The coefficient
of unscaled return represents the required leverage to invest in index i on the day d.
The effectiveness of the scaling method in different assets helps researchers and practi-
tioners better understand their characteristics.

5.3.3 Spanning regressions

We run the spanning regression for the scaled returns generated by each of the cryp-
tocurrency indices. This originates from the typical scaling methods for systematic
factor returns in the literature such as Moreira and Muir (2017) and Cederburg et al.
(2020):

rscaled
i,d = α + βri,d + ϵd, (5.3)

15The correlation table detailing the relationship between the premium generated by the RV-timing
approach and various factors, including Max, FFR, FGI, and SGI, is reported in the appendix for reference.
Additionally, sorting and spanning regression analyses are conducted using the VIX, which serves as an
alternative indicator of financial market sentiment. The results of these analyses are also provided in the
appendix.

16Consistent with the definition of RV in Equation (5.1), monthly index returns are calculated on a
rolling basis using daily data to ensure more stable measurements. Accordingly, all returns associated
with scaling are computed as monthly returns derived from daily observations on a rolling basis.
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where rscaled
i,d and ri,d are the scaled and unscaled cryptocurrency returns of index i,

which can be BDMI, BDMLCI, BDMXLCI, or PSI, as defined in Equation (5.2).

The estimated alpha for each index in our sample tells us how well the realised volatil-
ity timing strategy works in the cryptocurrency market. When alpha is statistically
positive, it means that adjusting portfolio weights based on recent volatility spans the
mean-variance efficient frontier to the north-west, improving overall investor satisfac-
tion. To deepen our analysis, we also calculate the appraisal ratio (AR), which helps
us see whether the strategy brings more reward per unit of risk (Gibbons et al., 1989;
Moreira and Muir, 2017).

5.4 Empirical results

5.4.1 RV sorts and direct comparisons

We start the analyses by sorting the realised volatilities of the index returns into quar-
tiles. Examining the return patterns across these RV quartiles provides insight into
whether higher returns in the cryptocurrency and penny stock markets compensate for
risks during periods of elevated volatility. Table 5.1 summarises the results of RV sorts.
All the cryptocurrency indices generate higher returns when their RV stays at the low-
est level. This high-low difference is more prominent for BDMXLCI and during the
COVID period. The pattern implies that the cryptocurrency market’s systematic risks
are not adequately compensated by higher returns, especially during highly uncertain
periods and for those crypto coins with smaller market capitalisation. Similarly, PSI
does not exhibit a clear monotonic relationship between RV and excess returns. It only
performs slightly better on average when RV is high, also indicating insufficient risk
compensation in penny stocks. The daily return gap between the highest and lowest
RV quartiles widens significantly during uncertain periods, highlighting a stronger risk
anomaly during such times for both cryptocurrency indices and penny stocks.

The abnormally low returns observed in the highest cryptocurrency RV quartile can be
attributed to several reasons. First, in a volatile market such as cryptocurrency, price
fluctuations generate more opportunities for higher returns, attracting lottery-preferred
investors who are seeking higher returns and ignoring potential elevated risks. This ob-
servation is consistent with Babiak and Bianchi (2023)’s conclusion that the cryptocur-
rency market is inherently speculative. Additionally, both cryptocurrency and penny
stock investors often have a gambling mindset, aiming to invest small amounts in pur-
suit of huge possible returns. They focus on the uncapped benefits although their cap-
itals are exposed to high potential losses. This confirms Zhao et al. (2024)’s findings on
the presence of the low-price effect in the cryptocurrency market. The combination of
lottery preferences and the low-price effect increases demand for assets during volatile
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TABLE 5.1: RV sorts

This table reports the time-series average daily excess returns of BDMI, BDMLCI, BDMXLCI, and PSI of quartiles sorted
for corresponding return realised volatilities (RV). The sample period is from March 2017 to December 2023. Panel A
reports the sorted results for the entire sample period, while Panel B and Panel C report similar results but for the
period excluding COVID and only for COVID, respectively. The lowest RV quartile is labelled ”Low” and the highest
RV quartile is labelled ”High”. The RV is computed as in Equation (5.1).

BDMI BDMLCI BDMXLCI PSI

Panel A: March 2017 to December 2023

Low 0.0046 0.0049 0.0022 -0.0004
Q2 0.0009 0.0007 0.0039 -0.0006
Q3 0.0016 0.0008 0.0015 -0.0002

High 0.0004 0.0004 -0.0005 -0.0001

H-L -0.0041 -0.0045 -0.0027 0.0003

Panel B: Excluding January 2020 to December 2021

Low 0.0028 0.0034 0.0015 -0.0004
Q2 0.0011 0.0003 -0.0005 -0.0007
Q3 -0.0015 -0.0010 0.0003 -0.0013

High 0.0013 -0.0002 0.0006 -0.0002

H-L -0.0015 -0.0036 -0.0009 0.0001

Panel C: January 2020 to December 2021

Low 0.0089 0.0086 0.0083 -0.0007
Q2 0.0010 0.0000 0.0101 0.0015
Q3 0.0058 0.0057 0.0026 0.0005

High 0.0010 0.0022 -0.0017 0.0004

H-L -0.0079 -0.0064 -0.0100 0.0011

periods, temporarily inflating prices and leaving less room for subsequent excess re-
turns. Besides the investors’ lottery preference, the leverage and liquidity constraints
can also contribute to the risk anomaly in the cryptocurrency market (Leong and Kwok,
2023). Investors are forced to long riskier assets to achieve the target portfolio returns
when there is limited availability to leverage and liquidity. Similar to the lottery pref-
erence, this effect increases the demand for cryptocurrencies in more volatile periods,
pushing up the prices in the short run and causing lower excess returns and thus risk
anomaly. The leverage and liquidity constraints also limit arbitrageurs’ efficiency in
correcting the price and fixing anomalies (Leong and Kwok, 2023). In contrast, penny
stock index returns exhibit a distinct pattern. Although penny stocks are also known
for their highly speculative nature, they also carry additional risks, such as the potential
for company defaults or shutdowns, which makes investors require higher returns for
the risk compensation. This distinction underscores the different mechanisms driving
risk anomalies in cryptocurrencies and penny stocks.
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After recognising the return anomaly in the cryptocurrency market, we scale the re-
turns according to the indices’ RV and make direct comparisons between unscaled and
RV-scaled returns. We report the results of the direct comparison between unscaled and
RV-managed returns in Table 5.2. The Sharpe ratio evaluates excess returns relative to
the standard deviation, while the Sortino ratio considers only the standard deviation of
negative excess returns, providing a measure of downside risk-adjusted performance.
Regarding the BDMI which represents the overall cryptocurrency market, the Sharpe
ratios indicate that the RV-managed returns have better performance than the unscaled
returns, regardless of sample periods. However, the Sortino ratios present a contrasting
perspective, as shown by slightly lower RV-managed returns than those unscaled.

TABLE 5.2: Direct comparison

This table reports the daily excess returns, Sharpe ratios, and Sortino measures of the unscaled excess returns and RV-
managed returns for BDMI, BDMLCI, BDMXLCI, and PSI, respectively. The scaled returns are computed in Equation
(5.2). Panel A reports the results for the entire sample period, while Panel B and Panel C report similar results but for
the period excluding COVID and only for COVID, respectively.

BDMI BDMLCI BDMXLCI PSI

Unscaled RV-managed Unscaled RV-managed Unscaled RV-managed Unscaled RV-managed

Panel A: March 2017 to December 2023

Excess Return 0.0019 0.0022 0.0017 0.0018 0.0018 0.0013 -0.0003 -0.0007
Sharpe Ratio 0.0408 0.0473 0.0367 0.0400 0.0327 0.0232 -0.0127 -0.0253

Sortino 0.0514 0.0510 0.0470 0.0432 0.0406 0.0250 -0.0147 -0.0280

Panel B: Excluding January 2020 to December 2021

Excess Return 0.0009 0.0012 0.0006 0.0007 0.0005 -0.0006 -0.0007 -0.0012
Sharpe Ratio 0.0197 0.0239 0.0141 0.0140 0.0092 -0.0109 -0.0275 -0.0429

Sortino 0.0250 0.0245 0.0182 0.0144 0.0116 -0.0113 -0.0299 -0.0473

Panel C: January 2020 to December 2021

Excess Return 0.0042 0.0046 0.0041 0.0046 0.0048 0.0057 0.0004 0.0006
Sharpe Ratio 0.0916 0.1209 0.0910 0.1180 0.0872 0.1250 0.0148 0.0307

Sortino 0.1134 0.1821 0.1138 0.1840 0.1047 0.1769 0.0196 0.0371

Besides, when we segment the index by the component cryptocurrencies’ market capi-
talisation, the RV scaling approach tends to effectively improve the Sharpe ratio and
Sortino measure during the COVID period for both BDMLCI and BDMXLCI. This
matches the findings in Table 5.1 that the abnormally high returns in the lowest RV
quartile are more prominent during uncertain periods. As depicted in Figure 5.1, the
cumulative RV-managed index returns started to outperform the unscaled returns from
the middle of 2020, highlighting the volatility timing strategy’s effectiveness in ex-
ploiting risk anomaly and improving investment performance during uncertain pe-
riods. Additionally, the marginal contribution of the volatility timing approach on BD-
MXLCI is slightly greater than that on BDMLCI. This also signals a more prominent risk
anomaly in small-cap cryptocurrencies as shown in Table 5.1. Large-cap cryptocurren-
cies, being more widely traded and exposed to the public, exhibit higher liquidity and
market efficiency, lower price impacts from trades, and less potential for generating
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large excess returns. In contrast, small-cap cryptocurrencies, which are more attrac-
tive to investors seeking lottery-like assets or constrained by leverage and liquidity,
present more pronounced risk anomalies. For PSI, the RV-scaling method improves
the Sharpe and Sortino ratios only when the average excess returns are positive during
volatile periods. These findings reveal varying strengths of risk anomalies and differ-
ent performances of the volatility timing approach across indices and periods. This
variation provides incentives for further investigation into the underlying drivers of
the risk anomaly and the efficiency of risk timing strategies.

FIGURE 5.1: Cumulative returns

This figure illustrates the time series of cumulative daily returns for unscaled and RV-scaled portfolios,
as well as the Broad Digital Market Index (BDMI). The blue, red, and green lines represent the unscaled
portfolios, RV-scaled portfolios, and BDMI, respectively. The BDMI is constructed from unpegged digital
assets traded on Lukka Prime-covered exchanges. Data are sourced from S&P Global. The sample period
extends from March 2017 to December 2023.
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5.4.2 Max sorts and spanning regressions

The further investigation into risk anomalies and volatility timing begins with analysing
lottery preferences. As lottery preference has been well-documented in the literature17,
we follow Bali et al. (2011)’s Max approach to compute the recent extreme positive re-
turns. Using this measure, we sort the time-series unscaled and RV-managed returns
of the indices into quartiles based on their Max values. We also isolate the COVID
period as in Table 5.1 and 5.2. As the results reported in Table 5.3, the Max sorting
shows the pattern of both unscaled and scaled returns, implying the realised volatility

17See Babiak and Bianchi (2023); Zhao et al. (2024) for example.
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timing effectiveness within each Max-sorted quartile subsample. The first pattern to
be noticed in this table is the positive relationship between Max and the excess return
of the cryptocurrency indices. Higher recent extreme returns are more likely to attract
lottery-preferred investors and push up short-run returns, supporting the lottery pref-
erence explanation to the risk anomaly shown in Table 5.1 as discussed above18. Sec-
ond, the realised volatility management strategy fails to effectively improve unscaled
returns within the Max quartiles. In many cases, keeping the original investments with-
out changing positions yields better returns. This evidence implies the limitation of the
Max and realised volatility timing strategy which are both backwards-looking. They
do not contain the market expectation information which is crucial in the highly spec-
ulative markets. Regarding penny stocks, the PSI returns act as cryptocurrency returns
when excluding the uncertain period, reaching high levels when recent extreme re-
turns are high. The realised volatility timing strategy improves the PSI unscaled daily
returns from 0.10% to 0.28% when the COVID time is excluded. This indicates that
the appearance of a high speculation opportunity makes the volatility timing strategy
work properly at normal times.

After the direct comparisons in Max-sorted subsamples, we follow the Moreira and
Muir (2017); Cederburg et al. (2020)’s approach to run the spanning regression of the
RV-managed returns against the unscaled returns. A statistically significant alpha in a
spanning regression indicates that the mean-variance frontier can be expanded by the
combination of scaled and unscaled returns (Cederburg et al., 2020). Additionally, we
compute the appraisal ratio (AR), defined as the ratio of the estimated intercept to the
standard error of the spanning regression. This analysis with the separation of cryp-
tocurrency sizes, a highly uncertain COVID period, and Max sorts demonstrates the
risk anomaly strength and RV-timing strategy effectiveness under different market con-
ditions. Table 5.4 reports the results. Significant alphas are not consistently observed,
indicating that volatility timing strategies are generally ineffective during normal peri-
ods (excluding COVID) or within the lowest Max quartile. These insignificant alphas
suggest that Max is not a robust explanation for the risk anomaly in the cryptocurrency
market. While past extreme returns may attract some investors, they do not appear to
be the primary driver of the anomaly. For the PSI during the COVID period, realised
volatility timing contributes to the excess returns when Max is relatively high. This
finding aligns with the corresponding results of PSI returns in the highest Max quartile
subsample during COVID in Table 5.3.

18In Table 5.1, the overall relationship between RV and index returns depends on other factors besides
lottery preference as discussed in Section 5.4.1. Thus, Table 5.3 and 5.1 present different index return
dynamics.
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TABLE 5.3: Max sorts

This table reports the time-series average daily excess returns and RV-managed returns of BDMI, BDMLCI, BDMXLCI,
and PSI subsets with the Max sorts. Max is the maximum daily return in the last month, being computed on a rolling
basis. The sample period is from March 2017 to December 2023. Panel A reports the sorted results for the entire sample
period, while Panel B and Panel C report similar results but for the period excluding COVID and only for COVID,
respectively.

BDMI BDMLCI BDMXLCI PSI

Unsclaed RV-managed Unsclaed RV-managed Unsclaed RV-managed Unsclaed RV-managed

Panel A: March 2017 to December 2023

Low -0.0036 -0.0038 -0.0037 -0.0048 -0.0055 -0.0084 -0.0029 -0.0066
Q2 -0.0030 0.0014 -0.0021 0.0025 0.0017 0.0050 -0.0001 0.0005
Q3 0.0058 0.0060 0.0053 0.0035 0.0004 0.0035 0.0006 0.0003

High 0.0086 0.0053 0.0078 0.0063 0.0107 0.0051 0.0011 0.0034

H-L 0.0123 0.0092 0.0115 0.0111 0.0162 0.0135 0.0040 0.0100

Panel B: Excluding January 2020 to December 2021

Low -0.0047 -0.0058 -0.0048 -0.0073 -0.0072 -0.0139 -0.0030 -0.0075
Q2 -0.0021 0.0019 -0.0008 0.0035 -0.0003 0.0051 -0.0001 0.0000
Q3 0.0039 0.0039 0.0040 0.0024 -0.0006 0.0023 -0.0005 0.0001

High 0.0070 0.0052 0.0046 0.0044 0.0106 0.0045 0.0010 0.0028

H-L 0.0117 0.0110 0.0094 0.0117 0.0178 0.0184 0.0040 0.0103

Panel C: January 2020 to December 2021

Low -0.0017 0.0004 -0.0061 -0.0015 -0.0055 0.0013 -0.0020 -0.0026
Q2 -0.0042 0.0013 0.0023 0.0052 0.0091 0.0074 0.0010 0.0003
Q3 0.0088 0.0095 0.0084 0.0091 0.0029 0.0064 0.0028 0.0032

High 0.0151 0.0067 0.0150 0.0066 0.0144 0.0082 0.0003 0.0020

H-L 0.0168 0.0062 0.0211 0.0082 0.0199 0.0069 0.0023 0.0046
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Panel A
:M

arch
2017

to
D

ecem
ber

2023

α
0.3180

0.9697***
0.5515*

0.4399*
0.2251

0.1003
1.0795***

0.2081
0.6606*

0.1717
0.3189

0.9291***
0.8056**

0.3200
0.0101

0.0255
0.1531

0.0270
0.7774**

-0.1262
(0.5085)

(0.3301)
(0.3111)

(0.2666)
(0.2018)

(0.5052)
(0.3303)

(0.1782)
(0.3813)

(0.2009)
(0.6037)

(0.2866)
(0.3509)

(0.2122)
(0.2374)

(0.2414)
(0.1017)

(0.0602)
(0.3781)

(0.1373)
β

1.4084***
0.7999***

0.6520***
0.4158***

0.6855***
1.3995***

0.8255***
0.5130***

0.4726***
0.6853***

1.7640***
0.7632***

0.6943***
0.3551***

0.6867***
2.3358***

1.6873***
0.2750***

0.3318***
0.4596***

(0.0633)
(0.0283)

(0.0286)
(0.0178)

(0.0174)
(0.0639)

(0.0283)
(0.0157)

(0.0263)
(0.0174)

(0.0669)
(0.0227)

(0.0250)
(0.0120)

(0.0173)
(0.0794)

(0.0655)
(0.0154)

(0.0316)
(0.0212)

R
2

0.5261
0.6433

0.5432
0.5569

0.4696
0.5200

0.6498
0.7125

0.4311
0.4693

0.6123
0.7174

0.6379
0.6699

0.4713
0.6571

0.6061
0.4187

0.2006
0.2107

A
R

0.4737
2.2201

1.3584
1.2738

0.4223
0.1510

2.4295
0.8967

1.3466
0.3235

0.4046
2.4411

1.7396
1.1642

0.0161
0.0814

1.1513
0.3391

1.5671
-0.3478

PanelB:Excluding
January

2020
to

D
ecem

ber
2021

α
0.2847

0.3492
0.1876

0.1709
0.1337

0.1208
0.4156

0.0696
0.2448

0.0575
0.0376

0.1450
0.2937

-0.3527
-0.2463

0.0350
-0.0115

-0.2055**
0.0824

-0.2110
(0.4023)

(0.3311)
(0.3094)

(0.3199)
(0.2640)

(0.3946)
(0.3302)

(0.3026)
(0.3304)

(0.2604)
(0.4644)

(0.4022)
(0.4239)

(0.4085)
(0.3077)

(0.1516)
(0.0764)

(0.0912)
(0.2127)

(0.1764)
β

1.1790***
0.9830***

0.9269***
0.6621***

0.7031***
1.1757***

0.9840***
0.8389***

0.6953***
0.7003***

1.3656***
1.1360***

1.0813***
0.6437***

0.7080***
2.3333***

1.6773***
0.5838***

0.4118***
0.5389***

(0.0427)
(0.0351)

(0.0313)
(0.0265)

(0.0226)
(0.0424)

(0.0345)
(0.0297)

(0.0280)
(0.0224)

(0.0453)
(0.0379)

(0.0383)
(0.0290)

(0.0226)
(0.0655)

(0.0520)
(0.0347)

(0.0299)
(0.0295)

R
2

0.5395
0.5553

0.5488
0.4385

0.4383
0.5393

0.5618
0.5204

0.4443
0.4402

0.5875
0.5652

0.5436
0.3806

0.4414
0.6342

0.6286
0.2849

0.2027
0.2116

A
R

0.4417
0.6678

0.3592
0.3003

0.2286
0.1901

0.7931
0.1349

0.4243
0.0998

0.0511
0.2179

0.4268
-0.4854

-0.3613
0.1372

-0.0972
-1.3448

0.2260
-0.5401

PanelC
:January

2020
to

D
ecem

ber
2021

α
0.5739

0.9244**
0.9836

-0.0959
0.4786*

0.6457
0.9749**

0.6084**
0.2477

0.4760*
0.5398

1.0636**
0.8984

0.5962**
0.6733**

0.0248
0.5197

0.1415**
0.6469*

0.1184
(0.4221)

(0.4201)
(0.7059)

(0.2715)
(0.2664)

(0.4322)
(0.4302)

(0.2792)
(0.8688)

(0.2786)
(0.9933)

(0.4726)
(0.7039)

(0.2747)
(0.3269)

(0.4087)
(0.5132)

(0.0692)
(0.3662)

(0.1927)
β

1.0315***
0.6705***

0.6411***
0.4668***

0.6409***
1.0353***

0.6809***
0.4613***

0.6413***
0.6469***

1.1056***
0.7215***

0.6655***
0.4051***

0.6350***
1.6868***

0.9680***
0.2648***

0.2785***
0.3412***

(0.0585)
(0.0306)

(0.0634)
(0.0213)

(0.0231)
(0.0601)

(0.0312)
(0.0245)

(0.0705)
(0.0242)

(0.1103)
(0.0371)

(0.0458)
(0.0184)

(0.0235)
(0.1045)

(0.1827)
(0.0187)

(0.0333)
(0.0255)

R
2

0.7195
0.7735

0.4049
0.8150

0.5951
0.7032

0.7801
0.7326

0.3844
0.5769

0.7081
0.6677

0.5374
0.8160

0.5838
0.7805

0.3513
0.5212

0.2444
0.2547

A
R

1.9632
2.9642

1.8489
-0.5626

1.2534
2.1228

3.1220
3.1069

0.4126
1.1920

1.3597
2.6077

1.5093
3.4022

1.4365
0.1181

2.2790
2.4218

1.9223
0.4271
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5.4.3 FFR sorts and spanning regressions

Another common explanation for the risk anomaly is liquidity constraints. Dong et al.
(2022)’s study discovers that lower overall market funding liquidity reduces cryptocur-
rency liquidity, which makes the cryptocurrency market inefficient. These inefficiencies
amplify anomalies in the cryptocurrency market. To explore this further, we isolate the
two-year COVID period and sort the FFR into halves within each period subset to com-
pare unscaled and RV-managed returns, as reported in Table 5.5.

TABLE 5.5: FFR sorts

This table reports the time-series average daily excess returns of BDMI, BDMLCI, BDMXLCI, and PSI of quartiles sorted
for the federal fund rates (FFR). The sample period is from March 2017 to December 2023. Panel A reports the sorted
results for the entire sample period, while Panel B and Panel C report similar results but for the period excluding
COVID and only for COVID, respectively. The lower FFR half is labelled ”Low” and the higher FFR half is labelled
”High”.

BDMI BDMLCI BDMXLCI PSI

Unsclaed RV-managed Unsclaed RV-managed Unsclaed RV-managed Unsclaed RV-managed

Panel A: March 2017 to December 2023

Low 0.0030 0.0034 0.0026 0.0027 0.0040 0.0034 -0.0004 -0.0005
High 0.0006 0.0008 0.0007 0.0009 -0.0007 -0.0011 -0.0003 -0.0008

H-L -0.0024 -0.0026 -0.0019 -0.0018 -0.0047 -0.0045 0.0001 -0.0002

Panel B: Excluding January 2020 to December 2021

Low 0.0011 0.0010 0.0005 -0.0001 0.0017 0.0003 -0.0009 -0.0014
High 0.0008 0.0013 0.0008 0.0015 -0.0008 -0.0016 -0.0004 -0.0009

H-L -0.0003 0.0003 0.0004 0.0016 -0.0025 -0.0020 0.0006 0.0005

Panel C: January 2020 to December 2021

Low 0.0050 0.0051 0.0050 0.0052 0.0052 0.0046 0.0009 0.0004
High 0.0010 0.0024 0.0008 0.0021 0.0033 0.0099 -0.0012 0.0013

H-L -0.0040 -0.0027 -0.0042 -0.0031 -0.0019 0.0052 -0.0020 0.0009

Since the FFR does not fluctuate frequently, this approach allows for an analysis of
strategy performance under varying market liquidity conditions. The most explicit
pattern in Table 5.5 is the inverse relationship between FFR and cryptocurrency re-
turns. Lower FFR implies an expansionary monetary policy which aims at making the
market prosperous. Lower FFR makes savings less attractive and leverages less costly,
leading to more money pouring into the cryptocurrency market to look for higher re-
turns and pushing up the prices in the short run. The large gap between the returns
in low and high FFR periods highlights the sensitivity of cryptocurrencies to fund-
ing liquidity, supporting the cryptocurrency’s speculative nature. One exception is the
BDMLCI returns in Panel B Table 5.5. BDMLCI exhibits higher returns during periods
of tight systematic liquidity. The different pattern of BDMLCI returns when excluding
the highly uncertain period signals that large-cap cryptocurrencies are developed and
more stable than those with small market capitalisation. Large-cap cryptocurrencies
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are often perceived as more stable investments and, in some cases, as hedging assets,
contrasting with small-cap cryptocurrencies, which are primarily speculative instru-
ments. Penny stocks, on the other hand, generate negative returns in most scenarios,
except during relatively liquid periods within highly volatile conditions. This indicates
that while penny stocks share some speculative characteristics with cryptocurrencies,
their performance is more constrained by prevailing market conditions.

We then regress the RV-managed returns against the unscaled returns within each FFR-
sorted subsample, with a distinction for the two-year COVID period as a highly uncer-
tain market environment. This approach evaluates the performance of the RV-scaling
strategy under varying systematic liquidity conditions. Table 5.6 summarises these
results. Over the entire sample period, the RV-scaling strategy proves effective only
for BDMI and BDMLCI when market funding liquidity is relatively high. When the
highly volatile COVID period is excluded, the RV-scaling strategy fails to generate any
significant alpha with all indices. Conversely, the approach demonstrates greater effec-
tiveness during the COVID period, particularly when the FFR is low, as evidenced by
the statistically significant alphas reported in Table 5.6, Panel C.

These findings align with the results in Table 5.4, which similarly indicate significant
alphas for cryptocurrency indices in Panels B and C but do not reveal a clear trend
within Max sorts. Thus, the analysis of FFR-sorted regressions in Table 5.6 provides a
more comprehensive understanding of the RV-scaling strategy’s effectiveness in differ-
ent liquidity and market environments.

The effectiveness of the RV timing strategy highlights the pronounced risk anomaly ob-
served during periods of market turmoil and heightened liquidity. This phenomenon
is attributed to investors’ preference for the hedging properties of cryptocurrencies.
Bouri et al. (2017) and Dyhrberg (2016) establish Bitcoin as a viable hedge against stock
market uncertainty. Besides, Jiang et al. (2021), Melki and Nefzi (2022), and Urquhart
and Zhang (2019) demonstrate that cryptocurrencies can serve as safe havens against
economic policy uncertainty, commodity market fluctuations, and currency instabilities
during periods of extreme market disruption. When the market suffers from panic due
to uncertainty, more investors, especially those who are risk-averse and have to hedge
their positions, such as commodity futures traders and proprietary asset management
investors, will bring cryptocurrencies into their portfolios to hedge their risks19. This
heightened demand suppresses potential excess returns, reinforcing the risk anomaly
and enhancing the effectiveness of the RV timing strategy. The risk anomaly caused
by the strong hedging demand during market turmoil is amplified by higher market
liquidity. As previously discussed, lower FFRs signal higher liquidity and more active
market conditions, reducing opportunities for excess returns, even for high-risk assets.

19The heightened demand is reflected in Figure 5.1, where the BDMI curve sharply elevated from mid-
2020.
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In contrast, PSI does not show any significant alpha in the spanning regressions in any
subset, even if both cryptocurrencies and penny stocks are known for their highly spec-
ulative nature attracting lottery-preferred investors gambling for potentially uncapped
returns by paying low prices. This underlines the critical difference between cryptocur-
rencies and other speculative assets. During highly volatile periods such as COVID,
while penny stocks, which are more connected to firm fundamentals, are exposed to
higher default risks, cryptocurrencies are more popular due to their hedging property.
The market participants’ preference for speculative assets tilts during uncertain peri-
ods. This market opinion divergence is consistent with Zhao et al. (2024)’s findings of
time-varying investor preference.

Table 5.6 further shows that BDMXLCI consistently achieves higher alphas than other
indices. These findings align with Table 5.2, which highlights the effectiveness of RV
timing for small-cap cryptocurrencies during uncertain periods. The significant risk-
return anomaly is also evidenced by the largest return gap between the highest and
lowest RV quartiles for BDMXLCI in Table 5.1, Panel C. Unlike the head cryptocurren-
cies such as Bitcoin and Ethereum, cryptocurrencies with small market capitalisation
are less focused by the public, less liquid, and fewer transactions. This creates a higher
potential for excess returns, drawing a large number of speculators during uncertain
periods. However, the influx of speculators erodes the opportunity for excess returns
despite the elevated risks. The huge risk-return mismatch creates better opportunities
for the scaling strategy, which places a higher (lower) position on small-cap cryptocur-
rencies when the recent RV is low (high). Therefore, the risk anomaly of small-cap
cryptocurrencies may be dampened by weaker hedging functions but compensated by
much more speculative demands during market turmoil. This dynamic reflects the nu-
anced interplay between hedging properties and speculative behaviour in shaping the
cryptocurrency market’s risk anomalies.

5.4.4 Market sentiment and risk anomaly

In addition to recent extreme returns and market liquidity conditions, we incorporate
two sentiment indicators to further investigate the risk anomaly and realised volatility
timing in the cryptocurrency market. As discussed in Section 5.3, the SG Sentiment
Indicator (SGI) captures global market sentiment, while the Crypto Fear & Greed In-
dex (CFGI) reflects sentiment specific to the cryptocurrency market. To explore these
relationships, we sort unscaled and RV-managed returns based on their respective sen-
timent classifications and include Max to examine the connection between market sen-
timent and extreme returns. The sorted results are reported in Table 5.7. In Panel A
which sorts the SGI, both unscaled return and Max of the cryptocurrency indices in-
crease when the SGI becomes more aggressive from Shrinking to Growth. RV-managed
returns also tend to outperform unscaled returns when the global market is in a growth
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phase. Since SGI reflects the global overall financial market sentiment, the growth
stage implies a higher risk appetite that investors actively seek investment targets with
higher possible returns. The capital inflow into the cryptocurrency market boosts short-
run cryptocurrency index returns. Similarly, PSI achieves high returns during growth
periods. The increased demand for cryptocurrencies during these times also elevates
extreme returns, as evidenced by the higher Max values. In Table 5.7 Panel B which
reports the CFGI sorts, cryptocurrency unscaled returns also rise when the cryptocur-
rency market sentiment moves from extreme fear to extreme greed. PSI likewise ex-
periences elevated returns during periods classified as extreme greed. However, Max
displays a distinct pattern, increasing whenever the sentiment becomes extreme. These
findings underscore the interlinkages between market sentiment, extreme returns, and
RV timing strategies in speculative markets. The results highlight the importance of
sentiment-driven investment demand in shaping short-term returns and amplifying
risk anomalies in the cryptocurrency market.

To further study the realised volatility timing effectiveness across different sentiment
subsamples, we run spanning regressions similar to those discussed in Sections 5.4.2
and 5.4.3, now applied to sentiment-based classifications. The results are reported in
Table 5.820. In Panel A which reports the SGI classified results, the realised volatil-
ity timing strategy yields significant positive alphas of BDMI and BDMLCI when the
overall financial market is at the growth stage. This evidence is consistent with the
pattern that RV-managed returns outperform unscaled returns as reported in Table 5.7
Panel A. A plausible explanation is that the risk anomaly in the cryptocurrency market
becomes more prominent when more money enters the market due to a higher risk
appetite. The newly invested money tends to be placed on those cryptocurrencies with
larger market capitalisation. Consequently, popular cryptocurrencies face reduced po-
tential for excess returns, leading to insufficient compensation for higher risks. Con-
versely, when sentiment is classified using CFGI, the RV timing strategy fails to yield
significant alphas in any subsample. This implies that a backwards-looking approach is
less effective in managing highly volatile and speculative assets like cryptocurrencies.
These findings emphasise the limitations of RV-timing strategies under certain market
conditions and highlight the distinct dynamics of sentiment-driven behaviours in the
cryptocurrency market.

20The COVID period is not isolated in this table due to the presumption that market sentiment has
already incorporated relevant information and expectations.
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5.5 Conclusion

This study uses daily cryptocurrency market index and penny stock index data to anal-
yse and exploit the risk anomaly in the cryptocurrency market. We separately study the
index of cryptocurrencies with different sizes and penny stocks for comprehensiveness.
We also isolate the two-year COVID period for the extreme market uncertainty, sepa-
rate the sample according to recent extreme returns, halve the sample for the market
liquidity, and separate the sample with market sentiment classifications. Based on em-
pirical evidence of risk anomaly and volatility persistence in the cryptocurrency mar-
ket, this study applies the volatility timing approach to the cryptocurrency and penny
stock indices as a contrast to exploit the risk anomaly and examine this approach’s ef-
fectiveness in generating cryptocurrency excess returns as in the conventional equity
market. This could be indicative to both researchers and practitioners in the field of
cryptocurrency investment and risk management.

By conducting RV and FFR sorting, direct comparisons, and spanning regressions, we
disclose that the risk anomaly exists in the cryptocurrency market. The recent extreme
return may attract some lottery-preferred investors but does not tend to be a dom-
inant reason for risk anomaly. During the market distortion, the increased hedging
demand strengthens the cryptocurrencies’ prices and thus leads to less potential for
excess returns and a more prominent risk anomaly. Cryptocurrencies with different
market capitalisations are viewed differently. The higher risk appetite at the growth
stage of overall market sentiment pushes up the large cryptocurrency demand and
also causes lower potential excess returns. Penny stocks have different properties from
cryptocurrencies, although they are all speculative assets attracting lottery-preferred
investors. Investors’ preference for speculative assets changes due to a lack of hedging
properties and higher default risks on penny stocks.

Overall, the RV timing strategy only successfully yields statistically significant alphas
when the risk anomaly is magnified due to some specific conditions, including high
market liquidity during market turmoil and higher risk appetite in the overall global
financial market. Otherwise, using realised volatilities, based on past information, to
adjust the investment positions in such a highly speculative market sensitive to the
consensus fails to improve the unscaled original index returns.
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6.1 Conclusion

This thesis empirically studies asset pricing topics from different aspects in different
markets. The tight connection between volatility and liquidity highlights the coherent
body of the work in this thesis. First, both volatility and liquidity risks are priced as
risk-averse investors require compensation for the possibility of suffering losses due to
price fluctuations and discounts to sell assets. Second, liquidity can affect price changes
and then transfer to volatility. Conversely, volatility can lead to a higher bid-ask spread
which incurs higher transaction cost and thus lower liquidity.

Chapter 3 highlights the contribution of stock options in delivering timely insights into
firm capital structure and return moments. It proves to be highly beneficial for risk
management and portfolio allocation. This chapter departs from the literature in terms
of applying a volatility timing strategy which exploits the low-risk anomaly on a single
equity level and using option-based volatilities to scale stock returns. This approach
affords investors the flexibility to tailor their investment portfolios according to their
risk-return preferences and higher utility by exploiting the market consensus and ex-
pectation on firm-level volatility and future returns, as the option-based volatilities are
derived from observable option market prices. These forward-looking volatilities out-
perform traditional backwards-looking measures such as realised volatility in scaling
stock excess returns and improving portfolio performance, especially during uncertain
periods. The results also hold across different subset portfolios sorted by firms’ char-
acteristics such as leverage. The excess returns enhanced by our volatility timing strat-
egy survive from transaction costs. Therefore, the information on stock-level return
risks embedded in forward-looking option market observable prices helps implement
volatility timing strategies.

Chapter 4 introduces a two-step process which derives a new informative stock-level
Connectedness-value-Weighted-Eigenvector-Centrality (CWEC) measure and studies
the relationship between financial interlinkages and illiquidity at a single equity level.
This chapter also discovers some evidence of the market’s different views on stock
centrality levels. These findings imply valuable insights into systematic and liquidity
risk management, helping practitioners to better understand each stock’s importance
in the broad financial network and its potential effects on illiquidity and asset prices.
In this chapter, we use US mutual fund common ownership to US stocks to derive a
stock-level centrality measure representing each stock’s importance in the broad finan-
cial network. The stock-level measure allows us to depart from the literature that stays
on the pairwise correlation and commonality and fails to reflect the node importance
at the single equity level. Although panel regressions show that stock centrality and
illiquidity have significant effects on each other, the following vector autoregressions
and impulse response function analyses indicate that stock centrality tends to have a
preponderant influence on stock illiquidity. The property that stock centrality does not
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change frequently and is not significantly affected by other variables such as liquidity is
attributed to mutual funds’ reluctance to adjust investment positions and tendency to
stick to their familiar investment targets. This helps avoid unknown information asym-
metry. The centrality sorts, Fama and MacBeth (1973) regressions, and betting-against-
centrality strategy provide some evidence that the market cares about stock centrality
levels, although it tends to be hard to make extra profits by exploiting centrality.

Chapter 5 focuses on the risk anomaly and stock-market empirically successful volatil-
ity timing approaches in the cryptocurrency market. The separated analyses of sub-
sets of cryptocurrency indices according to sizes, recent maximum returns, market
liquidity conditions, and market sentiments further disclose investor behaviour and
preferences that lead to the results. The Penny stock index is also compared as an-
other type of highly speculative asset, highlighting the specific characteristics of the
cryptocurrency market. The transplanted approach which has never been applied in
the cryptocurrency literature and following subset and penny stock analyses thus af-
fords researchers a more comprehensive understanding of volatility timing strategy
effectiveness in exploiting discovered risk-return anomalies. This chapter follows the
spirit of Moreira and Muir (2017) and Cederburg et al. (2020) to time realised volatilities
and scale the cryptocurrency indices returns, providing empirical evidence of realised
volatility management effectiveness in generating excess returns in the cryptocurrency
market. The analyses in subsets considering cryptocurrency sizes, lottery preference,
market uncertainty, penny stock comparisons, market liquidity, and market sentiments
reveal that risk anomaly exists in the cryptocurrency market, but realised volatility tim-
ing strategy only generates statistically significant excess returns when the risk-return
anomaly is magnified by some specific systematic conditions including higher market
liquidity during uncertain periods and aggressive risk appetite in the overall global
financial market. In other cases, the volatility timing strategy fails to beat the buy-and-
hold strategy in such a highly volatile and speculative market, since realised volatility
is backwards-looking and lacks information on market sentiment and expectations.

In sum, Chapter 3 and 5 depart from the conventional volatility timing literature in
terms of using stock-level forward-looking risk measures and transplanting to the cryp-
tocurrency market, respectively. Both provide abundant empirical evidence on exploit-
ing risk-return anomalies and contribute to a more comprehensive understanding of
volatility timing strategy and thus better risk management and investment portfolio
allocation. Chapter 4 explores the asset pricing topic from another aspect which is
stock-level financial interlinkages and illiquidity, also contributing to the systematic
and liquidity risk management.
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6.2 Future research direction

This thesis has empirically studied risk-return anomaly and stock-option-based volatil-
ity timing strategies, stock connectedness and illiquidity, and realised volatility timing
strategy in the cryptocurrency market, contributing to different aspects of the asset pric-
ing topic. The latter research and investigations could be extended further to provide
more insights by proxying liquidity in alternative ways, taking advantage of stock-
level centrality measures, and timing more informative volatilities in the cryptocur-
rency market.

Instead of using Amihud (2002) to proxy the stock illiquidity, future research could in-
vestigate the centrality effects on other aspects of illiquidity such as trading quantity,
trading speed, and trading costs as introduced in Liu (2006). Other techniques such
as principal component analysis could be applied. This affords researchers and practi-
tioners a more comprehensive view of how a stock’s liquidity is affected by its impor-
tance in the broad financial network. Furthermore, the stock-level CWEC introduced
in Chapter 4 which contains information on each stock’s importance in the financial
networks can be exploited and analysed with other stock characteristics.

Finally, it could be interesting to time forward-looking volatilities which contain richer
information including market consensus and expectations instead of only referring to
backwards-looking realised volatilities in the cryptocurrency market. Using forward-
looking measures could be especially effective in such a highly speculative market that
has been proven sensitive to market sentiment1. Also, following the approach in Chap-
ter 3 to exploit the risk anomaly at a single cryptocurrency level also has the potential
to further improve portfolio performance.

1See Cheah and Fry (2015) and Baur et al. (2018) for example.



117

Appendix A

Additional Results in Option-based
Volatility Riming

Appendix 1. Portfolio sorts

We extend the performance analysis of an ex-ante risk-timing strategy to different port-
folio constructions, all based on a total sample of 1,137 stocks. We compare the original
portfolios and the corresponding RV, IV, MW, and GLB risk-managed portfolios. These
portfolios are either cross-sectionally averaged with equal weighting or aggregated into
leverage-sorted, financial and non-financial, size-sorted, or credit-rating portfolios.

Table A.1 reports the results for portfolios with “aggregate-level risk timing” for the
entire, pre-, and post-pandemic periods. Part of the table replicates the results of Table
3.2 for convenience. The results in Tables A.2 to A.7 follow a similar structure. In
particular, Tables A.2, A.3, and A.4 present results for leverage-sorted portfolios, while
Table A.5 covers financial and non-financial portfolios. Table A.6 reports results for
size-sorted portfolios, where firm sizes are approximated by market capitalizations,
calculated as stock price multiplied by outstanding shares, divided by one million. The
logarithm of each company’s average market capitalization is used to sort firms into
quartile portfolios. Data for industry, share prices, and outstanding shares are sourced
from Bloomberg. Table A.7 reports results for credit-rating portfolios, where credit
ratings for 722 firms come from S&P, Fitch, and Moody’s via Bloomberg. The remaining
415 firms are unrated or lack available data. The sample includes 4 AAA-rated firms,
27 AA-rated, 175 A-rated, 344 BBB-rated, 116 BB-rated, 51 B-rated, and 5 CCC-rated
companies.
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Tables A.8 through A.19 include additional results on spanning regression estimations,
to directly compare with those in Tables 3.4-3.7 in the main paper. We consider equal-
weighted, leverage-sorted portfolios, financial and non-financial portfolios, size-sorted
portfolios, and credit-rating portfolios. Table A.8 refers to spanning regressions incor-
porating the Fama and French (1993)’s three factors, the Carhart (1997)’s momentum
factor, the Schneider et al. (2020) ex-ante coskewness risk factor, and Bali et al. (2017)
MAX factor. This analysis helps assess the impact of factor inclusion on alpha.

Lastly, we consider the out-of-sample performance of the ex-ante risk-timing strategy
implemented based on “aggregate-level risk timing,” and report out-of-sample forecast
errors based on the AR(1) model, similar to Table 3.12 in the main paper.

TABLE A.1: Performance measures for equally-weighted portfolios with aggregate-
level risk timing

This table reports the average monthly Sharpe, Sortino, and Calmar ratios for both the original (’Unscaled’) portfolios
and the corresponding RV, IV, MW, and GLB risk-managed portfolios, constructed using distinct methods. The sample
consists of 1,137 stocks. For “Firm-level risk timing”, each stock is first scaled by its corresponding RV, IV, MW, or GLB
(one at a time) and then grouped into an equal-weighted portfolio. Alternatively, for “Aggregate-level risk timing”, a
cross-sectional average of either squared RV, IV, MW, or GLB is first obtained (one at a time), and this average is used to
scale the equal-weighted portfolio return. The former results are already presented in Table 3.2 in the main paper and
are reproduced here for convenience. Panel A reports the results of the whole sample from January 1996 to December
2021, and Panels B and C do so for the sample period before or after January 2020, respectively.

Firm-level Aggregate-level

Unscaled RV IV MW GLB RV IV MW GLB

Panel A: January 1996 to December 2021

Excess Return 0.0094 0.0069 0.0143 0.0063 0.0090 0.0079 0.0101 0.0072 0.0064
Sharpe Ratio 0.1049 0.0844 0.1577 0.2035 0.1573 0.0886 0.1128 0.0804 0.0712

Sortino 0.1457 0.1222 0.2324 0.2747 0.1994 0.1211 0.1584 0.0966 0.0863
Calmar 0.4961 0.2771 0.6669 0.9203 0.7018 0.3491 0.4536 0.3535 0.2996

Panel B: January 1996 to December 2019

Excess Return 0.0086 0.0060 0.0142 0.0063 0.0089 0.0074 0.0100 0.0073 0.0061
Sharpe Ratio 0.1049 0.0779 0.1576 0.2057 0.1518 0.0863 0.1122 0.0797 0.0659

Sortino 0.1138 0.0978 0.2114 0.2690 0.1947 0.1100 0.1489 0.0974 0.0817
Sharpe Ratio 0.5073 0.2697 0.6832 0.9455 0.6936 0.3481 0.4631 0.3501 0.2702

Panel C: January 2020 to December 2021

Excess Return 0.0190 0.0183 0.0165 0.0063 0.0106 0.0139 0.0109 0.0054 0.0100
Sharpe Ratio 0.1211 0.1382 0.1567 0.1777 0.2557 0.1104 0.1171 0.1133 0.2041

Sortino 0.1869 0.2079 0.1709 0.1813 0.1836 0.1378 0.1217 0.0612 0.1100
Calmar 0.3620 0.3655 0.4718 0.6182 0.7998 0.3606 0.3406 0.3944 0.6526
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TABLE A.2: Sharpe ratios for leverage-sorted portfolios with aggregate-level risk tim-
ing

This table is similar to the Sharpe ratio panel in Table 3.3 in the main paper but it refers to the results for the aggregate-
level risk timing. It includes the monthly Sharpe ratios of the original portfolios and those managed by RV, IV, MW,
and GLB for each leverage quartile portfolio. The left side and right side of the table report the Sharpe ratios when we
use the firm-level and aggregate-level risk-timing approach, respectively. Panel A refers to the entire sample covering
January 1996 to December 2021. Panel B focuses on the period from January 1996 to December 2019 to eliminate the
unusually high uncertainty period of the pandemic and its impact on our strategy. Panel C repeats the analyses from
January 2020 to December 2021 to assess our trading strategy’s performance during heightened market risk periods.
The equally weighted leverage portfolio quartiles are: less than 25% is the quartile of firms with the lowest averaged
leverage (Low), from 25% to 50% is the quartile with the second lowest(Q2), from 50% to 75% is the quartile with the
second highest(Q3), and above 75% is the quartile of firms with the highest averaged leverage (High). The sample
includes 1,137 stocks.

Firm-level Aggregate-level

Low Q2 Q3 High Low Q2 Q3 High

Panel A: January 1996 to December 2021

Unscaled 0.1348 0.1210 0.1022 0.0450 0.1348 0.1210 0.1022 0.0450
RV 0.1001 0.0940 0.0818 0.0525 0.1155 0.0964 0.0863 0.0377
IV 0.1742 0.1645 0.1456 0.1373 0.1336 0.1279 0.1105 0.0738

MW 0.1986 0.2135 0.1697 0.1699 0.0918 0.0952 0.0848 0.0602
GLB 0.1878 0.1528 0.1399 0.1352 0.0922 0.0901 0.0608 0.0394

Panel B: January 1996 to December 2019

Unscaled 0.1386 0.1229 0.1046 0.0353 0.1386 0.1229 0.1046 0.0353
RV 0.0936 0.0900 0.0771 0.0423 0.1105 0.0854 0.0911 0.0406
IV 0.1754 0.1652 0.1461 0.1346 0.1355 0.1276 0.1115 0.0684

MW 0.2030 0.2169 0.1687 0.1718 0.0920 0.0950 0.0854 0.0568
GLB 0.1864 0.1468 0.1339 0.1267 0.0885 0.0855 0.0564 0.0308

Panel C: January 2020 to December 2021

Unscaled 0.1336 0.1273 0.1046 0.1176 0.1336 0.1273 0.1046 0.1176
RV 0.1573 0.1312 0.1233 0.1368 0.1621 0.1934 0.0317 0.0182
IV 0.1647 0.1542 0.1389 0.1667 0.1129 0.1291 0.0962 0.1374

MW 0.1729 0.1698 0.1783 0.1481 0.0952 0.1245 0.0980 0.1434
GLB 0.2273 0.2474 0.2633 0.2805 0.1971 0.2112 0.1906 0.2181
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TABLE A.3: Sortino ratios for leverage-sorted portfolios with aggregate-level risk tim-
ing

This table is similar to the Sortino ratio panel in Table 3.3 in the main paper, but it refers to the results obtained by the
aggregate-level risk timing. The table includes the monthly Sortino ratios of the original portfolios and those managed
by RV, IV, MW, and GLB for each leverage quartile portfolio. The left side and right side of the table report the Sharpe
ratios when we use the firm-level and the aggregate-level risk-timing approach, respectively. Panel A refers to the entire
sample covering January 1996 to December 2021. Panel B focuses on the period from January 1996 to December 2019
to eliminate the unusually high uncertainty period of the pandemic and its impact on our strategy. Panel C repeats the
analyses from January 2020 to December 2021 to assess our trading strategy’s performance during heightened market
risk periods. The equally weighted leverage portfolio quartiles are: less than 25% is the quartile of firms with the lowest
averaged leverage (Low), from 25% to 50% is the quartile with the second lowest(Q2), from 50% to 75% is the quartile
with the second highest(Q3), and above 75% is the quartile of firms with the highest averaged leverage (High). The
sample includes 1,137 stocks.

Firm-level Aggregate-level

Low Q2 Q3 High Low Q2 Q3 High

Panel A: January 1996 to December 2021

Unscaled 0.1976 0.1644 0.1432 0.0611 0.1976 0.1644 0.1432 0.0611
RV 0.1407 0.1333 0.1183 0.0798 0.1626 0.1267 0.1188 0.0500
IV 0.2491 0.2405 0.2131 0.2121 0.1854 0.1776 0.1561 0.1097

MW 0.2589 0.2808 0.2307 0.2243 0.1064 0.1142 0.1051 0.0780
GLB 0.2576 0.1921 0.1543 0.1710 0.1167 0.1115 0.0704 0.0469

Panel B: January 1996 to December 2019

Unscaled 0.1568 0.1303 0.1143 0.0393 0.1568 0.1303 0.1143 0.0393
RV 0.1081 0.1105 0.0991 0.0573 0.1358 0.0997 0.1219 0.0521
IV 0.2260 0.2193 0.1988 0.1938 0.1760 0.1670 0.1501 0.0956

MW 0.2509 0.2767 0.2215 0.2303 0.1079 0.1163 0.1080 0.0742
GLB 0.2593 0.1859 0.1503 0.1611 0.1147 0.1083 0.0669 0.0372

Panel C: January 2020 to December 2021

Unscaled 0.2085 0.1868 0.1663 0.1659 0.2085 0.1868 0.1663 0.1659
RV 0.2760 0.1971 0.1801 0.1859 0.2357 0.2345 0.0313 0.0248
IV 0.1973 0.1692 0.1458 0.1687 0.1282 0.1247 0.0939 0.1388

MW 0.2427 0.1536 0.1696 0.0980 0.0629 0.0602 0.0438 0.0809
GLB 0.1472 0.1868 0.1637 0.2160 0.1017 0.1121 0.0894 0.1351
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TABLE A.4: Calmar ratios for leverage-sorted portfolios with aggregate-level risk tim-
ing

This table is similar to the Calmar ratio panel in Table 3.3 in the main paper but includes results for the aggregate-level
risk-timing approach. The table reports the monthly Calmar ratio of the original portfolios and those managed by
RV, IV, MW, and GLB for each leverage quartile portfolio. The left side and right side of the table report the Sharpe
ratios when we use the firm-level and aggregate-level risk-timing approach, respectively. Panel A refers to the entire
sample covering January 1996 to December 2021. Panel B focuses on the period from January 1996 to December 2019
to eliminate the unusually high uncertainty period of the pandemic and its impact on our strategy. Panel C repeats the
analyses from January 2020 to December 2021 to assess our trading strategy’s performance during heightened market
risk periods. The equally weighted leverage portfolio quartiles are: less than 25% is the quartile of firms with the lowest
average level of leverage (Low), from 25% to 50% is the quartile with the second lowest(Q2), from 50% to 75% is the
quartile with the second highest(Q3), and above 75% is the quartile of firms with the highest average level of leverage
(High). The sample includes 1,137 stocks.

Firm-level Aggregate-level

Low Q2 Q3 High Low Q2 Q3 High

Panel A: January 1996 to December 2021

Unscaled 0.6084 0.5997 0.5024 0.1979 0.6084 0.5997 0.5024 0.1979
RV 0.4232 0.3730 0.2771 0.0537 0.4064 0.4721 0.3185 0.1131
IV 0.8047 0.7223 0.6135 0.5030 0.5843 0.5690 0.4557 0.1649

MW 0.9820 1.0043 0.7176 0.7981 0.4929 0.4285 0.3443 0.0881
GLB 0.9443 0.6532 0.6803 0.6305 0.4166 0.3974 0.2824 0.0892

Panel B: January 1996 to December 2019

Unscaled 0.6287 0.6184 0.5180 0.1867 0.6287 0.6184 0.5180 0.1867
RV 0.4201 0.3739 0.2759 0.0324 0.4029 0.4571 0.3355 0.1169
IV 0.8270 0.7433 0.6313 0.5058 0.6044 0.5834 0.4695 0.1503

MW 1.0195 1.0282 0.7059 0.8158 0.5049 0.4282 0.3404 0.0612
GLB 0.9599 0.6442 0.6689 0.6090 0.3960 0.3734 0.2556 0.0414

Panel C: January 2020 to December 2021

Unscaled 0.3653 0.3756 0.3141 0.3325 0.3653 0.3756 0.3141 0.3325
RV 0.4611 0.3613 0.2927 0.3099 0.4480 0.6521 0.1140 0.0678
IV 0.5378 0.4706 0.3993 0.4697 0.3423 0.3967 0.2896 0.3396

MW 0.5325 0.7177 0.8581 0.5849 0.3494 0.4321 0.3907 0.4110
GLB 0.7582 0.7611 0.8172 0.8885 0.6631 0.6861 0.6040 0.6627
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TABLE A.5: Sharpe ratios for portfolios of financial and non-financial entities

This table reports the Sharpe ratios of reference financial and non-financial portfolios and their counterparts managed
by RV, IV, MW, and GLB to time risk. The left side and right side of the table report the Sharpe ratios when we use
the firm-level and aggregate-level risk-timing approach, respectively. We report our estimates for the entire sample
covering January 1996 to December 2021. The period from January 1996 to December 2019 isolates the unusually high
uncertainty period of the pandemic and its impact on our strategy. From January 2020 to December 2021, we test our
trading strategy’s performance during heightened market risk periods. The sample includes 190 financial companies
and 947 non-financial companies.

Firm-level Aggregate-level

Financial Non-financial Financial Non-financial

Full Sample January 1996 to December 2021

Unscaled 0.0974 0.0980 0.0974 0.1054
RV 0.0991 0.0803 0.0919 0.0871
IV 0.1595 0.1559 0.1295 0.1109

MW 0.1526 0.2030 0.1179 0.0794
GLB 0.1331 0.1605 0.0895 0.0693

Number of firms 190 947 190 947

January 1996 to December 2019

Unscaled 0.0952 0.0981 0.0952 0.1057
RV 0.0916 0.0740 0.0836 0.0851
IV 0.1567 0.1564 0.1266 0.1110

MW 0.1525 0.2050 0.1179 0.0792
GLB 0.1235 0.1563 0.0824 0.0646

January 2020 to December 2021

Unscaled 0.1226 0.1120 0.1226 0.1205
RV 0.1649 0.1322 0.1607 0.1069
IV 0.1884 0.1493 0.1626 0.1082

MW 0.1508 0.1781 0.1599 0.1028
GLB 0.3008 0.2398 0.2278 0.1979
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TABLE A.6: Sharpe ratios for size-sorted portfolios

This table reports the Sharpe ratios of the size quartile portfolios and their counterparts managed by RV, IV, MW,
and GLB to time risk. The left and right sides of the table report the Sharpe ratios when we use the firm-level and
aggregate-level risk-timing approach, respectively, as defined in Table 3.3 in the main paper. We report our estimates
for the entire sample covering January 1996 to December 2021. The period from January 1996 to December 2019 isolates
the unusually high uncertainty period of the pandemic and its impact on our strategy. From January 2020 to December
2021, we test our trading strategy’s performance during heightened market risk periods. The equally-weighted size
portfolio quartiles are: less than 25% is the quartile of firms with the lowest averaged size (Low), from 25% to 50% is
the quartile with the second lowest(Q2), from 50% to 75% is the quartile with the second highest(Q3), and above 75%
is the quartile of firms with the highest averaged size (High). The sample includes 1,137 stocks.

Firm-level Aggregate-level

Low Q2 Q3 High Low Q2 Q3 High

Full Sample January 1996 to December 2021

Unscaled 0.0241 0.1144 0.1271 0.1308 0.0241 0.1144 0.1271 0.1308
RV 0.0069 0.0954 0.1025 0.1062 0.0032 0.0890 0.1057 0.1088
IV 0.1041 0.1679 0.1683 0.1677 0.0315 0.1231 0.1320 0.1424

MW 0.1915 0.2054 0.1534 0.1985 0.0169 0.1001 0.0933 0.1231
GLB 0.1082 0.1762 0.1626 0.1561 0.0025 0.0784 0.0890 0.1107

January 1996 to December 2019

Unscaled 0.0130 0.1164 0.1309 0.1359 0.0130 0.1164 0.1309 0.1359
RV -0.0052 0.0898 0.0979 0.1043 -0.0039 0.0816 0.1047 0.1093
IV 0.1006 0.1683 0.1705 0.1679 0.0284 0.1241 0.1328 0.1412

MW 0.1925 0.2086 0.1544 0.1970 0.0159 0.0997 0.0930 0.1198
GLB 0.0990 0.1703 0.1589 0.1508 -0.0010 0.0738 0.0845 0.1049

January 2020 to December 2021

Unscaled 0.1049 0.1195 0.1228 0.1247 0.1049 0.1195 0.1228 0.1247
RV 0.1175 0.1444 0.1465 0.1329 0.1024 0.1571 0.1232 0.1281
IV 0.1466 0.1630 0.1455 0.1647 0.0804 0.1101 0.1195 0.1524

MW 0.1748 0.1655 0.1511 0.2114 0.0634 0.1203 0.1262 0.1970
GLB 0.2608 0.2734 0.2371 0.2555 0.1177 0.1905 0.2144 0.2503
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TABLE A.7: Sharpe ratios for credit rating portfolios

This table reports the Sharpe ratios of credit-rating portfolios and their counterparts managed by RV, IV, MW, and GLB
to time risk. The left and right sides of the table report the Sharpe ratios when we use the firm-level and aggregate-
level risk-timing approach, respectively, as defined in Table 3.3 in the main paper. We report our estimates for the
entire sample covering January 1996 to December 2021. The period from January 1996 to December 2019 isolates the
unusually high uncertainty period of the pandemic and its impact on our strategy. From January 2020 to December
2021, we test our trading strategy’s performance during heightened market risk periods. As reported, the credit ratings
from S&P, Fitch and Moody’s are obtained from Bloomberg. The sample includes 722 firms. The remaining 415 firms
are either not rated or do not have credit rating data available.

Full Sample January 1996 to December 2021

Firm-level

AAA AA A BBB BB B CCC

Unscaled 0.0263 0.1667 0.1317 0.1288 0.1015 0.0353 -0.0666
RV 0.0494 0.1253 0.0996 0.0986 0.0775 0.0091 0.0027
IV 0.1273 0.1832 0.1675 0.1612 0.1508 0.1084 0.0484

MW 0.0890 0.1648 0.1888 0.1478 0.2002 0.1616 0.0320
GLB 0.1496 0.1750 0.1543 0.1436 0.1419 0.1103 0.0922

Number of firms 4 27 175 344 116 51 5
Aggregate-level

Unscaled 0.0263 0.1667 0.1317 0.1288 0.1015 0.0353 -0.0666
RV 0.0425 0.1138 0.1045 0.1043 0.0801 0.0020 0.0215
IV 0.0966 0.1596 0.1379 0.1325 0.1197 0.0734 -0.0006

MW 0.0038 0.1147 0.1097 0.0979 0.1041 0.0984 0.1095
GLB 0.1100 0.1724 0.0988 0.0778 0.0809 0.0546 0.0399

Number of firms 4 27 175 344 116 51 5

January 1996 to December 2019

Firm-level

Unscaled 0.0342 0.1786 0.1366 0.1329 0.0968 0.0275 -0.0725
RV 0.0439 0.1344 0.0975 0.0933 0.0692 -0.0002 0.0054
IV 0.1200 0.1820 0.1678 0.1623 0.1496 0.1049 0.0537

MW 0.0924 0.1464 0.1855 0.1477 0.1997 0.1611 0.0336
GLB 0.1474 0.1666 0.1457 0.1387 0.1370 0.1115 0.0955

Aggregate-level

Unscaled 0.0342 0.1786 0.1366 0.1329 0.0968 0.0275 -0.0725
RV 0.0479 0.1214 0.1027 0.0998 0.0751 -0.0005 0.0284
IV 0.1041 0.1579 0.1372 0.1326 0.1180 0.0729 0.0022

MW 0.0075 0.0760 0.1042 0.0974 0.1048 0.1012 0.1144
GLB 0.1125 0.1642 0.0908 0.0724 0.0779 0.0546 0.0424

January 2020 to December 2021

Firm-level

Unscaled -0.0407 0.1358 0.1288 0.1240 0.1457 0.0981 -0.0536
RV 0.1052 0.1009 0.1263 0.1465 0.1470 0.1454 -0.0534
IV 0.2154 0.1956 0.1635 0.1483 0.1621 0.1881 -0.0675

MW 0.1521 0.3195 0.2273 0.1515 0.2064 0.3172 -0.0529
GLB 0.4050 0.3423 0.3151 0.2229 0.2468 0.0925 0.0414

Aggregate-level

Unscaled -0.0407 0.1358 0.1288 0.1240 0.1457 0.0981 -0.0536
RV -0.0245 0.1052 0.1348 0.1540 0.1290 0.0564 -0.0963
IV 0.0028 0.1788 0.1450 0.1290 0.1438 0.0970 -0.0630

MW -0.0510 0.3352 0.1643 0.1234 0.1423 0.1014 -0.0646
GLB 0.0923 0.3306 0.2424 0.2123 0.2165 0.0922 -0.0276
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Appendix 2. Spanning regression results

This appendix reports the regression coefficients with the inclusion of Fama–French–
Carhart four factors, Schneider et al. (2020) ex-ante skewness factors, and Bali et al.
(2017) MAX factor in Table A.8. This analysis is used to compare the factor inclusion ef-
fect on our alpha. This appendix also reports the spanning regression results similar to
Table 3.4 in the main paper but for the full sample, leverage-sorted quartile portfolios,
financial and non-financial portfolios, size-sorted quartile portfolios, and credit rating
portfolios , respectively.
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TABLE A.9: Spanning regressions for equally weighted portfolios with aggregate-level
risk timing

This table is similar to Table 3.4 in the main paper but includes aggregate-level results, reporting the estimation results
of univariate and multivariate spanning regressions of monthly excess returns for portfolios managed to time risk onto
those of the original portfolios. The sample includes 1,137 stocks. Panel A reports the regression results for the RV-, IV-,
MW-, and GLB-managed portfolios constructed by the firm-level or aggregate-level risk-timing approach, respectively.
Firm-level regressions include firm and month-fixed effects. Panel A.1 reports the results when regressions control
for the Fama and French (1993), Carhart (1997) and Schneider et al. (2020) risk factors. Panels B and C are similar to
Panel A but refer to pre- and post-pandemic periods, not accounting for the ex-ante coskewness risk factor due to data
limitation. Including the coskwness risk factor in Panel B yields similar results as those reported in Panel A. We do
not control for the ex-ante coskewness risk factor in Panel C due to data limitation. The alpha and appraisal ratios are
annualised. Robust standard errors are in parentheses. The R-squared is adjusted for the number of predictors. The
superscripts * * *, **, and * indicate statistical significance at the 1%, 5%, and 10%-confidence levels, respectively.

Firm-level Aggregate-level

RV IV MW GLB RV IV MW GLB

Panel A: January 1996 - December 2021

α -0.0033* 0.0478*** 0.0335*** 0.0420*** 0.0034 0.0231 0.0085 0.0124
(0.0020) (0.0017) (0.0023) (0.0021) (0.0356) (0.0302) (0.0442) (0.0503)

β 0.5926*** 0.6569*** 0.1829*** 0.3358*** 0.8130*** 0.8696*** 0.6912*** 0.5687***
(0.0013) (0.0011) (0.0015) (0.0015) (0.0331) (0.0280) (0.0410) (0.0467)

Adjusted R2 0.3522 0.4892 0.0351 0.1283 0.6598 0.7555 0.4761 0.3212
Appraisal Ratio -0.0101 0.1760 0.0900 0.1200 0.0188 0.1513 0.0380 0.0486

Panel A.1: Controlling for the Fama and French (1993), Carhart (1997) and Schneider et al. (2020) factors
α 0.0034* 0.0438*** 0.0345*** 0.0373*** 0.0136 0.0231 0.0112 -0.0047

(0.0021) (0.0017) (0.0024) (0.0022) (0.0366) (0.0314) (0.0461) (0.0524)
Adjusted R2 0.3568 0.4934 0.0357 0.1298 0.6684 0.7562 0.4737 0.3209

Appraisal Ratio 0.0104 0.1621 0.0926 0.1066 0.0762 0.1509 0.0498 -0.0184

Panel B: January 1996 - December 2019

α -0.0015 0.0510*** 0.0351*** 0.0449*** 0.0015 0.0209 0.0031 0.0026
(0.0020) (0.0017) (0.0024) (0.0023) (0.0360) (0.0297) (0.0446) (0.0521)

β 0.5956*** 0.6803*** 0.1927*** 0.3652*** 0.8488*** 0.9644*** 0.8259*** 0.6817***
(0.0014) (0.0012) (0.0017) (0.0016) (0.0366) (0.0302) (0.0453) (0.0530)

Adjusted R2 0.3459 0.4880 0.0365 0.1366 0.6517 0.7801 0.5361 0.3646
Appraisal Ratio -0.0089 0.1865 0.0927 0.1231 0.0083 0.1442 0.0142 0.0103

Panel B.1: Controlling for the Fama and French (1993) and Carhart (1997) factors
α 0.0035* 0.0537*** 0.0380*** 0.0439*** 0.0150 0.0368 0.0245 -0.0019

(0.0021) (0.0018) (0.0025) (0.0024) (0.0366) (0.0298) (0.0455) (0.0540)
Adjusted R2 0.3501 0.4941 0.0375 0.1388 0.6682 0.7959 0.5540 0.3715

Appraisal Ratio 0.0078 0.1975 0.1009 0.1212 0.0877 0.2636 0.1152 -0.0074

Panel C: January 2020 - December 2021

α -0.0080 0.0090** 0.0209*** 0.0194*** 0.0099 0.0057 0.0106 0.0775
(0.0080) (0.0049) (0.0080) (0.0049) (0.1641) (0.0896) (0.0746) (0.0992)

β 0.5716*** 0.4986*** 0.1156*** 0.1329*** 0.6921*** 0.5509*** 0.2374*** 0.1857***
(0.0042) (0.0026) (0.0042) (0.0026) (0.0885) (0.0483) (0.0402) (0.0535)

Adjusted R2 0.3951 0.5652 -0.0145 0.0686 0.7232 0.8486 0.5950 0.3241
Appraisal Ratio -0.0228 0.0406 0.0594 0.0895 0.0428 0.0455 0.1009 0.5564

Panel C.1: Controlling for the Fama and French (1993) and Carhart (1997) factors
α -0.0018 -0.0242*** 0.0104 0.0071* 0.0540 -0.0316 -0.0156 0.0621

(0.0083) (0.0052) (0.0086) (0.0052) (0.1756) (0.1013) (0.0871) (0.1159)
Adjusted R2 0.4331 0.5774 -0.0138 0.0833 0.7278 0.8339 0.5261 0.2092

Appraisal Ratio -0.0052 -0.1114 0.0292 0.0327 0.2364 -0.2401 -0.1379 0.4121
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TABLE A.10: Spanning regressions for equally weighted portfolios with aggregate-
level risk timing: the Global Financial Crisis

This table reports the estimation results of similar spanning regressions as those in Table A.9 but focused on the Global
Financial Crisis period from July 2007 to June 2009. The alpha and appraisal ratios are annualised. Robust standard
errors are in parentheses. The R-squared is adjusted for the number of predictors. The superscripts * * *, **, and *
indicate statistical significance at the 1%, 5%, and 10%-confidence levels, respectively.

Firm-level Aggregate-level

RV IV MW GLB RV IV MW GLB

July 2007 - June 2009

α -0.0066 0.0461*** 0.0275*** 0.0242*** 0.0212 0.0297 0.0261 0.0351
(0.0053) (0.0043) (0.0040) (0.0026) (0.0784) (0.0617) (0.0594) (0.0340)

β 0.2186*** 0.3059*** 0.0384*** 0.0484*** 0.2045*** 0.3069*** 0.0893*** 0.0405***
(0.0026) (0.0021) (0.0020) (0.0013) (0.0465) (0.0366) (0.0352) (0.0202)

Adjusted R2 0.1803 0.4212 -0.0285 0.0099 0.4433 0.7509 0.1910 0.1162
Appraisal Ratio, AR -0.0281 0.2384 0.1528 0.2064 0.1919 0.3417 0.3125 0.7338

Additional controls for Fama–French–Carhart four factors and Schneider et al. (2020) skewness
α 0.0570*** 0.0806*** 0.0405*** 0.0495*** 0.0061 -0.0033 -0.0027 0.0211

(0.0069) (0.0057) (0.0053) (0.0034) (0.0869) (0.0709) (0.0680) (0.0396)
Adjusted R2 0.1932 0.4301 -0.0272 0.0248 0.4610 0.7401 0.1621 0.0534

Appraisal Ratio, AR 0.2443 0.4200 0.2254 0.4248 0.0565 -0.0377 -0.0314 0.4259
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0.1895***
0.1317***

0.7103***
0.6066***

0.2837***
0.1785***

0.5150***
0.4769***

0.0811***
0.1140***

0.5281***
0.5090***

0.1939***
0.1616***
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-0.0503
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0.0032
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-0.4371
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0.0879
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arhart(1997)factors

α
0.5307***

0.3824***
0.2169***

0.1747***
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-0.0661
-0.0471

0.0505
0.4055***

0.3021***
0.0979***

0.1640***
-0.0348
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β
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TABLE A.14: Spanning regressions for industry portfolios

This table reports the univariate and multivariate predictive regressions of monthly excess returns for portfolios with
risk timing onto the original portfolio counterparts, similarly to Table 3.6 in the main paper but for industry portfolios.
The sample includes 1,137 stocks. It reports the regression results for the original portfolios and those managed by RV,
IV, MW, and GLB, constructed by the firm-level or aggregate-level risk-timing approach, respectively. The results when
regressions control for the Fama and French (1993) and Carhart (1997) four factors are also reported. The alpha and
appraisal ratios are annualised. The R-squared is adjusted for the number of regressors. The superscripts * * *, **, and *
indicate statistical significance at the 1%, 5%, and 10%-confidence levels, respectively.

Firm-level Aggregate-level

Fin RV IV MW GLB RV IV MW GLB

α 0.0143*** 0.0532*** 0.0214*** 0.0470*** 0.0229 0.0562 0.0678 0.0402
(0.0044) (0.0039) (0.0051) (0.0048) (0.0432) (0.0369) (0.0518) (0.0536)

β 0.5906*** 0.6225*** 0.0883*** 0.3335*** 0.7415*** 0.8181*** 0.5923*** 0.5520***
(0.0033) (0.0029) (0.0039) (0.0036) (0.0382) (0.0327) (0.0458) (0.0474)

Adjusted R2 0.3488 0.4348 0.0056 0.1244 0.5484 0.6682 0.3488 0.3025
Appraisal Ratio, AR 0.0483 0.2046 0.0623 0.1463 0.1046 0.2997 0.2582 0.1480

Additional controls for Fama-French-Carhart four factors and Schneider et al. (2020) skewness

α 0.0143*** 0.0460*** 0.0202*** 0.0412*** 0.0278 0.0490 0.0560 0.0252
(0.0046) (0.0040) (0.0054) (0.0050) (0.0436) (0.0380) (0.0542) (0.0558)

Adjusted R2 0.3569 0.4421 0.0060 0.1272 0.5778 0.6760 0.3432 0.3027
Appraisal Ratio, AR 0.0488 0.1779 0.0588 0.1286 0.1312 0.2643 0.2121 0.0926

Nfin RV IV MW GLB RV IV MW GLB

α -0.0068*** 0.0468*** 0.0363*** 0.0411*** 0.0007 0.0198 0.0065 0.0099
(0.0022) (0.0018) (0.0025) (0.0024) (0.0346) (0.0293) (0.0439) (0.0502)

β 0.5929*** 0.6624*** 0.1980*** 0.3362*** 0.8249*** 0.8775*** 0.6959*** 0.5707***
(0.0015) (0.0012) (0.0017) (0.0016) (0.0322) (0.0272) (0.0408) (0.0466)

Adjusted R2 0.3527 0.4982 0.0418 0.1290 0.6795 0.7692 0.4827 0.3236
Appraisal Ratio, AR -0.0205 0.1711 0.0962 0.1154 0.0039 0.1332 0.0292 0.0388

Additional controls for Fama-French-Carhart four factors and Schneider et al. (2020) skewness

α 0.0012 0.0434*** 0.0374*** 0.0365*** 0.0133 0.0199 0.0102 -0.0069
(0.0023) (0.0019) (0.0026) (0.0025) (0.0358) (0.0306) (0.0458) (0.0523)

Adjusted R2 0.3569 0.5019 0.0424 0.1303 0.6841 0.7689 0.4796 0.3229
Appraisal Ratio, AR 0.0035 0.1594 0.0993 0.1028 0.0763 0.1337 0.0458 -0.0271
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TABLE A.16: Spanning regressions for credit rating portfolios

This table reports the univariate and multivariate predictive regressions of monthly excess returns for portfolios with
risk timing onto the original portfolio counterparts, similarly to Table 3.6 in the main paper but for credit rating portfo-
lios. The sample includes 722 stocks. The results when regressions control for the Fama and French (1993) and Carhart
(1997) four factors are also reported. The alpha and appraisal ratios are annualised. The R-squared is adjusted for the
number of regressors. The superscripts * * *, **, and * indicate statistical significance at the 1%, 5%, and 10%-confidence
levels, respectively.

Firm-level Aggregate-level

AAA RV IV MW GLB RV IV MW GLB

α 0.0632 0.1205*** 0.0420 0.1253** 0.0454 0.1268** -0.0037 0.1607**
(0.0528) (0.0445) (0.0498) (0.0494) (0.0744) (0.0586) (0.0922) (0.0807)

β 0.5690*** 0.3587*** 0.0216 0.1066*** 0.6210*** 0.7855*** 0.2288*** 0.5232***
(0.0234) (0.0197) (0.0220) (0.0219) (0.0446) (0.0351) (0.0553) (0.0484)

Adjusted R2 0.3206 0.2076 -0.0010 0.0148 0.3836 0.6158 0.0493 0.2714
Appraisal Ratio, AR 0.1229 0.2774 0.0865 0.2603 0.1200 0.4245 -0.0079 0.3906

Additional controls for Fama-French-Carhart four factors and Schneider et al. (2020) skewness

α 0.0695 0.1108** 0.0333 0.1484*** 0.0419 0.1319** -0.0127 0.1589*
(0.0555) (0.0464) (0.0522) (0.0519) (0.0780) (0.0611) (0.0966) (0.0849)

Adjusted R2 0.3210 0.2228 0.0058 0.0156 0.3799 0.6170 0.0432 0.2618
Appraisal Ratio, AR 0.1352 0.2575 0.0688 0.3084 0.1102 0.4421 -0.0270 0.3839

AA RV IV MW GLB RV IV MW GLB

α -0.0138 0.0292*** 0.0389*** 0.0375*** -0.0224 0.0195 0.0341 0.0818
(0.0107) (0.0087) (0.0138) (0.0129) (0.0380) (0.0334) (0.0550) (0.0514)

β 0.6575*** 0.7653*** 0.1361*** 0.3572*** 0.8034*** 0.8515*** 0.5031*** 0.5906***
(0.0082) (0.0067) (0.0106) (0.0099) (0.0339) (0.0298) (0.0491) (0.0458)

Adjusted R2 0.4333 0.6081 0.0163 0.1311 0.6443 0.7242 0.2507 0.3467
Appraisal Ratio, AR -0.0513 0.1330 0.1122 0.1155 -0.1172 0.1165 0.1234 0.3167

Additional controls for Fama-French-Carhart four factors and Schneider et al. (2020) skewness

α 0.0107 0.0365*** 0.0427*** 0.0381*** 0.0099 0.0311 0.0587 0.0762
(0.0111) (0.0091) (0.0144) (0.0135) (0.0387) (0.0347) (0.0566) (0.0535)

Adjusted R2 0.4424 0.6109 0.0166 0.1335 0.6601 0.7242 0.2667 0.3462
Appraisal Ratio, AR 0.0404 0.1669 0.1231 0.1174 0.0533 0.1852 0.2144 0.2951

A RV IV MW GLB RV IV MW GLB

α -0.0084* 0.0420*** 0.0312*** 0.0429*** -0.0013 0.0279 0.0259 0.0267
(0.0044) (0.0036) (0.0056) (0.0051) (0.0372) (0.0327) (0.0475) (0.0518)

β 0.6441*** 0.7484*** 0.1310*** 0.3799*** 0.8065*** 0.8536*** 0.6539*** 0.5650***
(0.0033) (0.0027) (0.0042) (0.0038) (0.0336) (0.0296) (0.0430) (0.0469)

Adjusted R2 0.4157 0.5847 0.0149 0.1517 0.6493 0.7277 0.4257 0.3171
Appraisal Ratio, AR -0.0298 0.1795 0.0866 0.1299 -0.0067 0.1690 0.1080 0.1021

Additional controls for Fama-French-Carhart four factors and Schneider et al. (2020) skewness

α 0.0092** 0.0449*** 0.0342*** 0.0396*** 0.0304 0.0354 0.0460 0.0183
(0.0046) (0.0038) (0.0059) (0.0054) (0.0374) (0.0339) (0.0490) (0.0538)

Adjusted R2 0.4251 0.5890 0.0153 0.1533 0.6735 0.7301 0.4351 0.3185
Appraisal Ratio, AR 0.0329 0.1929 0.0950 0.1199 0.1675 0.2154 0.1931 0.0699

BBB RV IV MW GLB RV IV MW GLB

α -0.0132*** 0.0337*** 0.0220*** 0.0333*** -0.0016 0.0225 0.0115 0.0068
(0.0031) (0.0026) (0.0041) (0.0038) (0.0351) (0.0307) (0.0454) (0.0513)

β 0.6700*** 0.7476*** 0.1529*** 0.3561*** 0.8238*** 0.8672*** 0.6776*** 0.5554***
(0.0023) (0.0019) (0.0029) (0.0027) (0.0323) (0.0283) (0.0418) (0.0472)

Adjusted R2 0.4511 0.5910 0.0216 0.1335 0.6775 0.7513 0.4574 0.3063
Appraisal Ratio, AR -0.0466 0.1416 0.0599 0.0970 -0.0092 0.1448 0.0502 0.0261

Additional controls for Fama-French-Carhart four factors and Schneider et al. (2020) skewness

α 0.0026 0.0377*** 0.0256*** 0.0330*** 0.0243 0.0258 0.0216 -0.0093
(0.0033) (0.0027) (0.0043) (0.0040) (0.0354) (0.0320) (0.0473) (0.0534)

Adjusted R2 0.4592 0.5959 0.0222 0.1344 0.6971 0.7514 0.4569 0.3056
Appraisal Ratio, AR 0.0094 0.1595 0.0698 0.0961 0.1414 0.1657 0.0941 -0.0359

BB RV IV MW GLB RV IV MW GLB

α -0.0110* 0.0443*** 0.0506*** 0.0348*** -0.0022 0.0349 0.0396 0.0250
(0.0063) (0.0054) (0.0076) (0.0072) (0.0356) (0.0314) (0.0457) (0.0501)

β 0.6235*** 0.7060*** 0.2470*** 0.3537*** 0.8114*** 0.8563*** 0.6593*** 0.5660***
(0.0041) (0.0035) (0.0049) (0.0047) (0.0333) (0.0293) (0.0427) (0.0468)

Adjusted R2 0.3904 0.5349 0.0627 0.1345 0.6572 0.7323 0.4328 0.3181
Appraisal Ratio, AR -0.0330 0.1576 0.1271 0.0917 -0.0120 0.2192 0.1709 0.0985

Additional controls for Fama-French-Carhart four factors and Schneider et al. (2020) skewness

α -0.0018 0.0427*** 0.0570*** 0.0344*** 0.0077 0.0291 0.0361 0.0053
(0.0066) (0.0056) (0.0080) (0.0076) (0.0364) (0.0325) (0.0475) (0.0521)

Adjusted R2 0.3962 0.5404 0.0642 0.1361 0.6695 0.7349 0.4325 0.3182
Appraisal Ratio, AR -0.0056 0.1530 0.1433 0.0907 0.0435 0.1835 0.1558 0.0210

B RV IV MW GLB RV IV MW GLB

α -0.0234** 0.0584*** 0.0606*** 0.0477*** -0.0267 0.0499 0.0872* 0.0413
(0.0116) (0.0097) (0.0129) (0.0122) (0.0423) (0.0358) (0.0511) (0.0552)

β 0.5552*** 0.6495*** 0.2338*** 0.3393*** 0.7551*** 0.8300*** 0.6066*** 0.5115***
(0.0066) (0.0055) (0.0073) (0.0069) (0.0373) (0.0317) (0.0452) (0.0488)

Adjusted R2 0.3090 0.4649 0.0577 0.1290 0.5688 0.6880 0.3659 0.2592
Appraisal Ratio, AR -0.0580 0.1723 0.1352 0.1123 -0.1243 0.2733 0.3349 0.1468

Additional controls for Fama-French-Carhart four factors and Schneider et al. (2020) skewness

α -0.0219* 0.0521*** 0.0635*** 0.0488*** -0.0354 0.0424 0.0834 0.0202
(0.0122) (0.0102) (0.0135) (0.0128) (0.0437) (0.0370) (0.0533) (0.0574)

Adjusted R2 0.3125 0.4687 0.0590 0.1319 0.5791 0.6956 0.3700 0.2681
Appraisal Ratio, AR -0.0544 0.1544 0.1418 0.1152 -0.1668 0.2351 0.3213 0.0721

CCC RV IV MW GLB RV IV MW GLB

α 0.0256 0.1054*** 0.0722 0.1290*** 0.1038 0.0806 0.2098*** 0.1057
(0.0437) (0.0389) (0.0486) (0.0470) (0.0635) (0.0516) (0.0785) (0.0777)

β 0.5446*** 0.6119*** 0.2540*** 0.3284*** 0.6821*** 0.8032*** 0.4229*** 0.4423***
(0.0212) (0.0189) (0.0235) (0.0228) (0.0416) (0.0338) (0.0515) (0.0509)

Adjusted R2 0.2961 0.4017 0.0664 0.1146 0.4636 0.6439 0.1762 0.1931
Appraisal Ratio, AR 0.0538 0.2486 0.1365 0.2520 0.3219 0.3072 0.5256 0.2676

Additional controls for Fama-French-Carhart four factors and Schneider et al. (2020) skewness

α 0.0103 0.0776* 0.0775 0.1114** 0.0898 0.0696 0.2088** 0.0979
(0.0459) (0.0408) (0.0511) (0.0495) (0.0670) (0.0541) (0.0826) (0.0821)

Adjusted R2 0.2975 0.4045 0.0643 0.1134 0.4591 0.6445 0.1711 0.1816
Appraisal Ratio, AR 0.0216 0.1836 0.1464 0.2175 0.2772 0.2656 0.5214 0.2460
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0.6336
0.5434

0.5178
0.3909

0.3145
0.2188

0.0798
-0.2371

-1.0269
0.5791

PanelA
.1:C

ontrolling
for

the
C

arhart(1997)and
Schneider

etal.(2020)factors
α

0.1512**
0.1180*

0.0864
0.0867

0.0511
0.0235

-0.0017
-0.0287

-0.0905
-0.3548***

0.0390*
(0.0674)

(0.0657)
(0.0650)

(0.0637)
(0.0644)

(0.0626)
(0.0621)

(0.0602)
(0.0659)

(0.0738)
(0.0204)

A
djusted

R
2

0.0719
0.0647

0.0722
0.0704

0.0984
0.1324

0.1592
0.2642

0.3313
0.5395

0.1233
A

ppraisalR
atio

0.5508
0.4415

0.3268
0.3341

0.1949
0.0923

-0.0067
-0.1172

-0.3371
-1.1813

0.4693

PanelB:January
1996

-D
ecem

ber
2019

α
0.2096***

0.1765***
0.1472**

0.1339**
0.0961*

0.0713
0.0517

0.0065
-0.0810

-0.3404***
0.0542***

(0.0616)
(0.0596)

(0.0585)
(0.0570)

(0.0570)
(0.0561)

(0.0554)
(0.0537)

(0.0573)
(0.0634)

(0.0192)
A

djusted
R

2
0.0503

0.0368
0.0366

0.0387
0.0597

0.0783
0.1010

0.1822
0.2577

0.4529
0.0599

A
ppraisalR

atio
0.7045

0.6132
0.5214

0.4866
0.3491

0.2633
0.1935

0.0249
-0.2927

-1.1115
0.5847

PanelB.1:C
ontrolling

for
the

C
arhart(1997)factor

α
0.1913***

0.1603***
0.1311**

0.1237**
0.0841

0.0623
0.0460

0.0089
-0.0678

-0.3175***
0.0481**

(0.0619)
(0.0599)

(0.0588)
(0.0575)

(0.0574)
(0.0567)

(0.0560)
(0.0543)

(0.0577)
(0.0635)

(0.0193)
A

djusted
R

2
0.0617

0.0459
0.0461

0.0407
0.0636

0.0792
0.0995

0.1796
0.2620

0.4635
0.0733

A
ppraisalR

atio
0.6469

0.5595
0.4665

0.4502
0.3062

0.2302
0.1721

0.0343
-0.2458

-1.0470
0.5226

PanelC
:January

2020
-D

ecem
ber

2021

α
0.2193

0.2173
0.1888

0.2091
0.1504

0.1535
0.0010

0.0240
-0.0759

-0.2666
0.0434

(0.3569)
(0.3401)

(0.3477)
(0.3434)

(0.3306)
(0.3433)

(0.3389)
(0.3361)

(0.3353)
(0.3487)

(0.1205)
A

djusted
R

2
0.5267

0.4981
0.4505

0.4149
0.4315

0.3862
0.3583

0.3404
0.2602

0.2064
0.4738

A
ppraisalR

atio
0.4689

0.4876
0.4143

0.4647
0.3471

0.3414
0.0022

0.0545
-0.1729

-0.5836
0.2746

PanelC
.1:C

ontrolling
for

the
C

arhart(1997)factor
α

0.2371
0.2437

0.2176
0.2332

0.1804
0.1881

0.0303
0.0417

-0.0591
-0.2592

0.0509
(0.3666)

(0.3468)
(0.3540)

(0.3510)
(0.3356)

(0.3471)
(0.3445)

(0.3451)
(0.3444)

(0.3597)
(0.1234)

A
djusted

R
2

0.5068
0.4845

0.4375
0.3962

0.4213
0.3803

0.3449
0.3133

0.2291
0.1661

0.4547
A

ppraisalR
atio

0.4968
0.5397

0.4720
0.5102

0.4128
0.4164

0.0677
0.0927

-0.1317
-0.5536

0.3164
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Appendix 3. Out-of-sample forecast errors

This appendix reports the out-of-sample forecast errors similar to Table 3.12 in the main
paper but uses the AR(1) model.

TABLE A.19: Out-of-sample forecast errors

As an extension of Table 3.12 in the main paper, this table reports the AR(1) forecast errors based on the data from the start of 1996
to the end of 2021, which includes the information on the pandemic shock.

January 1996 to December 2019 January 1996 to December 2021

RV IV MW GLB RV IV MW GLB

RMSE 0.0763 0.0899 0.0304 0.0580 0.0831 0.0917 0.0310 0.0523
MAE 0.0538 0.0671 0.0201 0.0372 0.0575 0.0685 0.0204 0.0334

MAPE 1.4765 3.0243 3.2232 2.2526 1.6309 3.2212 3.1833 2.7972
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TABLE B.1: Panel Regressions (Connectedness)

This table presents similar results to Table 4.2 but uses stock connectedness levels to replace CEWC measures and
reports the coefficients for the primary lagged independent variables. Stock connectedness level is computed as the
cross-sectional average of Antón and Polk (2014) common ownership measure in Equation (4.1). The lag is determined
by the Akaike information criterion. Illiquidity is proxied as in Equation (4.3). The sample includes 608 stocks from 1999
Q1 to 2022 Q2. Robust standard errors are in parentheses. The superscripts ***,**, and * indicate statistical significance
at the 1%, 5%, and 10% levels, respectively.

Illiquidity Connectedness

(1) (2) (1) (2)

Panel A: Predictive regressions

Connectedness 4.9693*** 4.8637*** Illiquidity 0.1068*** 0.1048***
(0.0194) (0.0198) (0.0004) (0.0004)

Volatility -42.6787*** Volatility -5.2991***
(1.9212) (0.2920)

VIX 0.0733*** VIX 0.0359***
(0.0095) (0.0014)

Money Shock 0.0001*** Money Shock 0.0000***
(0.0001) (0.0000)

Panel B: VAR regressions

Connectedness 1.6908*** Connectedness 0.7997***
(0.1510) (0.0202)

Illiquidity 0.6056*** Illiquidity 0.0031
(0.0230) (0.0029)

Volatility 83.1468*** Volatility -1.7725***
(6.3763) (0.4108)

VIX 0.0306*** VIX 0.0013*
(0.0066) (0.0007)

Money shock -0.0001*** Money shock 0.0000***
(0.0000) (0.0000)
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TABLE B.2: Connectedness Sorts

This table reports similar results to Table 4.3 but uses stock connectedness levels to replace CEWC measures. Stock
connectedness level is computed as the cross-sectional average of Antón and Polk (2014) common ownership measure
in Equation (4.1). Illiquidity is computed as in Equation (4.3). Size is proxied by the natural logarithm of stock market
capitalisation. The excess returns are stocks’ quarterly realised excess returns. The four-factor alphas are generated
by regressions based on daily data in each quarter. 608 stocks from 1999 Q1 to 2022 Q2 are included in the portfolios.
QL-QH represents the excess return improvement from the lowest to the highest connectedness quartiles. The t-statistic
denotes the significance of the QL-QH excess returns.

Connectedness Illiquidity Size Realised Return α

QL 0.0855 16.8543 0.0302 0.0201
Q2 0.0713 16.9907 0.0247 0.0097
Q3 0.0617 17.1808 0.0256 0.0043
QH 0.0553 17.3942 0.0260 -0.0111

QL-QH 0.0302 -0.5400 0.0041 0.0312
t-stat. 2.8416 2.2813
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TABLE B.3: Fama-Macbeth regression (Connectedness)

This table reports similar results to Table 4.4 but uses stock connectedness levels to replace CEWC measures. Stock
connectedness level is computed as the cross-sectional average of Antón and Polk (2014) common ownership measure
in Equation (4.1). Robust standard errors are in parentheses. The sample includes 608 stocks spanning from 1999 Q1 to
2022 Q2. The superscripts ***,**, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

(1) (2)

βConnectedness -0.0105* -0.0237***
(0.0055) (0.0059)

βVol -4.5237***
(0.6732)

βMKT 0.0122*
(0.0066)

βSMB -0.0006
(0.0020)

βHML -0.0007
(0.0017)

βUMD -0.0010
(0.0031)

Constant -0.0280 0.0014
(0.0239) (0.0016)

AdjustedR2 0.0009 0.1869
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TABLE B.4: Connectedness and stock returns

This table reports similar results to Table 4.6 but uses stock connectedness levels to replace CEWC measures. Stock
connectedness level is computed as the cross-sectional average of Antón and Polk (2014) common ownership measure
in Equation (4.1). Robust standard errors are in parentheses. The R-squared is adjusted. The sample includes 608 stocks
spanning from 1999 Q1 to 2022 Q2. The superscripts * * *, **, and * indicate statistical significance at the 1%, 5%, and
10% levels, respectively

(1) (2) (3)

Connectedness 0.0121*** 0.0122*** 0.0118***
(0.0026) (0.0026) (0.0026)

MKT 0.0051*** 0.0018
(0.0012) (0.0013)

SMB -0.0117*** -0.0141***
(0.0022) (0.0022)

HML -0.0061*** -0.0091***
(0.0014) (0.0014)

UMD -0.0086***
(0.0012)

Constant -0.0121*** -0.0117*** -0.0070*
(0.0039) (0.0039) (0.0040)

Adjusted R2 0.0010 0.0020 0.0028
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TABLE B.5: Betting against connectedness

This table reports similar results to Table 4.8 but uses stock connectedness levels to replace CEWC measures. Stock
connectedness level is computed as the cross-sectional average of Antón and Polk (2014) common ownership measure
in Equation (4.1). The BAC denotes the betting-against-connectedness factor. BAC is constructed by putting a long
position on the lowest connectedness quartile portfolio and a short position on the rest of the portfolios. Stocks are
equally weighted. The portfolios are rebalanced each quarter. This table reports alphas, robust standard errors, adjusted
R-squared, and appraisal rations of Carhart (1997) four-factor regressions. Robust standard errors are in parentheses.
The superscripts ***,**, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Panel.A Betting Against Connectedness

Q1 Q2 Q3 Q4 BAC

α -0.0735*** -0.0558*** -0.0249 -0.0510*** 0.0675*
(0.0051) (0.0043) (0.0039) (0.0042) (0.0094)

Adjusted R2 0.7925 0.8288 0.8410 0.8067 0.7447
Appraisal Ratio -1.3544 -1.2356 -0.6071 -1.1401 0.6778
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FIGURE B.1: Impulse Response Function (Connectedness)

This figure displays the stock illiquidity or connectedness impulse responses to a one-standard-deviation
orthogonalised shock to the connectedness or illiquidity. The solid line indicates the estimated impulse
response, while the shades indicate the 95% confidence interval.

0

5

0

5

0 5 10 0 5 10

Illiquidity to illiquidity Illiquidity to connectedness

Connectedness to illiquidity Connectedness to connectedness

95% CI Orthogonalized IRF

Quarters after the shock

Full sample

0

5

0

5

0 5 10 0 5 10

Illiquidity to illiquidity Illiquidity to connectedness

Connectedness to illiquidity Connectedness to connectedness

95% CI Orthogonalized IRF

Quarters after the shock

Before Covid

0

2

4

6

0

2

4

6

0 5 10 0 5 10

Illiquidity to illiquidity Illiquidity to connectedness

Connectedness to illiquidity Connectedness to connectedness

95% CI Orthogonalized IRF

Quarters after the shock

After Covid



146 Chapter B. Additional Results in Liquidity of Central Stocks

FIGURE B.2: Impulse Response Function: The GFC (Connectedness)

This figure displays the same stock illiquidity or connectedness impulse responses to a one-standard-
deviation orthogonalised shock to the connectedness or illiquidity as those in Figure B.1 but focuses only
on the period excluding the Global Financial Crisis (GFC) and GFC only from 2007 Q3 to 2009 Q2. The
solid line indicates the estimated impulse response, while the shades indicate the 95% confidence interval.

0

2

4

0

2

4

0 5 10 0 5 10

Illiquidity to illiquidity Illiquidity to connectedness

Connectedness to illiquidity Connectedness to connectedness

95% CI Orthogonalized IRF

Quarters after the shock

Excluding GFC

0

1

2

3

4

0

1

2

3

4

0 5 10 0 5 10

Illiquidity to illiquidity Illiquidity to connectedness

Connectedness to illiquidity Connectedness to connectedness

95% CI Orthogonalized IRF

Quarters after the shock

GFC



147

FIGURE B.3: Local Projection Impulse Response Function (Connectedness)

This figure displays the response of stock illiquidity and connectedness to a one-unit shock in the VIX
index and money supply shock over a horizon of 10 quarters. The solid line indicates the estimated
impulse response, while the shades indicate the 95% confidence interval.
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TABLE C.1: Volatility timing premium correlations

This table reports the correlations between the premium created by RV-timing strategy and other market factors in-
cluding Max, FFR, FGI, and SGI which have been discussed in Section 5.3. The sample period is from March 2017 to
December 2023. The correlation table is made for BDMI, BDMLCI, BDMXLCI, and PSI in separate panels, respectively.
The p-values are reported in the parenthesis.

Panel A: BDMI
Premium Max FFR FGI SGI

Max -0.0524 1.0000
(0.0279)

FFR -0.0011 -0.1446 1.0000
(0.9629) (0.0000)

FGI -0.0541 0.1713 0.0159 1.0000
(0.0337) (0.0000) (0.5321)

SGI 0.0151 0.0252 0.0818 0.2149 1.0000
(0.5337) (0.2998) (0.0007) (0.0000)

Panel B: BDMLCI
Premium Max FFR FGI SGI

Max -0.0397 1.0000
(0.0960)

FFR 0.0020 -0.1411 1.0000
(0.9315) (0.0000)

FGI -0.0534 0.1853 0.0159 1.0000
(0.0359) (0.0000) (0.5321)

SGI 0.0138 0.0178 0.0818 0.2149 1.0000
(0.5687) (0.4629) (0.0007) (0.0000)

Panel C: BDMXLCI
Premium Max FFR FGI SGI

Max -0.0340 1.0000
(0.1538)

FFR -0.0104 -0.3203 1.0000
(0.6617) (0.0000)

FGI -0.0250 0.0709 0.0159 1.0000
(0.3268) (0.0054) (0.5321)

SGI -0.0170 0.0557 0.0818 0.2149 1.0000
(0.4842) (0.0217) (0.0007) (0.0000)

Panel D: PSI
Premium Max FFR FGI SGI

Max 0.0758 1.0000
(0.0015)

FFR -0.0112 -0.2983 1.0000
(0.6371) (0.0000)

FGI 0.0163 0.1487 0.0159 1.0000
(0.5219) (0.0000) (0.5321)

SGI -0.0025 -0.0312 0.0818 0.2149 1.0000
(0.9179) (0.1989) (0.0007) (0.0000)
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TABLE C.2: VIX sorts

This table reports similar results to Table 5.3 but for VIX-sorted quartile subsamples. Corresponding VIX data is pro-
vided by Federal Reserve Bank of St. Louis. The sample period is from March 2017 to December 2023. Panel A reports
the sorted results for the entire sample period, while Panel B and Panel C report similar results but for the period ex-
cluding the COVID and only for the COVID respectively.

BDMI BDMLCI BDMXLCI PSI

Unsclaed RV-managed Unsclaed RV-managed Unsclaed RV-managed Unsclaed RV-managed

Panel A: March 2017 to December 2023

Low 0.0059 0.0065 0.0051 0.0050 0.0068 0.0051 0.0001 0.0006
Q2 0.0008 -0.0008 0.0007 -0.0009 0.0010 -0.0014 0.0000 -0.0014
Q3 0.0024 0.0021 0.0024 0.0021 0.0028 0.0033 -0.0001 -0.0001

High -0.0012 0.0011 -0.0011 0.0013 -0.0033 -0.0023 -0.0013 -0.0018

H-L -0.0071 -0.0054 -0.0062 -0.0037 -0.0101 -0.0073 -0.0014 -0.0024

Panel B: Excluding January 2020 to December 2021

Low 0.0082 0.0069 0.0071 0.0047 0.0099 0.0054 -0.0010 -0.0017
Q2 -0.0010 0.0017 -0.0011 0.0015 -0.0014 0.0006 0.0002 0.0007
Q3 0.0005 0.0003 0.0005 0.0005 -0.0005 -0.0018 -0.0006 -0.0014

High -0.0040 -0.0047 -0.0039 -0.0046 -0.0058 -0.0076 -0.0013 -0.0025

H-L -0.0122 -0.0116 -0.0110 -0.0094 -0.0157 -0.0130 -0.0002 -0.0008

Panel C: January 2020 to December 2021

Low 0.0065 0.0052 0.0064 0.0051 0.0088 0.0074 0.0016 0.0014
Q2 0.0058 0.0040 0.0056 0.0037 0.0101 0.0063 -0.0002 0.0008
Q3 0.0051 0.0100 0.0053 0.0103 0.0023 0.0094 0.0022 0.0014

High 0.0005 0.0012 0.0006 0.0012 -0.0015 0.0010 -0.0017 -0.0010

H-L -0.0060 -0.0040 -0.0058 -0.0039 -0.0102 -0.0064 -0.0033 -0.0024
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H
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Panel A
:M

arch
2017

to
D

ecem
ber

2023

α
0.8392**

-0.3469
0.0554

0.4887
0.2251

0.5896*
-0.3630

0.0424
0.5255

0.1717
0.4980

-0.5708
0.2257

0.0556
0.0101

0.1334
-0.3394

-0.0213
-0.1638

-0.1262
(0.3342)

(0.4056)
(0.4769)

(0.4087)
(0.2018)

(0.3024)
(0.4053)

(0.4828)
(0.4173)

(0.2009)
(0.3046)

(0.4810)
(0.5826)

(0.4786)
(0.2374)

(0.4231)
(0.2822)

(0.1859)
(0.1408)

(0.1373)
β

0.5362***
0.7410***

0.7974***
0.7164***

0.6855***
0.5262***

0.7389***
0.8026***

0.7257***
0.6853***

0.4552***
0.8487***

0.8423***
0.7463***

0.6867***
0.5256***

0.3480***
0.3412***

0.8536***
0.4596***

(0.0259)
(0.0394)

(0.0442)
(0.0332)

(0.0174)
(0.0237)

(0.0394)
(0.0449)

(0.0339)
(0.0174)

(0.0187)
(0.0413)

(0.0452)
(0.0357)

(0.0173)
(0.0469)

(0.0379)
(0.0363)

(0.0450)
(0.0212)

A
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R
2

0.5001
0.4534

0.4322
0.5224

0.4696
0.5352

0.4521
0.4269

0.5181
0.4693

0.5798
0.4968

0.4482
0.5060

0.4713
0.2259

0.1636
0.1697

0.4576
0.2107

A
ppraisalR

atio,A
R

1.9399
-0.6579

0.0894
0.9200

0.4223
1.5040

-0.6889
0.0676

0.9688
0.3235

1.2615
-0.9130

0.2981
0.0895

0.0161
0.2420

-0.9250
-0.0879

-0.8999
-0.3478
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2020
to

D
ecem

ber
2021

α
0.7658**

0.6133*
-0.0287

-0.3113
0.1337

0.3997
0.5908

-0.0030
-0.3118

0.0575
0.3674

0.4655
-0.3304

-0.4878
-0.2463

-0.3458
0.1027

-0.3150*
-0.1955*

-0.2110
(0.3591)

(0.3694)
(0.5829)

(0.7086)
(0.2640)

(0.2678)
(0.3838)

(0.5844)
(0.7114)

(0.2604)
(0.3298)

(0.4099)
(0.6795)

(0.8119)
(0.3077)

(0.3943)
(0.4744)

(0.1848)
(0.1067)

(0.1764)
β

0.4657***
0.7378***

0.8944***
0.8722***

0.7031***
0.4470***

0.7495***
0.9044***

0.8744***
0.7003***

0.3981***
0.8564***

1.0054***
0.9822***

0.7080***
0.2969***

1.4132***
0.3182***

1.3413***
0.5389***

(0.0253)
(0.0379)

(0.0579)
(0.0585)

(0.0226)
(0.0191)

(0.0394)
(0.0584)

(0.0588)
(0.0224)

(0.0181)
(0.0386)

(0.0596)
(0.0629)

(0.0226)
(0.0400)

(0.0885)
(0.0441)

(0.0633)
(0.0295)

A
djusted

R
2

0.5293
0.5581

0.4423
0.4237

0.4383
0.6455

0.5464
0.4435

0.4223
0.4402

0.6148
0.6210

0.4860
0.4468

0.4414
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0.1454

0.5982
0.2116

A
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atio,A
R

1.9724
1.5224

-0.0452
-0.4034

0.2286
1.3767

1.4113
-0.0047

-0.4024
0.0998

1.0290
1.0412

-0.4456
-0.5533

-0.3613
-0.8029

0.1984
-1.5635

-1.7075
-0.5401

Panel C
:January

2020
to

D
ecem

ber
2021

α
0.2411

0.2380
1.5218*

0.2326
0.4786*

0.2387
0.2127

1.5448*
0.2181

0.4760*
0.5445

0.3430
1.8953*

0.4755
0.6733**

0.2461
0.2069**

-0.2173
0.0104

0.1184
(0.3040)

(0.2674)
(0.8487)

(0.5094)
(0.2664)

(0.3012)
(0.2639)

(0.9127)
(0.5110)

(0.2786)
(0.3441)

(0.3022)
(1.0339)

(0.6367)
(0.3269)

(0.3333)
(0.0838)

(0.5986)
(0.1867)

(0.1927)
β

0.6496***
0.5179***

0.7754***
0.5857***

0.6409***
0.6486***

0.5161***
0.7975***

0.5909***
0.6469***

0.5970***
0.4912***

0.8101***
0.6031***

0.6350***
0.2606***

0.1230***
1.0239***

0.6020***
0.3412***

(0.0287)
(0.0224)

(0.0727)
(0.0428)

(0.0231)
(0.0284)

(0.0222)
(0.0782)

(0.0431)
(0.0242)

(0.0266)
(0.0205)

(0.0738)
(0.0473)

(0.0235)
(0.0279)

(0.0118)
(0.1147)

(0.0474)
(0.0255)

A
djusted

R
2

0.8011
0.8111

0.4745
0.5980

0.5951
0.8037

0.8136
0.4520

0.5993
0.5769

0.7981
0.8226

0.4891
0.5642

0.5838
0.4042

0.4640
0.3862

0.5615
0.2547

A
ppraisalR

atio,A
R

1.1308
1.2788

2.5616
0.6485

1.2534
1.1296

1.1573
2.4189

0.6061
1.1920

2.2623
1.6429

2.6051
1.0607

1.4365
1.0409

3.5218
-0.5183

0.0793
0.4271
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