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Abstract

Self-written structures form dynamically in photosensitive media, in
which the refractive index changes permanently under the influence of
light that propagates through it. Self-written waveguides have been ob-
served in a variety of materials including glasses and polymers. Detailed
theoretical analysis of self-writing in germanosilicate glasses is in good
agreement with experiments. We review recent experimental and theoret-
ical progress in this field and indicate likely areas of future progress.

1 Introduction

1.1 Overview of self-writing

Consider a Gaussian beam incident on a uniform planar waveguide, as sketched
in Fig. 1.1(a). The beam initially diffracts in the plane of the waveguide, as
sketched by the solid lines, and the intensity is highest on the propagation axis.
A wide range of materials experience long-lasting refractive index changes in
response to illumination at specific wavelengths. This “photosensitivity” pro-
duces the largest changes in refractive index where the intensity is high, and so
the largest changes also occur on the propagation axis. Although the index can
sometimes decrease, we consider here only positive changes (see Section 1.2).
Hence the beam initially diffracts, but forms a region of raised refractive index
along the propagation axis. This reduces its diffraction, and the beam begins
to be confined to the channel it has created. If the writing beam is left on,
over time the refractive index distribution evolves into a fairly uniform chan-
nel waveguide along the propagation axis. A sketch of how the writing beam



becomes guided by the waveguide it creates in the photosensitive material is
shown in Fig. 1(b). This is a self-written waveguide because the beam of light
that creates the waveguide is subsequently guided by it.

Figure 1: (a) A beam incident on a photosensitive planar waveguide initially diffracts,
as sketched, and the refractive index begins to change in response to this illumination.
(b) Over time the beam is guided by the waveguide it has self-written in the glass.

The self-writing process described above is not restricted to the planar wave-
guide geometry described above, and waveguides can also be self-written in bulk
photosensitive materials which initially have a spatially uniform refractive in-
dex distribution. Although the details in the evolution of the waveguide differ
somewhat, a single-peaked input beam can again be used to form a channel in
bulk photosensitive material. .

Self-writing is a relatively new area of research; the first experiment was
done in 1993 by Frisken [1] in UV-cured epoxy, and since then self-writing has
been observed in a range of materials (see Section 6). Self-written waveguides
have a number of advantages over waveguides written using more conventional
techniques such as reactive ion etching or photolithography. In surface wave-
guides, roughness can lead to large scattering losses, which can be significantly
reduced by using buried waveguides [2]. However, many processing steps are
needed to form buried waveguides using conventional techniques. In contrast,
if the buffer layer is transparent at the writing wavelength, direct writing can
be used to form waveguides in a buried planar waveguide. The direct writing of
waveguides also have the advantage that no chemical processing is necessary and
they can be formed with commonly available lasers. Self-writing possesses all
the advantages of photosensitive direct writing: waveguides can be written di-
rectly in buried planar waveguides. Self-writing also has additional advantages;
for example, the simulations in Section 3 predict that self-written waveguides
typically have no sharp features, which reduces the scattering losses. Also, it is
potentially possible to form a complex waveguiding structure by tailoring the
writing beam.

The self-writing process that has been investigated in most detail uses ger-
manium doped glass, and in Section 1.2 we briefly review glass photosensitiv-
ity. As most applications of integrated photonics devices use silica-on-silicon



waveguides, glass waveguides are more likely to be easily integratéd than other
materials.

1.2 Photosensitivity in glass

In 1977, Hill et al. [3] launched 488 nm light into a germanium-doped optical
fibre. On the time-scale of a minute, the fibre reflectivity increased over a narrow
frequency band. Hill proposed that the fibre core is photosensitive, meaning that
the refractive index increases in response to illumination, changing most where
the intensity is highest. In this experiment, the incident light interferes with
the light that is Fresnel reflected at the fibre end, forming a periodic intensity
distribution. Photosensitivity leads to the patterning of a grating in the core.
The observed narrow spectral response is consistent with the formation of a
grating. Such Hill gratings are self-written, because the light is reflected by the
grating it creates.

Lam et al. [4] showed that photosensitivity at 488 nm is a two-photon ab-
sorption process. Following this, Meltz et al. [5] suggested that germanosilicate
glass should be highly photosensitive at the corresponding one-photon wave-
length of 244 nm. They externally exposed the side of a germanium-doped fibre
to two interfering plane waves at 244 nm. This forms a periodic intensity dis-
tribution in the core, and so a grating is imprinted via photosensitivity. Using
external writing, index changes of up to An = 3 x 1075 can be obtained in fibres
with 2—-4% GeO; [5], and the magnitude of An is nearly constant over a broad
wavelength range [6].

Germanosilicate planar waveguides are also photosensitive, which is partic-
ularly useful in integrated optics, as complex waveguide structures cannot be
easily adapted to the fibre geometry [7]. Photosensitivity has been used to pat-
tern gratings directly in planar germanosilicate waveguides formed by Plasma
Enhanced Chemical Vapour Deposition (PECVD) [8, 9]. This was done by ex-
ternally exposing the waveguide to a modulated intensity distribution using a
phase mask. Using 193nm light, index increases as large as An = 2.5 x 1073
have been induced, and similar changes are obtained at 244 nm [7]. Chalcogenide
glasses such as AsyS3 are an area of recent interest because very large photosen-
sitive refractive index changes can be achieved in these materials (Tanaka et al.
[10] report An = 10~2). It should be possible to create self-written waveguides
in any material which experiences long-lasting increases in refractive index in
response to illumination.

Hill et al. originally noted that photosensitivity is crucially dependent on
the presence of germanium in the core. However, in 1991 it was found that other
dopants can also lead to photosensitivity [11, 12]. It is thought that dopants
form absorption bands which allow energy to be coupled into the glass matrix.
Although it is thought that the resulting refractive index change results from
mechanisms that occur due to this coupling [13], these mechanisms are not
completely understood. The details of the photosensitivity mechanism are not
discussed in this review (see for example the review by Douay et al. [14] for a
comprehensive review of photosensitivity and photosensitivity mechanisms).
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Photosensitive refractive index changes in glass are long lasting, and al-
though heating accelerates the aging of photosensitive index changes, for prac-
tical purposes they can be considered to be effectively permanent. For example,
at room temperature a grating with an initial reflectivity of 90% experiences
a decay in reflectivity of 1% in the first nine hours, and only another 1% over
the next 1000 years [15]. This permanency is the main reason why self-writing
differs from self-action effects such as photorefractive or spatial solitons (see
Section 6.6).

1.3 Outline of this review

Self-writing has now been observed in a range of light-sensitive materials, and
this review begins by describing the model that has been developed to explore
self-writing processes. Although the microscopic details of the index change
mechanisms vary significantly between the different materials used in these self-
writing experiments, the simple phenomenological model described in Section 2
can be adapted to apply to a broad range of materials.

Section 3 describes numerical simulations which are based on this phe-
nomenological model of self-writing. These simulations reveal that even the
formation of a simple channel is a rich and complex dynamical problem. By
altering the form of the writing beam, the theoretical work predicts that it is
possible to create other more complicated waveguide structures. Section 4 re-
views a range of theoretical techniques which have been developed to investigate
the details of the self-writing process.

The self-writing process that has been investigated most fully makes use
of a two-photon photosensitivity process in germanosilicate planar waveguides
(see Section 1.2), and this experimental work is described in Section 5. A
range of related self-writing processes have been observed in other light-sensitive
materials, and this work is described in Section 6.

2 Modelling self-writing

In this section a phenomenological model for self-writing is described. As this
model does not depend on any microscopic details of the photosensitivity pro-
cess, it should also apply to other materials well.

2.1 Geometries

Bulk materials In a bulk geometry, the refractive index is initially taken to
be uniform throughout. This geometry is shown in Fig. 2(a), where 2 points
in the propagation direction, and the transverse coordinates are =z and y. The
solid lines sketch the initial diffraction of a beam incident from the left.

The electric field (£) is taken to be monochromatic with frequency w. The
light is taken to be linearly polarised in the z-direction, say, and so

E(z,y, 2,t) = expli (nokoz — wt)] £(z,y, 2,t) & + c.c. (1)



(a) (b)

Figure 2: Diffraction of a single-peaked beam in (a) bulk and (b) planar geometries.

where £ is the electric field envelope amplitude, ng is the refractive index in the
unexposed structure and kg = w/c is the free space wavenumber.

Planar waveguide The planar waveguide geometry is shown in Fig. 2(b);
light is confined to the plane in the z-direction, and the refractive index is
initially uniform in the plane formed by the z- and y-axes.

The light is taken to be in a TM mode of the planar structure, and is again
taken to be monochromatic, so

E(z,y,2,t) = expli (nokoz — wt)] F(z) £y, 2, t) + c.c. (2)

where F (z), the modal field profile, which has # and 2 components. In the weak-
guidance approximation, the 2-component can be ignored, and this is done here.
The TM mode is chosen to correspond to the experiment in Section 5, and ﬁ(w)
is normalized such that the intensity can be written as I = ££* [16).

The photosensitive index changes that we consider here are small compared
with the index difference between the guiding layer and the surrounding layers.
Observations in Section 5 support this: the index step in the z-direction is
2.2 x 1072, whereas the photosensitive index change saturates at ~ 10~3. Hence
ﬁ(z) is virtually unaffected by the photosensitive index changes, and only one
transverse dimension, y, remains.

2.2 Description of light propagation

In general, light propagation is described by the vector wave equation. However,
if the beam varies only slowly under propagation, then the paraxial approxima-
tion can be used. Substituting Eq. (1) or Eq. (2) into the wave equation [17],

55 +ikomom—+ %Vfé‘ + k2noAn& + k2 An2E =0, (3)

where An = n(z,y,z2,t) — n(z,y,2,0) and n(z,y, 2,t) is the refractive index
deviation from n at time ¢, which is generally complex. In a bulk geometry,
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£ =E&(z,y,2,t),and VZ = ai:f + 6%25. In a planar geometry, £ = £(y, z,t), and
VZ= g’—;, and we assume that the field and index profiles are unaffected in the
z-direction [18]. In the planar geometry, the index change is averaged over z:

ffooo |F(z)|? An(z,y, 2,t) dz
- I @) do

An(y, z,1) ; (4)

a technique that is also used in the effective index method [17].

The paraxial approximation implies that the beam varies slowly with z, and
so the first term in Eq. (3) is negligible [19], and as An is small, the last term
can also be ignored. Hence the parazial wave equation is [18, 19]

ikonog + lVfé‘ + kgnoAnE + l’Com)(lg =0. (5)
0z 2 2
where the An is now taken to be real, and losses have been written explicitly; o
is the attenuation coefficient leading to a loss in dB per unit length of 4.343 .
The first term in Eq. (5) describes propagation, the second diffraction, the third
accounts for how photosensitive refractive index changes affect light propaga-
tion, and the last describes the effect of material loss. We refer to Section 2.3.2
for a discussion of modelling the material loss.
In the experiment in Section 5, a Gaussian writing beam is incident on the
input face (z = 0). Hence the initial conditions are

E(y,0,t) =& exp ( - y2/a2), E(z,y,0,t) = & exp ( —(z* + y2)/a2) (6)

for planar and bulk materials respectively, where a is the beam width, corre-
sponding to a full width at half maximum (FWHM) of v21n2a in the intensity.
For this profile, the paraxial approximation is valid when a >> A/(27) (other-
wise the beam diffracts too rapidly). Note that for these Gaussian beams the
Rayleigh range is [16]

ZR = k0n0a2/2. (7)

2.3 Modelling light-induced changes
2.3.1 Photosensitivity

When 488 nm light is used, the induced index change is proportional to the
squared writing power [4, 20], which suggests the local two-photon model [21, 22]

OAn
—— = AI°. 8
5t (8)
where I(z,t) is the local light intensity and A depends on material properties
[21]. Typically the index increases (4 > 0) [22]. Eq. (8) is a local model because
the index change only depends on the history of the illumination at that position.
Eq. (8) contains the ingredients necessary to describe the Hill grating results



[21]. However it cannot be completely correct, as the index increases without
bound, which is clearly unphysical.
By analogy with Eq. (8), it might be expected that the one-photon model

8An
should describe photosensitivity at 244 nm well. Indeed, Krug et al. [23] showed
that it can give good agreement with data. However, photosensitivity at 244 nm
seems to be rather more complex than at 488 nm, and it is not clear at present
how best to describe photosensitivity at 244nm. Different materials, fabri-
cation techniques, and even different writing wavelengths produce noticeable
differences to the photosensitivity of germanosilicate glass.

2.3.2 Other light-induced changes

The model as described thus far gives qualitative agreement with experiment,
both when losses are ignored [24, 25, 26] and when uniform, constant losses are
included [27]. However, in either case, the model’s quantitative predictions for
self-writing do not agree with self-writing observations in planar germanosili-
cate glass. To obtain good agreement with these observations, an exposure-
dependent loss must be included (see Section 5.3 and Ref. [28]). We assume
here that the loss evolves in the same way as the index, and the total loss can
thus be written as

o = ap + vkoAn, (10)

where o represents the constant loss and ~y is a proportionality factor. Equa-
tion (10) is the simplest model relating loss and index changes, and also fol-
lows from basic Kramers-Kronig arguments and the assumption that a common
mechanism underlies these changes. This model for the light-induced change to
the material loss is considered in Section 5.3. All discussions before then assume
no loss or a constant loss.

In addition to refractive index changes and loss, many photosensitive ma-
terials also exhibit luminescence which we discuss later as a characterisation
tool. Like the index and the loss, the strength of the luminescence can undergo
cumulative light-induced changes as well. We do not develop any quantitative
models of this process but do refer to it briefly in Section 5.4.

2.3.3 A phenomenological description of photosensitivity

Here a simple phenomenological model is used for photosensitivity. We assume
that the refractive index increases in response to illumination. Observations in
Section 5 are consistent with index increases, and so it is sufficient to model
index increases here.

The one-photon model in Eq. (9) is used to describe photosensitivity at
244nm. At 488nm, Eq. (8) is used, as in Refs [21] and [22]. Although these
models serve well when the index changes are small, it is sometimes necessary
to incorporate saturation effects. The index change saturates to Ang, and the
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increase in An slows exponentially as An, is approached. This model has been
used for saturation in a photopolymer [29], and it agrees with the experiments
at 488 nm by Hand et al. [20]. Hence the evolution of the refractive index is
described using

OAn An

o= aEe) (1- =), 11

o = anteey (1- o) (1)

For a one-photon photosensitivity process, p = 1, and for a two-photon process
p = 2. The real coefficient A, > 0 depends on p, the material properties and
the wavelength of the writing beam.

2.4 The model in dimensionless form

Self-writing can be described using Egs (5) and (11) along with an incident beam
profile. A Gaussian writing beam with width a is often used [Eqgs (6)]. Hence,
including the two parameters associated with the initial condition, there are five
free parameters (€, a, a, A, and An,). The number of independent variables
can be reduced using dimensionless variables. The length scale depends on the
beam width, and the time scale depends on the intensity, so we define X = z/a,
Y =y/a and E = £/&. Using the dimensionless variables:

Z = 2z/(konod?) (12a)
N = a2k§noAn (12b)
N, = azkgnoAns (12¢)
T = a’kinodp(EES)Pt (12d)
L = d’konoa = a’kinoyAn (12¢)
Egs (5) and (11) become
BOE 1_, iL
152+5VE+NE+—2—E—-0 (13)
and aN

where V2 = 5‘?};; for the planar geometry, or V? = 565—;—; + 5@};5 in bulk. The

input profile becomes
E(Y,0,T)=exp (-Y?) or E(X,Y,0,T)=exp(-X*-Y?), (15)

and the Rayleigh range is Zp = 1/2.

Using these coordinates, the system formed by Eqs (13), (14) and Eq. (15)
does not depend on a, A, or &, and the remaining parameters are N, and L.
This simplification makes the problem more tractable: more generally, for any
incident beam that can be described by two parameters, the parameter space is
reduced from five to two dimensions. If, in addition, both loss and saturation
can be ignored, there is only one problem to be solved, and this is approximately
valid in a wide variety of circumstances. In general, the system can always be
reformulated to remove 3 parameters.



3 Phenomenology of self-writing

Section 3.1 describes a numerical simulation technique which can be used to
explore the evolution of a self-written waveguide, and in Section 3.2 some results
for the planar two-photon process are presented. These are the results which
are most directly relevant to the experiment in Section 5. Although ultimately a
channel forms, the details of this evolution are surprisingly complex. The results
for the one-photon process are similar in many respects, and are presented in
Section 3.3 and Refs [24, 30]. In this section material loss is ignored; the effects
of losses are discussed in Section 5.

3.1 Numerical simulations

Self-writing is described by two partial differential equations [Eqs (13) and (14)],
along with an initial condition for the incident beam. The most straightforward
way to solve this system is using a numerical split-step method [17, 31] on a
grid within the material. This simulation is an important benchmark against
which the other results can be compared. Results of this numerical simulation
technique as applied to the self-writing process are given in Refs [30, 24, 32].
Two distinct processes comprise self-writing; the propagation of light, and
the evolution of the refractive index distribution. The first process occurs on the
time-scale of nanoseconds, whereas the second takes minutes (see Section 1.2).
The simulation described here takes advantage of this difference in time-scales
to separate these processes into two independent steps. Thus we first allow
light to propagate through the structure. Then we update the refractive index
distribution to account for the photosensitive refractive index change due to
this light distribution. Light is then propagated through this altered refractive
index structure, and so on. Our implementation is accurate to second order in
both the temporal step size and spatial step size in the propagation direction.

3.2 Two-photon results
3.2.1 Overview for p=2

Here a selection of contour plots detail how a self-written waveguide evolves
when p = 2 and the writing beam is taken to be Gaussian. Fig. 3 shows intensity
contour plots, and Fig. 4 shows the corresponding refractive index plots.

The beam is incident from the left, and the material is viewed from above.
The horizontal axis is the propagation direction (Z), the vertical axis is the
transverse direction (Y'). Although the contour levels are equally spaced, the
absolute levels vary between figures. Only the region of interest around the
propagation axis is shown; i.e. the transverse distance shown in the plots is
significantly less than that used in the calculations. The propagation distance
is Z = 2, corresponding to 4 Rayleigh ranges; this is equivalent to a distance of
about 2mm when a 8 pum writing beam at 488 nm is used, as in Section 5 [see
Eq. (12a)].



T=10.8

Figure 3: Intensity contours for p = 2.

As Fig. 3 shows that over time the beam becomes guided along the propaga-
tion axis by the refractive index change it induces in the material. The contour
plots show that a number of maxima form in the intensity distribution during
this process, and they are described in detail in Section 3.2.2. The first contour
plot in Fig. 4 is blank because the refractive index is initially uniform in the
plane. A maximum also forms in the index distribution. Over time the index
distribution beyond this maximum evolves into a channel waveguide.

3.2.2 Details of the evolution for p = 2

When the beam is switched on it diffracts freely, and, as can be seen in the first
frame in Fig. 3, the intensity is highest at the origin. The index increases most
rapidly in regions of high intensity [see Eq. (14)], and so it initially increases
most at the origin. The incoming beam then passes through this region, which

10



T =10.8

Figure 4: Refractive index contours for p = 2.

reduces its diffraction.

For times T < 0.5, the intensity at y = 0 decreases monotonically with Z.
However, at T = Ty = 0.5, the intensity forms an inflection point at ¥ = 0,
Z = 0. For T > Ty, this point evolves into a minimum at the origin and
a maximum that moves out along the propagation axis over time. We refer to
this maximum as the primary eye. This feature is a landmark in the self-writing
process; it forms because light is focussed by the increased refractive index near
the input face. Hence at this time, diffraction has to some extent been overcome
by the index change. In Section 4.1, exact expressions for Ty (the eye formation
time) are found for a variety of situations. For future reference this formation
time is labelled To(z) for p =2, or Tél) for p = 1. As Fig. 3 shows, the primary
eye moves along the propagation axis as self-writing proceeds. At time T = 5,
the eye turns around and moves back towards the input face. This movement

11



is indicated by the solid line in Fig 5.
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Figure 5: Solid line: position of the intensity primary eye on the propagation axis
versus time for p = 2; Dashed line: position of the refractive index eye.

A similar primary eye also forms in the index distribution at T = 2 Té2) =1,
as can be seen in Fig. 4. This eye forms due to the accumulated intensity near
the input face caused by the intensity eye, which explains why the index eye
forms later. After it forms, the refractive index eye moves in similar manner
to the intensity eye (dashed line in Fig. 5). The eyes are merely local maxima,
and not physical objects, and so their movement does not imply that energy is
transported.

As time progresses, additional maxima form on the propagation axis in the
intensity distribution, and these are referred to as secondary eyes. The first
secondary eye forms on the right edge of the primary eye and moves to the left
towards the primary eye. The second secondary eye forms on the trailing right
edge of the first secondary eye, and so on. This can be seen most easily by
looking at intensity cross-sections taken along the propagation axis. Note that
the leftmost maximum is always the primary eye. The left half of Fig. 6 shows
the axial intensity at T' = 8.5. At this time one secondary eye has formed on the
right edge of the primary eye. By T = 9.5, this first secondary eye has moved
to the left, towards the primary eye, and a second secondary eye is forming to
the right of the first one, and this pattern continues over time.

As the self-written channel evolves, it becomes deeper with time. At some
stage in the evolution, it becomes deep enough to support two even modes, which
can then beat; the beat pattern is observed is secondary eyes. The secondary
eyes move sufficiently fast that their effect on the refractive index distribution
is smeared out. Note from Fig. 3 that the secondary eyes are not equally spaced
along the propagation axis. By T' = 10, most of the light is confined transversely
for some distance in the slab. Beyond the primary eye region, the refractive
index has evolved into a fairly uniform self-written channel waveguide.

After the refractive index primary eye has formed, these simulations show
that it is always the point of highest refractive index change in the material. At
T = 12, the dimensionless index change at the eye is N &~ 84. Using Eq. (12b),

12
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Figure 6: On-axis intensity for p = 2 at T = 8.5 (left) and T = 9.5 (right).

this corresponds to An & 7 x 10~ at 488 nm when we take ng = 1.492 and an
intensity FWHM of 8 um, as in Section 5. This is larger than the refractive index
changes typically achieved in these materials, and so saturation is important in
the later stages of the evolution (T" 2 10).

3.3 One-photon results

Here results for the one-photon photosensitivity process in the planar geometry
are presented, and again a Gaussian beam is used.

3.3.1 Overview for p=1

Fig. 7 shows how the intensity evolves for p = 1, and Fig. 8 shows the corre-
sponding index plots. Although the same features form as for p = 2, there are
a number of qualitative differences, as discussed below.

3.3.2 Details of the evolution for p =1

Initially, the beam diffracts freely, and so the one and two-photon processes are
indistinguishable. As for the two-photon process, there is a time Ty at which an
inflection point forms in the intensity on the propagation axis. For a Gaussian
input beam, Tél) = 1 where the superscript denotes p = 1. Note that the
times for the one and two-photon processes do not correspond, as the material
constants differ. As for the two-photon case, a primary eye also forms in the
refractive index, and again this occurs at time T = 2T0(1). Figs 7 and 8 show
that these eyes move in a similar manner as for p = 2.

The first qualitative difference between the one and two-photon processes
becomes evident when the secondary eyes begin to form. Fig. 7 shows that for
p = 1 the secondary eyes move along the propagation axis from large Z towards
the input face. Recall that for p = 2, the secondary eyes form on the right edge
of the primary eye. As mentioned, these eyes form due to the beating of the first
two even modes of the evolving waveguide, and the difference in their motion

13
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Figure 7: Intensity contours for p = 1.

can be understood using WKB analysis (sec Section 3.4 [24]). As the secondary
eyes continue to form, they remain much more evenly spaced for p = 1 than
for p = 2 (see Fig. 7). Also notice that the channel waveguide which ultimately
forms in Fig. 8 is noticeably more uniform than the p = 2 waveguide shown in
Fig. 4.

The maximum dimensionless refractive index change in the material at T =
22 is N ~ 45. Using Eq. (12b), this corresponds to An =~ 1073 at 244nm
when we again take ng = 1.492 and an initial intensity FWHM of 8 um, as
in the experiment in Section 5. Refractive index changes of this magnitude
are achievable in this HCPECVD material [9], and so it is justified to ignore
saturation here. Although at some stage saturation must begin to play a role,
the time at which this occurs is much later than for p = 2.

14
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Figure 8: Refractive index contours for p = 1.

3.4 'WKB analysis

WKB analysis provides insight into the modal properties of self-written wave-
guides [24], and this approach can be used here because the transverse structure
varies smoothly. At early times in the self-written evolution, the index change is
approximately determined by the initial intensity profile [see Eq. (14)]. We have
shown that therefore for p = 2 at early times the number of modes supported
is constant throughout the slab, and the structure then thus acts as an efficient
mode converter.

WKB analysis confirms the finding that for the p = 2 case the secondary
eyes form just to the right of the primary eye, as described in Section 3.2.
WKB analysis also predicts that the distance between the secondary eyes varies
with propagation distance, as can be seen in the contour plots in Fig. 3, and
indeed the quantitative predictions for the distances between the eyes are in

15
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close agreement. These results have been described in detail [24], along with
results of the WKB analysis for p = 1. In this case, WKB analysis corroborates
the fact that the secondary eyes move towards the input face from the right. It
also predicts that the distance between the secondary eyes is roughly constant.

Secondary eyes always form during the formation of a channel waveguide,
and here it has been shown that they form as a result of mode beating. Hence,
by definition, at the writing wavelength the waveguide is multimoded. However,
once the waveguide has been written, it can guide light at other wavelengths,
and it may then be single moded.

3.5 Simulation results for the bulk geometry

Even though self-writing has been observed in a range of bulk materials [1, 32,
29] (see Section 6), no bulk numerical simulations have previously been reported.
While the implementation of the numerical simulation technique is no more
complicated for the bulk geometry than for the planar geometry, it requires
significantly more computational resources. The bulk calculation is well suited
to a vectorized supercomputer, as many of the calculations are independent.

Although saturation can often be ignored in the planar geometry, this cannot
be done in the bulk geometry. If saturation is ignored, the refractive index
change at the primary eye grows prohibitively large before a channel can form
at larger Z. One way of understanding this difference is to consider the initial
build up of refractive index near the input face in terms of a lens. The primary
eye is the point at which the beam is focused to a waist by this lens. For the bulk
case, the incoming light is focussed to a waist in both transverse dimensions.
In contrast, in the planar case, the lens only focuses one transverse dimension.
Hence the intensity at the waist is much higher for the bulk geometry, which
leads to a much more rapid change in index at the primary eye [see Eq. (14)], and
hence the effect of saturation needs to be considered much earlier. An analogous
effect is observed with spatial solitons based on the Kerr effect; although in two
dimensions they are stable, in three dimensions they collapse [33]. Here we halt
this collapse by introducing saturation in our model.

3.5.1 Results for a circularly-symmetric input beam

Here the results from a typical bulk calculation are presented. The input beam
is again taken to be a Gaussian of the form in Eq. (15). As this beam is
circularly-symmetric, it suffices to show slices through one of the transverse
axes. The refractive index change is taken to be a one-photon process, as this is
the case which corresponds to the bulk photopolymer experiments of Kewitsch
and Yariv [32, 29] (see Section 6.2). We take the dimensionless saturation index
to be N, = 160 (see Section 3.5.2 for discussion of the choice of N,).

Initially, light diffracts freely throughout the material, and at T =~ 1, an
inflection point forms in the intensity. Again, this point becomes a primary
eye, which moves away from the input face, and a minimum at the input face.
Note that the inflection point does not form exactly at T =1 as it does for the
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planar p = 1 case, but slightly later. The eye moves away from the input face
after it forms, and this movement is quantitatively similar to the planar case
(see Fig. 5). A primary eye also forms in the index distribution.

The secondary eyes form in the same way as in the planar geometry; for the
p =1 case, they move towards the input face from the right. Fig. 9 shows the
contours at time T' = 15, when six secondary eyes are present. Observe that
the secondary eyes are not spaced as evenly as in the corresponding planar case.
At this time, a channel has evolved in the material. The maximum N = 105 in
Fig. 9 approaches the saturation value N, = 160 used here, and so saturation is
significant by this stage in the evolution.

intensity refractive index

Figure 9: The intensity and refractive index in a bulk material at T = 15, X = 0.

3.5.2 Effect of saturation

The results in Section 3.5.1 were calculated using the saturation value N, = 160,
corresponding to An, &~ 4 x 1072 for a 10 um beam at 325 nm, which is readily
achievable in photopolymers [32]. These results indicate that the bulk self-
written evolution for N, = 160 closely resembles the planar results. This simi-
larity diminishes as N, is reduced, which is not surprising, as the planar results
were calculated with Ny = co. In photosensitive glass the obvious choice of
writing wavelength is 488 nm (see Section 5). At this wavelength, if the incident
beam width is 10 um, N, = 160 corresponds to An ~ 9 x 102 [see Eq. (12c)],
which is typically not possible in glass. Here we review how self-writing is af-
fected when Nj is lowered. As self-writing in bulk photosensitive glass has not
yet been observed, this study has important experimental implications.

Recall from Section 3.3 that for the planar geometry, where N, = oo, the
intensity primary eye forms at To = 1. As N, is reduced, Ty increases; i.e.
the eye forms later in a material with a lower saturated index. Indeed, as N, is
reduced, the most obvious effect is that self-writing proceeds more slowly, which
is not surprising [see Eq. (14)]. A more subtle change occurs to the motion of the
eyes as the effect of saturation is increased. Fig. 10 shows the eye position over
time when N; = 10. At 488nm, a 10 um incident beam, N, = 10 corresponds to
An, = 6 x 1074, lower than the saturation value in most photosensitive glasses.
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At T = 18, the eye begins to move back away from the input face, and so the
behaviour differs qualitatively for small saturation values.

eye

L v d VI S R

0 10 20 30
T

Figure 10: Position of the intensity primary eye for the bulk geometry when N, = 10.
The eye motion changes qualitatively when N, is small (c.f. Fig. 5).

If N, <15, then the eye movement has the form shown in Fig. 10. This
is undesirable, because if the eye is located at large Z, the channel-like region
must begin at even larger Z. Using a 10 um writing beam at 488 nm, N, = 15
corresponds to An, &~ 8 x 10~%. Hence to avoid this, we require the material to
have Ang; 28 x 10~%. This is an important constraint, because photosensitive
glasses can have a saturation index near this value. Note however that if a ma-
terial has a lower saturation value, this undesirable effect can still be avoided by
using a slightly wider input beam. Doing this reduces the An, that corresponds
to Ng = 15 [see Eq. (12c)]. However, by Eq. (7), a wider beam requires a longer
sample, and so this effect, in effect, sets a lower bound for N;.

4 Theoretical investigations

4.1 Exploration of the primary eye

As described in Chapter 3.1, when the waist of a Gaussian beam is focused at
the input face, the intensity is highest there. After some time, the refractive
index change built up in this region becomes large enough to counteract the
diffraction of the beam, and this point of maximum intensity moves away from
the input face. The time at which this occurs is labelled Ty = Tél) forp=1or

To = Té2) for p = 2. For T > T, this maximum is referred to as the primary eye,
and so we refer to Ty as the time at which this eye forms. A similar maximum
also forms in the refractive index distribution at a later time, and the locations
of these maxima change over time. Ultimately a channel waveguide is formed
in the region beyond the primary eye in the refractive index distribution.

Our numerical results described in Sections 3.2 and 3.3, suggest that the
eye is always a precursor to the formation of a waveguide. For complicated
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beam shapes, we find that primary eyes typically form at the maxima in the
transverse intensity profile. Furthermore, simulations indicate that the structure
of the resulting waveguide is closely related to the trajectories of eyes within
the material.

Gaussian optics can be used to gain some understanding of the primary eye
dynamics; the refractive index that builds up behind the input face acts like a
gradient index lens on the incident beam. After some finite time, the strength
of this lens increases to the point when it can focus the incoming beam to a
waist (the primary eye). As time passes, the index at the input face increases.
Hence the lens strength (1/f) also increases with T', where f is the dimensionless
focal length [34]. If the Gaussian beam in Eq. (15) were focused by a thin lens
at the origin, the image position would be [16] i = f/(1 + f2). A plot of 4
versus the lens strength (1/f) produces a curve that is qualitatively the same as
Fig. 5. Hence Gaussian optics explains why the eye initially moves away from
the origin, then at a later time turns around and moves back.

Next we describe an analytical series expansion technique that can help us to
obtain a fuller understanding of the behaviour of the primary eyes, and the way
in which their motion is linked to the form of the resulting waveguide. Although
the following discussion refers to intensity eyes, the analysis is equally valid for
index eyes, and the planar geometry is considered here for ease of notation.
Also, we consider input beams for which there is initially no maximum present
in the material.

By definition, the primary eye forms at time Ty, at position (Yy, Zo) in the
material. As eyes are local maxima, both eigenvalues of the Hessian matrix

@ 821
H=| 9 ozpY (16)
820Y  bY?

must be negative at the eye position, where I = I(Y, Z,T) is the intensity. This
leads to the requirement that

Det(H)l(Yo,Zo,To) =0 (17)

when an eye forms. After the eye forms, it remains a local maximum, and so at

the eye position oI oI

—67—0 and 8_Y—0' (18)
Eqgs (17) and (18) are a prescription for finding the time and position at which
the eye forms (75, Zo). Eqs (18) can also be used to find the trajectory of the
eye after it forms.

The numerical simulations in Section 3.1 show that when a Gaussian writing
beam is used, the primary eyes are typically located near the input face. To
illustrate this, note that for the planar two-photon process, Fig. 5 shows that
the maximum distance of the eye from the input face is Z = 0.44, a distance of
less than one Rayleigh range. Also, note that the eye is located at very small
Z for early times. This suggests that Taylor series expansions for the intensity
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and the refractive index in Z about the input face (Z = 0) may provide useful
information about the eyes. Section 4.1.1 describes the way in which these series
expansions are calculated.

4.1.1 Calculation of the series expansions

The writing beam is taken to be the arbitrary function Ey(Y) for the planar case,
or Eo(X,Y) for bulk. The dimensionless electric field amplitude and refractive
index are written as the following Taylor series expansions

o0 o0
E=) E,Z2* and N=) N,Z° (19)

g=0 g=0

As in Section 2, the normalized intensity is defined to be I = EE*, which is

[« q
I= 2) ,Z% andso I, =Y ExE;_,. (20)

The coefficients Eg, I, and N, depend on T and Y in planar geometries, and on
T, X and Y in bulk; these dependencies are kept exact throughout the analysis.

A recurrence relation for the electric field coefficients can be found by using
Egs (19) in Eq. (13) and equating coefficients of Z97!:

i (1 = iL
E,= Z (EVZE"“I +> NeEgoy_i + 7Eq_l) : (21)
k=0

Similarly, the photosensitivity equation [Eq. (14)] can be used to find a recur-
rence relation for the index coefficients (IV,). For the one-photon process

8N, I
=t N ON, =1, - ZNqu k- (22)

Integrating Eq. (22) gives the following recurrence relation for the refractive
index coefficients for the one-photon process

L A 1 /T Ny (T') I, _i (T")
0]

o -n W, Q@ - 1)

5 k=0

N,(T) = —2dT", (23)

where Q(T) is defined to be
Q(T) = exp (=I,PT/Ny) . (24)

For the two-photon process, again using Egs (19) and (20) in Eq. (14),
equating coeflicients of Z? and separating out the N, terms gives

19—k

oN, I} 1 &
T +FN ;Mq e -—Sk=0£=0NkIqu_k_g. (25)
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Integrating Eq. (25) gives the following recurrence relation for p ="

Nq(T) — Z/ Il qu —£ TI)dT’—

‘“"’“ T Ne(T) (T ) gt (T")
/ e dT. (26)

The time dependencies are shown explicitly in Eqs (23) and (26), whilst the
dependencies on the spatial coordinates are suppressed.

Starting with the incident beam profile (Ey), Eqs (21) and (23) or (26)
can be used to generate the terms in the field and index expansions. The
terms in these expansions rapidly become quite complicated for the general
case. However, if saturation is ignored (N, — o0, so that @ = 1), then the
integrals can be performed in closed form for every term, and the results then
simplify considerably [30]. All results presented here are based on Taylor series
expansions in the propagation distance Z. If Z, is the radius of convergence of
the expansion, then the expansions only yield physically relevant information
for Z < Z,. The expansions provide useful information about the primary eyes
because these eyes are often located at small Z. In Section 4.1.3 the reason for
the limited region of validity of these series expansions is discussed.

k0£0

Application of the series technique to Gaussian beams

This section reviews the results of the series expansion technique for a Gaus-
sian input profile in a planar material. This simple input profile allows signif-
icant progress to be made with this method. Loss and saturation are ignored,
for simplicity, although they are considered in later sections. For the examples
given here p = 2 is chosen to relate to the experiments described in Section 5.
To O(Z*), the intensity expansion on the propagation axis is

I=14+(4T-2)2%+ ( —152T + 80? ) Z4 +0(2%). (27)

At T = 0, to O(Z?) Eq. (27) is a decreasing function of Z, as expected, since
at this time the beam diffracts. Eq. (27) predicts that at T' = 0.5, the Z? term
vanishes, and for T > 0.5 the intensity increases with Z. Far from the input
face, I must decrease with Z, as the beam eventually begins to diffract again.
Therefore, when T' > 0.5, there must be an intensity maximum somewhere on
the propagation axis. Hence the series expansion predicts that the primary eye
forms at To(z) = 0.5, consistent with the result found in Section 3.2.

Using terms to order Z* in Eq. (27), the location of the intensity eye shortly
after it forms can be found. This is done by solving Eq. (18), and expanding

the solution about the formation time To(z) . To lowest order the eye location at
early times after its formation is given by

Zeye = ;5 ( T(Z))- (28)
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Eq. (28) gives excellent agreement with the numerical simulations for early times
after the eye formation. Regardless of the number of terms used, the agreement
breaks down at Z ~ 0.25, T ~ 2. This suggests that at this time, the radius
of convergence of the series is Z, ~ 0.25. Using terms up to O(Z®) allows us
to capture the movement of the primary eye back towards the input face at
later times. For 5.8 < T < 26 we find that to this order the expansion has
no maximum, and so clearly for these times the eye is outside the radius of
convergence. It might seem surprising that we can capture the primary eye
at late times after losing it earlier. However recall that this is an initial value
problem; the properties of the waveguide at Z’ can only depend on the previous
history of the waveguide for Z < Z'.

The behaviour of the primary eye in the refractive index can also be explored
using the series technique, and the agreement with the simulation results is
similarly good. The same is true for the one-photon case, although these results
are not shown here for brevity.

Results for an arbitrary beam

Some quite general and exact results can be obtained for the eye trajectories
if the series expansions only contain even powers of Z. The first odd term in
the intensity expansion is

I = Im (B3 V3(Eo)) - LI,. (29)

It is possible to show that I; vanishes for all values of the transverse coordi-
nate(s), only if L = 0, and if the beam also has a flat phase front. Under this
condition, all other odd terms vanish as well.

Here for simplicity we consider a flat phase-front beam in a lossless planar
geometry. Recall from Sections 3.2 and 3.3 that in a planar geometry, we can
neglect saturation early in the evolution i.e. take Ny = oo. Using the series
expansion to order Z2, we find that an intensity primary eye forms at time T
defined via

4pE*PTy = — — ——. (30)

where primes denote derivatives with respect to Y evaluated at Y5. The right-
hand side of Eq. (30) does not depend on the refractive index evolution and is
a measure of how strongly the beam diffracts at small Z. The fourth derivative
indicates that the initial diffraction is very sensitive to the beam profile. The
left-hand side of Eq. (30) is proportional to the index change at the input face.
The refractive index change in the input face region acts like a lens on the
incident beam, and the left side of Eq. (30) is a measure of the strength of this
lens. At Ty, the lens has grown strong enough to counteract the diffraction of
the beam, and focuses the incoming beam into a waist, forming an eye.

Trajectory of the primary eye

We can now calculate the initial trajectory of the intensity eye after it has
formed for the planar geometry with an arbitrary shaped writing beam. Most
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primary eyes form at Z = 0, and we consider ohly this case here. E)épanding the
intensity about the eye formation point and using Eq. (18) leads to the finding
that regardless of the input beam shape, the primary eye in the intensity always
initially moves away from the input face in a parabolic trajectory. This occurs
for both one and two-photon processes. The Gaussian beam is a degenerate
example: the trajectory is a straight line.

The same analysis can be performed for the refractive index eye. We find
the unexpected result that to lowest order the index eye always moves along the
same parabolic trajectory as the intensity eye, although at a different rate. This
is true for both one and two-photon photosensitivity processes. More generally,
when loss is included, the intensity and index eyes still initially follow the same
trajectory. Simulation results show that the eye trajectories remain similar for
a remarkably long time. This is surprising, because the refractive index at
time T depends on the entire history of the illumination. Hence we can make
predictions about the resulting waveguide using only the intensity expansion.
This is particularly useful, as the terms in the refractive index expansion take
longer to calculate and are often more complex than the corresponding terms
in the intensity expansions.

4.1.2 Effect of material properties on self-writing

As all materials exhibit loss and saturation effects, we present here a series
expansion analysis of how these affect the self-writing process.

Effect of loss

We consider here the effect of loss in the planar geometry for the two-photon
photosensitivity process. This choice is made to correspond to the experiments
in Section 5. Loss can cause a quite profound change to the self-written evo-
lution, and in particular, if the loss is too high, it impedes the formation of a
self-written waveguide. The results for the one-photon case are very similar to
the two-photon results, and so are not shown here for brevity. We expect that
the effect of loss should be similar in a bulk material.

For simplicity, we again take the input beam to be Gaussian. There are odd
terms in the series expansions for a lossy material because to lowest order, loss
causes the intensity to drop off linearly with distance into the material. Hence if
a primary eye forms in a lossy material, it cannot form at the origin, and must
form a finite distance into the sample, at some position Zy. We treat the loss
(L) as a small parameter here in order to make this problem tractable, since
if L is small, then Z; is also small. When the loss is small, we can also treat
(T - To(z)) as a small parameter for a short time after the eye forms. Neglecting
small terms in the intensity expansion, and using Eqs (17) and (18), we find
that the eye forms at time

1 ¥05 (3L\*?
Té"’)z§+ (—) : (31)
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Hence as expected, loss increases the time taken for the intensity eye to form.
The eye forms on the propagation axis at position

sf 3L

The fractional powers in Egs (31) and (32) indicate that the presence of even a
small amount of loss noticeably changes the dynamics of this process; the eye
forms later, at a finite position within the slab.

Again using the intensity expansion, for small L, the position of the eye at
time T just after it has formed is

3
T-T? » 190 (22 -322 + 2§> . (33)
3 Z

By examining Eq. (33) just after the eye forms at (Zy,Tp), we observe that

loss causes two stationary points to form at Zp; a maximum and a minimum.

After they have formed, the minimum moves towards the input face, while the

maximum (the primary eye) moves away, as it did in the previous results. When

L = 0, there is always a trivial minimum at the origin after the eye forms. Loss

causes this minimum to form at a different position (Zy), and to change its
location over time.

Numerical simulations confirm the predictions (31) - (33). Fig. 5 shows the
primary eye motion in the absence of loss, and Fig. 11 shows the associated series
expansion result to O(Z*). A loss of 0.5 dBcm™?, the value for the HCPECVD
material used in Section 5, corresponds to L =~ 0.01. The movement of the
maximum/minimum pair for L = 0.01 is shown in Fig. 11. It shows that at this
loss level, the series prediction, although excellent, is not quite as good. This
is because in these series results we assume that the loss is small, and hence as
the loss is increased, the agreement with the simulation deteriorates.

For large values of loss, the minimum grows relatively deeper, and this has
been demonstrated by both the series technique and the simulation. This min-
imum reduces the fraction of light guided along the central axis. If the loss is
large enough, although an eye still forms, a channel waveguide does not form.
This is at least partly due to the deepening of the minimum, which causes light
to diffract away from the propagation axis. We have also investigated the effect
of loss for p = 1, and find the same qualitative behaviour as for p = 2.

Effect of saturation

As shown in Section 3.5.2, in a bulk geometry, the saturation of the refractive
index needs to be included to avoid the index growing without bound before
a waveguide evolves in the material. Here we explore the effect of saturation
when a Gaussian beam is incident on a bulk material. As in the numerical
simulations in Section 3.5.2, we assume that the material is lossless for simplicity,
and so there are no odd terms in the expansions. The examples shown here are
for p = 1, because the bulk photopolymer experiments in Section 6.2 can be
described using a one-photon model.
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Figure 11: Dashed lines: positions of the maximum/minimum pair for 0.5 dB cm™!

for p = 2. The curve above the horizontal line corresponds to the eye, that below
describes the minimum. Solid line: corresponding numerical simulation results.

The intensity primary eye forms at time Ty which satisfies
pTo = exp (To/Ns) . (34)

If N, < e/p, Eq. (34) can never be satisfied, and a primary eye cannot form.
Eq. (12¢) shows how N, depends on the physical value of the saturation in-
dex (Ang,), the diameter of the incident beam and the wavelength of the light.
Hence in a given material, if the beam is too narrow, a waveguide cannot form.
Conversely, for a given beam, if An, is too small a waveguide cannot form.
Eq. (34) predicts that 7} increases as the saturation index is lowered, and so it
takes longer to form a waveguide.

For small N, (i.e. N, £5), the radius of convergence of the series decreases
drastically. Hence for small N,, even though we can predict whether an eye
forms, the expansions do not provide useful information about the subsequent
motion of the eye. This regime where N, is small is unlikely to be of interest
experimentally, because for typical beam diameters, this range of saturation
values is substantially lower than found in real materials. For example, N, =5
corresponds to Ang &~ 1 x 10~° for a 20 um beam diameter at the one-photon
wavelength of A = 244 nm, significantly less than typical values of the saturation
index (An, ~ 10~* — 1073, depending on the material). Hence for realistic
saturation values the series expansions provide useful information.

Using the expansions to explore the motion of the eye, we find that the eye
begins to move more quickly as the saturation value of the index is decreased
from infinity. Note that N, = 15 corresponds to An = 1.3 x 1073 in the
HCPECVD material described in Section 1.2, a reasonable saturation refractive
index change in this material. For N, = 15, saturation causes only about a 1%
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change in the rate at which the eye moves away from the input face. Hence the
value of the saturation index (N,) is typically irrelevant at small times, and has
little effect on the dynamics.

4.1.3 Generalizations of the series technique

Although the series technique is useful for describing the primary eyes while
they are within the radius of convergence of the series, they typically move out
of this region. It would be useful to extend the region of validity of the series to
describe the entire motion of the primary eye. However, the obvious attempts
to generalize this technique fail.

If the radius of convergence of a series is limited by a pole, Padé approximants
can be used to remove the pole and hence extend the region of validity of the
expansion [35]. We found that no good quantitative predictions for the eye
motion could be obtained. The inability of this approach to give good results
can be understood by considering the form of the electric field amplitude at
T = 0. If the writing beam is a Gaussian in the planar waveguide geometry
then on the propagation axis

E = (1+42i2)"'/2, (35)

If Z is complex, then Eq. (35) has a branch point at Z = /2, which restricts
the range of Z for which the expansions are valid. It also limits the region of
validity of any Padé approximant.

One established way of coping with singularities is to use the differential Padé
generalization [36]. Then some differential combination of E is approximated
by a generalized expansion Eq. (35) suggests the form

1 0E _ T2, 4,2° (36)
E 6z Ei\;o B,z .

However, it can be shown that for p = 1, even though Eq. (36) can be used to
represent the field exactly at T = 0, an infinitesimal time AT later, the field
contains singularities that cannot be expressed by Eq. (36). Thus even these
Padé techniques cannot be used, and it is not clear how Eq. (36) should be
generalized to account for these singularities. Although we cannot prove that
the differential Padé generalization for p = 2 should fail, we find that the results
given by this method are not significantly better than for p = 1.

4.1.4 Discussion

The series expansion technique is particularly useful for describing how material
effects (e.g. saturation, loss and time delay in the material response) influence
the self-written evolution. It can also be used to predict the structure of the
waveguide written by any writing beam. However, unless the writing beam
has a simple form, it is difficult to extract useful information from the series
expansions.
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4.2 Similarity results

Although useful for understanding the primary eye dynamics, the series expan-
sion approch described in Section 4.1 cannot describe the subsequent formation
of the channel waveguide. Here we use similarity techniques [37] to study this
stage of the evolution, which leads to the first exact solution to the differen-
tial equations describing self-writing. We also show numerically that for a wide
range of input beams, the self-written channel evolves toward this solution,
which suggests that it is stable.

Similarity techniques have been used to study Hill-gratings [38], and to de-
scribe propagation in an inverted two-level medium [39]. Menyuk [40] used
similarity methods to study stimulated Raman scattering, and he suggests that
similarity techniques are generally useful for systems with a memory. Photo-
sensitive glasses and photopolymers do exhibit such a memory.

Again we consider the planar geometry for simplicity. Because the structure
evolves into a channel that is fairly uniform, we look for solutions where N is
independent of Z. We also take the input beam M (Y,T) to be a mode of this
channel, and hence the field is of the form

E(Y,Z,T) = M(Y,T)exp[iB(T) 2], (37)

where [ is the propagation constant, and M can be taken real. As the input
beam is a mode, it changes as the waveguide evolves. We also choose to maintain
constant input power:

P=/meﬂ%K (38)

Numerical results show that as the waveguide evolves, its shape remains
approximately constant, even though its depth and width change [24]. Self-
similar solutions depend only on certain combinations of the original variables,
thus reducing the degrees of freedom of the system. We have found that the
combination

Y =Y¢(T) (39)

is a universal parameter that can be interpreted as a time-dependent scaling of
the transverse coordinate, and that allows us to rewrite the system as ordinary
differential equations in Y alone. We write M and N as products of functions
of T and Y. Substituting these products and Eq. (37) into Eqs (13) and (14),
and requiring consistency in Egs (13), (14) and Eq. (38), we find

MY, T) = ¢(T)/*M(Y), (40)
N(Y,T) = ¢(T)*N(Y), (41)
B(T) = (T, (42)
where the scaling ¢(7T') is given by
H(T) = (g) (T, (43)



AN
and P = [ M(Y)2dY is the input power in this reduced system. Here M and

N are the shapes of the modal profile and the refractive index, which satisfy

%M"(ff) + (V)= D) =0, (44)
aN(Y) +VYN'(Y) = M(Y)?. (45)

This reduced system can also be found by looking for scaling symmetries of
Eqgs (13) and (14) subject to Eq. (38) [37].

We have determined the shapes of the mode and refractive index by solving
Eqgs (44) and (45) numerically, results for which are shown in Fig. 12 for p = 1.
For p = 1, we find P = 2.89, and for p = 2, P = 2.94. The solutions in
Fig. 12 are the only single peaked solutions that decay as ¥ — +oo. For both
p =1 and p = 2, we find that the tails of the self-similar index profile decay
as Y2 and that the tails of the mode decay exponentially. Combined with
scalings (40)—(42) the solution in Fig. 12 is still the only known exact solution
to the self-writing problem.
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Figure 12: Similarity solutions of the self-writing problem (p = 1). M 1Is the mode
shape, N the refractive index shape.

Recall that in deriving the solution in Fig. 12, the input beam is the mode of
the evolving waveguide, and so it is time-varying. We now investigate whether
the self-similar evolution can be related to the evolution of a waveguide pro-
duced by a time-independent input beam, which we take to be Gaussian [24].
Numerical simulations indicate that the shape of the index profile in the uni-
form waveguide region gives excellent agreement with Fig. 12. To test further
the relationship between our solution and the simulations, we now investigate
the scalings in Eqs (40)—(42).

For p = 1, Eq. (43) gives ¥ YT, and so Eq. (41) predicts that the channel
width w scales as T~!. The numerical results shown in Fig. 13(a) confirm that
w™! « T at different positions Z. The superior linearity at large Z is expected,
since simulations [24] indicate that the waveguide is more uniform at larger Z.
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Figure 13: (a) Inverse width of the index versus T at different Z (p = 1). (b) Width
of the index versus T' on a log-linear plot at different Z (p = 2).

For p = 2, Eq. (41) predicts that Inw o T. This is confirmed in Fig. 13(b),
which shows Inw versus T at different Z positions. Numerical results for the
peak refractive index also confirm scalings (41). Indeed, our numerical simula-
tions indicate that the self-writing of a waveguide according to (13) and (14)
appears to be very well described by the self-similar solutions. For brevity, the
remainder of the results presented here are for p = 1.

For both p = 1 and p = 2, the agreement between predictions and simula-
tions is similarly good for the depth of the channel as it is for the width. We
now investigate the scaling prediction (42) for the propagation constant. Scal-
ings (40)-(42) remain approximately valid when more than one mode is present,
and are the same for each mode. Hence, the beat length Zp scales as T2 for
p = 1. Fig. 14 shows Zgl/ % versus T as given by the numerical simulation. This
gives an approximately straight line, as predicted. No data is shown for T <15
because the waveguide then does not support more than one symmetric mode.
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Figure 14: Z;l/ ? versus T (p = 1 simulation results), which gives a straight line, in
agreement with the similarity prediction. The solid line is a straight line fit.

Hence not only does a self-similar solution exist; but it also describes simula-
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tions of the full self-writing process well. This is remarkable: the input beam for
the numerical simulation is a time-independent Gaussian, while the self-similar
solution has a time-varying input. Note that the ¥~2 decay of the index profile
implies that this system differs qualitatively from the seemingly related problem
of spatial solitons [41].

The index profile is initially Gaussian, and its evolution into the predicted
shape suggests that the self-similar solution is stable. We also investigated a
triangularly shaped input intensity, and we again find that it evolves into the
self-similar solution at larger Z. This further confirms the stability of the self-
similar solution, and its relevance to a wide variety of self-writing processes.

4.3 Modal decomposition approach

Although the simulation in Section 3.1 is an important benchmark, it demands
significant computational resources. Here an alternative technique is described
in which the electric field and refractive index distributions are decomposed into
modes. This technique is an efficient alternative to the full numerical simulation
(see Ref. [25] for a fuller description). The use of modal decompositions to
describe the propagation of light in waveguides is well established [42, 43, 17].
Decomposing the electric field into modes reduces the complexity of the problem,
since the transverse dependence of the fields is described by the modes.
We make the following modal series expansions:

M-1 N-1
E(Y,2,T)= Y a;(ZT)F/(Y), NY,ZT)=)_ c;(ZT)F(Y) (46)
Jj=0 j=0

where the a; are complex functions and the ¢; are real functions. The Ff are
elements of a complete, orthonormal set of real basis functions, characterized
by a free parameter 3. In order for this technique to be numerically efficient, E
and N need to be represented well using only a small number of basis elements.

Using the expansions in (46) in the photosensitivity equation and the parax-
ial wave equation, evolution equations for the modal coefficients a; and c; can
be derived (see Ref.[25]). We choose the basis set to be even Hermite-Gaussian
functions with a characteristic width 3. These functions form a complete or-
thonormal basis set for even functions. The simulations in Section 3.1 clearly
show that the width of a self-written waveguide is a strong function of time and
position. Hence we adapt 8 to suit the evolving waveguide properties.

This method gives speed increases of two orders of magnitude for p = 1
and one order of magnitude for p = 2 when compared with the full numerical
simulation. It typically also uses approximately one order of magnitude less
computer memory. This significant speed increase makes it possible to investi-
gate the waveguide formation process for a range of different initial conditions;
this would not be feasible using the computationally slow full simulation. To
demonstrate the power of this approach, we investigate Gaussian writing beams
with a range of phase-front curvatures for p = 1. Fig. 15(a) shows the position
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of the intensity primary eye as a function of the incident beam phas\e front cur-
vature (d/zg - see Ref. [25] for definition). The curves are the adaptive modal
method predictions at different times, the dots are the corresponding simula-
tion results. Excellent agreement is obtained over a wide range of curvatures;
the modal method accurately predicts the eye position. It takes approximately
three times longer to calculate the dots than it takes to calculate all the curves.
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Figure 15: Position of the intensity primary eye as predicted by the modal method
as a function of the incident beam curvature. Solid, dotted, small dashed and long
dashed curves correspond to T = 0,0.01,0.02,0.1. Large dots are simulation results.

The results presented here are for a planar geometry. As the increased
efficiency of this modal approach arises from the simplification in the transverse
dimension introduced by the modal functions, its efficiency relative to the full
numerical simulation should be even more striking for the bulk case.

5 Self-written channels in glass

5.1 Key results

Here we describe the results of our self-writing experiment in planar germanosil-
icate glass (see Ref. [44]). We used an 11 mm long silica planar trilayer on a
silicon substrate with a 3 pm thick photosensitive core layer containing 8% ger-
manium. This layer was sandwiched between two undoped silica layers with a
refractive index 0.022 lower than the core. This structure was grown using a
HCPECVD process (see Section 1.2). The advantage of HCPECVD over con-
ventional PECVD is its capability to produce low loss, non-porous germanosilica
with high intrinsic photosensitivity [45].

We used a 0.5 W writing beam from a Argon-ion laser, emitting at a wave-
length A = 488 nm. The formation of a self-written channel relies on low-loss
propagation of light through the material. The reason for using 488 nm light is
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that losses are lower in the visible than in the near-UV, and are about 0.5 dB/cm
in our sample. Using a microscope objective, the Gaussian beam is focussed to
a spot size of 8 um on the Ge-doped layer at the input edge of the sample.
Another microscope objective images the beam from the sample’s output edge
onto a beam profiler. This setup is sketched in Fig. 16. We infer the refractive
index evolution by monitoring the beam properties at the output edge.

X5 PHOTOSENSITIVE
TRILAYER
ARGON ION LASER
488 nm
€« >
11mm
OBIECTIVE

x5

COMPUTER |~ --

OBJECTIVE
Figure 16: Setup used to self-writing of a channel in photosensitive glass.

As self-writing proceeds and a channel forms, the evolving index change
counteracts the writing beam’s diffraction. Hence the beam width at the out-
put edge of the sample should decrease over time, and the peak intensity should
increase. As Fig. 17 shows, we do observe this behavior; the beam becomes
dramatically narrower and more intense during the exposure. This is the key
indication that a channel forms in the originally uniform slab waveguide. Note
that the beam sits on an unchanging pedestal, which we believe corresponds
to light guided by the superstructure formed by the cladding, core and sub-
strate. We found that the pedestal evident in Fig. 17 could be eliminated after
the exposure by optimization of the coupling into the waveguide. This further
supports the hypothesis that the pedestal is caused by light in a mode of the
superstructure.

5.2 Beam evolution

Here the evolution of the beam at the output edge during the self-writing is
presented in more detail. The solid line in Fig. 18 shows the full width at half
maximum (FWHM) of the intensity profile at the output edge of the trilayer as
a function of time. The beam narrows by a factor of 14 in 8 hours, reducing
in width from 210 um to 15 um. By comparison with our simulations, we infer
that this beam width corresponds to a channel waveguide with a FWHM of
approximately 23 ym.

The peak intensity of the beam as a function of time (relative to the initial
peak intensity) is given in Fig. 19. For the first four hours, the peak intensity
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Figure 17: Beam intensity profiles at the output edge at 0, 0.5, 3 and 8 hrs respectively
from the start of the exposure.
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Figure 18: FWHM at the output edge versus time. The beam narrows, indicating
that a channel is forming in the material.

increases, as predicted. When a factor of roughly 10 width decrease has oc-
curred, the peak intensity flattens out, and remains approximately constant for
the remainder of the experiment. It is interesting to note that the beam width
continues to narrow somewhat after the intensity has saturated.

As noted above, although the width decreases by a factor of 14, the peak
intensity only increases by a factor of 4. Using numerical simulations, we infer
that this is caused by increased attenuation in the material during exposure
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Figure 19: Peak intensity at the output edge versus time.

(see Section 5.3). Other properties of the self-written channel are explored
using luminescence in Section 5.4.

5.3 Comparison with simulations

This section compares the experimental results presented in Section 5.2 with
the theoretical predictions. For the numerical simulations to make accurate
quantitative predictions for the self-written evolution, it is necessary to include
the effects of saturation of the refractive index change (An,). If saturation is
ignored, the model predicts that the peak intensity increases without bound,
which is clearly unphysical. We have used the value An, = 0.001, which is
a typical value for this material [45]. The dotted line in Fig. 20 shows the
predicted beam width at the output edge as calculated using the simulation
with this saturation index value (the solid line is the experimental result from
Fig. 18). The numerical result allows for a single adjustable parameter, corre-
sponding to a linear scaling of time. This scaling was chosen to give the best
visual agreement with experiment. Clearly, the qualitative agreement with the
experimental results (solid line) in Fig. 18 is good.

As described in Section 3.2.2, shortly after the primary eye forms, the self-
written waveguide supports two even modes which beat, resulting in intensity
maxima which move along the propagation axis over time (the secondary eyes).
The plateau-like features in the dotted curve in Fig. 20 are caused by secondary
eyes moving past the measurement position. The experimental results (solid
line) also exhibit a number of such features, which are likely to be caused by
the movement of these secondary eyes.

The dotted line in the inset in Fig. 21 shows the simulation prediction for
the peak intensity which corresponds to the width prediction shown in Fig. 20.
Although the simulation gives roughly the right qualitative behaviour for the
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Figure 20: FWHM of the beam at the output edge. The solid line is the experimental
result from Fig. 18, dashed and dotted lines show theoretical predictions.

evolution of the peak intensity, the predicted increase in the intensity is a factor
of ten larger than observed, and the qualitative agreement between dotted and
solid lines in Fig. 20 is correspondingly poor.

In the simulation predictions shown using dotted lines in Figs. 20 and 21,
the material attenuation was ignored. However, if material losses are taken to
increase with exposure as in Eq. (10), the discrepancies between the predictions
and the experimental results can be significantly reduced.

The dashed lines in Figs 20 and 21 are numerical simulation results which
include the effect of exposure-dependent losses. The same saturation value as
above was used, and v = 0.05 [see Eq. (10)]. This value of v was chosen
to optimize the agreement with experiment; note that the dashed and solid
lines are almost indistinguishable in Fig. 20. It also leads to good quantitative
agreement for the peak intensity, as Fig. 21 shows a much improved prediction
for the magnitude of the intensity change during exposure. This choice of 7
also improves the prediction for the time at which the intensity flattens out.
From these results we are confident that significant changes in attenuation occur
during the exposure, and that they are the reason why the peak intensity only
increases by a factor of 4 whilst the width decreases by a factor of 14.

The simulation has oscillations in the peak intensity that are not experimen-
tally observed. It is probable that these can be explained by adding more effects
to our model. Such extra refinements are not pursued here.

Hence by including the effects of saturation and an exposure-dependent at-
tenuation in our model, we obtain quantitative agreement with observations for

35



relative peak intensity

4 6
time (hrs)

Figure 21: Evolution of the peak intensity at the output edge. The solid line is the
experimental result from Fig. 19, dashed and dotted lines show theoretical predictions.

self-writing. The value of An, can only be altered to within a few percent if
this level of quantitative agreement is to be maintained. However, the value of
« is less tightly constrained.

The value Ang = 0.001, the maximum possible index change in our model
[see Eq. (14)], was chosen because it is a typical value for the saturation index
in this material. As we assume here that the loss increases in proportion to the
local index change, this imposes a saturation value on the attenuation coefficient
also. Using Eq. 10, the saturation value of the loss is ay; = vkoAn,, which for the
values here is equivalent to roughly 3dB mm™!. The loss only reaches this level
in regions where the refractive index change approaches saturation. The average
or effective loss and the local loss further along the channel are substantially
less than this maximum value.

5.4 Channel properties

As shown in Section 5.3, when the effect of exposure-dependent attenuation is
included, the numerical simulations make excellent predictions for the evolution
of the beam at the output edge. Although numerical predictions can be made for
the intensity everywhere in the material, it is somewhat more difficult to extract
this information during the experiment. However we observed that when the
material is illuminated with 488 nm light, it exhibits strong red luminescence
[44], similar to that previously observed in germanosilicate preforms and fibers
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[46]. This luminescence gives an indirect indication of the light int(\ensity within
the material. If the channel is exposed using low intensity levels, then it does
not evolve further. The luminescence distribution contains detailed information
about the intensity within the material. We show here that the luminescence
distribution in the material can be used to confirm some of the more subtle
features are also predicted by the theory.

Fig. 22 shows a photograph of the luminescence distribution at an unexposed
position on the trilayer, taken from above. The sample is illuminated by a
low-intensity beam at 488 nm which is focused onto the sample edge. Light is
incident from the left of the photograph, and a filter was used to block out the
writing wavelength.

-
1mm

Figure 22: Photograph of the luminescence taken from above. Light is incident from
the left. There is no channel waveguide at this position, and the beam simply diffracts.

Fig. 23 shows the luminescence at the position where the original exposure
occurred. The beam width at the right edge is clearly smaller than in Fig. 22.
Note that Fig. 23 displays a waist region approximately 0.45 mm from the input
face. In the dimensionless coordinates, this corresponds to a distance Z = 0.5
[see Eq. (12a)]. This distance is consistent with the typical distance between
the primary eye and the input face (see Fig. 5). Hence we infer that the waist
is the intensity primary eye.

1mm

Figure 23: As for Fig. 22 except that this photograph is at the self-written channel
position, where the beam confinement is much improved.

Fig. 24 shows the same data as Fig. 23, except that the contrast has been
adjusted and the vertical axis has been expanded by a factor of three for clarity.
Fig. 24 displays five regions of high intensity, and we identify these to be the sec-
ondary eyes predicted by the theory. The maxima become more widely spaced
further from the input face. This is also consistent with the theoretical predic-
tions for this two-photon process (see Section 3.2.2). Hence the luminescence
distribution reveals the spatial features predicted by the theory.

Some aspects of the luminescence appear to be inconsistent with the ex-
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secondary eyes

Figure 24: The data from Fig. 23 expanded by a factor of three vertically. The arrows
indicate regions of high intensity, and the contrast has been increased.

pected intensity distribution. For example, contrary to expectation, the pri-
mary eye appears as a region of low luminescence, even though it is the point of
highest light intensity. Previous work has shown that the luminescence of ger-
manosilicate glass can decrease with cumulative exposure [47], which probably
explains why the brightness of the luminescence is low around the primary eye.
However, unlike the primary eye, the secondary eyes do appear as regions of
high luminescence. This is because the photosensitive-induced changes to the
luminescence caused by the secondary eyes are not localised at their maxima.
Instead, because the secondary eyes move relatively rapidly along the axis, they
decrease luminescence on the axis in a uniform manner. Thus the brightness of
the luminescence remains proportional to the intensity distribution.

In future experiments, more rigorous tests of the theoretical predictions could
be made by monitoring the luminescence in situ. In particular, by observing
the way in which the secondary eyes move during the exposure, the details of
the model could be fine-tuned.

5.5 Modal properties

As described in Section 5.4, secondary eyes are observed when the channel is il-
luminated with 488 nm light. Since secondary eyes are caused by mode beating,
this implies that the waveguide is multimoded at this wavelength. Further-
more, as the channel is effectively permanent, it can be used to guide light at
other wavelengths; the channel should be single-moded at 15650 nm [24], and,
for example, multi-moded at the shorter wavelength of 633 nm. We have con-
firmed that the channel is single-moded at 1550 nm by coupling light from a
diode laser into the channel and recording the far-field intensity pattern, which
is shown in Fig. 25(a). As expected, the distribution is single-peaked, and was
found to be insensitive to the launch conditions, which together imply that the
channel is single-moded. We also confirmed that the channel is multimoded at
633 nm using light from a He-Ne laser. In this case, the far-field distribution is
multiply-peaked as shown in Fig. 25(b). In addition, this distribution exhibits
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the expected large sensitivity to the launch conditions at this wav‘élength.

(a) (b)

Figure 25: The far-field intensity pattern when the self-written channel is used to
guide (a) 1550 nm light (b) 633 nm light.

Note that the photographs from the previous section were taken two weeks
after the original 8 hour exposure. In addition, the far-field patterns in Fig. 25
were recorded six months after the original exposure, further evidence for the
effectively permanent nature of the self-written channel.

6 Related work

Self-writing processes can occur in a range of materials and geometries. To date,
the process which has been studied in greatest detail (both experimentally and
theoretically) makes use of germanium-silicate planar waveguides, and these
results were discussed in detail in Sections 2 - 5. In this section, we review other
self-writing experiments which have been done to date.

6.1 Uptapers in UV-cured epoxy

In 1993 Frisken [1] showed that permanent waveguide uptapers can be formed
in UV-cured epoxy using 532nm light. A sketch of this process is shown in
Fig. 26. Frisken used a commercially available epoxy (containing acrylic acid
and hydroxypropyl methacrylate) which exhibits permanent refractive index
changes in response to light at 532nm. Initially the material has a uniform
refractive index and the experiment the light is confined in two dimensions.

Frisken observed that the far-field spot size of the beam reduced by a factor
of ten during the exposure. This indicates that a waveguide uptaper forms in
the following way: initially, light in the fundamental mode of the fibre diffracts
into the epoxy. As the spot size at the beam waist is small, the beam diffracts
rapidly, and the far-field spot size is large [Fig. 26(a)]. The refractive index
changes most in the beam waist region, where the intensity is highest, and an
adiabatically tapered index distribution is created by the diffracting beam. This
tapered index distribution guides the light further into the material, gradually
increasing the size of the beam waist with distance from the fibre edge. Hence
the beam emerging from the tapered region diffracts less rapidly, and so the far-
field spot size should decrease. Over time this process continues and a waveguide
uptaper forms [Fig. 26(b)].
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Increased refractive index

(b)

Figure 26: (a) Light diffracts from a fibre into the epoxy; the refractive index changes
most rapidly in the beam waist. (b) A waveguide uptaper forms in the epoxy [1].

In this experiment the beam of light self-writes the uptaper which guides it
through the epoxy, and as the index changes are long-lasting, uptapers written
in this way can subsequently be used at other wavelengths. Indeed this process is
closely related to the early evolution of a self-written waveguide in photosensitive
glass (see Section 3 for a detailed exposition of the waveguide evolution). If the
experiment conducted by Frisken was allowed to continue for longer times, we
expect that the dynamics of the process would resemble the self-writing process
described in Section 1.1 more closely.

Uptapers can be used to reduce insertion losses when bulk devices are inte-
grated with fibre devices. They do this by adiabatically changing the size of the
mode from a fibre so that coupling to a bulk device or a fibre with a different
mode diameter is optimized.

6.2 Self-trapping and self-focusing in photopolymers

Some liquid polymers, referred to as photopolymers, also exhibit permanent re-
fractive index changes in response to light. Refractive index changes as large
as Ang = 0.15 have been observed [48], significantly larger than the changes
achieved to date in photosensitive glasses. Kewitsch et al. [32, 29] showed
that using photopolymerization, self-trapping and self-focusing can be demon-
strated in a liquid diacrylate polymer. Refractive index changes caused by
photopolymerization are better understood than glass photosensitivity, and the
mechanism behind photopolymerization is outlined briefly here [32].

When a photopolymer is illuminated with light of appropriate wavelength
(ie. 325nm in a diacrylate polymer), the polymer chains begin to join. The
polymer density is closely related to the lengths of these chains. The density
increases with increasing chain length, as the polymer becomes more tightly
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packed. Initially the polymer chains are short, and so illumination produces
only a small change in density, and hence effectively no change in the refractive
index. In the next stage of photopolymerization, much larger chains form,
and so illumination produces large refractive index changes as entire polymer
backbones join. Hence it takes time for the polymer chains to grow large enough
to change the refractive index, which causes the index changes to be delayed by
a diffusion time 7 = 0.01 to 1s relative to the illumination. Kewitsch et al. used
a diacrylate polymer in which 7 = 0.1s. In the final stage, few polymer chains
remain free to join, and the polymer has solidified in the exposed regions.

The model for the index change in a photopolymer given in Ref [32] can be
written in the same form as Eq. (9), and this model agrees well with observations
from Ref [32]. Hence although photopolymerization is clearly different from glass
photosensitivity on a microscopic scale, phenomenologically it can be modelled
in the same way as one-photon glass photosensitivity.

Using numerical simulations of the kind described in Section 3.1, Kewitsch
et al. showed that self-focusing occurs in a planar polymer structure. In these
simulations [32], a Gaussian beam was focused to a waist inside the planar layer.
When the material is illuminated continuously for 30's the waist moves towards
the input face, which was considered to be a manifestation of self-focusing.

In the experiment by Kewitsch et al. [32, 29], light at 325 nm was incident
on a liquid diacrylate polymer. At the input face, the diameter of the beam
was 100 um. The polymer was given a series of short exposures, each separated
by a time larger than the diffusion time, 7. This was done to ensure that the
polymer did not completely cure in the exposed region before the writing beam
experiences the index change. These exposures cause a fibre-like structure to
form inside the liquid polymer. Kewitsch et al. moved the writing beam to form
a grid of these fibres in the polymer. Each fibre was roughly 1 cm long, and was
observed to guide the writing beam over this distance.

The self-focusing and self-trapping described above are both closely related
to the self-writing process described in Section 1.1. The movement of the beam
waist observed in the self-trapping simulations is analogous to the primary eye
discussed in Section 3. In the self-focusing simulation in Ref. [32], 7 is negligible
compared with the exposure time. In this limit, the model used for photopoly-
merization reduces to the simple one-photon model for photosensitivity used in
Section 2. So even though the microscopic details of these processes are com-
pletely unrelated, on a phenomenological level they are equivalent. Hence the
theoretical analysis of self-writing in a planar photosensitive material described
in Section 4 can also be applied to self-focusing in a diacrylate polymer. The
self-trapping process described by Kewitsch et al. is analogous to self-writing
in bulk photosensitive glasses.

When 7 becomes significant when compared with the time-scale for the wave-
guide evolution, the close analogy between self-focusing, self-trapping and self-
writing in photosensitive glasses breaks down. However, many of the techniques
developed to study self-writing in photosensitive glass can still be applied. For
example, the series expansion technique described in Section 4.1 has been used
to explore the effect the delay in the material response has on the primary eye
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dynamics (see Ref. [27]).

6.3 Self-writing in planar chalcogenide glass

The experiments described in Sections 6.1 and 6.2 both occur in bulk materials.
The experiment presented in Section 5 was the first self-writing experiment in a
planar geometry, and was also the first observation of self-writing in glass. More
recently, Meneghini et al. observed self-writing in As,S; thin films [49, 50]. This
process resembles the process in Section 5 very closely, because it also makes use
of a planar writing geometry. Chalcogenide glasses such as As;S3 can experience
very large photosensitive refractive index changes [51].

In this recent experiment, a mode locked Ti:sapphire laser operating near
800 nm was used to end-fire ~100 fs pulses into a planar waveguide using a
cylindrical telescope with an 8:1 aspect ratio and a 10x microscope objective. At
this wavelength chalcogenide glass experiences a photosensitive response which
can be modelled well as a two-photon process [49]. The propagation distance
was 4mm and the beam width at the edge of the sample was 13 um. After
roughly 10 minutes exposure, Meneghini et al. observed that the width at the
output edge of the sample had contracted noticeably, and the peak intensity had
increased by a factor of two. The growth curves for the intensity also display
the same type of oscillations as in Section 5.3, Fig. 21, indicating the presence
of loss. This is a clear indication that the writing beam forms a self-written
channel in this material.

As the refractive index change in this chalcogenide glass is a two-photon pro-
cess in a planar material, all the theoretical techniques presented in Sections 3.1
- 4.2 can be applied directly to this self-writing process.

6.4 Growing fibres in photopolymerizable resins

Shoji and Kawata [52] have self-written fibres in a phtopolymerizable resin con-
sisting of urethane acrylate monomers and oligomers accompanied by photoini-
tiators using 441.6 nm light from a He-Cd laser. In addition, to single fibres
which grow in a way similar to that seen by Kewitsch and Yariv [32, 29], they
have also investigated the dynamic evolution of multiple self written fibres.
They observed that depending on the angle of intersection, two self-written
fibres might either merge into a single fibre or cross without merging. For ex-
ample, in their experiments the self-written fibres merged only when the angle
of intersection was less than 9°. The coherence relationship between the two
incident beams does not effect the merging phenomenon.

6.5 Self-writing in undoped glass

Recently, Homoelle et al. [53] induced refractive index changes in both pure and
boron-doped fused silica by exposure to femtosecond infrared laser pulses. They
have achieved index changes as a large as 5 x 10~2 using a multipass Ti:Sapphire
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amplifier emitting at 820 nm. Although the physical mechanism is not under-
stood, it is apparently a high order multiphoton absorption process and exhibits
a highly nonlinear dependence on the intensity. The observation that final sat-
uration levels are comparable to those obtained with UV photosensitivity and
that the annealing properties are also similar suggests that the infrared absorp-
tion may be initiating the same final microscopic changes as the UV but via a
different initial pathway. It may be possible to analyze self-writing with this
process using the phenomenological model in Section 2.3, but with p = 5 or
6. The differences observed between the one- and two-photon models would be
expected to be greatly amplified in the multiphon case. The high nonlinearity
allows for the fabrication of highly localised detailed structures by, for example,
translation of the sample with respect to the focal point. Three dimensional
photonic circuits can also be fabricated by this means.

6.6 Other self-action effects

As self-writing proceeds, the initial diffraction of the beam is overcome by the
refractive index change it induces. Spatial solitons and photorefractive solitons
are also formed by self-action effects, where diffraction is balanced by light-
induced index changes. Although self-writing is closely connected with these
self-action effects, there are a number of quite fundamental differences which
distinguish them, as highlighted in Sections 6.6.1 and 6.6.2.

6.6.1 Spatial solitons

An intense optical beam causes the refractive index of silica glass to alter locally
in an instantaneous, non-cumulative way according to the optical Kerr effect

n(t) = no +nz2 |E()]%, (47)

where ng is the low-intensity refractive index of the material, ns is a constant
which characterises the strength of the nonlinearity [54] and E is the electric
field. In silica this is an intrinsic property of the material that does not depend
on the presence of doping. A low intensity beam incident on a planar material
diffracts. A high intensity input beam causes the refractive index to increase
via the optical Kerr effect if ny > 0 [see Eq. (47)]. This process is described
by the nonlinear Schrodinger equation. The soliton solutions to this equation,
corresponds to spatial solitons, which do not change shape upon propagation,
by balancing the Kerr effect and diffraction.

Spatial solitons were first observed in CS. liquid by Barthelemy et al. in 1985
[55]. The first observation of spatial solitons in glass waveguides was made by
Aitchison et al. [33] in 1990. Glass has a low value of nz, and so high intensities
(% 1MW cm™2) are required. More recently, it has been shown that spatial
solitons can also exist in materials with a quadratic nonlinearity, i.e. where the
nonlinear polarization depends quadratically on the applied field [56].

Superficially, the formation of spatial solitons seems to be similar to the self-
writing process presented in Section 1.1. In each case, the diffraction of the input
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beam is overcome by a region of increased refractive index, or, more generally, a
region with a positive nonlinear contribution to the phase, induced by this beam.
However, here the similarity ends. The effects induced by the quadratic and Kerr
nonlinearities are instantaneous and non-cumulative. When the light is removed,
the effects disappear, and so the material is unchanged after the passage of an
intense beam of light. This differs fundamentally from photosensitivity, where
the refractive index changes are permanent, and hence cumulative. The beam
is not instantaneously guided by a self-written waveguide; it takes time for the
waveguide to evolve.

6.6.2 Photorefractive solitons

In photorefractive (PR) materials, such as lithium niobate (LiNbO3) or stron-
tium barium niobate (SBN), light can be used to pattern long-lasting refractive
index structures. When a PR crystal is exposed to light, free charge carriers are
excited, which are then free to diffuse, leaving behind fixed charges of the oppo-
site sign. Ionised impurities at other locations can then trap the carriers. Thus
an inhomogeneous space-charge distribution forms in the crystal which mirrors
the intensity distribution, and this remains after the light is switched off [16].
This space-charge distribution creates an electric field which modulates the local
refractive index via the electro-optic effect. The material can be restored to its
original state by uniform illumination at the writing wavelength or by heating.
This effect is by nature non-local, because before the carriers are trapped, they
are free diffuse within the material. This contrasts the photosensitivity effect,
for which local models are adequate, and this leads to fundamental differences
between these processes.

In 1992, Segev et al. [57] proposed a new type of photorefractive spatial
soliton which can form when an external electric field is applied to the crystal.
This effect is independent of the absolute light intensity, and so photorefractive
solitons can be generated at low intensities (< 0.2 W cm~2), unlike spatial soli-
tons, for which intensity of 1 MW cm~2 are required [58]. Also, unlike spatial
solitons, photorefractive solitons do not appear instantaneously, and take time
to evolve. Experiments by Duree et al. [58, 59] confirmed the predictions of
Segev et al., showing that solitons can be formed using the PR effect. These
solitons are quasisteady and exist only for a finite time (up to 10s) before the
electric field begins to be screened by the electric field in the material [59]. These
solitons can act as waveguides; for example Morin et al. [60] showed that a
weak PR soliton can guide an intense beam at a longer wavelength at which the
material is not photorefractive.

The PR solitons described thus far resemble self-written waveguides in the
sense that the light-induced index changes counteract the usual diffraction of
the beam. However, as described above, these solitons are by nature transient;
as soon as the external electric field begins to be screened out these solitons
are destroyed. In contrast, the waveguides produced using self-writing in a
photosensitive material last many years.

More recently, Christodoulides et al. [61] discovered a new class of non-
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diffracting beams in unbiased planar PR materials. The solutions have the
form of an exponentially decaying Airy function. However, to observe this non-
diffracting behaviour, the input beam must match this form extremely closely.
Contrastingly, any single-peaked input beam can be used to self-write a channel
in a photosensitive material.

Segev et al. predicted the existence of screening solitons in PR materials
(62], and they were observed in bulk SBN by Shih et al. [63]. When an external
electric field is applied, non-uniform screening effects cause the field magnitude
to decrease in regions of high intensity. Again, the index is modified via the
electro-optic effect, and traps the beam [62]. Solitons formed in this way differ
from those discussed above; in particular although the PR effect is non-local, the
non-uniform screening effect is itself local. Also, screening solitons are steady
state solitons, whereas the solitons described above are transient. Screening soli-
tons are thus the PR solitons which bear the closest resemblance to self-written
waveguides both because they are the result of a local effect, and because they
are long lasting. However, if the external field is switched off, the index distri-
bution in the material disappears on the time-scale of the dielectric relaxation
time (typically about 1s) [64].

7 Discussion and conclusions

This review makes it clear that self-writing is a generic phenomenon that can
be observed in a range of materials. Many of the features observed in pho-
tosensitive glass can be understood quantitatively using the phenomenological
model (11) discussed here, provided that it is augmented by the dose-dependent
loss term (10). It is clear that in this way the detailed properties of self-written
waveguides can give information about the material’s response to light. This
procedure was already used to ascertain the validity of the local model two-
photon (8) from self-written grating experiments, at least for small refractive
index changes [21, 22]. Similarly, in the future a comparison of the far-field
intensity distribution in a self-written channel with the self-similarity predic-
tions from Section 4.2 should provide further information about the material’s
response to illumination.

While the experiments discussed here in some detail led to the formation of
single channels in a planar structure, the work by Shoji and Kawata [52] shows
that more complex structures, such as X- and Y-junctions, can be written.
Though in their work the number of channels that evolves cannot always be
predicted, our results imply that by careful experimental procedure, complex,
self-written structures can be designed. For such structures, the advantages of
self-writing over more conventional techniques may be greater than for single
channels, since once the input beam is identified, the dynamics of the self-writing
take control of the refractive index evolution. Another extension of our work
will be the generalization to bulk glass, following earlier work in bulk polymers
by Frisken [1] and Kewitsch and Yariv [32, 29]. Regardless of these details,
the model that we have established gives a good description of the self-writing
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process, and we are confident that it will be a good predictor in this future work.

One of the key problems with our experimental work is that the experiments
take about 8 hours, as shown in Figs 18 and 19. There are a number of obvious
ways in which this can be improved. First, since we are using a local two photon
model for photosensitivity we expect the rate at which the writing occurs to be
proportional to the square of the intensity. Thus, the writing process can be
shortened by increasing the incident beam power, or preferably, by optimizing
the coupling into the waveguide using an elliptically shaped incident beam as
done by Meneghini et al. [49, 50]. Their work shows another way to achieve short
writing times, using very photosensitive chalcogenide glasses, in combination
with the use of a high peak-power, short-pulse laser (Sect. 6.3).

The two main theoretical techniques used, that based on a Taylor series
(Section 4.1) and a similarity solution (Section 4.2) are complementary in that
they give good description of the evolution in the near field and in the far
field, respectively. While they have greatly enhanced understanding, neither of
the two methods gives an adequate description of the primary eye in a mature
waveguide. This is unfortunate, since the primary eye essentially marks the
beginning of the waveguide channel and seems to determine, for example, how
much light enters each of the modes of the channel, once it is multi-moded.
It thus, indirectly, determines the strengths of the secondary eyes. More the-
oretical work is needed in this area. We believe the key to this is a suitable
generalization of the Taylor series expansion, some of which were explored in
Section 4.1.3.

In conclusion, the self-writing of permanent waveguides has been demon-
strated using a number of different geometries and materials. While the theo-
retical understanding of the writing process is good, the present lack of under-
standing of the primary eye may affect progress. Though the structures that
have been written thus far are fairly simple, there is no doubt that more com-
plex, and potential useful and interesting structures and devices will be able to
be fabricated in this way. The future for self-written waveguides is bright!
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