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ABSTRACT: The development of low-loss reconfigurable inte-
grated optical devices enables further research into technologies
including photonic signal processing, analogue quantum comput-
ing, and optical neural networks. Here, we introduce digital
patterning of coupled waveguide arrays as a platform capable of
implementing unitary matrix operations. Determining the required
device geometry for a specific optical output is computationally
challenging and requires a robust and versatile inverse design
protocol. In this work we present an approach using high speed
neural network surrogate-based gradient optimization, capable of
predicting patterns of refractive index perturbations based on
switching of the ultralow loss chalcogenide phase change material,
antimony triselinide (Sb2Se3). Results for a 3 × 3 silicon waveguide
array are presented, demonstrating control of both amplitude and phase for each transmission matrix element. Network performance
is studied using neural network optimization tools such as data set augmentation and supplementation with random noise, resulting
in an average fidelity of 0.94 for unitary matrix targets. Our results show that coupled waveguide arrays with perturbation patterns
offer new routes for achieving programmable unitary operators, or Hamiltonians for quantum simulators, with a reduced footprint
compared to conventional interferometer-mesh technology.
KEYWORDS: inverse design, deep learning, neural adjoint, programmable photonic devices, phase change materials, Sb2Se3

■ INTRODUCTION
Integrated photonics offers a platform for the miniaturization
of optical devices and systems, yielding increased stability,
greatly reduced size and complexity compared to traditional
optical systems. Integrated photonic technologies have been
successfully demonstrated across a wide range of domains
including vector-matrix multiplication,1,2 quantum simula-
tion,3,4 signal processing5 and the development of high speed
neural networks.6 While application-specific photonic inte-
grated circuits require a bespoke design-fabrication cycle for
each variation in functionality, there is an emerging interest in
platforms that can be reprogrammed after fabrication to
provide fine-tuning, diversification, or entirely new methods of
deployment.7 Reprogrammable devices may also have the
ability to dynamically tailor their optical output,8 and use cases
were realized across a number of fields including post
fabrication device processing,9 optical switches10 and optical
signal compensation.11 One field in particular looking to utilize
reconfigurable technologies is photonic computing6,12−14

where the development of next generation optical devices
rely on the construction of structures with rapidly configurable
output characteristics allowing for high speed information
processing.

Commonly used reconfigurable technologies such as micro-
heaters15,16 and micro electro-mechanical devices
(MEMS)17−19 either introduce additional complex fabrication
steps or rely on the coupling of external regulating electronics
onto the photonic chip. Such approaches occupy valuable chip
space and impose power constraints, while simultaneously
introducing undesirable heat and noise into experimental
systems. An alternative method for the production of
reconfigurable devices involves using nonvolatile optical
phase change materials (PCMs) such as antimony triselenide
(Sb2Se3).

20 PCM based approaches can offer ultralow loss,
compact and passive programming capabilities, while main-
taining compatibility with a wide range of optical devices
across telecommunications wavelengths.21−25 PCMs such as
Sb2Se3 are able to exist in multiple nonvolatile solid states
which can be programmed using optical or electrical pulses.
The dielectric functions of amorphous and crystalline states of
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PCMs differ significantly from each other, which depending on
the nature of the chemical bonds can result in large order
changes in refractive index.26 An approach using direct optical
writing allows the addition of reconfigurability to previously
fabricated devices using minimal overheads in fabrication and
regulation.27 Endurance in programmable devices using PCM
technologies is seeing improvements28 with repeated refractive
index modulation of >106 switching cycles recently being
demonstrated in thin-films of Sb2Se3.

29,30

The relationship between input and output modes of any
linear optical element can be described by a complex
transmission matrix. Through careful design of multiport
devices, we are therefore able to produce an analogue for any
given n × m matrix so long as a fabrication process can
accommodate its production. Integrated approaches using
continuously coupled devices offer an interesting platform
whereby a device can be specifically designed to implement
any arbitrary transmission matrix, confined within the bounds
of a micron-scale structure.31 Interference based devices with
the addition of individual scattering sites are a common
platform for the implementation of arbitrary optical trans-
mission matrices,32−37 as well as devices consisting of
reconfigurable interferometer meshes.8,12,13,38

In this work, we explore an alternative approach, based on
coupled waveguide arrays (CWG) covered with a thin film of
PCM programmed with a nanoscale perturbation pattern.39−45

With focused laser writing, as illustrated in Figure 1a, it is
possible to reversibly modulate the local refractive index of
individual pixels on the device surface with diffraction limited
spatial resolution.23,27 This pattern facilitates modulation of the
coupling coefficients between neighboring waveguides, allow-
ing full control over the devices transmission properties. As
light propagates through a part of the device containing a
switched pixel, it develops a phase shift relative to light
traveling in an unswitched region due to the local effective

index contrast. Using a large enough number of these small
effects at each pixel, enables full control over both the
waveguide coupling behavior, as well as the phase of the light
at output ports across a full 2π range.

In contrast to microheater or interferometer mesh-based
devices, the perturbation pixel patterns in our CWG platform
are correlated to the device’s transmission matrix in a highly
complex manner. A crucial step to develop this technology
must therefore be the development of a powerful inverse
design protocol, used to find a pixel pattern that implements a
specific, complex transmission matrix. Significant research has
been undertaken to develop a variety of inverse design
processes for nanophotonics.46,47 Modern approaches make
use of techniques such as Bayesian optimization, Genetic
algorithms and the utilization of automatic differentiation, with
among the most popular methods those which carry out
inverse design though topology optimization48 and the
integration of deep-neural networks. Topology optimizations
are very powerful49 and have found applications across a wide
range of disciplines, from aerospace engineering50,51 and
medical research,52,53 to photonics.54−58 Such optimizations
typically result in complex-shaped structures with fine features
which can prove difficult to fabricate, in some cases becoming
unrealistic to produce at all.59 Gradient based topology
approaches often face practical limitations as gradient
optimizations require smooth variables, but their design
problem is typically categorized into a binary basis, where
material either is present or absent.

It should be noted that while there do exist nongradient
based optimization methods, many of these have been
demonstrated as intractable for real world practical systems
with large degrees of freedom.46,60 The most popular current
alternative is the integration of artificial intelligence and
machine learning into the device design pipeline, with

Figure 1. (a) Artistic view of the reconfigurable coupled waveguide device. An array of coupled silicon rib waveguides (here three) is covered by a
thin PCM layer (here, Sb2Se3), which can be locally switched between crystalline and amorphous state using a laser writing setup. This is
parametrized in a pixel pattern, in this figure, 500 nm large pixels along 50 μm of the waveguides. The input and output ports of the waveguide array
can be individually accessed by optical gratings. (b) varFDTD simulations of the electric field intensity maps along the coupled waveguide array for
three different input ports. The pattern is designed to correspond to an antidiagonal exchange matrix with equal phases for each output. (c) Full
schematic of the inverse design pipeline used to find the optimal pattern shown in (b).
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increasing attention being paid to the creation of an AI-
topological hybrid approach.61−63

In this work, we demonstrate an inverse design tool chain
using a gradient based optimization with a deep learning
surrogate forward model,64 as well as a geometry reparamet-
rization using a Wasserstein generative adversarial network
(WGAN). Using this high speed technique we build on
previous works in which similar methods are employed for the
design and development of individual device elements, such as
the height, orientation and shape of elliptic meta atom
pillars,65,66 as well as in more complex free-space design
tasks.67

■ NEURAL ADJOINT INVERSE DESIGN APPROACH
Device Model. To demonstrate the capabilities of our

inverse design method, we consider the case of an array of
three coupled silicon rib waveguides, implementing an
arbitrary 3 × 3 transmission matrix. In our simulations, these
waveguides are covered by crystalline Sb2Se3, which may then
be switched locally, for example experimentally by using direct
laser writing.23,27,68 Experimentally it is easier to produce a
narrow amorphization laser profile, meaning greater spatial
precision can be achieved by using pixel maps with a crystalline
background. We consider thin films of PCM, which have been
shown experimentally as a feasible geometry,27 allowing a
consistent and repeatable index modulation to be applied.

Our coupled waveguide device model is based on a standard
silicon on insulator rib waveguide design, a schematic of the
device is shown in Figure 1a, with detailed features as
described in the Methods section. A 30 nm thick Sb2Se3
PCM layer on top of the CWG provides a switchable index
contrast between crystalline and amorphous states of

n 0.77Sb Se2 3
= . Pixels are defined on a 500 nm square grid

over the coupling region’s area, consisting of a total of 96 pixels
for each of the three waveguides (288 pixels in total).

Coupled waveguide devices are simulated using Variational
FDTD (varFTDT) as described in the Methods section. This
engine collapses a 3D device structure into an effective 2D
simulation by probing the effective index experienced in slices
across the simulation mesh. Figure 1b shows the electric field
intensity of a typical patterned device that was designed for a
transmission matrix equal to the inverse identity matrix. After
simulation, the device transmission matrix is extracted by
evaluating solutions for light coupled into each of the three
input waveguides, where for all input modes the complex field
at the peak amplitude of each output is recorded and
constructed into a complex matrix.

Inverse Design Goals and Training Data Generation.
The choice of training data is a particular important aspect of
the model under study. Similar to previous studies,36 we use
preconditioned data by specifying a target output profile for a
single input port. In our studies we found that it is not
constructive to use a training set of purely random patterns,36

because random pixel patterns typically do not co-operate in
providing an effective state conversion between input and
output, as discussed in more detail later. For an acceptable
performance of the deep learning based design method, a more
directed approach to training data generation is required, one
that from the start aims toward the later inverse design task.

To this end, we first implement a brute force forward
iterative optimization algorithm in the training data generation
as described in more detail in the Methods section and

Supporting Information, Figure S5. Iterative optimization is
used to optimize the output for a single random input to a
specific splitting ratio by switching individual pixels. This
process effectively optimizes one single row of the matrix. At
each evaluation step where a pixel is found to improve the
objective, the transmission of the other input ports is also
evaluated and the entire pattern and its associated complex
transmission matrix are saved to the data set. In this way the
data set is populated with a large variety of pixel numbers and
sufficient variance in the device performance to build a
balanced data set. A detailed description of this process as well
as a specific example can be found in the Supporting
Information, Figure S5. Training data generation was carried
out to create an initial data set containing 42812 pixel patterns
alongside their associated complex transmission matrices,
where augmentation exploiting the device symmetry upon
vertical reflection is used to double the size of the data set.
Once a database of preoptimized pixel patterns and their
associated transmission matrices is created, we repeat this
process to create a separate validation data set used to verify
that the network is sufficiently generalized and may accurately
predict transmission matrices for patterns from outside of the
data set it was trained on. This validation set contains a further
6564 patterns after augmentation.

Gradient Based Inverse Design Using a Deep
Learning Surrogate. The forward predictor used here is a
ResNeXt encoder-decoder convolutional neural network,69 a
detailed schematic of this forward network model can be found
in the Supporting Information, Figure S1. While such purely
data-based surrogate models are known to work accurately in
the interpolation regime, it is also well-known that
extrapolation to geometries that differ from those in the data
set is usually very error-prone.70,71 Thus, a mechanism is
necessary to constrain the allowed geometries during
optimization to pixel patterns which the forward model is
capable of faithfully predicting. Typically this is achieved
through the introduction of a boundary loss term in the design
optimization.65 However, in free-form optimizations such a
constraint is difficult to formulate.

To avoid the optimization converging to the extrapolation
regime of the forward network, we use here a further deep-
learning based approach. Integrating a Wasserstein generative
adversarial network with gradient penalty72 (WGAN-GP), we
develop a learned reparametrization of the pixel patterns
geometry from the training data set. Details of the WGAN-GP
architecture are shown in the Supporting Information, Figure
S2. The key idea of this architecture is, that during training, the
WGAN-GP develops a mapping of the pixel pattern geometries
into a compact and continuous latent space, in which the
pattern geometries of the training data are normally distributed
around the mean value μz = 0 and with a variance of σz = 1.
The latent vector representations of the geometries in the data
set being normally distributed in the latent space means, that it
is possible to interpolate between two latent vectors.
Furthermore, every intermediate point in the latent space
also corresponds to a pixel pattern that is valid within the
distribution of the geometries in the training set.

Therefore, to constrain the inverse design optimization loop
to the interpolation regime of the neural network, we have to
reformulate the design problem to find an optimum latent
vector z instead of an optimum pixel pattern. By optimizing in
the WGAN-GP latent space, we can then simply add a
regularization term to the inverse design fitness function (we
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use mean square error between target and predicted trans-
mission matrix). Since the statistical properties of the WGAN-
GP’s latent space are known (assuming successful training of
the latter), this regularization term has to penalize solutions
with latent values far from the mean of the normal distribution.
Practically, we add a simple rectified linear unit (ReLU)
constraint term to the design fitness function ∑iReLU(|zi| −
2), that penalizes values of zi outside of a 2σ range (see Figure
1c).

Inverse Design Loop. A full schematic of our inverse
design pipeline is shown in Figure 1c. A set of several latent
vectors is randomly initialized. The WGAN generator (blue)
predicts the corresponding geometries, of which the complex
transmission matrices are predicted by the forward network
(green). The latter are compared to the design target
transmission using the mean square error as a metric. The
total fitness comprises an additional constraint term to restrict
the optimization to a 2σ region of the WGAN latent space,
which should roughly correspond to the interpolation regime
of the neural networks. The gradients of the fitness are
calculated using tensorflow’s automatic differentiation capa-
bility. The initial latent vectors are updated according to the
fitness gradients and the process is repeated. After con-
vergence, the best solution is kept as final design.

This process is able to faithfully create pixel patterns that
result in distinctly different optical outputs, depending on
which input mode is injected to the device. The varFDTD
simulated result of the design target shown in Figure 1c is
depicted in Figure 1b, showing the successful implementation
of our example target, the antidiagonal exchange matrix, with
equal phase for light injected in each of the input ports. This
method is also capable of addressing the phase of each matrix
element, as will be demonstrated in the following sections.
Transmission matrices are depicted as colorful sets of 3 × 3
blocks, where the phase and amplitude of each complex matrix
element are mapped respectively on the hue and saturation of
an HSV color space.37

■ FURTHER OPTIMIZATION OF DESIGN
PERFORMANCE

Inverse Design Performance Metrics. Inverse design
performance is assessed using varFDTD simulation of the
optimized patterns on a test-set of 1000 Haar random unitary
transmission matrix targets. A useful metric to carry out this
analysis is the amplitude fidelity. The fidelity compares both
the target and resimulated complex transmission matrices, with
a perfect match between the two yielding a fidelity of 1. We

calculate the amplitude fidelity using the following formula
taken from literature,73 F = 1/N[Tr(|U*|·|Usim|)] where U*
represents the conjugate transpose of the target complex
transmission matrix, Usim is the resimulated result, and N refers
to the number of modes in the given system, for our device
model, N = 3.

Amplitude fidelity as a metric is generally insensitive to the
phase agreement between the two matrices under study, as
demonstrated in Supporting Information, Figure S8. While
intensity based applications such as the development of optical
power splitters and routers do not rely on exact phase
reconstruction, and some experimental realizations are able to
use external phase shifters at the input/output waveguides, this
is not always a suitable approach. In applications such as boson
sampling or optical computing which require precise control
over the relative phases between individual transmission matrix
elements, the addition of external phase shifters lacks sufficient
degrees of freedom to control all available phases in the matrix,
therefore necessitating an optimized pattern to work well
across both the real and imaginary components of the
electromagnetic field. In such applications, it is instead useful
to analyze the mean squared error (MSE) function between
target and resimulated phases to assess network performance.
The MSE values presented hereafter are calculated across all
nine matrix elements. The phase MSE was furthermore taken
using the closest phase difference modulo 2π and was
normalized by dividing by a factor π2. In our analysis we
consider mainly the amplitude fidelity as a measure of
performance for consistency with other works in the field,
but will refer to the other metrics where these are most
relevant.

Data Set Optimization. After training both networks on
the initial data set (see above), the average amplitude fidelity
achieved is around 0.86. While this means in general a good
agreement between design target and optimized solution is
reached, it also means that the inverse designed patterns still
deviate distinctly from the expected results. We therefore
invest in optimization of the training data before assessing the
performance of the inverse design approach.

Iterative Data Improvement. As a first measure for data
set optimization, we iteratively extend the training data set
using the results from the inverse design process itself, to
improve the design fidelity. Essentially, the idea is to let the
neural network predictor learn from its own mistakes.36,74

Using the inverse design pipeline, we predict pixel patterns for
2000 random unitary targets. The transmission matrices of the
designed patterns are simulated by varFDTD, and these results

Figure 2. Average fidelity (a) and MSE values (b, c) through the process of iterative improvement. Values presented are averages for resimulation
of 1000 pixel patterns produced to implement random unitary targets. Each improvement loop contained 2000 patterns which are in turn doubled
by using y-symmetry.
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are appended to the initial training data set. Subsequently, the
models (both forward predictor and WGAN-GP) are retrained
using the now extended data set. We repeat this process three
times, and benchmark the inverse design quality using 1000
Haar random unitary targets after each iteration. After three
iterations, we observe a notable improvement in inverse design
performance, with an average amplitude fidelity now of 0.92, as
shown in Figure 2. This performance is comparable to fidelities
obtained by similarly available reconfigurable technolo-
gies,73,75,76 which achieve average amplitude fidelities in excess
of 0.9.

Expansion with Random Pixel Patterns. The CWGs
exhibit a well-defined small number of modes and randomly
generated patterns result in high device throughput, as
opposed to for example multimulti-mode interferometers
(MMIs) where the number of modes inside the device is
much higher and therefore high-throughput solutions are more
sparse.36 This property in principle allows us to rapidly add
patterns to the training data set without the need to optimize
for device throughput. It may therefore seem appealing to
simply append as many random patterns as possible to the
training set. However, in our studies we have found a more
methodical approach is necessary, as is shown in more detail in
Supporting Information, Figure S6, and simply adding more
random data does not improve the network performance.

The reason that purely random data sets are found to be
ineffective is attributed to the collective action of the pixel
patterns. Within the large space of possible solutions, there are
many that are not particularly effective in implementing a
transmission matrix, as pixels do not sufficiently act in concert
or even counteract each other. By including randomly
generated data we modify the statistical distribution, which
starts containing more and more of these “counterproductive”
patterns. Part of the forward model’s capacity is then used to fit
these useless noise cases which are not beneficial for the later
inverse design task. The WGAN latent space on the other hand
will become less efficient in restricting the optimization to
useful geometries, since it is also trained on the same data now
containing totally random patterns, which are therefore part of
its latent space as well. Consequently it is foreseeable that the
addition of too many random patterns will result in a decrease
of overall inverse design accuracy, which is demonstrated in
the Supporting Information, Figures S6 and S7.

Adding a small amount of totally random pixel patterns
slightly improves the inverse design capacity, yielding
decreased validation losses, as well as an increase in the
average fidelity from 0.921 to 0.935, as further shown in Figure
2 (cases “with noise”). This trend is consistent with other work
where a small amount of randomness was found to improve
performance.77 We attribute this improvement to a better
prediction of edge case geometries. As pattern optimization
happens inside the WGAN latent space, the inverse design is
restricted to the statistical distribution of the initial training
data. Since the initial data has a bias toward low pixel numbers
it may actually be beneficial to also add totally random pixel
patterns in order to diversify the training set and make the
forward network better deal with patterns at the edge of its
latent space

Pattern Characteristics. Study and comparison between
the characteristics of pixel patterns from both the training data
and inverse designed examples allow us to identify areas where
network predictions begin to diverge from geometries used for
training. This can therefore serve as a guide for fine-tuning and

development of the network, as well as in training data
generation for future geometries or iterative improvement
loops. The bottom panel in Figure 3 shows histograms of the

distribution of active pixels in the initial data sets used for
training (orange) and the augmented data sets after three
iteration loops (green). The pixel histogram for patterns
predicted by the network for a validation data set of 1000
target transmission matrices are shown in the middle panel
(blue). The corresponding average and standard deviation of
the fidelity for the predicted patterns is presented in the top
panel of the figure. As the training data is generated in an
iterative manner and intermediate steps are stored, there is an
strong emphasis in the training data set for patterns contain a
low number of pixels. Across the entire database used for
training there is an average number of 41 pixels/pattern.

In comparison, the average number of pixels in predicted
patterns is 104 and patterns with up to 225 active pixels are
found. Implementing the target transmission matrices requires
predominantly geometries containing more pixels than the
average number from the training data. We can observe that as
the number of pixels increases above 50, the standard deviation
of the fidelity increases quite significantly. An increase in
network error rate will lead to a greater spread of results and
thus a larger standard deviation. This trend is attributed to the
forward network performing less accurately on geometries that
are underrepresented in its training data, which could explain
some of the errors in the inverse design. More discussion on
the influence of forward network accuracy on fidelity will be
given below.

Figure 3. (a) Distribution of pixel numbers contained in patterns
from the initial “brute force” training data set (orange) and final
training data set after iterative improvement and 2.5% random
patterns (green). (b) Pixel histogram of predicted patterns for 1000
random unitary targets. (c) Corresponding average fidelities for each
bin of the predicted patterns, with error bars representing the
standard deviation from the mean. Dashed lines: average values of 28
pixels for initial training data and 41 pixels for final training data.
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■ RESULTS ON TRANSMISSION MATRIX DESIGN
After the iterative data set expansion, the addition of random
patterns, and the training of the network on this final data set,
we proceed to carry out a benchmark of our approach for the
inverse design of pixel patterns for a variety of coupled
waveguide transmission matrices. These can be broadly split
into two groups: permutation matrices, which are a class of
orthogonal matrices where individual input and output ports
are connected without port mixing, and unitary matrices,
providing the most general input−output relationship. In the
following we discuss these cases in more detail.

Permutation Matrices. The first class of matrices under
study contains those which guide light in a one-to-one fashion,
whereby light injection into each input waveguide results in
transmission through only one unique output. For a trans-
mission matrix with n × n elements, there will be n! unique
permutation matrices, each of which for our device can be seen
in Figure 4. An example phase shifted matrix is presented for
each permutation target as well as its associated varFDTD

simulation of the near field electric field intensity. These
matrices are a useful test to ensure that the network has
generalized to a point where it is able to predict patterns for
targets which lie on the very edge of the training geometry
space (those confining the output electric field fully to only
one port), and to check the ability of inverse designed patterns
to produce distinctly different optical outputs for each input
mode. In our design challenge, we chose to set the phase of
each nonzero matrix element as a free parameter which can be
chosen to obtain the best solution in amplitude. This approach
appears useful since (i) in many use cases, the phase response
of an optical switch is not critical and (ii) if necessary, an
optical phase shifter at each of the outputs is sufficient to
rebalance the output phases in the device.

Results shown in Figure 4 demonstrate accurate reproduc-
tion of both the amplitude and phase distribution for a
selection of matrices, demonstrating that a well performing
solution can be achieved for all of the orthogonal permutation
matrices in the 3 × 3 group. Here solutions were selected on

Figure 4. Performance of predicted patterns for the implementation of all available permutation matrices of the n = 3 waveguide array. 200 random
phase shifts are applied to each matrix element, allowing for in depth sampling of the available phase space to determine a maximum fidelity for
phase insensitive applications. Average fidelities of around 0.9 are achieved for all targets, with peak fidelity values >0.97 for all targets.
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the basis of combining fidelity with a low phase MSE. Pixel
patterns as well as local field distributions for each of the input
ports are presented for completeness for each of the devices,
providing some insight in the internal structure of these
solutions. For example, for the identity matrix at the top, we
see that the pattern of perturbations is predominantly placed in
the middle of the device along its length. This pattern
transforms the original device, which had no self-imaging
capability, to produce a highly symmetric self-imaging of each
of the three inputs onto the output plane.

Antidiagonal and more complex permutations are seen in
the other five diagrams, where the common denominator is
that the field profiles typically show only a few bounces
between input and output, indicative of the coupling length of
the CWG of around 10 μm and the fact that the modal basis is
very small. Weak perturbations therefore tend to couple modes
in an adiabatic way, without giving rise to strong scattering
events or reflections.34

A sample of fidelities across the available phase space for
each permutation matrix is presented in the right column in
Figure 4, in which 200 random phase shifts are applied to each
element in the target matrix. Average fidelities are achieved of
around 90% across the phase space sample for all 6 target
matrices. When output phases can be freely adjusted to
maximize the fidelity, the phase space sampling technique
permits significant improvements to the fidelity, resulting in
fidelities in excess of 0.97 for all targets.

General Unitary Transmission Matrices. Next to the
design of orthogonal permutation matrix targets, which pose a
useful design task to ensure that we have precise control over
every individual matrix element, in many real world use cases
such as optical computing and quantum information
processing, mixtures of inputs are required. Unitary matrices
represent a particularly useful class of targets representing the
most general operations available in the multiport system.
These targets must satisfy the condition UU* = I, where U*
represents the conjugate transpose of the target matrix and I is
the identity matrix, corresponding to a lossless device used for
target matrices.

Figure 5a shows the fidelity distribution for network
predicted patterns from a set of 1000 random unitary targets
drawn from the Haar distribution. We find that the neural
network is able to reach design targets with good fidelity of
0.935 ± 0.038. This is reflected in the convergence to low
values below 0.05 in the amplitude MSE. The distribution of
MSE values for phase shows that the prediction of correct
phase distributions is more challenging. A subselection of four
matrix targets from across the fidelity distribution are
presented in Figure 5b, labeled as (i)−(iv), as indicated by
the colored dots in Figure 5b, showing the target matrix, the
forward network prediction and varFDTD resimulation result.
Pixel patterns and near field maps are present the
corresponding microscopic configurations of the four pat-
terned devices under study. It can be seen that for all four
examples, the forward network prediction agrees well with the

Figure 5. (a) Distribution of fidelities for the reproduction of 1000 random unitary targets. Highlighted are instances which fall outside 1 and 2σ of
the average MSE between forward network prediction and resimulation, indicating a failed forward network prediction. (b) and (c) show the
distribution of MSE values between target and resimulation for these same targets. (d) Four example unitary targets sampled from across the
achieved fidelity distribution. We present the target, forward network prediction of the inverse designed pixel pattern, and a resimulated
transmission matrix. To the right-hand side we plot the respective near field electric field intensity map for a device programmed with the predicted
pattern for each target matrix.
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target matrix. Main differences can be seen between the
network prediction and the varFDTD result, suggesting that an
important factor in the fidelity may be the accuracy of the
forward network.

To verify the influence of the forward network error, we
calculate the MSE between forward network prediction and
varFDTD calculation. The fidelity distributions are obtained
for parts of the data set where the MSE lies above one and two
standard deviations (labeled as 1σ and 2σ), given by
respectively the orange and green histograms in Figure 5a.
This analysis confirms what is seen in the examples, namely,
that the tail of lower fidelities is correlated with a poor accuracy
of the forward network prediction.

The examples furthermore indicate that phase and
amplitude errors are not related. Results with low phase
error can be found for a low fidelity and vice versa.
Figure 5d(iii), for example, shows visually a good match to
the target unitary colors due to low phase error; however, the
final amplitude fidelity remains below average at 0.9, owing to
a disagreement between amplitude values. The near field maps
and pixel patterns of random unitaries are not easily
understood through intuition, while an underlying phenom-
enology would be of interest this goes beyond the scope of our
study. We do observe the emergence of larger section of
connected pixels forming lines, which may be a strategy of the
network to achieve large phase shifts in certain matrix
elements. Some more discussion on the phase structure of
the CWGs is presented in our Discussion section.

Hadamard and Fourier Matrix. Complex Hadamard
matrices play an important role in quantum information
theory. They have been used to tackle a number of problems
including the development of spin models78 and analogue
quantum simulators.79 They have also helped establish
mathematical frameworks to construct bases of unitary
operators and maximally entangled states. Fourier matrices
can be used to apply a discrete Fourier transform to a signal
through matrix multiplication, making them of particular
interest in optical signal processing and computation. For a 3 ×
3 matrix, all complex Hadamard matrices are equivalent to the
Fourier matrix, F3:

80

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
F

1 1 1

1

1
3

2

2

=

where ω = exp(2πi/3). It is of interest to check the existence of
a solution for this specific matrix operator. As F3 is a unique
matrix, we again give the network some more flexibility in the
boundary conditions by allowing a single global phase factor
within all matrix elements. A global phase factor can easily be
factorized out and compensated in an optical system. It makes
sense to include this degree of freedom in the matrix to find
the best working point of the CWG under study, taking into
account both amplitude and phase MSE. Figure 6a,b shows the
forward network prediction and resimulated result when
attempting to implement the F3 matrix. An amplitude fidelity
of 0.94 is achieved for the selected solution, with a phase MSE
of 0.035 and amplitude MSE of 0.0145. The polar plot in
Figure 6a is used as a graphical depiction of the accuracy for
each individual matrix element, data points are color coded
corresponding with the matrix element they represent, with
black lines between associated network predictions and
resimulated points representing their separation within the
complex plane.

The full histogram of fidelities for a range of global phase
values between −π and π is shown in Figure 6c and allows to
identify an average fidelity across this phase sample of 0.93,
while we again are able to retrieve a peak fidelity of >0.99, but
at a higher phase MSE.

A question of considerable importance is the stability of the
obtained solutions against environmental variations, and
particularly changes in temperature. We used the specific
design of the Fourier matrix to explore this point in more
depth in Supporting Information, Figure S11. Here, we have
taken into consideration the thermo-optic coefficient of
silicon81 as the main contribution for simulating the matrix
for a range of temperatures around room temperature. It is
found that, while the complex matrix elements show a
significant temperature effect, most of this can be extracted
as a global thermo-optic phase shift acting equally on all matrix
elements, with a much smaller effect on the fidelity and on the
relative phases between the matrix elements. We therefore
conclude that the matrix design is robust against temperature
variations over a range of tens of Kelvins.

■ DISCUSSION
Our work shown here presents coupled waveguide arrays as an
alternative to other commonly used reconfigurable platforms
such as interferometer meshes or multimode based devices for

Figure 6. (a) Polar plot comparing each matrix element in the reproduction of the 3 × 3 Hadamard and Fourier matrix (shown in b). Data points
are color coded to their associated target value, and black lines indicate the distance on the complex plane between forward network predictions
and their resimulated matrix values. (c) Phase sweep is shown again, in which a global phase shift is applied to the target matrix, retaining the same
intensity distribution resulting in a maximum achievable fidelity in excess of 0.99.
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programming arbitrary unitary operators. Approaches for using
such devices are well established, with practical realizations
demonstrated across a number of fields as discussed in the
preamble to this work. Interferometer meshes in particular
provide a high degree of control, allowing for the introduction
of individual phase delays at single unit cells across the mesh
for highly accurate matrix reproduction. There exist several
mathematical models82,83 which allow for the calculation of
where these phase shifts must be applied for arbitrary matrix
decomposition. Despite promising results, small insertion
losses at each interferometer will sum together, leading to
non-negligible losses across the whole device. Furthermore,
when targeting large matrices, the total device footprint
becomes large when compared to alternatives. Adding to
this, many approaches use thermo-optic modulators to
introduce the required phase shifts, which add further to this
size, introduce electronic overhead and regulating circuits, and
produce thermal instability across the chip.

Additional degrees of freedom may be offered also to CWGs
by introduction of external phase shifters. Already in Figure 6
we have considered the freedom of adding a global phase offset
to all matrix elements to find an optimum solution in terms of
both phase MSE and fidelity. A global phase shift is an
operation which does not change the internal phases between
the matrix elements and can be easily achieved externally. Also
in orthogonal permutation matrices many elements are zero
and phase shifters at each of the outputs can readily control the
relative phases for all nonzero matrix elements. This extra
design freedom offered by choosing an arbitrary phase has
allowed some “cherry picking” of solutions in parameter space
as shown in 4. For the full unitary matrix of an N × N
multiport device there exist N2 transmission matrix elements
but only 2N input/output waveguides at which we may place
phase shifters, therefore we lack sufficient degrees of freedom
to tune the phase of every matrix element. In Figure 5 we
restricted ourselves to zero freedom in phase to show the
ability and limitations of the method in achieving random
unitary matrices, however in applications one may make use of
the 2N external phase shifters to also reduce some of the
challenges in unitary matrix design.

As an alternative approach to CWGs, multimode structures
such as MMIs and devices which are built around multimode
waveguides are the most compact technology discussed here.
Extra degrees of freedom introduced by the inclusion of
different optical modes allow for highly compact matrix
decomposition, however, this is not without its drawbacks.
Coupling out of the device becomes challenging as the MMI
has many more internal degrees of freedom than the input and
output modes, therefore any modal-mismatch can introduce
significant losses, often requiring some signal preprocessing
through techniques such as beam shaping. The need for
accurate coupling between modes also now imposes a
requirement for high degrees of spatial accuracy in the
programming of such a device. Coupled waveguide arrays
strike a midpoint in device footprint, necessitating only slightly
more space in the direction of light propagation to allow a
round trip between outermost waveguides if aiming for the
smallest device possible. In the plane perpendicular to the light
injection axis their size remains comparable, if not smaller than
MMI type devices. This compact form-factor is significantly
smaller than comparable interferometer meshes, and remains
within a consistent modal basis, introducing no losses from

coupling between modes at the output waveguides making it
an attractive option for space-limited applications.

While in general the network performance in our work is
strong, there are some examples where the resimulated results
are not a good match to the target matrix. By comparing the
forward network predictions to resimulated results we may
check if forward network predictions remain valid. Using a
simple MSE discriminator, instances which fall outside one
standard deviation from the mean can be identified and
rejected, highlighting cases where the forward network has
failed to accurately predict the transmission matrix for a given
pattern. The fidelity distribution for cases with resimulation
error above one and two standard deviations (above 1 and 2σ)
are highlighted in orange and green in the histogram of
Figure 5. For these designs, the network appears to have
strayed from the interpolation regime of the forward network,
resulting in large errors in the predicted transmission matrix.
Rather unsurprisingly, almost every fidelity below 0.85 is a
result of a failed network prediction. Excluding these from our
statistical analysis the average fidelity now raises to 0.94 ±
0.029. In the majority of cases, however, it appears that the
optimization of the geometry in the WGAN’s latent space and
the addition of the latent constraint successfully limits designs
to the surrogate network’s validity region. Iterative data
improvement may also be continued beyond the three cycles
in this study, which apart from making the network learn from
its own mistakes allows for augmenting the training data
toward larger pixel numbers. The performance gain has to be
traded off against the effort needed as the additional
improvement for each cycle is expected to saturate.

The network is trained on the full complex field, therefore
one might expect similar performance for phase and amplitude,
study of our respective MSE values shows this is, however, not
the case. One hypothesis for the cause of this discrepancy
originates in how our brute force optimization targets are
generated. During the data generation stage, the phase of light
at the outputs is unconstrained and given no optimization
weighting, we asses the success of each pixel iteration solely on
the intensity at the output ports. Intensity optimization targets
are randomly selected from a uniform distribution, resulting in
the retrieval of a normal distribution of possible amplitude
values centered around 0.33 as we expect for a 3-waveguide
system. Conversely, analysis of the phase distribution for the
same data (shown in Supporting Information, Figure S10)
shows distinctly different behavior. Unsurprisingly we record a
peak for phase values matching to those of an unperturbed
device, however, because the optimization is not pushed to
suggest pixel patterns with ”extreme” phase delays approaching
2π, the data set becomes highly biased toward smaller phase
shifts. The final database of pixel patterns represent the
available intensity space well, but may fall short when
describing the phase space especially for longer phase delays.
Consequently it follows that the networks ability to accurately
predict patterns to implement such phase delays will be
inhibited, explaining the differing MSE results for phase and
amplitude we observe. The addition of an additional phase
target into the brute force algorithm has little effect on the final
phase distribution. Each matrix element may only be delayed
from its initial unperturbed phase, meaning regardless of how
targets are defined, the data set will always contain more
examples of small phase shifts as these originate from the start
of the optimization where pixels are more readily accepted.
Therefore, if phase accuracy is essential a training data set
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should be created using an adapted approach to that outlined
here, for example one composed solely from random patterns.

The major limiting factor in the final generation of valid
pixel patterns for user-defined matrix targets remains the
accuracy with which the forward network can make
predictions. Assessment of this will give some insight as to
the expected upper limit on network performance when
presented with an external design target. Supporting
Information, Figure S9 shows the distribution of fidelities
from forward network predictions on the validation data set.
This represents a ”best case” scenario, as these patterns are
generated in precisely the same way as the training data. Across
the 6564 validation patterns we record an average fidelity of
0.92 ± 0.04, indicating that for our current predictor model,
the achieved average amplitude fidelity of 0.94 constitutes what
is likely a near maximal achievable value, which is limited by
the network performance rather than the physical CWG
system. More conventional topology optimizations starting
from the end point of the neural-adjoint inverse design may be
of interest to further converge solutions, which could be a topic
of future work.

Finally we point out a paradox between first the role of the
WGAN-GP in constraining the pattern predictions within the
interpolation regime of the forward predictor network, and
second the large increase in number of pixels for the design
solutions versus the training data set seen in Figure 3. We have
observed similar behavior in previous work on patterned
MMIs36 in which the pixels contained in deep learning
predictions differ significantly from those seen in the networks
training data set. Many pixels are required to optimize the
pattern for the entire complex transmission matrix at once,
especially when using thin films of PCM which introduce
modest effective index variations at each perturbation,
although this may be reduced by increasing the thickness of
phase change material.84 The training data set is highly biased
toward smaller pixel numbers because we save patterns
iteratively starting from zero pixels. Importantly, the majority
of the training data set is directed to only optimize one row of
the matrix at a time, i.e. for one input port, and not the full
matrix itself. To achieve design of the full matrix, the
optimization algorithm has to combine knowledge on patterns
for the three different input ports. Because the latent vectors
exist inside a high dimensional space it is difficult to gain an
intuition for which patterns will lie where within the space,
however, it is likely that patterns with more pixels present will
lie further from the center. The general agreement between
simulation and forward network predictions in the majority of
cases indicate that the WGAN-GP has effectively confined
predictions to those within the validity region of the forward
net. Future work could explore how to further optimize this
interplay at the boundary of latent space in order to further
improve performance.

■ CONCLUSIONS
In conclusion, our study addresses the potential of low-loss
optical phase change materials combined with coupled
waveguide arrays as a promising and exciting avenue for the
production of next-generation reconfigurable technologies
across fields such as quantum simulation, photonic computing
and optical data processing. In comparison with other
approaches such as integrated circuits based around interfer-
ometer meshes or MMIs, coupled waveguide arrays can offer
ultralow-loss reversible modulation requiring no active

regulation within a highly compact device footprint. The
development of a robust inverse design pipeline using neural
network surrogate models allows for rapid, near-real-time
prediction of the complex pixel patterns, required to
implement a wide range of transmission matrices within a
single device model. In our work, the introduction of a
Wasserstein generative adversarial network provides a crucial
constraint on the gradient based optimization, limiting
predicted geometries to those within the interpolation region
of the forward surrogate model. Network performance is
enhanced by augmenting and expanding the training data set,
initially through a process of iterative improvement, and in a
final step, with the introduction of a small percentage of noisy
random data. Although training of the networks is time-
consuming, taking a few hours with standard consumer level
computer hardware, the entire inverse design process remains
significantly faster than alternatives such as topology
optimizations, allowing predictions on a millisecond time
scale once trained.

Presented results demonstrate a high level of control over
both intensity and phase of individual matrix elements. While
some extreme phase relations may suggest the need to expand
the waveguide geometries to longer device, therefore allowing
multiple vertical passes of the light, generally performance is
strong. Average fidelities of 0.935 ± 0.04 are reported,
demonstrating comparable performance to other state of the
art, commercially available reconfigurable photonic technolo-
gies and further reinforcing the validity of this approach. The
fidelity obtained in our study is currently limited by the neural
network performance rather than the coupled waveguide
system itself and further improvement may be possible in
future work. The neural-adjoint design platform introduced is
highly versatile and requires minimal overheads to allow
functionality across different devices and geometries, showing
promise for integration with a range of future optical
technologies although as devices grow in scale the available
perturbation pattern geometry space grows exponentially,
requiring extra simulation time to create a representative
data set. The exact point at which this becomes prohibitively
long will be application specific and dependent on how
frequently new patterns must be designed but will at some
point become a limitation of our approach.

■ METHODS
Device Simulations. Coupled waveguide devices are

simulated using the finite difference time domain (FDTD)
software Lumerical, specifically we use the Variational FDTD
(varFDTD) engine, MODE. This engine collapses a 3D device
structure into an effective 2D simulation by probing the
effective index experienced in slices across the simulation
mesh. The resultant simulation achieves comparable accuracy
to a full 3D simulation, however requires significantly less
computational resources. As this method accounts for the 3D
structure of the device model it is commonly referred to as a
2.5D simulation. The varFDTD approach allows for a dramatic
reduction in the simulation time required to create a
representative data set of pixel patterns and serves as an
approximation of a full-vectorial 3D modal evolution of the
light within our devices. Supporting Information, Figure S10
shows the agreement we observe between the two simulation
regimes for a patterned waveguide device. In the design,
waveguides are obtained by etching 120 nm deep into a 220
nm thick silicon overlayer, which lies on top of a 2 μm thick
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buried oxide layer. The rib waveguides are 500 nm wide,
allowing only propagation of the fundamental mode at the
considered vacuum wavelength of 1550 nm. The distance
between waveguides in the CWG section is 250 nm over a 50
μm long coupled region. To avoid any cross-talk outside of this
coupling region, waveguides fan out to a spacing of 1 μm at
both input and output sides. The waveguides are covered with
a 30 nm thick Sb2Se3 layer to maintain their single mode
performance, displaying an index contrast between crystalline
and amorphous states of n 0.77Sb Se2 3

= . Finally, the
structures are capped with a semi-infinite cladding layer of
SiO2. The complex dielectric function for Sb2Se3 was taken
from ellipsometry measurements.20 Simulations on ideal
waveguides do not take into account additional in-plane
propagation losses due to scattering from polycrystalline grain
boundaries and surface roughness, which play a predominant
role in crystalline Sb2Se3 films of increasing thickness.84

Training Data Generation Using Iterative Optimiza-
tion. The brute force iterative optimization process starts by
randomly choosing a specific input channel, as well as a
random splitting ratio for the output channels. Then, the state
of a single, random pixel is switched and the device
transmission matrix is evaluated through varFDTD simu-
lations. If, compared to the previous device geometry, the
result is closer to the target splitting ratio, the pixel is retained
and further simulations are run for each input channel in order
to record the full transmission matrix. If not, the pixel is
reverted to its initial state, another random pixel is selected,
and the process is repeated. After a specified number of
iterative cycles the process starts over with a blank device and a
new optimization target. A more detailed description of this
process as well as a specific example can be found in the
Supporting Information, Figure S5. After generation of the
data set, the horizontal plane of symmetry found in the
unperturbed waveguide array was furthermore exploited so as
to double the size of this training set.

Deep Learning Neural Network. The forward predictor
used is a ResNeXt encoder-decoder convolutional neural
network,69 a detailed schematic of this forward network model
can be found in the Supporting Information, Figure S1.
Training of the nework takes about 1 h using a Nvidia
RTX3070 GPU. To avoid convergence of solutions to the
extrapolation domain, a Wasserstein generative adversarial
network with gradient penalty72 (WGAN-GP) was used to
develop a learned reparametrization of the pixel patterns
geometry from the training data set. Details of the WGAN-GP
architecture are shown in the Supporting Information, Figure
S2. Through the WGAP-GP, the pixel-based representations of
the geometries that form a nonconvex set in the original
parametrization (i.e., interpolation leads to nonphysical
patterns with gray scale pixels) are mapped into a convex set
of latent representations of the same geometries. Any
interpolation between these latent vectors should still represent
a valid pattern, which can be generated from its latent vector
using the WGAN-GP generator network. This also means that
due to the training procedure using normally distributed
random sampling, all geometries that are valid interpolations of
the data set samples lie within said normal distribution (with
known μz = 0, σz = 1). A rectified linear unit (ReLU)
constraint term to the design fitness function ∑iReLU(|zi| −
2), that penalizes values of zi outside of a 2σ range.

Gradient Descent. Gradient-based optimizations such as
used here are prone to become stuck in local minima and

therefore require good initial guesses to reach a globally
optimum solution. To ensure that we find a close to ideal
solution, we run a large number of concurrent optimizations
for each design target (100 in our case). Eventually, the best
ranked solution is kept. We note that due to the highly
optimized GPU-based parallelization of modern deep learning
frameworks such as tensorflow used in this work, the
concurrent optimization of many targets is very efficient and
fast.
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