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Abstract

Collective intelligence and individual intelligence are usually considered to be fundamentally different. Individual intelligence
is uncontroversial. It occurs in organisms with special neural machinery, evolved by natural selection to enable cognitive and
learning functions that serve the fitness benefit of the organism, and then trained through lifetime experience to maximise
individual rewards. Whilst the mechanisms of individual intelligence are not fully understood, good models exist for many
aspects of individual cognition and learning. Collective intelligence, in contrast, is a much more ambiguous idea. What
exactly constitutes collective intelligence is often vague, and the mechanisms that might enable it are frequently domain-
specific. These cannot be mechanisms selected specifically for the purpose of collective intelligence because collectives are
not (except in special circumstances) evolutionary units, and it is not clear that collectives can learn the way individual
intelligences do since they are not a singular locus of rewards and benefits. Here, we use examples from evolution and
developmental morphogenesis to argue that these apparent distinctions are not as categorical as they appear. Breaking
down such distinctions enables us to borrow from and expand existing models of individual cognition and learning as a
framework for collective intelligence, in particular connectionist models familiar in the context of neural networks. We
discuss how specific features of these models inform the necessary and sufficient conditions for collective intelligence, and
identify current knowledge gaps as opportunities for future research.
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Introduction

The identification of a suitable theoretical framework and
appropriate engineering principles for collective intelli-
gence are open problems. In this paper, we begin to address
these gaps by developing a synthesis of perspectives usually
considered to be quite distinct. To do this, we first dissolve a
number of limiting misconceptions that cause collective

intelligence and individual intelligence to be treated as
separate topics; second, we introduce a speculative con-
ceptual framework to unify them.

For an intelligence to belong properly to a collective, it
must arise not from the cleverness of its members but from
having the right kind of functional relationships between
them. What kinds of functional relationships, and in what
specific organisation, are required to turn a collective that is
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not intelligent into a collective that is? We use a specific
understanding of cognition and learning that is already well-
developed for individual intelligence to synthesise collec-
tive intelligence with aspects of development and evolution.
In particular, we explore how connectionist models of
cognition and learning, familiar in neural network models of
individual intelligence, can address this question, and how
they signpost directions for future research in collective
intelligence. We especially emphasise the known emergent
properties of cellular collectives as instructive examples of
collective intelligence at a sub-organismal scale.

Individual and collective intelligence are distinct
phenomena. Or are they?

At first glance, it might seem that models of individual
intelligence are not relevant to collective intelligence. In-
dividuals have brains that can cognise and learn, and al-
though colonies and swarms might be composed of
individuals with brains, the collective as a whole is not a
brain and cannot cognise or learn. Moreover, it is easy to
understand why the component parts of an individual work
together so well because adaptive processes at the organ-
ismic level, such as evolution by natural selection and
reward-based reinforcement, select or reward them for
doing so. In contrast, collectives are composed of multiple
evolutionary units or distributed multi-agent systems and
thus present unique credit-assignment problems that com-
plicate reinforcement of such adaptive processes. Such
distinctions seem to justify the consideration of collective
and organismic intelligences as different topics. We argue
that these are false distinctions and there is a bigger, and
much more interesting, picture. The basic tenets of this
unified view are the following:

All individuals are collectives. All individuals are collectives,
made of parts that used to be individuals themselves. This is
true not only for multicellular organisms derived from uni-
cellular ancestors but also for eukaryotic cells with multiple
organelles arising from bacterial ancestors, and for simpler
cells that contain the first chromosomes arising from the
union of previously free-living self-replicating molecules
(Godfrey-Smith, 2009; Maynard Smith and Szathmary, 1997;
Michod, 2000; Okasha, 2006; West et al., 2015). Moreover,
the proper functioning of organisms — their robustness,
adaptability and evolvability — depends on the continued
autonomy of their component parts (Levin, 2019; 2021a).
Multicellular organisms exhibit multi-scale autonomy, a
dynamic interplay of competition and cooperation, and co-
ordinated collective action inherent to their development,
function and behaviour, while being a society of cells (Fields
and Levin, 2022; Levin, 2019; 2022; 2023; Sonnenschein and
Soto, 1999). Thus, individuals like you and I, and collectives

like swarms and colonies, are not as categorically different as
they first appear.

All intelligences are collectives. Individual intelligence, in the
familiar guise of a central nervous system or a brain, arises
from the interaction of many unintelligent components
(neurons) arranged in the right organisation with the right
connections. This is the foundation of connectionism; that
intelligence resides not in the individual parts but in the
arrangement of the connections between them (LeCun et al.,
2015; Watson et al., 2016; Watson and Szathmary, 2016).
The individual neuron is not where all the interesting
cognition and learning occur. It is the distributed collective
activity in the network that constitutes cognition and
changes to the organisation of network connections that
constitute learning. So brains are collectives, thus collec-
tives of the right kind do cognise and learn. In fact, brains
provide the archetypal example of an intelligent collective.

Cognition and learning are substrate-independent. The prin-
ciples of distributed cognition familiar in artificial neural
networks can be implemented by any network of signals and
non-linear responses to suitably weighted inputs (Evans
et al., 2022; Stern and Murugan, 2022; Watson et al., 2016).
Gene-regulation networks, ecological networks and social
networks can all compute in the same sense as neural
networks if the connections are suitably arranged (Biswas
et al.,, 2021; Davies et al., 2011; Herrera-Delgado et al.,
2018; Power et al., 2015; Szabo et al., 2012; Tareen and
Kinney, 2020; Watson et al., 2014). In development and
organismic biology, many different levels of adaptive
networks exist aside from neural networks, including gene-
regulation networks, protein networks, metabolic networks,
morphogen diffusion networks and endocrine systems. In
addition, it is clear that morphogenesis, physiological
function and the adaptive processes of robustness and repair
all require information integration and collective action that
constitute cognition — in many cases without neurons. Each
of these phenomena exhibits the same learning behaviours,
including the storage and retrieval of multiple associative
memories, effecting classification and recognition with
generalisation capabilities, and learning to solve combi-
natorial optimisation problems better with experience
(Watson et al., 2011a; Watson et al., 2011b, 2011c).

The credit assignment problems inherent in collective intelligence
are fundamental in all cognition and learning, and in all biological
individuality. 1t is true that collective intelligence is fun-
damentally about collectives — meaning that we cannot
presuppose the system as a whole to be a single selective
or utility-maximising unit. However, when we take a
larger perspective — for example, one concerned with
their emergence over developmental or evolutionary
timescales — neither can we presuppose that apparently
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Figure |. Perspectives on individual intelligence and collective intelligence. Complex systems are composed of many interacting
components. But where is the agent —at the component level or the system level? (a) Swarms are often characterised as collectives, but
the agency (reward feedback and decision making) is generally attributed to each component. These are obviously collectives but not
obviously intelligent. (b) Animal intelligence is often characterised as a single, system-level agent (exhibiting information integration and
collective action), but the components are generally considered to be ’parts’ without agency. These systems are obviously intelligent
but not obviously collectives. (c) In reality, all intelligences are made out of components that act on local information based on individual
feedbacks. In a multicellular organism, for example, the individual cells exhibit agency based on local information and rewards, and the
system (cellular swarm) as a whole does also, exhibiting information integration and anatomical decision making at the system-scale.

unambiguous individuals have always been (single) se-
lective or utility-maximising units. Thus, the credit as-
signment issues of collective intelligence are not
categorically distinct from related core issues in indi-
vidual adaptation, evolution and intelligence.

Towards a unified theory of intelligence
and cognition

In collectives, each component selects behaviours based on
the rewards they receive for their own actions (Figure 1(a)).
In intelligent systems, the reward feedback is effectively
operating at a higher level — and the system as a whole
selects behaviours based on the rewards received by the
system as a whole (Figure 1(b)). Accordingly, it makes
sense that the system selects behaviours that facilitate long-
term collective reward. But operationally, each component
within the intelligent system is still autonomous, selecting

individual actions based on individual rewards given the
relational context they find themselves in. The question is,
what kinds of interaction structures cause collectives to
behave like intelligent agents, exhibiting information
integration and coordinated action that effect reward
feedback at the system level? (Figure 1(c)). Here, we
propose a formalism for thinking about these issues as a set
of hypotheses to drive future research.

Establishing these commonalities has significant conse-
quences for understanding: since some of these questions
have well-developed answers in the context of individual
intelligences, those answers can be transferred to provide a
framework for approaching collective intelligences. While
connectionist models of cognition and learning do not have
all the answers, they do identify the kind of relationships that
turn a collection of unintelligent components into a collective
intelligence, with cognitive and learning abilities that belong
to the whole and not the parts. Additionally, connectionist
models identify conditions where collective intelligence can
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arise bottom-up, using only distributed learning mechanisms
without system-level or global feedback.

We do not attempt a comprehensive review of the many
related topics involved. Rather, we have selected founda-
tional points to clarify a vision of distributed cognition,
bottom-up adaptation and, more generally, the ‘more than
the sum of the parts’ conceptual territory.

A framework for interrogating collective intelligence

Our thinking builds on a core conjecture that the kind of re-
lationships necessary to produce evolutionary individuality — the
generation and heritability of fitness differences at the collective
level (Watson et al., 2022) — are the same as those required to
produce organismic individuality — the information integration
and collective action characteristic of a self (Levin, 2019,
2022a). More specifically, we propose that these relationships
are cognitive architectures regardless of the substrate in which
they are implemented (Watson et al., 2022). That is, the causal
structures necessary to create fitness that properly belongs to the
whole rather than its parts (Watson and Thies, 2019) are the
same as those required to carry out the integration of information
and coordination of action characteristic of a ’self” (Levin, 2019;
Manicka and Levin, 2019a). We propose that such functionality
constitutes cognition in a formal sense, whether the causal
structures are implemented by chemical, gene-regulatory, bio-
electrical, neural, ecological or social interactions (Manicka and
Levin, 2019a; Watson and Szathmary, 2016), consistent with the
emerging field of unconventional and basal cognition (Levin
et al.,, 2021; Lyon, 2020; Lyon et al., 2021).

Understanding the parallels between
individual and collective intelligence via a
connectionist framework

The curious thing about collective intelligence is that the
more intelligent something is, the less it looks like a col-
lective. When component members act in an efficiently
coordinated manner, with behaviours that can be diverted
from their short-term self-interest to serve long-term col-
lective interest, a collective looks more like an individual at
a higher level of organisation. Recognising this, biology is
full of collective intelligence — not just in the weak sense of
swarms and colonies with emergent behaviours but because
any organism is actually an intelligent collective. Here we
look at (1) collective behaviours and functions within or-
ganisms, especially development and the idea of ‘basal
cognition’; (2) the complex relationship between organis-
mal identity and evolutionary units, and how this has
changed over evolutionary time; (3) the substrate-
independence of intelligence and how cognition and
learning can occur in various kinds of biological networks;

and briefly, (4) how the problem of credit assignment arises
as a core theme in these issues.

Organisms as collective intelligences: Development
and basal cognition

All organisms are collectives at multiple levels: from col-
lections of active molecules in a cell, to collections of cells
in a multicellular organism or a tissue, to collections of
tissues in an individual organism. What makes collectives
individuals (as opposed to merely populations in containers)
is their intelligence — their degree of competency in solving
novel problems (Fields and Levin, 2022; Levin, 2023). The
processes of development are the substrate of this
intelligence — the ‘glue’ that makes the whole more than the
sum of the parts (Levin, 2019). A large body of work in-
dicates that development is not well-characterised as the
execution of a pre-programmed genetic script but rather as
an active, dynamic and adaptive process. Although all cells
in most multicellular organisms share the same genome, the
remarkable protein machinery that genome encodes, along
with the cytoskeletal and lipid structures each cell inherits
from its ancestors (Fields and Levin, 2018b), enables a
collective of embryonic cells to develop differentiated roles
and self-organise into a large-scale, functional machine.
Development thus involves a multi-scale hierarchy of co-
operating and competing subunits (Fields and Levin, 2020),
each with local computational and goal-directed capacity,
that enables the whole to function as a singular subject of
memories and preferences — a unified locus of learning and
homeostatic loops that harness its subunits towards goal
states.

Morphogenesis as an instantiation of collective
intelligence. Anatomical homeostasis — the ability to adjust
anatomy despite injury or drastic rearrangement (Harris,
2018; Levin et al., 2019) — requires the collective to have
a degree of autonomous problem-solving activity in mor-
phospace, defined as the space of possible anatomical con-
figurations (Stone, 1997). For example, eyes developed
ectopically in the tails of frog embryos still allow the animals
to see (Blackiston and Levin, 2013) because the eye pri-
mordia cells succeed not only in forming an eye and optic
nerve in an abnormal environment but also in connecting the
optic nerve to the nervous system (in this case, via synapse
onto the spinal cord, rather than the brain). Another example
is the development of the newt kidney tubule (Fankhauser,
1945a; 1945b): normally cell-cell communication among
~8 cells produces the correct tubule diameter, but if the cells
are made very large, they still produce the same diameter
tubule by using fewer cells. Even when cell size gets very
large, a single cell can achieve the same diameter tubule by
bending around itself (this time using cytoskeletal
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mechanisms). Thus, genetically wild-type cells can harness
distinct molecular components, depending on the novel
circumstances, to reach the same high-level anatomical goal.

This disrupts a straightforward reductionist or bottom-up
account of organismal morphology and function. Whilst
natural selection provides the genetic hardware, this hard-
ware has a very particular kind of plasticity, which im-
plements robustness to both external and internal novelty.
This derives from an architecture of multi-scale competency
(Fields and Levin, 2020; Gawne et al., 2020), where many
subsystems are themselves goal-directed and can pursue
specific endpoints despite changes in their tissue environ-
ment, greatly potentiating evolvability. The idea of or-
ganisms as pre-specified machines, assembled by genetic
scripts, fails in the context of these and other examples of
developmental robustness. We therefore seek to understand
these capacities in the context of a different and more
flexible conceptual space.

Basal cognition in development: Morphological problem-
solving. ‘Basal cognition’ refers to information processing
that occurs in an unconventional substrate and/or as a
simpler evolutionary precursor to what we conventionally
consider cognition (Baluska and Levin, 2016; Levin, 2019;
Manicka and Levin, 2019a). This is not cognition that
depends on neurons or necessarily involves second-order
self-awareness (Levin, 2019). It refers to cognition in an
algorithmic sense that is substrate-independent (Levin,
2019) and is observable as problem-solving across phylo-
genetic history (Keijzer et al., 2013; Levin et al., 2021;
Lyon, 2015; Lyon et al., 2021). What is important in basal
cognition is not the presence of neurons but the presence of
functional and informational interactions that facilitate both
information integration and the ability to orchestrate cued
responses that coordinate action (Bechtel and Bich, 2021;
Grossberg, 1978; Levin, 2019). This can be implemented by
suitable interactions of any nature including gene regulatory
networks, cell signalling, bio-electric networks and mor-
phogenetic chemical feedbacks (Lyon et al., 2021).

For example, the process of growing a limb constitutes
basal cognition, as it requires both integration of multi-
dimensional information (e.g. to ‘decide’ appendage type or
handedness, from context) and collective action to put this
‘basal decision’ (Bechtel and Bich, 2021) into action (e.g. to
coordinate the timing, abundance and positioning of cellular
differentiation and growth (Dinet et al., 2021; Fields and
Levin, 2020; Moczek, 2019). More broadly, regulative
development, regeneration and remodelling (such as mor-
phogenesis) require collective decision making and memory
at two scales: on the part of cells (collectives of molecular
networks) and of tissues (collectives of cells). Limb re-
generation, for example, requires a memory of the correct
pattern, the ability to compare current state with the target
state and the ability to traverse anatomical morphospace in

different ways depending on context and perturbations
(Pezzulo and Levin, 2016).

William James’ definition of intelligence — the ability to
achieve the same goal in multiple ways (James, 1890) —
provides context for considering the basal intelligence of
cell collectives in morphogenesis. It has become clear that
the large-scale morphological goals of an organism override
and harness the local competencies of individual cells to
adaptively navigate morphospace (Levin, 2022a). That
navigation capacity is not hardwired but shows considerable
problem-solving plasticity (reviewed in (Levin, 2023)).
Numerous examples indicate that morphogenesis meets
James’s definition of intelligence by achieving normal
anatomy despite a wide range of serious perturbations. For
example, developing Xenopus tadpoles can attain the same
anatomical outcome despite starting with their craniofacial
organs scrambled (Vandenberg et al., 2012) or with the
wrong number of cells (Cooke, 1979, 1981). Even mam-
malian embryos can overcome drastic perturbations such as
amputation; and early embryo splitting in humans results in
normal monozygotic twins rather than partial bodies.

The ability of collectives of cells to pursue, with various
degrees of competency, target states in anatomical mor-
phospace (Levin, 2023; Stone, 1997) reveals an important
aspect of being an individual: solving problems in a space
different from that occupied by its parts (Fields and Levin,
2022; Levin, 2023). While individual cells cannot ascertain
the right number, size or position of eyes or fingers, tissues
do so routinely, that is, the tissue as a collective executes
morphogenesis through differential cell reproduction and
differentiation, stopping when the correct structure is
complete (Birnbaum and Sanchez Alvarado, 2008). While
cells navigate transcriptional and metabolic spaces, cellular
collectives can navigate anatomical morphospaces and the
conventional behavioural space (Fields and Levin, 2022).

Altered states: Basal cognition and manipulated target
morphology. This framework makes a strong prediction: if
intercellular signalling (not genes) is the cognitive medium of a
morphogenetic individual, it should be possible to exploit the
tools of behavioural and neuro-science and learn to read, in-
terpret and re-write its information content in a way that allows
predictive control over its behaviour (in this case, growth and
form) without genetic changes. This prediction has been val-
idated in several species. The bioelectric signatures that drive
accurate regenerative reproduction/development in planaria
have been identified (‘reading and interpreting’ anatomical
target information, Durant et al., 2016; Durant et al., 2017;
Pezzulo et al., 2021). Planaria normally have one head, but this
is not genetically determined, merely a default: transient bio-
electrical modulation of the body-wide pattern memory circuits
can shift them to a persistent two-headed state, causing sub-
sequent pieces of that planarian to regenerate into two-headed
worms (‘re-writing’) (Durant et al.,, 2016). This induced
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phenotype then persists through future rounds of amputation
until set back to normal with a different bioelectrical manip-
ulation (Durant et al., 2017); it even exhibits features of ad-
vanced individual cognition such as bi-stability (Pezzulo et al.,
2021). These target morphology shifts occur despite the fact
that all of the individual cells have unaltered normal genomes,
showing that competent subunits can be pushed to implement
diverse organism-scale goals by physiological signals (expe-
riences) without modification of their essential hardware. In
addition, this can happen rapidly — not requiring evolutionary
timeframes. Other examples of reading, interpreting and re-
writing the bioelectric information dictating morphogenesis
have been described in a range of model systems (Levin,
2021b). Consistent with the idea that cellular swarms can
act as a consolidated cognitive agent, morphogenesis is known
to be altered by prior experiences (e.g. amphibian limbs ceasing
to regenerate after repeated amputation (Bryant et al., 2017))
and confused by exposure to classic cognitive modifier drugs
(Sullivan and Levin, 2016).

Bioelectricity: A ‘cognitive glue’ common to collective and indi-
vidual intelligence. The many parallels between behavioural
control by nervous systems, and the ancestral capacity of
morphogenetic control by all cell networks (Fields et al., 2020),
are reviewed elsewhere (Pezzulo and Levin, 2015). But it’s
crucial to note that the very same cognitive glue — bioelectrical
networks implemented by ion channels and electrical
synapses — operates to bind neurons into competent individuals
in the 3D world of behaviour and to bind other cell types into
competent individuals in the morphogenetic space of ana-
tomical control. These insights are now driving computational
models used to understand the tissue-level decision making that
results in birth defects (Manicka and Levin, 2019b, 2022) and
their repair (Pai et al., 2018; Pai et al., 2020; Pai and Levin,
2022), giving rise to promising therapeutics.

These capacities of morphogenetic cellular collectives are
basally cognitive insomuch as they involve information inte-
gration and coordinated action (Fields and Levin, 2020;
Grossberg, 1978; Levin, 2019; Manicka and Levin, 2019a;
Newman and Bhat, 2008), characteristic of a self (Levin, 2019).
More radically, perhaps this kind of cognition is actually what
constitutes organismal individuality — that is, the processes of
basal cognition essential for achieving specific system-level
goals in anatomical morphospace are exactly what make the
whole different from a collection of parts (Watson et al., 2022).

Collective intelligence as a product of evolutionary
selection, or evolutionary selection as a product of
collective intelligence?

Biological individuality has traditionally been associated

with the scope of an evolutionary unit (Clarke, 2016) — the
unit that is subject to differential survival and reproduction.

Within this orthodox view, whilst the processes of devel-
opmental basal cognition are certainly complicated and
might have the appearance of collective behaviour, they are
merely complex parts of a single individual. However, this
view turns out to be wholly inadequate to understand and
manipulate the multi-scale nature of life.

Genetic identity and biological individuality. The idea that bi-
ological individuality can be defined by genetic identity is
clearly insufficient: the structural and functional demarca-
tions of coherent individuals often diverge from their ge-
netic information. Note that a colony of bacteria may be
genetically homogeneous but not an individual, while
planaria are biological individuals by any reasonable sense
of the word but not genetically homogeneous (Fields and
Levin, 2018a). Even though genetically identical, the tissues
and cells within a classical organism (body) often compete
with each other (Gawne et al., 2020); conversely, cells from
distant species cooperate well within chimeric organisms
(Nanos and Levin, 2022). In addition, genetic information
does not always predict the structure and function of bio-
electrically modified organisms (Levin, 2014, 2021a) or of
self-organising synthetic living machines (Blackiston et al.,
2021; Kriegman et al., 2020). Likewise, often it is the degree
of bioelectrical coupling, not genetic differences, that de-
termines whether cellular optimisation occurs at the single-
cell level (cancer) vs. at the organ-level (normal morpho-
genesis) (Chernet and Levin, 2013).

Evolutionary units and biological individuality. Can a notion of
evolutionary units beyond genetic relatedness rescue a
meaningful concept of biological individuality? That is, the
ability to exhibit heritable variation in reproductive success
might obtain for a complex or composite whose components
are not genetically related. For example, despite being of
separate ancestral origins, the nuclear and mitochondrial DNA
of eukaryotes can be considered a single evolutionary unit
(under most conditions) by the virtue of their common vertical
transmission. However, identifying what exactly constitutes an
evolutionary unit in general is also non-trivial — especially
because they change over evolutionary time and new units
arise at new levels of organisation (Okasha, 2006).

To be a bona fide evolutionary unit, a collective must
exhibit heritable variation in reproductive success that
belongs properly to the collective level — over and above the
sum of that exhibited by its component parts (Okasha, 2006;
Watson et al., 2022; Watson and Thies, 2019). This requires
organised functional relationships that cause short-sighted
self-interested entities to behave in a manner that serves the
long-term collective interest of the whole. In this light, the
complex nature of functional relationships between com-
ponent parts begins to look less like the product of selection
at the system level, and more like the source of evolutionary
individuality.
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Practical implications: Beyond philosophy. Such considerations
matter fundamentally to our understanding of the organ-
ismic, evolutionary and developmental biology
(i.e., emergent functionality) and thus to our ability to
predict, control, manage and manipulate multi-scale bio-
logical systems. Understanding what kind of relationships
instantiate biological individuality is thus of great impor-
tance to synthetic bioengineering, regenerative medicine,
exobiology, robotics and artificial intelligence.

For example, to intervene in the processes that coordinate
component parts to create or regenerate an organ or a limb — or
produce an entirely novel construct such as a self-assembling
biobot (Ebrahimkhani and Levin, 2021) — we must be able to
manipulate the very relationships that define individuality
(Levin, 2021c). Such bioengineering goals therefore depend
intimately on our knowledge of collective intelligence at
multiple levels of biological organisation (Beane et al., 2013;
Herrera-Rincon et al., 2018; Pezzulo and Levin, 2015).

Recent work has begun to apply the tools of collective
intelligence and cognitive neuroscience to morphogenesis and
its disorders, including cancer, a disease of dysregulated
morphogenesis (Deisboeck and Couzin, 2009; Doursat et al.,
2013; Friston et al., 2015; Pezzulo et al., 2021; Pezzulo and
Levin, 2015, 2016; Rubenstein et al., 2014; Slavkov et al.,
2018). Disconnection from the bioelectric network of tissues
often gives rise to fragmenting of coherent anatomical indi-
viduals into invasive single cells and tumors; their release from
higher level collective goals is readily apparent because they
pursue anatomical, histological and physiological states quite
different from those that the organism tries to maintain
(Egeblad et al., 2010; Levin, 2021c; Radisky et al., 2001; Soto
et al., 2008). This fragmentation can be reversed: despite
strong oncogenic mutations, cancer phenotypes can be sup-
pressed by forcing bioelectrical connections among cells, thus
overriding single-cell level goals with large-scale morphoge-
netic ones (Chemet and Levin, 2013).

Cognition, learning and problem-solving in biological
networks: Generalised principles of connectionism

The link between evolution and simple types of learning has
often been noted (Skinner, 1981; Watson and Szathmary,
2016) but sometimes interpreted in an uninteresting way:
learning is simply a form of random variation and selection
(Campbell, 1956; Skinner, 1981; Watson and Szathmary,
2016). However, the formal equivalence between evolution
and learning (Campbell, 2016; Frank, 2009; Harper, 2009;
Shalizi, 2009) also has a much more interesting implication,
namely: Evolution is more intelligent than we realised
(Chastain et al., 2014; Parter et al., 2008; Valiant, 2013;
Watson and Szathmary, 2016). Connectionist models of
conventional learning, familiar in artificial neural networks,
greatly expand this perspective (Watson et al., 2016, 2022;

Watson and Szathmary, 2016). Connectionist models in-
herently implement the fact that intelligence resides not in
the parts but in the organisation of the relationships between
them (Watson et al., 2016; Watson and Szathmary, 2016).
Such models demonstrate how networks of organised
functional relationships between simple reactive (stateless)
components are sufficient to exhibit information integration
and coordinated responses. Moreover, these relationships
can be organised by simple distributed, incremental pro-
cesses, that is, learning (Watson et al., 2011a; 2011b; 201 1c;
2016; Watson and Szathmary, 2016).

Hebbian learning in networks. A simple example of such a
neural model, demonstrating distributed computation and
learning, is the Hopfield network (Hopfield, 1982)
(Appendix Box 1). Given that the Hopfield network is
inspired by neural dynamics and learning in cognitive
systems, its learning and problem-solving abilities are
perhaps not so surprising, despite their decentralised op-
eration. However, the underlying principles are extremely
simple and general: the same computational algorithms also
apply in systems that we don’t normally expect to be ca-
pable of cognition or learning; gene-regulation networks,
protein interaction networks and ecological community
networks can all implement the same kinds of functions as
neural networks if organised appropriately (Biswas et al.,
2021; Herrera-Delgado et al., 2018; Szabd et al., 2012;
Tareen and Kinney, 2020). However, cognition in different
substrates may have very different spatio-temporal scales —
from the cellular, to the familiar organismic scale, and
perhaps to the ecological scale (Power et al., 2015; Watson
et al., 2014). Can these kinds of networks also learn as
neural networks do?

The answer is yes. Hebbian learning in a self-modelling
dynamical system (Appendix Box 1) effects a positive feed-
back on correlations; the more things co-occur, the more the
connection between them changes to make them more likely to
co-occur in future. This positive feedback on correlations is
quite natural. In some conditions, it does not require an active
learning mechanism that strengthens connections, instead it is
sufficient to differentially relax or weaken connections ac-
cording to the frustration or stress experienced in that con-
nection (Buckley et al., in prep). Thus, connectionist modes of
cognitive learning can be instantiated in various kinds of non-
neural networks (Davies et al., 2011; McCabe et al., 2011;
Power et al., 2015; Watson et al., 2011b).

Importantly, the application of connectionist models also
extends into the domain of evolutionary systems, where the
connections of a network are changed by variation and
selection, as seen in the evolution of interaction networks in
development and ecology (Brun-Usan, Rago, et al., 2020;
Brun-Usan, Thies, et al., 2020; Kouvaris et al., 2017; Rago
etal.,2019; Watson et al., 2014; Watson et al., 2016; Watson
and  Szathmary, 2016). In these ‘evolutionary
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connectionism’ models, ordinary processes of random
variation and selection act on the functional interactions
between components, altering their organisation in a way
that positively reinforces correlations — functionally
equivalent to connectionist learning models (Watson and
Szathmary, 2016). The algorithmic principles well-
understood in neural networks, are equally demonstrable
in gene-regulation networks (Brun-Usan et al., 2020; Brun-
Usan et al., 2020; Kounios et al., 2016; Kouvaris et al.,
2017; Rago etal., 2019; Watson et al., 2014), and ecological
community networks (Power et al., 2015) and social net-
works (Davies et al., 2011; Watson et al., 2011a). This
algorithmic unification between connectionist learning and
evolution (Watson et al., 2016; Watson and Szathmary,
2016) opens up the transfer of an extensive, well-
developed toolset from machine learning into evolution-
ary theory to naturalistically explain evolutionary ‘intelli-
gence’ (Kounios et al., 2016; Watson et al., 2022; Watson
and Szathmary, 2016).

In particular, it is important to recognise that con-
nectionist models can exhibit learning bottom-up, without
centralised control or an external teacher, and without any
performance feedback applied at the system level, via fully
distributed and unsupervised learning principles (Watson
et al., 2011a; Watson et al., 2011b, 2011c). This means that
the same learning behaviours can be exhibited by an eco-
logical community without selection at the community level
(Power et al., 2015). This is potentially important to un-
derstanding the evolution of intelligent collectives (and
evolutionary transitions in individuality (ETIs)) because it
identifies conditions where relationships between evolving
entities can be organised via natural selection acting at the
lower level before selection at the higher level takes effect
(Watson et al., 2022; Watson and Szathmary, 2016).

So, what kind of cognition can such networks exhibit?. We find
it useful to operationalise cognition in an algorithmic
sense, namely: what kind of problem-solving can it do?
Organisms solve problems in many different spaces in-
cluding morphological, metabolic, transcriptional or be-
havioural (Fields and Levin, 2022). Limited forms of
problem-solving can be demonstrated with simple net-
works like the Hopfield model (Hopfield and Tank, 1986).
The problem-solving behaviour of such a system without
learning can be taken as a base line, or null model, as it
merely describes a local energy descent process with fixed
points corresponding to locally optimal solutions (of the
energy-minimisation problem implicit in the constraints
between its components). To do better than that — to avoid
being trapped in local minima — requires a system to learn
an internal organisation that knows something about the
solution space from past experience, either on agent
timescales (the familiar scale of cognition) or on

evolutionary timescales (Kounios et al., 2016; Kouvaris
et al., 2017; Watson and Szathmary, 2016).

The ability of distributed learning to improve problem-
solving ability in this way is now well-developed (Kounios
et al., 2016; Mills, 2010; Mills et al., 2014; Watson et al.,
2011a; Watson et al., 2011b, 2011c; Watson et al., 2016). In
some conditions, a learning neural network can enable a sort
of ‘chunking’, rescaling the search process to a higher level
of organisation (Caldwell et al., 2018; Mills, 2010; Watson
et al., in review; Watson et al., 2011c; Watson et al., 2016).
Elsewhere, we hypothesise that this rescaling of the
problem-solving search process is intrinsic to transitions in
individuality (Watson et al., 2016), suggesting that ETIs
constitute a form of deep model induction (Czegel et al.,
2019; Vanchurin et al., 2021; Watson et al., 2022).

Credit assignment in individuals and collectives

Conventional accounts of intelligence and behavioural
protocols (Watson, 1967) assume a singular subject of in-
telligence and of the goals that it can pursue. However, this
is a significant over-simplification that obscures important
questions about how centralised intelligences arise out of
cellular components (Levin, 2019, 2021c). For example,
one trains a rat to press a lever and receive a delicious
reward, in instrumental or associative learning paradigms
(Abramson, 1994; Best, 1965; Rescorla and Solomon,
1967). The rat is understood to be an intelligent agent
solving an instrumental learning problem; but it is also a
collection of cells. Indeed, the cells that perform the action
(muscle and skin cells that interact with the lever) and the
ones involved in sensing the environment (seeing the lever,
feeling the lever and tasting the reward) are not the cells that
immediately receive the nutritional benefit of the reward
(intestinal lining). No individual cell has the entire expe-
rience of performing an action and reaping its benefits — that
relationship only exists in the ‘group mind’ of the collective
agent. How do the parts discern which of their actions
should be reinforced? Problems of distributed credit as-
signment are a key aspect of intelligence, even in con-
ventional organisms.

It is imperative to understand the developmental algo-
rithms and signals by which tissue-level agents incentivise
lower-level subunits (e.g. cells and molecular pathways),
distorting their option space so that simple, local descent
down free-energy paths (short-sighted self-interest) result in
higher order adaptive activity (long-term collective inter-
est). The key to being an individual is to have a functional
structure in which diverse experiences across its compo-
nents are bound together in a way that generates causal
relationships and composite memories that belong to the
higher space of the individual and not its components
(Fields and Levin, 2022).
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How does scaling of reward dynamics bind subunits into intel-
ligent collectives that better navigate novel problem spaces?
Lessons from machine learning. It is no accident that the
issue of credit assignment, and the application of credit
to parts or wholes, is a central one in evolutionary se-
lection, developmental and organismic biology and
cognitive science. It is a feature of many difficult
learning tasks that they require sequences of actions that
are many steps away from ultimate goals — making it
intrinsically difficult to incentivise the component parts
involved. This is what makes difficult tasks difficult;
conversely, having feedbacks that are additive and in-
dividual, is what makes easy tasks easy. It is no coin-
cidence then, that these issues of credit assignment have
well-developed formalisms in the domain of machine
learning (Watson et al., 2022). In particular, one of the
touchstones of machine learning — the ability to rep-
resent non-linearly separable functions (such as XOR -
Exclusive OR logical operator) — is distinguished from
linearly separable functions exactly because improve-
ments in the output cannot be ascribed to the inde-
pendent contribution of individual inputs (Watson et al.,
2022). Nonetheless, simple connectionist models can
learn such functions if they have a suitable architecture
(see below).

Connectionist models thus identify some basic criteria
about the kind of relationships that turn a collection of
unintelligent components into a non-decomposable in-
telligence with cognitive and learning abilities that be-
long properly to the whole and not the parts. Moreover,
the ability of unsupervised learning processes to exhibit
collective problem-solving capabilities suggests condi-
tions where this can arise bottom-up, using only dis-
tributed learning mechanisms without pre-supposing
collective-level feedback. These principles do not re-
quire that the collective is already an evolutionary unit,
nor do they require that the members of the collective are
neurons.

Together, these observations show that the apparent
distinction between individual intelligence and collec-
tive intelligence is not substantial: at a minimum, they
exist on a continuum. Further, the connectionist models
of cognition and learning developed for individual in-
telligence are not simply relevant to understanding what
is required for a collective to be intelligent, it may be that
it is precisely these cognitive capacities that are the
fundamental difference-maker with respect to individ-
uality itself; i.e. between ‘many individuals’ and ‘one
individual’.

What kinds of interaction structures are
necessary for what kind of (collective)
intelligence and how can these
structures emerge?

Some of the different cognitive behaviours we might be in-
terested in for collective intelligence include information in-
tegration, holding state over time, storing and recalling
multiple memories and recognising past states, generalising,
problem-solving and multi-scale autonomy (Baluska and
Levin, 2016; Levin, 2022a). Moreover, we are interested in
how any of these behaviours can be understood to belong to
the whole — or indeed, to multiple organisational scales — rather
than the parts. Whilst some of these behaviours might not be
very well defined in the context of collective behaviour, our
approach is to describe how they relate to the different types of
connectionist architectures, familiar in artificial neural net-
works, where these behaviours are better understood. This
approach offers a speculative synthesis of machine learning
concepts with basal cognition and evolutionary theory —and a
roadmap of gaps and opportunities for future research in
collective intelligence (Table 1). We first discuss what inter-
action structures are needed and then how such structures can
emerge ‘bottom-up’ through distributed learning mechanisms.

The structure of interactions

Naturally, the ability to represent relationships (e.g. correla-
tions or associations) among variables, rather than a system of
independent variables, is essential for any connectionist model
of cognition, and requires components to have connections of
one kind or another. For example, in development, gap-
junctions between non-neural cells are physiologically tun-
able ‘synapses’ that communicate cellular behaviours
(Mathews and Levin, 2017; Palacios-Prado and Bukauskas,
2009) and indeed can drive genetically wild-type cells to build
body organs belonging to diverse species (Emmons-Bell et al.,
2015). There are many other levels of biological organisation
with different ‘signals and responses’ between components, or
sensitivity to one another’s behaviours. Being connected is
necessary but not sufficient for cognitive functions, however.
Connectionist principles enable us to be more specific about
what kinds of connection structure are important.

Instructive neural architectures from machine learning. This is
by no means a survey of machine learning techniques or a
comprehensive description of neural architectures; our aim is
simply to highlight some of the key architectural issues and their
significance with respect to different cognitive abilities. Three
particular architectural issues have special significance:
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Table I. What kinds of relationships are necessary to turn a society into an individual? A central aspect of how intelligence arises from a
collection of subunits is the specific communication and functional linkages between them, as well as the algorithms for updating those
interactions in light of experience. It is thus essential to determine what kinds of architectures underlie different degrees of agency (which
support memory, problem-solving, information integration and collective action, higher-level autonomy, etc.) across the continuum.
Here, we leverage connectionist models of cognition and learning (top row) to specify known architectures that embody key waypoints
along the collective intelligence spectrum (bottom row), as well as to identify knowledge gaps that highlight opportunity for next steps in
this field. References indicate examples of potentially relevant models where available. Shading indicates speculative suggestions and
opportunities for future research. In the final column, the biological examples are known but the relevant topology is not.
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Deep feed-forward
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Deep and recurrent
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between variables.
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particular input-
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(continued)
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Table I. (continued)

assignment at
level of
individual
components

ecological setting.

Also, selection on
independent genes
under free
recombination
(combinations of
alleles are not
heritable).
(Chastain et al.,
2014)

level?

Ecological
configurations could
be linearly separable
function of
environmental
conditions, thus
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structure and can
change strength, but
not direction, of
selection on other

configurations could be
non-linearly separable
functions of
environmental
conditions (including
other species), thus
interactions can
change the direction
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components and the
ecosystem responds in
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(Power et al., 2015)
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to store and recall
multiple ‘ecological
memories’ at system
level without system-
level selection, and
improve resource
allocation problem-
solving with
experience (Power,
2019)

low-level evolutionary
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competency (Fields &
Levin, 2020; Gawne et
al., 2020).

Enables evolutionary
search in higher-level
components that
autonomously fill in
the details on-the-fly.

manner.
components

Feed-forward mappings and recurrent dynamics:
Artificial neural networks are often used to represent
(and learn) a mapping between inputs and outputs
(e.g. for classification or regression tasks). One of the
simplest ‘feed-forward’ networks is the single-layer
Perceptron where an output node fires if the sum of
its weighted inputs exceeds a threshold (more gen-
erally the output is some non-linear monotonic
function, e.g. a sigmoidal function, of the weighted
sum of inputs). This is capable of representing
simple input—output relationships and learning to
classify inputs according to such relationships. In
other cases, connections can be recurrent, that is,
connections can form loops and thus states can be
influenced by inputs from previous time steps and
the system can continue to hold internal state after
the input is removed. They can also, thereby, exhibit
temporally extended dynamical behaviours. Ac-
cordingly, in recurrent networks we are often in-
terested in the dynamical attractors of the system
(which are a function of the system’s own internal
history not just current inputs) rather than instanta-
neous values of designated outputs or the input—
output relationship. The Hopfield network is a
simple example (Appendix Box 1). Because con-
nections are symmetric (with no self-connections) in
the Hopfield network, its dynamics have only fixed
point attractors (‘memories’), but more general re-
current architectures may have periodic or chaotic
dynamical behaviours.

Deep representations and non-linearly separable
functions: The single-layer Perceptron has important
limitations. Specifically, although it can represent
‘linearly separable functions’ where the response to a
change in one input changes magnitude depending
on the value of another input (i.e. the responses are

not independent), it cannot represent non-linearly
separable functions where the response to a change
in one input changes direction depending on the
value of another input (Watson et al., 2022). This
type of interdependence is important because in the
linearly separable case, if an input contributes
positively to an output in one context, it never
contributes negatively in another. This means the
single-layer Perceptron can represent cases where
‘working together’ changes the benefit an individual
input can receive (from doing what they were doing
anyway), but it cannot represent cases in which
working together requires an individual to do the
opposite behaviour, move in the other direction or do
something opposed to what they were doing when
they worked alone or in some other context. Rep-
resenting non-linearly separable functions requires a
network with multiple layers — a multi-layer Per-
ceptron (MLP). In principle, an MLP can represent
any function of the inputs given sufficient ‘hidden’
variables (units that are neither inputs nor outputs but
constitute an intermediate layer of representation). In
practice, it is frequently useful to employ more layers
(with fewer nodes each) because this affords a dif-
ferent inductive bias and generalisation. These are
known as deep networks (LeCun et al., 2015).

Deep and recurrent networks: Whilst there are many
other architectures used in artificial neural networks,
two others are worth mentioning. A deep auto-encoder
is a network that compresses a high-dimensional input
space into a low-dimensional representation. A decoder
decompresses the low-dimensional representation back
into the original high-dimensional space. The com-
pressed encoding can be interpreted as a low-
dimensional model of the samples observed on the
input space. Changes to the variables of the compressed
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representation produce large, coordinated changes to
the variables in the input space. Lastly, the deep belief
network (DBN) (Hinton et al., 20006) is quite a special
type of network, and its architecture has particularly
relevant properties. The DBN has a layered architecture
that can be used to learn compressed representations
like the auto-encoder, and within each layer the nodes
have recurrent connections. This gives the DBN both
the potential to represent low-dimensional recodings of
the original input space and to have dynamical at-
tractors that stably retain their state at that higher level
of representation.

Implications for evolutionary intelligence and
basal cognition

Naturally, for a collection of individuals to exhibit any kind
of collective intelligence, it is, at the very least, necessary
that the behaviour of one individual has some sensitivity to
the behaviour of another. Such interactions can coordinate
behaviours to take advantage of scenarios where the benefit/
reward or fitness that one individual receives is sensitive to
the behaviour of another. However, if this credit-assignment
interaction (or fitness epistasis) constitutes a linearly sep-
arable function this is not really a difficult problem; al-
though the benefit they receive will vary in different
contexts, the behaviour that maximises their benefit is al-
ways the same. In contrast, when the credit that one indi-
vidual receives has an interaction with the credit that another
individual receives which constitutes a non-linearly sepa-
rable function (Watson and Thies, 2019) (or reciprocal sign
epistasis, (Weinreich et al., 2005)), this requires that one
individual can change its behaviour (or ‘do the opposite’)
depending on the context of what other individuals are
doing. For a collective to coordinate behaviours to take
advantage of such interactions, it must be able to represent
non-linearly separable functions, which requires the inter-
action structure between individuals to have some depth
(Watson et al., 2022).

These are just the kind of relationships that make the
credit assignment or fitness of the whole not only different
from the sum of the rewards/fitnesses of the parts but also a
non-decomposable function. Intuitively, this changes our
relationship from ‘how good this is for me depends on what
you are doing’ to ‘what is best for me to do depends on what
you are doing’. This is important because, when it is re-
ciprocal, the fitness-affecting characteristics of one com-
ponent only have meaning in the context of the other. In
other words, it creates a ‘we’; what we are doing, for ex-
ample, whether our behaviours are coordinated or not,
becomes a relevant variable (Watson et al., 2022; Watson
and Thies, 2019).

Deep representations also have a special significance in
recurrent networks. In non-hierarchical networks, the many

connections between components can cause the system to
hold state over time (i.e. internal states can be maintained as
dynamical attractors even when the inputs to the network
are removed or have changed). This enables the network to
exhibit temporally extended behaviours, but it also has the
effect that it becomes difficult to change the system state
and, therefore, to be sensitive to system inputs. Getting out
of one dynamical basin of attraction and into another can
require large and/or specific state perturbations. The system
acts as a whole but cannot ‘change its mind’ easily (Hills
et al., 2015; Nash et al., in prep; Watson et al., in review).
This is problematic for organismic adaptability and evo-
lutionary variability. In contrast, a hierarchical representa-
tion can cause coordinated behaviour in many downstream
parts but retain the capacity for small changes to variables in
the higher level representation to move all the downstream
variables to a new state (Nash et al., in prep). A recent
alternative model is provided by a network of neurons that
have a ‘decision cycle’ that repeatedly re-decides which
states to adopt with a timing based on learned connections
(Watson et al., in review). By learning to synchronise the
decision cycle of particular groups of components, this kind
of network exhibits multi-scale problem-solving capabil-
ities without having an explicit or pre-defined multi-layer
structure.

Cascading control architectures — where a small number
of variables cause large coordinated changes in the state of
many downstream variables — are common in organisms
through many scales from molecular to morphological. This
takes explanatory focus away from the collective and onto
the units at deeper levels of the causal chain, for example, a
gene cues the coordination of other biomolecules within the
cell, and the germ line cues coordination of other cells
within the organism. However, natural organisms are nei-
ther single-layer recurrent networks (with every component
connected equally to every other like the Hopfield network)
nor strictly feed-forward multi-level hierarchies (with
components in one layer only connected to components in
the layer below like the MLP). They are not quite like deep-
belief networks either, of course, but they do contain ele-
ments of both cascading control and recurrent control ar-
chitectures. This means that different levels of organisation
can both be influenced by higher level control variables and
be collectives that co-define and sustain their own (non-
decomposable) meaning. These considerations suggest that
this kind of deep and also partially recurrent architecture is
relevant to the multi-scale autonomy observed in complex
organisms.

Learning the structure of interactions

The previous section discussed how the types of relation-
ships, and their organisation, might influence the type of
information integration and coordinated action that could be
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exhibited by a collective. But how do such organisations
arise? For this, we turn our attention from connectionist
architectures to models of connectionist /earning. A number
of issues and observations are relevant to collective
intelligence:

Gradient methods versus stochastic local search, supervised
learning versus reinforcement learning. For many learning
tasks, it is useful to express the error in the output (with
respect to an input and a target) as a function of the con-
nection strengths in the network. If this function is differ-
entiable, then this can be used (in artificial machine learning
methods) to define a gradient method which computes a
change in the weights of the network that will systematically
reduce the error. In biological evolution or emergent col-
lective intelligence, there is no explicit target or desired
output predetermined by an external agent or teacher. There
is therefore no ‘error’ function, as such. The more relevant
type of learning is reinforcement learning, where different
outputs confer different rewards but the ‘correct’ output, or
the pattern that maximises reward for a given input, is not
used explicitly in training (and may be unknown). Natural
selection can be used to increase the fit of an organism to its
environment or improve rewards by adjusting weights in the
same way. These basic observations are the basis of the
formal equivalence between learning and evolution by
natural selection (Campbell, 1956; Harper, 2009; Shalizi,
2009; Skinner, 1981; Watson and Szathmary, 2016).

What makes learning systems smart, however, is not
merely the ability to increase the fit of model parameters to
data; what makes such systems interesting is that the
parameters they adjust and the data to which they fit are not
in the same space (Buckley et al., in prep; Watson and
Szathmary, 2016). For example, the quality of the network
output is, in a direct sense, a function of the network
outputs and how well these fit the environmental needs.
But the parameters that are adjusted during learning are not
these output variables per se. Rather they are the param-
eters of a model that produces these outputs — namely, the
network of interactions connecting one node to another.
This separation between ‘model parameters’ and ‘solution
space’ is crucial because without it there is no possibility of
using past experience to respond appropriately in novel
situations, that is, generalisation (Watson and Szathmary,
2016).

Generdlisation is fundamental to learning and intelligence. Without
it, a system can only respond to current inputs in a manner
consistent with past rewards. At one extreme, if the future is
going to be exactly like the past, this is fine. At the other
extreme, if the future has nothing at all in common with the
past, then there is not much that can be done about that. But, in
other cases, the future is not the same as the past, but it shares
some kind of underlying regularity in common with it. These

are the cases where intelligence has some meaning. Specifi-
cally, a system that can generalise can act in a manner that is
consistent with long-term rewards, even when this appears to
oppose immediate or short-term interests. For individuals that
interact with others in a collective, the ability to act in a manner
that is consistent with long-term individual interest is fre-
quently aligned with the ability to act in a manner that is
consistent with collective interest (though it may be opposed
by individual short-term interest). Although this ability might
seem quite sophisticated and mysterious, connectionist models
of cognition demonstrate that this does not require the parts to
become more intelligent; only that the relationships between
them are adjusted appropriately, which can be implemented by
simple incremental gradient following (Appendix Box 1).

Unsupervised learning. 1t might seem curious that any kind of
learning can occur without supervision or system-level
reward feedback of some kind. How can a learning sys-
tem know what to learn if nothing tells it what it is supposed
to learn? Unsupervised learning builds a low-dimensional
model of the input data. The changes to connections are not
motivated by error minimisation or reward maximisation
but purely by the fit of the model to the data. Hebbian
learning (‘neurons that fire together wire together’ (Buckley
et al., in prep; Watson and Szathmary, 2016; Watson et al.,
2014) (Appendix Box 1) reduces the effective degrees of
freedom in the network dynamics in a manner that ‘mirrors’
the degrees of freedom induced by past experience —
without being rewarded for that purpose or using an error
function that targets it.

The level of credit assignment in reinforcement learning and
collectives. Consideration of unsupervised learning has
direct significance for the evolution and reward of col-
lective intelligence. This is because reinforcement learning
acting on the individual characteristics affecting their
connections to others can result in dynamics that are
equivalent to unsupervised learning at the system scale
(Davies et al., 2011; Power et al., 2015; Watson et al.,
2011a). Intuitively, if B is rewarded for being activated,
then one of the ways it can increase its reward is to increase
the strength of its connection from A (e.g. when A and the
connection are positive). This increases the individual
reward B receives right now, but it also makes the future
activation of B correlated with the activation of A (the
principle of Hebbian learning in another guise). The same
considerations apply to A and its connection from B. Note
that neither component is making the connection with the
other because it is interested in the collective reward that A
and B receive together, nor because it makes the future
dynamics of the AB pair more consistent with their past
correlation. Nonetheless, it does make the future dynamics
of the AB pair more consistent with their past correlation
(Watson et al., 2014).
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This observation creates a fundamental linkage between the
principles of individual learning or individual utility-
maximisation and the principles of system-level or collec-
tive intelligence (Watson et al., 2011a). Note that the mech-
anism of Hebbian learning was identified by Donald Hebb to
explain neural learning because it is the right way to modify
synaptic connections if you want the network to model ob-
served correlations. This equivalent mechanism, in contrast, is
motivated bottom-up — it is a consequence of components that
are incentivised only by short-term self-interest (given that
they have connections with others that they can modify). In the
same way that this distributed learning does not require
system-level reinforcement, it also occurs in evolutionary
systems without system-level selection (Power et al., 2015).
Individual selection acting on members of an ecological
community produces the same structural changes to connec-
tions (inter-specific interactions) simply because each is in-
centivised by selection to maximise its individual growth rate.
This has the same consequences for the ecological assembly
rules and succession dynamics as it does for the dynamical
attractors of neural activations in the Hopfield network (Power
et al., 2015).

How does distributed learning effect system-level rewards and
credit assignment?. This distributed learning is not motivated by
system-level rewards (total utility), nor does it involve system-
level selection, but it has a systematic relationship to system-
level rewards and fitness nonetheless. In multi-agent systems,
the original dynamics, given a system of constrained interac-
tions, are much like a ball rolling down hill — each individual
decides how to act to maximise individual reward as determined
by the constraints with others. This finds a local optimum in total
utility, but only a local optimum. As the individuals modify their
connections from others, the dynamics of the systems are
channelled into trajectories that mirror the structure of past
experience. If the system is subject to repeated shocks or
perturbation, or experiences an episodic stress, causing it to visit
a distribution of attractors over time, then what it ‘learns’ is a
generalised model of the constraints it has experienced. Because
this model is based on interactions between components and not
on independent parameters, it is a correlation model that has the
potential to generalise — responding in a way that resolves
constraints between individuals better than any previous at-
tractor visited (Buckley et al., in prep; Watson et al., 2011a). In
this way, short-sighted self-interested agents form relationships
with one another that sometimes cause them to make different
decisions (given the new weightings of the options created by
the new relationships). Also, these new choices better optimise
the long-term collective interests of the system as a whole
(Buckley et al., in prep; Watson, accepted; Watson et al., in
review; Watson et al., 2011a).

This bottom-up incremental adjustment of relationships
can thus increase system-level welfare. It does so in a
manner that is functionally equivalent to distributed

learning mechanisms familiar in artificial neural networks,
without presupposing system-level rewards or credit as-
signment. Moreover, in so doing, it creates a non-
decomposable whole (attractors that are non-linearly sep-
arable functions of the inputs and depend on the system’s
own internal history), which means that credit assignment or
reward at the level of individual parts and their individual
behaviours becomes ineffective. Instead, credit assignment
(if it applies at all) and any possibility of effecting modified
behaviours through reward become meaningful only at the
higher level of organisation.

Modelling collective intelligence and basal cognition:
Evolutionary individuality, organismic individuality
and cognition are coextensive

As discussed above, the basic computational elements of
such distributed learning are substrate-agnostic and com-
mon to a wide range of biological networks (Cervera et al.,
2018; Pietak and Levin, 2016, 2017). However, the con-
ditions for distributed learning are non-trivial; not all of
these networks may meet them. The important thing to note
is that there is no requirement for an incentive to model
long-term or collective consequences of individual actions,
or for a system-level incentive to model the structure or
pattern of observations. We do not yet know which of these
biological systems might meet these conditions and the
extent to which this influences their collective intelligence.
But it is known that organismic individuality evolved
through a bottom-up process of collective intelligence,
resulting in information integration and coordinated action
so well-organised that we observe a new level of organismic
and evolutionary individuality. The principles of con-
nectionist cognition and learning described above provide a
roadmap of gaps and opportunities that future research
might explore to better understand how such emergent
individuality occurs. In particular, the architecture of the
interactions — whether they are feed-forward or recurrent,
capable of representing non-linearly separable functions or
not, shallow or deep or some mixture of these
characteristics — has important consequences for the type of
cognitive model they can represent.

The ecological models developed thus far demonstrate
that connectionist learning principles are relevant to col-
lective intelligence in systems that are not (yet) evolutionary
units. They fall short, however, of demonstrating the
spontaneous evolution of a new level of individuality. In
algorithmic terms, such models cannot do the ‘chunking’ of
the search space or rescaling of the search process that is
facilitated by the induction of deep models (Caldwell et al.,
2018; Mills, 2010; Mills et al., 2014; Watson et al., 2011b;
Watson et al., 2016; Watson et al., 2009). We hypothesise
that this is because they are single-level networks of
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symmetric interactions; our roadmap supports the idea that
the evolutionary transitions in individuality correspond to
deep interaction structures (Czegel et al., 2019; Watson
et al., 2022) or perhaps other mechanisms of multi-scale
dynamics (Watson, accepted; Watson et al., in review).

We propose that some of the gaps in this picture might be
addressed by exploring the hypothesis that evolutionary
individuality, organismic individuality and cognition are
coextensive (Watson et al., 2022). The idea is that acting in a
manner consistent with long-term collective interests, in
particular when this conflicts with short-term self-interest, is
not just a hallmark of collective intelligence but is in fact what
constitutes cognition and individuality at the collective level.
This can perhaps be formalised through the consideration of
non-linearly separable functions. Specifically, if a system of
functional interactions among the parts represents a non-
linearly separable function, then the incentive of the whole is
related to the incentives of the parts only in a non-
decomposable way (Watson et al., 2022).

Conclusions

Commonalities between cognitive and evolutionary
processes and those that shape growth and form have
been hinted at in the past (Grossberg, 1978; Pezzulo and
Levin, 2015; Spemann, 1967). We argue that conceptual
advances in the links between machine learning and
evolution now provide quantitative formalisms with
which to begin to develop testable models of collective
intelligence across scales. From subcellular processes, to
cellular swarms during morphogenesis, to ecological
dynamics on evolutionary timescales — all of these pro-
cesses are driven by the scaling of reward dynamics that
bind subunits into collectives that better navigate novel
problem spaces.

In addition to shedding light on biological evolu-
tion, a better understanding of the origin and operation
of collective intelligences would have a number of
practical applications. Molecular medicine today is
focused almost entirely on the micro-hardware of life —
modifying DNA and rewiring molecular pathways —
with limited success due to difficult inverse problems
(Lobo et al., 2014). The capacity to manipulate the
collective intelligence of cell groups might offer
powerful ways to guide native and synthetic mor-
phogenesis top-down (Pezzulo and Levin, 2016). In-
sights gleaned from biological systems could also
significantly enhance the engineering of intelligent
robots whose behaviour results from cooperation,
competition and merging of subunits across multiple
levels of organization.

Harnessing the native capability of collective intelli-
gence in the service of biomedicine or bioengineering will

require a much better understanding of how to identify,
characterise and motivate emergent agents in anatomical,
physiological and transcriptional spaces (Levin, 2022a;
Pezzulo and Levin, 2015). As a starting point, we need to
develop appropriate formalisms for top-down control of
multi-scale intelligent agents of diverse composition. We
argue that the tools and concepts of machine learning,
behavioural neuroscience and evolutionary biology apply to
problems of collective intelligence at multiple scales and
offer a promising way forward.

There is a deep, fundamental symmetry between the
origin of new evolutionary individuals from competent
subunits and the assembly of an integrated cognitive agent
as a collective intelligence composed of sub-agents. Future
experimental and in silico work will quantitatively identify
the necessary and sufficient relationships that effect such
transitions. Such work has the potential to drive a flour-
ishing sub-field of collective intelligence with implications
ranging from basic evolutionary biology to regenerative
medicine and artificial intelligence.
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Appendix

Box I: The Hopfield network and
collective behaviour

The Hopfield network is a neural network model (and a
general model of dynamical systems in many domains from
ferro-magnets to ecological communities) described by a set
of nodes (either binary threshold units or sigmoidal con-
tinuous response units) connected to each other with sym-
metric connections (and no self-connections). Each node
“fires’ if the weighted sum of inputs from other nodes is
sufficiently strong. Given that some weights can be zero, this
is a fairly general concept of a dynamical system described by
a set of interactions between variables (Figure Al). The
special qualification that the weights are symmetric (and no
self-weights) is important, however, because it means that the
dynamics can be described by the local minimisation of an
energy function and the attractors of the dynamics are fixed
points (i.e. state configurations where no units change value).

One interesting behaviour of this kind of network is the
ability to store multiple patterns of activation in the con-
nections of the network and generate, recognise or recall
stored patterns through associative memory. A pattern (such
as an image, or a set of features, describing a food type,
habitat or a predator) can be stored by setting the units to
match the (signed) pattern values and then applying Heb-
bian learning to the weights such that a change in the
connection between two neurons is proportional to the
product of the state values (a.k.a. neurons that fire together
wire together). This kind of change to a connection makes it
easier (lower energy) for the two states it connects to fire
together in future. For example, if both states are firing at the
same time, the connection strength is increased, meaning
that activation in one stimulates activation in the other,
making it more likely that they both activate together in
future. This has the effect of lowering the energy of this
configuration, drawing the network state towards this pat-
tern in future — that is, forming a memory of the pattern. One
network can store multiple patterns simultaneously, and

nodes can receive
external inputs

and can be used as l
outputs
Figure Al. Hopfield network architecture.
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stored patterns can be generated from the network (from the
set of patterns that it has stored) by initialising the state
values at random and running the network to an attractor. A
given pattern can also be recalled or recognised by pre-
senting a partial or noisy input — causing the network to
complete or recreate the entire/uncorrupted pattern that was
closest to this stimulus (i.e. a content-addressable memory
(Hopfield, 1982). Over a set of patterns stored in this way,
connections in the network model the correlations (com-
monly occurring combinations) of state values. This ‘as-
sociative model’ of past state configurations can also
generalise — for example, generate a pattern that has the
same underlying structural relationships as those observed
during learning but is nonetheless novel, that is, different
from any specific pattern observed during training.

These networks can also exhibit problem-solving be-
haviour. If the connections of the network correspond to the
constraints of a problem (i.e. the agreement or disagreement
of two variables confers a change in solution quality pro-
portional to the magnitude of the weight between them),
then the natural dynamics of the state variables is to change
in a manner that decreases violated constraints, causing the
network to discover locally optimal solutions to the problem
(Hopfield and Tank, 1986). Moreover, under certain con-
ditions, the addition of relatively slow Hebbian learning to
the weights, applied whilst the state variables visit a dis-
tribution of such locally optimal solutions, causes the
network to form an associative memory of its own be-
haviour (a ‘self-modelling dynamical system’ (Buckley
et al., in prep; Watson et al., 2011a), or a memory of the
locally optimal solutions it visits. Because this associative
memory can generalise, it can change its own dynamics in a
manner that improves the ability of the network to resolve
problem constraints, and with positive feedback, it can thus
learn to discover high-quality solutions more reliably over
time (reinforcement) and also find solutions that are better
than any solutions found before the application of such
learning (i.e. true optimisation).

Note that the memory, recall/recognition and problem-
solving behaviour of the network, and the learning

network of recurrent
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mechanisms that organise the connections to achieve this,
are fully distributed and decentralised. During recall, each
neuron fires if its inputs are strong enough, without cen-
tralised control. And during learning, the update to each
connection is proportional to the product of activation in the
two neurons it connects, without reference to any global
feedback, performance measure or testing of consequences
from this change. Crucially, these recognition/recall and
problem-solving behaviours can be exhibited by the net-
work as a whole but cannot be exhibited by the individual
components therein (nor explained by any average or sum of
their individual behaviours). Neither do these new system-
level behaviours result from changes to the behaviours of

individual units but only from a change to the organisation of
connections between them. These observations are important
for collective intelligence for the following reasons. Where
individuals have behaviours that are sensitive to the behav-
iours of others, adjustments are made to the organization of
these relationships, either in terms of their selective strength
(rHN-s, Watson et al., 2011a), their generation of variability
(rHN-g, Watson et al., 2011c), or their timing (rHN-t, Watson
et al., in prep). Such adjustments, which are made using only
local information, are sufficient to produce non-trivial col-
lective behaviours (collective memory, recognition, learning,
generalization and problem solving) without centralized
control or global feedback on performance.
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