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Abstract
We present a comprehensive programme analysing the decomposition of proof systems for non-classical logics into proof
systems for other logics, especially classical logic, using an algebra of constraints. That is, one recovers a proof system
for a target logic by enriching a proof system for another, typically simpler, logic with an algebra of constraints that act as
correctness conditions on the latter to capture the former; e.g. one may use Boolean algebra to give constraints in a sequent
calculus for classical propositional logic to produce a sequent calculus for intuitionistic propositional logic. The idea behind
such forms of decomposition is to obtain a tool for uniform and modular treatment of proof theory and to provide a bridge
between semantics logics and their proof theory. The paper discusses the theoretical background of the project and provides
several illustrations of its work in the field of intuitionistic and modal logics: including, a uniform treatment of modular and
cut-free proof systems for a large class of propositional logics; a general criterion for a novel approach to soundness and
completeness of a logic with respect to a model-theoretic semantics; and a case study deriving a model-theoretic semantics
from a proof-theoretic specification of a logic.
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1 Introduction

The general goal of this paper is to provide a unifying meta-level framework for studying logics. To
this end, we introduce a framework in which one can represent the reasoning in a logic, as captured
by a concept of proof for that logic, in terms of the reasoning within another logic through an algebra
of constraints—as a slogan,

Proof in L = Proof in L′ + Algebra of Constraints A

We shall refer back to this slogan often and will use the following abbreviated form:

L = L′ ⊕A

The⊕ is not formal—i.e. L′⊕A may denote any one of several ways of applying constraints A to L′.
Such decompositions of L into L′ and A allow us to study the meta-theory of the former by

analysing the latter. This is advantageous when the latter is typically simpler in some desirable
way—e.g. it may relax the side conditions on the use of specific rules—which facilitates the study
of the original logic of interest. There are already some examples of such relationships within
the literature—they are discussed below. The framework herein provides a general view of the
phenomena and provides an umbrella for these seemingly disparate cases. Importantly, there is no
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96 Defining logical systems

guarantee that the constraints will be solvable algorithmically as it depends on how complex the
algebra is, but even relatively simple algebras can have a dramatic impact; e.g. we illustrate how
constraint systems using Boolean algebra, which admits solvers, are helpful for the study of proof-
search and meta-theory in substructural and intuitionistic logics.

The decompositions expressed by the slogan above may be iterated in valuable ways; i.e. it is pos-
sible to decompose L′ in the slogan above. Each time we do such a decomposition, the combinatorics
of the proof system become more tractable as more and more is delegated to the algebra. Eventually,
the combinatorics becomes as simple as possible, and one recovers something with all the f lexibility
of the proof theory for classical logic. Therefore, we advance the view that, in general, classical logic
forms a combinatorial core of syntactic reasoning since its proof theory is comparatively relaxed—
i.e. possibly after iterating decompositions of the kind above, one eventually witnesses the following:

Proof in L = Classical Proof + Algebra of Constraints A.

The view of classical logic as the core of logic has, of course, been advanced before—see, e.g.
Gabbay [21].

Using techniques from universal algebra, we define the algebraic constraints by a theory of first-
order classical logic; e.g. we may define Boolean algebra by its axiomatization—see Section 2. We
then enrich rules of a system L with expressions from A to express rules of another system ;L′—e.g.
by using Boolean algebra for the constraints, we may express the single-conclusioned ∨R-rule from
Gentzen’s LJ [27] with the combinatorics of the multiple-conclusioned ∨R-rule from Gentzen’s
LK [27],

One recovers the single-conclusion condition by assigning the variable x to 0 or 1 in the Boolean
algebra and evaluating the formula accordingly: one keeps formulae that carry a 1 and deletes
formulae that carry 0. A system of rules enriched in this way is called a constraint system. Detailed
examples are below.

We consider two kinds of relationships the constraint systems may have with the logic of interest.
A constraint system is sound and complete when the evaluation of construction from the constraints
system concludes a sequent iff that sequent is valid in the logic. A stronger relationship is faithfulness
and adequacy:

- (Faithful) The evaluation of a construction from the constraint system is a proof in the logical
system of interest.

- (Adequate) Every proof in the logical system of interest is the evaluation of some construction
from the constraint system.

Both relationships are important, as illustrated by the examples below.
The point of constraint systems is that they allow us to study the meta-theory of the logic of

interest. There are two principal such activities presented in this paper: first, one may use constraint
systems to study questions of proof-search (i.e. how one constructs proofs via reduction in a formal
system) in the logic of interest; second, they may be used to bridge the gap between the proof
theory and model theory of a logic. On the latter use, constraint systems allow a novel approach to
soundness and completeness proofs, which bypasses truth-in-a-model and term-model constructors;
furthermore, they give a principled way of generating a correct-by-design model-theoretic semantics
for the logic of interest by analysing a proof system for it, making essential use of algebraic
constraints and the aforementioned decomposition to classical logic.
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Defining logical systems 97

Of course, the idea that one may use labels to internalize the semantics of logics within proof
systems has taken several forms and goes back as far as Kanger [38]. It underpins a systematic
development of analytic tableaux (see e.g. Fitting [19, 20], Catach [10], Massacci [49], Baldoni [1],
Docherty and Pym [15–17] and Galmiche and Méry [23–26]), natural deduction systems (see, e.g.
Simpson [67] and Basin et al. [2]) and sequent calculi (see, e.g. Mints [53, 54], Viganò [70] and
Kushida and Okada [44]). Particularly significant within this stream are the relational calculi studied
by Negri [55–57].

The notion of constraint system presented in this paper is closely related to Gabbay’s Labelled
Deductive Systems (LDSs) [22]—see also Russo [64]. However, the paper deviates from the
established theory of LDSs in two fundamental ways: first, one may choose any syntactic structure in
the grammar of the object-logic (e.g. data composed of formulae, such as sets, multisets, bunches),
not just formulae, to annotate; second, the labels do not only express additional information but
have an action on the structure. Note, there are other proof systems in the literature in which one
labels data composed of formulae—see e.g. Marx et al. [48]. Consequently, more subtle examples
are available, not otherwise captured by LDSs.

In summary, two main ideas are developed in this paper: a meta-logic for studying object-logics
and algebraic constraints for studying the meta-theory of a logic. Both ideas are present elsewhere in
the literature and have been studied for different logics but have yet to be formalized and uniformed.
This paper aims to provide a general and uniform framework for analysing and understanding the
proof theory of logics represented in this way.

The paper begins in Section 2 with an example of a constraint system already in the literature.
It continues in Section 3 with the background and notation required for the general treatment
throughout the rest of the paper. Constraint systems are defined in general in Section 4, where the
correctness properties of soundness, completeness, faithfulness and adequacy are also discussed.
In Section 5, we study relational calculi as a general class of constraint systems and study an
approach to proving soundness and completeness, which works with validity directly. We give a
concrete illustration of the approach applied to intuitionistic propositional logic (IPL) in Section 6—
specifically, by using constraint systems, we derive the model-theoretic semantics given by Kripke
[42] from LJ, which is sound and complete by construction. In Section 7, we consider the treatment
of first-order logics with constraints, the rest of the paper being restricted to propositional logics.
The paper concludes in Section 8 with a summary and a discussion of future research.

2 Example: Resource-distribution via Boolean Constraints

In this section, we summarize the resource-distribution via Boolean constraints (RDvBC) mecha-
nism, which was introduced by Harland and Pym [32, 60] as a tool for reasoning about the context-
management problem during proof-search in logics with multiplicative connectives, such as Linear
Logic (LL) and the logic of Bunched Implications (BI). It is the original example of a decomposition
of a proof system in the sense of this paper, as explained at the end of the section. We present RDvBC
to motivate the abstract technical work in Section 4 for the general approach. We concentrate on the
case of BI to indicate the scope of the approach and the challenges involved in setting it up because
the logic operates over quite a subtle data structure—bunches.

2.1 The Logic of Bunched Implications

One may regard BI as the free combination (i.e. the fibration—see Gabbay [21]) of IPL, with
connectives ∧,∨,→,�,⊥, and intuitionistic multiplicative linear logic (IMLL), with connectives
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98 Defining logical systems

∗,−∗,�∗. Let A be a set of atomic propositions. The following grammar generates the formulae
of BI:

φ ::= p ∈ A | � | ⊥ | �∗ | φ ∧ φ | φ ∨ φ | φ → φ | φ ∗ φ | φ −∗φ.

The set of all formulae is FORM.
A distinguishing feature of BI is that it has two primitive implications, → and −∗, each

corresponding to a different context-former, and , representing the two conjunctions ∧ and ∗,
respectively. As these context-formers do not commute with each other, though individually they
behave as usual, contexts in BI are not one of the familiar structures of lists, multisets or sets. Instead,
its contexts are bunches—a term that derives from the relevance logic literature (see e.g. Read [63]).
The set of bunches BUNCH is defined by the following grammar:

Γ ::= φ ∈ FORM | ∅+ | ∅× | Γ Γ | Γ Γ .

A bunch Δ is a sub-bunch of a bunch Γ iff Δ is a sub-tree of Γ . One may write Γ (Δ) to mean
that Δ is a sub-bunch of Γ . The operation Γ [Δ �→ Δ′]—abbreviated to Γ (Δ′) where no confusion
arises—is the result of replacing the occurrence of Δ by Δ′.

Bunches have similar structural behaviour to the more familiar data-structures used for contexts in
logic (e.g. lists, multisets, sets, etc.). We define this behaviour explicitly by means of an equivalence
relation called coherent equivalence. Two bunches Γ , Γ ′ ∈ BUNCH are coherently equivalent when
Γ ≡ Γ ′, where ≡ is the smallest relation satisfying:

- commutative monoid equations for with unit ∅+
- commutative monoid equations for with unit ∅×
- coherence; i.e. if Δ ≡ Δ′, then Γ (Δ) ≡ Γ (Δ′).

A sequent in BI is a pair Γ 
 φ in which Γ is a bunch, and φ is a formula. We use 
 as a
pairing symbol defining sequents to distinguish it from the judgment � that asserts that a sequent
is a consequence of BI. We may characterize the consequence judgment � for BI by provability
in the sequent calculus LBI in Figure 1 (see Pym [33]). That is, Γ � φ iff there is an LBI-proof
of Γ 
 φ.

As bunches are intended to be the syntactic trees of BUNCH modulo ≡, we may somewhat
relax the formal reading of the rules of LBI. The effect of coherent equivalence is, essentially, to
render bunches into two-sorted nested multisets—see Gheorghiu and Marin [28]. Therefore, we may
suppress brackets for sections of the bunch with the same context-former and apply rules sensitive to
context-formers (e.g. ∗R) accordingly. For example, any context-former may be used in ∗R applied
to p1 p1 p3 
 q1 ∗ q2; the possibilities are as follows:

This concludes the introduction of BI. In the next section, we apply the RDvBC mechanism to
analyse proof-search in LBI.

2.2 Resource-distribution via Boolean Constraints

Proof-search in LBI is complex because the presence of multiplicative connectives (i.e. ∗ and −∗)
requires deciding how to distribute the formulae (or, rather, sub-bunches) when making reductions.
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Defining logical systems 99

FIGURE 1. Sequent Calculus LBI.

EXAMPLE 2.1
The following proof-search attempts differ only in the choice of distribution, but one successfully
produces a proof, and the other fails:

How can we analyse the various distribution strategies? This is the question RDvBC addresses.

There is substantial literature on intricate rules of inference in multiplicative logics that are used
to keep track of the relevant information to enable proof-search. However, they are generally tailored
for one particular distribution method—see e.g. Hodas and Miller [34, 35], Winikoff and Harland
[71], Cervasto [11] and Lopez [46]. It is in this context that Harland and Pym [32, 60] introduced
the RDvBC mechanism. The idea is that rather than commit to a particular strategy for managing the
distribution, one uses Boolean expressions to express that a resource distribution needs to be made
and the conditions it needs to satisfy.

Before presenting the technical details of RDvBC, we give a heuristic account. Essentially,
one assigns a Boolean expression to each formula requiring distribution. Constraints on the
possible values of this expression are then generated during the proof-search and propagated
up the search tree, resulting in a set of Boolean equations. A successful proof-search in the
enriched system will generate a soluble set of equations corresponding to a distribution of formulae
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100 Defining logical systems

across the branches of the structure, and instantiating that distribution results in an actual proof.
It remains to give the formal detail. We begin by defining the constraint algebra that delivers
RDvBC.

A Boolean algebra is a tuple B := 〈B, {+,×, ·̄}, {0, 1}〉 in which B is a set, + : B2 → B, × :
B2 → B, ·̄ : B → B be operators on B, and 0, 1 ∈ B, satisfying the following conditions for any
a, b, c ∈ B:

a+ (b+ c) = (a+ b)+ c a× (b× c) = (a× b)× c a+ b = b+ c a× b = b× a
a+ (a× b) = a a× (a+ b) = a a+ 0 = a a× 1 = a
a+ (b× c) = (a+ b)× (a+ c) a× (b+ c) = (a× b)+ (a× c)

a+ ā = 1 a× ā = 0.

A presentation of the Boolean algebra is a first-order classical logic with equality for which the
Boolean algebra is a model. We use the following, in which X is a set of variables, e are Boolean
expressions and φ are Boolean formulae:

The symbols & and are used as classical conjunction and disjunction, respectively.
We are overloading + and × to be both function-symbols in the term language and their

corresponding operators in the Boolean algebra; similarly, we are overloading 0 and 1 to be both
constants in the term language and the bottom and top element of the Boolean algebra. This is
to economize on notation. We may suppress the × when no confusion arises—i.e. t1 × t2 may be
expressed t1t2. For a list of Boolean expressions V = [e1, . . . en], let V̄ := [ē1, . . . ēn]; we may write
V = e to denote that V is a list containing only e.

Let some presentation of Boolean algebra be fixed. An annotated BI-formula is a pair φ · e in
which φ is a BI-formula and is a Boolean expression e. The annotation of a bunch Γ by a list of
Boolean expressions V is defined as follows:

- if Γ = γ , where γ ∈ FORM ∪ {∅+,∅×} and V = [e], then Γ · V := γ · e;
- if Γ = (Δ1 Δ2), and V = [e], then Γ · V := (Δ1 Δ2) · e;
- if Γ = (Δ1 Δ2), and V is the concatenation of V1 and V2, then Γ · V := (Δ1 · V1 Δ2 · V2).

For example, p (q r) · [x, y] := p · x (q r) · y. Notably, the annotation only acts on the
top-level of multiplicative connectives and treats everything below (e.g. additive sub-bunches)
as formulae. This makes sense as all of the distributions in LBI take place at this level of
the bunch.

This concludes the technical overhead required to define the RDvBC mechanism for BI. Roughly,
Boolean constraints are used to mark the multiplicative distribution of formulae. The mechanism is
captured by proof-search in the sequent calculus LBIB comprised of the rules in Figure 2, in which
V is a list of Boolean variables that do not appear in any sequents present in the tree and labels that
do not change are suppressed. The same names are used for rules in LBIB and LBI to economize on
notation.

An LBIB-reduction is a tree constructed by applying the rules of LBIB reductively, beginning with
a sequent in which each formula is annotated by 1.
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Defining logical systems 101

FIGURE 2. Sequent Calculus LBIB.

EXAMPLE 2.2
The following is an LBIB-reduction D:

the sub-tree D′ is the following:

Having produced an LBIB-reduction, if the constraints are consistent, they determine the variables’
interpretations to satisfy the constraints. Such interpretations I induce a valuation νI that acts on
formulae by keeping formulae whose label evaluates to 1 and deleting (i.e. producing the empty-
string ε) for formulae whose label evaluates to 0; i.e. let φ be a BI-formula and e a Boolean
expression,

νI (φ · e) :=
{

φ if I(e) = 1

ε if I(e) = 0.
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102 Defining logical systems

A valuation extends to sequents by acting on each formulae occurring in it, and it extends to LBIB-
reductions by acting on each sequent occurring in it and removing the constraints.

EXAMPLE 2.3 (Example 2.2 cont’d).
The constraints on D are satisfied by any interpretation I(z) = 1 for z ∈ {x1, y2} and I(z) = 0 for
z ∈ {x2, x3, y1, y3}. For any such I , the tree νI (D) is as follows:

This is the successful derivation in LBI in Example 2.1. According to the constraints, a distribution
strategy results in a successful proof-search just in case it sends only the first formula to the left
branch.

Harland and Pym [32, 60] proved that LBIB is faithful and adequate for LBI in the following
sense:

- Faithfulness. If R is an LBIB-reduction and I is an interpretation satisfying those constraints,
then there is a LBI-proof D such that νI (R) = D.

- Adequacy. If D is an LBI-proof, then there is a LBIB-reduction R and an interpretation I
satisfying its constraints such that νI (R) = D.

Recall that we may think of BI as the combination of IPL and IMLL. We may express LBI as the
combination of sequent calculi for these two logics (i.e. IMLL and LJ, respectively)—i.e.

LBI = IMLL ∪ LJ

The RDvBC outsources the substructurality in IMLL to Boolean constraints. Hence, in the form of
the slogan of this paper,

IMLL = LJ⊕ B

In this section, we have chosen to study BI (as opposed to just IMLL) to illustrate the modularity
of constraint systems. That is, we only have constraints participating actively in part of the sequent
calculus for BI, but with the same overall effect since the other part conserves them. Abusing the
slogan somewhat, we may express the work of this section as follows:

LBI = (LJ⊕ B) ∪ LJ

This paper aims to study the use of constraints in proof systems in general. It provides conditions
under which they exist and illustrates the use of constraints to study meta-theory.

3 Background

We have two things to set up to give a general presentation of algebraic constraint systems: algebra
and propositional logic. The former is captured by first-order classical logic (FOL) (e.g. as Boolean
algebra is captured by its axiomatization in Section 2), and the latter is given by a general account of
propositional logic as a propositional language together with a consequence relation. There are many
presentations of these subjects within the literature; therefore, to avoid confusion, in this section, we
define them as they are used in this paper. Importantly, this section introduces much notation used
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Defining logical systems 103

in the rest of the paper. As we wish to reserve traditional symbols such as � and → for the object-
logics, we will use � and ⇒ for the meta-logic. In both cases, we use the symbol 
 as the sequents
symbol, regarding � and � as consequence relations.

3.1 First-order Classical Logic

This section presents first-order classical logic (FOL), which we use to define what we mean by
algebra in algebraic constraints. We assume familiarity with FOL, so give a terse (but complete)
summary to keep the paper self-contained. In particular, we assume familiarity with proof theory for
FOL—as covered in e.g. Troelstra and Schwichtenberg [68] and Negri and von Plato [58].

DEFINITION 3.1 (First-order Language).
An alphabet is a tuple A := 〈R, F, K, V〉 in which R, F, K and V are pairwise disjoint countable sets
of symbols, and each element of R, F and K has a fixed arity. The terms, atoms and well-formed
formulae (wffs) of an alphabet are as follows:

- The set TERM(A ) of terms from A is the smallest set containing K and V such that, for any
F ∈ F, if F has arity n and T1, ..., Tn ∈ TERM(A ), then F(T1, ..., Tn) ∈ TERM(A )

- The set ATOMS(A) is set of strings R(T1, ..., Tn) such that R ∈ R has arity n and T1, ..., Tn ∈
TERM(A )

- The set WFF(A ) of formulae from A is defined by the following grammar, in which X ∈ V:

The symbols⇒, &, and⊥ are implication, conjunction, disjunction and absurdity, respectively,
in FOL. The more traditional symbols, such as→,∧ and∨, are reserved for other logics in the paper.
We use the usual convention for suppressing brackets; i.e. conjunction (&) and disjunction ( ) bind
more strongly than implication (⇒). Moreover, we may use the usual auxiliary terminology for first-
order languages (e.g. sub-formula, closed-formula, sentence, etc.) without further explanation. Let
be X a variable, T be a term and Φ a wff; we write Φ[X �→ T] to denote the result of replacing
every free occurrence of X by the term T so that no variable in T becomes bound in Φ after the
substitution.

DEFINITION 3.2 (First-order Sequent).
A first-order sequent is a pair Π 
Σ in which Π and Σ are multisets of first-order formulae.

We think of sequents as unjudged statements, hence we use a sequent constructor 
 instead of the
consequence relation (�). For example, though ∅ 
 ∅ is a well-formed sequent in FOL, it is not a
consequence of the logic.

3.1.1 Proof Theory One way to characterize FOL—i.e. the consequence relation �—is by
provability in a sequent calculus.

DEFINITION 3.3 (Sequent Calculus G3c).
The sequent calculus G3c is composed of the rules in Figure 3 in which T is a term free for X in Φ

and Y is an eigenvariable.
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104 Defining logical systems

FIGURE 3. Sequent Calculus G3c.

We write Π �G3c Σ to denote that there is a G3c-proof of Π 
Σ . Troelstra and Schwichtenberg
[68] proved that G3c-provability characterizes classical consequence:

PROPOSITION 3.4
Let Π and Σ be multisets of formulae,

Π � Σ iff Π �G3c Σ .

We have chosen to use G3c to characterize FOL, as opposed to other proof systems, because
of its desirable proof-theoretic properties—e.g. Troelstra and Schwichtenberg [68] have shown
that the rules of the calculus are (height-preserving) invertible, and that the following rules are
admissible:

3.1.2 Model-theoretic Semantics. Another way to characterize FOL is by validity in its model-
theoretic semantics. As mentioned above, we assume familiarity with the subject and therefore give
a terse but complete account of definitions to keep the paper self-contained.

DEFINITION 3.5 (First-order Structure).
A first-order structure is a tuple S = 〈U, R, F, K〉 in which U is a countable set of elements, K ⊆ U,
F is a countable set of operators on U (i.e. endomorphisms f : Un → U, for finite n) and R is a
countable set of relations on U.
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Defining logical systems 105

FIGURE 4. Truth in an Abstraction.

DEFINITION 3.6 (Interpretation).
Let S := 〈U, R, F, K〉 be a first-order structure, and let A := 〈R′, F′, K′, V〉 be an alphabet. An
interpretation of A in S is a function [[−]] satisfying the following:

- if X ∈ V, then [[X ]] ∈ U;
- if C ∈ K′, then [[C]] ∈ K;
- if F ∈ F′, then [[F]] ∈ F, and the arity of [[F]] is the arity of F;
- if R ∈ R′, then [[R]] ∈ R, and the arity of [[R]] is the arity of R.

We may write [[−]] : A → S to denote that [[−]] is an interpretation of A in S . Interpretations
extend to terms as follows:

[[F(T1, ..., Tn)]] := [[F]]([[T1]], ..., [[Tn]]).

In this paper, we use the term abstraction for what is traditionally referred to as a model. This is to
avoid confusion as we consider the semantics of various propositional logics in subsequent sections,
where the term model will be significant.

DEFINITION 3.7 (Abstraction).
An abstraction of an alphabet A is a pair A := 〈S , [[−]]〉 in which S is a structure and [[−]] : A → S
is an interpretation.

DEFINITION 3.8 (Truth in an Abstraction).
Let A be an alphabet, let φ be a formula over A and let A = 〈S , [[−]]〉 be an abstraction of A . The
formula φ is true in A iff A � φ, which is defined inductively by the clauses in Figure 4.

We may extend the truth of formulae in an abstraction to the truth of (multi-)sets of formulae by
requiring that all the elements in the set are true in the abstraction—i.e. if A is a model and Π is a
multiset of formulae,

A � Π iff A � Φ for every Φ ∈ Π .

Gödel [31]—see also van Dalen [69]—proved that abstractions characterize FOL:
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106 Defining logical systems

PROPOSITION 3.9
Let Π and Σ be multisets of formulae,

Π � Σ iff for any abstraction A, if A � φ for any φ ∈ Π ,
then there is ψ ∈ Σ such that A � ψ .

This concludes the summary of FOL.

3.2 Propositional Logic

There is no consensus in the literature on what propositional logic means. This paper uses a relatively
broad definition that captures the most common propositional logics (e.g. classical propositional
logic, IPL, modal logics, linear logics, bunched logics, etc.). We include context-formers explicitly
as a part of the language of propositional logics. More precisely, we include data-formers as they
may appear on either the left or right of sequents for the propositional logics, and we use ‘context’
to refer to the left of sequents. This is useful for two reasons: first, it enables us to move between
the propositional logics without ambiguity; second, it enables us to handle propositional logics that
are expressed in terms of more complex data structures of formulae than lists, multisets or sets, such
as the family of relevance logics (see e.g. Read [63]) and the family of bunched logics (see e.g.
the work by Docherty, O’Hearn and Pym [15, 33, 59]). Throughout, we give a running example of
normal modal logics, which relates the work of this paper to that of Negri [56].

DEFINITION 3.10 (Propositional Alphabet).
A propositional alphabet is a tuple of three elements P := 〈A, O, C〉 such that A, O and C are
pairwise disjoint sets of symbols such that A is countable and O and C are finite. The symbols in O
and C have a fixed arity.

The elements of A are atomic propositions, the elements of O are operators and the elements of C
are data-constructors. We use the term operators to subsume ‘connectives’ and ‘modalities’ in the
traditional terminology. Similarly, we use the term ‘data-constructor’ as a neutral term for what is
sometimes called a ‘context-former’ as we shall have data both on the left and right of sequents with
possibly different constructors and reserve the term ‘context’ for the left-hand side.

DEFINITION 3.11 (Formula, data, sequent).
Let P := 〈A, O, C〉 be a propositional alphabet. The set of formulae, data and sequents from P are
as follows:

- The set of propositional formulae FORM(P) is the smallest set containing A such that, for
any φ1, ..., φk ∈ FORM(P) and ◦ ∈ O, if ◦ has arity n, then ◦(φ1, ..., φn) ∈ FORM(P)

- The set DATA(P) is the smallest set containing FORM(P) such that, for any δ1, ..., δn ∈
DATA(P) and • ∈ C, if • has arity n, then •(δ1, ..., δn) ∈ DATA(P)

- A P-sequent is a pair Γ 
Δ in which Γ , Δ ∈ DATA(P).

EXAMPLE 3.12
The basic modal alphabet is B = 〈A, {∧,∨,¬,�}, {∅, , }〉. The arities of ∧, ∨, and are 2; the
arities of ¬ and � are 1; and the arity of ∅ is 0. We may write φ ⊃ ψ to abbreviate ¬φ ∨ ψ .

Let p1, p2, p3 ∈ A. Using infix notation, the following are examples of elements from FORM(B):

p3 (p1 ∧ p2) (p3 ⊃ (p1 ∧ p2))

As well as being elements of FORM(B), they are also elements in DATA(B).
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Another example of an element from DATA(B) is the following:

p3 (p3 ⊃ (p1 ∧ p2))

The following is an example of a B-sequent:

p3 p3 ⊃ (p1 ∧ p2) 
 p1 ∧ p2

This completes the definition of the language of a propositional logic generated by an alphabet.
What makes language into a logic is a notion of consequence.

DEFINITION 3.13 (Propositional Logic).
Let A be a propositional alphabet. A propositional logic over A is a relation � over A -sequents.

The relation � is called the consequence judgment of the logic; its elements are consequences. We
write Γ � Δ to denote that the sequent Γ 
Δ is a consequence. This definition of propositional logic
needs more sophistication in many regards but the point is not to satisfy the doxastic interpretation of
what constitutes a logic. Interesting though that may be, it amounts to refining the current definition.
What is given here suffices for present purposes and encompasses the vast array of propositional
logics in the literature.

3.2.1 Proof Theory In this paper, we are concerned about the proof-theoretic characterization of a
logic and what it tells us about that logic. Fix a propositional alphabet P .

DEFINITION 3.14 (Sequent calculus).
A rule r over P-sequents is a (non-empty) relation on P-sequents; a rule with arity one is an axiom.
A sequent calculus is a set of rules at smallest one of which is an axiom.

Note that LBIB in Section 2 does not contain axioms and is, therefore, not a sequent calculus
according to this definition. This is because we regard it as a constraint system in which axioms are
not necessary—see Section 4.

We have not defined rules by rule-figures and do not assume they are necessarily closed under
substitution. This allows us to speak of rules with side-conditions—see e.g. e ∈ LBI in Section 2. Of
course, we will otherwise follow standard conventions—see e.g. Troelstra and Schwichtenberg [68].

Let r be a rule, the situation r(C, P1, ..., Pn) may be denoted as follows:

In such instances, the string C is called the conclusion, and the strings P1, ..., Pn are called the
premisses.

EXAMPLE 3.15 (Example 3.12 cont’d).
The rule ∧R over basic modal sequents is defined by the following figure without any side-
conditions:
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This rule is admissible for the normal modal logic K—see Blackburn et al. [5]. That is, let �K be
the consequence relation for K (over the basic modal alphabet B): if Γ �K Δ φ and Γ �K Δ ψ ,
then Γ �K Δ φ ∧ ψ .

DEFINITION 3.16 (Derivation).
Let L be a sequent calculus. The set of L-derivations is defined inductively as follows:

- BASE CASE. If C is a P-sequent, then the tree consisting of just the node C is an L-derivation.
- INDUCTIVE STEP. Let D1, ...,Dn are L-derivations, with roots P1, ..., Pn, respectively, and let

r ∈ L be a rule such that r(C, P1, ..., Pn) obtains. The tree with root C and immediate sub-trees
D1, ...,Dn is a L-derivation.

DEFINITION 3.17 (Proof).
Let L be a sequent calculus. An L-derivation D is a proof iff the leaves of D are instances of axioms
of L.

We write Γ �L Δ to denote that there is a L-proof of the sequent Γ 
Δ. A sequent calculus may
have the following relationships to a propositional logic (�):

- Soundness: If Γ �L Δ, then Γ � Δ.
- Completeness: If Γ � Δ, then Γ �L Δ.

In saying that L is a sequent calculus for a propositional logic (i.e. that it characterizes that logic),
we assert that L is sound and complete for that logic.

EXAMPLE 3.18 (Example 3.15 cont’d).
We may characterize modal logics, including K, by axiom systems—see e.g. Blackburn et al. [5].
Each such system A is a sequent calculus in the general sense of this paper.

This concludes the proof-theoretic account of propositional logics in this paper.

3.2.2 Model-theoretic Semantics We now give a generic account of model-theoretic semantics (M-
tS) that can define a logic over a propositional language. By M-tS we mean a frame semantics à la
Kripke [42, 43]—see also Beth [3]. We follow Blackburn et al. [5] in the approach for a general
account of M-tS.

DEFINITION 3.19 (Type).
A type τ is a list of non-negative integers.

DEFINITION 3.20 (Frame, Assignment, Pre-model).
Let τ := 〈t1, ..., tn〉 be a type. A τ -frame is a tuple 〈U, k1, ..., kn〉 in which U is a set and ki is a
relation on U of arity ti. Let P = 〈A, O, C〉 be a propositional alphabet. An assignment of P to F
is a mapping from propositional atoms to sets of worlds, I : A→ ℘(U). A τ -pre-model over P is a
pair M := 〈F , I〉, in which F is a τ -frame and I is an assignment of P to F .

The elements of U are called possible worlds. One possible objection to the definition of a frame
is the absence of operators (i.e. endomorphisms f : Un → U). This is to simplify the setup and
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is without loss of generality as operators may be regarded as particular types of relations; i.e. the
operator f : Un → U corresponds to the (n + 1)-ary relation R satisfying R(w, u1, ..., un) iff w =
f (u1, ..., un).

Intuitively, a formula φ is true in a model M at a world w if the world w satisfies the formulas.

DEFINITION 3.21 (Satisfaction for a Type).
Let τ be a type and P a propositional alphabet. A τ -satisfaction relation for P is a relation �
parameterized by τ -pre-models between worlds w in the pre-models M = 〈F , I〉 and P-data such
that the following holds:

M, w � p iff w ∈ I(p).

DEFINITION 3.22 (Semantics).
Let τ be a type and P a propositional alphabet. A semantics is a pair S := 〈M,�〉 in which M is a
set of τ -pre-models and � is a τ -satisfaction relation for P .

DEFINITION 3.23
Let S be a semantics. A sequent Γ 
 Δ is valid in S—denoted Γ �S Δ—iff, for any M ∈ M and
any w ∈M, if M, w � Γ , then M, w � Δ.

EXAMPLE 3.24 (Example 3.18 cont’d).
Fix the type τ := 〈2〉. An example of a τ -frame is a pair 〈{x, y}, R〉 in which R is a binary relation
on {x, y}. Partition the atoms A into two classes A1 and A2; an example of an assignment I : A →
℘({x, y}) is given as follows:

I(p) :=
{

x if p ∈ A1

y if p ∈ A2.

The pair M := 〈F , I〉 is an example of a model over the basic modal alphabet B. The basic semantics
K is the pair 〈K,�〉 in which K is the set of all τ -pre-models and � is the smallest relation satisfying
the clauses in Figure 5 together with the following:

M, w � Δ Δ′ iff M, w � Δ and M, w � Δ′
M, w � Δ Δ′ iff M, w � Δ or M, w � Δ′.

The validity judgment �K defines the modal logic K—see e.g. Kripke [42], Blackburn et al. [5] and
Fitting and Mendelsohn [20].

The significance of M in the definition of a semantics is that one may not want to consider all pre-
models but instead require them to satisfy a specific condition—see e.g. the persistence condition
for the semantics of IPL in Section 6.

The notion of semantics in this paper is generous, including many relations that one would not
typically accept as semantics. This is to keep the presentation simple and intuitive. In the next section,
we restrict attention to satisfaction relations that admit particular presentations that enable us to
analyse them, but doing so presently would obscure the setup.

Historically, the a priori definition of a consequence relation has been by validity in a semantics.
In this paper, we only work with logics for which we assume there is a sequent calculus. Therefore,

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/35/1/95/7446395 by H
artley Library user on 13 June 2025
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FIGURE 5. Satisfaction for K.

we may use the nomenclature of Section 3.2 to relate entailment to consequence via provability. A
sequent calculus L may have the following relationship to a semantics S:

- Soundness: If Γ �L Δ, then Γ �S Δ.
- Completeness: If Γ �S Δ, then Γ �L Δ.

This completes the summary of propositional logics. Moreover, it completes the technical
background to this paper. There are various judgments present, whose relationship are important
for the rest of the paper. In the beginning of the next section, we provide a brief summary of how all
this background is used before proceeding with the technical work.

4 Constraint Systems

This section provides a formal definition of constraint systems. Brief ly, a constraint system is a
sequent calculus in which the data may carry labels representing expressions over some algebra.
Rules may manipulate those expressions or demand constraints on them. At the end of a construction
in a constraint system, one checks to see that the constraints are coherent and admit an interpretation
in the intended algebra. This generalizes the setup of RDvBC in Section 2 to an arbitrary algebra and
an arbitrary propositional logic. In the next section (Section 5), we provide a method for producing
constraint systems in a modular way, and in the one after (Section 6), we illustrate their use in
studying model theory.

The work in this section is technical and abstract; therefore, we give a brief overview summarizing
the main ideas. We begin with a propositional logic � over an alphabet P and a sequent calculus L,
which has some desirable features but that is not immediately related to the logic—e.g. in Section 2,
we had BI as the propositional logic and L a version of LJ in which contexts are maintained during
reduction. We then introduce an algebra, which we understand in terms of first-order structures A,
and present in terms of a first-order alphabet A —e.g. see the presentation of Boolean algebra in
Section 2. We fuse P and A creating a language P ⊕A in which the algebra is used to label P-
data. We introduce a valuation map νI , parameterized by interpretations I : A → A, which maps
P⊕A -data to P-data. This defines the action the algebra has on the data. A constraint system is a
generalized notion of a sequent calculus of P⊕A -sequents, which may have A expressions as local
or global constraints on the correctness of inferences—see e.g. LBIB in Section 2. Finally, we give
correctness conditions for constraint systems: first, a constraint system C is sound and complete,
relative to νI , for the logic � iff its constructions witness all and only the consequence of the logic;
second, a constraint system C is faithful and adequate, relative to νI , for a sequent calculus L′ iff
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its constructions witness all and only L′-proofs. Throughout the rest of the paper, we illustrate how
constraint systems with these correctness conditions aid in studying logic.

The section is composed of three parts. Section 4.1 explains the paradigmatic shift necessary for
constraint systems: one constructs proofs upward rather than downward. In Section 4.2, we define
constraint systems formally as the enrichment of a sequent calculus by an algebra of constraints.
Finally, in Section 4.3, we define correctness conditions relating constraint systems to logics and
their proof-theoretic formulations with sequent calculi.

4.1 Reductive logic

The traditional paradigm of logic proceeds by inferring a conclusion from established premisses
using an inference rule. This is the paradigm known as deductive logic:

In contrast, the experience of the use of logic is often dual to deductive logic in the sense that it
proceeds from a putative conclusion to a collection of premisses that suffice for the conclusion. This
is the paradigm known as reductive logic:

Rules used backward in this way are called reduction operators. The objects created using reduction
operators are called reductions. We believe that this idea of reduction was first explained in these
terms by Kleene [39]. There are many ways of studying reduction, and a number of models have
been considered, especially in the case of classical and intuitionistic logic—see e.g. Pym and Ritter
[61].

Historically, the deductive paradigm has dominated since it exactly captures the meaning of truth
relative to some set of axioms and inference rules, and therefore is the natural point of view when
considering foundations of mathematics. However, it is the reductive paradigm from which much of
computational logic derives, including various instances of automated reasoning—see e.g. Kowalski
[41], Bundy [8] and Milner [52].

Constraint systems (e.g. LBIB) sit more naturally within the reductive perspective, with the
intuition that one generates constraints as one applies rules backwards. Therefore, in constraint
systems, when we use a rule we mean it in the reductive of sense.

Having given the overall paradigm on logic in which constraint systems are situated, we are now
able to define them formally and uniformly.

4.2 Expressions, Constraints and Reductions

In Section 3.2, we defined what we mean by propositional logic. Recall that we may say algebra
to mean a first-order structure (see Section 3.1). In this context, what we mean by expressions
and constraints are terms and formulae, respectively, from an alphabet in which that algebra is
interpreted.

Let A be a (first-order) alphabet.

DEFINITION 4.1 (Expression).
An A -expression is a term over A — an element of TERM(A ).
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DEFINITION 4.2 (Constraint).
An A -constraint is a formula over A —i.e. an element of WFF(A ).

When it is clear that an alphabet has been fixed, we may elide it alphabet when discussing labelled
formulae, labelled data and enriched sequents. We use the terms ‘expression’ and ‘constraint’ to
draw attention to the fact that we have a certain algebra in mind and a certain way that the constants
and functions of the alphabet are meant to be interpreted. For example, in Section 2, we always take
symbol + to always be interpreted as Boolean addition. What may change is the interpretation of
variables. In short, we have some set of intended interpretations that are coherent.

DEFINITION 4.3 (Coherent Interpretations).
Let I be a set of interpretations of an algebra A in A . The set I is coherent iff, for any I1, I2 ∈ I, they
behave the same except possibly for atoms.

Typically, the set of intended interpretations is maximal in the sense that any interpretation of the
algebra in the alphabet is either in the set or is not a variant of an interpretation in the set.

We use expressions to enrich the language of the propositional logic and thereby express meta-
theoretic conditions on formulae and sequents. Let P be a propositional alphabet.

DEFINITION 4.4 (Labelled Data).
The set of labelled P-data is defined inductively as follows:

- BASE CASE. If φ is a formula and e is an A -expression, then φ · e is a A -labelled P-datum.
- INDUCTIVE STEP. If δ1,..., δn are labelled P-data, • is a data-constructor in P with arity n,

and e is an A -expression, then •(δ1, ..., δn) · e is a A -labelled P-datum.

DEFINITION 4.5 (Enriched sequent).
An A -enriched P-sequent is a pair Π 
Σ , in which Π and Σ are multisets of A -labelled P-data
and constraints.

We may suppress A and P when it is clear what alphabet for what algebra is labeling what
propositional language. Observe that we have shifted from the object-logic to the meta-logic; i.e.
enriched sequents are a restricted form of meta-logic sequents that encapsulate object-logic sequents
with conditions expressed by expressions from the algebra. This setup differs slightly from the
presentation of RDvBC in Section 2 to simplify presentation of the general case. Recall that data
is the general name for contexts in the propositional logic, which may be bunches. Consequently,
the presentation of RDvBC in terms of enriched sequents would consist of pairs of multisets each of
which contain only one element, the labelled bunch.

EXAMPLE 4.6
The are various enriched sequents in RDvBC—see Section 2. An additional example is as follows:

p · x (q r) · y 
 (p ∧ q) · x.

A constraint system is a generalization of sequent calculus that uses enriched sequents and
constraints. The constructions of a constraint system are generated co-recursively on enriched
sequents, producing constraints along the way along.
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DEFINITION 4.7 (Constraint System).
A constraint rule is a relation between an enriched sequents and a list of enriched sequents and
constraints. A constraint system is a set of constraint rules.

We use the same notation as in Section 3.2 for constraint rules; i.e. the situation r(C, P1, ..., Pn)

may be expressed as follows:

In this case, C is an enriched sequent and P1, ..., Pn are either enriched sequents or constraints.
The terms premiss and conclusion are analogous to those employed for sequent calculus rules in
Section 3.2. We assume the convention of putting constraints after enriched sequents in the list of
premisses.

EXAMPLE 4.8 (Example 4.6 cont’d).
System LBIB in Section 2 is a constraint system. Therefore, any rule in it is an example of a constraint
rule. We shall consider two examples.

The following is a constraint rule:

If e is a label on Δ, then Δ·V denotes the result of replacing e by a product of e and V . The following
inference is an instance of the rule:

Another example of a constraint rule is as follows:

Here V are all the labels on Δ and V = 0 denotes x1 = 0&....&xn = 0 if V is the list x1, ..., xn. An
instance of the rule is the following:

Intuitively, this corresponds to an axiom of a sequent calculus as it reduces to constraints, which,
when solved, state weather or not the sequent in the conclusion is a consequence of BI.

Unlike sequent calculi, a constraint system does not necessarily contain axioms. This is possible
because the set of things generated by a constraint system is defined co-inductively, so the restriction
is unnecessary. We define reductions co-inductively because constraint systems sit within the
paradigm of reductive logic. The reductions in this paper are all finite.

DEFINITION 4.9 (Reduction in a Constraint System).
Let C be a constraint system and let S be an enriched sequent. A tree of enriched sequents R is
a C-reduction of S iff there is a rule r ∈ C such that r(S, P1, .., Pn) obtains and the immediate
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sub-trees Ri, with root Pi, are as follows: if Pi is an enriched sequent, it is a C-reduction of Pi; the
single node Pi, otherwise (i.e. if Pi is a constraint).

EXAMPLE 4.10 (Example 4.8 cont’d).
A reduction in a constraint system (the system LBIB) is given in Example 2.2.

This concludes the definition of a constraint system and reduction from it. It remains to give
conditions defining how it relates to logics.

4.3 Correctness Conditions

The distinguishing feature of reductions in a constraint system is the constraints. These constraints
are understood as correctness conditions in two ways. They are global correctness conditions when
they determine that a completed reduction is a valid certificate witnessing that some sequent is the
consequence of a logic; this is, global correctness means soundness and completeness. They are
local correctness conditions when they determine that each reduction step corresponds to a valid
inference (i.e. an admissible inference) in the logic; this is, local correctness means faithfulness and
adequacy with respect to some sequent calculus for the logic. Of course, local correctness implies
global correctness. In either reading, we regard constraints in using rules as side-conditions on the
reduction.

DEFINITION 4.11 (Side-condition).
Let C be a constraint system and let R be a C-reduction. A side-condition of R is a constraint that
is a leaf of R.

The side-conditions are global constraints on the reduction, determining the conditions for which
the structure is meaningful.

DEFINITION 4.12 (Coherent Reduction).
Let C be a constraint system, let R be a C-reduction and let S be the set of side-conditions of R.
The set S is coherent iff there is an interpretation in which all of the side-conditions in S are valid;
the reduction R is coherent iff S is coherent.

We may regard coherent reductions as proofs of certain sequents, but this requires a method of
reading what sequent of the propositional logic the reduction asserts.

DEFINITION 4.13 (Ergo).
An ergo is a map νI , parameterized by intended interpretations, from enriched sequents to sequents.

Let C be a constraint system and ν an ergo. We write Γ �ν
C Δ to denote that there is a coherent C-

reduction R of an enriched sequent S such that νI (S) = Γ 
Δ, where I is an interpretation satisfying
all the side-conditions of R. An example of this is the valuation given for RDvBC in Section 2 that
deletes formulae and bunches labelled by an expression that evaluates to 0 and keeps those that
evaluate to 1.

DEFINITION 4.14 (Soundness and completeness of constraint systems).
A constraint system C may have the following relationships to a propositional logic:
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- Soundness: If Γ �ν
C Δ, then Γ � Δ.

- Completeness: If Γ � Δ, then Γ �ν
C Δ.

This defines constraint systems and their relationship to logics. Observe that soundness and
completeness is a global correctness condition on reductions in the sense that only once the reduction
has been completed and one has generated all of the constraints and solved them to find an
interpretation does one know whether or not the reduction witnesses the validity of some sequent
in the logic. In other words, a partial reduction (i.e. a reduction to which one may still apply rules)
does not necessarily contain any proof-theoretic information about the logic.

In contrast, one may consider a local correctness conditions in which applying a reduction operator
from a constraint system corresponds to using some rules of inference in a sequent calculus for the
logic. This is stronger than the global correctness condition as when the reduction is completed,
and the constraints are solved, the resulting interpretations that allow one to read a reduction in a
constraint system as a proof in a sequent calculus for the logic, and thus as a certificate for the
validity of some sequent.

Fix a propositional alphabet P , an algebra A, an alphabet A for that algebra and a set I of
intended interpretations of A in A. Fix a constraint system C and an ergo ν. The ergo extends to
C-reductions by pointwise application to the enriched sequents in the tree and by deleting all the
constraints.

Using this extension, constraint systems are computational devices capturing sequent calculi.
For this reason, we do not use the terms soundness and completeness, but rather use the more
computational terms of faithfulness and adequacy.

DEFINITION 4.15 (Faithful and Adequate).
Let C be a constraint system, let L be a sequent calculus and let ν be a valuation.

- System C is faithful to L if, for any C-reduction R and interpretation I satisfying the
constraints of R, the application νI (R) is an L-proof.

- System C is adequate for L if, for any L-proof D, there is a C-reduction R and an
interpretation I satisfying the constraints of R such that νI (R) = D.

Intuitively, constraint systems for a logic (more precisely, constraint systems that are faithful and
adequate with respect to a sequent calculus for a logic) separate combinatorial and idiosyncratic
aspects of that logic. The former refers to how rules manipulate the data in sequents, while the latter
refers to the constraints generated by the rules. Note that this gives a local correctness condition of
reductions from a constraint system as each reductive inference in the constraint system corresponds
to some reductive inference in a sequent calculus for the logic.

In the next section (Section 5), we provide sufficient conditions for a propositional logic to have
a constraint system that evaluates to a sequent calculus for that logic. The conditions are quite
encompassing and automatically give soundness and completeness for the sequent calculus for a
semantics for the logic. Attempting a total characterization (i.e. precisely defining the properties a
logic must satisfy in order for it to have a constraint system and a valuation to a sequent calculus
for the logic) is unrealistic. The reason is that propositional logics, constraints systems, algebras and
valuations have so many degrees of freedom that one could not plainly present their dependencies at
once. Instead, one should consider such a classification relative to a fixed structure of propositional
logics (e.g. substructural logics with data comprising multisets of formulae), for a fixed algebra (e.g.
Boolean algebra), and fixed valuations (i.e. keeping formulae whose label evaluate to 1 and deleting
formulae whose label evaluate to 0).
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Significantly, having constructed a reduction in a constraint system, one must solve the constraints
before one knows what ‘proof’ the reduction represents for the target logic. This may be challenging
depending on the algebra over which the constraint take place. Nonetheless, with even relatively
simple algebras, one may have relatively useful constraint systems; e.g. RDvBC uses Boolean
algebra, which admits algorithmic solvers, that means one can outsource the solving of constraints
for LBIB-reductions. However, the point of constraint systems is not to do proof-search but to study
proof-search. In this way, how the constraints are solved is less important than how they can be
interpreted in terms of control during proof-search in the object-logic.

5 Example: Relational Calculi

The relational calculi introduced by Negri [56] can be viewed as constraint systems; i.e. the
constraint algebra is provided by a first-order theory capturing an M-tS for a logic, and the labelling
action captures satisfaction in that semantics. Traditionally, x : φ is used in place of φ ·x for relational
calculi, and we shall adopted this notation for this section to be consistent with the existing work.
The change in notation is a aide-mémoire that we are working with a particular form of constraint
systems.

This section gives sufficient conditions for a sequent calculus to admit a relational calculus. We
further give conditions under which these relational calculi (regarded as constraint systems) are
faithful and adequate for a sequent calculus for the logic. We continue the study of the modal logic
K in Section 3.2 as a running example.

First, we define what it means for a semantics of a propositional logic to be first-order definable;
this is a pre-condition for producing relational calculi that express the semantics. We call the
propositional logic we are studying the object-logic; and, we call FOL the meta-logic. For clarity, we
use the convention prefixing meta- for structures at the level of the meta-logic where the terminology
might otherwise overlap; e.g. formulae are syntactic construction at the object level, and meta-
formulae are syntactic construction in the meta-logic.

Second, we give a sufficient condition, called tractability, for us to take a first-order definition
Ω of a semantics and produce a relational calculus from it. Essentially, the condition amounts to
unfolding Ω within G3c so that we can suppress all the logical structures from the meta-logic,
leaving only a labelled calculus for the propositional logic—namely, the relational calculus.

Third, we give a method for transforming tractable definitions into sequent calculi and prove that
the result is sound and complete for the semantics.

5.1 Tractable Propositional Logics

Relational calculi for a logic work by internalizing a semantics of that logic. In the work by Negri [56]
on relational calculi for normal modal logics, the basic atomic formulae over which the relational
calculi operate come in two forms: they are either of the form (x : φ), in which x is a variable
denoting an arbitrary world, φ is a formula and : is a pairing symbol intuitively saying that φ is
satisfied at x; or, they are of the form xRy, in which x and y are variables denoting worlds and R is
a relation denoting the accessibility relation of the frame semantics. Therefore, we begin by fusing
the language P of the object-logic with a first-order language F , able to express frames for the
semantics, into the first-order language we use for the relational calculi.

DEFINITION 5.1 (Fusion).
Let F := 〈R,∅, K, V〉 be a first-order alphabet and let P := 〈A, O, C〉. The fusion F ⊗P is the
first-order alphabet 〈R ∪ {:}, O ∪ C, K ∪ A, V〉
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FIGURE 6. Satisfaction for Modal Logic K (symbolic).

Observe that P-formulae and F -terms both becomes terms in F ⊕ P , and : is a relation. In
particular, the object-logic operators (i.e. connectives, modalities) are function-symbols in the fusion.
Further note that (x : φ) and (φ : x) are well-formed formulae in the fusion; the former is desirable,
and the latter is not. We require a model theory Ω over the fused language such that : is interpreted as
satisfaction in the semantics. Relative to such a theory, while well-formed, the meta-formulae (φ : x)
are nonsense. To aid readability, we shall use the convention of writing φ̂ for meta-variables that
we intend to be interpreted as object-formulae and Γ̂ or Δ̂ for meta-variables that we intend to be
interpreted as object-data.

DEFINITION 5.2 (Definition of a Semantics).
Let Ω be a set of sentences from a fusion F ⊗P and let S be a semantics over P . The set Ω

defines the semantics S iff the following holds: Ω , (x : Γ ) � (x : Δ) iff Γ � Δ.

Such theories Ω may at first appear obscure, but in practice they can be fairly systematically
constructed. Intuitively, the abstractions of Ω are composed of models from the semantics together
with an interpretation of the satisfaction relation. Thus, Ω is typically composed of two theories Ω1
and Ω2. The theory Ω1 captures frames; e.g. in modal logic, if the accessibility relation is transitive,
then Ω1 contains ∀x, y, z(xRy&yRz ⇒ xRz). The theory Ω2 captures the conditions of the satisfaction
relation; e.g. if the object-logic contains an additive conjunction ∧, then Ω may contain ∀x, φ̂, ψ̂((x :
φ̂ ∧ ψ̂)⇒ (x : φ̂)&(x : ψ̂)) and ∀x, φ̂, ψ̂((x : φ̂)&(x : ψ̂)⇒ (x : φ̂ ∧ ψ̂)). For an illustration of how
Ω can be constructed according to this intuition in even relatively complex settings, see the work on
the logic of Bunched Implications by Gheorghiu and Pym [30].

EXAMPLE 5.3
By the universal closure of (Φ ⇐⇒ Ψ ), we mean the meta-formulae Θ and Θ ′ in which Θ is the
universal closure of Φ ⇒ Ψ and Θ ′ is the universal closure of Ψ ⇒ Φ. Consider the semantics
K = 〈M,�〉 in Example 3.24. It is defined by the universal closures of the formulae in Figure 6,
which merits comparison with Figure 5, together with the universal closure of the following:

Every model in M intuitively gives an abstraction of these formulas since they simply give a formal
expression of the clauses defining satisfaction.
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118 Defining logical systems

Notably, there is no meta-formula corresponding to atomic satisfaction—i.e. (w : p)—because it is
handled by the structure of meta-sequents. That is, it follows from working with validity directly (i.e.
without passing though truth-in-a-model): atomic satisfaction is captured by an atomic tautology,
Ω , (x : p) 
 (x : p).

We may use the meta-logic to characterize those propositional logics whose semantics is
particularly amenable to analysis; first-order definability is, perhaps, the most general condition
we may demand. What are some other properties of Ω that may be useful? Since we are interested
in a computational analysis of the semantics, we require that it is finite, among other things. In
particular, we restrict the structure of the theory to something amenable to proof-theoretic analysis
according to G3c.

There is literature on generating proof systems for propositional logics defined axiomatically; see
e.g. work by Ciabattoni et al. [12–14]. Within this tradition, Marin et al. [47] have used focusing in
intuitionistic and classical logic, conceived of as a meta-logic, as a general tool to uniformly express
an algorithm for turning axioms into rules applicable across different domains. We use a similar
method and, therefore, polarize the syntax for the meta-logic.

Let MA be the set of meta-atoms. The positive meta-formulae P and negative meta-formulae N
are defined as follows:

This taxonomy arises from behaviour; specifically,using this taxonomy we can define a class of
formulae that we can systematically transform them into synthetic rules using focusing in G3c.
While closely related to the taxonomy used by Marin et al. [47], it is not the same as they work over
a syntax that has positive and negative connectives.

DEFINITION 5.4 (Polarity Alternation).
The number of polarity alternations in a polarized formula Φ is, which is π(Φ)defined as follows:

DEFINITION 5.5 (Tractable Meta-formula).
A meta-formula Φ is tractable iff Φ is negative and π(Φ) ≤ 2, or Φ is positive and π(Φ) ≤ 1.

The class of geometric implications studied by Negri [55] for the systematic generation of sequent
calculus rules from axioms defining propositional logics is a subset of the tractable formulae. A
meta-formula Θ is a geometric implication iff Θ is the universal closure of a meta-formula of the
form (Φ1&...&Φm) ⇒ (∃Y1Ψ1 ... ∃YnΨn) such that Ψi := Ψ i

1&...&Ψ i
mi

, with the Ψ i
j meta-atoms

for 1 ≤ j ≤ mi and 1 ≤ i ≤ n, and Φi meta-atoms for 1 ≤ i ≤ m. To see this, observe that geometric
implications are of the form N ⇒ P in which N is the conjunction of atoms and P is the disjunction
of (positive) formulae of existentially quantified conjunctions (i.e. P is of the form ∃P′, where P′ is
a conjunction of atoms). Docherty and Pym [15, 16] have used this notion of meta-formulae to give
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a uniform account of proof systems internalizing semantics for the family of bunched logics, with
application to separation logics.

The motivation for tractability is to make a certain step in the generation of relational calculi
possible, as seen in the proof of Proposition 5.9.

DEFINITION 5.6 (Tractable Theory, Semantics, Logic).
A set of meta-formulae Ω is a tractable theory iff Ω is finite and any Φ ∈ Ω is a negative tractable
meta-sentence. A semantics S is tractable iff it is defined by a tractable theory Ω . A propositional
logic is tractable iff it admits a tractable semantics S.

EXAMPLE 5.7 The semantics for modal logic in Example 3.24 is tractable, as witnessed by the
tractable definition in Example 5.3.

It remains to give an algorithm that generates a relational calculus given a tractable definition and
to prove correctness of that algorithm. Fix a semantics S := 〈M,�〉 with a tractable definition Ω .
Recall that Γ � Δ obtains iff Ω , (x : Γ ) � (x : Δ) obtains. The relational calculus we generate
is a meta-sequent calculus R for the meta-logic expressive enough to capture all instances Ω , (x :
Γ ) � (x : Δ) but sufficiently restricted such that all the meta-connectives and quantifiers may be
suppressed.

5.2 Generating Relational Calculi

By generic hereditary reduction on a meta-formula Φ, we mean the indefinite use of reduction
operators from G3c on Φ and the generated sub-formulae, until they are meta-atoms, beginning
with a meta-sequent Φ, Π 
 Σ , with generic Π and Σ . For example, the following is a generic
hereditary reduction for (A&B) (C&D) with A, B, C and D as meta-atoms:

Such reductions are collapsed into synthetic rules, which is the rule-relation taking the putative
conclusion to the premisses. The above instance collapses to the following:

The quantifier rules have side-conditions in order to be applicable, and we assert these conditions in
the synthetic rule. For example, when using ∀L when doing generic hereditary reduction on ∀XΦ,
we require that the term T for which the variable X is substituted in Φ is already present in the
meta-sequent; e.g. let Φ := (A(X )&B(X )) (C(X )&D(X )), we have the following synthetic rule for
∀XΦ with the side condition that T occurs in either Π or Σ :

DEFINITION 5.8 (Sequent Calculus for a Tractable Theory).
Let Ω be a tractable theory. The sequent calculus G3c(Ω) is composed of ax,⊥, cL, cR and the
synthetic rules for the meta-formulae in Ω .
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120 Defining logical systems

The tractability condition is designed such that the following holds:

PROPOSITION 5.9
Let Ω be a tractable definition and let Π and Σ be multisets of meta-atoms,

Ω , Π �G3c Σ iff Ω , Π �G3c(Ω) Σ .

PROOF. Assume Ω , Π �G3c Σ . Without loss of generality (see e.g. Liang and Miller [45] and Marin
et al. [47]), there is a focused G3c+cR+cL-proof D of Ω , Π 
Σ . We can assume that D is focused
up to possibly using instance of cL or cR. That is, D is structured by sections of alternating phases of
the following kind:

- an instance of cL or cR

- hereditary reduction on positive meta-formulae on the right and negative meta-formulae on
the left

- eager reduction on negative meta-formulae on the right and positive meta-formulae on the left.

Since Π and Σ are composed of meta-atoms and Ω is composed of negative meta-formulae, D
begins by a contraction and then hereditary reducing on some Φ ∈ Ω . Since Φ is tractable, this
section in D may be replaced by the synthetic rule for Φ. Doing this to all the phases in D yields a
tree of sequents D′, which is a Ω , Π �G3c(Ω) Σ .

Assume Ω , Π �G3c(Ω) Σ . Since all the rules in G3c(Ω) are admissible in G3c, we immediately
have Ω , Π �G3c Σ .

�

EXAMPLE 5.10
Consider the tractable theory ΩK in Example 5.3. The sequent calculus G3c(ΩK) contains, among
other things, the following rules corresponding to the clause for ∧ in Figure 6 in which w, φ and ψ

already occur in Ω , Π or Σ :

In practice, one does not use the rules in this format. Rather, one would only apply the rules if one
already knew that the left-branch would terminate; i.e. one uses the following:

This simplification can be made systematically according to the shape of the meta-formula
generating the rules; it corresponds to forward-chaining and back-chaining in the proof-theoretic
analysis of the meta-formula—see e.g. Marin et al. [47].

One desires a systematic account of the transformation of rules of arbitrary shape into rules of
other (more desirable) shape. This remains to be considered in the context of relational calculi and
demands further analysis on the structure of Ω . Some results of such transformations for arbitrary
sequent calculi have been provided by Indrzejczak [37].
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Defining logical systems 121

The calculus G3c(Ω) is a restriction of G3c precisely encapsulating the proof-theoretic
behaviours of the meta-formulae in Ω . It remains to suppress the logical constants of the meta-
logic entirely, and thereby yield a relational calculus expressed as a labelled sequent calculus for the
propositional logic.

DEFINITION 5.11 (Relational Calculus for a Tractable Theory).
Let Ω be a tractable theory. The relational calculus for Ω is the sequent calculus R(Ω) that results
from G3c(Ω) by suppressing Ω .

THEOREM 5.12 (Soundness and Completeness).
Let S be a tractable semantics and let Ω be a tractable definition for, S

Γ �S Δ iff (x : Γ ) �R(Ω) (x : Δ)

PROOF. We have the following:

Γ �S Δ iff Ω , (x : Γ ) � (x : Δ) (Definition 5.6)
iff Ω , (x : Γ ) �G3c (x : Δ) (Proposition 3.4)
iff Ω , (x : Γ ) �G3c(Ω) (x : Δ) (Proposition 5.9).

It remains to show that Ω , (x : Γ ) �G3c(Ω) (x : Δ) iff (x : Γ ) �R(Ω) (x : Δ).
Let D be a G3c(Ω)-proof of Ω , (x : Γ ) 
 (x : Δ), and let D′ be the result of removing Ω from

every meta-sequent in D. By Definition 5.11, we have that D′ is a R(Ω)-proof of (x : Γ ) 
 (x : Δ).
Thus, Ω , (x : Γ ) �G3c(Ω) (x : Δ) implies (x : Γ ) �R(Ω) (x : Δ).

Let D be a R(Ω)-proof of (x : Γ ) 
 (x : Δ), and let D′ be the result of putting Ω in every meta-
sequent in D. By Definition 5.11, we have that D′ is a G3c(Ω)-proof of Ω , (x : Γ ) 
 (x : Δ). Thus,
(x : Γ ) �R(Ω) (x : Δ) implies Ω , (x : Γ ) �G3c(Ω) (x : Δ).

�

EXAMPLE 5.13
The sequent calculus in Example 5.10 becomes a relational calculus R(ΩK) by suppressing Ω in the
rules; e.g.

becomes

Abbreviating ¬�¬φ by ♦φ and doing some proof-theoretic analysis on R(ΩK), we have the
simplified system RK in Figure 7—Φ denotes a meta-formula, Π and Σ denote multiset of meta-
formulae, x and y denote world-variables, Δ denotes object-logic data φ and ψ denote object-logic
formulae. This is, essentially, the relational calculus for K introduced by Negri [56].

While we have effectively transformed (tractable) semantics into relational calculi, giving a
general, uniform and systematic proof theory to an ample space of logics, significant analysis
remains to be done. In Example 5.13, we showed that under relatively mild conditions, one expects
the relational calculus to have a particularly good shape. This begs for further characterization of
the definitions of semantics and what properties one may expect the resulting relational calculus to
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FIGURE 7. Relational Calculus RK.

have; the beginnings of such an analysis are given below Definition 5.2 in which we require Ω to
contain a first-order definition of frames together with an inductive definition of the semantics.

We have presented a general account of relational calculi, but certain specific families of logics
ought to be studied in particular. For example, Negri [56] demonstrated that relational calculi for
modal logics are particularly simple. An adjacent class is the family of hybrid logics—see e.g.
Blackburn et al. [5, 6], Areces and ten Cate [9], Bräuner [7] and Indrzejczak [36]. Indeed, one
may regard the meta-logics for propositional logics (i.e. the fused language) as hybrid logics—see
e.g. Blackburn [4].

5.3 Faithfulness and Adequacy

In this section, we give sufficient conditions for faithfulness and adequacy of a relational calculus
with respect to a sequent calculus. More precisely, we give conditions under which one may trans-
form a relational calculus into a sequent calculus for the object-logic. The result is immediate proof
of soundness and completeness for the sequent calculus concerning the semantics; significantly, it
bypasses term- or counter-model construction. This idea has already been implemented for the logic
of Bunched Implications by Gheorghiu and Pym [30].

While the work of the preceding section generates a relational calculus, one may require some
proof theory to yield a relational calculus that meets the conditions in this section faithfulness
and adequacy. Likewise, one may require proof theory on the generated sequent calculus to yield
a sequent calculus one recognizes as sound and complete concerning a logic of interest. We do not
consider these problems here, but they are addressed explicitly for BI in the previous work by the
authors.
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Our objective is to systematically transform (co-)inferences in the relational calculus into (co-)
inferences of the propositional logic. Regarded as constraint systems, relational calculi do not have
any side-conditions on inferences; instead, all of the constraints are carried within sequents. Thus we
do not need to worry about assignments and aim only to develop a valuation ν. We shall define ν by
its action on sequents and extend it to reductions like in Section 4.3.

Fix a propositional logic � and relational calculus R. We assume the propositional logic has data-
constructors ◦ and • such that

Γ ◦ Γ ′ � Δ iff (w : Γ )&(w : Γ ′) �R (w : Δ)

and

Γ � Δ •Δ′ iff (w : Γ ) �R (w : Δ) (w : Δ′).

This means that the weakening, contraction and exchange structural rules are admissible for ◦
and • on the left and right, respectively. In particular, these data-constructors behave like classical
conjunction and disjunction, respectively.

EXAMPLE 5.14
The logic with relational calculus RK satisfies the data-constructor condition—specifically, is
conjunctive and is disjunctive.

A list of meta-formulae is monomundic iff it only contains one world-variable (but possibly many)
occurrences of that world-variable; we write Πw or Σw to denote monomundic lists contain the
world-variable w. A monomundic list is basic iff it only contains meta-atoms of the form (w : Γ ),
which is denoted Π̄w or Σ̄w.

DEFINITION 5.15 (Basic Validity Sequent).
A basic validity sequent (BVS) is a pair of basic monomundic lists, Π̄w 
 Σ̄w.

DEFINITION 5.16 (Basic Rule).
A rule in a relational calculus is basic iff it is a rule over BVSs—i.e. it has the following form:

DEFINITION 5.17 (Basic Relational Calculus).
A relational calculus r is basic iff it is composed of basic rules.

Using the data-structures • and ◦, a BVS intuitively corresponds to a sequent in the propositional
logic. Define �−�◦ and �−�• on basic monomundic lists as follows:

�(w : Γ1), ..., (w : Γm)�◦ := Γ1 ◦ ... ◦ Γm �(w : Δ1), ..., (w : Δn)�• := Δ1 • ... •Δn.

We can define ν on BVSs by this encoding,

ν(Π̄w 
 Σ̄w) := �Π̄w� 
 �Σ̄w�
The significance is that whatever inference is made in the semantics using BVSs immediately yields
an inference it terms of propositional sequents.
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Let r be a basic rule, its propositional encoding ν(r) is the following:

This extends to basic relational calculi pointwise,

ν(R) := {ν(r) | r ∈ R}
Despite their restrictive shape, basic rules are quite typical. For example, if the body of a clause is

composed of only conjunctions and disjunctions of assertions, the rules generated by the algorithm
presented above will be basic. Sets of basic rules can sometimes replace more complex rules
in relational calculi to yield a basic relational calculus from a non-basic relational calculus—see
Section 6 for an example.

We are thus in a situation where the rules of a reduction system intuitively correspond to the rules
of a sequent calculus. The formal statement of this is below.

THEOREM 5.18
A basic relational calculus R is faithful and adequate with respect to its propositional encoding ν(R).

PROOF. The result follows by Definition 4.15 because a valuation of an instance of a rule in R

corresponds to an instance of a rule of R on the states of the sequents involved.
Faithfulness follows by application of ν on R-proofs. That is, for any R-reduction D, one produces

a corresponding ν(R)-proof by apply ν to each sequent in D.
Adequacy follows by introducing arbitrary world-variables into a ν(R)-proof. Let D be a ν(R)-

proof, it concludes by an inference of the following form:

We can co-inductively define a corresponding R-with the following co-recursive step in which Ri is
the reduction corresponding to Di:

Hence, for any ν(R)-proof, there is a R-reduction R such that ν(R) = D, as required. �
Of course, despite basic rules being relatively typical, many relational calculi are not comprised

of only basic rules. Nonetheless, the phenomenon does occur for even quite complex logic. It can be
used for the semantical analysis of that logic in those instances—see e.g. Gheorghiu and Pym [30]
for an example of this in the case of the logic of Bunched Implications. Significantly, this approach to
soundness and completeness differs from the standard term-model approach and has the advantage
of bypassing truth-in-a-model (i.e. satisfaction).

6 Example: Intuitionistic Propositional Logic

In Section 5, we gave a general, uniform and systematic procedure for generating proof systems
for logics that have model-theoretic semantics satisfying certain conditions. What about the reverse

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/35/1/95/7446395 by H
artley Library user on 13 June 2025



Defining logical systems 125

problem? That is, given a proof-theoretic characterization of a propositional logic, can we derive a
model-theoretic semantics for it (in the sense of Section 3.2)? This chapter provides an example of
this for IPL.

We begin from a naive position on IPL. Our definition of IPL is by LJ—see Gentzen [27].
We choose this over other systems (e.g. G3i—see Troelstra and Schwichtenberg [68]) because we
assume that we do not even known much about its proof theory so that we may explain through the
analysis what we require. In the end, we recover the model-theoretic semantics by Kripke [42] using
constraint systems as the enabling technology. Of course, for the purposes of this chapter, we shall
imagine that we do not know about the semantics.

Reflecting on Section 5, we expect that the semantics we synthesize for IPL will be tractable.
Therefore, we intend to build a relational calculus to bridge the proof theory and semantics of IPL
as in Section 5, but this time we build it from the proof theory side. Recall that relational calculi
are fragments of proof systems for FOL (i.e. the meta-logic); therefore, we begin in Section 6.1 by
building a constraint system for IPL that is classical in shape. The system is derived in a principled
way from this desire, but it is only sound and complete for IPL. We require it to be faithful and
adequate for LJ because we hope to generate clause governing each connective from its rules. Hence,
in Section 6.2, we analyse the constraint system to recover a faithful and adequate constraint system
for IPL. In Section 6.3, we study the reductive behaviour of connectives of IPL in this constraint
systems and write tractable FOL-formulae that capture the same behaviour in G3c. The resulting
theory Ω determines a model-theoretic semantics for IPL, as shown in Section 6.4.

6.1 Multiple-conclusions via Boolean Constraints

We begin by defining IPL naively—i.e. from LJ (see Gentzen [27]). We do it in the style of
Section 3.2 to keep it consistent with the treatment of propositional logics in the rest of this paper.

DEFINITION 6.1 (Alphabet J ).
The alphabet is J := 〈P, {∧,∨,→,¬}, { , ,∅}〉, in which symbols ∧,∨,→, , have arity 2, the
symbol ¬ has arity 1 and ∅ has arity 0.

Let ≡ be the smallest relation satisfying commutative monoid equations for and with unit ∅.

DEFINITION 6.2 (System LJ).
Sequent calculus LJ is comprised of the rules in Figure 8, in which Δ is either a J -formula φ or ∅,
and Γ ≡ Γ ′ and Δ ≡ Δ′ in e.

In this section, LJ-provability �LJ defines the judgment relation for IPL. Our task is to derive
a model-theoretic characterization of IPL. As we saw in Section 5, the logic in which semantics
is defined is classical. Therefore, our strategy is to use the constraint to present IPL in a sequent
calculus with a classical shape; i.e. the constraint informs precisely where the semantics of IPL
diverge from those of FOL. This tells us how the semantic clauses of FOL need to be augmented to
define the connectives of IPL. The calculus in question is Gentzen’s LK [27].

The essential point of distinction between LJ and LK is in cR, →L and ¬L as it is these rules
that enable multiple-conclusioned sequents to appear in the latter but not the former. To bring
these behaviours closer, we introduce a constraints constraint system for IPL whose combinatorial
behaviour is like LK, but for which we have constraints to recover LJ.

The algebra of the constraint system is Boolean algebra—see Section 2.
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FIGURE 8. Sequent Calculus LJ.

EXAMPLE 6.3
The following is an enriched J -sequent.

(Γ · 1) (φ · x) 
 (Δ · x̄) (ψ · x).
For the rules that are the same across both systems, the expressions are inherited from the

justifying sub-formulae of the conclusion; e.g. in the case of conjunction, one has the following:

For readability, we may suppress the Boolean expressions on these rules.

DEFINITION 6.4 (System LK⊕ B).
Sequent calculus LK ⊕ B is comprised of the rules in Figure 9, in which Γ and Δ are enriched
J -datum, and Γ ≡ Γ ′ and Δ ≡ Δ′ in eB.

The ergo rendering LK⊕B sound and complete for IPL is precisely the demand for one to choose
which of the formulae in the succedent of a sequent to assert as a consequence of the context.
This reading is closely related to the semantics of intuitionistic proof-search provided by Pym and
Ritter [62].

DEFINITION 6.5 (Choice ergo).
Let I : X → B be an interpretation of the language of the Boolean algebra. The choice ergo is the
function σI , which acts on J -formulae as follows:

σI (φ) �→

⎧⎪⎨
⎪⎩

φ if φ unlabelled

σI (ψ) if I(x) = 1 and φ = ψ · x
∅ if I(x) = 0 and φ = ψ · x.
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FIGURE 9. Constraint System LK⊕ B.

The choice ergo acts on enriched J -data by acting point-wise on the formulae; and it acts on
enriched sequents by acting on each component independently—i.e. σI (Γ 
Δ) = σI (Γ ) 
 σI (Δ).

EXAMPLE 6.6
Let S be the sequent in Example 6.3. If I(x) = 1, then σI (S) = Γ φ 
 ψ .

PROPOSITION 6.7
System LK⊕ B, with the choice ergo σ , is sound and complete for IPL,

Γ �σ
LK⊕B Δ iff Γ �LJ Δ.

PROOF OF SOUNDNESS. Suppose Γ �σ
LK⊕B Δ, then there is a coherent LK⊕ B-reduction R of an

enriched sequent S such that σI (S) := Γ 
 Δ, where I is any assignment satisfying R. It follows
that S is equivalent (up to exchange) to the sequent Γ ′ Π 
 Σ Δ′ in which Γ ′ and Δ′ are like Γ

and Δ but with labelled data and I applied to the expressions in Π and Σ evaluates to 0 but applied
to expressions in Γ ′ and Δ′ evaluates to 1. We proceed by induction n on the height of R—i.e. the
maximal number of reductive inferences in a branch of the tree.

BASE CASE. If n = 1, then Γ ′, Π 
Σ , Δ′ is an instances of axB. But then S = φ · x 
 φ · y, for
some formula φ. We have φ �LJ φ by ax.

INDUCTIVE STEP. The induction hypothesis (IH) is as follows: if Γ ′ �σ
LK⊕B Δ′ is witnessed by

LK⊕ B-reductions of k ≤ n, then Γ �LJ Δ.
Suppose that the shortest reduction witnessing Γ ′ �σ

LK⊕B Δ′ is of height n + 1. Let R be such
a reduction. Without loss of generality, we assume the root of R is of the form Γ ′ Π 
 Σ Δ′, as
above. It follows by case analysis on the final inferences of R (i.e. reductive inferences applied to
the root) that Γ �LJ Δ. We show two cases, the rest being similar.

- Suppose the last inference of R was by cB
R

. In this case, R has an immediate sub-tree R′ that
is a coherent LK⊕ B-reduction of either Γ ′ Σ 
Σ ′ Δ′ or Γ ′ Σ 
Σ ′ Δ′′, in which Σ ′ and
Δ′′ are like Σ and Δ′, respectively, but with some formula repeated such that one occurrence
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128 Defining logical systems

carries an additional expression x and the other occurrence with an x̄. The coherent assignment
of R are the same as those R′ since the two reductions have the same constraints. We observe
that under these coherent assignment R′ witnesses Γ ′ �σ

LK⊕B Δ′. By the IH, since R′ is of
height n, it follows that Γ �LJ Δ.

- Suppose the last inference of R was by→B
R

. In this case, R has an immediate sub-tree R′. If
the principal formula of the inference is not in Δ′, then R′ witnesses Γ ′ �σ

LK⊕B Δ′. Hence,
by the IH, we conclude Γ �LJ Δ. If the principal formula of the inference is in Δ′, then
R′ is a proof of φ Γ ′ Π 
Σ Δ′′; ψ , where Δ′ := Δ′′ φ → ψ . It follows, by the IH, that
φ, Γ ′ �LJ Δ′′ ψ . By the→R-rule in LJ, we have Γ �LJ φ → ψ—i.e. Γ �LJ Δ, as required.

Of course, since we are working with LJ, we know that Δ contains only one formula. This
distinction was not important for the proof, so we have left with the more general notation. �

PROOF OF COMPLETENESS. This follows immediately from the fact that all the rules of LJ may be
simulated in LK⊕ B. �

The point of this work is that LK⊕B characterizes IPL in a way that is combinatorially comparable
to FOL. This is significant as the semantics of IPL is given classically, hence LK ⊕ B bridges the
proof-theoretic and model-theoretic characterizations of IPL.

6.2 Faithfulness and Adequacy

Though we may use LK⊕ B to reason about IPL with classical combinatorics, the system does not
immediately reveal the meaning of the connectives of IPL in terms of their counterparts in FOL. The
problem is that LK ⊕ B-proofs are only globally valid for IPL, with respect to the choice ergo σ .
Therefore, to conduct a semantical analysis of IPL in terms of FOL, we require a constraint system
based on FOL whose proofs are locally valid—i.e. a system that is not only sound and complete for
IPL, but faithful and adequate. In this section, we analyse the relationship between LK⊕ B and LJ

to produce such a system.
A significant difference between LK and LJ is the use of richer data-structures for the succedent

in the former than in the latter (i.e. list or multisets verses formulae). Intuitively, the data-constructor
in the succedent acts as a meta-level disjunction, thus we may investigate how LK⊕ B captures IPL
by considering how cBR interacts with ∨B

R
. We may restrict attention to interactions of the following

form:

These may be collapsed into single inference rules,

The other connectives either make use of constraints, and therefore have no significant interaction
with disjunction, or simply can be permuted without loss of generality—e.g. a typical interaction

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/35/1/95/7446395 by H
artley Library user on 13 June 2025



Defining logical systems 129

FIGURE 10. Constraint System LK+ ⊕ B.

between cBR and such as ∧B
R

may be replaced by the derivation,

This analysis allows us to eliminate cBR as it is captured wherever it is needed by the augmented rule
for disjunction; similarly, we may eliminate cBL by incorporating it in the other rules. In total, this
yields a new constraint system, LK+ ⊕ B.

DEFINITION 6.8 (System LK+ ⊕ B).
System LK+ ⊕ B is given in Figure 10, in which Γ and Δ are enriched J -datum, and Γ ≡ Γ and
Δ ≡ Δ′ in e.

System LK+ ⊕ B characterizes IPL locally—i.e. it is faithful and adequate with respect to
some sequent calculus for IPL. That sequent calculus, however, is not LJ, but rather a multiple-
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FIGURE 11. Sequent Calculus LJ+.

conclusioned system LJ+. Essentially, LJ+ is the multiple-conclusioned sequent calculus introduced
by Dummett [18] with certain instances of the structural rules incorporated into the operational rules.

DEFINITION 6.9 (Sequent calculus LJ+).
Sequent calculus LJ+ is given by the rules in Figure 11, in which Γ and Δ are J -datum, and
Γ ≡ Γ ′ and Δ ≡ Δ′ in e.

PROPOSITION 6.10
Sequent calculus LJ+ is sound and complete for IPL,

Γ �LJ φ iff Γ �LJ+ φ.

PROOF. Follows from Dummett [18]. �
The choice ergo σ extends to a valuation from LK+ ⊕B to LJ+ by pointwise application to every

sequent within the reduction.

PROPOSITION 6.11
System LK+ ⊕ B, with valuation σ , is faithful and adequate with respect to LJ+.

PROOF. Faithfulness follows from the observation that each rule in LK+ ⊕ B produces the
corresponding rule in LJ+ when its constraints are observed. Adequacy follows from the observation
that every instance of every rule in LJ+ is an evaluation of an instance of a rules of LK+ ⊕ B
respecting its constraints. �

The force of this result is that we may use LK+ ⊕B to study intuitionistic connectives in terms of
their classical counterparts. This analysis allows us to synthesize a model-theoretic for IPL from the
semantics of FOL.
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6.3 Semantical Analysis of IPL

Our approach to deriving a semantics for IPL is to construct a set of meta-formulae Ω that forms
a tractable definition of a semantics for IPL. The idea is that we use LK+ ⊕ B to determine meta-
formulae for each connective that simulate the proof theory of IPL within LK+.

Recall that in Section 5.3 we require a data-constructor to represent classical conjunction (&) and
one for classical disjunction ( ). These are and , respectively. We may now proceed to analyse the
connectives of IPL.

We observe in LK+ ⊕ B that intuitionistic conjunction has the same inferential behaviour as
classical conjunction,

Therefore, it seems that ∧ in IPL should be defined as & in FOL. A candidate meta-formula
governing the connective is the universal closure of the following (we use the convention in
Section 5.1 in which φ̂ and ψ̂ are used as meta-variables for formulae of the object-logic):

(w : φ̂ ∧ ψ̂) ⇐⇒ (w : φ̂)&(w : ψ̂).

This is the appropriate clause for the connective as it enables the following behaviour in the meta-
logic in which the double-line suppresses the use of the clause:

Recall, such derivations correspond to the use of the clause—see Section 5.2—which may be
collapsed into rules themselves,

Intuitively, this rule precisely recovers ∧R ∈ LJ+,

Of course, it is important to check that the clause also has the correct behaviour in the left-hand side
of sequents; we discuss this at the end of the present section.

We obtain the universal closure of the following for the clauses governing disjunction (∨) and (⊥)

analogously:

It remains to analyse implication (→). The above reasoning does not follow mutatis mutandis
because the constraints in LK+⊕B becomes germane, so we require something additional to get the
appropriate simulation.
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132 Defining logical systems

How may we express → in terms of the classical connectives? We begin by considering →B
R
∈

LK+ ⊕ B,

Since LK+ ⊕ B is not only sound and complete for IPL but faithful and adequate, we know that
this rule characterizes the connective. The rule admits two assignment classes: x �→ 0 or x �→ 1.
Super-imposing these valuations can capture the behaviour we desire in the meta-logic on each other
by using possible worlds to distinguish the possible cases,

We assume that since u and v are distinct, they do not interact so that the rule captures the following
possibilities:

The assumption is proved valid below—see Proposition 6.18. Applying the state function to these
rules does indeed recover the possible cases of →B

R
, which justifies that this super-imposing

behaviour is what we desire of the clause governing implication. It remains only to find that clause.
One of these possibilities amounts to a weakening, a behaviour already present through interpret-

ing the data-structures as classical conjunction and disjunction. The other possibility we recognize
as having the combinatorial behaviour of classical implication concerns creating a meta-formula in
the antecedent of the premiss by taking part in a meta-formula in the succedent of the conclusion.
Naively, we may consider the following as the clause:

(w : φ̂ → ψ̂) ⇐⇒ (
(w : φ̂) ⇒ (w : ψ̂)

)
However, this fails to account for the change in world. Thus, we require the clause to have a universal
quantifier over worlds and a precondition that enables the Π [w �→ u] substitution. Analysing the
possible use cases, we observe that R must satisfy ref lexivity so that the substitution for u may be
trivial (e.g. when validating (w : φ ∧ (φ → ψ)) 
 (w : ψ)). In total, we have the universal closure of
the following meta-formulae:

(x : φ̂ → ψ̂) ⇐⇒ ∀y
(
(xRy)&(y : φ̂)⇒ (y : ψ̂)

)
xRx xRy ⇒ ∀Γ̂ (

(x : Γ̂ )⇒ (y : Γ̂ )
)

Observe that we have introduced an ancillary relation R precisely to recover the behaviour
determined by the algebraic constraints; curiously, we do not need transitivity, which would render
R a pre-order and recover Kripke’s semantics for IPL [42] —we discuss this further at the end of
Section 6.4. Moreover, since the data-constructors behave exactly as conjunction (∧) and disjunction
(∨), we may replace Γ̂ with φ̂ without loss of generality.

This concludes the analysis. Altogether, the meta-formulae thus generated comprise a tractable
definition for a model-theoretic semantics for IPL, called ΩIPL. Any abstraction of this theory gives
the semantics.
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FIGURE 12. Satisfaction for IPL.

DEFINITION 6.12 (Intuitionistic Frame, Satisfaction and Model).
An intuitionistic frame is a pair F := 〈V, R〉 in which R is a ref lexive relation on V.

Let [[−]] be an interpretation mapping J -atoms to U. Intuitionistic satisfaction is the relation
between elements w ∈ V and φ ∈ F defined by the clauses of Figure 12.

A pair 〈F , [[−]]〉 is an intuitionistic model iff it is persistent—i.e. for any J -formula φ and worlds
w and v,

if wRv and w � φ, then v � φ.

The class of all intuitionistic models is K.

This semantics generates the following validity judgment:

Γ �IPL Δ iff for any M ∈ K and any w ∈M, if w � Γ , then w � Δ.

It remains to prove soundness and completeness for the semantics, which we do in Section 6.4.
Of course, we have designed the semantics so that it corresponds to LJ+, rendering the proof a
formality. Nonetheless, it is instructive to see how it unfolds.

As a remark, tertium non datur is known not to apply in IPL. How does encoding of IPL
within classical logic avoid it? It is instructive to study this question as it explicates the clause for
implication, which defines the intuitionistic connective in terms of a (meta-level) classical one.

EXAMPLE 6.13
The following reduction is a canonical instances of using the clause (see Section 5.2):

Since (u : φ) in the antecedent and (w : φ) in the succedent are different atoms, since u and w
are different world-variables, one has not reached an axiom. In short, despite working in a classical

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/35/1/95/7446395 by H
artley Library user on 13 June 2025



134 Defining logical systems

system, the above calculation witnesses that φ ∨¬φ is valid in IPL if and only if one already knows
that φ is valid in IPL or one already knows that ¬φ is valid in IPL.

Curiously, in all instances above, we established the clause for a connective by analysing the
behaviour of the connective in the succedent (i.e. on the right-hand side of sequents), paying no atten-
tion to its behaviour in the antecedent (i.e. in the left-hand side of sequents). Nevertheless, despite
this bias in all the above cases, the clauses generated behave correctly on both sides of the sequents.
This observation is significant because it reaffirms an impactful statement by Gentzen [27]:

The introductions represent, as it were, the ‘definitions’ of the symbols concerned, and the
eliminations are no more, in thefinal analysis, than the consequences of these definitions.
This fact may be expressed as follows: in eliminating a symbol, we may use the formula with
whose terminal symbol we are dealing only ‘in the sense afforded it by the introduction of that
symbol.’

This statement is one of the warrants for proof-theoretic semantics [65], a mathematical instantiation
of inferentialism—the semantic paradigm according to which inferences and the rules of inference
determine the meaning of expressions. The method for semantics presented here supports the
inferentialist view as it precisely determines the meaning of the connectives according to their
inferential behaviour. Notably, that the left- and right- behaviours cohere is intuitively a consequence
of harmony, which is a pre-condition for proof-theoretic semantics—see e.g. Schroeder-Heister [66].

6.4 Soundness and Completeness

There are two relationships the proposed semantics may have with IPL: soundness and completeness.
Since the semantics generated is the same as the one given by Kripke [42], both of these properties
are known to hold. Nonetheless, the method by which the semantics was determined gives a different
method for establishing these relationships—namely, those of Section 5. In summary, we need only
show that relational calculus generated by the semantics has the same behaviour (i.e. is faithful and
adequate) as a sequent calculus for IPL. This is a formalized reading of the traditional approach to
soundness in which one demonstrates that every rule of the system can be simulated by the clauses of
the semantics—in the parlance of this paper, this is just showing that the relational calculus generated
by the semantics is faithful to the sequent calculus.

THEOREM 6.14 (Soundness).
If Γ � φ, then Γ �IPL φ.

PROOF. Apply the traditional inductive proof—see e.g. Van Dalen [69]. �
In this paper, we shall prove completeness symmetrically. We show that the relational calculus

generated by the semantics is adequate for a sequent calculus characterizing IPL. This suffices
because the relational calculus is sound and complete for the semantics, as per Theorem 5.12. To
simplify the presentation, we shall have contraction explicit in the relational calculus for ΩIPL rather
than implicit.

DEFINITION 6.15 (Relational calculus RJ).
The relational calculus RJ is comprised of the rules in Figure 13—Φ denotes a meta-formula, Π

and Σ denote multiset of meta-formulae, x and y denote world-variables, Δ denotes object-logic data
and φ and ψ denote object-logic formulae. The rules L and R are invertible, and the world-variable
y does not appear elsewhere in the sequents in→R.
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FIGURE 13. Relational Calculus RJ.

COROLLARY 6.16
Γ �IPL Δ iff Γ �σ

IPL
Δ

PROOF. Instance of Theorem 5.12. �
We desire to transform RJ into a sequent calculus for which it is adequate, which we may then

show is a characterization of IPL. Such transformations are discussed in Section 5.3, but the rules of
IPL are slightly too complex for the procedure of that section to apply immediately. Therefore, we
require some additional meta-theory.

The complexity comes from the→-clause as it may result in non-BVSs. However, we immediately
use persistence to create a composite behaviour that a basic rule can capture. This is because the
combined effect yields BVSs whose contents may be partitioned; by design, persistence uses world-
variables that do not, and cannot, interact throughout the rest of the proof.

DEFINITION 6.17 (World-independence).
Let Π and Σ be lists of meta-formulae. The lists Π and Σ are world-independent iff the set of
world-variable in Π is disjoint from the set of world-variables in Σ .

Let S be a tractable semantics and let Ω be a tractable definition of it. Let Π1, Σ1 and Π2, Σ2
be world-independent lists of meta-formulae. The semantics S has world-independence iff, if
Ω , Π1, Π2 � Σ1, Σ2, then either Ω , Π1 � Σ1 or Ω , Π2 � Σ2.

Intuitively, world-independence says that whatever is true at a world in the semantics does not
depend on truth at a world not related to it.
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Let Π1
i , Π2

i , Σ1
i and Σ2

i be lists of meta-formulae, for 1 ≤ i ≤ n, and suppose that Π1
i , Σ1

i is
world-independent from Π2

i , Σ2
i . Consider a rule of the following form:

Assuming world-independence of the semantics, this rule can be replaced by the following two rules:

If all the lists were basic, iterating these replacements may eventually yield a set of basic rules with
the same expressive power as the original rule.

PROPOSITION 6.18
The semantics of IPL—i.e. the semantics 〈K,�〉 defined by ΩIPL—has world-independence.

PROOF. If ΩIPL, Π1, Π2 � Σ1, Σ2, then there is a G3-proof D of it. We proceed by induction on the
number of resolutions in such a proof.

BASE CASE. Recall, without loss of generality, an instantiation of any clause from ΩIPL is a
resolution. Therefore, if D contains no resolutions, then ΩIPL, Π1, Π2 � Σ1, Σ2 is an instance of
taut. In this case, either ΩIPL, Π1 � Σ1 or ΩIPL, Π2 � Σ2 is also an instance of taut, by world-
independence.

INDUCTION STEP. After a resolution of a sequent of the form ΩIPL, Π1, Π2 � Σ1, Σ2, one returns
a meta-sequent of the same form—i.e. a meta-sequent in which we may partition the meta-formulae
in the antecedent and succedent into world-independent multisets. This being the case, the result
follows immediately from the induction hypothesis.

The only non-obvious case is in the case of a closed resolution using the →-clause in the
antecedent because they have universal quantifiers that would allow one to produce a meta-atom
that contains both a world from Σ1, Π1 and Σ2, Π2 simultaneously, thereby breaking world-
independence.

Let Π1 = Π ′
1, (w � φ → ψ) and suppose u is a world-variable appearing in Σ2, Π2. Consider

the following computation—for readability, we suppress ΩIPL:

The wRu may be deleted (by wL) from the leftmost premiss because the only way for the meta-atom
to be used in the remainder of the proof is if wRu appears in the context, but this is impossible (by
world-independence). Hence, without loss of generality, this branch reduces to Π ′

1, Π2 � Σ1, Σ2.
Each premiss now has the desired form. �

Using world-independence, we may give a relational calculus RJ+ characterizing the semantics
comprised of basic rules. It arises from analysing the rôle of the atom xRy in RJ in an effort to get
rid of it. Essentially, we incorporate it in→R, which was always its purpose—see Section 6.3.
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FIGURE 14. Relational Calculus RJ+.

DEFINITION 6.19 (System RJ+).
System RJ+ is comprised of the rules in Figure 14, in which L and R are invertible.

PROPOSITION 6.20
Γ �RJ Δ iff Γ �RJ+ Δ

PROOF. Every RJ-proof can be simulated in RJ+ by using (i.e. reduce with) pers eagerly after using
→L. Thus, Γ �RJ Δ implies Γ �RJ+ Δ. It remains to show that Γ �RJ+ Δ implies Γ �RJ Δ.

Without loss of generality, in RJ+ one may always use pers immediately after→R, as otherwise
the use of→L could be postponed. Similarly, without loss of generality,→L always instantiates with
y = x—this follows as we require the leftmost branch of the following to close, which it does by ref:

An RJ+-proof following these principles maps to an RJ-proof simply by collapsing the instances of
→L and→R in the former to capture→L and→R in the latter. �

Observe that the propositional encoding of RJ+ is precisely LJ+. The connexion to IPL follows
immediately:

COROLLARY 6.21
System RJ+ is faithful and adequate with respect to LJ+.

PROOF. Instance of Theorem 5.18. �

THEOREM 6.22 (Completeness).
If Γ �IPL Δ, then Γ � Δ.
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PROOF. We have the following:

Γ �IPL Δ implies (w : Γ ) �RJ (w : Δ) (Corollary 6.16)
implies (w : Γ ) �RJ+ (w : Δ) (Proposition 6.20)
implies Γ �LJ+ Δ (Corollary 6.21)
implies Γ �LJ Δ (Proposition 6.10).

Since LJ characterizes IPL, this completeness the proof. �
Thus, we have derived a semantics of IPL for LJ and proved its soundness and completeness

using the constraint systems. This semantics is not quite Kripke’s one [42], which insists that R be
transitive, thus rendering it a pre-order. This requirement is naturally seen from the connection to
Heyting algebra and the modal logic S4. In the analysis of Section 6.3, from which the semantics in
this paper comes, there was no need for transitivity; the proofs of soundness and completeness go
through without it.

One may add transitivity—i.e. the meta-formula ∀x, y, z(xRy&yRz �⇒ xRz)—to ΩIPL and
proceed as above, adding the following rule to RJ:

The proof of completeness passes again through RJ+ by observing that eagerly using persistence
does all the work required of transitivity; i.e. according to the eager use of pers, in a sequent
xRy, yRz, Π 
Σ , the set Π is of the form Π ′[x �→ y]∪Π ′[y �→ z], so that whatever information was
essential about (the world denoted by) x is already known about (the world denoted by) z by passing
through (the world denoted by) y.

This concludes the case-study of IPL: we have used constraint systems to decompose it into
classical logic from which we derived a semantics and proved soundness and completeness. Adding
other axioms to ΩIPL, ones that are not redundant in the above sense recovers various intermediate
logics. In this way, constraint systems offer a uniform and modular approach to studying them, which
we leave as future work.

7 Extension: First-order Logic

So far, we have concentrated on propositional logics to enable a uniform account of constraint
systems across a large class of logics. Nevertheless, there is nothing within the paradigm that is
inherently propositional. In this section, we extend the phenomenon of decomposing a logical system
according to its combinatorial aspect and algebraic aspects to the setting of first-order logic, as
in the case of the original example of a constraint system (i.e. RDvBC in Section 2), constraint
systems have computational advantages. Therefore, we illustrate the extension to first-order logic by
application to logic programming.

Logic programming (LP) is the programming language paradigm whose operational semantics
is based on proof-search (see e.g. Miller et al. [51]). It is a core discipline in (symbolic) artificial
intelligence as proof-search is used to characterize reasoning. The central part of LP is a step known
as resolution, and the most challenging aspect of resolution is a process called unification; the output
of the execution of a configuration in LP is a unifier. A resolution in LP is a reductive application of
a quantifier left-rule combined with an implication left-rule in a sequent calculus; unification is the
choice of substitution in the quantifier rule.
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In this section, we show how algebraic constraints may handle unification. The authors have
discussed this idea in earlier work [29], but in a limited way, as the underlying framework of algebraic
constraints had yet to be developed.

7.1 A basic logic programming language

The Basic Logic Programming language (BLP) is based on uniform proof-search in the hereditary
Harrop fragment of intuitionistic logic (see Miller et al. [50, 51]), which we think of as the basic
logic (B).

Fix a first-order alphabet A = 〈R, F, K, V〉. Denote the set of atoms by P.

DEFINITION 7.1 (Goal Formula, Definite Clauses, Programs, Query).
The set of goal formulae G and definite clauses D are the sets of formula G and D defined as follows,
respectively:

G ::= A ∈ P | G | D → G | G ∧ G | G ∨ G
D ::= A ∈ P | D | G → A | D ∧ D.

A set P of definite formula is a program. A query is a pair P 
 G in which P is a program and G is
goal-formula.

There is an apparent lack of quantifiers in the language. However, restricting attention to goal
formulae and definite clauses means the quantifiers can be suppressed without loss of information:
definite clauses containing a variable as universally quantified, and goal formulae containing a
variable as existentially quantified.

DEFINITION 7.2 (Substitution).
A substitution is a mapping θ : V→ T. If φ is a formula (i.e. a definite clause or a goal), then φθ is
the formula that results from replacing every occurrence of a variable in φ by its image under θ .

Having fixed a program P, one gives the system a goal G with the desire of finding a substitution
θ such that P � Gθ obtains in IL. The substitution θ is the unifer. It is the object that the language
BLP computes upon an input query. The operational semantics for BLP is given by proof-search in
LB.

DEFINITION 7.3 (Sequent calculus LB).
Sequent calculus LB comprises the rules of Figure 15.

The operational semantics of BLP is as follows: beginning with the query P 
 G, one gives a
candidate θ and checks by reducing in LB (in the sense of Section 4.1) whether or not P � Gθ

obtains or not. The first step (i.e. introducing θ ) is also captured by a reduction operator in LB—
namely, the ∃R-rule—hence, the operational semantics is entirely based on reduction.

The following example, also appearing in Gheorghiu et al. [29], illustrates how BLP works:

EXAMPLE 7.4
To complete the informatics course at Unseen University, students must pick one module for each of
the three terms of the year, which are called R(ed), G(reen) and B(lue), respectively. The available
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FIGURE 15. Sequent Calculus LB.

FIGURE 16. The Extensional Database.

choices are shown in Figure 16. More formally, we have a relation S that obtains for valid selections
of courses; e.g.

S(Al, Ca, Co) obtains, but S(Pr, Gr, Ca) does not.
We may use BLP to capture this situation. The setup is captured by a program P composed of

two parts: the extensional database ED and the intensional database ID. The extensional database
contains the information about the modules:

ED := R(Al), R(Pr), R(Gr), G(Lo), G(Ca), G(Au), B(Da), B(Co), B(AI)

Meanwhile, the intensional database comprises the selection logic:

ID := R(x) ∧ G(y) ∧ B(x) → S(x, y, z)

To find the possible combinations of modules, one queries the system for different choices of M1
and M2 and M3; i.e. one considers the validity of the following sequent:

P 
 S(M1, M2, M3).

One possible execution is the following, in which φ := S(Al, Lo, AI) ← (R(Al) ∧ G(Lo)) ∧ B(AI):

There are 93 = 729 possible ways of selecting three courses out of the nine, and there are only 27
acceptable choices out of these possibilities. In terms of proof-search spaces, there are 729 branches,
out of which only 27 may lead to successful reductions. Random selection is, therefore, intractable.
Moreover, to the extent that logic programming concerns problem solving (see e.g. Kowalski [40]),
this process does not ref lect how one hopes a student would reason.
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FIGURE 17. Constraint System PLB⊕ U .

Example 7.4 is naive in that, rather than simply guessing a possibility, a student would likely
observe that one must choose three modules one from each R, G and B, respectively. How may
we capture such reasoning? One possibility is to keep the major logical steps in Example 7.4, but
without committing to a particular substitution. Instead, the proof structures thus constructed inform
us what kinds of substitutions make sense, precisely those that render the proof structure a LB-proof.
We may capture this approach with algebraic constraints.

7.2 Unification via Nominal Constraints

A unification algebra allows the substitution in LB to be managed intelligently. It does this by
managing unification, as opposed to merely managing substitution, to be expressed logically and
enforced at the end of the computation. We only need a way to track what substitution took place
and what needs to be unified, which labels governed by equality can handle.

DEFINITION 7.5 (Unification Algebra).
The unification algebra U consists of the universe TERM(A ) and nothing else.

The notion of enriched sequents in this setting extends that for propositional logics in that terms
within formulae may also carry labels. For example, P
R(x ·n1, t1 ·n2), in which R ∈ R is a relation-
symbol, x ∈ V and t1 ∈ TERM(A ) are terms and n1 and n2 are expressions for the algebra (i.e.
variables), is an enriched sequent.

We have no operators in the algebra, but we do have an equality predicate for the constraints. For
example, we may write n = k, in which n is a variable and k is (interpreted) as a term, to denote that
the value of n must be whatever is denoted by k. Let A and B be enriched atoms. We write A ≡ B to
denote the meta-disjunction of all equations n = m such that n is the label of a term in A occurring
in P and m is a label of a term in an atom B such that A and B have the same relation-symbol
and n and m occur on corresponding terms. For example, R(x1 · n1, y1 · n2) ≡ R(x2 · m1, y2 · m2)

denotes (n1 = m1) (n2 = m2). The notation denotes falsum when the disjunction is empty (i.e.
when there are no correspondences). Let P be a program. We write A∈P st.A∼B(A ≡ B) to denote
the disjunction A ≡ B for all A in P. We may also write n ∈ {k1, ..., kn} to denote the disjunction
(n = k1) ... (n = kn).

DEFINITION 7.6 (Constraint System PLB⊕ U ).
Constraint system LB ⊕ U comprises the rules in Figure 17, in which θ denotes a substitution that
always introduce fresh labels.
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PROPOSITION 7.7
Constraint system PLB⊕ U , with valuation σ , is faithful and adequate with respect to LB.

We use LB ⊕ U to simulate the actual reasoning one intends BLP to represent. To see this, we
return to Example 7.4 and show that the constraint system captures the reasoning process one hopes
a student would use more realistically.

EXAMPLE 7.8 (Example 7.4 cont’d).
To simplify notation, let ID · [n1, n2, n3] denote (R(x.n1)∧G(y.n2))∧B(x.n3) → CS(x.n1, y.n2, z.n3).
The computation-trace in BLP using the algebraic constraint system LB⊕ U is as follows:

Every valid execution in LB of the initial query is a coherent instantiation of this proof; e.g. to recover
the one presented in Example 7.4, we use the following interpretation:

I(n1) := I(m1) := Al I(n2) := I(m2) := Lo I(n3) := I(m3) := AI

This study of logic programming illustrates that algebraic constraint systems extend quite naturally
to the predicate logic setting and have practical applications, as showcased by how it addresses
unification in logic programming. Of course, this section is cursory compared to the extensive study
of propositional logic in the rest of the paper, with the open question of a general theory.

8 Conclusion

This paper has introduced the concept of a constraint system, which serves as a uniform tool
for studying the meta-theory of one logic in terms of the meta-theory of another. The advantage
is that the latter may be simpler or more well-understood in some practical sense. In short, a
constraint system is a labelled sequent calculus in which the labels carry an algebraic structure to
determine correctness conditions on proof structures. A motivating example of a class of constraint
system already present in the literature are those captured by the resource-distribution via Boolean
constraints (RDvBC) mechanism by Harland and Pym [32, 60], which serve as a meta-theoretic
tool to analyse the possible context-management strategies during proof-search in logics with
multiplicative connectives—see Section 2.

Constraint systems have two possible relationships with a logic of interest: soundness and
completeness, and faithfulness and adequacy. The former is a global correctness condition that says
that completed reductions in the constraint system (i.e. constructions to which one cannot apply
further reduction operators) whose constraints are coherent (i.e. admit a solution) characterize the
consequence of a logic. Meanwhile, the latter is a local correctness condition in that each reduction
step in the constraint system corresponds to a valid inference for the logic when its constraints are
satisfied; consequently, a completed reduction corresponds to a proof in a sequent calculus for the
logic. Both correctness criteria are valuable in applications of constraint systems for studying meta-
theory.
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We illustrated the framework’s usefulness in studying meta-theory through various examples
beyond RDvBC. First, in Section 5, we show that they yield a general, uniform, and systematic
process for generating relational calculi after Negri [55, 56, 58]; moreover, that relative to this theory
of relational calculi, one has an approach to proving soundness and completeness for model-theoretic
semantics (M-tS) in the sense of Kripke [42, 43] (see also Beth [3]) that entirely bypasses term-
and counter-model constructions (see e.g. van Dalen [69]). An example of this method in practice
has already been given in the case of the logic of Bunched Implications by Gheorghiu and Pym
[30]. Second, in Section 6, we show by a case-study for IPL that constraint systems enable one to
synthesize an M-tS for a logic from an analysis of its proof theory. Overall, these examples witness
that constraint systems help bridge the gap between semantics and proof theory for logics. It needs to
be clarified how this paper’s approach to soundness and completeness relates to the more traditional
approaches. However, such investigation may aid in understanding the underlying principles and is
left for future work.

While this paper is only concerned with propositional logics, we showed in Section 7 how it could
intuitively be extended to the first-order setting. Moreover, there are good computational reasons for
doing such extensions in the context of logic as a reasoning technology.

Of course, this paper concerns only the initial framework for algebraic constraint systems. Future
work includes giving more examples of constraint systems and developing the applications presented
in this paper. For example, the case analysis of deriving semantics for IPL should be repeated for
other adjacent logics, especially intermediate, hybrid and substructural logics. Moreover, in this
paper, we have only considered three different notions of algebra—Boolean algebra, world algebra
(i.e. the algebra corresponding to a frame) and unification algebra—what are some other valuable
algebras and constraint systems, and what can they tell us about the logics being studied?

Overall, constraint systems provide a general framework for defining and studying logics and have
the potential to bridge the gap between model theory and proof theory, as well as give insights about
proof-search.
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