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Abstract 

Industrial gas turbines are used for generating electricity or driving other turbomachinery with 

the continuous development goal of further increasing machine efficiency. This is primarily 

achieved by raising the pressure ratio generated in the compressor and by increasing the turbine 

inlet temperature. Consequently, the hot gas components in gas turbines are subjected to extreme 

loads and the need for non-destructive testing and structural health monitoring techniques is 

becoming increasingly important for the maintain these components. An important indicator for 

assessing the structural integrity is the determination of the initial plastic deformation.  

In this paper, a new method for the detection of plasticity was developed, which is based 

on a nonlinear ultrasonic two-frequency excitation. The one-dimensional wave equation was 

solved with a two-frequency excitation and combined with the expanded dislocation theory. As 

a result, various nonlinearity parameters were defined, showing a clear increasing or a 

decreasing behaviour with increasing plastic strain. This was experimentally proven with flat 

tensile specimen made of stainless steel and Inconel 718 (metal plates and additively 

manufactured). The new indicators allows the possibility to efficiently detect the initial plastic 

deformation in gas turbine components. 
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1. Introduction 

Depending on the operating mode of a gas turbine, different failure modes exists, which could 

lead to component malfunctions or failures. These failures are mainly rupture, creep deflection, 

high-cycle fatigue, oxidation, erosion, corrosion, rubbing/wear, foreign object damage, thermal 

mechanical failure and combined failure mechanism [1]. Therefore, the detection of initial 

plastic deformation is of enormous importance, as this would be a direct indication of one of the 

failure modes described. Modern ultrasound techniques are very promising for the detection of 

failures. In 1966, Langenecker proved that the physical changes in deformed materials can be 

detected using ultrasonic waves [2]. According to the work of Yang et al., plastic deformation 

and fatigue damage, in addition to the intrinsic nonlinearity due to the interatomic and molecular 

forces, can be a cause of the nonlinearities in materials. It was shown that fatigue life and plastic 

deformation can be assessed based on the change in the nonlinear properties of ultrasonic waves 

[3], and this topic was further summarized in a review paper [4]. The influence on the 

superposition of ultrasonic signals with the unidirectional applied load in the plastic deformation 

area was investigated [5]. Estrin developed a unified elastic-viscoplastic constitutive model, 

presenting a combination of kinetic equation that describes the mechanical response of a 

material at a given microstructure in terms of dislocation slip [6]. Jhang et al. developed a new 

approach to effectively assess material degradation. The nonlinear effect of ultrasonic waves 

was proposed for failure interpretation, where harmonic waves of higher order were generated 

[7, 8]. The influence of superimposed ultrasonic vibrations on plastically compressed 

aluminium samples was examined [9, 10]. Ramkumar et al. studied the second harmonic 

frequency to detect dislocations in materials [11]. Pruell et al. detected experimentally generated 

material nonlinearities in metal plates with Lamb waves. It was demonstrated that the acoustic 

nonlinearity parameters increase linearly with the distance of propagation [12]. Deng et al. 

examined the nonlinear effect of the propagation of the primary Lamb wave in assessing fatigue 

damages. This was analytically analysed for solid plates [13]. The acoustic nonlinearity 

generated by Lamb waves was also used to determine the degree of plasticity of metal samples 

[14] and to detect thermal aging [15]. Rao et al. examined various plasticized aluminium 

samples with longitudinal waves and surface acoustic waves (SAW). With the second harmonic 
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nonlinearity parameter, the dislocations in materials can be described [16]. A method was 

developed to detect micro-damages caused by high-cycle fatigue. Therefore, longitudinal waves 

were sent diagonally into the component and the formed acoustic nonlinearities were used for 

evaluation [17-19]. To detect material plasticization through low-cycle fatigue, nonlinear 

Rayleigh waves were used [20, 21]. Dutta et al. examined the acoustoplastic effect in metals. 

When ultrasonic waves are used it may lead to additional stresses in the component or to heating, 

which was tested in-situ with tensile tests [22]. Fatigue damages were theoretically predicted by 

nonlinear ultrasonic techniques and verified with simulations and experiments [23]. Xiang et al. 

used nonlinear ultrasound techniques to detect creep degradation in titanium alloys. A change 

in the acoustic nonlinearity with increasing creep load time was demonstrated experimentally. 

It was revealed that the dislocation mechanism is the decisive factor in the change in nonlinearity 

during material creep [24]. This dislocation theory was used for the physical description of 

plastic deformations in materials. 

Hikata et al. used the second harmonic nonlinearity parameter to prove dislocation 

contributions in materials. A physical model with constant line tension was combined with the 

one-dimensional wave equation. The amplitudes of the fundamental frequency and the second 

harmonic frequency measured in experiments were used as dislocation indicators. Therefore, 

direct conclusions were drawn about dislocations in materials [25, 26]. Cantrell et al. established 

a model to consider the effects of the grid resistance on the deflection of the dislocations [27, 

28]. Cash et al. developed a system to allow variable line energy compared to other works. This 

led to the implementation of the Poisson's ratio in the derivation [29, 30]. Xiang et al. proposed 

an analytical model based on the dislocation line energy and the variable line stress [31]. Zhang 

et al. examined dislocation lines with arbitrary orientation. The changed acoustic nonlinearities 

depend on the dislocation line and were proven experimentally on stainless steel samples [32, 

33]. Zhu et al. studied the plastic deformation of martensitic stainless steel based on the concept 

of dislocation [35]. Gao et al. examined acoustic nonlinearity as a signature of microstructure 

defects on propagating ultrasound [35]. Xiang et al. [31] and Oruganti et al. [11] studied the 

influence of mixed dislocations on the local stresses that were prestressed in a certain direction. 
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As a result, an asymmetrical dislocation movement occurs. This asymmetry in the tension field 

leads to a back stress. 

The nonlinearity parameters presented in the literature overview, were defined using the 

model of the one-dimensional wave equation (amplitude comparison) [26, 27] or directly using 

the nonlinear stress-strain behaviour (coefficient comparison) [27, 29, 31, 33, 35]. 

The aim of this study is a clear identification of plastic deformation at an early stage and 

an effective assessment of the degree of plasticization. Therefore, the analysis of two 

superimposed ultrasonic frequencies was further developed, which was successfully used to 

detect cracks [36, 37]. On this basis, the dislocation theory of Hikata et al. was extended and 

combined with the model of the one-dimensional wave equation up to the third-order of 

nonlinearity. The newly derived nonlinearity parameters were compared with experimental data. 

Flat tensile specimen made of stainless steel, Inconel 718 plate material and Inconel 718 

selective laser melting (SLM) material were used for the experimental work. These samples 

were deformed with increasing plastic strain and then compared with reference samples.  

2. Analytical approach 

A physical description of the dislocation process is required to evaluate the plastic deformation 

meaningfully. In this section, the dislocation theory is expanded to a function of higher orders. 

This is combined with the one-dimensional wave equation with two superimposed excitation 

frequencies up to the third-order of nonlinearity to derive novel nonlinearity parameters for the 

evaluation of plasticity in materials. The derivations are made with ultrasound excitation in the 

direction of the tensile load vector and perpendicular to it. 

2.1. Dislocation 

Frank and Reed developed the dislocation multiplication in 1950 with the description of sliding 

in isotropic materials [38]. If a body is plastically deformed under a load, dislocations form in a 

slip plane (Figure 1). The dislocation density increases and finally changes the crystal structure.  

The applied tensile load 𝜎௫௫ and the resolved shear stress 𝜏ோ have the following relationship 

[25]: 

𝜎௫௫ =
ఛೃ

ோ
 , (1)
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where 𝑅 is the Schmid factor, which describes the resolved shear stress 𝜏ோ in a sliding system 

of a crystalline material that is stressed by an external load. This factor also determines the 

position of the slip plane relative to the stressed body, which is why the position indices for 𝜏ோ 

and for the description of the dislocation are not used. 

 

Figure 1. Dislocation scheme. 
 

If the shear stress is increased, the dislocation begins in the slip plane and forms a curve, where 

the endpoints A and B remain fixed and L is the length of the bowing dislocation segment. If 

the shear force exceeds the restoring force, the dislocation line is deformed in all directions 

(𝜏ோ >
ఓ௕

ோ
). T is the line tension, which is assumed constant regardless of the orientation, 𝜇 is the 

shear modulus, 𝑏 is the Burgers vector. The same line energy required by the edge dislocation 

leads to a circular arc with a constant radius of curvature. 

The dislocation shear strain 𝛾ௗ is defined as [25]: 

𝛾ௗ =
௸௕

ଶ௅
𝐴ௗ,  (2)

where 𝛬 is the dislocation density and 𝐴ௗ the swept out area which is defined as: 

𝐴ௗ = 𝑟ଶ ൬𝜃 −
ଵ

ଶ
𝑠𝑖𝑛(2𝜃)൰, (3)

where 𝜃  is the angle between the Burgers vector and the dislocation line. Assuming small 

dislocation densities and an independent line tension T of the radius r, the relationship for the 

shear stress is defined as [26]: 

𝜏ோ =
ఓ௕

ଶ௥
.  (4)
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For small dislocations 𝜃 ≈
௅

௥
 is valid. With Equations (2), (3) and (4), the sine series expansion 

results: 

𝛾ௗ =
ଶ

ଷ

௸௅మ

ఓ
𝜏ோ −

଼

ଵହ

௸௅ర

ఓయ௕మ 𝜏ோ
ଷ +

଺ସ

ଷଵହ

௸௅ల

ఓఱ௕ర 𝜏ோ
ହ.  (5)

If the tensile stress 𝜎௫௫ acts on a body, it is deformed in the main direction vectors (Figure 2).  

 

Figure 2. Body deformation. 
 

If, in addition, the applied tensile stress 𝜎௫௫ > 𝑅௣଴.ଶ (yield strength), this leads to dislocations 

and elastic and inelastic strains in the main directions of the coordinate system. The total strain 

𝜀௫௫ is a summation of the elastic lattice strain, 𝜀௫
௟  and plastic strain, 𝜀௫

ௗ. The plastic dislocation 

strain is defined as 𝜀௫
ௗ = 𝛺𝛾ௗ, where 𝛺 the conversion factor from shear strain to longitudinal 

strain [26], which results in: 

𝜀௫௫ = 𝜀௫
௟ + 𝛺𝛾ௗ. (6)

Therefore, the normal strains for this load case are defined as: 

𝜀 = ቎

𝜀௫
௟ + 𝛺𝛾ௗ 0 0

0 −𝜈(𝜀௫
௟ + 𝛺𝛾ௗ) 0

0 0 −𝜈(𝜀௫
௟ + 𝛺𝛾ௗ)

቏,  (7)

where 𝜈 is the Poisson's ratio, which in real systems increases slightly in comparison before and 

after the applied load during plastic deformation [39, 40]. For this application, due to the 

negligible influence, it is assumed that the values before and after the elastic-plastic deformation 

remain the same. 
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Figure 3a illustrates the deformation of the lattice structure by the load 𝜎௫௫, whereby 

elastic strain (𝜀௫
௟ ) and plastic strain (𝜀௫

ௗ) appear together during loading. In the stress-strain 

diagram in Figure 3b, it becomes clear that the elastic strain component increases in the plastic 

deformation range due to the strain hardening and leads to a higher yield strength [41]. 

 

Figure 3. General strains: (a) lattice structure; (b) stress-strain diagram. 

Using the first Piola-Kirchhoff stress formulation, the following expression for the stress 𝜎௫௫ is 

given, which describes the elastic part in the plastic deformation area [27, 35]: 

𝜎௫௫ = 𝐴ଶ
ு𝜀௫

௟ +
ଵ

ଶ
𝐴ଷ

ு𝜀௫
௟ ଶ

, (8)

where 𝐴ଶ
ு and 𝐴ଷ

ு are the second- and third-order Huang coefficients that use the notation in 

accordance with [31, 34]. The second-order elastic coefficient 𝐴ଶ
ு is also referred to as P-wave 

moduli, which describes the mechanical stress required to obtain a unit strain 𝜀௫௫ if 𝜀௬௬ and 𝜀௭௭ 

are constrained to zero by the surrounding material [44] (Equation (9)): 

𝐴ଶ
ு = 𝜆 + 2𝜇, (9)

where 𝜆 and 𝜇 are the Lamé constants, while the variable 𝜇 also represents the shear modulus. 

The third-order elastic coefficient is defined as follows [42] (Equation (10)): 

𝐴ଷ
ு = 3𝐴ଶ

ு + 2(𝑙 + 2𝑚),  (10)

where 𝑙 and 𝑚 are two of the three Murnaghan constants.  

Different notations are used in literature for the second- and third-order coefficient (𝐸ଶ 

resp. 𝐸ଷ [25, 33, 35], 𝐴ଶ
௘  resp. 𝐴ଷ

௘  [32], 𝐴ଵଵ resp. 𝐴ଵଵଵ [43] and 𝐴଺଺ resp. 𝐴଺଺଺ [29, 30]).  

With Equations (1), (5), (7) and (8), the following relation arises for the normal strain tensor for 

higher orders with the dislocations variables: 

𝜺 = ൭ቆ−
1

𝐴ଶ
ு −

2

3

𝛺𝛬𝐿ଶ𝑅

𝜇
ቇ 𝜎௫௫ −

𝐴ଷ
ு

2(𝐴ଶ
ு)ଷ

𝜎௫௫
ଶ −

8

15

𝛺𝛬𝐿ସ𝑅ଷ

𝜇ଷ𝑏ଶ
𝜎௫௫

ଷ +
64

315

𝛺𝛬𝐿଺𝑅ହ

𝜇ହ𝑏ସ
𝜎௫௫

ହ ൱ ൥
1 0 0
0 −𝜈 0
0 0 −𝜈

൩. (11)
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The further derivations are divided depending on the direction of the ultrasonic excitation 

(Figure 4): 

 Tensile load (𝜎௫௫) and ultrasonic pressure (∆𝜎௫௫
௨ ) collinear in x-direction (∥) (Figure 4a). 

 Tensile load (𝜎௫௫) in x-direction and ultrasonic pressure (∆𝜎௭௭
௨ ) orthogonal in z-direction (⊥) 

(Figure 4b). 

 

Figure 4. Ultrasonic excitation: (a) collinear excitation, ∥; (b) orthogonal excitation, ⊥. 

If the vectors of the tensile stress and the ultrasonic pressure are superimposed (collinear 

excitation), a quasi-one-dimensional model can be assumed for the further steps [25,29-35, 43]. 

The body experiences an additional, superimposed strain ( ∆𝜀௫௫
௨ ) from the longitudinal, 

ultrasonic signal (∆𝜎௫௫
௨ ) [26]: 

∆𝜎௫௫
௨ =

డఙೣೣ

డఌೣೣ
∆𝜀௫௫

௨ +
ଵ

ଶ

డమఙೣೣ

డఌೣೣ
మ

(∆𝜀௫௫
௨ )ଶ +

ଵ

଺

డయఙೣೣ

డఌೣೣ
య

(∆𝜀௫௫
௨ )ଷ.  (12)

This expression described the behaviour of a small stress ∆𝜎௫௫
௨  under the influence of a preload 

𝜎௫௫. According to the rules for derivatives of inverse functions, this yields to: 

∆𝜎௫௫
௨ = ቀ

பఌೣೣ

பఙೣೣ
ቁ

ିଵ

ᇣᇧᇤᇧᇥ
ఈ೏

∥  

 ∆𝜀௫௫
௨ +

ଵ

ଶ
൬−

பమఌೣೣ

பఙೣೣ
మ ቀ

பఌೣೣ

பఙೣೣ
ቁ

ିଷ

൰
ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ

ఉ೏
∥  

(∆𝜀௫௫
௨ )ଶ +

ଵ

଺
൬−

பయఌೣೣ

பఙೣೣ
య 

ቀ
பఌೣೣ

பఙೣೣ
ቁ

ିସ
+ 3 ቀ

பమఌೣೣ

பఙೣೣ
మቁ

ଶ

ቀ
பఌೣೣ

பఙೣೣ
ቁ

ିହ

൰
ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ

ఊ೏
∥  

(∆𝜀௫௫
௨ )ଷ,  (13)

where 𝛼ௗ
∥ is the first coefficient, 𝛽ௗ

∥ is the second-order nonlinearity coefficient and 𝛾ௗ
∥ is the 

third-order nonlinearity coefficient. In the linear elastic deformation range, 𝛼ௗ
∥  would be 

referred to as the Young's modulus, E, in which both (𝛼ௗ and E) are shown as comparison in 

Appendix A. It is assumed that the nonlinear part (𝛼ௗ
∥ , 𝛽ௗ

∥  and 𝛾ௗ
∥) is caused by the dislocation 

in the material. Therefore, Equation (13) is solved by inserting the 𝜀௫௫-component of Equation 

(11) and the following relations result for the coefficients 𝛼ௗ
∥ , 𝛽ௗ

∥and 𝛾ௗ
∥ : 
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𝛼ௗ
‖

 = 𝑃ଵ
ିଵ,

𝛽ௗ
‖
 =

௉మ

௉భ
య ,

𝛾ௗ
‖
 =

௉య

௉భ
ర −

ଷ௉మ
మ

௉భ
ఱ .

  

  

The factors Pଵ, Pଶ and Pଷ are defined as: 

𝑃ଵ =
ଵ

஺మ
ಹ +

ଶ

ଷ

ఆఒ௅మோ

ఓ
−

஺య
ಹ

൫஺మ
ಹ൯

య 𝜎௫௫ −
଼

ହ

ఆఒ௅రோయ

ఓయ௕మ 𝜎௫௫
ଶ +

଺ସ

଺ଷ

ఆఒ௅లோఱ

ఓఱ௕ర 𝜎௫௫
ସ

𝑃ଶ = −
஺య

ಹ

൫஺మ
ಹ൯

య −
ଵ଺

ହ

ఆఒ௅రோయ

ఓయ௕మ 𝜎௫௫ +
ଶହ଺

଺ଷ

ఆఒ௅లோఱ

ఓఱ௕ర 𝜎௫௫
ଷ

𝑃ଷ = −
ଵ଺

ହ

ఆఒ రோయ

ఓయ௕మ +
ଶହ଺

ଶଵ

ఆఒ௅లோఱ

ఓఱ௕ర 𝜎௫௫
ଶ

(15) 

 

(14)

If the ultrasonic excitation are carried out perpendicular to the direction of the tensile load, this 

results in a multi-dimensional problem (Figure 4b). In this model, the longitudinal ultrasonic 

waves are sent perpendicularly (z-direction) to the vector of the tensile stress 𝜎௫௫  causing 

plasticity. The sent longitudinal wave 𝑢(𝑧, 𝑡) = 𝐴𝑐𝑜𝑠[𝑘(𝑧 − 𝑐𝑡)] ൥
0
0
1

൩ leads with 𝜀௭௭ =
డೠ೥

డ௭
 to 

the isotropic linear elastic stress tensor 𝜎௨ = −𝐴𝑘𝑠𝑖𝑛[𝑘(𝑧 − 𝑐𝑡)] ൥
𝜆 0 0
0 𝜆 0
0 0 𝜆 + 2𝜇

൩  [44], 

where 𝑢  is the displacement, 𝐴  is the amplitude, 𝑘  is the wavenumber and 𝑐  is the phase 

velocity. With 𝜆 = 109 GPa [45] and 𝜇 = 81 GPa [45], the lateral stresses (𝜎௫௫
௨  and 𝜎௬௬

௨ ) make 

up approximately 30% of the stress 𝜎௭௭
௨ . Due to the additional small entry area of the ultrasonic 

signal shown in Figure 4, Equation (7) is not influenced by the lateral components 𝜎௫௫
௨  and 𝜎௬௬

௨  

because the entire body surface is significantly larger and ensures a rigid system, leading to the 

shown small stresses, which are significant lower in comparison to the mechanical stress 𝜎௫௫ 

[46]. This allows a quasi-one-dimensional approach in the z-direction. 

The stress change, ∆𝜎௭௭
௨ , due to the oscillatory ultrasonic signal, similarly leads Equation 

(12) to an additional strain ∆𝜀௭௭ (Equation (15)) [25]: 
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∆𝜎௭௭
௨ =

డఙೣೣ

డఌ೥೥
∆𝜀௭௭

௨ +
ଵ

ଶ

డమఙೣೣ

డఌ೥೥
మ

(∆𝜀௭௭
௨ )ଶ +

ଵ

଺

డయఙೣೣ

డఌ೥೥
య

(∆𝜀௭௭
௨ )ଷ + ⋯.  (15)

The expression 
డఙೣೣ

డఌ೥೥
 describes the plastic deformation 𝜀௭௭ due to the tensile stress 𝜎௫௫ and in the 

elastic deformation range it is the slope in the stress-strain diagram. According to Equation (13) 

the inverse function is: 

∆𝜎௭௭
௨ = ቀ

பఌ೥೥

பఙೣೣ
ቁ

ିଵ

ᇣᇧᇤᇧᇥ
ఈ೏

఼ 

 ∆𝜀௭௭
௨ +

ଵ

ଶ
൬−

பమఌ೥೥

பఙೣೣ
మ

ቀ
பఌ೥೥

பఙೣೣ
ቁ

ିଷ

൰
ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ

ఉ೏
఼ 

(∆𝜀௭௭
௨ )ଶ +

ଵ

଺
൬−

பయఌ೥೥

பఙೣೣ
య 

ቀ
பఌ೥೥

பఙೣೣ
ቁ

ିସ
+ 3 ቀ

பమఌ೥೥

பఙೣೣ
మ
ቁ

ଶ

ቀ
பఌ೥೥

பఙೣೣ
ቁ

ିହ

൰
ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ

ఊ೏
఼ 

(∆𝜀௭௭
௨ )ଷ,  (16)

where 𝛼ௗ
ୄis the first coefficient, 𝛽ௗ

ୄis the second-order nonlinearity coefficient, and 𝛾ௗ
ୄis the 

third-order nonlinearity coefficient for the perpendicular ultrasonic excitation. Similar to 

Equation (13), Equation (16) is solved by inserting the 𝜀௭௭-component of Equation (11). When 

compared with Equation (16), the following relations result for the coefficients 𝛼ௗ
ୄ, 𝛽ௗ

ୄand 𝛾ௗ
ୄ: 

𝛼ௗ
⊥ = 𝜈 ቀ−

1

𝐴2
𝐻 −

2

3

𝛺𝛬𝐿2𝑅

𝜇
+

𝐴3
𝐻

(𝐴2
𝐻)3

𝜎𝑥𝑥 +
8

5

𝛺𝛬𝐿4𝑅3

𝜇3𝑏2
𝜎𝑥𝑥

2 −
64

63

𝛺𝛬𝐿6𝑅5

𝜇5𝑏4
𝜎𝑥𝑥

4 ቁ
−1

,  

𝛽ௗ
⊥ =

−
𝐴3

𝐻

൫𝐴2
𝐻൯

3−
16

5
 
𝛺𝛬𝐿4𝑅3

𝜇3𝑏2 𝜎𝑥𝑥+
256

63
 
𝛺𝛬𝐿6𝑅5

𝜇5𝑏4 𝜎𝑥𝑥
3

𝜈2ቆ−
1

𝐴2
𝐻−

2

3
 
𝛺𝛬𝐿2𝑅

𝜇
+

𝐴3
𝐻

൫𝐴2
𝐻൯

3𝜎𝑥𝑥+
8

5
 
𝛺𝛬𝐿4𝑅3

𝜇3𝑏2 𝜎𝑥𝑥
2 −

64

63
 
𝛺𝛬𝐿6𝑅5

𝜇5𝑏4 𝜎𝑥𝑥
4 ቇ

3 , 

𝛾ௗ
⊥ =

−
16

5
 
𝛺𝛬𝐿4𝑅3

𝜇3𝑏2 +
256

21
 
𝛺𝛬𝐿6𝑅5

𝜇5𝑏4 𝜎𝑥𝑥
2

𝜈3ቆ−
1

𝐴2
𝐻−

2

3
 
𝛺𝛬𝐿2𝑅

𝜇
+

𝐴3
𝐻

൫𝐴2
𝐻൯

3𝜎𝑥𝑥+
8

5
 
𝛺𝛬𝐿4𝑅3

𝜇3𝑏2 𝜎𝑥𝑥
2 −

64

63
 
𝛺𝛬𝐿6𝑅5

𝜇5𝑏4 𝜎𝑥𝑥
4 ቇ

4 +

3ቆ
𝐴3

𝐻

൫𝐴2
𝐻൯

3+
16

5
 
𝛺𝛬𝐿4𝑅3

𝜇3𝑏2 𝜎𝑥𝑥−
256

63
 
𝛺𝛬𝐿6𝑅5

𝜇5𝑏4 𝜎𝑥𝑥
3 ቇ

2

𝜈3ቆ−
1

𝐴2
𝐻−

2

3
 
𝛺𝛬𝐿2𝑅

𝜇
+

𝐴3
𝐻

൫𝐴2
𝐻൯

3𝜎𝑥𝑥+
8

5
 
𝛺𝛬𝐿4𝑅3

𝜇3𝑏2 𝜎𝑥𝑥
2 −

64

63
 
𝛺𝛬𝐿6𝑅5

𝜇5𝑏4 𝜎𝑥𝑥
4 ቇ

5 . 

(17)

The behaviour of the nonlinearity coefficients (𝛼ௗ, 𝛽ௗ  and 𝛾ௗ ) for both of the excitation 

directions are shown in Appendix B. 

2.2. Dislocation and nonlinear modulation  

The relationship between dislocations and nonlinearity coefficients were derived for the 

collinear model (∥) and the orthogonal model (⊥). A quasi-one-dimensional wave propagation 

was assumed, and the nonlinearity coefficients 𝛼ௗ, 𝛽ௗand 𝛾ௗ were derived under an excitation 

with two frequencies. It was shown that the superposition of two fundamental waves offers 

accurate results in the determination of cracks [36, 37, 47]. 

The wave equation is: 𝜌
డ²௨

డ௧²
=

డఙ

డ௦
, where 𝜌  is the mass density, u represents the 

displacement and 𝑠  the wave propagation distance. The following derivations were made 

independently of the direction indicators and, therefore, the variable 𝑠 is used instead of 𝑥 and 
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𝑧. The mass density 𝜌 in the plasticized material is assumed to be constant over the wave 

propagation distance. With the definition of the nonlinearity coefficients up to the third-order 

(Equations (13) and (16)) this leads with [37] to the formulation of: 

డ²௨

డ௧²
= 𝛼ௗ𝑐ଶ డ²௨

డ௦మ
+ 𝛽ௗ𝑐ଶ డ௨

డ௦

డ²௨

డ௦మ
+ 𝛾ௗ

௖మ

ଶ
ቀ

డ௨

డ௦
ቁ

ଶ డ²௨

డ௦మ
. (18)

The assumption made for 𝑢(ଵ) for dual-frequency excitation is: 

𝑢(ଵ) = 𝐴ଵ𝑠𝑖𝑛ൣ𝑘௙ଵ(𝑠 − 𝑐𝑡)൧ + 𝐴ଶ𝑐𝑜𝑠ൣ𝑘௙ଶ(𝑠 − 𝑐𝑡)൧.  (20)

Equation (18) is solved in two steps. The perturbation method (𝑢(𝑠, 𝑡) = 𝑢(ଵ) + 𝑢(ଶ) + 𝑢(ଷ) +

⋯) is used to find solutions for 𝑢(ଶ) and 𝑢(ଷ). The detailed derivation procedure is shown in [36, 

37] and the accumulated solution of 𝑢(𝑠, 𝑡) is: 

𝑢(𝑠, 𝑡) = 𝐴ଵ𝑠𝑖𝑛ൣ𝑘௙ଵ(𝑠 − 𝑐𝑡)൧ −
ఊ೏

ఈ೏

ଵ

଼
൬

஺భ
య௞೑భ

య

ଶ
+ 𝐴ଵ𝐴ଶ

ଶ𝑘௙ଵ𝑘௙ଶ
ଶ൰ 𝑐𝑜𝑠ൣ𝑘௙ଵ(𝑠 − 𝑐𝑡)൧𝑠  

+𝐴ଶ𝑐𝑜𝑠ൣ𝑘௙ଶ(𝑠 − 𝑐𝑡)൧ +
ఊ೏

ఈ೏

ଵ

଼
൬

஺మ
య௞೑మ

య

ଶ
+ 𝐴ଵ

ଶ𝐴ଶ𝑘௙ଵ
ଶ𝑘௙ଶ൰ 𝑠𝑖𝑛ൣ𝑘௙ଶ(𝑠 − 𝑐𝑡)൧𝑠  

ିఉ೏

ఈ೏

஺భ
మ௞೑భ

మ

଼
𝑐𝑜𝑠ൣ2𝑘௙ଵ(𝑠 − 𝑐𝑡)൧𝑠 

ାఉ೏

ఈ೏

஺మ
మ௞೑మ

మ

଼
𝑐𝑜𝑠ൣ2𝑘௙ଶ(𝑠 − 𝑐𝑡)൧𝑠 

ିఊ೏

ఈ೏

ଵ

ସ଼
𝐴ଵ

ଷ𝑘௙ଵ
ଷ𝑐𝑜𝑠ൣ3𝑘௙ଵ(𝑠 − 𝑐𝑡)൧𝑠 −

ఊ೏

ఈ೏

ଵ

ସ଼
𝐴ଶ

ଷ𝑘௙ଶ
ଷ𝑠𝑖𝑛ൣ3𝑘௙ଶ(𝑠 − 𝑐𝑡)൧𝑠  

ିఉ೏

ఈ೏

஺భ஺మ௞೑భ௞೑మ

ସ
𝑠𝑖𝑛ൣ൫𝑘௙ଶ − 𝑘௙ଵ൯(𝑠 − 𝑐𝑡)൧𝑠  

ାఉ೏

ఈ೏

஺భ஺మ௞೑భ௞೑మ

ସ
𝑠𝑖𝑛ൣ൫𝑘௙ଶ + 𝑘௙ଵ൯(𝑠 − 𝑐𝑡)൧𝑠  

ାఊ೏

ఈ೏

஺భ
మ஺మ

଼
൬

௞೑భ
మ௞೑మ

మ

ଶ൫ଶ௞೑భା௞೑మ൯
+

௞೑భ
య௞೑మ

ଶ௞೑భା௞೑మ
൰ 𝑠𝑖𝑛ൣ൫2𝑘௙ଵ + 𝑘௙ଶ൯(𝑠 − 𝑐𝑡)൧𝑠  

ାఊ೏

ఈ೏

஺భ
మ஺మ

଼
൬

௞೑భ
మ௞೑మ

మ

ଶ൫ଶ௞೑భି௞೑మ൯
−

௞೑భ
య௞೑మ

ଶ௞೑భି௞೑మ
൰ 𝑠𝑖𝑛ൣ൫2𝑘௙ଵ − 𝑘௙ଶ൯(𝑠 − 𝑐𝑡)൧𝑠  

ାఊ೏

ఈ೏

஺భ஺మ
మ

଼
൬

௞೑భ
మ௞೑మ

మ

ଶ൫ଶ௞೑మା௞೑భ൯
+

௞೑భ௞೑మ
య

ଶ௞೑మା௞೑భ
൰ 𝑐𝑜𝑠ൣ൫2𝑘௙ଶ + 𝑘௙ଵ൯(𝑠 − 𝑐𝑡)൧𝑠  

ାఊ೏

ఈ೏

஺భ஺మ
మ

଼
൬

ି௞೑భ
మ௞೑మ

మ

ଶ൫ଶ௞೑మି௞೑భ൯
+

௞೑భ௞೑మ
య

ଶ௞೑మି௞೑భ
൰ 𝑠𝑖𝑛ൣ൫2𝑘௙ଶ − 𝑘௙ଵ൯(𝑠 − 𝑐𝑡)൧𝑠.  

(19)

Equation (19) demonstrated the displacement components of the various harmonic frequencies 

and sidebands. The expressions also show that both fundamental frequencies (𝐴ଵ,ଶ, 𝑘௙ଵ,ଶ) are 

interdependent and that these are strongly influenced by the nonlinearity coefficients 

(𝐴ଵ𝑠𝑖𝑛ൣ𝑘௙ଵ(𝑠 − 𝑐𝑡)൧ −
ఊ೏

ఈ೏
… 𝑐𝑜𝑠ൣ𝑘௙ଵ(𝑠 − 𝑐𝑡)൧𝑠 and 𝐴ଶ𝑐𝑜𝑠ൣ𝑘௙ଶ(𝑠 − 𝑐𝑡)൧ +

ఊ೏

ఈ೏
… 𝑠𝑖𝑛ൣ𝑘௙ଶ(𝑠 − 𝑐𝑡)൧𝑠). 
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With an assumed constant wave propagation distance and wavenumber, the amplitude 

dependent nonlinearity parameters (Equation (20)) can be derived.  

ቀ
ఉ೏

ఈ೏
ቁ

ଶ௙ଵ
∝

஺೑భశ೑మ

஺భ
మ ,  

ቀ
ఉ೏

ఈ೏
ቁ

ଶ௙ଶ
∝

஺೑భశ೑మ

஺మ
మ  , 

ቀ
ఊ೏

ఈ೏
ቁ

ଷ௙ଵ
∝

஺೑భశ೑మ

஺భ
య  , 

ቀ
ఊ೏

ఈ೏
ቁ

ଷ௙ଶ
∝

஺೑భశ೑మ

஺మ
య  , 

ቀ
ఉ೏

ఈ೏
ቁ

௙ଶ±௙ଵ
∝

஺೑భశ೑మ

஺భ஺మ
 , 

ቀ
ఊ೏

ఈ೏
ቁ

ଶ௙ଵ±௙ଶ
∝

஺೑భశ೑మ

஺భ
మ஺మ

 , 

ቀ
ఊ೏

ఈ೏
ቁ

ଶ௙ଶ±௙ଵ
∝

஺೑భశ೑మ

஺భ஺మ
మ  .  

(20)

Where the displacement u is interpreted as the accumulated amplitude of the harmonic or 

modulated response frequencies ൫𝑢(𝑠, 𝑡) = 𝐴௙ଵା௙ଶ൯  [36, 37, 47]. This leads to direct 

conclusions about the amplitudes of the harmonic frequencies and modulated response 

frequencies. The derived equations show the various nonlinearity parameters as a function of 

the material, dislocation, frequency-characteristics and the applied tensile stress. For the 

evaluation of the nonlinearity parameters, the ratios 
ఉ೏

ఈ೏
 and 

ఊ೏

ఈ೏
 are described with the parameter 

δ.  

 

2.3. Nonlinearity behaviour 

The behaviour of the nonlinearity parameters with increasing plastic strain was modelled using 

data from literature. The physical values for cold rolled stainless steel (304 SS / 1.4301) are 

summarized in Table 1.  
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Table 1. Physical parameters – dislocation simulation. 
Physical parameters Reference Load steps 

1 2 3 4 5 
Applied Stress σ [MPa] [48]  235 443 673 887 1113 

Dislocation density Λ [×1014 m-2] [48] 0.67 3.05 4.48 4.82 5.59 
Dislocation length L [nm] [48] 23 

Burgers vector b [nm] [48] 2.5 

Lamé constants 
(2nd order) [GPa] 

λ [GPa] [45] 109 

μ [GPa] [45] 81.7 

Murnaghan constants 
(3rd order) [GPa] 

l [GPa] [45] –671 

m [GPa] [45] –56 

Huang coefficients  
 [GPa] 

𝐴ଶ
ு

 [GPa] Equation (9) 272.4 

𝐴ଷ
ு

 [GPa] Equation (10) –1978.8 
Conversion factor Ω [32, 49] 0.33 

Schmid factor R [32, 49] 0.33 
Poisson's ratio ν [32, 49] 0.3 

 
It was assumed that the shear modulus or Lamé constant, μ, after the deformation also remains 

at the same value as before the deformation [50].  

The fundamental frequencies f1 = 6 MHz and f2 = 10 MHz were used for the two-

frequency excitation; this is in line with the experimental testing reported in Section 3. A phase 

velocity of c = 5820 m/s was used for the defined material with the wave numbers 𝑘௙ଵ,ଶ =
௙భ,మ

௖
.  

It was demonstrated that the various nonlinearity parameters behave differently with 

increasing plastic strains. Some nonlinearity parameters increase in values, while others 

decrease. If the resulting parallel and orthogonal excited nonlinearity parameters are compared, 

the behaviour illustrated differences. It was shown whether the nonlinearity parameters increase 

(+) and decrease (–) with increasing plastic strain (Table 2). It is also indicated which degree of 

nonlinearity leads to these results. All (βd/αd)-dependent nonlinearity parameters change the 

behaviour depending on the ultrasonic excitation vector. In a sensitivity study, it was shown that 

Poisson’s ratio had a major impact on the results. In the parallel perspective in Figure 5, 

the nonlinearity parameter δ2f1 increases with increasing plastic deformation. The parameter 

δ2f2, however, decreases. The nonlinearity parameters of the third harmonic frequencies δ3f1,2 

even drop both. With the modulated response frequencies, the opposite behaviour continues. 

The nonlinearity parameters δf2+f1 decrease with increasing plastic strain, while type δf2–f1 
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increase. Figure 5d,e show that the nonlinearity parameters δ2f1–f2 and δ2f2–f1 increase with 

increasing strain, while the parameters δ2f1+f2 and δ2f2+f1 decrease. 

 

Figure 5. Dislocation behaviour – collinear excitation: (a) δ2f1,2; (b) δ3f1,2; (c) δf2±f1; (d) δ2f1±f2; (e) δ2f2±f1. 

 

In the orthogonal ultrasonic excitation, on the other hand (Figure 6), the parameter δ2f2 increases 

with increasing plastic deformation and δ2f1 decreases. The other difference is given with the 

modulated response parameters δf2±f1. With δf2+f1 the nonlinearity values increase while with 

parameter δf2-f1 they decrease. The parameters of the modulated response frequencies of higher 

order behave exactly as with the parallel excitation. 

 

Figure 6. Dislocation behaviour – orthogonal excitation: (a) δ2f1,2; (b) δ3f1,2; (c) δf2±f1; (d) δ2f1±f2; (e) δ2f2±f1. 
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Table 2. Behaviour collinear and orthogonal nonlinearity parameter. 

Frequency 

Nonlinearity coefficients Behaviour nonlinearity parameter 1 

ቀ
𝜷𝒅

𝜶𝒅
ቁ, ቀ

𝜸𝒅

𝜶𝒅
ቁ 

Collinear ultrasonic 
excitation 

(∥) 

Orthogonal 
ultrasonic excitation 

(⊥) 

2f1 ቀ
ఉ೏

ఈ೏
ቁ  + – 

2f2 ቀ
ఉ೏

ఈ೏
ቁ  – + 

3f1 ቀ
ఊ೏

ఈ೏
ቁ  – – 

3f2 ቀ
ఊ೏

ఈ೏
ቁ  – – 

f2-f1 ቀ
ఉ೏

ఈ೏
ቁ  + – 

f2+f1 ቀ
ఉ೏

ఈ೏
ቁ  – + 

2f1-f2 ቀ
ఊ೏

ఈ೏
ቁ  – – 

2f1+f2 ቀ
ఊ೏

ఈ೏
ቁ  + + 

2f2-f1 ቀ
ఊ೏

ఈ೏
ቁ  – – 

2f2+f1 ቀ
ఊ೏

ఈ೏
ቁ  + + 

1  ‘+’ means an increasing nonlinearity parameter with increasing plasticisation. 

‘−’ means a decreasing nonlinearity parameter with increasing plasticisation. 

Table 2 summarizes the behaviour of the nonlinearity parameters for the different ultrasonic 

excitation directions. The dual-frequency excitation with increasing nonlinearity parameters 

was successfully used to detect cracks [36, 37], where an increase for all nonlinearity parameters 

was found in the damaged samples.  

3. Experimental results 

In the previous section, the one-dimensional wave equation with dual-frequency excitation was 

combined with the dislocation theory. The validation of the theoretical derivation of the 

nonlinearity parameters was carried out experimentally in this section.  

  

3.1. Nonlinear ultrasonic behaviour with orthogonal excitation (⊥) 

Three different materials were investigated experimentally. Sample were made of stainless steel 

(1.4571) and Inconel 718 (plate and SLM) respectively. The samples were prepared according 

to the standard for tensile tests ISO 6892 (Figure 7). 
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Figure 7. Dimensions flat tensile specimen. 
 

To obtain points of reference for the plastic strain measurements, the yield strengths of the 

samples were determined experimentally. The measurements were repeated a total of five times 

and the arithmetic mean was calculated for the stress-strain curve. Figure 8 shows the samples 

after the tensile test. 

 

Figure 8. Specimen tensile test: (a) stainless steel (1.4571); (b) Inconel 718 (Plate); (c) Inconel 718 (SLM). 

Figure 9 reports the stress-strain diagram of the samples. After manufacturing, the samples 

produced by SLM were subjected to a heat treatment in the form of a precipitation hardening, 

which leads to an increase in strength. 
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Figure 9. Stress-strain diagram. 

Table 3 summarizes the determined material parameters (yield strength (Rp0.2), tensile strength 

(Rm) and elongation at break (A)).  

Table 3. Mechanical properties – tensile test. 
Specimen  Material Rp0.2 [MPa] Rm [MPa] A [%] 

FTS_A4_01–05 1.4571 304 572 48.5 
FTS_IN718_01–05 Inconel 718 – Plate 494 816 34.1 

FTS_SLM_IN718_01–05 Inconel 718 – SLM 1076,5 1174 12.4 

Samples were loaded with a tensile testing machine up to the plastic deformation area (Figure 

10). Table 4 shows the summary of the generated plastic strains. For the stainless steel sample 

(1.4571), a total of six different plastic strain states were generated, for the Inconel 718 plate 

five samples were produced and for the SLM-manufactured Inconel 718 samples, only three 

different strain variants were made available. 

Figure 10. Sample plasticisation. 

Table 4. Samples – plastic strains. 

Sample 
No. 

Plastic strain [%] 
Stainless 
steel – 
1.4571 

Inconel 718 
– Plate 

Inconel 718 
– SLM 

1 2.6 1.8 1.2 
2 3.2 3.2 1.6 
3 3.4 3.6 2.4 
4 4.0 6.0 – 
5 4.8 6.4 – 
6 5.6 – – 

 

The plasticized samples were examined by ultrasound. For this purpose, longitudinal waves 

with frequencies f1 = 6 MHz and f2 = 10 MHz were sent into the components using the Olympus 

V129–SM sensor with an active element diameter of 5 mm. The signals on the other side of the 

samples were received with the same type sensor. The pulse generator Rigol DG1022Z 

generated the signals and forwarded them to the high-voltage amplifier Falco Systems WMA–

300 and amplified them to 150 V. The received signal was amplified with the Phoenix ISL 40 

dB amplifier and sent to the Picoscope 5243 oscilloscope for post-processing (Figure 11). 
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Figure 11. Experimental setup – scheme. 

The measurements were carried out in the middle of the samples at 13 points (Figure 12a). 

Points 1 and 13 were in the sample width of 39 mm and points 2 and 12 were in the area of the 

transition radius. All other points were in the main measuring range of the sample thickness of 

30 mm. This allows the weakest point in the sample to be identified.  

The sensors were held in position with an additively manufactured sensor holder and 

ensures a constant preload from sensor to sample for each measurement (Figure 12b). Contact 

gel was used to improve signal transmission and the measurements at each point were repeated 

ten times. 

 

 

Figure 12. Experiments: (a) measuring positions; (b) experimental setup. 
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The average values of the amplitudes of the fundamental, harmonic and modulated response 

frequencies were determined, and the nonlinearity parameters were calculated using Equation 

Error! Reference source not found.). 

Due to the plastic deformation, the thicknesses of the samples were reduced up to 0.1 

mm. Equation (19) illustrated a linear behaviour of the displacement u as a function of the wave 

propagation distance z (s) (Figure 13), where the section relevant for the following experiments 

is marked in red. In these cases, the influence of the component thicknesses on the measured 

amplitudes can be neglected. 

 

Figure 13. Influence – wave propagation distance. 

3.1.1. Stainless steel samples 

Figure 14 to Figure 18 show the various nonlinearity parameters for the individual measuring 

points. The measurement results of the reference sample with ε = 0% are always shown with a 

red line. Since the measuring points 1, 2 and 12, 13 are not in the narrower cross-section of the 

sample, the areas are greyed out and only viewed indirectly. How the nonlinearity parameters 

changed from these points to the actual measuring range was observed. This is also an indication 

of the inhomogeneous plastic deformation in the component. 

Starting from the reference sample, the values of the nonlinearity parameters δ2f1 

decrease (Figure 14a). The minimum values are achieved by the sample with the highest strain 

(ε = 5.6%). The parameter δ2f2 (Figure 14b) demonstrates the opposite behaviour. A clear 

increase in the nonlinearity parameters of the plastically deformed samples were observed.  
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Figure 14. Nonlinearity parameters – stainless steel: (a) δ2f1; (b) δ2f2. 

Figure 15 reveals the behaviour of the third harmonic frequencies 3f1,2. The parameter values 

show a decaying behaviour for both harmonics. The change in points 1 and 13 is particularly 

noticeable. Since the degree of plasticization is not as high as at measuring points 3 to 11, these 

are only slightly lower than the reference sample. From sample ε = 5.6%, the plasticization is 

not constantly distributed. With higher plastic strains, the weakest points were identified at the 

measuring points 4 and 11 (Figure 15b).  

 

Figure 15. Nonlinearity parameters – stainless steel: (a) δ3f1; (b) δ3f2. 

In Figure 16 the first modulated response frequencies and their nonlinearity parameters are 

shown. As observed before, an opposite behaviour is revealed. While the parameter δf2–f1 

values decrease (Figure 16a), at δf2+f1 they increase with increasing plastic strain (Figure 16b). 
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Figure 16. Nonlinearity parameters – stainless steel: (a) δf2–f1; (b) δf2+f1. 

Figure 17 and Figure 18 demonstrate the modulated response parameters δ2f1±f2 and δ2f2±f1. 

The behaviour reveals that the δ2f1–f2 / δ2f2–f1 values decrease and the δ2f1+f2 / δ2f2+f1 values 

increase with increasing plasticization. Especially with the parameters δ2f1–f2 (Figure 17a) and 

δ2f2–f1 (Figure 18a), the weakest points of the ε = 5.6% sample are in position 4 and 11. 

 

Figure 17. Nonlinearity parameters – stainless steel: (a) δ2f1–f2; (b) δ2f2+f1. 

 

Figure 18. Nonlinearity parameters – stainless steel: (a) δ2f2–f1; (b) δ2f2+f1. 
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To summarize the results of the Figure 14 to Figure 18, the extreme values between points 3 to 

11 were evaluated depending on their increasing or decreasing behaviour. With reference to the 

theoretical behaviour (Section 2), the minimum values were evaluated for the decreasing 

nonlinearity parameters 2f1, f2+f1, 2f1+f2 and 2f2+f1 and for the increasing parameters 2f2, 3f1, 

3f2, f2–f1, 2f1–f2 and 2f2–f1, the maximum values for the points 3 to 11 were evaluated. This 

means that the weakest points in terms of plastic strain can be identified through the plot of 

nonlinear parameters. Figure 19 reveals the normalised results for all harmonic and modulated 

response frequencies. The behaviour of the various parameters becomes clear with increasing 

plasticity and agrees with the analytically behaviour (Table 2). The behaviour of the nonlinearity 

parameters are reported with increasing plastic strain from the reference sample to the most 

deformed sample. 

 

Figure 19. Stainless steel – dislocation behaviour: (a) δ2f1,2; (b) δ3f1,2; (c) δf2±f1; (d) δ2f1±f2; (e) δ2f2±f1. 
 

3.1.2. Inconel 718 – plate samples 

 

Figure 20 to Figure 24 shows the measurement results of the Inconel 718 samples made of plate 

material. The harmonic frequencies 2f1 (Figure 20a) and 2f2 (Figure 20b) reveal opposite 

behaviour. The third harmonic frequencies 3f1,2, shown in Figure 21, both decrease with 

increasing plastic strain. 
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Figure 20. Nonlinearity parameters – Inconel 718: (a) δ2f1; (b) δ2f2. 
 

 

Figure 21. Nonlinearity parameters – Inconel 718: (a) δ3f1; (b) δ3f2. 

The measurement results of the modulated response frequencies are shown in Figure 22 to 

Figure 24. As with the stainless steel samples, the group parameters f2±f1 behave in opposite 

directions. With types δf2–f1, δ2f1–f2 and δ2f2–f1 the nonlinearity parameters decrease with 

increasing plastic strain (Figure 22a, Figure 23a and Figure 24a) and with δf2+f1, δ2f1+f2 and 

δ2f2+f1 they increase (Figure 22b, Figure 23b and Figure 24b). The weakest positions can be 

identified, particularly for the samples with higher plastic strain. 
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Figure 22. Nonlinearity parameters – Inconel 718: (a) δf2–f1; (b) δf2+f1. 

 

Figure 23. Nonlinearity parameters – Inconel 718: (a) δ2f1–f2; (b) δ2f2+f1. 

 

Figure 24. Nonlinearity parameters – Inconel 718: (a) δ2f2–f1; (b) δ2f2+f1. 
 

Figure 25 summarises the behaviour of the nonlinearity parameters and the various samples 

through the extreme values of points 3 to 11. With small exceptions (Sample ε = 4.6% / 6.0% 

in Figure 25b), the mean values correspond to the results of the stainless steel samples and the 

analytical predictions. The variation coefficient of the values is a maximum of 4.5%. 
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Figure 25. Inconel 718 plate – dislocation behaviour: (a) δ2f1,2; (b) δ3f1,2; (c) δf2±f1; (d) δ2f1±f2; (e) δ2f2±f1. 

3.1.3. Inconel 718 – SLM samples 

The nonlinear results of the Inconel 718 samples manufactured by SLM are discussed below.  

In Figure 26a the decreasing behaviour of the harmonic frequency 2f1 is shown. The values 

increase at 2f2 (Figure 26b). The sample ε = 1.6% revealed peak values at points 4 and 9, where 

the highest degrees of plasticization were assumed. The parameters at the third harmonic 

frequencies 3f1,2 both decrease again with increasing plasticization (Figure 27).  

 

Figure 26. Nonlinearity parameters – Inconel 718 – SLM: (a) δ2f1; (b) δ2f2. 
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Figure 27. Nonlinearity parameters – Inconel 718 – SLM: (a) δ3f1; (b) δ3f2. 

As with the other samples, the modulated response frequencies show opposing behaviours. With 

types δf2–f1, δ2f1–f2 and δ2f2–f1 (Figure 28a, Figure 29a and Figure 30a), the nonlinearity 

parameters decrease while they increase with δf2+f1, δ2f1+f2 and δ2f2+f1 (Figure 28b, Figure 29b 

and Figure 30b). 

 

Figure 28. Nonlinearity parameters – Inconel 718 – SLM: (a) δf2–f1; (b) δf2+f1. 

 

Figure 29. Nonlinearity parameters – Inconel 718 – SLM: (a) δ2f1–f2; (b) δ2f2+f1. 
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Figure 30. Nonlinearity parameters – Inconel 718 – SLM: (a) δ2f2–f1; (b) δ2f2+f1. 

In summary, Figure 31 reveals an overview of the evaluation of the extreme values for the SLM 

manufactured samples. The majority of these values showed the same behaviour with the 

stainless steel and Inconel 718 plate samples and the analytical derivations. Only for the 

frequencies 2f1, 2f2, a monotonic increasing or decreasing behaviour was not observed, 

however, the trend shows higher nonlinearities when compared with the reference sample. The 

variation coefficient of the values is a maximum of 4.2%. 

 
Figure 31. Inconel 718 SLM – dislocation behaviour: (a) δ2f1,2; (b) δ3f1,2; (c) δf2±f1; (d) δ2f1±f2; (e) δ2f2±f1. 
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3.2. Comparison – nonlinear ultrasonic behaviour of collinear ( ∥ ) and orthogonal 

excitation (⊥) 

In Section 3.1 the theoretical behaviour was proven experimentally, where the ultrasonic signal 

was applied perpendicularly to the tensile load.  

The differences shown in Section 2.3 with the opposite behaviour depending on the 

direction of the ultrasonic excitation were also investigated experimentally. To provide the 

sensors a sufficient surface for sending the ultrasonic signals, aluminium samples made of 

AlMgSi1 were loaded with a tensile stress of 𝜎௫௫ = 270 MPa to generate plastic deformations. 

The reference samples were compared with the plasticized samples in the various measuring 

directions (∥ and ⊥ in Figure 32). Five reference samples and five plasticized samples were 

available. The measurements of each sample were repeated ten times and the average was 

calculated. 

 
Figure 32. Experimental setup: (a) collinear excitation, ∥; (b) orthogonal excitation, ⊥. 

The results of the various nonlinearity parameters with the measurement directions are shown 

in Figure 33. With δ2f1,2 (Figure 33a) and δf2±f1 (Figure 33c), the difference between ∥ and ⊥ 

becomes clear because the behaviour is reversed with the 
ఉ೏

ఈ೏
-dependent parameters. As already 

analytically predicted, the behaviour of the 
ఊ೏

ఈ೏
 parameters behave in the same way. With δ3f1,2 

(Figure 33b), δ2f1±f2 (Figure 33d) and δ2f2±f1 (Figure 33e) do not reveal a different tendency 

from ⊥ to ∥.  
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Figure 33. Nonlinearity parameters – comparison ∥ and ⊥: (a) 2f1/2; (b) 3f1/2; (c) f2±f1; (d) 2f1±f2; (e) 2f2±f1. 

The investigations explicated in this section illustrate that the mechanical load direction relative 

to the ultrasonic measurement can be determined based on the behaviour of the nonlinearity 

parameters and proved the analytical results shown in Table 2. 

The measurements, evaluations and interpretations shown above are only valid if non-

dispersive wave components were formed from the sent longitudinal waves. Since the sensors 

in Figure 32a are placed very close to the edge of the sample, other waveforms can be created 

[51, 52]. To demonstrate non-dispersive wave propagation, three different frequencies were sent 

out (6 MHz, 8 MHz and 10 MHz). For this purpose, five sinus waves were sent in the sample 

and the time taken for the receiving sensor to measure these waves was taken (Figure 34a). In 

non-dispersive media, the phase velocities are expected to be identical for all frequencies. 

Constant velocities of c = 6250 m/s were determined for all frequencies, which confirms the 

assumptions made. The associated frequency domain with the corresponding harmonic 

frequencies are shown in Figure 34b. 
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Figure 34. Proof of non-dispersive wave propagation: (a) time domain; (b) frequency domain. 

4. Conclusion 

The aim of this study was to develop a frequency-modulated ultrasound technique for the 

determination and characterization of plasticity in metallic materials. The wave equation with 

dual-frequency excitation was solved up to the third-order and was combined with the 

dislocation theory, which was further developed for higher dislocation orders. With two 

different excitation frequencies, the nonlinearity parameters for the frequencies 2f1,2, 3f1,2, f2±f1, 

2f1±f2 and 2f2±f1 were derived. In theory, defined nonlinearity parameters increase while other 

decrease with increasing plastic strain. This contrary behaviour was proven experimentally with 

flat tensile specimens made of stainless steel and Inconel 718 (plate and SLM manufactured). 

These were plastically deformed with different tensile loads and compared with reference 

samples. The behaviour of the determined nonlinearity parameters showed clear agreement with 

the theoretical observations. In addition, it was shown theoretically and experimentally that the 

behaviour of defined parameter values is reversed depending on the ultrasonic excitation 

direction. With the developed technique, the unique signature can reveal plastic zone in 

materials and also allows identification of the tensile load vector. This approach could be used 

to detect damage at an early stage in critical loaded structures, such as gas turbine components. 
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Appendix A 

In Section 2.2, the nonlinear relationship of the nonlinear Hooke’s law (𝜎 = 𝛼ௗ𝜀 +
ଵ

ଶ
𝛽ௗ𝜀ଶ +

ଵ

଺
𝛾ௗ𝜀ଷ) was shown, where the coefficient 𝛼ௗwith the values from Table 1 was compared with 

the Young's modulus E in the linear elastic deformation range (Figure A1). In the case of small 

strains, both values match. In the higher strain range, the 𝛼ௗ  curve flattens out due to the 

influence of the plastic strain, as would also be expected in the typical plastic deformation 

behaviour of a metal. 

 

Figure A1. Comparison – Young’s modulus with nonlinearity coefficient 𝛼d. 

Appendix B 

The signature determined for the detection of plasticity in materials offers the possibility to 

differentiate the damage and allows statements about the possible load direction. In order to 

consider this in more detail, Figure B1a illustrates the behaviour of the normalized nonlinearity 

coefficients (𝛼ௗ
∥ , 𝛽ௗ

∥ and 𝛾ௗ
∥ ) with the given values as a function of the applied stresses. 

Coefficient 𝛾ௗ
∥  increases with higher tensile load, whereas 𝛼ௗ

∥  decreases in the positive range 

and 𝛽ௗ
∥  decreases in the negative range. Negative acoustic nonlinearities were also observed in 

[30], and a decaying nonlinearity behaviour with increasing plastic strain was discussed in [31, 

33]. In the orthogonal ultrasonic excitation, Figure B1b reveals the coefficient values of 𝛼ௗ
ୄ, 

𝛽ௗ
ୄand 𝛾ௗ

ୄ. As with collinear excitation, the 𝛽ௗ
ୄ coefficient decreases into the negative range 

with an increasing load. Also 𝛾ௗ
ୄ decreases while 𝛼ௗ

ୄ increases in the negative range.  
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Figure B1. Behaviour nonlinearity coefficients: (a) collinear excitation; (b) orthogonal excitation. 
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