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Abstract

Concept Bottleneck Models aim to improve interpretability by predicting high-level inter-
mediate concepts, representing a promising approach for deployment in high-risk scenarios.
However, they are known to suffer from information leakage, whereby models exploit un-
intended information encoded within the learned concepts. We introduce an information-
theoretic framework to rigorously characterise and quantify leakage, and define two com-
plementary measures: the concepts-task leakage (CTL) and interconcept leakage (ICL)
scores. We show that these measures are strongly predictive of model behaviour under
interventions and outperform existing alternatives in robustness and reliability. Using this
framework, we identify the primary causes of leakage and provide strong evidence that
Concept Embedding Models exhibit substantial leakage regardless of the hyperparame-
ters choice. Finally, we propose practical guidelines for designing concept-based models to
reduce leakage and ensure interpretability.
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1 Introduction

Explainability and transparency are essential aspects of model design, especially in high-
risk scenarios such as biomedical applications. Concept Bottleneck Models (CBMs) (Kumar
et al., 2009; Lampert et al., 2009; Koh et al., 2020) stand out in the landscape of interpretable
models as they learn a set of high-level intermediate concepts associated with an outcome,
in a manner which facilitates human oversight (Banerji et al., 2025). CBMs first predict the
level of activation of each concept for a given input data point, then use such activations to
predict a task. Their structure makes them self-explainable, and allows for direct human
supervision and intervention, as opposed to post hoc interpretability approaches.

In earlier CBMs, concept activations are real numbers (either probabilities or logits);
more recently there have been efforts to generalise this approach to concept vector represen-
tations. Concept Embedding Models (CEMs, Espinosa Zarlenga et al., 2022) in particular
are perceived as state-of-the-art in this regard.

A trained concept-based model, however, may be significantly less interpretable than
expected, despite presenting the illusion of being so. A key reason for this is the phe-
nomenon of information leakage (Kazhdan et al., 2021; Margeloiu et al., 2021; Mahinpei
et al., 2021; Havasi et al., 2022). Leakage occurs when a poorly designed concept-based
model uses additional information (such as interconcept relationships) to attain a higher
task accuracy than a well-designed (i.e. transparent) concept-based model, at the cost of
undermining concept interpretability. Storing such additional information into the learnt
concepts is beneficial for the model with respect to loss function minimisation, as it typically
allows the final head to leverage this information, attaining higher task performance while
preserving high accuracy in concept predictions. This ultimately results in learnt concepts
not being aligned with the ground-truth concepts, thus hindering the actual interpretability
of the model. For example, in the clinical setting of cancer diagnosis, the grade of a tumour
(how aggressive it looks under a microscope) is correlated to tumour stage (how much the
cancer has spread through the body) and leakage may occur between learned concept rep-
resentations of grade and stage. This means that a concept representation of grade might
also contain information about tumour stage. However, these concepts have independent
clinical definitions and their appropriate assessment is essential to guide clinical manage-
ment. A concept-based model which displays leakage may therefore be unsafe for critical
decision-making applications, such as clinical scenarios.

Contributions. We propose and test a framework based on information theory to assess
the interpretability of concept-based models. In particular, we provide the first precise
definition of information leakage, and identify two main ways it can manifest - as information
leaking into each learnt concept from either the class label, or the other concepts. We
accordingly define two measures, the concepts-task leakage (CTL) and the interconcept
leakage (ICL) scores, and show that they

• are highly predictive of differences in performance upon intervention across models
(the only robust indicator of interpretability in a CBM);

• substantially outperform previously proposed measures in terms of both predictiveness
of leakage and robustness across models.
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Figure 1: Scheme of CBM (left) and CEM (right) architectures. Quantities with green
and blue backgrounds are predicted scalars and vectors respectively.

We then employ these measures to identify and assess the primary causes of leakage in
CBMs, including over-expressive concept representations, an incomplete set of annotated
concepts, a misspecified final head, and insufficient concept supervision. Building on this
novel information-theoretic framework, we provide strong evidence that CEMs and closely
related models exhibit dramatic leakage regardless of the choice of hyperparameters, thereby
casting serious doubts on their interpretability. Finally, we propose a set of guidelines for the
design of concept-based models based on preventing leakage, and we argue that evaluating
leakage is a crucial step of model development to ensure interpretability.

Note: During the final stages of this work, Makonnen et al. (2025) appeared, presenting
minor overlap with the content discussed here.

2 Concept bottleneck models

Consider a dataset
{
x(n), c(n), y(n)

}N
n=1

with N observations, where x(n) ∈ Rd is the input,

c(n) ∈ {0, 1}k represents a set of k annotated concepts, and y(n) ∈ {1, . . . , ℓ} is the target
label. A CBM (Figure 1) is the composition of a concept encoder g∗ mapping the input
to the predicted concept activations ĉ = g∗(x), and a classifier head f∗ which maps the
concepts to the predicted label ŷ = f∗(ĉ). This framework easily extends to regression
tasks y and to categorical or continuous concepts.

The presence of a concept bottleneck displaying the predicted concept activations for
each input allows a human agent to directly supervise the model reasoning without resort-
ing to post-hoc approaches to explainability such as CAM (Zhou et al., 2016), GradCAM
(Selvaraju et al., 2017), LIME (Ribeiro et al., 2016) or SHAP (Lundberg and Lee, 2017).
Additionally, this setup enables human interventions: if one or more predicted concepts are
identified as incorrect for a given input x(n), a human agent can fix their values according
to their expertise, resulting in an improved task prediction.

To achieve full interpretability, the final head architecture should represent a functional
dependence that is interpretable. This allows for a higher level of supervision, e.g. in terms
of which concepts are more relevant for the task prediction. A popular choice is linear
classifiers.

There are three possible strategies to train CBMs as introduced by Koh et al. (2020):
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• independent training, where the concept encoder and the final head are trained inde-
pendently on ground-truth data,

g∗ = argming Lc(g(x), c) , f∗ = argminf Ly(f(c), y) , (1)

where Lc and Ly are suitable loss functions for the concepts and the label respectively;

• sequential training, where the concept encoder is trained on ground-truth data, while
the final head is trained on the predicted concepts,

g∗ = argming Lc(g(x), c) , f∗ = argminf Ly(f(g∗(x)), y) ; (2)

• joint training, where the model is trained end-to-end,

g∗, f∗ = argming,f [λLc(g(x), c) + Ly(f(g(x)), y)] , (3)

with λ ≥ 0 hyperparameter indicating the importance of concept learning over task
learning. λ = 0 corresponds to a black box model.

Common choices for concept encoding include binary probabilities, soft probabilities or log-
its. We refer to hard CBMs as independently trained models with binary concept encoding,
while soft CBMs denote jointly trained models with soft probability-based concept activa-
tions. Additionally, we refer to jointly trained models using logit-based concept encoding
as logit CBMs.

More recently, CEMs (Figure 1) were proposed in Espinosa Zarlenga et al. (2022),

where a pair of vectors
(
ĉ+i , ĉ

−
i

)
∈ R2d is predicted for each input and concept ci, i =

1 . . . k (with d hyperparameter indicating the embedding dimension). This pair of vectors
is subsequently used to predict the activation ĉi as a soft probability. The weighted vectors
ĉwi = ĉi ĉ

+
i + (1 − ĉi) ĉ

−
i are then constructed and concatenated before being fed into the

final head to predict the label. In this setup ĉ+i and ĉ−i are meant to represent concept i
being active or inactive respectively. Learning a two-fold representation for each concept
enables interventions, by modifying the concept activations ĉi and thus selecting either ĉ+i
or ĉ−i as an input for the final head.

Training in CEMs is performed end-to-end; similar to joint CBMs, the loss function
consists of reconstruction losses for both the concept activations and the class label, weighted
by a parameter λ ≥ 0 as in (3). To make such models more receptive to interventions (i.e.
enhance the improvement in task performance after each intervention), they are exposed
to interventions during training: each activation ĉi is set to its ground-truth value ci with
probability defined by a parameter pint ∈ (0, 1).

Reasoning in CEMs takes place at the level of the vectors ĉwi , as opposed to CBMs where
it is based on concept activations ĉi. However, as high-dimensional objects trained only to
be predictive of concepts ci ∈ {0, 1}, the vectors ĉwi ∈ Rd are excessively flexible represen-
tations, capable of encoding an arbitrary amount of information about the task label. We
demonstrate in Section 8 that this is the fundamental reason why CEMs generally fail to be
interpretable for any choice of their hyperparameters. While Espinosa Zarlenga et al. (2022)
presents CEMs as interpretable models that resolve the accuracy-interpretability trade-off,
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Figure 2: Distributions of predicted activations for concept 1 on the test set in CBMs
with increasing leakage from left to right. Colours are based on the ground-truth values of
concepts and task label.

they still adhere to this trade-off in favour of accuracy, effectively sacrificing interpretabil-
ity. Although requiring a case-by-case evaluation, other CEM-based architectures, such as
Espinosa Zarlenga et al. (2023b); Ridzuan et al. (2024); Gao et al. (2024); Hu et al. (2024);
Srivastava et al. (2024), are likely to face similar interpretability challenges.

3 Definition of leakage

The explainability of CBMs and CEMs assumes that learnt concepts are aligned with
ground-truth human-interpretable concepts. However, on general grounds that is not the
case. During training, concept-based models often encode additional input information into
the learned concepts to enhance task accuracy - information leakage occurs (Kazhdan et al.,
2021; Margeloiu et al., 2021; Mahinpei et al., 2021; Havasi et al., 2022; Lockhart et al., 2022;
Ragkousis and Parbhoo, 2024). The model is not relying solely on the value of concepts for
its task prediction, but also on such leaked information, hindering interpretability. The rea-
soning of the model thus becomes effectively obscure to human agents, to a degree specified
by the amount of leakage.

In practice leakage manifests as additional structure arising in the learnt concept distri-
butions, as showcased in Figure 2. In this example models must learn two binary concepts
for a binary classification task (see Appendix A.1 for more details). We compare the dis-
tributions of activations for the first concept by a hard CBM and two soft CBMs, with
either intermediate (λ = 1) or low (λ = 0.01) concept supervision. By definition no leakage
can be present in hard CBMs, since concept learning is independent of task learning, and
concepts are converted to binary values before being passed to the final head, preventing
leaked information. Soft CBMs with lower concept supervision are instead more prone to
leakage as accurate concept learning is not enforced during training (see Koh et al., 2020;
Kazhdan et al., 2021, and our results in Section 7).

Neglecting the peak close to 0.5 corresponding to observations the model is most uncer-
tain about, the concept distribution in the hard CBM is very close to the binary ground-
truth distribution for concept 1. In the soft CBM with λ = 1 additional structure is learnt
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based on the value of the other concept and of the class label, while for λ = 0.01 the concept
itself is a very strong predictor of the value of both the class label and the other concept.
In particular, the distribution is more similar to the ground-truth binary task distribution
than to the concept distribution.

We identify two main types of leakage that concept-based models resort to:

1) Concepts-task leakage: additional information about the task is stored into the learnt
concepts. For training to be successful, the annotated concepts must be predictive of the
task label as measured by the ground-truth mutual information (MI) between each concept
and the task label. If concepts-task leakage is present, learned concepts-task MI is higher
than ground-truth concepts-task MI. This is usually the prominent type of leakage and the
main cause of non-interpretability, as it directly allows the model to achieve a better task
performance (see experiments in Section 6).

2) Interconcept leakage: additional information about the other concepts is stored into
each concept. In a given dataset, concepts are predictive of the value of other concepts as
determined by their ground-truth pair-wise MI. This type of leakage manifests as learned
concepts being more predictive of the value of the other learned concepts, resulting in a
learned interconcept MI being higher than the ground-truth. This effect is usually a sec-
ondary factor of non-interpretability (see experiments in Section 6), but it may be beneficial
for models as an internal error-correcting tool: interconcept leakage provides redundant
pathways for the model to attain high task performance even when concept predictions are
poor.

This classification, highlighting the information-theoretic nature of leakage, forms the
foundation of our quantitative approach to detect and measure it.

4 Existing measures of interpretability and their shortcomings

Previous works (Koh et al., 2020; Kazhdan et al., 2021; Margeloiu et al., 2021; Mahinpei
et al., 2021; Havasi et al., 2022; Espinosa Zarlenga et al., 2023a) have proposed several
measures of leakage, however none take into account the information-theoretic nature of
leakage outlined in Section 3. As we highlight in this section, these existing measures
consequently exhibit inherent limitations in sensitivity and robustness, resulting in a lack
of applicability to real-world scenarios.

Concept performance metrics. Although performance metrics such as concept accu-
racy, F1 score and AUC are general quality indicators of concept learning, they are not
sensitive to more subtle effects undermining interpretability such as leakage. In particular,
two models may exhibit the same evaluation scores while considerably differing in terms of
leakage. This is apparent from the example in Figure 2, where a classification threshold of
0.5 yields essentially the same concept accuracy and F1 score for the hard and λ = 1 soft
CBM, while the latter encodes a non-trivial amount of additional structure. Concept AUC
is a finer measure of interpretability than accuracy and F1 score as it captures more infor-
mation about the concept distribution, and in this simple example it is able to discriminate
between those two models. However it is not generally sensitive enough to quantify leakage
in more complex setups as we illustrate in Section 6.
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OIS and NIS. These scores were defined in Espinosa Zarlenga et al. (2023a). The Oracle
Impurity Score (OIS) is obtained by training k(k − 1) additional neural networks (NNs)
ψi,j (typically 2-layer perceptrons of modest size) predicting the value of the ground-truth
concept j from the learnt representation of concept i. The k × k impurity matrix defined
as πij(ĉ, c) = AUC (ψi,j(ĉi), cj) is meant to estimate the predictivity of each learnt concept
representation with respect to any other across the dataset. The OIS is the average difference
between the predictivities of learnt and ground-truth concepts over pairs of concepts,

OIS(ĉ, c) =
2

k
||π(ĉ, c) − π(c, c)| |F , (4)

where || · ||F indicates the Frobenius norm, and the normalisation ensures 0 ≤ OIS ≤ 1. The
OIS is thus intended to provide an estimate of interconcept leakage, while being unable to
account for concepts-task leakage, which is the prevalent effect as we illustrate in Section 6.
Although demonstrated to be superior to other concept-quality metrics in Espinosa Zarlenga
et al. (2023a), the OIS is subject to additional limitations that hinder its applicability. In
particular, in Section 6 we prove that

1. its value is typically non-vanishing and relatively high for hard CBMs, indicating
biases and a lack of sensitivity;

2. due to the intrinsic stochasticity in its definition which involves training NNs, it is
extremely variable when repeatedly evaluated for a given model at test time. The
resulting broad confidence intervals typically prevent drawing any statistically signifi-
cant conclusion when comparing models with different amounts of leakage, ultimately
limiting the utility of this score for model design.

0 1 2
# interventions

0.0

0.2

0.4

0.6

0.8

1.0

y_
ac

c

Intervention performance

Model
Hard CBM
Soft CBM = 1
Soft CBM = 0.01

Figure 3: Performance upon random in-
tervention of the three models analysed in
Figure 2.

The Niche Impurity Score (NIS) was defined
to capture leakage manifesting as additional in-
formation about concept j stored into a joint
subset of the learnt representations {i1, . . . , ip}
not containing concept j (see Espinosa Zarlenga
et al., 2023a, for details). Such a score is meant
to go beyond pair-wise interconcept leakage and
estimate the (generally subdominant) higher-
order effects. As illustrated in Appendix B, the
NIS is generally non-vanishing and very high for
hard CBMs, and moreover it appears to be an-
ticorrelated with intervention performance and
leakage. As such, we deem it unsuitable to mea-
sure leakage and interpretability.

Performance upon intervention. Interven-
tion performance can be measured at test time
by substituting the ground-truth concept values to the predicted activations, with a given
policy defining the order of the concepts to intervene on. The behaviour of the task accu-
racy after each intervention measures to what extent learnt and ground-truth concepts are
aligned. A task accuracy that decreases is a coarse indication of leakage: the final head
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expects additional information that is not present in the ground-truth concept distribu-
tion. Figure 3 shows the intervention performance of the same three models as in Figure
2. Models with higher leakage have worse performance, while the hard CBM displays a
monotonically increasing task accuracy.

As a metric of leakage, intervention performance has however several limitations.

1. Being based on evaluation scores, it does not address the information-theoretical na-
ture of leakage, resulting in a limited resolution. It is unable to distinguish between
interconcept and concepts-task leakage, and it does not directly quantify interpretabil-
ity at the level of single concepts. Typically it is thus not sufficiently informative to
guide model design and hyperparameter selection.

2. Its evaluation is computationally expensive, especially in real-world applications where
models have a large number of concepts and are evaluated using state-of-the-art poli-
cies with a high overhead such as CooP (Chauhan et al., 2023).

3. In more complex architectures such as CEMs, it is not a measure of interpretability,
see Appendix H.

Poor intervention performance is in particular a measure of leakage with perfect speci-
ficity (leakage has always occurred when performance is poor), but with poor sensitivity
(when performance is good, leakage is not guaranteed to be absent). Although the leakage
scores we propose in Section 5 address these issues, intervention performance generally re-

mains a coarse but useful indicator of leakage in CBMs. Let us denote by y
∗(k)
acc the task

accuracy after all the k concepts have been intervened on in the model under evaluation,
which coincides with the accuracy of the final head on the ground-truth concepts. As a
benchmark of the proposed leakage scores we will use the intervention score

S(int) = y(k)acc − y∗(k)acc , (5)

where y
(k)
acc is the reference accuracy of the final head when separately trained on the ground-

truth concepts. It represents the maximal task accuracy attainable by the final head and
it measures the fundamental misspecification of the final head with respect to the ground-
truth functional dependence y = f(c). S(int) thus quantifies the further decrease in task
accuracy caused by leakage on top of the possible final head misspecification. Its value is

independent of the intervention policy adopted. Note that y
(k)
acc coincides with y

∗(k)
acc for a

successfully trained hard model, thus S(int) = 0 for hard models by construction.

5 Concepts-task and interconcept leakage scores

Leakage is information-theoretic in nature and as such, it can be captured appropriately only
by metrics based on quantities from information theory. As discussed in Section 3, the leaked
information and the corresponding additional structure in the learnt concept distributions
can be measured as modifications in the ground-truth interconcept and concepts-task MIs
respectively. This motivates the definition of the following set of scores based on information
theory to quantify leakage and the interpretability of concept-based models, and overcome
the limitations of the existing measures.
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Concepts-task leakage scores. Denoting by H(z) the entropy of the variable z and by
I(z, w) the MI between the variables z and w, we define the concepts-task leakage score for
concept i as the difference between predicted and ground-truth MIs between concept i and
the task label,

CTLi(ĉ, c, y) =

∣∣∣∣I(ĉi, y)

H(y)
− I(ci, y)

H(y)

∣∣∣∣ . (6)

This score quantifies the additional information that the learnt concept i encodes about the
task label with respect to ground-truth. MIs are appropriately normalised by the entropy
of the class label to ensure 0 ≤ CTLi ≤ 1. We further define the average concepts-task
leakage score

CTL(ĉ, c, y) =
1

k

∑
i=1...k

CTLi(ĉ, c, y) , (7)

as the average extra information about the task stored into the learnt concepts.

Interconcept leakage scores. In a similar fashion, we define the pairwise interconcept
leakage score between concepts i and j as

ICLij(ĉ, c) =

∣∣∣∣∣ I(ĉi, ĉj)√
H(ĉi)H(ĉj)

− I(ci, cj)√
H(ci)H(cj)

∣∣∣∣∣ , (8)

which measures the additional predictivity of the learnt concept i for concept j with respect
to ground-truth. The normalisation by the entropies also in this case ensures 0 ≤ ICLij ≤ 1,
and note that ICLii = 0 since I(z, z) = H(z). We also define the per-concept and average
interconcept leakage scores

ICLi(ĉ, c) =
1

k − 1

∑
j=1...k

ICLij(ĉ, c) , ICL(ĉ, c) =
1

k

∑
i=1...k

ICLi(ĉ, c) , (9)

to quantify the extra information that each concept encodes about the other concepts, and
the average additional interconcept predictivity respectively.

The CTL and ICL scores are meant to summarise complementary aspects of the leakage
present in a given concept-based model, as well as its overall interpretability. We define the
following criterion to detect leakage using the proposed scores:

Leakage Criterion. When comparing two models (or two model classes) A and B, a suffi-
cient condition for A having higher leakage than B is that either of the following conditions
are satisfied,

• both the CTL and ICL scores are higher in A than in B with high statistical confidence,

• either the CTL or the ICL score is higher in A with high statistical confidence, while
the other score takes compatible values in A and B.

Note that this is a conservative criterion covering the majority of cases, while it cannot
be used in the cases where one measure is higher in A and the other is lower in B (or vice
versa) with high statistical confidence.
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The CTLi, ICLij and ICLi measures convey more detailed information about each type
of leakage at the level of single concepts. This is particularly useful for model design and
when performing interventions (as they essentially indicate the risk of intervening on each
concept). The framework above can be applied to concept-based models with a range of
concept encodings, including binaries, soft probabilities, logits and vector representations.
Alternative normalisations of MI can be used, although we found those adopted in (6) and
(8) to be particularly transparent from an information theory perspective, and robust in the
experiments carried out. We estimate MI and entropy using the KSG estimator (Kraskov
et al., 2004), based on k-nearest neighbour statistics.

6 Robustness of leakage scores

We now demonstrate the robustness of the CTL and ICL scores and how they overcome
the issues of the existing measures of leakage.

Datasets. For our experiments we consider three synthetic datasets, TabularToy(δ), dSprites(γ)
and 3dshapes(γ), presented in Espinosa Zarlenga et al. (2023a). TabularToy(δ) is a binary-
class tabular dataset based on the dataset from Mahinpei et al. (2021), while dSprites(γ) and
3dshapes(γ) are multi-class image-based datasets building upon dSprites (Matthey et al.,
2017) and 3dshapes (Burgess and Kim, 2018) respectively. The use of synthetic datasets
enables us to (i) modify the functional dependence y = f(c) and hence tune the ground-
truth concepts-task MI, and furthermore (ii) tune the ground-truth interconcept MI via the
parameters δ ∈ (0, 1) and γ (∈ {0, . . . , 4} in dSprites and ∈ {0, . . . , 5} in 3dshapes). See
Appendix A for more details on the experimental setup.

CTL and ICL are highly sensitive to leakage. We consider pairs of models encoding
different levels of leakage as assessed by intervention performance (Figure 4). The models
in each pair were chosen to have essentially identical concepts and task evaluation scores
(Table 1), evidencing the severe limitations of these metrics in capturing leakage. In all
cases the CTL and ICL scores correctly detect the different amounts of leakage according to
the Leakage Criterion, with no level of uncertainty. On the contrary, we note as a general
behaviour that the large confidence intervals of the OIS prevent drawing any statistically
significant conclusion on leakage. Appendix C presents the concept-wise leakage scores for
these models and illustrates how they provide more fine-grained information at the level of
individual concepts.

CTL and ICL are vanishing for hard CBMs. Figure 5 shows the leakage scores for
hard models trained on a number of datasets in both low and high regimes of ground-truth
interconcept MI. By construction hard CBMs have vanishing leakage (Koh et al., 2020;
Kazhdan et al., 2021; Margeloiu et al., 2021), and the CTL and ICL scores are in all cases
compatible with zero, regardless of the interconcept MI. The OIS is instead non-vanishing in
all experiments, failing to meet a fundamental requirement of leakage metrics. We further
note that for each dataset its estimated values on hard CBMs are comparable to those on
the models shown in Figure 4, which instead encode a significant amount of leakage. This
represents further evidence of the limitations of the OIS in distinguishing interpretable from
uninterpretable concept-based models.
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Figure 4: Intervention performance and leakage scores computed for pairs of soft and logit
CBMs with different amounts of leakage but similar evaluation scores (see Table 1) trained
on TabularToy(0.25), dSprites(0) and 3dshapes(0). Metrics are evaluated on a 5-fold basis
for each model.

cacc cF1 cAUC yacc yF1 yAUC S(int)(↓)

TabularToy(0.25)
Soft CBM λ = 5 0.993 0.992 0.992 0.990 0.990 0.990 0.000
Logit CBM λ = 5 0.995 0.995 0.995 0.991 0.991 0.991 0.301

dSprites(0)
Logit CBM λ = 5 0.993 0.993 0.993 0.965 0.976 0.698 0.000
Logit CBM λ = 0.5 0.992 0.992 0.992 0.965 0.975 0.689 0.139

3dshapes(0)
Soft CBM λ = 0.1 1.000 1.000 1.000 1.000 1.000 0.201 0.000
Soft CBM λ = 0.01 1.000 1.000 1.000 1.000 1.000 0.207 0.674

Table 1: Concept and task evaluation scores, as well as intervention scores of pairs of soft
and logit CBMs with different levels of leakage (see Figure 4).

CTL and ICL strongly correlate with intervention performance. We train a num-
ber of soft and logit CBMs on each dataset in both high and low regimes of ground-truth
interconcept MI and with different levels of concept supervision (see Appendix D for de-
tails on this experiment). The evaluation of the OIS, ICL and CTL scores is repeated 5
times for each individual model yielding an uncertainty on their value. We then Monte-
Carlo (MC) sample 10K times from the uncertainty distributions of each score (assuming
normality), and for each sample we compute the Pearson r coefficient between each score
and the intervention score S(int). The resulting distribution of Pearson r values between
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Figure 5: Leakage scores evaluated on hard CBMs on datasets with high and low ground-
truth interconcept MI. The 95% confidence intervals are obtained from a 5-fold training on
each dataset.

CTL ICL OIS
Pearson r − log10(p) Pearson r − log10(p) Pearson r − log10(p)

TT(0.25) 0.75 ± 0.05 2.6 ± 0.4 0.69 ± 0.07 2.1 ± 0.5 0.49 ± 0.11 1.1 ± 0.4
dS(0) 0.83 ± 0.06 3.6 ± 0.8 0.68 ± 0.07 2.0 ± 0.5 0.69 ± 0.07 2.2 ± 0.5
3ds(0) 0.84 ± 0.02 4.0 ± 0.3 0.86 ± 0.03 4.4 ± 0.5 0.81 ± 0.04 3.9 ± 0.7

TT(0.75) 0.55 ± 0.05 1.3 ± 0.2 0.55 ± 0.12 1.4 ± 0.5 0.27 ± 0.13 0.5 ± 0.3
dS(4) 0.70 ± 0.09 2.2 ± 0.6 0.45 ± 0.08 1.0 ± 0.3 0.55 ± 0.10 1.3 ± 0.5
3ds(5) 0.75 ± 0.04 2.9 ± 0.4 0.24 ± 0.15 0.5 ± 0.5 0.70 ± 0.07 2.5 ± 0.6

Table 2: Pearson r coefficients and corresponding p-values measuring the correlations
of CTL, ICL and OIS metrics against S(int). To better capture the scores distributions
resulting from MC sampling, the displayed uncertainties are standard deviations. Significant
and highly significant correlations correspond to − log10(p) ≃ 1.3 and 2.0 respectively.

each leakage score and intervention performance across models and for each dataset pro-
vides an estimate of its uncertainty, while the corresponding distribution of p-values provide
information about the significance of correlation.

Table 2 reports the mean and standard deviation of the resulting Pearson r and p-value
distributions. The proposed CTL and ICL scores highly correlate with intervention perfor-
mance and they systematically outperform OIS across datasets and robustly to ground-truth
interconcept MI. This analysis also quantifies the importance of concepts-task and intercon-
cept leakage in each case. CTL generally appears as the prominent form of leakage over ICL.
Its correlation with intervention performance is typically stronger than ICL, and is more-
over significant in all datasets and highly significant in 5 out of 6 datasets. This behaviour
reflects the optimization pressure favouring the storage of additional task-relevant informa-
tion in the learnt concepts rather than information about the other concepts, to achieve
a better task performance. Nevertheless, these results are evidence that also interconcept
leakage systematically arises during model training, in particular displaying correlations of
comparable magnitude to concept-task leakage in 3 out of 6 datasets.
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7 Causes of leakage

The proposed information-theoretic leakage scores are robust and sensitive and can thus
be used to identify the most common causes of leakage and assess their impact on inter-
pretability.

A first effect that directly impacts the interpretability of a concept-based model is the
concept encoder being misspecified with respect to the target concept distribution. When
such a misspecification is significant, the model is essentially not capable of learning concepts
and their relations. This may favour the emergence of additional issues, such as non-locality
(Raman et al., 2023; Huang et al., 2024). Concept-based architectures enforcing accurate
learning of interconcept relations have been recently proposed (Kim et al., 2023; Vandenhirtz
et al., 2024; Xu et al., 2024; Kim et al., 2025). We recognise however that this problem is
significantly use-case specific and it is usually sufficient to opt for a concept encoder with
an improved architecture to solve it. In the following experiments we will thus consider
concept encoders that are sufficiently well-specified.

Insufficient concept supervision. When λ is set to be small, during training the model
is encouraged to achieve better task performance at the cost of poor concept learning and
high leakage. This issue was originally observed in Koh et al. (2020), where poor intervention
performance was found when training models with low λ. To precisely quantify this effect,
we train soft and logit CBMs with low, intermediate and high values of λ on datasets
with both low and high interconcept MI. The resulting leakage scores displayed in Figure 6
confirm that leakage decreases as we enhance concept supervision.

However, as detailed in Appendix E, leakage does not fall to zero as one keeps increasing
λ – the leakage scores reach a non-vanishing minimal value, specific to each model class. At
higher values λ ≳ 10, models focus excessively on concept learning, and the task objective
may be poorly learnt. This results in a drop in task performance or an increase in leakage.
Each model class has thus an associated optimal range of λ ∈ (λmin, λmax) where the
minimal amount of leakage is attained, below which models exhibit proportionally higher
leakage and above which training often fails. As evidenced by our results, such an optimal
interval can be identified using the CTL and ICL scores.

Over-expressive concept encoding. When the chosen concept representation is sig-
nificantly more expressive than the annotated concept representation, during training the
model is generally encouraged to misuse the surplus expressivity to store additional informa-
tion into concepts to ease task predictions. This is evidenced in Figure 6 where annotated
concepts are binary, while learnt concepts are soft probabilities and logits, and as such
over-expressive for the setup. We note that raising λ is less effective at decreasing leakage
when concepts representations are more expressive, as in the logit models, and furthermore
the minimal attainable leakage is significantly higher for such models over soft CBMs. This
behaviour casts doubts on the advantages of vector concept encodings when ground-truth
concepts are binary, and we will see in Section 8 how these concerns impact and are substan-
tiated in CEMs. Finally, we observe that models with low λ generally have a comparable
level of high leakage regardless of the concept encoding.

Incomplete set of concepts. When the set of annotated concepts is incomplete for the
task, meaning that it is not sufficiently predictive, models tend to encode the information
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Figure 6: Leakage scores evaluated for soft and logit models with different levels of concept
supervision, on datasets with low (left) and high (right) ground-truth interconcept MI.

about the missing concepts (or generally additional information that may be required) into
the learnt concepts to nonetheless achieve a high task performance. This translates into
sizeable leakage and a loss of interpretability. This issue has been discussed in previous
works (Kazhdan et al., 2021; Margeloiu et al., 2021; Mahinpei et al., 2021; Havasi et al.,
2022).

To accurately assess this phenomenon using our information-theoretic scores, we train
soft CBMs with low, intermediate and high levels of concept supervision on a range of
datasets with roughly one third of concepts removed (see Appendix A for more details on
which concepts are removed for each dataset). This results in a sizeable decrease of the ref-

erence task accuracy y
(k)
acc of the final head trained on the ground-truth concepts introduced

in equation (5) (Table 3, left). The leakage scores of the trained models are displayed in
Figure 7, along with those of models with complete sets of concepts for comparison. Their
concepts and task accuracies are presented in Appendix F.

According to the Leakage Criterion, we detect more leakage in 9/9 model classes trained
on incomplete sets of concepts. At low and intermediate λ, there is considerably more leak-
age in models trained on an incomplete set. At high lambda, CTL scores are typically
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Figure 7: Leakage scores evaluated for soft CBMs at different levels of concept supervision,
on datasets with complete and incomplete sets of concepts.

y
(k)
acc complete incomplete well-specified misspecified

TabularToy(0.25) 1.000 ± 0.000 0.786 ± 0.000 1.000 ± 0.000 0.687 ± 0.000
dSprites(0) 1.000 ± 0.000 0.749 ± 0.004 1.000 ± 0.000 0.807 ± 0.000
3dshapes(0) 1.000 ± 0.000 0.655 ± 0.002 1.000 ± 0.000 0.859 ± 0.008

Table 3: Former two columns: baseline y
(k)
acc task accuracies of final heads trained on

datasets with complete and incomplete sets of concepts. Latter two columns: baseline y
(k)
acc

task accuracies of a linear head on the linear (well-specified) and non-linear (misspecified)
ground-truth task labels. We report 95% confidence intervals over 5-fold training.

comparable in models with incomplete and complete concept sets, while ICL remains sig-
nificantly higher in case of an incomplete concept set.

Misspecified final head. If the final head is not flexible enough to learn sufficiently
well the ground-truth y = f(c) dependence, during training the model tends to store the
necessary dependences into the learnt concepts, which get deformed to encode additional
information about the task and the other concepts. In real-world applications a common
choice for the final head of a CBM is a linear layer, which being itself interpretable, allows in
principle for a full model explainability. In reality the task is however very often described by
a highly non-linear function of the concepts, and a linear layer can be severely misspecified
in such cases.

As an example showcasing the general effects of final head misspecification as well as
representing a potential shortcoming of a considerable fraction of existing CBMs, we con-
sider soft CBMs with a linear head trained on datasets where the ground-truth task is either
a linear or non-linear function of the concepts. To achieve that, we modify the functional
dependences in TabularToy(0.25), dSprites(0) and 3dshapes(0) by adding non-linear terms
to the original tasks – see Appendix A.1. As a baseline measuring the final head misspecifi-
cation, for each dataset we train a separate linear head on the ground-truth concepts. Table
3 shows the resulting decrease in task performance in terms of the reference task accuracy

y
(k)
acc. The corresponding leakage scores are displayed in Figure 8 and their concepts and task

accuracies are presented in Appendix F. According to the Leakage Criterion, a misspecified
final head causes a higher leakage in 7/9 model classes. Note in particular that high concept
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Figure 8: Leakage scores evaluated for soft CBMs with a linear final head trained on
datasets where the task is either a linear (Well-specified) or a non-linear (Misspecified)
function of the concepts, at low, intermediate and high levels of concept supervision.

supervision is generally not sufficient to compensate for the additional leakage induced by
the final head misspecification.

8 CEMs are not interpretable

CEMs (Espinosa Zarlenga et al., 2022) have gained significant recognition in the domain of
interpretable concept-based modelling. However, due to their inherent design these models
present fundamental interpretability issues. The primary cause of this is the fact that their
reasoning is based on data point-dependent concept vector representations, and not directly
on concept activations as in CBMs.

Consider a dataset where the annotated concepts are binary.1 A transparent concept-
based model trained on such a dataset must generate task predictions solely based on the
activation levels of concepts (essentially whether each of them is on or off), which can be
supervised during training and later by a human agent. The vector representations ĉwi on
which CEMs reasoning is based are instead high-dimensional objects capable of encoding
an enormous amount of information besides concept activations. Therefore, the necessary
condition for CEMs to be deemed interpretable is that the learnt embeddings must be
faithful representations of concepts, corresponding to the situation where the generated
vectors ĉwi essentially contain the same information as the annotated concepts (were these
binary, categorical or continuous).2

However, in this section we demonstrate that the learnt embeddings in CEMs are not
a faithful representation of concepts and that they encode large amounts of leaked infor-
mation. Intuitively, this is a consequence of no direct supervision being performed on the
actual input of the final head, but only on the predicted concept activations ĉi via the

1. The following argument straightforwardly extends to categorical and continuous annotated concepts.
2. Note that there would be limited advantages in using vector representations if that were the case and

they were hence just as informative as concept activations. Besides introducing extra computational
overhead during training and inference, the fact that the final head takes as input the concatenated
vectors ĉwi limits interpretability of the y = f(c) functional dependence, even when interpretable final
heads such as a linear layer are used. The final head reasons at the level of the each vector component,
which are not interpretable, and statements that can be made are of the form, the m-th component of the
i-th concept vector is more relevant for the task prediction than the n-th component of the j-th concept
vector.
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concept reconstruction loss. This means that in the forward pass, an arbitrary amount of
information is allowed to flow undisturbed from the input x to the task prediction through
the concept vectors, as long as the embeddings ĉ+i and ĉ−i generated from x are predictive
of the single scalar ci. Information is free to leak into the learnt vectors, fundamentally
obscuring the model reasoning and effectively resulting in a scenario where the model is
a black box whose explainability can be only partially recovered using post-hoc methods.
This fundamental problem of CEMs is further exacerbated by our findings from Section 7
concerning over-expressive concept representations with respect to the annotated concepts,
and in particular how such setups generally favour leakage.

Using our information-theoretic approach, we now show in detail how the learnt concept
embeddings are affected by concepts-task leakage for any choice of the hyperparameters.
Moreover, we find that contrarily to what happens in CBMs, higher concept supervision
actually results in higher interconcept leakage.

Information-theoretic measures to assess CEMs interpretability. CEMs incorpo-
rate several concept representations – the concept probabilities ĉi just as CBMs, as well
as the vector encodings ĉ+i , ĉ

−
i and ĉwi . Reasoning happens at the level of the weighted

vectors ĉwi , making them critical objects where leakage could hinder interpretability. As
described in Appendix G, entropy and MI estimators are generally affected by biases de-
pending on the dimension of variables. This entails that one cannot compare quantities
estimated for concept representations of different dimensions, as required by the definitions
of the CTL and ICL scores in equations (6)-(8), which in this case would involve subtracting
normalised MIs estimated on the ground-truth concepts ci from those on the vectors ĉwi .
To assess leakage in CEMs, it will be sufficient to analyse the behaviour of the normalised
MIs on ĉwi across different models without referring to ground-truth normalised MIs, and
such a bias will not affect our discussion.

We define the concepts-task normalised MI between each vector ĉwi and the task label,
averaged across the k concepts,

Ĩ(CT ) (ĉw, y) =
1

k

k∑
i=1

I (ĉwi , y)

H(y)
. (10)

This score captures how informative on average the weighted vectors ĉwi are of the task, and
it represents a simpler version of the CTL score without the ground-truth concepts-task MI
as a reference.

In a similar spirit to the ICL scores, one can further define a metric capturing the
amount of information that a concept representation ĉwi encodes about the other concepts.
Averaged over the k(k − 1)/2 non-trivial concept pairs, such interconcept normalised MI
takes the form,

Ĩ(IC)(ĉw, c) =
2

k(k − 1)

k∑
i=1

∑
j<i

I(ĉwi , cj)

H(cj)
. (11)

Note that differently from the ICL scores, Ĩ(IC) does not measure how much a learnt concept
representation is predictive of another one. This approach, based on annotated concepts
instead, has the benefit of limiting the overall dimensionality of the space used to estimate
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MIs (in this case d + 1 instead of 2d), mitigating the effects of the dimensional-dependent
bias.

An auxiliary quantity that in the case of higher-dimensional representations contains
non-trivial information is the normalised MI of a concept representation ĉwi with the value
of the corresponding ground-truth concept ci. Its average over the k concepts reads,

Ĩ(self)(ĉw, c) =
1

k

k∑
i=1

I(ĉwi , ci)

H(ci)
, (12)

providing a measure of how predictive each concept representation is of its own concept.

Concepts-task leakage affects every CEM. If the vectors ĉwi learnt by CEMs were
a faithful representation of concepts, they should be clustered based on the value of the
annotated concepts ci only. To test this idea, we train CEMs with a range of λ and pint,
on TabularToy(0.25), dSprites(0) and 3dshapes(0). As we show in Figure 9 (see Figure
25 for similar results at non-vanishing pint), this is never the case: although concepts are
binary in these experiments, instead of two homogeneous clusters for each concept, we find
a rich structure based on the ground-truth value of the task label, for any λ and pint. This
parallels the additional structure appearing in the concept distributions of CBMs affected
by leakage, here in the case of a higher dimensional concept representation. This behaviour
can be tracked back to the fact that the vectors ĉwi are encouraged to be highly predictive
of y at any pint and for reasonable values of λ. Although not perceived there as strong
evidence for leakage, a clear embedding structure based on the task label was also reported
in Espinosa Zarlenga et al. (2022), Section 5.3.

Information theory offers additional insight into this phenomenon, in particular via the
Ĩ(CT ) (ĉw, y) score defined in (10). As shown in Figure 10, qualitatively its values across
models are representative of the degree of refinement in the structure of learnt embeddings
displayed in Figures 9 and 25, and furthermore they closely track task accuracy. On the
other hand, concept accuracy does not correlate with task accuracy or Ĩ(CT ). This not only
indicates the presence of concepts-task leakage, but also suggests that CEMs heavily rely on
concepts-task leakage for task predictions: regardless of concepts, task accuracy is higher
in models where the vectors ĉwi encode more information about y.

The general dependence of CEMs on leaked information is further substantiated by the
fact that task accuracy is insensitive to the number of used concepts, as demonstrated in
the experiments reported in Espinosa Zarlenga et al. (2022), Appendix 8. When training
CEMs on the CUB dataset with up to 90% of the annotated concepts removed, the task
accuracy remains essentially the same as that of models trained on all the concepts. Along
the same lines, the rigorous analysis carried out in Espinosa Zarlenga et al. (2022) using the
information bottleneck paradigm evidences that in CEMs there is no information bottleneck
and that information can freely flow from the input to the task prediction. Initially mis-
understood, this result stands as a fundamental proof that the high-dimensional concept
representations ĉwi generally encode an arbitrary amount of information about the task,
meeting the only requirement of being predictive of the real-valued concepts ci.

Finally, in Appendix I we report on the subtle effect of alignment leakage, a subtype
of concepts-task leakage that may generally appear in models such as CEMs which are
exposed to interventions during training. We find evidence of this effect in experiments on
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Figure 9: 2-dimensional PCA projections of the weighted embeddings ĉw1 for the first
concept across datasets and for different values of λ at pint = 0. The colouring indicates
the value of the ground-truth task label.
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Figure 10: Task accuracy and Ĩ(CT ) score on a range of CEMs and datasets.

the TabularToy(δ) dataset. Alignment leakage appears to be stronger in CEMs with higher
λ and pint, supporting its relation with exposure to intervention at training time.

Interconcept leakage increases with stronger concept supervision. Upon closer
inspection of the structure of the learned embeddings ĉwi , significant clustering is also
observed based on the ground-truth values of the other concepts j ̸= i. This is evidenced in
Figure 11, where we display the PCA projections of ĉw1 in terms of the values of c2 and c3
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Figure 11: 2-dimensional PCA projections of the weighted embeddings ĉw1 for the first
concept across datasets and for different values of λ at pint = 0. The colouring indicates
the ground-truth value of concepts 2 and 3.
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Figure 12: Concept accuracy as well as Ĩ(IC) and Ĩ(self) scores for CEMs with low and
high λ and pint.

(see Figure 26 for similar plots for models with non-vanishing pint). As especially manifest
in TabularToy(0.25), where the task is binary and there is a total of three concepts, the fine
structure present in Figures 9 and 25 which is not explained by the y labels is descriptive
of the value of the other concepts.

This can be appreciated more quantitatively using the information-theoretic measures
Ĩ(IC)(ĉw, c) and Ĩ(self)(ĉw, c) defined in equations (11)-(12). As indicated in Figure 12 by
higher cacc and Ĩ(self), each vector ĉwi becomes more and more predictive of the corre-
sponding ci as one increases λ and pint. This is the expected and desired behaviour as
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Figure 13: CTL and ICL scores evaluated on the predicted concept probabilities ĉi in
CEMs with different λ and pint.

it corresponds to increasing concept supervision. However, Ĩ(IC) undergoes a very similar
growth, entailing that the vectors ĉwi contain more and more information about the other
concepts. By definition, this represents interconcept leakage.3 In contrast to CBMs, there is
no choice of the hyperparameters λ and pint that improves concept learning while decreasing
interconcept leakage. Although again misinterpreted at the time, concept embeddings were
found to be very predictive of the value of the other concepts also in Espinosa Zarlenga
et al. (2022), Appendix 9.

To gain deeper insight into this interconcept leakage in CEMs, we evaluate the CTL
and ICL scores on the predicted concept probabilities ĉi. Although not indicative of model
interpretability – since reasoning occurs at the level of the weighted vectors – it is worth not-
ing that they decrease in a manner similar to CBMs as concept supervision increases. The
picture that emerges is thus that as one raises λ and pint, the leaked information vanishes
from the concept probabilities, and is effectively transferred into the vector representations
as interconcept leakage. Vector representations in CEMs hence provide a mechanism for
interconcept leakage to persist even at high concept supervision.

9 Lessons for model design

Our results on leakage enable us to outline the key steps for designing and training a concept-
based model to ensure its interpretability. The first step consists of assessing whether
the annotated concepts are sufficiently predictive of the task. To that aim, one should
train several classifier heads on the ground-truth concepts, starting from a linear baseline.
Depending on the use-case, while the choice of an interpretable head (such as a linear
classifier) may be desirable, it may also result in severe misspecification. In this case, one
should expect the gain in functional interpretability to be compensated to a certain extent
by higher leakage, as per the results of Section 7.

If a sufficiently high task accuracy is not achieved with arbitrarily complex architectures,
this is generally an indication that the set of concepts is not complete for the task. This
either causes a drop in task performance in the case of hard architectures, or introduces a
significant amount of leakage in the case of soft architectures. Furthermore, the experiments
from Section 7 suggest that higher concept supervision is not sufficient in general to prevent
leakage in such cases. If additional annotated concepts are not available, one should thus

3. For this experiment, we deliberately selected datasets where ground-truth interconcept MIs are minimal
or vanishing. As a result, there is no interconcept structure for models to learn, nor any justification for
concept representations to be highly predictive of the other concepts.
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conclude that the task is not amenable to a concept-based approach given the dataset at
hand.

Possible solutions to concept set incompleteness have been studied, including adding un-
supervised concepts or channels, meant to account for the missing information (see Mahin-
pei et al., 2021; Havasi et al., 2022; Sawada and Nakamura, 2022; Yuksekgonul et al., 2023;
Sheth and Kahou, 2023; Ismail et al., 2024, 2025). However, when adopting this approach,
one has to ensure the model does not over-rely on such unsupervised channels, effectively
bypassing the concept bottleneck when making a task prediction. Especially for high-risk
scenarios, a general framework to interpret unknown concepts and safely include them in
the concept refinement process is still missing.

It is also worth noting that an incomplete concept set and a misspecified classifier head
are in principle degenerate issues, both leading to a drop in task performance and similarly
higher leakage scores. Quantifying the completeness of a concept set for a given task is by
itself an information-theoretic problem that has been extensively discussed in the context
of feature selection, and measures have been presented e.g. in Yeh et al. (2020); Havasi
et al. (2022), which may provide indications to break such a degeneracy.

If such issues do not arise, concept-based models can be adopted. The results of Section 7
highlight that concept encoding is a crucial aspect of model design, and should not be overly
expressive relative to the type of annotated concepts to prevent leakage. Logit encoding
is over-expressive for binary concepts, while it is arguably a suitable choice for continuous
concepts. Similarly, vector encoding may be generally over-expressive for one-dimensional
variables.

For binary annotated concepts, two common setups are soft and hard CBMs. To reduce
leakage and achieve accurate concept learning, soft CBMs should be trained at relatively
high λ ∈ (λmin, λmax), according to the results of Section 7. The CTL and ICL scores
enable tuning λ to values that minimise leakage. Throughout our experiments they also
evidenced that leakage is generally non-vanishing in soft CBMs. This may be acceptable
depending on the use case, particularly since at high λ the model’s reliance on leaked
information may be secondary to concept activations. Evaluating task performance on a
number of soft and hard models, we also observe that soft CBMs with high λ are typically
superior to hard CBMs in terms of task performance only in the cases where the classifier
head is misspecified, while being essentially comparable in the other cases (Table 4). Note
that when designing a concept-based model, it can be beneficial to also train an end-to-end
black-box model without concept supervision, in order to establish an upper bound on the
overall task performance and to assess the intrinsic predictivity of the input data for the
task.

The results of this work support the information-theoretic framework that we propose
as a novel and fundamental paradigm for assessing the interpretability of concept-based
models. The leakage measures we introduce are robust and sensitive, and we advocate for
their adoption as standard tools for ensuring interpretability when designing concept-based
models.
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yacc Soft Hard

TT(0.25) 0.988 ± 0.004 0.990 ± 0.003
TT(0.25) incomplete 0.799 ± 0.008 0.787 ± 0.001
TT(0.25) misspecified 0.776 ± 0.030 0.713 ± 0.001
TT(0.75) 0.970 ± 0.033 0.975 ± 0.015

dS(0) 0.935 ± 0.017 0.944 ± 0.011
dS(0) incomplete 0.682 ± 0.016 0.701 ± 0.010
dS(0) misspecified 0.983 ± 0.002 0.928 ± 0.012
dS(4) 0.941 ± 0.013 0.953 ± 0.012

3ds(0) 1.000 ± 0.000 1.000 ± 0.000
3ds(0) incomplete 0.675 ± 0.048 0.653 ± 0.001
3ds(0) misspecified 0.998 ± 0.005 0.854 ± 0.007
3ds(5) 1.000 ± 0.000 1.000 ± 0.000

Table 4: Task accuracies of soft and hard CBMs trained for the experiments in Section 7.
The soft models are trained with λ = 10 for TabularToy and dSprites, and with λ = 1 for
3dshapes.
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Appendix A. Details on the experimental setup

A.1 Datasets

For additional details on these datasets, we refer the reader to .

TabularToy(δ). This dataset is constructed by sampling a 3-dimensional latent variable
z ∼ N (0,Σ(δ)), with correlation matrix Σ(δ)ij = δij + δ(1 − δij) with i, j = 1, 2, 3, δij
Kronecker symbol and δ ∈ (−1, 1) indicating the correlation between components. The
7-dimensional input x is a trigonometric function of the latent variables (see Mahinpei
et al., 2021), while the three binary concepts are defined as the sign of the latent variables,
ci = (zi > 0). The binary task label is the following linear function of concepts,

y
(orig)
TT = (c1 + c2 + c3 ≥ 2) . (13)

For our experiments we generate a dataset of size 10K, with a 0.7/0.2/0.1 train / validation
/ test ratio. For Figures 2 and 3 we consider a simplified version of TabularToy(δ) with
only the first two concepts c1 and c2 for each input, and binary task y = (c1 + c2 ≥ 1).

dSprites(γ). For this family of datasets, each input x ∈ {0, 1}64×64×1 is an image gener-
ated deterministically from five latent variables z = (shape ∈ {0, 1, 2}, scale ∈ {0, . . . , 5},
θ ∈ {0, . . . , 39}, X ∈ {0, . . . , 31}, Y ∈ {0, . . . , 31}), where shape corresponds to either
a square, ellipse or a heart, while θ, X and Y indicate the rotation and the position of
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Figure 14: Ground-truth interconcept normalised MI in the used datasets.

the shape in the plane respectively. Following Espinosa Zarlenga et al. (2023a), we define
dSprites(0) as the datasets with no interconcept correlations. Here the five binary concepts
are based on the value of the latent variables, c = (z1 < 2, z2 < 3, z3 < 20, z4 < 16,
z5 < 16), and the 8-class task label is

y
(orig)
dS = (1 − c1)(2c4 + c5 + 4) + c1(2c2 + c3) . (14)

To generate dSprites(γ) with increasing interconcept correlations for γ = 1, . . . , 4, we adopt
the procedure detailed in Espinosa Zarlenga et al. (2023a). We use datasets with approxi-
matively 25K and 14K samples for dSprites(0) and dSprites(4) respectively, with a 0.75/0.25
train / test ratio.

3dshapes(γ). Each input is an image x ∈ {0, 1}64×64×3 generated from six latent vari-
ables z = (floor hue ∈ {0, . . . , 9}, wall hue ∈ {0, . . . , 9}, object hue ∈ {0, . . . , 9}, scale ∈
{0, . . . , 7}, shape ∈ {0, 1, 2, 3}, orientation ∈ {0, . . . , 14}), where shape denotes either a
sphere, a cube, a capsule or a cylinder. Following Espinosa Zarlenga et al. (2023a), in
3dshapes(0) concepts are defined as c = (z1 < 5, z2 < 5, z3 < 5, z4 < 4, z5 < 2, z6 < 7),
and the 12 class labels are obtained as

y
(orig)
3ds = (1 − c5)(2c1 + c2) + c5(4c3 + 2c4 + c6 + 4) (15)

Increasing interconcept correlations are induced for γ = 1, . . . , 5 in a similar fashion to
dSprites(γ). For our experiments we consider 3dshapes(0) and 3dshapes(5) with size 16K
and 14K respectively, and a 0.7/0.1/0.2 train / validation / test ratio.

Ground-truth interconcept correlations. In Figure 14 we display as a reference the
ground-truth interconcept normalised MI for the training datasets used in the experiments.

Experiments with incomplete concept set. In TabularToy(0.25), we remove c3 from
the three concepts. In dSprites(0), we remove c4 and c5 from the five concepts. In
3dshapes(0), we remove c3 and c6 from the six concepts.
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Experiments with misspecified head. We provide here more details on the experi-
ments to assess the effects of a misspecified final head discussed in Section 7. To generate
non-linear concepts-task dependences in TabularToy(δ), we add a non-linear term to the
original linear task in (13), resulting in the binary classification problem,

y
(new)
TT = (c1 + c2 + c3 − c1c2 ≥ 2) .

The original tasks in (14) and (15) for dSprites(γ) and 3dshapes(γ) are non-linear, however
a linear classifier is able to reach essentially perfect task accuracy (Table 3). To induce
a sizeable misspecification, we thus add further higher-order non-linear terms. The tasks
implemented for our experiments on dSprites(0) and 3dshapes(0) read,

y
(new)
dS = y

(orig)
dS − (1 − c1)c3c4 − c1(c2c5 + c3c5 + c2c4) ,

y
(new)
3ds = y

(orig)
3ds − 3c1c2c3 − c4c5c6 − c1c3c5 + c2c4c6 .

A.2 Model architectures and training

On TabularToy(δ) we use as concept encoder a 4-layer leaky-ReLU MLP with activations
{7, 64, 64, 3}, and a linear classifier head. On dSprites(γ) and 3dshapes(γ) we use a ResNet-
18 encoder, and a 4-layer ReLU MLP with activations {k, 64, 64, ℓ}. We train CEMs with
16-dimensional embeddings.

We train all models for 200 epochs, using the Adam optimiser with learning rate 10−3

and momentum 0.9. For hard models, we train the encoder and the classifier head for 200
and 20 epochs respectively. We train with batch sizes 512 for TabularToy(δ) and 32 for
dSprites(γ) and 3dshapes(γ).

A.3 Scores evaluation
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Figure 15: ÑIS evaluated on
hard CBMs across datasets.

Except for Figure 14, all the displayed scores are evalu-
ated on test sets. The reported intervention performances
are obtained with a random policy. In Figures 3, 4 and
16 we show results for single models, and the displayed
means and 95% confidence intervals refer to a 5-fold eval-
uation of each score. In the rest of the paper, we repeat
the evaluation of each score 5 times for individual models,
and we display means and 95% confidence intervals repre-
senting the distribution of the mean upon 5-fold training
for each model class. MIs and entropies are estimated via
the KSG estimator (Kraskov et al., 2004) with 3 near-
est neighbours. The OIS and NIS are evaluated using
their original implementations and default settings from
Espinosa Zarlenga et al. (2023a).
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Figure 16: ÑIS and leakage scores for the pairs of models assessed in Figure 4, Table 1.

Appendix B. Undesired features of the Niche
Impurity Score

Being computed as an AUC, NIS = 1/2 indicates that concept representation subsets are
not predictive of the value of concepts, while NIS = 1 is meant to indicate that the higher-
order interconcept leakage is maximal. For a fair comparison of our scores with NIS, we
plot ÑIS = 2(NIS − 1/2), taking values in (0, 1) corresponding to no and maximal leakage
respectively.

Evaluating NIS on the pairs of models considered in Figure 4, this score appears to be
anticorrelated with intervention performance and leakage (Figure 16). Furthermore, it takes
proportionally very high values regardless of the model and dataset. This is confirmed by its
behaviour on hard CBMs (Figure 15): the NIS is non-vanishing and very high in all cases.
These undesired features that NIS generally exhibits signal potential flaws in its design and
make it an unsuitable metric of leakage.

Appendix C. Concept-wise leakage scores

The concept-wise leakage scores defined in (6) and (9) provide more granular information
on the leakage encoded in each concept. In Figure 17 we display the CTLi and ICLi

scores for the pairs of models analysed in Figure 4 and Table 1. Note in particular that
i) leakage is not necessarily learnt homogeneously across concepts, and ii) comparing two
models with different levels of interpretability, certain concepts may exhibit comparable
amounts of leakage (such as c4 in the dSprites(0) example), while for others leakage may be
significantly different. Concept-wise scores are sensitive to both phenomena, making them
valuable indicators of per-concept risk upon intervention as well as important measures for
model design.

Appendix D. Details on the correlation between leakage scores and
intervention performance

The models considered for this computation are
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Figure 17: Concept-wise leakage scores evaluated on the pairs of models in Figure 4.
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Figure 18: Distributions of Pearson r and corresponding p-values between the intervention
score S(int) and the CTL, ICL and OIS leakage metrics for TabularToy(0.25).

• for the TabularToy(0.25), TabularToy(0.75), dSprites(0), dSprites(4) datasets: soft
and logit CBMs with λ = 0.01, 0.1, 0.5, 1, 5, 10;

• for the 3dshapes(0), 3dshapes(5) datasets: soft and logit CBMs with λ = 0.001, 0.005,
0.01, 0.05, 0.1, 0.5, 1.

Each class of models were trained over 5 folds, amounting to a total of 60 evaluated models
for each of the former four datasets, and to a total of 70 models for each of the latter two
datasets.

As an example, in Figure 18 we display the distributions of the Pearson r and p-values be-
tween intervention performance and the CTL, ICL, OIS scores resulting from MC-sampling
for the TabularToy(0.25) dataset.

Appendix E. Behaviour of CBMs at high λ

In soft and logit CBMs leakage is minimal for values of λ > λmin, where λmin is specific of
the considered model class (Figure 19). As one further increases λ, leakage scores remain
essentially constant. At significantly higher λ ≳ λmax concept supervision may however
become too strong, at the expense of task learning. In such cases,

27



Soft Logit
0.0

0.2

0.4

0.6

0.8

1.0 CTL

Soft Logit

TabularToy(0.25)
ICL 5

10
20
50

Soft Logit
0.0

0.2

0.4

0.6

0.8

1.0 CTL

Soft Logit

dSprites(0)
ICL 5

10
20
50

Soft Logit
0.0

0.2

0.4

0.6

0.8

1.0 CTL

Soft Logit

3dshapes(0)
ICL 1

2
5
10

Figure 19: Leakage scores evaluated on soft and logit CBMs at high λ.
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Figure 20: Concepts and task accuracies evaluated for the same models analysed in Figure
7 on datasets with complete and incomplete sets of concepts.

1. task performance may experience a drop. For instance, models trained on Tab-
ularToy(0.25) reach a task accuracy above 90% in only 3 out of 5 folds for each
λ = 10, 20, 50;

2. leakage may raise again well above the minimal value. The soft models trained on
3dshapes(0) are a compelling example of this.

Finally, note that the minimal attainable leakage in logit CBMs is higher than in soft CBMs
on a given dataset.

Appendix F. Performance of models with incomplete concept sets and
misspecified head

In Figure 20 we report the task and concept accuracies of the soft CBMs trained on complete
and incomplete sets of concepts discussed in Section 7. Note in particular the decrease in
task accuracy at high λ that manifests in case of incomplete concept sets. At low λ, leakage
is sufficient to ensure task accuracy remains essentially the same as in the case of complete
concept sets. Figure 21 presents the task and concept accuracies of the well-specified and
misspecified soft CBMs evaluated in Figure 8 and discussed in Section 7.

Appendix G. Dimensional-dependent bias in MI estimators

MI estimators are affected by significant biases in high dimensions as a general consequence
of the curse of dimensionality (Lord et al., 2018; Carrara and Ernst, 2019; Czyż et al., 2023;
Gowri et al., 2024). This results in MI estimates that cannot be compared across dimensions,
as such biases are dimension-dependent. To illustrate this issue for the KSG estimator we
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Figure 21: Concepts and task accuracies evaluated for the same models with a linear head
analysed in Figure 8 trained on datasets with linear and non-linear tasks as functions of
concepts.

adopt in this work, we consider normally-distributed higher-dimensional variables with non-
trivial correlations, for which MIs and entropies can be computed in closed form. To see the
effect of the dimension on the normalised interconcept MI, we sample two d−dimensional
random variables (X,Y ) ∼ N (0,Σ(IC)(ρ)), where the covariance takes the form, Σ(IC) =(

Id ρ Id
ρ Id Id

)
, where Id denotes the identity matrix of dimension d, and ρ ∈ (−1, 1) measures

the linear correlation between each component of X and Y . To model concepts-task MI,
we consider two variables X ∈ Rd and Y ∈ R drawn from a normal distribution with zero
mean and covariance matrix

Σ(CT ) =


1 · · · 0 ρ
...

. . .
...

...
0 · · · 1 ρ
ρ · · · ρ 1

 , (16)

where all the components of X are equally correlated with Y . Note that Σ(CT ) is positive-
definite only for 0 ≤ ρ < 1/

√
d, hence we will consider covariances only within this range.

For normally-distributed variables, entropy and MI can be computed in closed form
(Cover and Thomas, 2005). Considering two variables (X,Y ) ∼ N (µ,Σ) of dimensions dX

and dY respectively, and Σ(IC) =

(
ΣX Σ̃

Σ̃ ΣY

)
, the entropy and MI read,

H(X) =
dX
2

(1 + log 2π) , I(X,Y ) =
1

2
log

|ΣX | |ΣY |
|Σ|

, (17)

where | · | denotes the determinant. For interconcept MI with dX = dY = d, this entails the
following theoretic values for MI and normalised MI,

I(IC)(X,Y ) = −d
2

log
(
1 − ρ2

)
, Ĩ(IC)(X,Y ) =

I(IC)(X,Y )√
H(X)H(Y )

= −
log
(
1 − ρ2

)
1 + log 2π

, (18)

while for concepts-task MI with dX = d and dY = 1,

I(CT )(X,Y ) = −1

2
log
(
1 − dρ2

)
, Ĩ(CT )(X,Y ) =

I(CT )(X,Y )

H(Y )
= −

log
(
1 − dρ2

)
1 + log 2π

. (19)
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Figure 22: Results for the Gaussian experiment illustrating the bias in estimates of MI
and normalised MI depending on the dimension and covariance.

We compare these predicted behaviours with the MIs and normalised MIs obtained with
the KSG estimator (Kraskov et al., 2004) on a range of correlations and dimensions. The
results are displayed in Figure 22, where the theoretic behaviours for different ground-truth
correlations are represented with dashed lines.

Although monotonically related to the theoretic values, the estimated normalised MIs
are pushed towards higher and higher values as one increases the dimension, regardless
of the ground-truth correlation. This prevents comparing quantities estimated on concept
representations of different dimensions as required by the definitions of the CTL and ICL
scores in (6)-(8), while still enabling one to compare MIs and normalised MIs for concept
representations of the same dimension. Note also that these results cannot be used as
calibration curves to account for such biases, since these Gaussian models only incorporate
linear correlations, while leakage more generally manifests as shared information between
two variables.

OIS is affected by the same type of biases. As discussed in Section 4, the OIS is
meant to be a rough estimate of interconcept leakage, and hence of interconcept MI when
ground-truth interconcept correlations are negligible. In Figure 23 we display the OIS scores
for the 16-dimensional concept vector representations ĉwi in a number of CEMs trained with
different λ and pint. We note OIS is generally very high and affected by the same biases
as the standard MI estimators, casting further doubts on its utility for higher-dimensional
concept representations.
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Figure 23: The OIS values computed on the vectors ĉwi learnt by CEMs with low and
high λ and pint, on TabularToy(0.25), dSprites(0) and 3dshapes(0).

Appendix H. Further results on CEM non-interpretability

Embedding structure at non-vanishing pint. In Figures 25 and 26 we display the PCA
projections of the weighted vectors ĉw1 with colouring based on the ground-truth value of
the task label and of concepts 2 and 3 respectively, at non-vanishing pint and for low and
high λ.
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Figure 24: Alignment leakage
score for CEMs trained on the
TabularToy(0.25) dataset with
low and high λ and pint.

Concept accuracy and intervention performance
are not measures of interpretability in CEMs. As
demonstrated in Section 8, CEMs generally encode high
amounts of concepts-task leakage, and from this perspec-
tive, concept accuracy is only a measure of how predictive
the vectors ĉwi are of concept i, fully unable to capture
the additional information about the task that the em-
beddings encode. Furthermore, as shown in Figure 12,
interconcept leakage increases as one raises concept su-
pervision. Thus cacc typically correlates with interconcept
leakage in CEMs.

Intervention performance is not an indicator of leak-
age either – it is very high in models with severe leakage
(Figure 27). In particular, CEMs where high concepts-
task leakage is present in both ĉ+i and ĉ−i are able to
achieve a vanishing S(int). This motivates the definition
and adoption of more sensitive information-theoretic mea-
sures for CEMs, such as (10), (11) and (12).

Appendix I. Alignment leakage in CEMs

A subtle leakage effect may in principle arise when exposing a model like CEMs to inter-

ventions during training. For each data point n ∈ {1, . . . , N} with ground-truth value c
(n)
i

for concept i, we denote by aligned (unaligned) vector the one between ĉ
+(n)
i or ĉ

−(n)
i which
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Figure 25: 2-dimensional PCA projections of the weighted embeddings ĉw1 for the first
concept across datasets and for different values of λ at high pint = 0.75. The colouring
indicates the value of the ground-truth task label.

is aligned (unaligned) with the value of c
(n)
i : if c

(n)
i = 1, ĉ

+(n)
i (ĉ

−(n)
i ) is the aligned (un-

aligned) vector, and vice versa ĉ
−(n)
i (ĉ

+(n)
i ) is the aligned (unaligned) vector for c

(n)
i = 0.

The meaning of this distinction is that after intervening on the i-th concept at training or

test time, the weighted vector ĉ
w(n)
i is equal to the aligned vector. A model exposed to inter-

ventions may thus learn to improve performance upon interventions by generating aligned
vectors that are more predictive of the task than the unaligned ones. This form of leakage
results in embeddings that have inhomogeneous reliability depending on the alignment with
ground-truth concepts, leading to an overall reduction in model interpretability.

This effect, which we label alignment leakage, is a specific manifestation of concepts-task
leakage. To quantify it, we define the following information-theoretic score, which indicates
to what extent aligned vectors are more predictive of the task than unaligned vectors across
both positive and negative embeddings, as an excess in concepts-task normalised MIs as
defined in (10),

Ĩ(align)
(
ĉ+, ĉ−, c, y

)
= Ĩ(CT )

(
ĉ+(aligned), y

)
− Ĩ(CT )

(
ĉ+(unaligned), y

)
(20)

+ Ĩ(CT )
(
ĉ−(aligned), y

)
− Ĩ(CT )

(
ĉ−(unaligned), y

)
,

where ĉ±(aligned) denote the set of positive/negative vectors aligned with the corresponding
ground-truth concept, and analogously for ĉ±(unaligned). Ĩ(align) takes values in (-2,2) in units
of normalised MI; positive values indicate that the aligned vectors are more predictive of
the task than the unaligned ones, while a value of zero corresponds to no alignment leakage.
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Figure 26: 2-dimensional PCA projections of the weighted embeddings ĉw1 for the first
concept across datasets and for different values of λ at high pint = 0.75. The colouring
indicates the ground-truth value of concepts 2 and 3.
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Figure 27: The S(int) score for CEMs with low and high λ and pint.

We assess this form of leakage in CEMs trained at different values of λ and pint. While
in models trained on dSprites(0) and 3dshapes(0) it does not appear, we find Ĩ(align) scores
incompatible with zero for models trained on TabularToy(0.25) (Figure 24). Alignment
leakage is stronger in models at high λ and pint, supporting the intuition that such a
detrimental effect correlates with exposure to interventions during training.
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