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The combination of autonomous recording units (ARUs) and machine learning enables scalable 
biodiversity monitoring. These data are often analysed using occupancy models, yet methods for 
integrating machine learning outputs with these models are rarely compared. Using the Yucatán 
black howler monkey as a case study, we evaluated four approaches for integrating ARU data and 
machine learning outputs into occupancy models: (i) standard occupancy models with verified data, 
and false-positive occupancy models using (ii) presence-absence data, (iii) counts of detections, and 
(iv) continuous classifier scores. We assessed estimator accuracy and the effects of decision threshold, 
temporal subsampling, and verification strategies. We found that classifier-guided listening with a 
standard occupancy model provided an accurate estimate with minimal verification effort. The false-
positive models yielded similarly accurate estimates under specific conditions, but were sensitive to 
subjective choices including decision threshold. The inability to determine stable parameter choices 
a priori, coupled with the increased computational complexity of several models (i.e. the detection-
count and continuous-score models), limits the practical application of false-positive models. In the 
case of a high-performance classifier and a readily detectable species, classifier-guided listening paired 
with a standard occupancy model provides a practical and efficient approach for accurately estimating 
occupancy.
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Monitoring biodiversity is key to effective conservation management1. Identifying spatial and temporal trends 
of threatened species is particularly important for prioritising conservation action, evaluating the effectiveness 
of management interventions, and providing feedback for adaptive management2. However, species monitoring 
efforts have long been plagued by imperfect detection, especially failing to detect a species when it is present, 
which can strongly bias inferences of population trends and responses to environmental covariates1.

Many monitoring programmes account for imperfect detection using occupancy modelling3. Occupancy 
modelling relies on repeat observations at each sampling site to estimate the probability of detection and 
subsequently occupancy, the proportion of sample units estimated to be occupied by the target species4. 
Occupancy analyses are commonly used to infer species’ spatial distributions5, population dynamics1, and 
responses to factors such as anthropogenic threats6. These inferences have become fundamental for guiding 
conservation measures for threatened species, including tracking trends in populations over time7,8 and 
identifying priority conservation areas3.

Advances in monitoring technology such as camera traps and more recently autonomous recording units 
(ARUs) enable efficient monitoring of biodiversity at scale9. Data collected by ARUs are ideal for occupancy 
modelling due to the ability to leave sensors unattended, providing replicate surveys at each location. Traditionally, 
bioacoustic data have been manually reviewed for species presence, and there are well established methods for 
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integrating these data into occupancy models10,11. However, machine learning models are increasingly used to 
process the vast amounts of data collected12,13, which assign a score to each sound clip reflecting the model’s 
confidence in the presence of a target species. While these methods have vastly increased the efficiency of 
processing acoustic data, there is a lack of clear guidance on integrating the outputs of these classifiers into 
occupancy models12,13.

The challenge in incorporating machine learning outputs into occupancy models largely stems from 
misidentification of auditory signals by the classifiers14. Common practice in machine learning involves 
converting the continuous score produced by a classifier into a binary class (e.g., present or absent), using a 
chosen decision threshold. This process typically results in numerous false-positive detections14,15 (i.e. an 
‘absent’ file being wrongly classified as ‘present’), violating a key assumption of traditional occupancy models3. 
False-positive detections accumulate over time, and even at low rates can lead to severe bias in estimates of 
occupancy probability16,17. Several approaches have been proposed and used for dealing with these types of 
data. An increasingly recommended approach involves manually verifying species presence in all files above a 
chosen decision threshold, producing a dataset suitable for traditional occupancy modelling10,18,19. However, 
this method often requires substantial manual effort for data verification and involves selection of a threshold, a 
subjective choice guided by the user’s priorities to strike a balance between precision (reducing false positives) 
and recall (reducing missed detections)20. More recently, a suite of false-positive occupancy modelling 
approaches have been developed21,22, including some that circumvent the need for a decision threshold, and 
which promise substantially reduced manual input for removal of false positives13,23,24. These approaches likely 
vary in accuracy, efficiency, and computational requirements, however, there have been no attempts to directly 
compare these methods by applying them to a single common dataset. Such comparisons are essential for 
understanding the strengths and weaknesses of available approaches, and for contributing to a wider evidence 
base that practitioners can draw on for guidance.

In this study we assess the performance of a suite of proposed methods for integrating ARU data and 
machine learning outputs with occupancy models, using a case study of the Yucatán black howler monkey 
(Alouatta pigra), a vocal primate species endemic to the forests of Central America25. We compare alternative 
occupancy modelling approaches for magnitude and direction of error and further evaluate the efficiency and 
ease of implementation of each model. We compare: (i) traditional occupancy models with manually verified 
acoustic data, (ii) binary false-positive occupancy models using presence-absence data17,26, (iii) a false-positive 
occupancy model using counts of detections23, and (iv) continuous-score false-positive occupancy models using 
raw classifier scores23,24. We additionally explore the influence of decision threshold, temporal subsampling, and 
data verification strategies on model estimates. With this case study, we aim to contribute to an important wider 
evidence base on model performance, which is required to establish more generalisable recommendations for 
end users.

Materials and methods
Study area
Our study areas were situated in central and southern Belize (Fig. 1). The northernmost study area, hereafter 
referred to as Manatee, comprised Manatee Forest Reserve, several smaller neighbouring protected areas, 
and several sites outside the protected areas (Fig. 1). The more southerly study area, hereafter referred to as 
Cockscomb, comprised Cockscomb Basin Wildlife Sanctuary, Mango Creek Forest Reserve and several sites 
outside the protected areas (Fig. 1). Generally, both areas are characterised by similar habitat types, dominated 
by broad-leaved moist forest on steep hills, with some lowland savannah27. However, Cockscomb has a much 
steeper elevational gradient, with a peak of 1041 m compared to 593 m in Manatee. Cockscomb also has greater 
overall forest cover compared to Manatee, which has experienced some forest loss due to hurricane damage and 
human activity. The final area, Tapir Mountain Nature Reserve (TMNR), was used only to collect training data 
for the machine learning classifier and was not used to model occupancy. This area is also dominated by broad-
leaved moist forest on steep hills.

Study species
The Yucatán black howler monkey (Alouatta pigra) is a primate species native to Belize, eastern Guatemala, and 
south-eastern Mexico. A. pigra is an arboreal, forest-dependent species that lives in groups ranging from 2 to 12 
individuals28. Home range sizes for this species vary widely, with research in Belize documenting home range 
sizes between 0.5 and 50 ha29–31. Howler monkeys emit loud, low-frequency calls, known as howls, which can 
be heard over long distances through the forest (> 1 km)32–34. Throughout the day, howler monkeys commonly 
engage in several bouts of howling, with each bout lasting on average around 10–15  min, and sometimes 
ranging up to an hour33,35. The rate of howling bouts is highest around dawn, followed by a smaller peak in the 
afternoon33,35.

Data collection
We deployed ARUs (AudioMoths36) at 10 points in TMNR from March 2018 to March 2019, and at 59 points 
across Manatee (n = 35) and Cockscomb (n = 24) between January 2021 and June 2021. ARUs were deployed 
along logging roads and trails, with a minimum separation distance of 2 km, except for in TMNR where device 
placement was determined by a probabilistic algorithm37. ARUs recorded simultaneously within each area, with 
no rotation of points.

ARUs were all deployed in pairs using the same configuration and setup. At each point, one ARU recorded 
during the day (07:00–17:00), and the other during the night (17:00–07:00). Devices were deployed primarily 
to monitor hunting, using custom firmware designed to detect gunshots38. The onboard classifier triggered a 
4-s recording whenever it detected a gunshot-like sound, characterised by a sharp, broadband blast followed 
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by rapid decay38. Howler monkey vocalizations share similar traits, including a sharp onset and broadband 
signal followed by attenuation34. To maximize gunshot detections, the classifier was configured for high 
recall, resulting in low precision and a high rate of false positives. Consequently, howler monkey vocalizations 
frequently triggered the detection algorithm and appeared as false-positive gunshot detections in the recordings.

To avoid excessive triggering, a threshold of 100 recordings per hour was set, after which the device stopped 
recording for the rest of the hour. This threshold was reached roughly 25% of the time at each sensor and there 
was an average of 69 min of recordings per sensor per day. While data collection was not optimised for howler-
monkey detection, ‘messy’ datasets such as these are a reality in conservation39,40 and those from surveys using 
monitoring technology increasingly contain information on by-catch of potential value to conservation41.

Howler monkey classifier
We trained a classifier to provide scores in the range [0, 1] for howler monkey presence within each sound file. 
We used a convolutional neural network (CNN) for our classification model, as these models have proven to 
be powerful for sound classification for a broad range of species including howler monkeys10,19,42. We curated 
training data for the model by randomly selecting 1,000 4-s recordings from each of TMNR and Manatee, and 
reviewing files for howler monkey presence by visually inspecting spectrograms and listening to the audio 
recordings. We supplemented these data with 7 recordings obtained from the Macaulay Library at the Cornell 
Lab of Ornithology, which were split into 40 4-s clips containing howler monkey vocalisations following manual 
review (see acknowledgements for file accreditations). We used this dataset to train a ResNet18 convolutional 
neural network (CNN) classifier on spectrograms of the 4-s clips. We trained the classifier using OpenSoundscape 
v0.7.143 (Supplementary Information). We subsequently applied the classifier to the entire dataset, generating a 
machine learning score for each clip.

Fig. 1.  Location of autonomous recorder unit (ARU) deployments in Belize. Data collected in Tapir Mountain 
Nature Reserve (TMNR; depicted in an inset zoom panel) and Manatee were used for classifier training. Data 
collected in Manatee and Cockscomb Basin Wildlife Sanctuary (Cockscomb) were used for the occupancy 
modelling. Map created using QGIS 3.10 (QGIS.org, 2024. QGIS Geographic Information System. QGIS 
Association. http://www.qgis.org).
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Occupancy modelling
Comparison of different frameworks
We compared occupancy frameworks using data collected within Cockscomb and Manatee. For consistency 
between points, we filtered the dataset to retain only data from the first 28 days of sampling at each recorder 
point, and we additionally filtered the dataset to retain only data from the period coinciding with peak howling 
activity around dawn (4.00–7.00 am). We removed one sampling point that did not have 28 days of recordings 
leaving 58 points for the analysis.

We considered the collection of recordings from each point as an individual ‘site’. In line with other occupancy 
studies utilising ARU data processed by machine learning classifiers15,24, we defined true occupancy at each 
site as the sample-at-hand occupancy, determined by whether the species was present in at least one of all the 
recordings from that site. We defined p as the probability of detecting the species at a site given the species was 
present.

Sample-at-hand occupancy is typically estimated by manually verifying all the data used within the model24. 
Due to the high volume of data used in our models (over 200 h of recordings), it was not feasible to verify all 
the files used, so we employed a sampling approach to obtain our best estimate of sample-at-hand occupancy. 
We used a combination of sampling methods to minimise the chance of underestimating sample-at-hand. 
Sampling included: (1) review of the top-ten highest scoring files (global top ten) at each site, (2) review of the 
highest scoring file at each site on every third day, (3) review of files above a decision threshold of 0.77 (on the 
softmax scale) with early stopping when a presence was detected at each site, (4) scheduled listening to the first 
recording made every third day at each site, and (5) random listening of 2921 files (190 min). The threshold of 
0.77 was chosen as it provided a good balance between recall and precision, with 85% recall and 92% precision 
on the validation data (Supplementary Fig. S1). This combination of sampling methods involving both random 
and targeted listening was used to ensure that, in addition to high-scoring files, files spanning a wide range of 
machine learning scores were verified at each site (Supplementary Fig. S2).

In total we reviewed 4,829 files (~ 5.5 h of recordings), with a mean of 58 files (SD = 27.7) reviewed per site 
and a maximum of 214 files reviewed at a single site. We considered the information gained from the extensive 
manual verification process as the best available estimate of ‘true’ parameter values, and that it represents the 
best estimate that could be achieved from the reduced dataset (i.e. reduced level of verification)15. To assess 
performance of each model we thus calculated the difference between model-estimated occupancy and the 
estimated sample-at-hand occupancy. While we acknowledge that this estimate is not perfect, it is the most 
accurate approximation of the ground truth achievable under the circumstances. Although we cannot completely 
rule out the possibility of underestimating the true occupancy, we took extensive steps to minimize this risk 
through diverse verification methods.

For initial comparisons of methods involving the use of thresholding (ii and iii) we used the decision 
threshold of 0.77. For continuous-score occupancy models we transformed classifier scores into the logit 
scale to satisfy model assumptions (Supplementary Fig. S1). We did not include environmental covariates for 
occupancy as we were primarily interested in comparing occupancy estimates, and furthermore their inclusion 
would have vastly increased the complexity of our model comparisons. We included environmental covariates 
to model detection probability, as we found that this was necessary to account for the unexplained variation 
in detection probability in our dataset. Data exploration confirmed that detection probability was associated 
with environmental covariates including forest cover, and that there was also a difference between the two 
survey grids (Supplementary Information). Furthermore, we found that the association with forest cover was 
different between the two survey grids. Consequently we modelled detection probability as a function of ‘forest’ 
(calculated as standardised mean value of forest height44 within a 2  km circular buffer around each point), 
‘grid’ (categorical covariate with two levels), and an interaction term. The forest covariate ranged 8.2–23.6 m in 
Cockscomb (mean = 19.6 m, SD = 5.1), and 1.7–20.9 m in Manatee (mean = 14.1 m, SD = 5.2). We included this 
structure to account for heterogeneity in detection probability in all models going forward. For all false-positive 
models, we assumed that false-positive rate was constant across sites. All models were run in R version 4.2.045.

Standard occupancy model  This approach involved manually verifying howler monkey presence from a small 
subset of files and using the resulting detection data in a standard single season occupancy model (referred to 
throughout as the ‘standard’ occupancy model). We compared several different approaches for selecting data 
to verify, including (1) verification of the file with the highest classifier score on every third day from each site, 
resulting in ten files verified per site (referred to from here on as ‘top-ten listening’), (2) verification of all files 
above a threshold of 0.77 on every third day from each site (referred to from here on as ‘thresholded listening’), 
(3) random verification of a single file on every third day from each site (resulting in ten files verified per site), 
and (4) scheduled listening (as described above). The same set of randomly verified files was used from here on 
whenever the use of random verification is referred to, and likewise whenever the use of top-ten files is referred 
to. These sampling approaches all resulted in verified files for ten separate days at each site. We subsequently 
constructed the detection histories by creating a separate survey replicate for each day and assigning a detection 
(1) to any site/day combination that had at least one file with a confirmed howler monkey detection.

Because howler monkey vocalisations are distinctive we assumed manual verification of files did not result 
in any false-positive detections24. Thus these data were suitable for the standard occupancy model4, where site 
specific occupancy, zi (occupied = 1, not occupied = 0), is assumed to arise from a Bernoulli distribution:

	 zi ∼ Bernoulli (ψ)� (1)
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where ψ is the probability of occurrence. As z is not directly observed, we model the observation process, where 
the observed detection, y at site i during survey replicate j also arises from a Bernoulli process conditional on 
the latent occurrence process if the species is present:

	 yi,j ∼ Bernoulli (pi, zi)� (2)

	 logit (pi) = α0 + α1 × foresti + α2 × gridi + α3 × foresti × gridi� (3)

where if the species is present at site i, then pi is the probability of detecting the species. If the species is absent 
at site i, then pi equals 0 such that we assume there is no potential for a false-positive detection. We fit the 
occupancy models using the R package Unmarked46 and evaluated model fit using the MacKenzie-Bailey 
goodness of fit test47.

Binary false-positive occupancy model (Royle-Link model and extensions)  This approach involved extract-
ing all files above a chosen decision threshold and declaring them as presences. As this process will result in 
false-positive detections, we used the Royle-Link false-positive occupancy model17, the simplest extension of 
the original occupancy model. In this model, we use the parameter p11 to describe the probability of detect-
ing a species given it is present (y = 1|z = 1), and p10 to describe the probability of a false-positive detection 
(y = 1|z = 0). The observation model is then altered to allow y to arise from a Bernoulli distribution even when 
z is 0:

	 yi,j ∼ Bernoulli (p11,izi + p10 (1 − zi))� (4)

with detection probability given the species is present (p11) modelled as a function of forest height and survey 
grid:

	 logit (p11,i) = α0 + α1 × foresti + α2 × gridi + α3 × foresti × gridi� (5)

We constructed the detection history by creating a separate survey replicate for each day and assigning a detection 
(1) to any site/day combination that had at least one file with a classifier score above the decision threshold. This 
model has multimodal likelihood, resulting in identical support for different parameter values. We addressed 
this issue by constraining the parameters so that  p11 > p10, an assumption that is supported by the validation 
data at the chosen threshold17. We imposed this constraint by providing arbitrarily chosen starting values that 
align with this condition (0.7 for p11 and 0.1 for p10)23.

Extensions of this model accommodate additional sources of verified data26. We investigated two approaches 
for incorporating verified data, firstly the multiple detection method (‘multi-method’) design which involves 
treating verified data as ordinary occupancy data (i.e. only subject to false negatives), and modelling these data 
alongside the false-positive data in a joint occupancy model26. The second approach, the multiple detection 
state model (‘multi-state’) involves modelling the probability of three different detection states (no detection, 
uncertain detection, and certain detection), with an additional parameter b which is the probability of an 
uncertain detection being classified as certain26. We implemented both models using the manually verified top-
ten files from each site and the thresholded score data used for the Royle-Link model. For the multi-method 
model, we defined the method as a detection covariate as specified in Kéry and Royle (2020). We did not supply 
starting values for these models as the verified data alleviated multi-modality issues. We fit the models using the 
package Unmarked46.

False positive-occupancy model using detection counts  This model, first proposed by Chambert et al. (2018) 
and expanded on in Kéry and Royle (2020), uses the counts of detections derived from automated classification 
of acoustic data, ya

i,j . This framework uses two independent data sources that are incorporated into separate 
observation models; binary false-positive data (yi,j) and frequency data (ya

i,j). In our case, detection data from 
the ARUs was used as the source for the frequency data, and as there was no independent data source available 
for the binary false-positive model, this component was removed from the code. The observation model for ya

i,j  
assumes that frequency of detections is a Poisson random variable, with a baseline rate of true positives λ, and 
a false positive rate ω, where:

	 ya
i,j ∼ P oisson (λizi + ω)� (6)

And λ is modelled as a function of detection covariates, forest height and survey grid, as follows:

	 log (λi) = α0 + α1 × foresti + α2 × gridi + α3 × foresti × gridi� (7)

A further extension of this model allows for manual verification of a subset of the detection data to improve 
parameter estimates. However, model convergence with the addition of verification data was unstable, therefore, 
this version of the model was not implemented.

We created the detection history by summing the number of putative positive detections (i.e. all files above 
the chosen decision threshold) for each day. We ran the model in the R package jagsUI using Markov-chain 
Monte Carlo (MCMC) simulations48 (see Supplementary Information for details of model implementation). 
We ran the model using 3 chains with 33,000 samples, 3000 burn-in samples, and 5000 adaptation samples. We 
evaluated model convergence by inspecting trace plots and evaluating Gelman-Rubin statistics49, and assumed 
convergence when parameters had Gelman-Rubin statistics < 1.1.
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Continuous-score occupancy models using classifier scores (Rhinehart et al. & Kéry and Royle)  These ap-
proaches use the classifier scores of each file, which are related to the likelihood that the target sound is present 
and bypasses the need to use a decision threshold. We compared two models using this approach which were 
independently developed by Kéry and Royle (2020) and Rhinehart et al. (2022). Both models incorporate a mod-
el of classifier scores into the occupancy framework, whereby scores are assumed to be derived from a normal 
distribution with a mean and standard deviation that vary by group (g) (present or absent). If the file does not 
contain the species, then the score value xk  for sample k is assumed to be assigned by the classifier as:

	 xk|g = 0 ∼ Normal(µ0, σ0)� (8)

where µ0 and σ0 are the mean and standard deviation of the scores returned by the classifier for files that do 
not contain the target species. If the file does contain the species, then the score is assumed to be assigned by the 
classifier as:

	 xk|g = 1 ∼ Normal (µ1, σ1)� (9)

where µ1 and  σ1  are the mean and standard deviation of the scores returned by the classifier for files that do 
contain the target species. The parameters of the score distribution reflect the classifier quality24. Classifiers that 
have a large difference between µ1 and µ0 ​ can better distinguish between the two groups. Similarly, classifiers 
with smaller values of σ1 and σ0 can achieve higher precision in distinguishing between the groups. Both 
models describe the overall distribution of scores as a two-component Gaussian mixture, comprising negative 
files and positive files. Where zi = 1 (the site is occupied by the species), both components (positive files and 
negative files) are present in the mixture, with the positive component weighted by the call rate (and in the 
case of the Kéry model also by the false positive rate). In sites where  zi = 0 (the site is not occupied), only 
the component describing negative files is present. For both models a subset of verified files can be added to 
improve performance. For the Kéry model, the mixture model for scores is incorporated as an additional level 
in the detection-count false-positive model (model (iii) described above), whereas in the Rhinehart model, the 
model structure is more akin to the multiple detection methods model of Miller et al. (2011). For the Kéry model 
we used the same model adjustments detailed in (iii), including modelling the baseline detection rate of true 
positives (λ) as a function of the detection covariates. The Rhinehart model has an equivalent term, θ, which 
describes the probability that a species appears in a file at an occupied site, which we modelled as follows:

	 logit (θi) = α0 + α1 × foresti + α2 × gridi + α3 × foresti × gridi� (10)

We implemented the models using the scripts provided in each publication with some minor adjustments to 
accommodate our survey design and improve model convergence (Supplementary Information). The input data 
consisted of machine learning scores, sampled from the full dataset by selecting the first file from each ten-
minute interval. This approach was used to speed up model running time and to aid model convergence issues 
that arose with the full dataset. As for the detection-count false-positive model, The Kéry continuous-score 
model failed to converge with the addition of verification data, therefore this version of the model was not 
implemented. We ran the Kéry model with 3 chains of 12,000 samples, with 2000 burn-in, 1000 adaptation, and 
a thinning rate of 2. We ran the Rhinehart models with and without verification data with 3 chains with 20,000 
samples and 3000 burn-in. We checked convergence of all models using the Gelman-Rubin diagnostic.

Influence of decision thresholds on occupancy estimates
We investigated the influence of decision threshold on occupancy estimates by constructing detection histories 
using incremental decision thresholds between 0.01 and 0.99 with an interval of 0.03. We ran the binary 
false-positive models (Royle-Link, the multi-state, and multi-method) and the detection-count false-positive 
model (without verification data) using each dataset (see Supplementary Information for details of model 
implementation).

We additionally explored the influence of decision threshold on the occupancy estimate of the standard 
occupancy model. Our baseline threshold for this test was 0.77, as this was the minimum threshold above which 
we verified data. We selected thresholds between 0.77 and 1 using an interval of 0.001, and re-ran the standard 
occupancy model using only verified data above the chosen threshold.

Influence of verification method on occupancy estimates
The false-positive models included extensions to accommodate manually verified data, however it is not obvious 
what method to use to select verification data, and if the choice of method influences estimates. Previous studies 
have used annotations from randomly selected files15,24. For common and frequently vocalising species such 
as the howler monkey, there will be a relatively high probability of randomly selected files containing positive 
detections. However, for rare and infrequently vocalising species this process is unlikely to confirm many 
positive detections without substantially increasing the number of randomly selected files to verify. For such 
species, an alternative strategy focusing on verifying high-scoring files, which are more likely to contain true 
positives, may be beneficial.

We compared model estimates for the false-positive occupancy models with the addition of (i) 10 randomly 
verified files, and (ii) top-ten verified files. We did not include the detection-count or the Kéry continuous score 
false-positive models in this comparison as they failed to converge with verification data. We used a decision 
threshold of 0.01 for the binary false-positive models to allow the detection histories to accommodate the same 
set of randomly chosen files.
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Influence of temporal subsampling regime on occupancy estimates
Temporal subsampling of the data may be required to meet the models’ assumption of independence of surveys, 
but it is not evident how to subsample ARU and classifier score data, or how the approach used influences 
estimates. We compared two subsampling approaches: (i) selecting the first file within a time interval (systematic 
first-file subsampling), and (ii) selecting the highest scoring file within a time interval (maximum score 
subsampling). We explored time intervals of 10 min and 30 min for both approaches. We compared estimates 
from the three binary false-positive models, the detection-count false-positive model, and the Rhinehart 
continuous-score false-positive models without verified data using these subsampling approaches. We omitted 
the Kéry continuous-score false-positive model from this comparison due to instability of model convergence. 
We used a decision threshold of 0.77 to construct the detection history for the binary and detection-count false-
positive models. A summary of all model comparisons is found in Supplementary Table S1.

Efficiency of methods
We recorded computational running time for all methods. All computations were run on a Macbook M1 Pro 
Chip with 8-core CPU except for the CNN which was trained in Google Colab using one GPU.

Results
Classifier performance
The CNN effectively separated howler monkey vocalisations from background sounds (Supplementary Fig. 
S1). Classifications performed on the labelled validation data showed that distributions of positive and negative 
scores were well separated (µ0= − 2.2, σ0 = 1.1, µ1= 2.6, σ1 = 2.3).

Estimated sample-at-hand occupancy
Manual verification of the 4,249 files sampled from all the data used in the models confirmed occupancy for 32 
of the 58 sites (0.55). Naive occupancy from the annotated datasets included in the models was 5 sites (0.09) for 
the randomly annotated dataset (580 total files annotated), 11 sites (0.19) for the scheduled annotations (580 
total files annotated), 21 sites (0.36) for thresholded listening down to the threshold of 0.77 every third day (759 
total files annotated), and 21 sites (0.36) for annotation of the single highest scoring file every third day (580 
total files annotated).

Comparison of modelled occupancy estimates
The standard occupancy models using the top-ten data and thresholded listening data both produced occupancy 
estimates close to the sample-at-hand (Fig. 2). The thresholded model produced an estimate within 0.01 of the 
sample-at-hand (ψ = 0.54, 95% confidence interval (CI) 0.37–0.70), and the top-ten model estimated occupancy 
at 0.02 over sample-at-hand (ψ = 0.57, 95% CI 0.39–0.73). The standard occupancy model with scheduled 
listening produced an estimate 0.04 below sample-at-hand and with larger confidence intervals than the other 
standard occupancy models (ψ = 0.51, 95% CI 0.27–0.75). The standard occupancy model with random data 
produced an estimate 0.30 below sample-at-hand (ψ = 0.26, 95% CI 0.09–0.54).

Of the binary false-positive models, both the Royle-Link model and the multi-method model with top-ten 
verification data produced estimates similar to the sample-at-hand (Royle-Link ψ = 0.56, 95% CI 0.42–0.69; 
multi-method ψ = 0.58, 95% CI 0.45–0.71). The multi-state false-positive model with top-ten verification 
data produced an occupancy estimate 0.13 above sample-at-hand (ψ = 0.68, 95% CI 0.52–0.81) (Fig. 2). The 
detection-count false-positive model underestimated occupancy by 0.25 in the absence of verification data (ψ = 
0.30, 95% credible interval (CRI) 0.19–0.42), and failed to converge with the addition of verification data.

The Rhinehart continuous-score false-positive model without the addition of verification data produced an 
estimate 0.18 above sample-at-hand (ψ = 0.72, 95% CRI 0.60–0.83) (Fig. 2). With top-ten verification data, this 
model produced an estimate within 0.02 of sample-at-hand (ψ = 0.53, 95% CRI 0.39–0.66). With the addition 
of randomly verified data, this model produced an estimate within 0.06 of sample-at-hand (ψ = 0.61, 95% CRI 
0.48–0.73). The Kéry continuous-score false-positive model produced an estimate 0.35 above sample-at-hand in 
the absence of verification data (ψ = 0.91, 95% CRI 0.82–0.97). As for the detection-count false-positive model, 
this model failed to converge with the addition of verification data.

Influence of decision threshold
Estimates from the Royle-Link model remained relatively stable while the decision threshold was above 0.25, 
with estimates deviating by no more than 0.14 from the sample-at-hand. However, when the threshold dropped 
below 0.25, error increased, and the model tended to overestimate occupancy, with deviations reaching up to 
0.45 from the sample-at-hand (Fig. 3). A similar pattern was observed for occupancy estimates derived from 
the multi-method and multi-state occupancy models, which had relatively stable estimates above a threshold of 
0.25 (estimates within 0.11 and 0.16 of sample-at-hand for each model respectively), with increasingly unstable 
estimates below this threshold (estimates within 0.34 and 0.41 of sample-at-hand). Occupancy estimates 
produced by the detection-count false-positive model were generally more stable, however occupancy was 
consistently underestimated with the exception of the lowest threshold, 0.01, which produced an estimate 0.10 
above sample-at-hand (Fig. 3).

The decision threshold had minimal impact on the standard occupancy model with thresholded data. Most 
positive detections had a classifier score of 0.95 or higher (mean = 0.98, SD = 0.04), so detection histories remained 
stable across thresholds from 0.77 to 0.95. Occupancy estimates within this range showed minimal variation, 
deviating by less than 0.01 from sample-at-hand occupancy. For thresholds above 0.95, positive detections in 
the detection histories became sparse as more zeros were introduced. The most notable changes to the detection 
histories occurred at thresholds exceeding 0.99. Occupancy estimates between 0.95 and 0.99 remained close to 
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sample-at-hand, varying by less than 0.02. However, for thresholds beyond 0.99, the model’s occupancy estimates 
fluctuated, with deviations reaching up to 0.10 from sample-at-hand occupancy (Supplementary Fig. S3).

Influence of verification method
The type of verification data used had the strongest effect on occupancy estimates for the multi-state occupancy 
model, which produced an estimate 0.41 above sample-at-hand with top-ten verification data (ψ = 0.97, 95% 
CI 0.87–0.99) and produced an estimate 0.39 below sample-at-hand with randomly validated data e (ψ = 0.16, 
95% CI 0.07–0.31) (Fig. 4). In comparison, estimates from each of the remaining models were relatively similar 
to each other (for each model) regardless of verification method, but generally had lower error with top-ten 
verification data as opposed to randomly validated data.

Influence of temporal subsampling regime
The temporal interval used for the subsampling regime had minimal impact on error of occupancy estimates 
compared to the influence of subsampling regime (e.g. maximum score subsampling versus systematic first-
file sampling). For all models, error was lower with the use of maximum-score subsampling as opposed to 
systematic first-file sampling (Fig. 4). The Rhinehart continuous-score model did not converge without temporal 
subsampling, so this model run was excluded from the results.

Fig. 2.  Comparison of modelled occupancy estimates produced by: (a) standard occupancy model, (b) binary 
false-positive model and extensions, (c) frequency false positive occupancy model using counts of detections, 
and (d) false positive occupancy models using raw classifier scores. Where applicable models were run with the 
addition of two different types of verified data from each site: 10 randomly selected files, and 10 files with the 
highest classifier score. A threshold of 0.77 was used for binary and frequency false-positive models. Results 
were removed for variations that did not converge (e.g. Kéry model with randomly verified data, and without 
verified data). Bars denote 95% confidence intervals and credible intervals for maximum likelihood and 
Bayesian approaches respectively. The dashed vertical line represents the sample-at-hand occupancy estimate.
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Efficiency of approaches
Training the CNN took 115 min and predictions on 5400 h of data took 7.4 h using parallel processing on 4 cores 
and using a single GPU. Manual verification of 10 files per site took 15 min. The most computationally demanding 
models were Bayesian false-positive models, in particular the Kéry continuous-score false-positive model which 
took 35 min to run. Running time for the remaining Bayesian models ranged up to 12 min, and all other models 
ran in under one minute (Supplementary Table S2). The detection-count and Kéry continuous-score false-
positive models encountered significant convergence issues, likely due to the absence of marginalization in the 
model code50. As a result, their convergence was highly unstable, often requiring multiple re-runs with varying 
initial values to improve convergence. Despite these efforts, both models failed to consistently converge when 
verification data were included.

Discussion
Evaluating and comparing modeling approaches is essential for developing practical recommendations for 
integrating ARU data and machine learning outputs into occupancy models. In this study, we addressed this 
need using the Yucatán black howler monkey as a case study. Our findings demonstrated that classifier-guided 
listening, combined with a standard occupancy model, offers an effective and practical method for accurately 
estimating occupancy. This approach was particularly efficient when paired with the top-ten verification strategy, 
which further reduced verification effort. False-positive models also produced accurate estimates but only under 
specific conditions, such as particular combinations of decision thresholds and temporal subsampling regimes. 
The Royle-Link binary false-positive model produced accurate estimates within a realistically conservative range 
of decision thresholds, as did the multi-method and the Rhinehart continuous-score false positive models when 
combined with top-ten verification data, indicating that these methods can be effective in specific scenarios. 
Nevertheless, the dependence of false-positive models on factors like decision thresholds and temporal 
subsampling regimes, for which the most suitable approach cannot be determined a priori, limits the practical 
application of these methods.

Our results demonstrated the effectiveness of classifier-guided listening, which focuses listening effort on 
files with high classifier scores, for estimating site occupancy. We employed two approaches to classifier-guided 
listening: one involved listening to all files above a pre-set threshold (thresholded listening) for each replicate 
survey, and the other involved listening to a reduced dataset consisting of the top-scoring file from each replicate, 
leading to the review of just ten 4-s files per site (top-ten approach). Both approaches produced similarly accurate 
occupancy estimates within a standard occupancy model, with the top-ten approach minimising the required 

Fig. 3.  Influence of decision threshold on occupancy estimate using the detection frequency occupancy model 
(Chambert var.), the multi-method model, the multi-state model, and the Royle-Link false positive occupancy 
model. Models were run with and without the addition of verified data where applicable, which consisted 
of the top-ten files with the highest classifier score from each site. Bars denote 95% confidence intervals and 
credible intervals for maximum likelihood and Bayesian approaches respectively.
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listening time. In the absence of classifier-guided listening, occupancy estimates were less accurate and precise. 
Random verification led to substantial underestimation, while scheduled listening produced an occupancy 
estimate slightly below the sample-at-hand, with wider confidence intervals. The particular effectiveness 
of classifier-guided listening combined with a standard occupancy model in our study was likely due to the 
combination of a high-performance classifier and a readily detectable study species. In scenarios with low 
classifier performance or reduced target species detectability, this approach may become less efficient, requiring 
significantly more listening time to confirm detections. In such cases, there is potential that false-positive models 
may offer more suitable alternatives.

The false-positive models produced occupancy estimates comparable in accuracy to the standard occupancy 
models, however their performance was influenced by factors such as decision threshold, temporal subsampling, 
and verification strategies. In general, most of the false-positive models achieved higher accuracy with the use 
of a maximum-score temporal subsampling approach, whereby the file with the highest machine-learning score 

Fig. 4.  (a) Influence of data verification method on occupancy estimate. Verification methods include: no 
verification, 10 randomly selected files, and top-ten files with the highest classifier score. (b) Influence of 
temporal subsampling regime on occupancy estimate. Intervals used for subsampling were 0 (no subsampling), 
10 min, and 30 min. Subsampling methods were either ‘random’, which involved selecting the first recording 
from each interval, or ‘max’ which involved selecting the file with the highest classifier score within each 
interval. Results were removed for variations that did not converge (e.g. several of the Kéry models). Decision 
thresholds of 0.01 and 0.77 were used for (a) and (b) respectively. Bars denote 95% confidence intervals and 
credible intervals for maximum likelihood and Bayesian approaches respectively.
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was subsampled, the use of a mid-range decision threshold (where applicable), and supplemented with top-ten 
verification data (where applicable). These findings, however, are likely specific to this case study.

Sensitivity to decision thresholds poses challenges for both standard and false-positive occupancy models20. 
As demonstrated by Knight et al. (2019) for standard occupancy models, high decision thresholds reduce 
detection probability, which can lead to biased occupancy estimates. Furthermore, heterogeneity in detection 
probability, caused by variation in score distributions across sites, may be exacerbated at higher thresholds and 
further contribute to bias. In our study, however, estimates from the standard occupancy model with thresholded 
listening data remained relatively robust to changes in decision threshold, with minimal error observed across 
all thresholds. This resilience is likely due to the high classifier performance and detection rates in our system, 
which may mitigate the impact of threshold variation within a standard occupancy model.

Our results demonstrated that false-positive models are also sensitive to the choice of decision threshold, 
which can significantly affect the accuracy and stability of occupancy estimates. In theory, these models 
should remain unaffected by decision thresholds if their assumptions hold true across all thresholds. However, 
in practice, these assumptions are often not fully met, leading to variations in model performance. This was 
evident in our results, where estimates from the binary false-positive models fluctuated with changes to 
decision threshold, with the highest error rates occurring at lower thresholds where the false-positive rate was 
greatest. In contrast, the frequency false-positive model provided relatively stable estimates across thresholds 
but consistently underestimated occupancy. For most false-positive models in our study, using a mid-range 
threshold of 0.50 or above generally yielded stable estimates. However, it is unclear whether this threshold would 
be appropriate in scenarios with differing classifier performance or species detectability. Users of these models 
may need to evaluate estimates across a range of thresholds to ensure stability before applying these methods. 
A suitable range of thresholds can be determined by validating the classifier’s performance on a test dataset and 
assessing precision and recall across decision thresholds. Identifying a balanced range, where neither recall nor 
precision is significantly compromised, may provide a practical starting point for selecting suitable thresholds 
for these models.

An additional factor influencing estimator error for false-positive models was the incorporation of 
verification data. While verification data are often essential for model convergence51, there is limited guidance 
on how to sample or select the subset of data to verify. We compared two strategies: random verification and 
targeted verification using top-ten data. For the Rhinehart continuous-score and binary multi-method false-
positive models, both verification strategies improved occupancy estimates, but targeted verification produced 
more accurate results. In contrast, the binary multi-state model substantially underestimated occupancy with 
random verification and overestimated occupancy with targeted verification data. Notably, this comparison was 
conducted at a very low decision threshold, which contributed to instability in occupancy estimates. At higher 
thresholds, the multi-state model produced estimates comparable in accuracy to the multi-method model when 
incorporating top-ten verification data, although tended to overestimate occupancy. In general, the impact of the 
verification strategy used likely depends on how the data are incorporated into the models. In frameworks where 
verification data inform the occupancy state process (e.g. the multi-method model), maximizing detections of 
true positives through targeted listening is beneficial. However, where verification data inform the detection 
process (e.g. the multi-state model), targeted verification may bias false-positive rate estimates, and potentially 
inflate occupancy estimates. Future research should explore alternative strategies, such as stratified random 
sampling across machine learning score bands, to provide a more balanced representation of false positives and 
true positives52.

Our case study highlighted several challenges in fitting false-positive models to field data. The basic Royle-
Link false-positive model and its extensions are difficult to fit due to multimodal likelihoods17, which can result 
in label switching between parameters53. Supplying unambiguous data or restricting starting values is often 
essential for these models to converge51; consequently, many of the models necessitated exploring multiple 
combinations of initial values. While convergence of the Royle-Link model was straightforward with restricted 
starting values, we encountered significant difficulties with more complex Bayesian models, particularly the 
detection-count and continuous-score false-positive models from Kéry and Royle (2020). Convergence for these 
models was especially unstable when verified data were included, likely due to the absence of marginalization, 
as discussed by Augustine et al. (2023). These challenges, combined with high computational demands and 
sensitivity to subjective choices such as initial values, limit the practical utility of these models. In our case, these 
more complex approaches offered no clear advantage over a standard occupancy model with a small subset of 
verified data, making their implementation both costly and unnecessary.

Our case study, though not fully generalizable, highlights a growing trend in bioacoustics: leveraging machine 
learning models to process large datasets, often collected for other purposes, to estimate species occupancy. For a 
high-performing classifier and a readily detectable species, classifier-guided listening combined with a standard 
occupancy model provided accurate occupancy estimates while minimizing verification effort. This efficient 
approach can also supply verification data for certain false-positive occupancy models. While false-positive 
occupancy models also produced accurate estimates under specific conditions, their performance was highly 
sensitive to subjective choices, such as decision thresholds, temporal subsampling, and verification strategies. 
The challenge of predefining stable parameters, coupled with increased computational complexity, reduces the 
practicality of these models. Further studies are needed to evaluate these factors across diverse systems and 
to develop general guidelines for parameter selection. Through this case study, we provide initial evidence on 
model performance, laying the groundwork for establishing generalizable recommendations for integrating 
machine learning outputs with occupancy models.
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Data availability
Data and model code are provided on figshare at: https://doi.org/10.6084/m9.figshare.23309159 and ​h​t​t​p​s​:​/​/​d​o​i​
.​o​r​g​/​1​0​.​6​0​8​4​/​m​9​.​f​i​g​s​h​a​r​e​.​2​3​3​0​8​7​3​0​​​​​. 
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