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The combination of autonomous recording units (ARUs) and machine learning enables scalable
biodiversity monitoring. These data are often analysed using occupancy models, yet methods for
integrating machine learning outputs with these models are rarely compared. Using the Yucatan
black howler monkey as a case study, we evaluated four approaches for integrating ARU data and
machine learning outputs into occupancy models: (i) standard occupancy models with verified data,
and false-positive occupancy models using (ii) presence-absence data, (iii) counts of detections, and
(iv) continuous classifier scores. We assessed estimator accuracy and the effects of decision threshold,
temporal subsampling, and verification strategies. We found that classifier-guided listening with a
standard occupancy model provided an accurate estimate with minimal verification effort. The false-
positive models yielded similarly accurate estimates under specific conditions, but were sensitive to
subjective choices including decision threshold. The inability to determine stable parameter choices

a priori, coupled with the increased computational complexity of several models (i.e. the detection-
count and continuous-score models), limits the practical application of false-positive models. In the
case of a high-performance classifier and a readily detectable species, classifier-guided listening paired
with a standard occupancy model provides a practical and efficient approach for accurately estimating
occupancy.

Keywords Acoustic monitoring, Autonomous recording units (ARUs), Biodiversity monitoring, Yucatdn
black howler monkey, Occupancy modelling, False-positive models

Monitoring biodiversity is key to effective conservation management!. Identifying spatial and temporal trends
of threatened species is particularly important for prioritising conservation action, evaluating the effectiveness
of management interventions, and providing feedback for adaptive management2. However, species monitoring
efforts have long been plagued by imperfect detection, especially failing to detect a species when it is present,
which can strongly bias inferences of population trends and responses to environmental covariates'.

Many monitoring programmes account for imperfect detection using occupancy modelling®. Occupancy
modelling relies on repeat observations at each sampling site to estimate the probability of detection and
subsequently occupancy, the proportion of sample units estimated to be occupied by the target species®.
Occupancy analyses are commonly used to infer species’ spatial distributions®, population dynamics!, and
responses to factors such as anthropogenic threats®. These inferences have become fundamental for guiding
conservation measures for threatened species, including tracking trends in populations over time”® and
identifying priority conservation areas®.

Advances in monitoring technology such as camera traps and more recently autonomous recording units
(ARUs) enable efficient monitoring of biodiversity at scale’. Data collected by ARUs are ideal for occupancy
modelling due to the ability to leave sensors unattended, providing replicate surveys at each location. Traditionally,
bioacoustic data have been manually reviewed for species presence, and there are well established methods for
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integrating these data into occupancy models!®!!. However, machine learning models are increasingly used to
process the vast amounts of data collected'>!3, which assign a score to each sound clip reflecting the model’s
confidence in the presence of a target species. While these methods have vastly increased the efficiency of
processing acoustic data, there is a lack of clear guidance on integrating the outputs of these classifiers into
occupancy models!>13.

The challenge in incorporating machine learning outputs into occupancy models largely stems from
misidentification of auditory signals by the classifiers'®. Common practice in machine learning involves
converting the continuous score produced by a classifier into a binary class (e.g., present or absent), using a
chosen decision threshold. This process typically results in numerous false-positive detections'*!> (i.e. an
‘absent’ file being wrongly classified as ‘present’), violating a key assumption of traditional occupancy models>.
False-positive detections accumulate over time, and even at low rates can lead to severe bias in estimates of
occupancy probability!®!”. Several approaches have been proposed and used for dealing with these types of
data. An increasingly recommended approach involves manually verifying species presence in all files above a
chosen decision threshold, producing a dataset suitable for traditional occupancy modelling'®'®!°. However,
this method often requires substantial manual effort for data verification and involves selection of a threshold, a
subjective choice guided by the user’s priorities to strike a balance between precision (reducing false positives)
and recall (reducing missed detections)?®. More recently, a suite of false-positive occupancy modelling
approaches have been developed??, including some that circumvent the need for a decision threshold, and
which promise substantially reduced manual input for removal of false positives!'>?>?%. These approaches likely
vary in accuracy, efficiency, and computational requirements, however, there have been no attempts to directly
compare these methods by applying them to a single common dataset. Such comparisons are essential for
understanding the strengths and weaknesses of available approaches, and for contributing to a wider evidence
base that practitioners can draw on for guidance.

In this study we assess the performance of a suite of proposed methods for integrating ARU data and
machine learning outputs with occupancy models, using a case study of the Yucatdn black howler monkey
(Alouatta pigra), a vocal primate species endemic to the forests of Central America®>. We compare alternative
occupancy modelling approaches for magnitude and direction of error and further evaluate the efficiency and
ease of implementation of each model. We compare: (i) traditional occupancy models with manually verified
acoustic data, (ii) binary false-positive occupancy models using presence-absence data!”%, (iii) a false-positive
occupancy model using counts of detections?’, and (iv) continuous-score false-positive occupancy models using
raw classifier scores?>?%. We additionally explore the influence of decision threshold, temporal subsampling, and
data verification strategies on model estimates. With this case study, we aim to contribute to an important wider
evidence base on model performance, which is required to establish more generalisable recommendations for
end users.

Materials and methods

Study area

Our study areas were situated in central and southern Belize (Fig. 1). The northernmost study area, hereafter
referred to as Manatee, comprised Manatee Forest Reserve, several smaller neighbouring protected areas,
and several sites outside the protected areas (Fig. 1). The more southerly study area, hereafter referred to as
Cockscomb, comprised Cockscomb Basin Wildlife Sanctuary, Mango Creek Forest Reserve and several sites
outside the protected areas (Fig. 1). Generally, both areas are characterised by similar habitat types, dominated
by broad-leaved moist forest on steep hills, with some lowland savannah?’. However, Cockscomb has a much
steeper elevational gradient, with a peak of 1041 m compared to 593 m in Manatee. Cockscomb also has greater
overall forest cover compared to Manatee, which has experienced some forest loss due to hurricane damage and
human activity. The final area, Tapir Mountain Nature Reserve (TMNR), was used only to collect training data
for the machine learning classifier and was not used to model occupancy. This area is also dominated by broad-
leaved moist forest on steep hills.

Study species

The Yucatan black howler monkey (Alouatta pigra) is a primate species native to Belize, eastern Guatemala, and
south-eastern Mexico. A. pigra is an arboreal, forest-dependent species that lives in groups ranging from 2 to 12
individuals?®®. Home range sizes for this species vary widely, with research in Belize documenting home range
sizes between 0.5 and 50 ha?-3!. Howler monkeys emit loud, low-frequency calls, known as howls, which can
be heard over long distances through the forest (> 1 km)*-3, Throughout the day, howler monkeys commonly
engage in several bouts of howling, with each bout lasting on average around 10-15 min, and sometimes
ranging up to an hour®%. The rate of howling bouts is highest around dawn, followed by a smaller peak in the
afternoon’*3>,

Data collection

We deployed ARUs (AudioMoths>®) at 10 points in TMNR from March 2018 to March 2019, and at 59 points
across Manatee (n=35) and Cockscomb (n=24) between January 2021 and June 2021. ARUs were deployed
along logging roads and trails, with a minimum separation distance of 2 km, except for in TMNR where device
placement was determined by a probabilistic algorithm?®”. ARUs recorded simultaneously within each area, with
no rotation of points.

ARUs were all deployed in pairs using the same configuration and setup. At each point, one ARU recorded
during the day (07:00-17:00), and the other during the night (17:00-07:00). Devices were deployed primarily
to monitor hunting, using custom firmware designed to detect gunshots®®. The onboard classifier triggered a
4-s recording whenever it detected a gunshot-like sound, characterised by a sharp, broadband blast followed
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Fig. 1. Location of autonomous recorder unit (ARU) deployments in Belize. Data collected in Tapir Mountain
Nature Reserve (TMNR; depicted in an inset zoom panel) and Manatee were used for classifier training. Data
collected in Manatee and Cockscomb Basin Wildlife Sanctuary (Cockscomb) were used for the occupancy
modelling. Map created using QGIS 3.10 (QGIS.org, 2024. QGIS Geographic Information System. QGIS
Association. http://www.qgis.org).

by rapid decay®®. Howler monkey vocalizations share similar traits, including a sharp onset and broadband
signal followed by attenuation®. To maximize gunshot detections, the classifier was configured for high
recall, resulting in low precision and a high rate of false positives. Consequently, howler monkey vocalizations
frequently triggered the detection algorithm and appeared as false-positive gunshot detections in the recordings.
To avoid excessive triggering, a threshold of 100 recordings per hour was set, after which the device stopped
recording for the rest of the hour. This threshold was reached roughly 25% of the time at each sensor and there
was an average of 69 min of recordings per sensor per day. While data collection was not optimised for howler-
monkey detection, ‘messy’ datasets such as these are a reality in conservation*** and those from surveys using
monitoring technology increasingly contain information on by-catch of potential value to conservation®!.

Howler monkey classifier

We trained a classifier to provide scores in the range [0, 1] for howler monkey presence within each sound file.
We used a convolutional neural network (CNN) for our classification model, as these models have proven to
be powerful for sound classification for a broad range of species including howler monkeys!®!*42. We curated
training data for the model by randomly selecting 1,000 4-s recordings from each of TMNR and Manatee, and
reviewing files for howler monkey presence by visually inspecting spectrograms and listening to the audio
recordings. We supplemented these data with 7 recordings obtained from the Macaulay Library at the Cornell
Lab of Ornithology, which were split into 40 4-s clips containing howler monkey vocalisations following manual
review (see acknowledgements for file accreditations). We used this dataset to train a ResNet18 convolutional
neural network (CNN) classifier on spectrograms of the 4-s clips. We trained the classifier using OpenSoundscape
v0.7.1*3 (Supplementary Information). We subsequently applied the classifier to the entire dataset, generating a
machine learning score for each clip.
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Occupancy modelling

Comparison of different frameworks

We compared occupancy frameworks using data collected within Cockscomb and Manatee. For consistency
between points, we filtered the dataset to retain only data from the first 28 days of sampling at each recorder
point, and we additionally filtered the dataset to retain only data from the period coinciding with peak howling
activity around dawn (4.00-7.00 am). We removed one sampling point that did not have 28 days of recordings
leaving 58 points for the analysis.

We considered the collection of recordings from each point as an individual ‘site’ In line with other occupancy
studies utilising ARU data processed by machine learning classifiers'>?, we defined true occupancy at each
site as the sample-at-hand occupancy, determined by whether the species was present in at least one of all the
recordings from that site. We defined p as the probability of detecting the species at a site given the species was
present.

Sample-at-hand occupancy is typically estimated by manually verifying all the data used within the mode
Due to the high volume of data used in our models (over 200 h of recordings), it was not feasible to verify all
the files used, so we employed a sampling approach to obtain our best estimate of sample-at-hand occupancy.
We used a combination of sampling methods to minimise the chance of underestimating sample-at-hand.
Sampling included: (1) review of the top-ten highest scoring files (global top ten) at each site, (2) review of the
highest scoring file at each site on every third day, (3) review of files above a decision threshold of 0.77 (on the
softmax scale) with early stopping when a presence was detected at each site, (4) scheduled listening to the first
recording made every third day at each site, and (5) random listening of 2921 files (190 min). The threshold of
0.77 was chosen as it provided a good balance between recall and precision, with 85% recall and 92% precision
on the validation data (Supplementary Fig. S1). This combination of sampling methods involving both random
and targeted listening was used to ensure that, in addition to high-scoring files, files spanning a wide range of
machine learning scores were verified at each site (Supplementary Fig. S2).

In total we reviewed 4,829 files (~ 5.5 h of recordings), with a mean of 58 files (SD=27.7) reviewed per site
and a maximum of 214 files reviewed at a single site. We considered the information gained from the extensive
manual verification process as the best available estimate of ‘true’ parameter values, and that it represents the
best estimate that could be achieved from the reduced dataset (i.e. reduced level of verification)'®. To assess
performance of each model we thus calculated the difference between model-estimated occupancy and the
estimated sample-at-hand occupancy. While we acknowledge that this estimate is not perfect, it is the most
accurate approximation of the ground truth achievable under the circumstances. Although we cannot completely
rule out the possibility of underestimating the true occupancy, we took extensive steps to minimize this risk
through diverse verification methods.

For initial comparisons of methods involving the use of thresholding (ii and iii) we used the decision
threshold of 0.77. For continuous-score occupancy models we transformed classifier scores into the logit
scale to satisfy model assumptions (Supplementary Fig. S1). We did not include environmental covariates for
occupancy as we were primarily interested in comparing occupancy estimates, and furthermore their inclusion
would have vastly increased the complexity of our model comparisons. We included environmental covariates
to model detection probability, as we found that this was necessary to account for the unexplained variation
in detection probability in our dataset. Data exploration confirmed that detection probability was associated
with environmental covariates including forest cover, and that there was also a difference between the two
survey grids (Supplementary Information). Furthermore, we found that the association with forest cover was
different between the two survey grids. Consequently we modelled detection probability as a function of ‘forest’
(calculated as standardised mean value of forest height** within a 2 km circular buffer around each point),
‘grid’ (categorical covariate with two levels), and an interaction term. The forest covariate ranged 8.2-23.6 m in
Cockscomb (mean=19.6 m, SD=5.1), and 1.7-20.9 m in Manatee (mean=14.1 m, SD=5.2). We included this
structure to account for heterogeneity in detection probability in all models going forward. For all false-positive
models, we assumed that false-positive rate was constant across sites. All models were run in R version 4.2.0%.

124,

Standard occupancy model This approach involved manually verifying howler monkey presence from a small
subset of files and using the resulting detection data in a standard single season occupancy model (referred to
throughout as the ‘standard’ occupancy model). We compared several different approaches for selecting data
to verify, including (1) verification of the file with the highest classifier score on every third day from each site,
resulting in ten files verified per site (referred to from here on as ‘top-ten listening’), (2) verification of all files
above a threshold of 0.77 on every third day from each site (referred to from here on as ‘thresholded listening’),
(3) random verification of a single file on every third day from each site (resulting in ten files verified per site),
and (4) scheduled listening (as described above). The same set of randomly verified files was used from here on
whenever the use of random verification is referred to, and likewise whenever the use of top-ten files is referred
to. These sampling approaches all resulted in verified files for ten separate days at each site. We subsequently
constructed the detection histories by creating a separate survey replicate for each day and assigning a detection
(1) to any site/day combination that had at least one file with a confirmed howler monkey detection.

Because howler monkey vocalisations are distinctive we assumed manual verification of files did not result
in any false-positive detections®*. Thus these data were suitable for the standard occupancy model*, where site
specific occupancy, z; (occupied =1, not occupied =0), is assumed to arise from a Bernoulli distribution:

2; ~ Bernoulli (1) (1
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where 9 is the probability of occurrence. As z is not directly observed, we model the observation process, where
the observed detection, y at site ¢ during survey replicate j also arises from a Bernoulli process conditional on
the latent occurrence process if the species is present:

Yi,; ~ Bernoulli (p;, ;) (2)
logit (pi) = ap + a1 X forest; + az X grid; + ag X forest; X grid; 3)

where if the species is present at site ¢, then p; is the probability of detecting the species. If the species is absent
at site ¢, then p; equals 0 such that we assume there is no potential for a false-positive detection. We fit the
occupancy models using the R package Unmarked"® and evaluated model fit using the MacKenzie-Bailey
goodness of fit test?’.

Binary false-positive occupancy model (Royle-Link model and extensions) This approach involved extract-

ing all files above a chosen decision threshold and declaring them as presences. As this process will result in
false-positive detections, we used the Royle-Link false-positive occupancy model'’, the simplest extension of
the original occupancy model. In this model, we use the parameter p1; to describe the probability of detect-
ing a species given it is present (y = 1|z = 1), and p1¢ to describe the probability of a false-positive detection
(y = 1]z = 0). The observation model is then altered to allow y to arise from a Bernoulli distribution even when
z1is 0:

Yi,j ~ Bernoulli (p11,:2i + p1o (1 — 2:)) (4)

with detection probability given the species is present (p11) modelled as a function of forest height and survey
grid:

logit (p11,:) = ao + a1 X forest; + az X grid; + az X forest; X grid; (5)

We constructed the detection history by creating a separate survey replicate for each day and assigning a detection
(1) to any site/day combination that had at least one file with a classifier score above the decision threshold. This
model has multimodal likelihood, resulting in identical support for different parameter values. We addressed
this issue by constraining the parameters so that p11 > pi1o, an assumption that is supported by the validation
data at the chosen threshold!”. We imposed this constraint by providing arbitrarily chosen starting values that
align with this condition (0.7 for p11 and 0.1 for p19)?%.

Extensions of this model accommodate additional sources of verified data. We investigated two approaches
for incorporating verified data, firstly the multiple detection method (‘multi-method’) design which involves
treating verified data as ordinary occupancy data (i.e. only subject to false negatives), and modelling these data
alongside the false-positive data in a joint occupancy model*®. The second approach, the multiple detection
state model (‘multi-state’) involves modelling the probability of three different detection states (no detection,
uncertain detection, and certain detection), with an additional parameter b which is the probability of an
uncertain detection being classified as certain®®. We implemented both models using the manually verified top-
ten files from each site and the thresholded score data used for the Royle-Link model. For the multi-method
model, we defined the method as a detection covariate as specified in Kéry and Royle (2020). We did not supply
starting values for these models as the verified data alleviated multi-modality issues. We fit the models using the
package Unmarked*.

False positive-occupancy model using detection counts This model, first proposed by Chambert et al. (2018)
and expanded on in Kéry and Royle (2020), uses the counts of detections derived from automated classification

of acoustic data, y;' ;. This framework uses two independent data sources that are incorporated into separate
observation models; binary false-positive data (y;,;) and frequency data (y;’ ;). In our case, detection data from
the ARUs was used as the source for the frequency data, and as there was no independent data source available
for the binary false-positive model, this component was removed from the code. The observation model for y;’ ;
assumes that frequency of detections is a Poisson random variable, with a baseline rate of true positives A, and
a false positive rate w, where:

yi; ~ Poisson (Aizi + w) (6)

And ) is modelled as a function of detection covariates, forest height and survey grid, as follows:

log (\i) = ao + a1 X forest; + az X grid; + as X forest; X grid; (7)

A further extension of this model allows for manual verification of a subset of the detection data to improve
parameter estimates. However, model convergence with the addition of verification data was unstable, therefore,
this version of the model was not implemented.

We created the detection history by summing the number of putative positive detections (i.e. all files above
the chosen decision threshold) for each day. We ran the model in the R package jagsUI using Markov-chain
Monte Carlo (MCMC) simulations*® (see Supplementary Information for details of model implementation).
We ran the model using 3 chains with 33,000 samples, 3000 burn-in samples, and 5000 adaptation samples. We
evaluated model convergence by inspecting trace plots and evaluating Gelman-Rubin statistics*’, and assumed
convergence when parameters had Gelman-Rubin statistics < 1.1.
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Continuous-score occupancy models using classifier scores (Rhinehart et al. & Kéry and Royle) These ap-

proaches use the classifier scores of each file, which are related to the likelihood that the target sound is present
and bypasses the need to use a decision threshold. We compared two models using this approach which were
independently developed by Kéry and Royle (2020) and Rhinehart et al. (2022). Both models incorporate a mod-
el of classifier scores into the occupancy framework, whereby scores are assumed to be derived from a normal
distribution with a mean and standard deviation that vary by group (g) (present or absent). If the file does not
contain the species, then the score value x, for sample k is assumed to be assigned by the classifier as:

zk|lg = 0 ~ Normal(po, 00) (8)

where p10 and og are the mean and standard deviation of the scores returned by the classifier for files that do
not contain the target species. If the file does contain the species, then the score is assumed to be assigned by the
classifier as:

zk|lg =1 ~ Normal (u1,01) 9)

where 111 and o1 are the mean and standard deviation of the scores returned by the classifier for files that do
contain the target species. The parameters of the score distribution reflect the classifier quality?*. Classifiers that
have a large difference between 1 and po can better distinguish between the two groups. Similarly, classifiers
with smaller values of o1 and oo can achieve higher precision in distinguishing between the groups. Both
models describe the overall distribution of scores as a two-component Gaussian mixture, comprising negative
files and positive files. Where z; = 1 (the site is occupied by the species), both components (positive files and
negative files) are present in the mixture, with the positive component weighted by the call rate (and in the
case of the Kéry model also by the false positive rate). In sites where z; = 0 (the site is not occupied), only
the component describing negative files is present. For both models a subset of verified files can be added to
improve performance. For the Kéry model, the mixture model for scores is incorporated as an additional level
in the detection-count false-positive model (model (iii) described above), whereas in the Rhinehart model, the
model structure is more akin to the multiple detection methods model of Miller et al. (2011). For the Kéry model
we used the same model adjustments detailed in (iii), including modelling the baseline detection rate of true
positives () as a function of the detection covariates. The Rhinehart model has an equivalent term, 6, which
describes the probability that a species appears in a file at an occupied site, which we modelled as follows:

logit (0;) = a0 + a1 X forest; + az X grid; + as X forest; x grid; (10)

We implemented the models using the scripts provided in each publication with some minor adjustments to
accommodate our survey design and improve model convergence (Supplementary Information). The input data
consisted of machine learning scores, sampled from the full dataset by selecting the first file from each ten-
minute interval. This approach was used to speed up model running time and to aid model convergence issues
that arose with the full dataset. As for the detection-count false-positive model, The Kéry continuous-score
model failed to converge with the addition of verification data, therefore this version of the model was not
implemented. We ran the Kéry model with 3 chains of 12,000 samples, with 2000 burn-in, 1000 adaptation, and
a thinning rate of 2. We ran the Rhinehart models with and without verification data with 3 chains with 20,000
samples and 3000 burn-in. We checked convergence of all models using the Gelman-Rubin diagnostic.

Influence of decision thresholds on occupancy estimates

We investigated the influence of decision threshold on occupancy estimates by constructing detection histories
using incremental decision thresholds between 0.01 and 0.99 with an interval of 0.03. We ran the binary
false-positive models (Royle-Link, the multi-state, and multi-method) and the detection-count false-positive
model (without verification data) using each dataset (see Supplementary Information for details of model
implementation).

We additionally explored the influence of decision threshold on the occupancy estimate of the standard
occupancy model. Our baseline threshold for this test was 0.77, as this was the minimum threshold above which
we verified data. We selected thresholds between 0.77 and 1 using an interval of 0.001, and re-ran the standard
occupancy model using only verified data above the chosen threshold.

Influence of verification method on occupancy estimates

The false-positive models included extensions to accommodate manually verified data, however it is not obvious
what method to use to select verification data, and if the choice of method influences estimates. Previous studies
have used annotations from randomly selected files'>?%. For common and frequently vocalising species such
as the howler monkey, there will be a relatively high probability of randomly selected files containing positive
detections. However, for rare and infrequently vocalising species this process is unlikely to confirm many
positive detections without substantially increasing the number of randomly selected files to verify. For such
species, an alternative strategy focusing on verifying high-scoring files, which are more likely to contain true
positives, may be beneficial.

We compared model estimates for the false-positive occupancy models with the addition of (i) 10 randomly
verified files, and (ii) top-ten verified files. We did not include the detection-count or the Kéry continuous score
false-positive models in this comparison as they failed to converge with verification data. We used a decision
threshold of 0.01 for the binary false-positive models to allow the detection histories to accommodate the same
set of randomly chosen files.
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Influence of temporal subsampling regime on occupancy estimates

Temporal subsampling of the data may be required to meet the models’ assumption of independence of surveys,
but it is not evident how to subsample ARU and classifier score data, or how the approach used influences
estimates. We compared two subsampling approaches: (i) selecting the first file within a time interval (systematic
first-file subsampling), and (ii) selecting the highest scoring file within a time interval (maximum score
subsampling). We explored time intervals of 10 min and 30 min for both approaches. We compared estimates
from the three binary false-positive models, the detection-count false-positive model, and the Rhinehart
continuous-score false-positive models without verified data using these subsampling approaches. We omitted
the Kéry continuous-score false-positive model from this comparison due to instability of model convergence.
We used a decision threshold of 0.77 to construct the detection history for the binary and detection-count false-
positive models. A summary of all model comparisons is found in Supplementary Table S1.

Efficiency of methods
We recorded computational running time for all methods. All computations were run on a Macbook M1 Pro
Chip with 8-core CPU except for the CNN which was trained in Google Colab using one GPU.

Results

Classifier performance

The CNN effectively separated howler monkey vocalisations from background sounds (Supplementary Fig.
S1). Classifications performed on the labelled validation data showed that distributions of positive and negative
scores were well separated (o= —2.2,00 = 1.1, 1=2.6, 01 = 2.3).

Estimated sample-at-hand occupancy

Manual verification of the 4,249 files sampled from all the data used in the models confirmed occupancy for 32
of the 58 sites (0.55). Naive occupancy from the annotated datasets included in the models was 5 sites (0.09) for
the randomly annotated dataset (580 total files annotated), 11 sites (0.19) for the scheduled annotations (580
total files annotated), 21 sites (0.36) for thresholded listening down to the threshold of 0.77 every third day (759
total files annotated), and 21 sites (0.36) for annotation of the single highest scoring file every third day (580
total files annotated).

Comparison of modelled occupancy estimates

The standard occupancy models using the top-ten data and thresholded listening data both produced occupancy
estimates close to the sample-at-hand (Fig. 2). The thresholded model produced an estimate within 0.01 of the
sample-at-hand (v = 0.54, 95% confidence interval (CI) 0.37-0.70), and the top-ten model estimated occupancy
at 0.02 over sample-at-hand (¢ = 0.57, 95% CI 0.39-0.73). The standard occupancy model with scheduled
listening produced an estimate 0.04 below sample-at-hand and with larger confidence intervals than the other
standard occupancy models (¢» = 0.51, 95% CI 0.27-0.75). The standard occupancy model with random data
produced an estimate 0.30 below sample-at-hand (¢ = 0.26, 95% CI 0.09-0.54).

Of the binary false-positive models, both the Royle-Link model and the multi-method model with top-ten
verification data produced estimates similar to the sample-at-hand (Royle-Link ¢ = 0.56, 95% CI 0.42-0.69;
multi-method ¥ = 0.58, 95% CI 0.45-0.71). The multi-state false-positive model with top-ten verification
data produced an occupancy estimate 0.13 above sample-at-hand (¢ = 0.68, 95% CI 0.52-0.81) (Fig. 2). The
detection-count false-positive model underestimated occupancy by 0.25 in the absence of verification data (¢ =
0.30, 95% credible interval (CRI) 0.19-0.42), and failed to converge with the addition of verification data.

The Rhinehart continuous-score false-positive model without the addition of verification data produced an
estimate 0.18 above sample-at-hand (¢ = 0.72, 95% CRI 0.60-0.83) (Fig. 2). With top-ten verification data, this
model produced an estimate within 0.02 of sample-at-hand (¢) = 0.53, 95% CRI 0.39-0.66). With the addition
of randomly verified data, this model produced an estimate within 0.06 of sample-at-hand (¢ = 0.61, 95% CRI
0.48-0.73). The Kéry continuous-score false-positive model produced an estimate 0.35 above sample-at-hand in
the absence of verification data (¢ = 0.91, 95% CRI 0.82-0.97). As for the detection-count false-positive model,
this model failed to converge with the addition of verification data.

Influence of decision threshold

Estimates from the Royle-Link model remained relatively stable while the decision threshold was above 0.25,
with estimates deviating by no more than 0.14 from the sample-at-hand. However, when the threshold dropped
below 0.25, error increased, and the model tended to overestimate occupancy, with deviations reaching up to
0.45 from the sample-at-hand (Fig. 3). A similar pattern was observed for occupancy estimates derived from
the multi-method and multi-state occupancy models, which had relatively stable estimates above a threshold of
0.25 (estimates within 0.11 and 0.16 of sample-at-hand for each model respectively), with increasingly unstable
estimates below this threshold (estimates within 0.34 and 0.41 of sample-at-hand). Occupancy estimates
produced by the detection-count false-positive model were generally more stable, however occupancy was
consistently underestimated with the exception of the lowest threshold, 0.01, which produced an estimate 0.10
above sample-at-hand (Fig. 3).

The decision threshold had minimal impact on the standard occupancy model with thresholded data. Most
positive detections had a classifier score of 0.95 or higher (mean =0.98, SD = 0.04), so detection histories remained
stable across thresholds from 0.77 to 0.95. Occupancy estimates within this range showed minimal variation,
deviating by less than 0.01 from sample-at-hand occupancy. For thresholds above 0.95, positive detections in
the detection histories became sparse as more zeros were introduced. The most notable changes to the detection
histories occurred at thresholds exceeding 0.99. Occupancy estimates between 0.95 and 0.99 remained close to
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Fig. 2. Comparison of modelled occupancy estimates produced by: (a) standard occupancy model, (b) binary
false-positive model and extensions, (c) frequency false positive occupancy model using counts of detections,
and (d) false positive occupancy models using raw classifier scores. Where applicable models were run with the
addition of two different types of verified data from each site: 10 randomly selected files, and 10 files with the
highest classifier score. A threshold of 0.77 was used for binary and frequency false-positive models. Results
were removed for variations that did not converge (e.g. Kéry model with randomly verified data, and without
verified data). Bars denote 95% confidence intervals and credible intervals for maximum likelihood and
Bayesian approaches respectively. The dashed vertical line represents the sample-at-hand occupancy estimate.

sample-at-hand, varying by less than 0.02. However, for thresholds beyond 0.99, the model’s occupancy estimates
fluctuated, with deviations reaching up to 0.10 from sample-at-hand occupancy (Supplementary Fig. S3).

Influence of verification method

The type of verification data used had the strongest effect on occupancy estimates for the multi-state occupancy
model, which produced an estimate 0.41 above sample-at-hand with top-ten verification data (¢ = 0.97, 95%
CI 0.87-0.99) and produced an estimate 0.39 below sample-at-hand with randomly validated data e (¢ = 0.16,
95% CI 0.07-0.31) (Fig. 4). In comparison, estimates from each of the remaining models were relatively similar
to each other (for each model) regardless of verification method, but generally had lower error with top-ten
verification data as opposed to randomly validated data.

Influence of temporal subsampling regime

The temporal interval used for the subsampling regime had minimal impact on error of occupancy estimates
compared to the influence of subsampling regime (e.g. maximum score subsampling versus systematic first-
file sampling). For all models, error was lower with the use of maximum-score subsampling as opposed to
systematic first-file sampling (Fig. 4). The Rhinehart continuous-score model did not converge without temporal
subsampling, so this model run was excluded from the results.
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Fig. 3. Influence of decision threshold on occupancy estimate using the detection frequency occupancy model
(Chambert var.), the multi-method model, the multi-state model, and the Royle-Link false positive occupancy
model. Models were run with and without the addition of verified data where applicable, which consisted

of the top-ten files with the highest classifier score from each site. Bars denote 95% confidence intervals and
credible intervals for maximum likelihood and Bayesian approaches respectively.

Efficiency of approaches

Training the CNN took 115 min and predictions on 5400 h of data took 7.4 h using parallel processing on 4 cores
and using a single GPU. Manual verification of 10 files per site took 15 min. The most computationally demanding
models were Bayesian false-positive models, in particular the Kéry continuous-score false-positive model which
took 35 min to run. Running time for the remaining Bayesian models ranged up to 12 min, and all other models
ran in under one minute (Supplementary Table S2). The detection-count and Kéry continuous-score false-
positive models encountered significant convergence issues, likely due to the absence of marginalization in the
model code®. As a result, their convergence was highly unstable, often requiring multiple re-runs with varying
initial values to improve convergence. Despite these efforts, both models failed to consistently converge when
verification data were included.

Discussion

Evaluating and comparing modeling approaches is essential for developing practical recommendations for
integrating ARU data and machine learning outputs into occupancy models. In this study, we addressed this
need using the Yucatan black howler monkey as a case study. Our findings demonstrated that classifier-guided
listening, combined with a standard occupancy model, offers an effective and practical method for accurately
estimating occupancy. This approach was particularly efficient when paired with the top-ten verification strategy,
which further reduced verification effort. False-positive models also produced accurate estimates but only under
specific conditions, such as particular combinations of decision thresholds and temporal subsampling regimes.
The Royle-Link binary false-positive model produced accurate estimates within a realistically conservative range
of decision thresholds, as did the multi-method and the Rhinehart continuous-score false positive models when
combined with top-ten verification data, indicating that these methods can be effective in specific scenarios.
Nevertheless, the dependence of false-positive models on factors like decision thresholds and temporal
subsampling regimes, for which the most suitable approach cannot be determined a priori, limits the practical
application of these methods.

Our results demonstrated the effectiveness of classifier-guided listening, which focuses listening effort on
files with high classifier scores, for estimating site occupancy. We employed two approaches to classifier-guided
listening: one involved listening to all files above a pre-set threshold (thresholded listening) for each replicate
survey, and the other involved listening to a reduced dataset consisting of the top-scoring file from each replicate,
leading to the review of just ten 4-s files per site (top-ten approach). Both approaches produced similarly accurate
occupancy estimates within a standard occupancy model, with the top-ten approach minimising the required
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Fig. 4. (a) Influence of data verification method on occupancy estimate. Verification methods include: no
verification, 10 randomly selected files, and top-ten files with the highest classifier score. (b) Influence of
temporal subsampling regime on occupancy estimate. Intervals used for subsampling were 0 (no subsampling),
10 min, and 30 min. Subsampling methods were either ‘random, which involved selecting the first recording
from each interval, or ‘max’ which involved selecting the file with the highest classifier score within each
interval. Results were removed for variations that did not converge (e.g. several of the Kéry models). Decision
thresholds of 0.01 and 0.77 were used for (a) and (b) respectively. Bars denote 95% confidence intervals and
credible intervals for maximum likelihood and Bayesian approaches respectively.

listening time. In the absence of classifier-guided listening, occupancy estimates were less accurate and precise.
Random verification led to substantial underestimation, while scheduled listening produced an occupancy
estimate slightly below the sample-at-hand, with wider confidence intervals. The particular effectiveness
of classifier-guided listening combined with a standard occupancy model in our study was likely due to the
combination of a high-performance classifier and a readily detectable study species. In scenarios with low
classifier performance or reduced target species detectability, this approach may become less efficient, requiring
significantly more listening time to confirm detections. In such cases, there is potential that false-positive models
may offer more suitable alternatives.

The false-positive models produced occupancy estimates comparable in accuracy to the standard occupancy
models, however their performance was influenced by factors such as decision threshold, temporal subsampling,
and verification strategies. In general, most of the false-positive models achieved higher accuracy with the use
of a maximum-score temporal subsampling approach, whereby the file with the highest machine-learning score
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was subsampled, the use of a mid-range decision threshold (where applicable), and supplemented with top-ten
verification data (where applicable). These findings, however, are likely specific to this case study.

Sensitivity to decision thresholds poses challenges for both standard and false-positive occupancy models®.
As demonstrated by Knight et al. (2019) for standard occupancy models, high decision thresholds reduce
detection probability, which can lead to biased occupancy estimates. Furthermore, heterogeneity in detection
probability, caused by variation in score distributions across sites, may be exacerbated at higher thresholds and
further contribute to bias. In our study, however, estimates from the standard occupancy model with thresholded
listening data remained relatively robust to changes in decision threshold, with minimal error observed across
all thresholds. This resilience is likely due to the high classifier performance and detection rates in our system,
which may mitigate the impact of threshold variation within a standard occupancy model.

Our results demonstrated that false-positive models are also sensitive to the choice of decision threshold,
which can significantly affect the accuracy and stability of occupancy estimates. In theory, these models
should remain unaffected by decision thresholds if their assumptions hold true across all thresholds. However,
in practice, these assumptions are often not fully met, leading to variations in model performance. This was
evident in our results, where estimates from the binary false-positive models fluctuated with changes to
decision threshold, with the highest error rates occurring at lower thresholds where the false-positive rate was
greatest. In contrast, the frequency false-positive model provided relatively stable estimates across thresholds
but consistently underestimated occupancy. For most false-positive models in our study, using a mid-range
threshold of 0.50 or above generally yielded stable estimates. However, it is unclear whether this threshold would
be appropriate in scenarios with differing classifier performance or species detectability. Users of these models
may need to evaluate estimates across a range of thresholds to ensure stability before applying these methods.
A suitable range of thresholds can be determined by validating the classifier’s performance on a test dataset and
assessing precision and recall across decision thresholds. Identifying a balanced range, where neither recall nor
precision is significantly compromised, may provide a practical starting point for selecting suitable thresholds
for these models.

An additional factor influencing estimator error for false-positive models was the incorporation of
verification data. While verification data are often essential for model convergence®!, there is limited guidance
on how to sample or select the subset of data to verify. We compared two strategies: random verification and
targeted verification using top-ten data. For the Rhinehart continuous-score and binary multi-method false-
positive models, both verification strategies improved occupancy estimates, but targeted verification produced
more accurate results. In contrast, the binary multi-state model substantially underestimated occupancy with
random verification and overestimated occupancy with targeted verification data. Notably, this comparison was
conducted at a very low decision threshold, which contributed to instability in occupancy estimates. At higher
thresholds, the multi-state model produced estimates comparable in accuracy to the multi-method model when
incorporating top-ten verification data, although tended to overestimate occupancy. In general, the impact of the
verification strategy used likely depends on how the data are incorporated into the models. In frameworks where
verification data inform the occupancy state process (e.g. the multi-method model), maximizing detections of
true positives through targeted listening is beneficial. However, where verification data inform the detection
process (e.g. the multi-state model), targeted verification may bias false-positive rate estimates, and potentially
inflate occupancy estimates. Future research should explore alternative strategies, such as stratified random
sampling across machine learning score bands, to provide a more balanced representation of false positives and
true positives.

Our case study highlighted several challenges in fitting false-positive models to field data. The basic Royle-
Link false-positive model and its extensions are difficult to fit due to multimodal likelihoods!”, which can result
in label switching between parameters®. Supplying unambiguous data or restricting starting values is often
essential for these models to converge®'; consequently, many of the models necessitated exploring multiple
combinations of initial values. While convergence of the Royle-Link model was straightforward with restricted
starting values, we encountered significant difficulties with more complex Bayesian models, particularly the
detection-count and continuous-score false-positive models from Kéry and Royle (2020). Convergence for these
models was especially unstable when verified data were included, likely due to the absence of marginalization,
as discussed by Augustine et al. (2023). These challenges, combined with high computational demands and
sensitivity to subjective choices such as initial values, limit the practical utility of these models. In our case, these
more complex approaches offered no clear advantage over a standard occupancy model with a small subset of
verified data, making their implementation both costly and unnecessary.

Our case study, though not fully generalizable, highlights a growing trend in bioacoustics: leveraging machine
learning models to process large datasets, often collected for other purposes, to estimate species occupancy. For a
high-performing classifier and a readily detectable species, classifier-guided listening combined with a standard
occupancy model provided accurate occupancy estimates while minimizing verification effort. This efficient
approach can also supply verification data for certain false-positive occupancy models. While false-positive
occupancy models also produced accurate estimates under specific conditions, their performance was highly
sensitive to subjective choices, such as decision thresholds, temporal subsampling, and verification strategies.
The challenge of predefining stable parameters, coupled with increased computational complexity, reduces the
practicality of these models. Further studies are needed to evaluate these factors across diverse systems and
to develop general guidelines for parameter selection. Through this case study, we provide initial evidence on
model performance, laying the groundwork for establishing generalizable recommendations for integrating
machine learning outputs with occupancy models.
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Data availability
Data and model code are provided on figshare at: https://doi.org/10.6084/m9.figshare.23309159 and https://doi
.0rg/10.6084/m9.figshare.23308730.
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