
1

University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are

retained by the author and/or other copyright owners. A copy can be downloaded for personal non-

commercial research or study, without prior permission or charge. This thesis and the accompanying

data cannot be reproduced or quoted extensively from without first obtaining permission in writing

from the copyright holder/s. The content of the thesis and accompanying research data (where appli-

cable) must not be changed in any way or sold commercially in any format or medium without the

formal permission of the copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g.

Thesis: Author (Year of Submission) ”Full thesis title”, University of Southampton, name of the

University Faculty or School or Department, PhD Thesis, pagination.

Data: Author (Year) Title. URI [dataset]

UNIVERSITY OF SOUTHAMPTON

Faculty of Engineering and Physical Sciences
School of Electronics and Computer Science

Towards an Understanding of
Generalisation in Deep Learning: An

Analysis of the Transformation of
Information in Convolutional Neural

Networks

by

Dominic Belcher
ORCiD: 0009-0006-7712-808X

A thesis for the degree of
Master of Philosophy

June 2025

http://www.southampton.ac.uk
http://orcid.org/0009-0006-7712-808X

University of Southampton

Abstract

Faculty of Engineering and Physical Sciences
School of Electronics and Computer Science

Master of Philosophy

Towards an Understanding of Generalisation in Deep Learning: An Analysis of the
Transformation of Information in Convolutional Neural Networks

by Dominic Belcher

Despite their enormous size, Deep Neural Networks are able to achieve exceptional
performance across a wide variety of machine learning problems, and have become a
de facto standard in many areas of machine learning. The ability of such large models
to reliably achieve good generalisation is difficult to reconcile with conventional theory
on machine learning, which bounds the generalisation capability based on the size of
the model, implying that more complex models should not — but importantly not that
they cannot — reliably generalise.

In this work, I investigate generalisation within the specific domain of Convolutional
Neural Networks (CNNs) applied to image classification problems. I investigate the
way in which the layers of a CNN transform the data, and how this may entail the
good generalisation performance these models exhibit. I investigate how margins be-
tween classes manifest and change, showing that the different operations in the net-
work can increase or decrease the margin, as well as change the shape of the data in
relation to the margin. I combine this with a replication and extension of the use of
hidden layer probes to investigate how the classification problem changes through the
network, showing that linear separability emerges through the networks, to an extent
that almost matches the full classification performance of the network. I show how this
linear separability aligns with some of the patterns seen in the class margins, and how
the convolutions and activations work in tandem to both increase the margin and the
linear separability. Finally, I extend the existing work on hidden layer probes to investi-
gate globally pooled features within the model, showing that the information distilled
by the network at each stage is primarily in coarse features, rather than at the pixel
level.

http://www.southampton.ac.uk

5

Contents

List of Figures 7

List of Tables 13

Declaration of Authorship 15

Acknowledgements 17

1 Introduction 1

2 Background and Prior Literature 3

3 Empirically Estimating Class Margins in Convolutional Neural Networks 9
3.1 Methodology . 13
3.2 Results . 14
3.3 Potential Flaws . 22
3.4 Fixing Issues with the Methodology . 23
3.5 Further Results . 24
3.6 Summary . 26

4 Using Hidden Layer Probes to Explore the Transformation of Data Through
CNN Models 29
4.1 Methodology . 30
4.2 Results . 31
4.3 Summary . 37

5 Investigating the Transformation of Pixel-Level Information into Coarse Fea-
tures in CNNs 39
5.1 Methodology . 41
5.2 Results of Global Pooling with Linear Classifier 42
5.3 Comparison with Results from Chapter 4 43
5.4 Results of Global Pooling with MLP Classifier 45
5.5 Summary . 47

6 Discussion & Conclusions 49

7 Future Work 51

Appendix A Complete Results from Chapter 3 53

6 CONTENTS

Appendix B Complete Results from Chapter 4 71

Appendix C Complete Results from Chapter 5 89

Appendix D Software Used in this Work 103

7

List of Figures

3.1 The expected risk of the simple learning machine versus the number of
training examples, m (dashed lines), along with simulation results aver-
aged over 100 runs (markers). 12

3.2 Accuracy vs. Noise plots for different models and splits on CIFAR-10 .
Split indices correspond to the layers in table 3.1 16

3.3 Accuracy vs. Noise for Model=VGG11, Split=11 on CIFAR-10 with area
under graph showing noise tolerance . 17

3.4 Noise tolerance through network approximated via Simpson’s rule: Model=VGG11,
Dataset=CIFAR10 . 17

3.5 Noise tolerance through network approximated via Simpson’s rule: Model=VGG11,
Dataset=Tiny Imagenet . 18

3.6 Noise tolerance & dimensionality through network: Model=VGG11, Dataset=CIFAR10 19
3.7 Noise tolerance & dimensionality through network: Model=VGG11, Dataset=Tiny

Imagenet . 20
3.8 Change in noise tolerance through network: Model=VGG11, Dataset=CIFAR10 21
3.9 Change in noise tolerance through network: Model=VGG11, Dataset=Tiny

Imagenet . 21
3.10 Noise tolerance through network with noise centered on class means:

Model=VGG11, Dataset=CIFAR10 . 23
3.11 Noise tolerance through network with Gaussian noise: Model=VGG11,

Dataset=CIFAR10 . 24
3.12 Accuracy vs Noise plots using Gaussian noise: Model=VGG11, Dataset=CIFAR10 25

4.1 Test & Train accuracy of perceptron probes throughout network: Model=VGG11,
Dataset=CIFAR10 . 30

4.2 Test & Train accuracy of perceptron probes throughout network: Model=VGG11,
Dataset=Tiny Imagenet . 31

4.3 Test & Train accuracy of MLP probes throughout network: Model=VGG11,
Dataset=CIFAR10 . 32

4.4 Test & Train accuracy of MLP probes throughout network: Model=VGG11,
Dataset=Tiny Imagenet . 33

4.5 Test accuracy of Perceptron & MLP probes throughout network: Model=VGG11,
Dataset=CIFAR10 . 34

4.6 Test accuracy of Perceptron & MLP probes throughout network: Model=VGG11,
Dataset=Tiny Imagenet . 34

4.7 Change in train and test accuracy of Perceptron probes throughout net-
work: Model=VGG11, Dataset=CIFAR10 36

4.8 Change in train and test accuracy of Perceptron probes throughout net-
work: Model=VGG11, Dataset=Tiny Imagenet 36

8 LIST OF FIGURES

5.1 Test & Train accuracy of perceptron probes throughout network with
global pooling: Model=VGG11, Dataset=CIFAR10 42

5.2 Test & Train accuracy of perceptron probes throughout network with
global pooling: Model=VGG11, Dataset=Tiny Imagenet 43

5.3 Test & Train accuracy of perceptron probes throughout network with and
without global pooling: Model=VGG11, Dataset=CIFAR10 44

5.4 Test & Train accuracy of perceptron probes throughout network with and
without global pooling: Model=VGG11, Dataset=Tiny Imagenet 44

5.5 Test & Train accuracy of MLP probes throughout network with global
pooling: Model=VGG11, Dataset=CIFAR10 45

5.6 Test & Train accuracy of MLP probes throughout network with global
pooling: Model=VGG11, Dataset=Tiny Imagenet 46

Appendix A.1 Noise tolerance through network approximated via Simpson’s
rule: Model=VGG11, Dataset=CIFAR10 53

Appendix A.2 Noise tolerance through network approximated via Simpson’s
rule: Model=VGG13, Dataset=CIFAR10 54

Appendix A.3 Noise tolerance through network approximated via Simpson’s
rule: Model=VGG16, Dataset=CIFAR10 54

Appendix A.4 Noise tolerance through network approximated via Simpson’s
rule: Model=VGG19, Dataset=CIFAR10 55

Appendix A.5 Noise tolerance through network approximated via Simpson’s
rule: Model=VGG11, Dataset=Tiny Imagenet 55

Appendix A.6 Noise tolerance through network approximated via Simpson’s
rule: Model=VGG13, Dataset=Tiny Imagenet 56

Appendix A.7 Noise tolerance through network approximated via Simpson’s
rule: Model=VGG16, Dataset=Tiny Imagenet 56

Appendix A.8 Noise tolerance through network approximated via Simpson’s
rule: Model=VGG19, Dataset=Tiny Imagenet 57

Appendix A.9 Noise tolerance & dimensionality through network: Model=VGG11,
Dataset=CIFAR10 . 57

Appendix A.10 Noise tolerance & dimensionality through network: Model=VGG13,
Dataset=CIFAR10 . 58

Appendix A.11 Noise tolerance & dimensionality through network: Model=VGG16,
Dataset=CIFAR10 . 58

Appendix A.12 Noise tolerance & dimensionality through network: Model=VGG19,
Dataset=CIFAR10 . 59

Appendix A.13 Noise tolerance & dimensionality through network: Model=VGG11,
Dataset=Tiny Imagenet . 59

Appendix A.14 Noise tolerance & dimensionality through network: Model=VGG13,
Dataset=Tiny Imagenet . 60

Appendix A.15 Noise tolerance & dimensionality through network: Model=VGG16,
Dataset=Tiny Imagenet . 60

Appendix A.16 Noise tolerance & dimensionality through network: Model=VGG19,
Dataset=Tiny Imagenet . 61

Appendix A.17 Change in noise tolerance through network: Model=VGG11,
Dataset=CIFAR10 . 61

Appendix A.18 Change in noise tolerance through network: Model=VGG13,
Dataset=CIFAR10 . 62

LIST OF FIGURES 9

Appendix A.19 Change in noise tolerance through network: Model=VGG16,
Dataset=CIFAR10 . 62

Appendix A.20 Change in noise tolerance through network: Model=VGG19,
Dataset=CIFAR10 . 63

Appendix A.21 Change in noise tolerance through network: Model=VGG11,
Dataset=Tiny Imagenet . 63

Appendix A.22 Change in noise tolerance through network: Model=VGG13,
Dataset=Tiny Imagenet . 64

Appendix A.23 Change in noise tolerance through network: Model=VGG16,
Dataset=Tiny Imagenet . 64

Appendix A.24 Change in noise tolerance through network: Model=VGG19,
Dataset=Tiny Imagenet . 65

Appendix A.25 Noise tolerance through network with Gaussian noise: Model=VGG11,
Dataset=CIFAR10 . 65

Appendix A.26 Noise tolerance through network with Gaussian noise: Model=VGG13,
Dataset=CIFAR10 . 66

Appendix A.27 Noise tolerance through network with Gaussian noise: Model=VGG16,
Dataset=CIFAR10 . 66

Appendix A.28 Noise tolerance through network with Gaussian noise: Model=VGG19,
Dataset=CIFAR10 . 67

Appendix A.29 Noise tolerance through network with Gaussian noise: Model=VGG11,
Dataset=Tiny Imagenet . 67

Appendix A.30 Noise tolerance through network with Gaussian noise: Model=VGG13,
Dataset=Tiny Imagenet . 68

Appendix A.31 Noise tolerance through network with Gaussian noise: Model=VGG16,
Dataset=Tiny Imagenet . 68

Appendix A.32 Noise tolerance through network with Gaussian noise: Model=VGG19,
Dataset=Tiny Imagenet . 69

Appendix B.1 Test & Train accuracy of perceptron probes throughout net-
work: Model=VGG11, Dataset=CIFAR10 71

Appendix B.2 Test & Train accuracy of perceptron probes throughout net-
work: Model=VGG13, Dataset=CIFAR10 72

Appendix B.3 Test & Train accuracy of perceptron probes throughout net-
work: Model=VGG16, Dataset=CIFAR10 72

Appendix B.4 Test & Train accuracy of perceptron probes throughout net-
work: Model=VGG19, Dataset=CIFAR10 73

Appendix B.5 Test & Train accuracy of perceptron probes throughout net-
work: Model=VGG11, Dataset=Tiny Imagenet 73

Appendix B.6 Test & Train accuracy of perceptron probes throughout net-
work: Model=VGG13, Dataset=Tiny Imagenet 74

Appendix B.7 Test & Train accuracy of perceptron probes throughout net-
work: Model=VGG16, Dataset=Tiny Imagenet 74

Appendix B.8 Test & Train accuracy of perceptron probes throughout net-
work: Model=VGG19, Dataset=Tiny Imagenet 75

Appendix B.9 Test & Train accuracy of MLP probes throughout network:
Model=VGG11, Dataset=CIFAR10 . 75

Appendix B.10 Test & Train accuracy of MLP probes throughout network:
Model=VGG13, Dataset=CIFAR10 . 76

10 LIST OF FIGURES

Appendix B.11 Test & Train accuracy of MLP probes throughout network:
Model=VGG16, Dataset=CIFAR10 . 76

Appendix B.12 Test & Train accuracy of MLP probes throughout network:
Model=VGG19, Dataset=CIFAR10 . 77

Appendix B.13 Test & Train accuracy of MLP probes throughout network:
Model=VGG11, Dataset=Tiny Imagenet 77

Appendix B.14 Test & Train accuracy of MLP probes throughout network:
Model=VGG13, Dataset=Tiny Imagenet 78

Appendix B.15 Test & Train accuracy of MLP probes throughout network:
Model=VGG16, Dataset=Tiny Imagenet 78

Appendix B.16 Test & Train accuracy of MLP probes throughout network:
Model=VGG19, Dataset=Tiny Imagenet 79

Appendix B.17 Test accuracy of Perceptron & MLP probes throughout net-
work: Model=VGG11, Dataset=CIFAR10 79

Appendix B.18 Test accuracy of Perceptron & MLP probes throughout net-
work: Model=VGG13, Dataset=CIFAR10 80

Appendix B.19 Test accuracy of Perceptron & MLP probes throughout net-
work: Model=VGG16, Dataset=CIFAR10 80

Appendix B.20 Test accuracy of Perceptron & MLP probes throughout net-
work: Model=VGG19, Dataset=CIFAR10 81

Appendix B.21 Test accuracy of Perceptron & MLP probes throughout net-
work: Model=VGG11, Dataset=Tiny Imagenet 81

Appendix B.22 Test accuracy of Perceptron & MLP probes throughout net-
work: Model=VGG13, Dataset=Tiny Imagenet 82

Appendix B.23 Test accuracy of Perceptron & MLP probes throughout net-
work: Model=VGG16, Dataset=Tiny Imagenet 82

Appendix B.24 Test accuracy of Perceptron & MLP probes throughout net-
work: Model=VGG19, Dataset=Tiny Imagenet 83

Appendix B.25 Change in train and test accuracy of Perceptron probes through-
out network: Model=VGG11, Dataset=CIFAR10 83

Appendix B.26 Change in train and test accuracy of Perceptron probes through-
out network: Model=VGG13, Dataset=CIFAR10 84

Appendix B.27 Change in train and test accuracy of Perceptron probes through-
out network: Model=VGG16, Dataset=CIFAR10 84

Appendix B.28 Change in train and test accuracy of Perceptron probes through-
out network: Model=VGG19, Dataset=CIFAR10 85

Appendix B.29 Change in train and test accuracy of Perceptron probes through-
out network: Model=VGG11, Dataset=Tiny Imagenet 85

Appendix B.30 Change in train and test accuracy of Perceptron probes through-
out network: Model=VGG13, Dataset=Tiny Imagenet 86

Appendix B.31 Change in train and test accuracy of Perceptron probes through-
out network: Model=VGG16, Dataset=Tiny Imagenet 86

Appendix B.32 Change in train and test accuracy of Perceptron probes through-
out network: Model=VGG19, Dataset=Tiny Imagenet 87

Appendix C.1 Test & Train accuracy of perceptron probes throughout net-
work with global pooling: Model=VGG11, Dataset=CIFAR10 89

Appendix C.2 Test & Train accuracy of perceptron probes throughout net-
work with global pooling: Model=VGG13, Dataset=CIFAR10 90

LIST OF FIGURES 11

Appendix C.3 Test & Train accuracy of perceptron probes throughout net-
work with global pooling: Model=VGG16, Dataset=CIFAR10 90

Appendix C.4 Test & Train accuracy of perceptron probes throughout net-
work with global pooling: Model=VGG19, Dataset=CIFAR10 91

Appendix C.5 Test & Train accuracy of perceptron probes throughout net-
work with global pooling: Model=VGG11, Dataset=Tiny Imagenet . . . 91

Appendix C.6 Test & Train accuracy of perceptron probes throughout net-
work with global pooling: Model=VGG13, Dataset=Tiny Imagenet . . . 92

Appendix C.7 Test & Train accuracy of perceptron probes throughout net-
work with global pooling: Model=VGG16, Dataset=Tiny Imagenet . . . 92

Appendix C.8 Test & Train accuracy of perceptron probes throughout net-
work with global pooling: Model=VGG19, Dataset=Tiny Imagenet . . . 93

Appendix C.9 Test & Train accuracy of perceptron probes throughout net-
work with and without global pooling: Model=VGG11, Dataset=CIFAR10 93

Appendix C.10 Test & Train accuracy of perceptron probes throughout net-
work with and without global pooling: Model=VGG13, Dataset=CIFAR10 94

Appendix C.11 Test & Train accuracy of perceptron probes throughout net-
work with and without global pooling: Model=VGG16, Dataset=CIFAR10 94

Appendix C.12 Test & Train accuracy of perceptron probes throughout net-
work with and without global pooling: Model=VGG19, Dataset=CIFAR10 95

Appendix C.13 Test & Train accuracy of perceptron probes throughout net-
work with and without global pooling: Model=VGG11, Dataset=Tiny
Imagenet . 95

Appendix C.14 Test & Train accuracy of perceptron probes throughout net-
work with and without global pooling: Model=VGG13, Dataset=Tiny
Imagenet . 96

Appendix C.15 Test & Train accuracy of perceptron probes throughout net-
work with and without global pooling: Model=VGG16, Dataset=Tiny
Imagenet . 96

Appendix C.16 Test & Train accuracy of perceptron probes throughout net-
work with and without global pooling: Model=VGG19, Dataset=Tiny
Imagenet . 97

Appendix C.17 Test & Train accuracy of MLP probes throughout network
with global pooling: Model=VGG11, Dataset=CIFAR10 97

Appendix C.18 Test & Train accuracy of MLP probes throughout network
with global pooling: Model=VGG13, Dataset=CIFAR10 98

Appendix C.19 Test & Train accuracy of MLP probes throughout network
with global pooling: Model=VGG16, Dataset=CIFAR10 98

Appendix C.20 Test & Train accuracy of MLP probes throughout network
with global pooling: Model=VGG19, Dataset=CIFAR10 99

Appendix C.21 Test & Train accuracy of MLP probes throughout network
with global pooling: Model=VGG11, Dataset=Tiny Imagenet 99

Appendix C.22 Test & Train accuracy of MLP probes throughout network
with global pooling: Model=VGG13, Dataset=Tiny Imagenet 100

Appendix C.23 Test & Train accuracy of MLP probes throughout network
with global pooling: Model=VGG16, Dataset=Tiny Imagenet 100

Appendix C.24 Test & Train accuracy of MLP probes throughout network
with global pooling: Model=VGG19, Dataset=Tiny Imagenet 101

13

List of Tables

3.1 Composition of each model being tested 15
3.2 Maximum accuracy and theoretical maximum noise tolerance for each

model and dataset combination . 16

15

Declaration of Authorship

I declare that this thesis and the work presented in it is my own and has been generated
by me as the result of my own original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a research degree
at this University;

2. Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated;

3. Where I have consulted the published work of others, this is always clearly at-
tributed;

4. Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work;

5. I have acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself;

7. Parts of this work have been published as: Belcher et al. 2020

Signed:.. Date:..................

17

Acknowledgements

I would like to thank my supervisor, Prof. Adam Prugel-Bennett, for his unfailing
support through all the challenges I encountered in the course of this project.

I acknowledge the use of the IRIDIS High Performance Computing Facility, and as-
sociated support services at the University of Southampton, in the completion of this
work.

1

Chapter 1

Introduction

Generalisation is, in essence, the fundamental goal of machine learning. In any machine
learning task, we aim to learn a model which can generalise effectively on unseen data,
thereby yielding a model which is well suited to the task at hand. To understand gener-
alisation is therefore to understand machine learning, and the better our understanding
of generalisation, the more informed our decisions can be in designing solutions to ma-
chine learning problems.

We can frame the concept of understanding generalisation using a variety of related but
subtly distinct questions, which examine the problem from different angles and with
varying levels of specificity. For example, we may frame generalisation by the question
why do certain machine learning models generalise?. While this may be the fundamental
question we wish to answer, this question is exceptionally broad in covering all aspects
of machine learning, and any answer broad enough to apply to any area, any task,
or any model may do little to inform our choices in any specific case. We may ask a
more specific question of what does a machine learning model learn in order to exhibit good
generalisation?. This question may be applied to any specific model on any specific task,
and may have starkly different answers depending on this. By “good generalisation”
we generally mean that a model achieves good performance on unseen data, although
this too will vary across different tasks, particularly between tasks of supervised and
unsupervised learning. Our definition of “good” is also subjective, and may often be
taken to mean “equal to or better than can be achieved through other methods” —
or equivalently ”state-of-the-art” — and so over time this will likely shift as methods
exhibiting better generalisation are developed.

These factors make any investigation of generalisation, outside of the purely theoreti-
cal, highly context dependent, both in the context of the problems being investigated,
and the temporal context in which it is undertaken, relative to an existing baseline of
what may be considered “good”. The context in which this research takes place is
against a backdrop of more than a decade of renewed interest and rapid advancement

2 Chapter 1. Introduction

in the field of deep learning, and the use of deep neural networks in solving machine
learning problems (Choudhary et al. 2022). The use of deep learning and deep neu-
ral networks has yielded exceptionally impressive performance on a broad range of
complex tasks, such as image classification, object detection, speech recognition and
text generation, to name but a few. Despite the extraordinary progress seen with deep
learning methods, generalisation within deep learning is far from well understood, and
the question of what deep learning models learn that yields the exceptional generali-
sation they can exhibit is largely unanswered (Zhang et al. 2021). Indeed neural net-
works are often considered to be a “black box” (Alain et al. 2017), in which the learning
of the model is largely not understood, and the reason for any particular output from
the model is not possible to explain. While the operations that make up the model are
often simple and easily understood in isolation, when taken together these form a com-
plex connected system which cannot easily be explained, and can exhibit unintended
or unexpected behaviour.

Understanding generalisation of deep learning models is therefore an exceptionally
complex problem, however the potential benefits of understanding this are equally
significant. Understanding what deep learning models learn in achieving good gen-
eralisation would yield the ability to make informed architectural choices in designing
more effective models, and could most importantly allow for designing models with
more predictable and explainable behaviour, which is of particular importance when
utilising models in real world settings.

Deep learning also presents us with an additional problem in understanding general-
isation, when compared with many other machine learning methods. A specific phe-
nomenon often seen in using deep learning methods is that there is little, if any, corre-
lation between the complexity of a model, and the ability of the model to achieve good
generalisation. This appears to run contrary to the traditional understanding of gener-
alisation, in which it is considered to be the case that the more complex a model is, the
less certain it is possible to be that the model will generalise well.

The primary contributions of this work are in chapters 3 and 5. In chapter 3 I conduct
an investigation into how the size of the class margins change through the layers of a
CNN. In chapter 4 I replicate existing work on hidden layer probes (Alain et al. 2017)
on the specific models and datasets under investigation, and relate the findings to the
work in chapter 3. I also attempt to extend the use of hidden layer probes to use multi-
layer perceptron (MLP) probes. An earlier version of this work was accepted to the
workshop ”Deep Learning through Information Geometry” at NeurIPS 2020 (Belcher
et al. 2020). In chapter 5 I conduct an experiment using hidden layer probes on globally
pooled features of the latent representation, to investigate the significance of pixel-level
vs. feature-level information, and relate this to the findings of chapters 3 and 4.

3

Chapter 2

Background and Prior Literature

The topic of generalisation has long been studied within the field of Machine Learn-
ing, with a significant body of work predating the recent rise in popularity of Deep
Learning, as well as a wealth of more specific investigation of generalisation within the
domain of Deep Learning.

The study of generalisation in Machine Learning is strongly linked to the theoretical
foundations of the subject as a whole, and while the term generalisation was not always
used, much of the early theoretical study of Machine Learning provides foundations for
investigation of generalisation. Pinpointing the earliest discussions of generalisation as
a specific field, and plotting an exact timeline of the evolution of the field, is somewhat
tricky and not essential for this research. I aim instead to simply lay out key ideas
relevant to the study of generalisation.

A core concept in generalisation is the problem of Risk Minimisation (Vapnik 1991), as
this provides a mathematical framework for analysing generalisation, around which
much of the relevant work is based. Risk minimization considers minimising the risk
of a model over the class of functions that model represents, which is characterised by
the variable weight parameters of the model, given a joint distribution of the data and
target, i.e. the domain and co-domain of the function we attempt to learn. Formally the
risk is defined as

R(w) =
∫︂

L(y, f (x, w))dP(x, y)

where we aim to minimise the risk R(w) over the class of functions f (x, w), where
F : X × W → Y is a function over the input X parameterised by weights w ∈ W, L(·, ·)
is some loss function and P(x, y) = P(y|x)P(x) is the joint probability distribution over
X (the data space) and Y (the target space).

4 Chapter 2. Background and Prior Literature

When learning on real data, this joint distribution is not known, and only a finite num-
ber of data points will be available. The risk must therefore be estimated using the
empirical risk function

E(w) =
1
l

l

∑
i=i

L(yi, f (xi, w))

using the training data {(xi, yi) ∈ X × Y}l
i=0. This frames the learning process as a

problem of empirical risk minimisation, where it is assumed that minimising the em-
pirical risk will also (at least approximately) minimise the true risk.

The problem of risk minimisation can be seen as an analogue to generalisation. Good
generalisation implies that the difference between the empirical risk and true risk is
small, and in particular when we achieve low empirical risk that we also achieve low
true risk.

Moreover generalisation is exactly the empirical risk minimisation (ERM) principle:
that the function f (x, wl) which minimises E(w) over the set w ∈ W gives a true risk
R(wl) close to the minimum , i.e. that learning on a training set should generalise to the
underlying problem. It can be shown that the empirical risk must converge uniformly
to the true risk as

Prob{sup
w∈W

|R(w)− E(w)| > ϵ} → 0 as l → ∞

in order for the ERM principle to be consistent (Vapnik 1991).

Vapnik and Chervonenkis built on this theory further to establish bounds on the rate
of convergence, based solely on a measure of the capacity of the learning machine, and
independent of the joint distribution P(x, y). The capacity of a learning machine is a
somewhat abstract concept of the general expressiveness of the functions the machine
can learn, however in their work Vapnik and Chervonenkis establish a quantifiable
measure of this capacity, termed the VC dimension (Shalev-Shwartz et al. 2014).

The VC dimension is, informally, the maximum number of data points which can be
shattered in all possible ways by the functions expressible by a learning machine. The
formal definition of shattering and the VC dimension is often restricted to binary la-
belling problems for simplicity, that is learning a function from X → {0, 1}. In this case
a hypothesis class is said to shatter a set of points C if the hypothesis class is equivalent
to the set of all functions C → {0, 1}.

However, the bounds established by Vapnik and Chervonenkis require l
h , that is the

ratio of the number of data points to the VC-dimension, to be large. Where this ratio is
small, the bounds become weak, and so these bounds are not useful for high capacity

5

machines. This is of specific relevance to deep learning, where the number of parame-
ters in deep neural networks is so great that the capacity becomes almost unboundedly
large. While many of the most notable and best performing deep neural networks that
have been developed are trained on datasets that would usually be considered very
large, these datasets are still dwarfed in size by the number of parameters, and thus the
capacity, of these models. For example, second place in the current state of the art (Ima-
geNet Benchmark 2024) for image classification on ImageNet (Deng et al. 2009) is, at time
of writing, 91% top-1 accuracy, held by the CoCa model (Yu et al. 2022), which has over
two billion parameters. This is several orders of magnitude larger than the number
of data-points, which is around 14 million. First place is held by OmniVec (Srivastava
et al. 2023), which does not state the number of parameters in the model.

Naively, deep learning appears to undermine this theory, since such large models are
able to consistently achieve such impressive generalisation performance. However, it
is important to note that the bounds established by Vapnik and Chervonenkis are just
that — bounds — and that these do not preclude high capacity models from general-
ising, they merely indicate that generalisation cannot be guaranteed for high capacity
models. Nonetheless, it is very much significant that deep learning models do seem
to reliably generalise, as these bounds would indicate that generalisation should not
be reliably achieved by high capacity models, even if such generalisation is possible.
Moreover, deep learning techniques seem to be uniquely capable of achieving good
generalisation with high capacity models, and prior to the advent of deep learning it
was believed that high capacity models would not reliably generalise. This raises the
question fundamental to much of the recent study on generalisation in Deep Learning,
that is: why do deep learning models generalise?

Since the advent of deep learning, much of the study of generalisation has been focused
on attempting to answer this question, and to reconcile the established theory with
empirical results observable with deep learning.

It can be shown that the VC dimension of a neural network can be bounded by
the width and depth of the network, specifically that the VC dimension is of order
O(|E|log(|E|)), where E is the set of edges, or equivalently the weights, of the network
(Shalev-Shwartz et al. 2014). Some research has focused on improving this bound by
considering other factors. Neyshabur, Tomioka, et al. 2015 introduced a framework for
controlling the capacity of networks based on lp norm regularisation, showing that for
deep (d > 2 where d is the number of layers) networks, lp regularisation was not suffi-
cient for controlling the capacity of a network without also controlling for width of the
network, in contrast to linear models and two-layer networks.

Empirical investigation by Keskar et al. 2017 suggested that larger training batches in
stochastic gradient descent led to sharper minima in the training and test losses, which
would in turn lead to poorer generalisation (Keskar et al. 2017). However, further work

6 Chapter 2. Background and Prior Literature

by Neyshabur, Bhojanapalli, et al. 2017 showed that sharpness was insufficient to con-
trol the capacity of a network (Neyshabur, Bhojanapalli, et al. 2017).

It has been suggested that over-parameterisation may be an important factor in the
generalisation of deep neural networks, in contrast to the classical view that models
should be under-parameterised to avoid over-fitting. Neyshabur, Li, et al. 2018 de-
veloped new capacity bounds for two layer neural networks based on an alternative
complexity measure, that involves decomposing the complexity of the network as a
whole into the complexities of the hidden units within the network (Neyshabur, Li,
et al. 2018). The authors showed that this capacity bound decreases with the increasing
number of hidden units, i.e. the width of the network, however these bounds are still
much larger than the amount of training data, and so are unlikely to be sufficient to
fully explain the generalisation patterns in deep learning generally.

Belkin et al. 2019 conducted further work on over-parameterisation, investigating over-
parameterisation beyond the point where a model can perfectly fit the training data.
The authors showed that in certain scenarios, increasing the capacity of a model up to
and then beyond the point of interpolating the training data, the empirical risk would
follow a U-shape curve, decreasing to a minimum and then increasing as the capacity
approached interpolation, however beyond the point of interpolation the risk would
decrease again in a so-called “double descent”, potentially decreasing to a point lower
than a minimum in the U-shaped curve. This behaviour could be observed in two layer
neural networks, as well as with decision trees and random forest models. These re-
sults would suggest that a high degree of over-parameterisation is actually a beneficial
quality in achieving good generalisation, inverting the conventional understanding of
the importance of not over-fitting. This idea has been explored in more detail, with
work by Nakkiran et al. 2019 showing that the double descent curve could be observed
in commonly used neural networks, as as ResNets and transformers, and that the dou-
ble descent curve could also occur as a function of training time, as well as model
complexity (Nakkiran et al. 2019).

Much of the earlier work on generalisation — both in deep learning and machine learn-
ing more broadly — focused primarily on the models used in learning, and attempted
to bound the generalisation capability based solely on properties of the model. Some
more recent work however has focused more closely on the data used in machine learn-
ing problems. The work of Baldock et al. 2021 investigated the concept of ”example
difficulty” for the data, a notion of how easily data points are classified by a model.
In their work, the authors used k-nearest-neighbour (kNN) classifiers to examine how
deep within networks individual data points are assigned to classes, by taking the ear-
liest layer at which the kNN classifier gives the same class as the network for each data
point. Their findings suggest that predictions occur in later layers for more difficult
individual data points, and more difficult datasets. The use of kNN probes suggests
that the networks group together data points from the same class, and that individual

7

data points are more difficult to classify if they appear to be further from, and so more
different to, other points within the same class.

One of the most notable investigations of generalisation in deep learning, and of partic-
ular significance to this work, is the work of Zhang et al. 2017. In this work the authors
demonstrated that large CNN models, such as AlexNet (Krizhevsky, Sutskever, et al.
2012), could be trained to achieve 100% training accuracy on variants of the ImageNet
classification problem, where either the training labels were randomised, or indeed the
actual images were replaced with random noise. This is a particularly striking result,
as it illustrates that such models have the capacity to memorise the entirety of large
datasets, and could therefore achieve perfect training accuracy in these problems with-
out learning anything about the underlying structure of the data, which would be ex-
pected, and likely required, for achieving good generalisation. As such this shows that
there is no inherent reason why a large capacity model which achieves good or even
perfect training performance should be able to generalise, and yet these models, and
indeed many other models, are able to do exactly this. Moreover a random labelling
of the data, or indeed labels attached to random noise, would give no correlation be-
tween any of the data, be it training or test data, and as such fitting these training labels
would necessarily give a model with no generalisation capability whatsoever. It must
therefore be impossible to bound the generalisation capability of any model capable of
fitting random data, however as stated this directly contradicts the behaviour we can
observe with such models.

We should note that while these models may not be considered large by the standards
of state of the art models, at the time of their development, and the time of the authors
publication, these models were much closer to the state of the art in size. In particular
AlexNet is notable as being once a state of the art model for image classification on
ImageNet, with its publication being commonly cited as the start of the Deep Learning
era. (Alom et al. 2018). Moreover, since these models have long since been surpassed in
both size and performance, this further illustrates the significance of these findings, as
modern state of the art models would likely be able to memorise even larger datasets,
and yet can achieve superior performance still.

Despite work showing that the capacity of models can be controlled in various ways,
and that this can entail tighter generalisation bounds, we still see demonstrably high
capacity models that are able to generalise. This motivates the question of how and
why these models do achieve such good generalisation, despite their high capacity,
and the clear fact that learning in a way which does generalise is in no way required to
fit the training data.

9

Chapter 3

Empirically Estimating Class
Margins in Convolutional Neural
Networks

It appears from previous work, such as that of Baldock et al. 2021 and Zhang et al.
2017, that a holistic view of machine learning — which considers the whole problem,
including both the models and the data — is important for fully understanding the
nature of generalisation. The work of Baldock et al. 2021 suggests that not all data is
equal, and some individual data points are more easily learned on than others, and
so it would seem impossible to wholly capture the nature of generalisation without
giving consideration to the data. Moreover, it would seem that the interplay of the
model and data is critical to generalisation - we know that certain model architectures
are better suited to certain problems and certain types of data - an example being the
effectiveness of CNNs in image classification. Therefore we understand fundamentally
that the data is important, and that some data can simply be more effectively learned
on by particular models. Indeed if this were not the case, there would be no value in
investigating different models in different settings, as any properties of the data could
simply be ignored.

This re-frames the question of generalisation from being simply ”why do deep neural net-
works generalise so well?” to ”why are certain deep neural networks able to generalise in certain
problems?”, or perhaps more insightfully ”how do certain deep neural networks interact with
certain data in a way which entails good generalisation?”.

Re-framing the question in this way motivates considering what function a model per-
forms on the data. In the case of neural networks, data generally flows forward through
the layers of the network, being transformed into a particular latent representation
at each layer. Focusing specifically on CNNs, these tend to be composed of one or

10 Chapter 3. Class Margins

more convolutional layers, each paired with an activation function following the con-
volution. These convolutional layers then typically followed by multi-layer percep-
tron (MLP) which outputs predicted class logits. The MLP typically consists of one or
more fully connected layers, with activations between them, and a final linear classifier,
which outputs the logits used to train and evaluate the model.

It seems clear in this case that the convolutional portion of the network is significant,
and that this performs some transformation on the data which makes it more easily
classified by the MLP. Considering the work of Baldock et al. 2021, transforming all
the data in such a way that it was more easily classified would simplify the entire
classification problem, making it easier to achieve good generalisation.

The work of Zhang et al. 2017 showed that high capacity models are capable of mem-
orising entire datasets, and that these models can learn random labellings or entirely
random data. However, random labellings and random data are inherently complex
problems, indeed they are infinitely complex, with no solution being possible. There-
fore, a simple problem should be one in which the dataset need not be memorised,
rather generalisable patterns can be learned which allow for generalisation without
memorisation.

I hypothesise that the transformation of data by certain models, in this case CNNs in
image classification, makes the data more easy to learn on, and thereby simplifies the
underlying problem in a way which allows for learning more generalisable patterns.
The question to ask is therefore: ”how does a CNN transform image data in a way which
makes it easier to classify?”. It is therefore essential to consider what can make data more
easier to classify, and how such properties could be manifested by a CNN.

This principle of a simple problem being generalisable without memorisation can be
illustrated by way of a trivial example. If we consider a dataset of pairs (xi, yi) where
x ∈ {0, 1}, y ∈ {0, 1}, and xi = yi for all i, where xi is a feature and yi the class
label, this gives us the simplest problem we could consider, as the single feature of the
data directly codes the class label. It is straightforward to see that any machine trained
on this data has no need to memorise the entire dataset, as training on any number
of examples is equivalent. It is also the case that any deterministic machine can only
ever have one of the following functions: output the correct class label in every case,
output the incorrect class label in every case, or output a single class label in every case.
Therefore the training and test performance of any machine will always be equal, and
so perfect performance can be achieved with a machine of any capacity.

This example is the extreme case of closeness between points within a class, and is
contrived in the sense that all data points within a class are clustered together, rather
than individual points being close to some others within the same class, but not them
all.

11

We can consider a more interesting case in which properties of the data more closely
match those in real world data. We consider a dataset (X, Y) where X is a p-
dimensional feature vector and y ∈ {−1, 1}, where the data are distributed according
to pX,Y(x, y) = pX|Y(x | y)PY [Y = y]

pX|Y(x | y) = N
(︁

x | y ∆ x∗, Ip
)︁

PY [Y = y] =
1
2
(Jy = 1K+ Jy = −1K) (3.1)

where JpredicateK is an indicator function, ∆ is the distance along some x∗ ∈ Rp from
the mean of each class to the origin, such that the means are separated by 2∆, and
|x∗| = 1.

That is, we have two standard multivariate Gaussian distributions, each corresponding
to the data points for one of the two classes, with the mean of each being some distance
∆ from the origin, and the separation between the two means being 2∆.

This dataset has the property that, in a sufficiently high number of dimensions, the ex-
pected distance between two randomly selected points from the same class, and two
randomly selected points from different classes, both become dominated by the num-
ber of dimensions, and so the size of ∆ becomes insignificant. The expected distance
between points within the same class is exactly

√︁
2p, while the expected distance be-

tween points from different classes is exactly
√︁

2p + (2∆)2. We should note that ∆ does
not need to be large in order to guarantee the complete separation of the classes, since
the probability of a point from one class crossing the true decision boundary, that is
the hyperplane intersecting the origin perpendicular to x∗, is exactly the probability
p(Z > ∆) for Z ∼ N(0, 1), regardless of the number of dimensions, which even for
∆ = 4 is approximately 0.003%.

If we consider classification on this dataset using a perceptron with weight vector wh ∈
Sp−1 (the unit sphere in p dimensions) which predicts according to h(X) = sign(wT

hX).
we can then define a loss function for hypothesis h (the perceptron with weights wh) as

Lh(X, Y) = Jh(X) ̸= YK

The risk of a hypothesis, h, is then given by

Rh = Φ(−∆ cos(θh)) (3.2)

where cos(θh) = wT
hx∗ and Φ(z) is the cumulative distribution function for a standard

normal distribution.

If we assume we are given m training examples {(Xα, Yα)|α = 1, 2, . . . , m} drawn inde-
pendently from pX,Y. We then consider a Hebbian classifier where we choose the weight
vector w = w̄/|w̄| where

12 Chapter 3. Class Margins

w̄ =
m

∑
α=1

Yα Xα. (3.3)

Since the risk of a weight vector with angle θ from x∗ is given by Φ(−∆ cos(θ)), the
expected risk using the Hebbian classifier can be approximated by

R̄ ≈ R̄approx = Φ

⎛⎝− ∆√︂
1 + p

m ∆2

⎞⎠ (3.4)

p = 50
p = 100

p = 200

∆ = 1

∆ = 2

∆ = 3

∆ = 4

10 102 103 104 105

1

10−1

10−2

10−3

10−4

m

R̄

FIGURE 3.1: The expected risk of the simple learning machine versus the number of
training examples, m (dashed lines), along with simulation results averaged over 100

runs (markers).

Figure 3.1 shows the expected risk versus the number of training examples m for feature
vectors of length p = 50, 100 and 200, and for different values of the class separation
∆ = 1, 2, 3 and 4. Figure 3.1 also shows simulated results for the risk averaged over 100
runs. The simulated risks and the expected approximated risks are almost identical,
indicating that this is a very good approximation. This also clearly illustrates that even
for large numbers of features, as the class separation increases the risk becomes very
small, for sufficiently large numbers of training examples.

Relating these insights to the case of classification in a convolutional neural network,
I considered the hypothesis that the convolutional layers within the network induce
an increase in the margins between classes, thereby transforming the raw image data
into a latent space in which the classification task is more simple. I sought to test this
hypothesis.

3.1. Methodology 13

3.1 Methodology

I designed an experiment in which I can empirically investigate this hypothesis, us-
ing well established CNN model architectures. There may not always exist a directly
measurable margin between the data in two separate classes, and it is almost certainly
the case that the data cannot be separated by a maximum margin hyperplane, as this
would imply that the data could be linearly classified, and so a deep neural network
would be unnecessary. I therefore aimed to establish a proxy for the margin which we
can quantify in a meaningful way. I propose a method of introducing noise to the latent
representation of the data, and measure the tolerance of the network to varying levels
of this noise as a proxy for the margin. It is a reasonable assumption that the more
tolerant a classifier is to this noise, the greater the margin between the data at the point
where the noise is introduced.

I did this by taking a k-layer network F, trained on some dataset D = (X, Y), and split
the network at some layer l, into two networks Gl and Hl , where Hl is the network
composed of the layers of F up to and including layer l, and Gl is the network of layers
of F after layer l, and so where F = Hl ◦ Gl∀l ∈ Z, 0 ≤ l ≤ k. There are two special
cases, l = 0 where Gl is the identity function and Hl = F, and l = k where Gl =

F and Hl is the identity function. We then use Gl to project the data X into a latent
representation Zl , where Zl = Gl(X). I then added noise to this latent representation
by generating noisy data points z′ ∈ Zl as

z′ = z + α
N

∑
i=1

ηi
√

σivi

Where z = Gl(x) is the latent representation of an image x, α is a parameter varied
to control the magnitude of the noise, σi is the ith largest singular value and vi the
corresponding singular vector of the data in the latent space, N is the number of noise
components, and ηi ∼ N (0, I) is random uniform noise. The singular values and singu-
lar vectors were calculated through the singular value decomposition (SVD) of a subset
of the data, using 2048 randomly sampled data points.

Hl is then used to predict labels for the corrupted data, and the classification accuracy
measured against the true labels y. By varying the parameter α it is possible to control
the amplitude of the noise, and measure the tolerance by the degree of noise needed to
reduce the accuracy by a fixed amount, or alternatively the accuracy at a fixed degree
of noise.

By introducing noise according to the most significant principal components of the
dataset, I aimed to account for variations in the distribution of the data, since the dis-
tribution of the data is unknown. Further, by scaling the noise by the corresponding

14 Chapter 3. Class Margins

singular values, it is possible to normalise for variations in the scale of the data without
having to re-scale the entire latent space.

I conducted experiments on models in the VGG family (Simonyan et al. 2015), those
being well established convolutional neural networks which can achieve good perfor-
mance in image classification, but which are sufficiently small enough that I was able to
perform experiments using them without the need for excessively powerful hardware
or unnecessary wasting of compute time. I used weights pre-trained on ImageNet, and
performed experiments testing the noise tolerance on CIFAR-10 (Krizhevsky and Hin-
ton 2009) and TinyImageNet (mnmoustafa 2017) by fine-tuning the weights for these
datasets. I experimented with VGG models of varying depth, using VGG11, VGG13,
VGG16 and VGG19, to investigate the significance of model depth on noise tolerance.
I split each model after every operation, including activation functions, pooling and
normalisations, in order to investigate the impact these operations have on the mar-
gins between classes. Table 3.1 shows the compositions of these models, with the layer
number for each operation. I chose N = 50 singular vectors for our noise, and vary the
noise between 0 and 5 (inclusive) in increments of 0.1. I average the results over 10 tri-
als for greater accuracy. In each case I measured the accuracy over a test partition of the
dataset not used in fine-tuning the model. Following the method used in training the
pre-trained weights, the images are scaled up to 256x256 pixels, then centre-cropped to
224x224 pixels.

3.2 Results

For any model/dataset/split combination, it is possible to plot a curve showing the
relationship between introduced noise and test accuracy, to give an indication of the
noise tolerance. Examples of some of these curves are shown in figure 3.2. We can
see how the noise tolerance varies in each case, with the accuracy dropping off steeply
in some, and more gradually in others, as the noise level increases. For example the
plot for VGG11 at split 0 drops off quickly, showing less noise tolerance, while the plot
for VGG16 drops off much more gradually, showing greater noise tolerance. We could
plot these curves across different splits for the same model and dataset, to attempt to
compare how the noise tolerance varies at different splits. However, these curves do not
give us an easy way to compare the noise tolerance directly between the many layers
of a model, or to visualise how the tolerance changes through the model. While we
can compare curves for different layers, the more layers a model has the more difficult
it becomes to use these curves to gain an understanding of the changes through the
model.

Instead, we can approximate the area under these curves using Simpson’s rule, and —
since the curves should be monotonically decreasing — we should be able to use this

3.2. Results 15

Layer VGG11 VGG13 VGG16 VGG19
0 Raw input Raw input Raw input Raw input
1 Conv2D Conv2D Conv2D Conv2D
2 ReLU ReLU ReLU ReLU
3 MaxPool2D Conv2D Conv2D Conv2D
4 Conv2D ReLU ReLU ReLU
5 ReLU MaxPool2D MaxPool2D MaxPool2D
6 MaxPool2D Conv2D Conv2D Conv2D
7 Conv2D ReLU ReLU ReLU
8 ReLU Conv2D Conv2D Conv2D
9 Conv2D ReLU ReLU ReLU

10 ReLU MaxPool2D MaxPool2D MaxPool2D
11 MaxPool2D Conv2D Conv2D Conv2D
12 Conv2D ReLU ReLU ReLU
13 ReLU Conv2D Conv2D Conv2D
14 Conv2D ReLU ReLU ReLU
15 ReLU MaxPool2D Conv2D Conv2D
16 MaxPool2D Conv2D ReLU ReLU
17 Conv2D ReLU MaxPool2D Conv2D
18 ReLU Conv2D Conv2D ReLU
19 Conv2D ReLU ReLU MaxPool2D
20 ReLU MaxPool2D Conv2D Conv2D
21 MaxPool2D Conv2D ReLU ReLU
22 ReLU Conv2D Conv2D
23 Conv2D ReLU ReLU
24 ReLU MaxPool2D Conv2D
25 MaxPool2D Conv2D ReLU
26 ReLU Conv2D
27 Conv2D ReLU
28 ReLU MaxPool2D
29 Conv2D Conv2D
30 ReLU ReLU
31 MaxPool2D Conv2D
32 ReLU
33 Conv2D
34 ReLU
35 Conv2D
36 ReLU
37 MaxPool2

TABLE 3.1: Composition of each model being tested

area as a proxy for the noise tolerance, as greater noise tolerance should give a curve
which drops off more gradually, and so would have a greater area underneath than a
curve which drops off more sharply. This area should then gives us a proxy for measur-
ing the margins between classes at that point in the network. We should note that there
is a minimum possible area under each graph, since we do not expect the accuracy to
be below random performance, which for CIFAR-10 is 0.1 (as there are 10 classes), and
for Tiny Imagenet is 0.005 (as there are 200 classes). This means the minimum area for
CIFAR-10 is 0.5, while for Tiny Imagenet it is 0.025. We therefore subtract these values
from the calculated areas to give us our approximated noise tolerance. Since we assume
that accuracy should never increase as we increase the noise scale, we can calculate the
maximum noise tolerance we expect to see for each network, which would be the area
under a graph where the accuracy is constant for all noise values, which is equal to
(Accmax − Accbaseline)× Noisemax, where the maximum noise scale Noisemax is 5.

16 Chapter 3. Class Margins

(A) Model=VGG11, Split=0 (B) Model=VGG13, Split=10

(C) Model=VGG16, Split=20 (D) Model=VGG19, Split=30

FIGURE 3.2: Accuracy vs. Noise plots for different models and splits on CIFAR-10 .
Split indices correspond to the layers in table 3.1

We can illustrate this with an example of these curves. Figure 3.3 shows a plot of the
accuracy vs. noise for VGG11 on CIFAR-10 , split at layer 11, with the area under
the curve highlighted. The calculated area gives the noise tolerance value. The area is
calculated only between the curve and the baseline of y = 0.1, since this is the minimum
accuracy we expect to see on CIFAR-10 .

Table 3.2 shows the maximum accuracies and noise tolerances for each model/dataset
combination. This theoretical maximum noise tolerance is the same for any layer, since
it is proportional to the accuracy of the network when no noise is introduced.

Model VGG11 VGG13 VGG16 VGG19
Dataset CIFAR10 Tiny Imagenet CIFAR10 Tiny Imagenet CIFAR10 Tiny Imagenet CIFAR10 Tiny Imagenet
Accmax 0.822 0.570 0.819 0.556 0.832 0.573 0.831 0.587

Max tolerance 3.610 2.825 3.595 2.755 3.660 2.840 3.655 2.910

TABLE 3.2: Maximum accuracy and theoretical maximum noise tolerance for each
model and dataset combination

Figure 3.4 shows a plot of this noise tolerance proxy through the VGG11 network on
CIFAR10, while Figure 3.5 shows the same plot for the VGG11 network on Tiny Im-
agenet. Complete results are shown in Appendix A, with plots for each model and
dataset combination, in figs. A.1 to A.4 for CIFAR-10 and figs. A.5 to A.8 for Tiny Ima-
genet.

3.2. Results 17

FIGURE 3.3: Accuracy vs. Noise for Model=VGG11, Split=11 on CIFAR-10 with area
under graph showing noise tolerance

FIGURE 3.4: Noise tolerance through network approximated via Simpson’s rule:
Model=VGG11, Dataset=CIFAR10

18 Chapter 3. Class Margins

FIGURE 3.5: Noise tolerance through network approximated via Simpson’s rule:
Model=VGG11, Dataset=Tiny Imagenet

These plots illustrate the erratic behaviour of the noise tolerance, and this behaviour
can be seen in all networks, and with both datasets. It is interesting that the noise
tolerance appears to increase through the first half of the network, but then decrease
through the second half, with the noise tolerance at the output being less than at the
input. This appears to apply across all cases, with the noise tolerance seeming to peak
at approximately halfway through each model.

If we compare across different models, the overall noise tolerance seems to increase in
deeper models, with the peak noise tolerance being greater the deeper the model. This
also seems to be consistent in both datasets. For example, the peak noise tolerance for
VGG11 on CIFAR10 is approx. 2.38, for VGG13 it is approx. 2.78, for VGG16 approx.
3.03, and for VGG19 approx. 3.08. Similarly on tiny ImageNet, the peak noise toler-
ances are approx. 1.71, 2.08, 2.24, and 2.31, for VGG11, VGG13, VGG16, and VGG19,
respectively.

This is somewhat interesting, as the peak noise tolerance is also achieved at later layers
in deeper models, being at layers 9, 13, 15, and 17 in the respective models on both
datasets, except for VGG13 on Tiny Imagenet, where the peak is at layer 8, but the
tolerance at layer 13 is only fractionally smaller. This indicates that the depth does
play a role in improving the tolerance to noise. It is surprising, however, that the noise
tolerance drops off after these peaks, seeming to decline steadily to a lower level than
at the start of the network.

3.2. Results 19

If greater depth were related to improved noise tolerance, we might expect to see the
noise tolerance increasing through the entire network, rather than peaking in the mid-
dle. Additionally if noise tolerance were a direct indicator of improved generalisation,
we would again expect to see the greatest noise tolerance at the end of the network.

It is possible the peak in the middle is related to the dimensionality of the data in the
latent space, as this also increased and decreases throughout the network. We can plot
the dimensionality alongside the noise tolerance to examine whether there may be a
relationship between them. We plot the dimensionality on a log-scale, as in most cases
(except in the first layer, where the 3 colour channels are mapped into 64 feature maps)
the dimensionality changes by a power of two. Since images are input at a resolution
of 224x224 pixels, the dimensionality at every point (other than the input where there
are only 3 colour channels) will be a value equal to 72 × 2i for some i ∈ Z.

FIGURE 3.6: Noise tolerance & dimensionality through network: Model=VGG11,
Dataset=CIFAR10

Figure 3.6 shows a plot of this noise tolerance proxy through the VGG11 network on
CIFAR-10 , while figure 3.7 shows the same plot for the VGG11 network on Tiny Im-
agenet. As before complete results are shown in Appendix A, in figs. A.9 to A.12 for
CIFAR-10 and figs. A.13 to A.16 for Tiny Imagenet.

It appears from these results that there may be some correlation between the dimen-
sionality and the noise tolerance, with both generally first increasing and then decreas-
ing through the network. However, there are significant caveats to this observation.
Firstly in all cases the dimensionality peaks in the first few layers, and then drops off
over the rest of the network, whereas the noise tolerance appears to peak in the middle
of the networks, when the dimensionality has been reduced by several orders of magni-
tude. Secondly, the noise tolerance is erratic, spiking up and down from layer to layer,

20 Chapter 3. Class Margins

FIGURE 3.7: Noise tolerance & dimensionality through network: Model=VGG11,
Dataset=Tiny Imagenet

whereas the dimensionality is constant for several layers, increasing on some convolu-
tions, then decreasing on max pooling layers after one or two more convolutions and
ReLU layers. Given these observations, we cannot infer that any apparent correlation
implies any causation in relationship, and that it may simply be a coincidence.

We should instead focus on the changes that occur in the noise tolerance from layer to
layer. In each case on our plots, the layer name given indicates that the model was split
after that layer, i.e. that layer is the last to have been applied to the data before noise
is introduced. As mentioned, we see an interesting pattern, where the noise tolerance
is erratic and increases and decreases sharply between layers. In particular the noise
tolerance seems to increase with each convolutional layer, and decrease with the ReLU
and Max Pooling layers. This can be seen more easily if we plot the change in noise
tolerance given with each layer, as shown in figures 3.8 and 3.9, with full results in
Appendix A in figs. A.17 to A.20 for CIFAR-10 and figs. A.21 to A.24 for Tiny Imagenet.
We refer to this change in noise tolerance as ∆.

These results are interesting, and there may be several possible explanations for the
patterns we can observe. The convolutional layers increasing noise tolerance and Max
Pooling layers decreasing the tolerance might indicate that noise tolerance is correlated
with the dimensionality of the data, as we suggested previously, however we have
seen that this does not apply in general. This would also not explain the decrease in
noise tolerance given by the ReLU layers, as these do not change the dimensionality of
the data, only modify the individual features. Both ReLU and Max Pooling layers by
their nature throw away information, as pooling reduces the dimensionality, directly

3.2. Results 21

FIGURE 3.8: Change in noise tolerance through network: Model=VGG11,
Dataset=CIFAR10

FIGURE 3.9: Change in noise tolerance through network: Model=VGG11,
Dataset=Tiny Imagenet

22 Chapter 3. Class Margins

eliminating features, and ReLU functions remove any negative values. This may in-
dicate that reducing the information present in the data reduces the noise tolerance,
however no layer can increase the quantity of information in the data, so the quantity
of information alone also cannot account for the increase in noise tolerance. It may
be that convolutional layers can in some cases separate salient information about the
class of the data from spurious information unrelated to the class. This could explain
why noise tolerance increases on the convolutional layers, and then decreases on the
ReLU and pooling layers, as those eliminate some features from the data. However,
not all of the convolutional layers increase the dimensionality of the data, but all the
convolutions do seem to increase the noise tolerance.

3.3 Potential Flaws

The results so far seem to indicate that class margins do not increase through the net-
work, despite the hypothesis that this could lead to improved generalisation. However,
we observe that there may be a flaw in the methodology behind these experiments. The
noise introduced to each data-point is calculated as the sum of the N most significant
singular vectors of the data, each scaled by the product of the corresponding singular
value, the fixed noise scale, and a random value ∈ [0, 1) (as described in section 3.1).
This has the effect of only perturbing the data in only the directions corresponding to
the N most significant singular vectors, that is, the directions in which the data has
most variation. This strategy was chosen to avoid perturbing in directions which were
not present in the data, to better represent noise that might be observed in the data.
However, this has two significant flaws. Firstly, the chosen value of N is significantly
smaller than the dimensionality of the data, particularly in early hidden layers where
the dimensionality is of the order ≈ 106. Secondly, if the margins between classes in-
creases, this could lead to greater variation in directions along which those margins lie,
thereby meaning that we inadvertently increase the scale of noise in these directions,
potentially cancelling out any increase in noise tolerance we would otherwise observe
due to the larger margin. This could explain the somewhat surprising behaviour ob-
served with convolutional layers, given the linear nature of convolutions. Since noise
is generated following the principle components of the data, scaled to their relative
size, a linear transformation should not change the distances between classes relative
to this re-scaling. However, this could be due to the choice to use only the 50 most
significant principle components, it may be that the linear re-scaling done by the con-
volutions changes which directions these 50 most significant principle components are,
and so introducing noise following these new components could increase the noise tol-
erance. In other words, the re-scaling done by the convolution would make directions
less correlated with the class boundaries more prominent in the data. Eliminating these
directions would then have the curious effect of decreasing the apparent margin, but in

3.4. Fixing Issues with the Methodology 23

FIGURE 3.10: Noise tolerance through network with noise centered on class means:
Model=VGG11, Dataset=CIFAR10

theory not reducing the salient information present in the data. This could explain why,
under this framework, ReLU and max pooling layers give decreased noise tolerance.

3.4 Fixing Issues with the Methodology

I attempted to control for the second of these two factors by simply calculating the
singular vectors for the noise based on data-points centred about the mean of the cor-
responding class. This should correct for any variation in the data caused by class mar-
gins, while retaining all other variation. I repeated the experiments generating noise in
this way. In order to avoid using compute resources unnecessarily, I ran a trial exper-
iment using only the VGG11 model on CIFAR10, to determine the value in repeating
the experiment on the other models and datasets.

Figure 3.10 shows the results of generating noise in this way on the VGG11 model and
CIFAR10. We can observe that, while the noise tolerances are slightly higher, the trend
is essentially the same as in 3.4, where the noise is generated for singular vectors cen-
tred about the origin. It seems therefore that this correction does not affect the trends
we observe in the results, and so I did not consider it worthwhile spending computing
power on replicating these results for the other models and dataset. I therefore consid-
ered whether the other potential flaw affects the results, that is, that the chosen value of
N is too small. It would be possible to try using a larger value of N, however for early
layers of the network, where the dimension of the latent space is largest, computing the
SVD quickly becomes intractable as N increases, both in time and memory. I therefore

24 Chapter 3. Class Margins

FIGURE 3.11: Noise tolerance through network with Gaussian noise: Model=VGG11,
Dataset=CIFAR10

considered introducing noise in a more naive way, by simply adding uniform Gaussian
noise to the data. I chose to scale this noise by the average norm of the data, divided
by the square root of the number of dimensions, in order to control for both variations
in the scale of the data. Dividing by

√
d is necessary in order to correct for the dimen-

sionality, since |x| grows in proportion to
√

d. Formally, I generated noisy data-points
z′ as:

z′ = z + α
√

Nη

where α is the noise scale we vary, N = dim(z) and η is a vector sampled from H ∼
N (0, IN).

I then repeated the experiments again with this revised method of introducing noise.
As before, I ran an initial trial experiment using the VGG11 model on CIFAR10.

3.5 Further Results

Figure 3.11 shows the results of the trial experiment of generating uniformly scaled
Gaussian noise. The results of the trial experiment are promising, we see a much more
marked increase in noise tolerance through the network, with some interesting trends.
The noise tolerance in the final layer is now much larger than in the first layer, instead
of being lower as in our previous experiments. The noise tolerance in the first layer is
close to zero, while the noise tolerance in the last layer is close to the maximum possible

3.5. Further Results 25

FIGURE 3.12: Accuracy vs Noise plots using Gaussian noise: Model=VGG11,
Dataset=CIFAR10

3.6. If we plot accuracy over noise graphs for these layers, we can see how pronounced
the difference of these values is.

Figure 3.12 shows the accuracies for these layers. We can see that the accuracy in the
first layer drops off very quickly, reaching the minimum value of 0.1 with only a noise
scale of around 0.5. Conversely the accuracy in the final layer drops off very slowly,
reaching only around 5.5 at a noise scale of 5, and still being close to the accuracy of the
uncorrupted model. Interestingly there is a small increase in accuracy in the first layer
after the initial drop off, around a noise level of 0.5 - 1.5, with the accuracy then tailing
off again. This is very unexpected, as a greater degree of data corruption should only
hurt performance. I have no good hypothesis for this, although investigating it may be
interesting for future work.

We see other interesting trends in 3.11. While the noise tolerance increases from the
first to the last layer, this increase is distinctly not monotonic. The tolerance generally
increases in the first few layers, with one small dip, but then begins to vary drastically
in the middle and later layers. We can see that many of the largest drops come after
convolutional layers, while the largest increases come from max pooling layers, with
the ReLU layers sometimes increasing and sometimes decreasing the tolerance, as well
as some convolutions seeming to have minimal effect.

The increase in noise tolerance in the max pooling layers is particularly interesting.
While these layers decrease the number of dimensions, and so would decrease the
norm of the data, this was explicitly corrected for in the method of introducing noise,

26 Chapter 3. Class Margins

so the dimensionality itself should not account for this. This suggests there must be
some important factor in the dimensions that are eliminated or retained by the pool-
ing layers which would account for the increase in noise tolerance, beyond simply the
reduction in number, and that the pooling layers lead to an increase in the margins
between classes.

The decrease in noise tolerance from the convolutional layers is also interesting, as this
reverses the trends we observed in the earlier results using noise generated from the
singular vectors of the latent space. This would suggest that the convolutional layers
skew the data significantly in directions orthogonal to the class boundaries, making
these directions more significant in the data. The effect that this would have on overall
performance of the model is uncertain, but this is also a question worth further explo-
ration.

I considered these results to be promising, and worth investigating further, so I re-
peated the experiment on the other VGG models, and on the Tiny ImageNet dataset.
Full results of these experiments are again shown in appendix A, in figs. A.25 to A.28
for the CIFAR-10 results and figs. A.29 to A.32 for the Tiny Imagenet results. We can
see these results match with the trends in the trial experiment, with the noise tolerances
increasing between the first and final layers, but with large peaks and troughs in layers
in between. We see similar trends in the individual operations, with max pooling layers
giving large increases in tolerance, and the convolutional and ReLU layers giving both
increases and decreases, with the largest decreases being in convolutional layers. It
appears that before each max pooling operation, the preceding convolution and ReLU
both yield significant decreases in noise tolerance, with these ReLU layers being the
main ReLU layers to give decreases in tolerance, where ReLU layers preceding convo-
lutions tend to give increases in tolerance. This is interesting as it suggests a difference
in the way the convolution and ReLU layers operate in conjunction when depending
on the layer following them.

3.6 Summary

In this chapter I conducted experiments to attempt to measure the margins between
classes through the layers of CNN models in the VGG family, by introducing noise
to the data and measuring the accuracy at varying noise levels. Two methods of in-
troducing noise were used: introducing noise in only the most significant principle
components of the data, and introducing uniform Gaussian noise. When introducing
principle component noise, the noise tolerance appeared to peak around the middle of
the networks, and to drop off in later layers, whereas when introducing Gaussian noise
the noise tolerance was highest at the end of the networks, with peaks and troughs

3.6. Summary 27

throughout. Convolutional layers appeared to be more tolerant to principle compo-
nent noise and less tolerant to uniform Gaussian noise, while ReLU and max pooling
layers appeared to be more tolerance to Gaussian noise, and less tolerant to principle
component noise. This suggests that convolutions skew the data in directions orthog-
onal to the class boundaries, but that the class margins may still be small, while ReLU
and max pooling layers may eliminate variation in directions orthogonal to the margin,
making the size of the margin larger relative to the overall size of the data. This would
suggest that ReLU and max pooling layers eliminate information not relevant to classi-
fication, and possibly that the convolutional layers transform the data in such a way as
to allow for this.

29

Chapter 4

Using Hidden Layer Probes to
Explore the Transformation of Data
Through CNN Models

As demonstrated in the previous experiments, CNNs do appear to induce an increase
in the margin between classes with successive layers of the network. The increase in
the margin may be significant in the improved generalisation exhibited by the CNN,
however we cannot simply assume this to be the case. Following the initial hypothesis
that a larger margin implies an easier classification problem, and so better generalisa-
tion, it should be the case that where the margins in the data are greater, the data can
be more easily classified.

I therefore aimed to relate the size of the margin to the complexity of classification on
the data. I aimed to quantify the complexity in a way which allows for meaningful
measurements to be calculated, to give quantifiable values to relate to the margins. I
therefore chose a straightforward method of training a relatively simple classifier on
the data, and take the test accuracy of this classifier, with the assumption that the com-
plexity of classifying the data is inversely proportional to the classification score. This
assumption naturally follows from the assumption that less complex data should be
more easy to classify, and therefore should yield greater classification accuracy than
more complex data. This is illustrated by the trivial example from chapter 3, where the
least complex data — that is data with one feature, which directly codes the label — can
be classified perfectly by any deterministic classifier. In the extreme opposite case, data
which is of maximum complexity, i.e. random data, can never yield greater accuracy
than random chance. Applying a classifier in this way to the latent representation of
the data at a point partway through the flow of the network is akin to the method of
hidden layer probes introduced by Alain et al. 2017.

30 Chapter 4. Using Hidden Layer Probes

FIGURE 4.1: Test & Train accuracy of perceptron probes throughout network:
Model=VGG11, Dataset=CIFAR10

4.1 Methodology

As in the previous experiment, I took a pre-trained convolutional neural network F,
composed of n distinct layers, and choose a layer l ∈ {1, . . . , n} at which to split the
network, giving partial networks Gl and Hl . As before F = Hl ◦ Gl . I then created
an untrained classification model, Cl , and using this created a composite model Ml =

Cl ◦ Gl . I trained this model on a dataset D, fixing the weights of Gl so as to only learn
the weights of Cl . I then measured the classification accuracy of Ml on the test data,
giving a complexity score.

As before, I used models in the VGG family, namely VGG-11, VGG-13, VGG-16 and
VGG-19, all pre-trained on ImageNet, and train the composite models on CIFAR-10 and
Tiny ImageNet. Following the methods of Alain et al. 2017, I investigated the use of
linear classifiers for the classification model Cl . Each CNN is again split after every
operation, including activations and pooling, to investigate the significance of these,
and provide a direct comparison with our experiments measuring the class margins.
In each case I trained the classifiers for a maximum of 100 epochs, but with early stop-
ping used if the validation accuracy - measured on a separate validation set - does not
increase for five epochs.

4.2. Results 31

FIGURE 4.2: Test & Train accuracy of perceptron probes throughout network:
Model=VGG11, Dataset=Tiny Imagenet

4.2 Results

Figures 4.1 and 4.2 show the results of training perceptron probes on the hidden lay-
ers of the VGG11 model on CIFAR-10 and Tiny Imagenet. Full results are shown in
appendix B, in figs. B.1 to B.4 for CIFAR-10 and figs. B.5 to B.8 for Tiny Imagenet. In
each case we plot a baseline accuracy of the test accuracy we obtained using the whole
model, fine-tuned on the particular dataset, to compare the results against. We can
see that on both datasets the train accuracy is very good, quickly approaching 100%,
even on the 200 class Tiny Imagenet. If we compare with the test data, the accuracy
increases through the network much more gradually, but reaching reasonably good ac-
curacy at the end of the model. Indeed on CIFAR-10 , the test accuracy reaches around
the same level as the baseline accuracy on each model, indicating that the simple per-
ceptron classifier can be as effective, at least on simpler problems, as the more complex
MLP classifier used in the full model. On Tiny Imagenet, the test accuracy is still rela-
tively good - for the problem at least - achieving around 45-50% accuracy in each case,
compared with the approx. 55-60% accuracy achieved using the full model. The accu-
racy is considerably lower than on CIFAR-10 due to the much larger number of classes,
however achieving even 50% accuracy on a 200 class problem, with no explicit regular-
isation or data augmentation techniques - which are frequently used in achieving state
of the art performance - is still good performance. The gap between the baseline and
the probe accuracy on Tiny Imagenet does indicate that the perceptron classifier is less
effective on more complex problems than the full MLP used in the complete model.

32 Chapter 4. Using Hidden Layer Probes

FIGURE 4.3: Test & Train accuracy of MLP probes throughout network:
Model=VGG11, Dataset=CIFAR10

The fact that accuracy increases through each network, on both datasets, is an interest-
ing observation. The use of a perceptron probe, which is a linear classifier, indicates
that the data becomes progressively more linearly separable through the network. In-
deed in the case of CIFAR-10 , the data appears to be as easily classified by a linear
classifier as by the MLP used in the full model. This suggests that the linear separa-
bility is an important factor in the generalisation performance of the network, and fits
with the hypothesis of the network simplifying the problem being integral to yielding
good generalisation. Moreover the fact that this linear separability appears to emerge
throughout the network indicates that this simplification of the problem is a gradual ef-
fect through the network, being the cumulative result of many layers, rather than only
a few specific layers contributing to this effect.

While I hypothesise that information is filtered gradually by each layer, with salient
information being slowly linearised, and spurious information discarded, it may be
the case that salient information is distilled into features more quickly, but in a feature
space that cannot be linearly separated. In order to draw accurate conclusions about
the nature of this information filtering, it is important to investigate this possibility. I
therefore repeated these experiments, but in place of the perceptron classifier used a
two-layer MLP, which should be capable of capturing more complex patterns within
the feature space than a perceptron, and therefore give an indication of whether salient
information is distilled into non linearly separable features.

Figures 4.3 and 4.4 show the results of training the two-layer MLP classifier probes on

4.2. Results 33

FIGURE 4.4: Test & Train accuracy of MLP probes throughout network:
Model=VGG11, Dataset=Tiny Imagenet

the hidden layers of VGG11, on CIFAR-10 and Tiny Imagenet. Full results for all mod-
els are shown in appendix B, in figs. B.9 to B.12 for CIFAR-10 and figs. B.13 to B.16 for
Tiny Imagenet. I encountered significant difficulty in training these MLP classifiers,
particularly on Tiny Imagenet. For early layers of the networks, the number of pa-
rameters required to train an MLP is extremely large, and is unfortunately beyond the
capabilities of the hardware available. Where training was not possible, no values are
plotted. Even in later layers where the training is tractable, I still had significant diffi-
culties, with the models for certain layers seemingly not learning, and being stuck at
essentially random accuracy, despite being able to run the training loop. In these cases,
the values are plotted as untrainable layers. It is of some interest that this only appears
to occur at certain layers, however there is no clear reason for this, as it does not appear
to simply be due to dimensionality, since some layers of equal dimensionality do learn
as normal.

From the results I could produce, we do see some interesting results. Both the training
and test accuracies do still seem to increase through the network, however both accura-
cies are less consistent, with more variation in both test and train accuracies throughout
the networks. This is difficult to be certain of, however, due to the difficulties encoun-
tered in training.

We see that the performance in many cases does not significantly increase when us-
ing a multi-layer perceptron in place of a linear classifier. Indeed by comparing these
results directly, we can see how closely these results match. Figures 4.5 and 4.6 show

34 Chapter 4. Using Hidden Layer Probes

FIGURE 4.5: Test accuracy of Perceptron & MLP probes throughout network:
Model=VGG11, Dataset=CIFAR10

FIGURE 4.6: Test accuracy of Perceptron & MLP probes throughout network:
Model=VGG11, Dataset=Tiny Imagenet

4.2. Results 35

comparisons of the perceptron and MLP test accuracies on CIFAR-10 and Tiny Ima-
genet respectively, through the VGG11 network. Layers where the classifier appears to
not be trainable are marked, while layers where no training was possible are omitted.
As before, full results are shown in appendix B, in figs. B.17 to B.20 for CIFAR-10 and
figs. B.21 to B.24 for Tiny Imagenet. In all cases, the accuracy does not appear to be
much improved, if at all, using the MLP classifier, where the classifier was able to learn.
This suggests that where the network filters salient information, it does so in a way that
is at best linearly separable, and these features are not encoding information in a more
complex way. This supports the hypothesis that the generalisation ability using the
CNN, and so reduction in complexity of the data, comes from the data becoming in-
creasingly linearly separable through the network. This is a striking result, as there
is no inherent reason for the data to become more linearly separable until prior to the
very last layer, at which point the remaining layer of the network is a linear classifier.

This suggests that the network naturally induces linear separability in the data as the
data flows through the network, despite even the partial networks being capable of
learning extremely expressive functions on data which is not linearly separable. This
shows a far more significant level of structure emerging in the data as it passes through
the network than simply an increase in the margin, as it implies that this margin ap-
proaches a linear hyperplane, despite the extremely high dimensionality of the latent
space.

This motivates the question of how this linear separability emerges, and whether par-
ticular parts of the network, or particular operations within the network, may be driv-
ing this. From the previous results we can investigate the role of the different opera-
tions. We can highlight the change in linear separability after each type of operation,
that being convolutions, activations (ReLU), and pooling, to see how these each affect
the separability. Due to the issues encountered in training the MLP models, we fo-
cus primarily on the results using linear classifiers, as these are complete and of more
interest.

Figures 4.7 and 4.8 show the change in train and test accuracy using perceptron classi-
fiers in VGG11, on CIFAR-10 and Tiny Imagenet. Once again full results are shown in
appendix B, in figs. B.25 to B.28 for CIFAR-10 and figs. B.29 to B.32 for Tiny Imagenet.
We can observe that there is a very clear trend in which, with only a few exceptions, the
convolutional layers lead to decreases in both the training and test accuracy, while the
ReLU layers lead to increases in both accuracies. This is rather interesting when we con-
sider how these layers transform the data. Convolutional layers are linear, and so we
would not expect these to have much effect on linear classification. However, it should
be noted that a convolution is not necessarily invertible, and that it may reduce the di-
mensionality of the data, either explicitly by having a smaller dimensional output than
input, or implicitly by projecting into a linear subspace of the co-domain. It is therefore

36 Chapter 4. Using Hidden Layer Probes

FIGURE 4.7: Change in train and test accuracy of Perceptron probes throughout net-
work: Model=VGG11, Dataset=CIFAR10

FIGURE 4.8: Change in train and test accuracy of Perceptron probes throughout net-
work: Model=VGG11, Dataset=Tiny Imagenet

4.3. Summary 37

somewhat expected that convolutional layers would not increase the training perfor-
mance, as this should not be possible, but that they might decrease both training and
test performance, if reducing the dimensionality of the data, and thereby discarding
information. While we do see some examples of convolutions increasing the training
accuracy, this may simply be an artifact of the randomness of training the classifiers.

ReLU layers however are non-linear, and so it is possible for these to increase the per-
formance of the classifier. However, ReLU layers do discard a significant amount of
information, clamping any negative values to zero, and so it is interesting that these
do increase the accuracy in almost all cases, both in training and test. This indicates
that the information discarded by the ReLU layers is not salient to the classification
problem, but the information retained is. Again we see evidence of the convolutional
and non-linear layers working in tandem, since the ReLU layers in many cases give
improvements in accuracy over the level lost in the preceding convolution, indicating
that as a pair they lead to an increase in accuracy.

The max pooling layers are more curious, in most cases giving only minimal changes
in test and train accuracy, sometimes increasing and sometimes decreasing the accu-
racy. Moreover there are some cases where the max pooling layers give a decrease in
train accuracy but an increase in test accuracy, although both changes are often small.
Whether this pattern is indicative of a facet of the model is uncertain, however if it is it
would indicate that, at least in these instances, the max pooling layers are able to filter
some spurious information, while retaining and amplifying salient information. It does
at least appear to be the case that the max pooling layers do not remove salient infor-
mation, as they do not seem to decrease test accuracy, even if they do not directly make
the features more linearly separable. This is still an interesting observation, given that
the max pooling layers discard (in this instance) 3

4 of the information by cutting down
the number of features by a factor of four. The fact that this appears to have little to
no impact on the test accuracy, and so the content of salient information, is certainly
interesting, and rather surprising.

4.3 Summary

In this chapter I conducted experiments using hidden layer probes to investigate how
the data and complexity of the problem changes through CNN models. I experimented
with both linear and non-linear MLP classifiers, and while only the linear classifiers
were able to yield complete results, there is a strong indication that linear probes are
close to or as effective as the non-linear probes. Moreover the linear probes also ap-
pear to be close to as effective as the complex MLP classifier used in the full model,
indicating a strong degree of linear separability in the data, close to the total level of in-
formation distilled by the CNN. The linear separability also appears to emerge through

38 Chapter 4. Using Hidden Layer Probes

the networks incrementally, with significant increases to linear separability being given
by ReLU layers, countering decreases from convolutions. This gives an indication of
the convolutional and ReLU layers working in tandem to linearise the data and distil
salient information.

39

Chapter 5

Investigating the Transformation of
Pixel-Level Information into Coarse
Features in CNNs

We can see from the results of the investigations in chapters 3 and 4 that the differ-
ent operations within the networks have differing impacts on the performance and the
learning of the network. In analysing these results, I have proposed the hypothesis
that these effects are related to the way in which these operations transform, discard
or retain information. Indeed, as previously discussed, the overall goal of any machine
learning model is to extract salient information from data, in a way which is pertinent
to the problem at hand. This necessarily involves filtering and discarding spurious in-
formation, at least in order to achieve good generalisation. Focusing on our specific
line of enquiry, the idea of discarding information is particularly relevant to the ReLU
and MaxPooling operations, which each discard a significant amount of information,
while the convolutional layers primarily transform information. While convolutions
can discard information, we can assume that generally the amount of information dis-
carded by these is far less than by the directly destructive operations of the ReLU and
max pooling.

ReLU operations seem to reliably improve performance, increasing noise tolerance
when weighting directions equally, and by assumption the class margins, as well as di-
rectly improving both training and test performance in the partial models. Max pooling
layers however are more varied. When investigating the margins, the max pooling lay-
ers appear to give decreases in margins in a few principle directions, however appear to
have the opposite effect when weighting directions equally, giving large increases in the
margin. In the partial models, the max pooling layers are particularly intriguing. The
effect of pooling layers appeared to be very small, generally giving by far the smallest
changes in train and test accuracy. Notably however, in some cases the pooling layers

40 Chapter 5. Coarse Features

seemed to give small increases in test accuracy, but at the expense of small decreases in
train accuracy. This is in contrast to the ReLU layers, which generally increased both
test and train accuracy, and the convolutional layers, which generally decreased both
test and train accuracy.

As discussed, this is still rather striking, as it suggests that the max pooling layers
discard large amounts of spurious information — by virtue of reducing the number of
features by a factor of four — in a way that does not appear to affect salient information.
This is an effect directly necessary for generalisation, indeed a model which generalises
perfectly would discard all spurious information, and retain all salient information, as
perfectly salient information fundamentally would be equivalent to the target or class
label.

If we consider what function pooling layers perform, this may give us some insight
into the nature of this behaviour. A max pooling operation takes the maximum chan-
nel value within a fixed window, and discards the other values in that window, and
thereby reduces the size of the feature space. If we think of our latent representation as
a series of feature maps, where each feature map is a two dimensional grid, each value
in a feature map is a measure of how strong the presence of a particular feature is at
that position. Deep in the network these features will be complex non-linear represen-
tations of a large area of the image around that point, composed of the result of multiple
convolutions, activations, and possibly pooling operations applied to that region of the
image. Taking a max pool across these features is therefore equivalent to capturing the
strongest of these representations in a region of the image, and so will discard some
fine-grained positional information of the location of that feature, but will retain the
broader information on the degree to which a feature is present within the image.

If we think of this in a specific context, for example classifying an image of a cat, early
layers in the network may give latent representations with strong features for things
such as eyes, ears, and whiskers, while later layers may give strong features for the
whole of a cat’s face or head. The pixel-specific locations of these features is not so im-
portant for classifying the image, or for constructing the larger representations deeper
in the network — as if you were the edit an image of a cat to move it’s ears one pixel
apart, it would not change the fact it was an image of a cat — however the presence of
these features in roughly the correct position is important.

It is possible that max pooling operations naturally yield this sort of behaviour in a
network, by discarding fine-grained positional information, while retaining coarse po-
sitional and feature information. This would likely contribute to the generalisation
capability of the network, due to this innate property of filtering out spurious infor-
mation, while retaining salient information. If this is the case, and the transformation

5.1. Methodology 41

of fine-grained positional information into coarse information occurs through the net-
work, it may explain some aspect of the generalisation capabilities of convolutional
neural networks.

This idea motivates investigating whether this effect occurs in the networks I have stud-
ied previously. My hypothesis is for it to occur with max pooling layers, however it may
occur elsewhere as well, or may not be observable at any point. It is worth noting that
a combination of a convolution and a ReLU can yield an effect similar to that of a max
pooling operation, as a ReLU layer will eliminate any negative values, and so a convo-
lution which maps points in a window to be all negative, except for one point which is
mapped to a positive, applying the ReLU would leave only this positive value within
that window. This is however dependent on the specific features, and the weights of the
convolution, but illustrates that this combination of operations can to some extent filter
fine-grained positional information, while retaining more coarse feature information.

5.1 Methodology

My hypothesis is that through the layers of the network, the information encoded by
the features of the latent space is transformed from the pixel-level information in the
input image, where the position of each individual pixel is significant, to complex fea-
tures of representations of more complex elements of the images, where the position
of these features is less significant than their presence or absence. I refer to these as
coarse features, in contrast to the fine-grained features that are the individual pixels of
the input. These may be representations of specific elements, such as wheels or faces,
however they may be more abstract. The specific content of these features is not under
investigation.

In order to investigate this hypothesis, I modified the previous experiment into par-
tial models, however in this case instead of training a classifier on the entire latent
representation of our images, I applied a global pooling operation to these latent repre-
sentations, to reduce them down to one value per feature map.

This global pooling operation is a simple sum of the features in each feature map of the
latent representation. Specifically, for a d × d × n-dimensional latent representation,
composed of n distinct d × d feature maps, the global pooling operation outputs an n-
dimensional feature vector where each element zi is the sum of all elements in the ith
feature map. This pooling operation eliminates all positional information at that point
in the network, leaving only the coarse feature information.

I ran this experiment as before, using models in the VGG family, evaluated on the
CIFAR-10 and Tiny ImageNet datasets. The global pooling greatly reduces the number
of features in the latent space, making training the classifiers much more viable, so it

42 Chapter 5. Coarse Features

FIGURE 5.1: Test & Train accuracy of perceptron probes throughout network with
global pooling: Model=VGG11, Dataset=CIFAR10

should be possible to produce good results using both a perceptron and an MLP. As
before, I first investigated using a perceptron classifier.

5.2 Results of Global Pooling with Linear Classifier

Figures 5.1 and 5.2 show the results of training perceptron probes on globally pooled
features through the VGG11 network, on CIFAR-10 and Tiny Imagenet respectively.
Full results are shown in appendix C, in figures figs. C.1 to C.4 for CIFAR-10 and
figs. C.5 to C.8 for Tiny Imagenet. The most notable feature of these results is how
good the classification performance is. On both datasets, the accuracies, particularly
on the test data, are close to those achieved in the previous experiment, training a clas-
sifier on the entire latent representation. Indeed the test accuracies are still relatively
close to the baseline accuracies using the entire models. This is an extraordinary result,
as the use of global pooling throws away the vast majority of the features, and we as-
sume the vast majority of the information they contain. Moreover the train accuracy -
which in our previous experiment generally exceeded the test accuracy by a significant
amount, often approaching 100% - now much more closely matches the test accuracy,
in some cases even almost on par with it. This suggests that the information retained
by global pooling is extremely salient, and is strongly correlated with the underlying
classification problem.

5.3. Comparison with Results from Chapter 4 43

FIGURE 5.2: Test & Train accuracy of perceptron probes throughout network with
global pooling: Model=VGG11, Dataset=Tiny Imagenet

5.3 Comparison with Results from Chapter 4

Moreover, the test accuracy when using global pooling seems close in many cases to
that achieved when training classifiers on the entire latent representation. By compar-
ing directly with the results of these experiments, we can see this more clearly. Figures
5.3 and 5.4 show these results side by side for the VGG11 model, on CIFAR-10 and Tiny
Imagenet respectively. Full results are shown in appendix C, in figs. C.9 to C.12 for
CIFAR-10 , and figs. C.13 to C.16 for Tiny Imagenet.

By comparing these sets of results, we can see just how impressive the performance on
the pooled latent representation is. In all cases the test accuracy is close to, or even on
par with, that achieved when training on the full latent representation. In the case of
CIFAR-10 , there is a noticeable gap, of around 5-10% accuracy at the end of the model.
Interestingly there is a larger gap in earlier layers, and this gap shrinks through the
model. On Tiny Imagenet however, there is almost no difference between the test ac-
curacy with and without pooling, at all stages of the model. The main difference we
can observe is that on the pooled features the increase in performance is not as smooth,
spiking up and down from layer to layer, but still increasing generally through the
model, in line with the unpooled results. This further suggests that the information
retained through global pooling is extremely salient, being seemingly as good for clas-
sification as the full latent representation.

44 Chapter 5. Coarse Features

FIGURE 5.3: Test & Train accuracy of perceptron probes throughout network with and
without global pooling: Model=VGG11, Dataset=CIFAR10

FIGURE 5.4: Test & Train accuracy of perceptron probes throughout network with and
without global pooling: Model=VGG11, Dataset=Tiny Imagenet

5.4. Results of Global Pooling with MLP Classifier 45

FIGURE 5.5: Test & Train accuracy of MLP probes throughout network with global
pooling: Model=VGG11, Dataset=CIFAR10

We can see also that the layer-to-layer variations in accuracy on the pooled features
match with those on the full features, with convolutional layers generally giving de-
creases, ReLU layers giving increases, and Max Pooling layers having only small effects
one way or another.

When we consider the numbers of features in question, the significance of the simi-
larities in performance becomes even more apparent. In the final layer, the full model
has a latent representation composed of over 25,000 features (25,088 to be exact), while
the pooled representation is only 512 features. The full MLP classifiers used in these
model have around 120 million weights (119,578,624 for CIFAR-10 , 120,356,864 for Tiny
Imagenet), whereas a linear classifier on the globally pooled feature space has around
250,000 for CIFAR10, and around 5 million for Tiny Imagenet. This further supports
the hypothesis that the transformation performed by the CNN is far more crucial to
generalisation than the over-parameterisation of the classifier.

5.4 Results of Global Pooling with MLP Classifier

Following on from these results, I repeated the same experiments, this time using an
MLP classifier, as in chapter 4. Figures 5.5 and 5.6 show these results on VGG11. Full
results are shown in appendix C, in figs. C.17 to C.20 for CIFAR-10 and figs. C.21 to C.24
for Tiny Imagenet.

46 Chapter 5. Coarse Features

FIGURE 5.6: Test & Train accuracy of MLP probes throughout network with global
pooling: Model=VGG11, Dataset=Tiny Imagenet

We can see that again there is significant difficulty in training the MLP models, despite
the greatly reduced number of features, particularly on Tiny Imagenet. While the re-
duced number of features makes it feasible to run the training loop, in many cases,
and indeed almost all with Tiny Imagenet, the classifier appears to not learn. This is
rather surprising given the relatively small number of features and parameters, given
that the MLP models each had only 256 hidden units. Whether it is significant that
the models only learn in a few layers — at the end of the model, and only on ReLU
or Max Pooling layers — is uncertain. If we focus on the results on CIFAR-10 , where
the models do mostly seem to learn, we can see again that by the end of the model
the classifiers achieve test accuracy very close to the baseline of the full models. This
further supports the hypothesis that model transforms information from fine-grained
pixel-level information into coarse, feature level information. It is interesting that the
performance, both in training and test, is so erratic. Even in the cases where the accu-
racy drops very low, the classifiers do appear to learn, as the training performance is
not as low as random performance would be (an accuracy of 10%), although the test
performance is close to this. It is interesting also that in all cases the most erratic perfor-
mance is seen in the middle layers, with large spikes between convolutional and ReLU
layers. This also seems to occur specifically between the third and fourth max pooling
layer in each model. The fact that this trend is seen in each model is interesting, but
there is no obvious explanation for this.

5.5. Summary 47

5.5 Summary

In this chapter I experimented with training hidden layer probes on globally pooled
feature maps through CNN models, to investigate the potential transformation of pixel-
level information into coarse features through the networks. Using a linear classifier on
the pooled features yielded performance similar to that achieved on the entire feature
maps, as in chapter 4, indicating that not only does the data become more linearly sepa-
rable, but that this linear separability is present in the coarse features of the latent space,
rather than location-specific features. Similar trends could also be observed to those in
chapter 4, with convolutional layers seeming to decrease separability, and ReLU layers
recovering this decrease and improving beyond it, indicating that the layers work in
tandem.

49

Chapter 6

Discussion & Conclusions

If we compare results across the different experiments, we see some particular trends.
There appears to be a clear pattern of different layers transforming the data in different,
but consistent, ways. Convolutional layers appear to transform the data in a way that
makes the data more difficult to classify, decreasing the class margin and linear separa-
bility, and in some cases reducing the strength of coarse features. In contrast, ReLU lay-
ers appear to transform the data such that it becomes more easy to classify, increasing
the class margin and linear separability, and increasing the strength of coarse features.
In concert, the convolutional and ReLU layers appear to form a pair which makes the
data easier to classify. As such, the penalty to classification ability that is incurred in
the convolutional layers does not reduce the salient information in the data, merely en-
code it in a way that can be extracted by the ReLU. Moreover this process is gradual,
with each of the convolution-ReLU pairs providing a small improvement over the last.
This indicates that rather than the data being entangled in a complex way through the
whole network, before being disentangled all at once in the final layer(s), the layers
slowly disentangle the information bit by bit. It may be that this is a reason for the
good generalisation performance, in either that these layer pairs are only capable of
incremental disentanglement of this information, or that doing so in small increments
reduces the likelihood of disentangling spurious information, and thereby distils more
salient information from the data, yielding better generalisation. This would give some
answer as to why depth may be preferred over width, as widening the network would
not provide the incremental transformation of the data that is achieved with depth.

Max pooling layers are more curious. It appears that max pooling layers can give sub-
stantial increases in the size of the class margin, however they do not appear to have
much effect on linear separability of the data or the coarse features within the latent
representations. However, given the amount of information they discard, by drasti-
cally reducing the dimensionality, the fact that they do not appear to decrease linear
separability or reduce the strength of coarse features suggests that the information they

50 Chapter 6. Discussion & Conclusions

discard is not salient. It therefore seems they do have an important purpose in discard-
ing spurious information.

There is certainly evidence to indicate that the CNN models being investigated per-
form gradual transformations to the data which simplify the problem, thereby making
the problem easier, and that this could account for some of the generalisation capa-
bilities these models exhibit. The class margins and linear separability of the data both
appear to increase through the models, in clearly identifiable trends across different op-
erations. These transformations make the data much easier to classify in a way which
generalises, as shown by the ability to achieve performance close to the full network
using only a linear classifier. Moreover, the coarse features learned by the network
become more easy to classify, and similar performance can again be achieved by clas-
sifying only the globally pooled features, with no fine-grained positional information,
and only a fraction of the total representation. Again this increases gradually layer
by layer, and clearly indicates a simplification of the problem, with individual features
which are much more salient to the classification than the pixel-specific features that are
the input to the model. These findings indicate that over-parameterisation is not such a
core component of generalisation as some other work would suggest, and that instead
the compositional structure of gradually building complex representations, slowly dis-
tilling salient information and filtering out spurious information, is more significant in
explaining the generalisation capability of deep models.

51

Chapter 7

Future Work

There is a wealth of possibility for future work building on these findings, which could
provide even greater insight into the nature of deep networks, and further the goal of
understanding exactly how and why deep networks are able to generalise so well. It
would be extremely interesting to repeat the investigations of this work on a broader
class of deep learning models, both those used in image classification, and in other
tasks. Models such as ResNets (He et al. 2016) and transformers (Kolesnikov et al.
2021) have in recent years become more prominent in image classification problems,
and investigating the behaviour of these would provide more valuable insight in the
study of generalisation. Outside of the image classification space, transformer models
(Vaswani et al. 2017) have become particularly prevalent in the field of natural language
processing, with very impressive results seen from a variety of models, many of which
have extremely large numbers of parameters.

While this work gives an indication of how CNN models are able to generalise, i.e. the
convolutional layers seem to transform the data in a way which filters out spurious
information, and in doing so distil out linearly separable features, the question of why
this is the case is very much open. Indeed as noted, there is no explicit reason for
this process to occur, and the fact that it does is surprising. Whether this is a property
unique to the convolution and/or ReLU operations, specifics of the training process,
the particular problems, any combination of these, or something else entirely, is not
something we can yet answer. Experimenting in a wider variety of settings, such as
with different model architectures, different problems, or different methods of training
may help to expand these findings and paint a more detailed picture of the nature of
generalisation. Additionally, it may be possible to use these findings in driving further
theoretical exploration of generalisation.

This work is only a small piece of the greater puzzle of generalisation in deep learning,
however it does give some insight into the nature of generalisation in the specific do-
main of image classification using CNNs. Until the question of generalisation is fully

52 Chapter 7. Future Work

solved, a goal which may be forever out of reach, there will always be further work
to do in exploring generalisation, as deep learning continues to push the frontiers of
machine learning, both in existing problem domains, and ones as yet unexplored.

53

Appendix A

Complete Results from Chapter 3

FIGURE A.1: Noise tolerance through network approximated via Simpson’s rule:
Model=VGG11, Dataset=CIFAR10

54 Chapter A. Complete Results from Chapter 3

FIGURE A.2: Noise tolerance through network approximated via Simpson’s rule:
Model=VGG13, Dataset=CIFAR10

FIGURE A.3: Noise tolerance through network approximated via Simpson’s rule:
Model=VGG16, Dataset=CIFAR10

55

FIGURE A.4: Noise tolerance through network approximated via Simpson’s rule:
Model=VGG19, Dataset=CIFAR10

FIGURE A.5: Noise tolerance through network approximated via Simpson’s rule:
Model=VGG11, Dataset=Tiny Imagenet

56 Chapter A. Complete Results from Chapter 3

FIGURE A.6: Noise tolerance through network approximated via Simpson’s rule:
Model=VGG13, Dataset=Tiny Imagenet

FIGURE A.7: Noise tolerance through network approximated via Simpson’s rule:
Model=VGG16, Dataset=Tiny Imagenet

57

FIGURE A.8: Noise tolerance through network approximated via Simpson’s rule:
Model=VGG19, Dataset=Tiny Imagenet

FIGURE A.9: Noise tolerance & dimensionality through network: Model=VGG11,
Dataset=CIFAR10

58 Chapter A. Complete Results from Chapter 3

FIGURE A.10: Noise tolerance & dimensionality through network: Model=VGG13,
Dataset=CIFAR10

FIGURE A.11: Noise tolerance & dimensionality through network: Model=VGG16,
Dataset=CIFAR10

59

FIGURE A.12: Noise tolerance & dimensionality through network: Model=VGG19,
Dataset=CIFAR10

FIGURE A.13: Noise tolerance & dimensionality through network: Model=VGG11,
Dataset=Tiny Imagenet

60 Chapter A. Complete Results from Chapter 3

FIGURE A.14: Noise tolerance & dimensionality through network: Model=VGG13,
Dataset=Tiny Imagenet

FIGURE A.15: Noise tolerance & dimensionality through network: Model=VGG16,
Dataset=Tiny Imagenet

61

FIGURE A.16: Noise tolerance & dimensionality through network: Model=VGG19,
Dataset=Tiny Imagenet

FIGURE A.17: Change in noise tolerance through network: Model=VGG11,
Dataset=CIFAR10

62 Chapter A. Complete Results from Chapter 3

FIGURE A.18: Change in noise tolerance through network: Model=VGG13,
Dataset=CIFAR10

FIGURE A.19: Change in noise tolerance through network: Model=VGG16,
Dataset=CIFAR10

63

FIGURE A.20: Change in noise tolerance through network: Model=VGG19,
Dataset=CIFAR10

FIGURE A.21: Change in noise tolerance through network: Model=VGG11,
Dataset=Tiny Imagenet

64 Chapter A. Complete Results from Chapter 3

FIGURE A.22: Change in noise tolerance through network: Model=VGG13,
Dataset=Tiny Imagenet

FIGURE A.23: Change in noise tolerance through network: Model=VGG16,
Dataset=Tiny Imagenet

65

FIGURE A.24: Change in noise tolerance through network: Model=VGG19,
Dataset=Tiny Imagenet

FIGURE A.25: Noise tolerance through network with Gaussian noise: Model=VGG11,
Dataset=CIFAR10

66 Chapter A. Complete Results from Chapter 3

FIGURE A.26: Noise tolerance through network with Gaussian noise: Model=VGG13,
Dataset=CIFAR10

FIGURE A.27: Noise tolerance through network with Gaussian noise: Model=VGG16,
Dataset=CIFAR10

67

FIGURE A.28: Noise tolerance through network with Gaussian noise: Model=VGG19,
Dataset=CIFAR10

FIGURE A.29: Noise tolerance through network with Gaussian noise: Model=VGG11,
Dataset=Tiny Imagenet

68 Chapter A. Complete Results from Chapter 3

FIGURE A.30: Noise tolerance through network with Gaussian noise: Model=VGG13,
Dataset=Tiny Imagenet

FIGURE A.31: Noise tolerance through network with Gaussian noise: Model=VGG16,
Dataset=Tiny Imagenet

69

FIGURE A.32: Noise tolerance through network with Gaussian noise: Model=VGG19,
Dataset=Tiny Imagenet

71

Appendix B

Complete Results from Chapter 4

FIGURE B.1: Test & Train accuracy of perceptron probes throughout network:
Model=VGG11, Dataset=CIFAR10

72 Chapter B. Complete Results from Chapter 4

FIGURE B.2: Test & Train accuracy of perceptron probes throughout network:
Model=VGG13, Dataset=CIFAR10

FIGURE B.3: Test & Train accuracy of perceptron probes throughout network:
Model=VGG16, Dataset=CIFAR10

73

FIGURE B.4: Test & Train accuracy of perceptron probes throughout network:
Model=VGG19, Dataset=CIFAR10

FIGURE B.5: Test & Train accuracy of perceptron probes throughout network:
Model=VGG11, Dataset=Tiny Imagenet

74 Chapter B. Complete Results from Chapter 4

FIGURE B.6: Test & Train accuracy of perceptron probes throughout network:
Model=VGG13, Dataset=Tiny Imagenet

FIGURE B.7: Test & Train accuracy of perceptron probes throughout network:
Model=VGG16, Dataset=Tiny Imagenet

75

FIGURE B.8: Test & Train accuracy of perceptron probes throughout network:
Model=VGG19, Dataset=Tiny Imagenet

FIGURE B.9: Test & Train accuracy of MLP probes throughout network:
Model=VGG11, Dataset=CIFAR10

76 Chapter B. Complete Results from Chapter 4

FIGURE B.10: Test & Train accuracy of MLP probes throughout network:
Model=VGG13, Dataset=CIFAR10

FIGURE B.11: Test & Train accuracy of MLP probes throughout network:
Model=VGG16, Dataset=CIFAR10

77

FIGURE B.12: Test & Train accuracy of MLP probes throughout network:
Model=VGG19, Dataset=CIFAR10

FIGURE B.13: Test & Train accuracy of MLP probes throughout network:
Model=VGG11, Dataset=Tiny Imagenet

78 Chapter B. Complete Results from Chapter 4

FIGURE B.14: Test & Train accuracy of MLP probes throughout network:
Model=VGG13, Dataset=Tiny Imagenet

FIGURE B.15: Test & Train accuracy of MLP probes throughout network:
Model=VGG16, Dataset=Tiny Imagenet

79

FIGURE B.16: Test & Train accuracy of MLP probes throughout network:
Model=VGG19, Dataset=Tiny Imagenet

FIGURE B.17: Test accuracy of Perceptron & MLP probes throughout network:
Model=VGG11, Dataset=CIFAR10

80 Chapter B. Complete Results from Chapter 4

FIGURE B.18: Test accuracy of Perceptron & MLP probes throughout network:
Model=VGG13, Dataset=CIFAR10

FIGURE B.19: Test accuracy of Perceptron & MLP probes throughout network:
Model=VGG16, Dataset=CIFAR10

81

FIGURE B.20: Test accuracy of Perceptron & MLP probes throughout network:
Model=VGG19, Dataset=CIFAR10

FIGURE B.21: Test accuracy of Perceptron & MLP probes throughout network:
Model=VGG11, Dataset=Tiny Imagenet

82 Chapter B. Complete Results from Chapter 4

FIGURE B.22: Test accuracy of Perceptron & MLP probes throughout network:
Model=VGG13, Dataset=Tiny Imagenet

FIGURE B.23: Test accuracy of Perceptron & MLP probes throughout network:
Model=VGG16, Dataset=Tiny Imagenet

83

FIGURE B.24: Test accuracy of Perceptron & MLP probes throughout network:
Model=VGG19, Dataset=Tiny Imagenet

FIGURE B.25: Change in train and test accuracy of Perceptron probes throughout net-
work: Model=VGG11, Dataset=CIFAR10

84 Chapter B. Complete Results from Chapter 4

FIGURE B.26: Change in train and test accuracy of Perceptron probes throughout net-
work: Model=VGG13, Dataset=CIFAR10

FIGURE B.27: Change in train and test accuracy of Perceptron probes throughout net-
work: Model=VGG16, Dataset=CIFAR10

85

FIGURE B.28: Change in train and test accuracy of Perceptron probes throughout net-
work: Model=VGG19, Dataset=CIFAR10

FIGURE B.29: Change in train and test accuracy of Perceptron probes throughout net-
work: Model=VGG11, Dataset=Tiny Imagenet

86 Chapter B. Complete Results from Chapter 4

FIGURE B.30: Change in train and test accuracy of Perceptron probes throughout net-
work: Model=VGG13, Dataset=Tiny Imagenet

FIGURE B.31: Change in train and test accuracy of Perceptron probes throughout net-
work: Model=VGG16, Dataset=Tiny Imagenet

87

FIGURE B.32: Change in train and test accuracy of Perceptron probes throughout net-
work: Model=VGG19, Dataset=Tiny Imagenet

89

Appendix C

Complete Results from Chapter 5

FIGURE C.1: Test & Train accuracy of perceptron probes throughout network with
global pooling: Model=VGG11, Dataset=CIFAR10

90 Chapter C. Complete Results from Chapter 5

FIGURE C.2: Test & Train accuracy of perceptron probes throughout network with
global pooling: Model=VGG13, Dataset=CIFAR10

FIGURE C.3: Test & Train accuracy of perceptron probes throughout network with
global pooling: Model=VGG16, Dataset=CIFAR10

91

FIGURE C.4: Test & Train accuracy of perceptron probes throughout network with
global pooling: Model=VGG19, Dataset=CIFAR10

FIGURE C.5: Test & Train accuracy of perceptron probes throughout network with
global pooling: Model=VGG11, Dataset=Tiny Imagenet

92 Chapter C. Complete Results from Chapter 5

FIGURE C.6: Test & Train accuracy of perceptron probes throughout network with
global pooling: Model=VGG13, Dataset=Tiny Imagenet

FIGURE C.7: Test & Train accuracy of perceptron probes throughout network with
global pooling: Model=VGG16, Dataset=Tiny Imagenet

93

FIGURE C.8: Test & Train accuracy of perceptron probes throughout network with
global pooling: Model=VGG19, Dataset=Tiny Imagenet

FIGURE C.9: Test & Train accuracy of perceptron probes throughout network with and
without global pooling: Model=VGG11, Dataset=CIFAR10

94 Chapter C. Complete Results from Chapter 5

FIGURE C.10: Test & Train accuracy of perceptron probes throughout network with
and without global pooling: Model=VGG13, Dataset=CIFAR10

FIGURE C.11: Test & Train accuracy of perceptron probes throughout network with
and without global pooling: Model=VGG16, Dataset=CIFAR10

95

FIGURE C.12: Test & Train accuracy of perceptron probes throughout network with
and without global pooling: Model=VGG19, Dataset=CIFAR10

FIGURE C.13: Test & Train accuracy of perceptron probes throughout network with
and without global pooling: Model=VGG11, Dataset=Tiny Imagenet

96 Chapter C. Complete Results from Chapter 5

FIGURE C.14: Test & Train accuracy of perceptron probes throughout network with
and without global pooling: Model=VGG13, Dataset=Tiny Imagenet

FIGURE C.15: Test & Train accuracy of perceptron probes throughout network with
and without global pooling: Model=VGG16, Dataset=Tiny Imagenet

97

FIGURE C.16: Test & Train accuracy of perceptron probes throughout network with
and without global pooling: Model=VGG19, Dataset=Tiny Imagenet

FIGURE C.17: Test & Train accuracy of MLP probes throughout network with global
pooling: Model=VGG11, Dataset=CIFAR10

98 Chapter C. Complete Results from Chapter 5

FIGURE C.18: Test & Train accuracy of MLP probes throughout network with global
pooling: Model=VGG13, Dataset=CIFAR10

FIGURE C.19: Test & Train accuracy of MLP probes throughout network with global
pooling: Model=VGG16, Dataset=CIFAR10

99

FIGURE C.20: Test & Train accuracy of MLP probes throughout network with global
pooling: Model=VGG19, Dataset=CIFAR10

FIGURE C.21: Test & Train accuracy of MLP probes throughout network with global
pooling: Model=VGG11, Dataset=Tiny Imagenet

100 Chapter C. Complete Results from Chapter 5

FIGURE C.22: Test & Train accuracy of MLP probes throughout network with global
pooling: Model=VGG13, Dataset=Tiny Imagenet

FIGURE C.23: Test & Train accuracy of MLP probes throughout network with global
pooling: Model=VGG16, Dataset=Tiny Imagenet

101

FIGURE C.24: Test & Train accuracy of MLP probes throughout network with global
pooling: Model=VGG19, Dataset=Tiny Imagenet

103

Appendix D

Software Used in this Work

This work is based on experiments performed using code of my own authorship, util-
ising various existing libraries and tools.

All code was written using the Python programming language.

In all cases, neural networks were implemented using the PyTorch framework (Ansel
et al. 2024). The VGG models and pre-trained weights used were provided by the
Torchvision library (maintainers et al. 2016). Functionality for training and evaluating
models was provided by the Torchbearer library (Harris, Painter, et al. 2018). Various
additional functionality was provided by the NumPy (Harris, Millman, et al. 2020) and
SciPy (Virtanen et al. 2020) libraries.

Figures were produced using Matplotlib (Hunter 2007)

105

Bibliography

Alain, Guillaume and Yoshua Bengio (2017). Understanding intermediate layers using lin-
ear classifier probes. URL: https://openreview.net/forum?id=ryF7rTqgl.

Alom, Md. Zahangir et al. (Mar. 2018). “The History Began from AlexNet: A Compre-
hensive Survey on Deep Learning Approaches”. In: DOI: 10.48550/arXiv.1803.
01164.

Ansel, Jason et al. (Apr. 2024). “PyTorch 2: Faster Machine Learning Through Dynamic
Python Bytecode Transformation and Graph Compilation”. In: 29th ACM Interna-
tional Conference on Architectural Support for Programming Languages and Operating Sys-
tems, Volume 2 (ASPLOS ’24). ACM. DOI: 10.1145/3620665.3640366. URL: https:
//pytorch.org/assets/pytorch2-2.pdf.

Baldock, Robert J. N., Hartmut Maennel, and Behnam Neyshabur (2021). Deep Learning
Through the Lens of Example Difficulty. arXiv: 2106.09647 [cs.LG]. URL: https://
arxiv.org/abs/2106.09647.

Belcher, Dominic, Adam Prugel-Bennett, and Srinandan Dasmahapatra (2020). “Gen-
eralisation and the Geometry of Class Separability”. In: NeurIPS 2020 Workshop: Deep
Learning through Information Geometry. URL: https://openreview.net/forum?id=
4NtqESjOIAz.

Belkin, Mikhail et al. (July 2019). “Reconciling modern machine-learning practice and
the classical bias–variance trade-off”. In: Proceedings of the National Academy of Sci-
ences 116.32, pp. 15849–15854. ISSN: 1091-6490. DOI: 10 . 1073 / pnas . 1903070116.
URL: http://dx.doi.org/10.1073/pnas.1903070116.

Choudhary, Kamal et al. (Apr. 2022). “Recent advances and applications of deep learn-
ing methods in materials science”. In: npj Computational Materials 8.1, p. 59. ISSN:
2057-3960. DOI: 10.1038/s41524-022-00734-6. URL: https://doi.org/10.1038/
s41524-022-00734-6.

Deng, Jia et al. (2009). “Imagenet: A large-scale hierarchical image database”. In: 2009
IEEE conference on computer vision and pattern recognition. Ieee, pp. 248–255.

Harris, Charles R., K. Jarrod Millman, et al. (Sept. 2020). “Array programming with
NumPy”. In: Nature 585.7825, pp. 357–362. DOI: 10.1038/s41586-020-2649-2. URL:
https://doi.org/10.1038/s41586-020-2649-2.

Harris, Ethan, Matthew Painter, and Jonathon Hare (2018). “Torchbearer: A Model Fit-
ting Library for PyTorch”. In: arXiv preprint arXiv:1809.03363.

https://openreview.net/forum?id=ryF7rTqgl
https://doi.org/10.48550/arXiv.1803.01164
https://doi.org/10.48550/arXiv.1803.01164
https://doi.org/10.1145/3620665.3640366
https://pytorch.org/assets/pytorch2-2.pdf
https://pytorch.org/assets/pytorch2-2.pdf
https://arxiv.org/abs/2106.09647
https://arxiv.org/abs/2106.09647
https://arxiv.org/abs/2106.09647
https://openreview.net/forum?id=4NtqESjOIAz
https://openreview.net/forum?id=4NtqESjOIAz
https://doi.org/10.1073/pnas.1903070116
http://dx.doi.org/10.1073/pnas.1903070116
https://doi.org/10.1038/s41524-022-00734-6
https://doi.org/10.1038/s41524-022-00734-6
https://doi.org/10.1038/s41524-022-00734-6
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

106 BIBLIOGRAPHY

He, Kaiming et al. (2016). “Deep Residual Learning for Image Recognition”. In: 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. DOI:
10.1109/CVPR.2016.90.

Hunter, J. D. (2007). “Matplotlib: A 2D graphics environment”. In: Computing in Science
& Engineering 9.3, pp. 90–95. DOI: 10.1109/MCSE.2007.55.

ImageNet Benchmark (2024). URL: https : / / paperswithcode . com / sota / image -

classification-on-imagenet.
Keskar, Nitish Shirish et al. (2017). On Large-Batch Training for Deep Learning: Generaliza-

tion Gap and Sharp Minima. arXiv: 1609.04836 [cs.LG]. URL: https://arxiv.org/
abs/1609.04836.

Kolesnikov, Alexander et al. (2021). “An Image is Worth 16x16 Words: Transformers for
Image Recognition at Scale”. In.

Krizhevsky, Alex and Geoffrey Hinton (2009). Learning multiple layers of features from
tiny images. Tech. rep. Citeseer.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “ImageNet Classi-
fication with Deep Convolutional Neural Networks”. In: Advances in Neural Infor-
mation Processing Systems. Ed. by F. Pereira et al. Vol. 25. Curran Associates, Inc.
URL: https : / / proceedings . neurips . cc / paper _ files / paper / 2012 / file /
c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

maintainers, TorchVision and contributors (Nov. 2016). TorchVision: PyTorch’s Computer
Vision library. URL: https://github.com/pytorch/vision.

mnmoustafa, Mohammed Ali (2017). Tiny ImageNet. URL: https : / / kaggle . com /
competitions/tiny-imagenet.

Nakkiran, Preetum et al. (2019). Deep Double Descent: Where Bigger Models and More Data
Hurt. arXiv: 1912.02292 [cs.LG]. URL: https://arxiv.org/abs/1912.02292.

Neyshabur, Behnam, Srinadh Bhojanapalli, et al. (2017). Exploring Generalization in Deep
Learning. arXiv: 1706.08947 [cs.LG]. URL: https://arxiv.org/abs/1706.08947.

Neyshabur, Behnam, Zhiyuan Li, et al. (2018). Towards Understanding the Role of Over-
Parametrization in Generalization of Neural Networks. arXiv: 1805.12076 [cs.LG]. URL:
https://arxiv.org/abs/1805.12076.

Neyshabur, Behnam, Ryota Tomioka, and Nathan Srebro (2015). Norm-Based Capacity
Control in Neural Networks. arXiv: 1503.00036 [cs.LG]. URL: https://arxiv.org/
abs/1503.00036.

Shalev-Shwartz, Shai and Shai Ben-David (2014). Understanding Machine Learning: From
Theory to Algorithms. Cambridge University Press.

Simonyan, Karen and Andrew Zisserman (2015). Very Deep Convolutional Networks for
Large-Scale Image Recognition. arXiv: 1409.1556 [cs.CV]. URL: https://arxiv.org/
abs/1409.1556.

Srivastava, Siddharth and Gaurav Sharma (2023). OmniVec: Learning robust representa-
tions with cross modal sharing. arXiv: 2311.05709 [cs.CV]. URL: https://arxiv.org/
abs/2311.05709.

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/MCSE.2007.55
https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet
https://arxiv.org/abs/1609.04836
https://arxiv.org/abs/1609.04836
https://arxiv.org/abs/1609.04836
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://github.com/pytorch/vision
https://kaggle.com/competitions/tiny-imagenet
https://kaggle.com/competitions/tiny-imagenet
https://arxiv.org/abs/1912.02292
https://arxiv.org/abs/1912.02292
https://arxiv.org/abs/1706.08947
https://arxiv.org/abs/1706.08947
https://arxiv.org/abs/1805.12076
https://arxiv.org/abs/1805.12076
https://arxiv.org/abs/1503.00036
https://arxiv.org/abs/1503.00036
https://arxiv.org/abs/1503.00036
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/2311.05709
https://arxiv.org/abs/2311.05709
https://arxiv.org/abs/2311.05709

BIBLIOGRAPHY 107

Vapnik, V. (1991). “Principles of Risk Minimization for Learning Theory”. In: Advances
in Neural Information Processing Systems. Ed. by J. Moody, S. Hanson, and R.P. Lipp-
mann. Vol. 4. Morgan-Kaufmann. URL: https://proceedings.neurips.cc/paper_
files/paper/1991/file/ff4d5fbbafdf976cfdc032e3bde78de5-Paper.pdf.

Vaswani, Ashish et al. (2017). “Attention is All you Need”. In: Advances in Neural In-
formation Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc.
URL: https : / / proceedings . neurips . cc / paper _ files / paper / 2017 / file /
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Virtanen, Pauli et al. (2020). “SciPy 1.0: Fundamental Algorithms for Scientific Comput-
ing in Python”. In: Nature Methods 17, pp. 261–272. DOI: 10.1038/s41592-019-0686-
2.

Yu, Jiahui et al. (2022). CoCa: Contrastive Captioners are Image-Text Foundation Models.
arXiv: 2205.01917 [cs.CV]. URL: https://arxiv.org/abs/2205.01917.

Zhang, Chiyuan et al. (2017). Understanding deep learning requires rethinking generaliza-
tion. arXiv: 1611.03530 [cs.LG]. URL: https://arxiv.org/abs/1611.03530.

– (Feb. 2021). “Understanding deep learning (still) requires rethinking generalization”.
In: Commun. ACM 64.3, pp. 107–115. ISSN: 0001-0782. DOI: 10.1145/3446776. URL:
https://doi.org/10.1145/3446776.

https://proceedings.neurips.cc/paper_files/paper/1991/file/ff4d5fbbafdf976cfdc032e3bde78de5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1991/file/ff4d5fbbafdf976cfdc032e3bde78de5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://arxiv.org/abs/2205.01917
https://arxiv.org/abs/2205.01917
https://arxiv.org/abs/1611.03530
https://arxiv.org/abs/1611.03530
https://doi.org/10.1145/3446776
https://doi.org/10.1145/3446776

	List of Figures
	List of Tables
	Declaration of Authorship
	Acknowledgements
	1 Introduction
	2 Background and Prior Literature
	3 Empirically Estimating Class Margins in Convolutional Neural Networks
	3.1 Methodology
	3.2 Results
	3.3 Potential Flaws
	3.4 Fixing Issues with the Methodology
	3.5 Further Results
	3.6 Summary

	4 Using Hidden Layer Probes to Explore the Transformation of Data Through CNN Models
	4.1 Methodology
	4.2 Results
	4.3 Summary

	5 Investigating the Transformation of Pixel-Level Information into Coarse Features in CNNs
	5.1 Methodology
	5.2 Results of Global Pooling with Linear Classifier
	5.3 Comparison with Results from Chapter 4
	5.4 Results of Global Pooling with MLP Classifier
	5.5 Summary

	6 Discussion & Conclusions
	7 Future Work
	Appendix A Complete Results from Chapter 3
	Appendix B Complete Results from Chapter 4
	Appendix C Complete Results from Chapter 5
	Appendix D Software Used in this Work

