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A B S T R A C T

The emerging field of radiomics that transforms standard-of-care images to quantifiable scalar statistics
endeavors to reveal the information hidden in these macroscopic images. The concept of texture is widely
used and essential in many radiomic-based studies. Practice usually reduces spatial multidimensional texture
matrices, e.g., gray-level co-occurrence matrices (GLCMs), to summary scalar features. These statistical features
have been demonstrated to be strongly correlated and tend to contribute redundant information; and does not
account for the spatial information hidden in the multivariate texture matrices. This study proposes a novel
pipeline to deal with spatial texture features in radiomic studies. A new set of textural features that preserve
the spatial information inherent in GLCMs is proposed and used for classification purposes. The set of the
new features uses the Wasserstein metric from optimal mass transport theory (OMT) to quantify the spatial
similarity between samples within a given label class. In particular, based on a selected subset of texture GLCMs
from the training cohort, we propose new representative spatial texture features, which we incorporate into a
supervised image classification pipeline. The pipeline relies on the support vector machine (SVM) algorithm
along with Bayesian optimization and the Wasserstein metric. The selection of the best GLCM references is
considered for each classification label and is performed during the training phase of the SVM classifier using a
Bayesian optimizer. We assume that sample fitness is defined based on closeness (in the sense of the Wasserstein
metric) and high correlation (Spearman’s rank sense) with other samples in the same class. Moreover, the newly
defined spatial texture features consist of the Wasserstein distance between the optimally selected references
and the remaining samples. We assessed the performance of the proposed classification pipeline in diagnosing
the coronavirus disease 2019 (COVID-19) from computed tomographic (CT) images. To evaluate the proposed
spatial features’ added value, we compared the performance of the proposed classification pipeline with other
SVM-based classifiers that account for different texture features, namely: statistical features only, optimized
spatial features using Euclidean metric, non-optimized spatial features with Wasserstein metric. The proposed
technique, which accounts for the optimized spatial texture feature with Wasserstein metric, shows great
potential in classifying new COVID CT images that the algorithm has not seen in the training step. The MATLAB
code of the proposed classification pipeline is made available. It can be used to find the best reference samples
in other data cohorts, which can then be employed to build different prediction models.
1. Introduction

The importance of medical imaging has expanded to all major areas
of health care. Motivated by the goal of unveiling the information
hidden in standard-of-care images, the research field of radiomics has
emerged (Lambin et al., 2012). Radiomics, which consists of the high-
throughput extraction of quantitative features from medical images
using automated quantification algorithms, is becoming a powerful tool
in different applications. For instance, in outcome prediction, tumor
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classification, treatment planning, and personalized therapy (Morin
et al., 2018; Peeken et al., 2018; Lambin et al., 2017; Shiradkar et al.,
2016) to cite few examples.

Texture analysis, which refers to the quantification of spatial vari-
ations in gray levels within an image or region of interest (ROI), is
widely used and has been successful in different studies, e.g., Meng
et al. (2018), Yan et al. (2019), Scalco and Rizzo (2016). A variety of
mathematical models have been proposed to evaluate the gray level
and the position of the pixels within an image (Hung et al., 2019). The
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predominant process used for texture analysis involves mapping the
image domain into a gray-level co-occurrence matrix (GLCM), which is
known as the second-order histogram method and which was introduced
in 1973 by Haralick et al. (1973). GLCM is a matrix defined over
an image domain with cells comprised of counts that describe the
distribution of co-occurring gray-scale valued pixels (or voxels for 3D
images) at a given offset and angle. More specifically, the (𝑖, 𝑗)th entry
f a GLCM represents the frequency with which a pixel with gray-level
was present in a spatial location either horizontally, vertically, or di-
gonally to adjacent pixel with gray-level 𝑗. GLCMs are often analyzed
hrough summary statistics which effectively reduce the lattice count
ata to sets of GLCM-based textural features. Several authors have
oted that the resulting summary statistics are strongly correlated with
ach other, resulting in over-fitting, and may also lead to a loss of the
patial information that is inherent in these texture matrices (Vickers
nd Modestino, 1982; Li et al., 2019; Belkhatir et al., 2020). Con-
equently, current practices invite scrutiny, challenge reproducibility,
nd encourage innovation.

The increased interest in using OMT-based metrics, known as
asserstein distance or Earth-Mover’s-Distance (EMD) in the engi-

eering field, is mainly due to their natural ability to capture spatial
nformation when comparing signals, images, or other types of data.
his allows for providing various data distributions with different geo-
etric interpretations, which we seek to capture from multidimensional

exture matrices in the present work. In particular, the OMT problem
eeks the most efficient way to transform one distribution of mass
o another given a cost function (Villani, 2009). Its origin goes back
o 1781 when Gaspar Monge formulated the problem of finding the
inimal transportation cost to redistribute earth for building fortifi-

ations (Monge, 1781). Leonid Kantorovich, in 1942, relaxed Monge’s
ormulation to find an optimal coupling of distributions using linear
rogramming (Kantorovich, 2006). Since then, OMT has played a
rucial role in many fields of science and engineering; see Evans (1999),
olouri et al. (2017) and references therein.

Our proof-of-concept study presented in Belkhatir et al. (2020)
hows that considering GLCM as a non-parametric multivariate object
mproves the robustness of classifying even small datasets of CT im-
ges when combined with the Wasserstein metric. Although simple to
mplement, the pipeline in Belkhatir et al. (2020) does not provide
nsight into the classification domain as it does not explicitly train and
earn a prediction model and relies on local decisions that emerge from
omparing a new sample’s features with stored feature samples. Such
local decision pipeline can be inefficient and insufficient to distin-

uish between different classes with overlapping or duplicate feature
alues. In the present work, however, we learn a predictive supervised
achine learning model based on the combination of statistical texture

eatures and newly defined optimized spatial (multidimensional) tex-
ure features. The study is based on the assumption that representative
amples exist, which we refer to as references as well, i.e., ‘‘good’’ or
‘bad’’ samples representing each class/data cohort in a given classifica-
ion/regression problem. Therefore, we propose here an optimized set
f new spatial features, which are represented as the distance between
ll remaining samples in the cohort and the selected reference sam-
les. In Belkhatir et al. (2020), however, we consider the Wasserstein
istance between a new sample and all other stored samples, which is
omputationally heavy, especially when dealing with high-dimensional
ata.

The proposed spatial features are captured by the Wasserstein dis-
ance, from optimal mass transport (OMT) theory (Villani, 2009), be-
ween the optimally selected reference GLCMs and the texture matrices
f other samples in the given class. The selection of the reference sam-
les is conducted in the training phase using a Bayesian optimization
lgorithm along with a support vector machine (SVM) classifier. A
atural application of this advanced textural classification approach is
n diseases with specific patterns. As an example, coronavirus disease
2

019 (COVID-19) related pneumonia, an infectious disease caused by
the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
has a prototypical radiological appearance that can be amenable to
illustrate the virtues of the proposed methodology (Kaufman et al.,
2020). In this study, we tested the performance of the supervised classi-
fication algorithm to diagnose COVID-19 using computed tomographic
(CT) images effectively and showed the added value of the newly
defined optimized spatial features by comparing the performance of the
proposed pipeline to different SVM-based classifiers namely: statistical
features only, optimized spatial features using Euclidean metric, non-
optimized spatial features with Wasserstein metric. The pipeline can
be applied to other radiomic-based applications where texture is an
important feature to consider.

The remainder of the present paper is organized as follows. In Sec-
tion 2, the different components of the proposed classification pipeline
are explained along with the data cohort and its pre-processing. Sec-
tion 3 displays and discusses the results of the proposed classification
algorithm and compares them to other machine learning classification
pipelines. The paper is concluded in Section 4.

2. Materials and method

In this section, we introduce the proposed classification algorithm
and the data used to test its performance. The algorithm is tested for
diagnosing COVID-19 cases from CT images. At the time this paper is
being written, the disease has infected more than 40 million individuals
worldwide and caused more than 1 million deaths.

2.1. Data preprocessing and lung segmentation

The COVID-19 CT images used in this study are publicly available.1
The original dataset includes 349 CT scans that are COVID-19 positive
and 397 that are COVID-19 negative, which are either normal or
contain other types of diseases. The images were collected from 760
preprints about COVID-19, where the COVID19-positive scans are from
143 patient cases. The average, maximum, and minimum number of
CT scans that a patient has is 1.6, 16.0, and 1.0 respectively. These
CT images have different sizes. The average, maximum and minimum
height are 491, 1853, and 153 respectively. The average, maximum,
and minimum width are 383, 1485, and 124 respectively. Regarding
the COVID19-negative scans, 202 are selected from the PubMed Central
(PMC) search engine. The rest 195 come from MedPix, which is a
publicly-open online medical image database that contains CT scans
with various diseases. For further details about the collection process,
we refer the interested reader to He et al. (2020).

The CT images were resampled to a fixed grid of 512 × 512 and
lso equalized to adapt their contrast. Moreover, the lung masks have
een derived based on a contrast stretching with an output range
etween (−1024, 226). The lung fields were segmented using a modi-
ied UNet architecture as described in Moreta-Martinez et al. (2020).
his network consists of encoding and decoding convolution blocks
sing a DenseNet design (Huang et al., 2017). To avoid representation
ottlenecks, the network adopts an Efficient Net (ENet) representa-
ion (Paszke et al., 2016) that combines both max-pooling and strided
onvolutions on the same input. The architecture also uses a squeeze
nd excitation block in the encoder and decoder blocks to perform
ctivation recalibration to enhance relevant features while suppressing
rrelevant ones (Roy et al., 2018). The network was trained with 2D
lices from a randomly selected set of CT scans spanning a range of
athologies, including interstitial abnormalities that resembled some of
he radiological patterns that can be found in patients with COVID-19
neumonia. The pre-trained network is available in the Chest Imaging
latform open source toolkit (Estépar et al., 2015). This method was
pecifically designed to work without the need of volumetric data.

1 https://github.com/UCSD-AI4H/COVID-CT

https://github.com/UCSD-AI4H/COVID-CT
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Table 1
GLCM-based scalar statistical features.
1 ∶ Energy 10 ∶ Auto-correlation 18 ∶ Inverse difference moment
2 ∶ Joint entropy 11 Inverse variance 19 ∶ Inverse difference moment

normalized
3 ∶ Joint max 12 ∶ Difference entropy 20 ∶ Cluster prominence
4 ∶ Joint average 13 ∶ Difference variance 21 ∶ Haralick correlation
5 ∶ Joint variance 14 ∶ Sum average 22 ∶ Inverse difference normalized
6 ∶ Contrast 15 ∶ Sum entropy 23 ∶ First measure of information

correlation
7 ∶ Cluster tendency 16 ∶ Sum variance 24 ∶ Second measure of information

correlation
8 ∶ Cluster shade 17 ∶ Correlation 25 ∶ Dissimilarity
9 ∶ Inverse difference
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The code and model of the employed segmentation technique are fully
public and available in.2 After applying the lung segmentation pipeline
in all images, non-valid segmentations were filtered out and removed,
resulting in 150 images for non-COVID patients and 174 images for
COVID patients.

2.2. Texture extraction

The GLCM is a two-dimensional matrix in which each element repre-
sents the frequency of occurrences of a pair of pixels in a spatial relation
separated by a distance 𝑑 and an angle 𝜃. In our study, GLCM tex-
ture matrices were extracted automatically from the segmented lungs
using the radiomics extension of the Computational Environment for
Radiological Research (CERR) (Apte et al., 2018). They were computed
by combining contributions from all 2-D neighbors (i.e., 𝑑 = 1 and
𝑖 = {0◦, 45◦, 90◦, 135◦}), using a gray quantization level value of 32.

Additionally, 25 scalar statistical features, which are listed in Table 1,
were extracted from the GLCMs to be used in the proposed supervised
classifier in addition to the newly defined spatial texture features.

2.3. Optimal mass transport and Wasserstein distance

We use the Wasserstein-1 distance from OMT theory (Villani, 2009)
to capture the geometrical properties that are inherent in the GLCM tex-
ture matrices. The Wasserstein-1 distance between two 𝑑-dimensional
probability distributions 𝜌0, 𝜌1 defined on 𝛺 ⊂ R𝑑 is defined as follows:

inf
𝜋∶𝛺×𝛺→R ∫𝑥,𝑦∈𝛺

‖𝑥 − 𝑦‖𝑝 𝜋(𝑥, 𝑦) 𝑑𝑥𝑑𝑦,

subject to∫𝑦∈𝛺
𝜋(𝑥, 𝑦)𝑑𝑦 = 𝜌0(𝑥), ∀𝑥 ∈ 𝛺

∫𝑥∈𝛺
𝜋(𝑥, 𝑦)𝑑𝑥 = 𝜌1(𝑦), ∀𝑦 ∈ 𝛺

𝜋(𝑥, 𝑦) ≥ 0, ∀𝑥, 𝑦 ∈ 𝛺

(1)

where ‖.‖𝑝, 1 ≤ 𝑝 ≤ ∞, is the ground metric of the Wasserstein distance.
The variable 𝜋 is the set of joint distributions 𝜋 ∶ 𝛺 × 𝛺 → R whose
marginal distributions are 𝜌0, 𝜌1.

An equivalent alternative formulation of the Wasserstein-1 distance,
which is simpler and computationally more efficient, is defined by the
following optimization problem:

inf
𝑚∶𝛺→R𝑑 ∫𝑥∈𝛺

‖𝑚(𝑥)‖1 𝑑𝑥,

subject to ∇ ⋅ (𝑚(𝑥)) = 𝜌0(𝑥) − 𝜌1(𝑥), ∀𝑥 ∈ 𝛺

𝑚(𝑥) ⋅ 𝑛(𝑥) = 0, ∀𝑥 ∈ 𝜕𝛺

(2)

2 https://github.com/acil-bwh/ChestImagingPlatform/blob/develop/cip_py
hon/dcnn/projects/lung_segmenter/lung_segmenter_dcnn.py
3

r

where 𝑛(𝑥) denotes the normal to the boundary 𝜕𝛺, and 𝑚 is a 𝑑-
imensional field satisfying the zero flux boundary condition (Beck-
ann, 1952). A fast numerical scheme that relies on multilevel primal–
ual optimization algorithms was proposed in Liu et al. (2018) to solve
2). This latter numerical scheme is adopted in the present study.

.4. Selection of representative texture matrices and supervised image clas-
ification algorithm

In this paper, we refer to the ‘‘good and bad’’ samples in a given
ataset as representative or reference samples. Moreover, the selection
f such representative samples is presented for a binary classification
ask. However, it can be easily adopted in multi-label classification
roblems or even regression problems.

The main novelty of our approach consists of proposing a new
et of features relying on Wasserstein distance, and the 2-D texture
atrices which are considered as probability distributions. The main

ssumption that underlies the proposed set of features is that there
ay exist reference samples, either good or bad, in a studied dataset

ohort (training set) and those references will be used to assess their
imilarity to the remaining training and testing texture samples through
he Wasserstein metric.

Fig. 1 depicts the devised workflow in our study. First, data were
plit into training (80%, 260 samples) and testing (20%, 65 samples)
ets. Then, reference samples are selected from each class of the train-
ng set as explained in the following.

Let 𝑇 1
𝑖 , 𝑖 = 1 ∶ 𝑚1, and 𝑇 2

𝑖 , 𝑖 = 1 ∶ 𝑚2, denote the GLCM texture
atrices from the binary classes 𝐶1 and 𝐶2, respectively. We initially

ompute the Wasserstein-1 distance between all pairs 𝑇 1
𝑖 from 𝐶1 and

ll pairs 𝑇 2
𝑖 from 𝐶2 in the training set. The similarity measures are

resented by the distance matrices 𝐷𝑡1 ∈ R𝑚1×𝑚1 and 𝐷𝑡2 ∈ R𝑚2×𝑚2 .
or each sample in a given class, we compute the correlation between
ts distance to all the remaining samples in that class through the
pearman’s rank-order correlation given as follows:

𝑜𝑟𝑟(𝐷𝑡𝑖) = 1 −
6
∑

𝛥2
𝑖

𝑚𝑖(𝑚2
𝑖 − 1)

, 𝑖 = 1, 2 (3)

here 𝛥𝑖, 𝑖 = 1, 2 is the difference between the ranks of each pair of
olumns in 𝐷𝑡1 and 𝐷𝑡2, and 𝑚𝑖, 𝑖 = 1, 2 is the length of each column
n 𝐷𝑡𝑖, 𝑖 = 1, 2.

Then, we order the average Spearman’s rank-order correlations of
he GLCM samples 𝑇 1

𝑖
|

|

|

𝑚1

𝑖=1
and 𝑇 2

𝑖
|

|

|

𝑚1

𝑖=1
. We refer to the ‘‘good’’ reference

amples those having high average correlation ranks, and ‘‘bad’’ refer-
nce samples those with low average correlation ranks. Based on the
omputed averaged correlation ranks, we use Bayesian optimization
lgorithm to find the optimal number of good and bad samples (𝑛∗1 and
∗
2) that maximizes the classification accuracy of the training set, or
inimizes (1 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦), as follows:

𝑛∗1 , 𝑛
∗
2) = arg min

0≤𝑛1 ,𝑛2≤𝑈

(

1 − 𝑓 (𝑛1, 𝑛2)
)

, (4)

here 𝑓 (𝑛1, 𝑛2) is the training classification accuracy using 𝑛1 higher
anked samples and 𝑛 lower ranked samples from the two classes 𝐶
2 1
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Fig. 1. Flowchart of the proposed supervised classification algorithm using representative spatial texture features.
Fig. 2. Example CT images from a COVID (left panel) and Non-COVID (right panel) patients overlayed by the lung segmentation.
and 𝐶2. The maximum number of reference samples is 𝑈 . The 5-fold
cross-validation (CV) process (Berrar, 2019) is used in the training step
to select the best reference samples. The training data is randomly
split into five folds. Each time, four folds are used for training and the
remaining fold for validation. The CV performance that is optimized in
Eq. (4) is measured by the average accuracy of all five folds. Moreover,
in addition to considering the validation step using the 5-fold CV the
proposed pipeline considers the testing step using unseen data. This
adopted strategy reduces the maximization bias problems that may
arise from considering only training and/or validation sets.

We note that the selected references are removed from the training
set that is used to train the optimal SVM classifier. So implicitly, the
proposed optimization approach optimizes, in addition to the training
accuracy, the training efficiency which is captured through the number
of training samples employed to build the optimized prediction model
after the reference samples have been removed. The optimized model
which achieves the highest accuracy is employed to test the pipeline on
new samples that were not seen in the training phase. Moreover, the
Wasserstein distance between the selected reference samples and each
sample from the remaining training samples is added to the statistical
features described previously in Table 1. Finally, the procedure of
learning and testing was replicated 100 times as shown in Fig. 1 to
study the robustness of the classification model. We should emphasize
that the added Wasserstein metric based features between the reference
4

and other training/testing samples captures the geometric similarity
of their GLCM matrices to the good/bad representative GLCMs in
each class. This is why we refer to these newly proposed features as
representative spatial texture features.

A Bayesian optimizer has been chosen to solve the optimization
problem (4) and find the optimal number of good/bad references
in each class because of its advantages. This class of optimization
techniques considered as a sequential design strategy trades off explo-
ration and exploitation mechanisms, unlike traditional active learning,
where the focus is often only on exploration. It attempts to find the
global optimum of black-box functions; that do not usually assume any
functional form; in a minimum number of steps (Frazier, 2018). This
type of optimization approach has been adopted in different application
fields (Shahriari et al., 2016). It has been also very successful for
hyper-parameters optimization when building predictive machine/deep
learning-based models (Snoek et al., 2012; Archetti and Candelieri,
2019).

3. Results and discussion

Before assessing the similarity between texture matrices (GLCMs) in
the proposed pipeline, we segmented the lung fields in all the images.
Examples of the obtained results for a patient diagnosed with COVID-
19 and a non-diagnosed patient are shown in Fig. 2. Then, the 2D
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Fig. 3. Distance similarity matrices between all training pairs of samples in Class 1 ‘‘𝐷𝑡1 ’’ (upper panel), and Class 2 ‘‘𝐷𝑡2 ’’ (lower panel). The rows and columns show the patient
id number.
GLCMs are computed within the lung fields, and similarity between all
training pairs is assessed in each label class through the Wasserstein-1
distance. Fig. 3 illustrates the similarity distance matrix of class 1 and
class 2. As shown in Fig. 3, some samples are closer in the sense of
Wasserstein distance, compared to others, to some other samples within
the same class. For instance, sample 18 from class 1 is further away
from other samples in that class compared to the remaining samples.
This observation has led us to the second step of our classification
pipeline, which is to rank the similarity between samples within the
same class through Spearman’s rank-order correlation. Then based on
the ordered averaged correlation coefficient, we decide about the ‘‘good
/bad’’ samples in a given class. Fig. 4 shows the ranked correlation
coefficients for all training samples in C1 and C2. We focus on the 𝑛1
samples from the tail of the ordered correlation vectors and 𝑛2 samples
from its head. We optimized the accuracy of the trained SVM model to
select the best values of 𝑛 and 𝑛 , denoted 𝑛∗ and 𝑛∗, using Bayesian
5

1 2 1 2
optimization and by performing 5-folds CV. Given the optimal values
of reference samples in each class, we build an optimized classifier
that accounts for the additional spatial texture features and will test its
accuracy using the ‘‘no seen’’ samples. The averaged performance of the
proposed classifier is shown in Fig. 5. The results of the best classifier,
which achieves an area under the curve (AUC) value of 0.82225, are
depicted in Fig. 6. The confusion matrix depicted in Fig. 6 shows that
78.125% of the total number of test samples were correctly classified.

The obtained results are very promising considering the size of the
training set, which is not large, and also given that the base classifier
that is used (a third order polynomial SVM) does not inherently rely
of many hyper-parameters, which may reduce the over-fitting problem
that usually exists in prediction models that rely on deeper structures.
Moreover, to better appreciate the added value of the newly introduced
spatial GLCM features, we compared our proposed supervised classifier
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Table 2
Classification results for test (‘‘never seen’’) data. The mean and std represent the average and standard deviation
of the classification statistics. OpWspafeat: SVM classifier with optimized spatial features based on Wasserstein
metric,OpL2spafeat: SVM classifier with optimized spatial features based on Euclidean L2 metric, Nospafeat:
SVM classifier without spatial features (only statistical features), NOpWspafeat: SVM classifier with non-optimized
Wasserstein-based spatial features.

Method OpWspafeat OpL2spafeat Nospafeat NOpWspafeat
mean (std) mean (std) mean (std) mean (std)

Sensitivity 0.7523 (0.0775) 0.6240 (0.0829) 0.6603 (0.0614) 0.6627 (0.0879)
Specificity 0.7491 (0.0245) 0.7256 (0.0168) 0.7329 (0.0220) 0.7106 (0.0820)
Accuracy 0.7560 (0.0338) 0.6780 (0.0412) 0.6989 (0.0304) 0.6881 (0.0604)
Fig. 4. Averaged Spearman’s rank-order correlation for training Class 1 and Class 2.

hat accounts for the newly defined texture features with other SVM-
ased classifiers that account for different types of texture features.
rediction performance for all the classifiers is provided in Table 2.
he proposed pipeline shown in Fig. 1 is denoted OpWspafeat. The
lgorithm OpL2spafeat follows the same optimized pipeline except
hat the metric used to assess the closeness of GLCMs is the Euclidean
2 distance instead of the Wasserstein distance. The NOpWspafeat
lgorithm consists of the SVM classifier that includes the statistical
eatures and the non-optimized spatial features that consist of the

asserstein distance between a given GLCM sample and all remaining
amples. Last, the Nospafeat is the SVM classifier that uses only the
tatistical texture features. We observe from the table that the proposed
lassification pipeline outperforms other variants of SVM classifiers.
his suggests the usefulness of both the optimization step in the training
hase to select the reference GLCM samples and the Wasserstein metric
o assess the closeness of GLCM samples. We note here that the superi-
rity of the Wasserstein metric compared to L2 distance emerges from
ts ability to incorporate both spatial and intensity information when
omparing images such as texture ones. Moreover, we took advantage
f the robustness property that the Wasserstein metric offers compared
o other distances or divergences.

The MATLAB code of the proposed classification pipeline is made
ublicly available.3 It can be used to find the best reference samples
n other data cohorts and which can be added in building different
rediction models.

It is worth noting the limitations and the potential future extensions
f this study. Firstly, the use of the idea of defining reference samples

3 https://github.com/Supervised-image-classification-algorithm-using-repre
entative-texture-features
6

Fig. 5. Classification statistics among 100 training/testing repetitions, the mean value
is highlighted with stars and standard deviation with bar plot.

Fig. 6. Best Classification performance for the testing set. Upper panel: A receiver
operating characteristic (ROC) curve for the proposed classifier with best area under
the curve (AUC) value. Lower panel: Confusion matrix for the maximum achieved
classification accuracy.

along with their fitness metric and its inclusion when analyzing high-
dimensional data and building prediction models is worth generalizing
in other applications beyond image classification. For instance, in
outcome prediction and treatment planning, where in the latter, it is
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crucial to measure and know the dose difference between incoming
patients and optimized reference patients having different survival
outcomes. Secondly, we only made use of the GLCM texture matrices
to prove the concept of the additional value of the reference samples
and the newly defined optimized spatial texture features. Other texture
matrices, such as the Run Length Matrix (RLM), size zone matrix
(SZM), and/or neighborhood gray-tone difference matrix (NGTDM),
can also be included in the pipeline and their effect on the classi-
fication accuracy investigated. Finally, it is evident from this study
that capturing the fitness of samples to optimized reference samples
using the Wasserstein distance improves image classification accuracy.
However, it would be of great potential for clinical application to have a
deeper analysis of the optimized reference images by expert radiologists
and investigate the possibility of correlating them with other clinical
outcomes.

4. Conclusion

In this study, we proposed a supervised classification pipeline
for medical images that relies mainly on multidimensional GLCM-
based texture features together with Bayesian optimization and the
Wasserstein-1 metric. The proposed method uses an optimal subset of
samples to represent the training set and to define a new set of geomet-
ric texture features based on the given optimal subset. The obtained
results indicated the importance of the optimized reference samples’
selection step and the newly defined spatial features in the classification
workflow. The present work provides a way forward to more extensive
studies with more data in order to build efficient prediction methods
for analyzing medical images for various clinical scenarios. Moreover,
the proposed pipeline for identifying representative texture matrices
can be generalized to detect other types of reference samples from a
given data cohort. The selected reference samples can be used for other
purposes besides medical image classification, e.g., treatment planning
and outcome prediction.

CRediT authorship contribution statement

Zehor Belkhatir: Designed and performed research, Developed the
lassification pipeline and its numerical implementation, Analyzed data
nd results, Writing of paper. Raúl San José Estépar: Pre-processed

and segmented CT images, Analyzed data and results, Writing of paper.
Allen R. Tannenbaum: Designed research, Analyzed data and results,
Writing of paper.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The authors would like to thank Prof. Marc Niethammer for the
discussions about lung segmentation, Prof. Joseph Deasy for the fruitful
discussions about the proposed classification algorithm, and Dr. Saad
Nadeem for discussions about texture analysis and the data used in this
study.

This study was supported by the School of Engineering and Sustain-
able Development at the University of De Montfort, United Kingdom.
Allen Tannenbaum was supported by AFOSR, United States of America
grants (FA9550-17-1-0435, FA9550-20-1-0029), NIH, United States of
America grant (R01-AG048769), MSK Cancer Center Support, United
States of America Grant/Core Grant (P30 CA008748), and a grant
from Breast Cancer Research Foundation, United States of America
(BCRF-17-193).
7

References

Apte, A.P., et al., 2018. Extension of CERR for computational radiomics: A compre-
hensive MATLAB platform for reproducible radiomics research. Med. Phys. 45,
3713–3720.

Archetti, F., Candelieri, A., 2019. Bayesian Optimization and Data Science. Springer
Briefs in Optimization.

Beckmann, M., 1952. A continuous model of transportation. Econometrica 129,
643–660.

Belkhatir, Z., Iyer, A., Mathews, J.C., Pouryahya, M., Nadeem, S., Deasy, J.O.,
Apte, A.P., Tannenbaum, A.R., 2020. Optimal mass transport for robust tex-
ture analysis. Available at: https://www.biorxiv.org/content/10.1101/855221v1.
full.pdf.

Berrar, D., 2019. Cross-validation. In: Ranganathan, S., Gribskov, M., Nakai, K.,
Schönbach, C. (Eds.), Encyclopedia of Bioinformatics and Computational Bi-
ology. Academic Press, Oxford, pp. 542–545. http://dx.doi.org/10.1016/B978-
0-12-809633-8.20349-X, URL https://www.sciencedirect.com/science/article/pii/
B978012809633820349X.

Estépar, R.S.J., Ross, J., Harmouche, R., Onieva, J., Diaz, A., Washko, G., 2015.
Chest imaging platform: An open-source library and workstation for quantitative
chest imaging. In: American Thoracic Society International Conference Abstracts
American Thoracic Society. p. A4975?A4975.

Evans, L.C., 1999. Partial differential equations and Monge-Kantorovich mass transfer.
In: Current Developments in Mathematics. International Press.

Frazier, P.I., 2018. A tutorial on Bayesian optimization. Available at: https://arxiv.org/
pdf/1807.02811.pdf.

Haralick, R.M., Shanmugam, K., Dinstein, I., 1973. Textural features for image
classification. IEEE Trans. Syst., Man Cybern. 3, 610–621.

He, X., Yang, X., Zhang, S., Zhao, J., Zhang, Y., Xing, E., Xie, P., 2020. Sample-
efficient deep learning for COVID-19 diagnosis based on CT scans. Available at:
https://www.medrxiv.org/content10.1101/2020.04.13.20063941v1.full.pdf.

Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q., 2017. Densely connected
convolutional networks. In: IEEE Conference on Computer Vision and Pattern
Recognition. CVPR, p. 2261?2269.

Hung, C., Song, E., Lan, Y., 2019. Image Texture Analysis: Foundations, Models and
Algorithms. Springer International Publishing.

Kantorovich, L.V., 2006. On the translocation of masses. J. Math. Sci. 133.
Kaufman, A., Naidu, S., Ramachandran, S., Kaufman, D., Fayad, Z., Mani, V., 2020.

Review of radiographic findings in COVID-19. World J. Radiol. 12, 142–155.
Kolouri, S., Park, S., Thorpe, M., et al., 2017. Optimal mass transport: Signal processing

and machine-learning applications (survey paper). IEEE Signal Process. Mag. 34,
43–59.

Lambin, P., Leijenaar, R.T., Deist, T.M., et al., 2017. Radiomics: The bridge between
medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 14, 749–762.

Lambin, P., Rios-Velazquez, E., Leijenaar, R., et al., 2012. Radiomics: Extracting more
information from medical images using advanced feature analysis. Eur. J. Cancer
48, 441–446.

Li, X., Guindani, M., Ng, C.S., Hobbs, B.P., 2019. Spatial bayesian modeling of GLCM
with application to malignant lesion characterization. J. Appl. Stat. 46, 230–246.

Liu, J., Yin, W., Li, W., Chow, Y.T., 2018. Multilevel optimal transport: A fast
approximation of wasserstein-1 distances. Available: https://arxiv.org/pdf/1810.
00118.pdf.

Meng, J., Liu, S., Zhu, L., et al., 2018. Texture analysis as imaging biomarker for
recurrence in advanced cervical cancer treated with CCRT. Sci. Rep. 8, 1–9.

Monge, G., 1781. Mémoire Sur La Théorie Des Déblais Et Des Remblais. De l’Imprimerie
Royale.

Moreta-Martinez, R., Vegas-Sánchez-Ferrero, G., Andresen, L., Holsting, J.Q., Esté-
par, R.S.J., 2020. Multi-cavity heart segmentation in non-contrast non-ECG gated
CT scans with F-CNN. Lecture Notes in Comput. Sci. 12502 (9), 14–23. http:
//dx.doi.org/10.1007/978-3-030-62469-9_2.

Morin, O., Vallières, M., Jochems, A., et al., 2018. A deep look into the future of
quantitative imaging in oncology: A statement of working principles and proposal
for change. Int. J. Radiat. Oncol. 102, 1074–1082.

Paszke, A., Chaurasia, A., Kim, S., Culurciello, E., 2016. ENet: A deep neural network
architecture for real-time semantic segmentation. Available at: https://arxiv.org/
pdf/1606.02147.pdf.

Peeken, J.C., Bernhofer, M., Wiestler, B., et al., 2018. Radiomics in radiooncology-
challenging the medical physicist. Eur. J. Med. Phys. 48, 27–36.

Roy, A.G., Navab, N., Wachinger, C., 2018. Concurrent spatial and channel squeeze
& excitation in fully convolutional networks. Available at: https://arxiv.org/pdf/
1803.02579.pdf.

Scalco, E., Rizzo, G., 2016. Texture analysis of medical images for radiotherapy
applications. Br. Inst. Radiol. 90, 1–15.

Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., de Freitas, N., 2016. Taking the
human out of the loop: A review of Bayesian optimization. Proc. IEEE 104,
148–175.

Shiradkar, R., Podder, T.K., Algohary, A., et al., 2016. Radiomics based targeted
radiotherapy planning (rad-TRaP): A computational framework for prostate cancer
treatment planning with MRI. Radiat. Oncol. 11, 1–14.

http://refhub.elsevier.com/S0895-6111(22)00099-4/sb1
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb1
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb1
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb1
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb1
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb2
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb2
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb2
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb3
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb3
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb3
https://www.biorxiv.org/content/10.1101/855221v1.full.pdf
https://www.biorxiv.org/content/10.1101/855221v1.full.pdf
https://www.biorxiv.org/content/10.1101/855221v1.full.pdf
http://dx.doi.org/10.1016/B978-0-12-809633-8.20349-X
http://dx.doi.org/10.1016/B978-0-12-809633-8.20349-X
http://dx.doi.org/10.1016/B978-0-12-809633-8.20349-X
https://www.sciencedirect.com/science/article/pii/B978012809633820349X
https://www.sciencedirect.com/science/article/pii/B978012809633820349X
https://www.sciencedirect.com/science/article/pii/B978012809633820349X
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb6
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb6
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb6
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb6
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb6
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb6
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb6
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb7
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb7
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb7
https://arxiv.org/pdf/1807.02811.pdf
https://arxiv.org/pdf/1807.02811.pdf
https://arxiv.org/pdf/1807.02811.pdf
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb9
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb9
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb9
https://www.medrxiv.org/content10.1101/2020.04.13.20063941v1.full.pdf
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb11
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb11
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb11
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb11
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb11
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb12
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb12
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb12
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb13
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb14
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb14
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb14
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb15
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb15
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb15
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb15
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb15
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb16
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb16
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb16
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb17
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb17
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb17
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb17
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb17
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb18
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb18
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb18
https://arxiv.org/pdf/1810.00118.pdf
https://arxiv.org/pdf/1810.00118.pdf
https://arxiv.org/pdf/1810.00118.pdf
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb20
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb20
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb20
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb21
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb21
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb21
http://dx.doi.org/10.1007/978-3-030-62469-9_2
http://dx.doi.org/10.1007/978-3-030-62469-9_2
http://dx.doi.org/10.1007/978-3-030-62469-9_2
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb23
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb23
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb23
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb23
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb23
https://arxiv.org/pdf/1606.02147.pdf
https://arxiv.org/pdf/1606.02147.pdf
https://arxiv.org/pdf/1606.02147.pdf
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb25
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb25
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb25
https://arxiv.org/pdf/1803.02579.pdf
https://arxiv.org/pdf/1803.02579.pdf
https://arxiv.org/pdf/1803.02579.pdf
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb27
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb27
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb27
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb28
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb28
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb28
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb28
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb28
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb29
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb29
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb29
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb29
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb29


Computerized Medical Imaging and Graphics 102 (2022) 102129Z. Belkhatir et al.
Snoek, J., Larochelle, H., Adams, R.P., 2012. Practical Bayesian optimization of machine
learning algorithms. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q.
(Eds.), In: Advances in Neural Information Processing Systems, vol. 25, Curran
Associates, Inc., pp. 2951–2959.

Vickers, A.L., Modestino, J.W., 1982. A maximum likelihood approach to texture
classification. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-4, 61–68.
8

Villani, C., 2009. Optimal Transport: Old and New. Springer-Verlag Berlin Heidelberg.
Yan, Z., Zhang, J., Long, H., et al., 2019. Correlation of CT texture changes with

treatment response during radiation therapy for esophageal cancer: An exploratory
study. PLoS One 14, 1–12.

http://refhub.elsevier.com/S0895-6111(22)00099-4/sb30
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb30
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb30
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb30
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb30
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb30
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb30
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb31
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb31
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb31
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb32
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb33
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb33
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb33
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb33
http://refhub.elsevier.com/S0895-6111(22)00099-4/sb33

	Wasserstein-based texture analysis in radiomic studies
	Introduction
	Materials and Method
	Data preprocessing and lung segmentation
	Texture extraction
	Optimal mass transport and Wasserstein distance
	Selection of representative texture matrices and supervised image classification algorithm

	Results and Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References


