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Analysis of Earth’s Climate Sensitivity: Past, Present & 

Future 

by 

Alice Rachel Booth 

Earth’s climate system is comprised of a complex web of interacting feedbacks, each 

operating on differing timescales and with varying spatial patterns. Our understanding of 

climate feedbacks inform quantitative estimates of climate sensitivity, which represents 

Earth’s response to changes in its energy balance. Despite decades of research, understanding 

of climate sensitivity is incomplete, and this directly affects our ability to predict future 

climate change and develop effective mitigation and adaptation strategies. This thesis uses 

probabilistic assessment to explore and quantify Earth’s climate feedbacks over multiple 

response timescales using multiple lines of evidence. Chapter 2 utilises an efficient earth 

system model with a Bayesian statistical framework to constrain Earth’s fast and 

multidecadal feedbacks. Chapter 3 estimates the magnitude and equilibrium response 

timescale of the ice sheet-albedo feedback using proxy evidence from the most recent 

deglaciation which then inform long term projections of future warming in Chapter 4. 

Chapter 4 also utilises a conceptual energy balance model to explore polar amplification and 

the latitudinal behaviour of the total climate feedback parameter under different mean 

climatic states, both warmer and colder than today. Together, these findings provide new 

insights into the evolving spatial and temporal behaviour of Earth’s feedbacks and help to 

develop understanding of climate sensitivity in the context of the past, present and future. 

This shall contribute towards the collective effort to predict and prepare for the future of our 

climate with the acknowledgement that Earth’s feedbacks are likely to amplify human-

induced warming on multiple time horizons.
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Chapter 1 Introduction 

1.1 Motivation 

Our ability to successfully predict future climate change and the impacts this will have on 

human populations is directly influenced by our understanding of climate sensitivity. A 

quantitative measure of Earth’s response to changes to its energy balance, climate sensitivity 

represents the global mean surface temperature (GMST) change caused by elevated carbon 

dioxide (CO2) levels in the atmosphere from anthropogenic emissions. Despite decades of 

research, the value of climate sensitivity is still uncertain and must be constrained to inform 

predictions of future climate change and allow humans to plan for the future of our planet. 

Uncertainty is extremely costly to the development of effective climate policy and continually 

slows international progress to address climate change (Hope, 2015; Smith et al., 2023). 

The ongoing uncertainty around climate sensitivity stems from the complex relationships 

between countless earth system feedbacks which are spatially and temporally heterogenous 

and will influence the system in different ways (Hansen et al., 2005; Rohling et al., 2018). 

Information about the inner workings of the earth system  can be gleaned from a plethora of 

sources and each will capture different aspects of the earth system; the 800-ka oxygen 

isotope record extracted from an Antarctica ice core will contain different information to the 

shorter modern instrumental record of local sea surface temperatures (SST) in the northern 

Pacific Ocean, and both will capture different aspects of the system than a complex global 

climate model (GCM). Therefore, climate sensitivity may appear different depending on the 

line of evidence used to estimate it (Knutti, Rugenstein and Hegerl, 2017; Goodwin, 2018).  

The overarching aim of this PhD is to improve our understanding of earth system dynamics 

and reduce the statistical uncertainty surrounding climate sensitivity and key climate 

feedbacks, thereby contributing to better-informed simulations of future climate change. I 

aim to improve understanding of climate sensitivity by utilising probabilistic assessment in 

conjunction with semi-empirical numerical models to combine evidence from the historical 

record, palaeoclimate record, and process understanding to produce estimates of the total 

climate feedback parameter and individual feedbacks that are consistent across multiple lines 

of evidence. This work assumes that climate sensitivity evolves spatially and over time due to 

the influence of time-evolving and spatially-variable fast and slow climate feedbacks.  

A key gap in current understanding of climate sensitivity is the exact behaviour of Earth’s 

feedbacks on different response timescales, and uncertainty persists in determining the 
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magnitude and nature of fast, multi-decadal, and slow earth system feedbacks (Goodwin, 

2021). I aim to address this throughout this thesis. In particular, Chapter 2 shall work to 

constrain Earth’s fast and multi-decadal feedbacks through the use of an efficient earth 

system model with a Bayesian statistical framework. Beyond this, Chapters 3 and 4 shall 

focus on slow feedbacks, addressing uncertainty surrounding ice sheet-climate interactions 

on centennial to millennial-scale timescales. Despite acknowledgement that the ice sheet-

albedo feedback has a significant amplifying influence, specific quantitative understanding is 

still limited, and ice sheet-climate interactions are typically simplified in model assessments 

of climate sensitivity (Forster et al., 2021; Madsen et al., 2022). Chapter 3 aims to address this 

through a proxy data-based probabilistic assessment of the ice sheet-albedo feedback during 

the most recent deglaciation. The simplification of Earth’s slow feedbacks in model 

assessments of climate sensitivity has ramifications for our predictions of future climate 

change; we have very limited understanding of how earth’s climate will evolve beyond the 

end of the 21st century which, while perhaps of limited relevance to those alive today, has 

major consequences for future generations and it is important that we consider the long term 

implications of humanity’s actions today on the world that we will leave for our descendants. 

To this end, in Chapter 4 I build on the work of Chapter 3 to explore the implications of slow 

ice sheet-climate interactions for climate sensitivity on long timescales.  

While methods differ, all work in this thesis is based around the concept of probabilistic 

assessment, with a primary intention of generating quantitative estimates for climate 

feedbacks, constrained by multiple sources of existing evidence. By improving the 

quantification of the total climate feedback parameter and key individual climate feedbacks, 

this work contributes towards the collective understanding of climate sensitivity. Crucially, it 

should be noted that the complexity of climate sensitivity is such that a comprehensive 

assessment of all sources of uncertainty is beyond the scope of this thesis. For instance, our 

understanding of climate sensitivity is tied to our understanding of radiative forcing, 

particularly from CO2, but this thesis shall focus specifically on climate feedbacks on multiple 

spatial and temporal scales. 

The remainder of this chapter serves to summarise the background literature surrounding 

climate sensitivity and to further highlight the research gaps that I intend to address. The 

basic methodology of the key models utilised in this thesis is also introduced here. 
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1.2 Climate Sensitivity 

1.2.1 Definitions 

The concept of climate sensitivity grew out of a need to quantify the impact humans were 

having on the world around us and specific definitions continue to evolve. For more than a 

century, scientists have worked to calculate the global temperature rise that would occur for 

a given increase in atmospheric CO2 in an attempt to understand how increasing human 

emissions could affect Earth’s climate (Arrhenius, 1897; Callendar, 1938). Climate sensitivity 

can be defined in numerous ways, but the most common measure used today is that of ECS 

which is the GMST increase per doubling of atmospheric CO2 after the climate has reached a 

new quasi-equilibrium (Charney et al., 1979; Hansen and Takahashi, 1984). Since first 

proposed by Charney in 1979, the accepted estimate of ECS remained relatively unchanged 

for more than 30 years at a likely range of 1.5 – 4.5°C per doubling of atmospheric CO2 

(Charney et al., 1979; Schwartz, 2012; IPCC, 2013). This range was narrowed in the most 

recent 6th Assessment Report authored by the Intergovernmental Panel on Climate Change 

(IPCC) after a tremendous community effort to improve process understanding and model 

accuracy. The IPCC now estimates that ECS lies in the likely range of 2.5 – 4.0°C, with a best 

estimate of 3.0°C (Forster et al., 2021). 

ECS is an imperfect definition for climate sensitivity as it fails to incorporate slower Earth 

feedbacks that operate over a timescale of more than ~100 years (Knutti, Rugenstein and 

Hegerl, 2017; Rohling et al., 2018). Earth System Sensitivity (ESS) is a more recent concept 

that also incorporates all slower feedback processes except for the carbon cycle (Lunt et al., 

2010; Knutti and Rugenstein, 2015). The processes included in the definitions of ECS and ESS 

are illustrated in figure 1.1. The distinction between ECS and ESS in models is generally made 

under an assumption of timescale separation into fast and slow processes but the interacting 

nature of Earth’s feedbacks means that this distinction is somewhat irrelevant in the real 

world (Knutti and Rugenstein, 2015; Ashwin and von der Heydt, 2020).  

However, Earth’s climate system is not in equilibrium but is instead in a constantly changing, 

transient state that evolves over time (Yoshimori et al., 2016; Meehl et al., 2020). As such, the 

magnitude of climate sensitivity is not static or even linear over time, but instead evolves due 

to the complex interacting relationships of multiple feedbacks and forcings (Zeebe, 2013; 

Goodwin, 2018; Rohling et al., 2018; Rugenstein et al., 2020). Therefore, it could be argued 

that the concepts of ECS and ESS are too disconnected from the real world to be of much use. 

Measures such as the Transient Climate Response (TCR), which quantifies the GMST at the 

time of doubling of CO2 after an idealised 1% yr-1 CO2 increase experiment, may provide 
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greater insight into the initial response of the climate system over several decades (Knutti, 

Rugenstein and Hegerl, 2017). The Transient Climate Response to Cumulative Carbon 

Emissions (TCRE) meanwhile, places warming in the context of total emitted CO2 and is 

therefore more relevant for the estimation of carbon budgets (Knutti and Rugenstein, 2015). 

The distinction between TCR, TCRE, ESS and ECS are depicted in figure 1.1.  

Figure 1.1: Illustrative distinction between feedbacks acting in and on the climate system. The 

coloured boxes indicate the processes included in different definitions of climate 

sensitivity. From Knutti and Rugenstein (2015). 

All measures of climate sensitivity are imperfect. Despite not fully describing reality, ECS 

remains extremely valuable for model comparison and evaluation and is a good fundamental 

indicator of Earth’s sensitivity to CO2 forcing (Grose et al., 2018; Dai et al., 2020; Meehl et al., 

2020). The value of ECS lies in its almost ubiquitous use in climate science allowing for easy 

model comparison and evaluation, and as a fundamental indicator of climate sensitivity 

(Grose et al., 2018; Dai et al., 2020).  
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1.2.2 Causes of uncertainty 

The Earth System is comprised of a complex web of interacting feedback relationships, 

wherein a change in one climate parameter will affect another, which in turn can either 

amplify or dampen the original signal. The relative radiative contributions and exact impacts 

of different feedbacks can vary greatly over space and time, meaning the overall sensitivity of 

the system to perturbation can be difficult to quantify (Hansen et al., 2005; Knutti and 

Rugenstein, 2015; Rohling et al., 2018; Chao and Dessler, 2021).  

Different feedbacks operate over different timescales. Some, like the Planck feedback, are 

almost instantaneous, whilst others take years to complete the loop (Knutti and Rugenstein, 

2015). Some modes are so slow that it can take millions of years to see a measurable 

response. Figure 1.2 depicts the key climate feedbacks that influence climate sensitivity and 

the timescales over which they operate.  The time-evolving nature of Earth’s fast and slow 

feedback loops results in a climate sensitivity that evolves over time and so may appear 

different depending on the time window studied (Caballero and Huber, 2013; Zeebe, 2013; 

Pfister and Stocker, 2017; Goodwin, 2018).  

The increasingly dominant consensus within climate science is that climate feedbacks, and 

consequently climate sensitivity, are strongly influenced by the background state of the 

climate with higher estimates generated using data from past warm periods in the 

palaeoclimate record, compared to cooler periods (Caballero and Huber, 2013; Meraner, 

Mauritsen and Voigt, 2013; von der Heydt et al., 2014; Friedrich et al., 2016; Shaffer et al., 

2016; Zhu, Poulsen and Tierney, 2019; Anagnostou et al., 2020; Sherwood et al., 2020; Zhu 

and Poulsen, 2020; Bloch-Johnson et al., 2021). The exact nature of this relationship is still 

being debated with both changes in atmospheric CO2 concentration and temperature 

considered potential drivers (Rohrschneider, Stevens and Mauritsen, 2019; Bloch-Johnson et 

al., 2021). However, modelling evidence suggests that the relationship is primarily a 

dependence between temperature and feedback strength, found to explain 69% of the 

sensitivity (Bloch-Johnson et al., 2021), in which water vapour and cloud feedbacks have the 

greatest influence (Meraner, Mauritsen and Voigt, 2013; Seeley and Jeevanjee, 2021). The 

role of state dependence is still uncertain, and understanding would particularly benefit from 

further study of cloud feedbacks, which remain the largest contribution to simulation 

uncertainty (Caldwell et al., 2016; Zelinka, Zhou and Klein, 2016; Zelinka et al., 2020). Like 

feedbacks, radiative forcings have also been shown to experience state dependence. In 

particular, the magnitude of radiative forcing from a doubling of atmospheric CO2, long 

assumed to be constant, has recently been shown to change with background climatic state 

(Jeevanjee et al., 2021; He et al., 2023). 
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Figure 1.2: Climate feedback processes involved in climate sensitivity and their response 

timescales. Grey bars indicate processes that are assumed to be partly inactive or 

non-existent by GCMs. Dashed lines indicate timescales where feedback is weaker or 

only operates under certain circumstances. Circles indicate the processes that are 

captured by different lines of evidence: observational records, model simulations, 

and palaeoclimate proxies. From Knutti and Rugenstein (2015).  

Efforts to quantify climate sensitivity are further complicated by the presence of tipping 

elements within the Earth system that could trigger abrupt climatic change if critical 

thresholds, or ‘tipping points’ are crossed (Lenton et al., 2008). The scientific community has 

now identified a number of potential tipping elements within the system, several of which are 

exhibiting early warning signs of reaching critical tipping points (Lenton et al., 2019; Rosier 

et al., 2021; Abrams et al., 2023). Notable elements of concern include the Greenland ice 

sheet, the Atlantic Meridional Overturning Circulation, and die-back of the Amazon rainforest 

(Weijer et al., 2019; Bradley and Hewitt, 2024; Flores et al., 2024). Once a tipping point is 

crossed, self-amplifying feedbacks propel the system towards a new stable state, with 

potentially dramatic impacts on other components of the earth system, which may 

themselves trigger further tipping cascades in other tipping elements (Levermann et al., 

2012; Lenton et al., 2024; Wunderling et al., 2024). Tipping points have been crossed before 

in Earth’s history, and are observable within the geological record, but we are now 

experiencing unprecedented, rapid anthropogenic forcing under new boundary conditions, 
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introducing considerable unknowns into our predictive models (Steffen et al., 2018; Stocker 

et al., 2024). The existence of tipping points is important because under an abrupt transition, 

the assumption of a linear response to perturbation no longer holds, and this introduces 

further uncertainty into estimates of climate sensitivity (Ashwin and von der Heydt, 2020).  

1.2.3 Climate feedbacks 

The strength of a climate feedback is quantified by its climate feedback parameter, λ (Wm-2K-

1), which is defined here as the change in outgoing radiation at the top of the atmosphere 

(TOA) per unit of temperature change. Sign conventions for λ differ between studies, but this 

thesis follows the convention that the total climate feedback parameter, 𝜆𝑡𝑜𝑡𝑎𝑙 (Wm-2K-1), 

being the additive combination of all individual feedbacks, is negative for a stable climate 

system, such that individual positive λ terms indicate amplifying contributions to 𝜆𝑡𝑜𝑡𝑎𝑙. The 

magnitude of an individual feedback, λ, at time, t, is calculated as follows: 

𝜆(𝑡) =
𝑁(𝑡) − 𝐹𝑡𝑜𝑡𝑎𝑙(𝑡)

Δ𝑇(𝑡)
  

Equation 1.1 

Where N is the net TOA energy imbalance (Wm-2), 𝐹𝑡𝑜𝑡𝑎𝑙 is the total radiative forcing (Wm-2), 

and ΔT is the global surface temperature anomaly (K). For reference, this translates to an ECS 

at time, t, that is calculated as follows once all feedbacks have been considered: 

 𝐸𝐶𝑆(𝑡) = − 
𝐹2𝑥𝐶𝑂2

𝜆𝑡𝑜𝑡𝑎𝑙(𝑡)
=

𝐹2𝑥𝐶𝑂2Δ𝑇(𝑡)

𝑁(𝑡) − 𝐹𝑡𝑜𝑡𝑎𝑙(𝑡)
 

Equation 1.2 

Where 𝐹2𝑥𝐶𝑂2is the radiative forcing for a doubling of atmospheric CO2. 

Due to computational practicalities, this work departs from the traditional ECS definition for 

climate sensitivity, instead favouring the metric of ‘effective climate sensitivity’ (EffCS, in K), 

similar to the method developed by Gregory et al. (2004). Gregory’s EffCS is derived from the 

earth system response during the first 150 years following an instantaneous quadrupling of 

CO2. As GMST tends towards equilibrium, regression of the TOA energy imbalance against 

temperature can be extrapolated to the eventual GMST when the energy imbalance is zero 

(Gregory et al., 2004). Throughout, I assume a time-evolving 𝜆𝑡𝑜𝑡𝑎𝑙, resulting in a gradient 

that changes over time. Although comparable to ECS, this method estimates climate 

sensitivity using data from a system that is not in equilibrium and does not require the very 

long model runs, in excess of 1000 years, that are required for ECS (Danabasoglu and Gent, 
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2009; Rugenstein et al., 2020). This follows previous similar studies of climate sensitivity (e.g. 

(Sherwood et al., 2020)). 

From a modelling perspective, the total climate feedback parameter, 𝜆𝑡𝑜𝑡𝑎𝑙, can be considered 

the additive combination of all fast and slow feedbacks operating within the Earth System 

and therefore can be broken down into component terms based on response timescale 

(Knutti and Rugenstein, 2015). Again, it could be argued that this assumption is unrealistic, 

but the complicated web of interacting feedbacks within the Earth system determines that 

the practicalities of disentangling individual feedbacks becomes near impossible. 

Furthermore, all feedbacks are spatially heterogeneous and the resultant climate responses 

are distinctly non-fungible and will differ by region, a phenomenon known as the pattern 

effect (Sherwood et al., 2015; Chao and Dessler, 2021; Andrews et al., 2022; Zhou et al., 

2023). However, in practice, the magnitudes of individual feedbacks are generally assumed to 

be globally ubiquitous as the uncertainties involved in attempting to differentiate spatially 

would make any resulting estimates much less useful.  

As can be expected, the international climate modelling effort has focused heavily on 

feedbacks most relevant to the next few centuries of future climatic change. These faster 

feedbacks have been well-constrained, informed by observational evidence from the 

historical record (Kamae et al., 2016; Fyke et al., 2018; Rugenstein et al., 2020). However, 

within increasing timescales comes reduced understanding as the volume of observational 

data decreases, and as such, the magnitude of climate feedbacks that operate on multi-

decadal, centennial, and millennial timescales are less well-constrained.  

The relationship between the cryosphere and global temperature is a key focus within this 

thesis, explored in more depth in chapters 3 and 4. The cryosphere is defined as the frozen 

aspects of the earth system, incorporating snow, sea ice, ice sheets, glaciers, and permafrost 

(Fox-Kemper et al., 2021). Cryosphere feedbacks are therefore numerous, involving the 

atmosphere, biosphere, and both the surface and deep ocean, and operate over multiple 

temporal scales. Perhaps the most influential aspect of the cryosphere relevant to global 

temperature is that of albedo; snow and ice are highly reflective meaning any reduction in 

snow and ice cover results in a decrease in the local albedo, increasing the absorption of 

incoming radiation and raising local temperature. On short timescales, changes in snow cover 

drive changes in local temperature, but the feedback becomes extremely significant over 

multi-decadal, centennial, and millennial timescales when considering large spatial changes 

in the extent of sea ice and ice sheets (Clark, Alley and Pollard, 1999; Stap et al., 2017; 

Scherrenberg et al., 2023). Xiao et al. (2017) calculate the magnitude of the short-term 

northern hemisphere snow-albedo feedback during the period 2003-2016 as 0.18 ± 0.08 Wm-

2K-1. On longer timescales, the magnitude of the ice sheet-albedo feedback continues to be 
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very uncertain, and this is something that I investigate in this work. Alongside albedo, ice 

sheets more indirectly affect climate through freshwater fluxes and regional cloud, wind, and 

precipitation patterns, but these are beyond the scope of this thesis (Fyke et al., 2018). 

1.2.4 Estimates of climate sensitivity 

Climate sensitivity can be calculated using several lines of evidence: model simulations based 

on physical understanding; observations within the historical record; and palaeoclimate 

reconstructions. As illustrated in figure 1.2, no single line of evidence succeeds in capturing 

all earth system processes on all timescales meaning all lines of evidence need to be 

combined to create a complete picture of Earth’s complex climate system (Stevens et al., 

2016; Goodwin, 2018; Sherwood et al., 2020). Different lines of evidence therefore tend to 

indicate differing estimates of climate sensitivity, demonstrating the varying timescales being 

captured (Knutti, Rugenstein and Hegerl, 2017; Goodwin, 2018). To understand climate 

sensitivity over all relevant timeframes and reduce uncertainty, we must combine the 

evidence from multiple different sources (Stevens et al., 2016; Sherwood et al., 2020). 

1.2.4.1 Model simulations 

Climate sensitivity can be estimated from our understanding of the current climate system 

and its internal feedbacks and variability. Our understanding of these processes is typically 

explored using comprehensive GCMs which are informed using physical theory to run 

idealised experiments within a computerised representation of our climate system. In this 

way, we can explore global and regional responses to simulated scenarios to gain knowledge 

about the internal behaviour of the system (Raju and Kumar, 2020). However, GCMs often 

lack the spatial resolution required to fully represent processes that occur on very small 

scales, such as cloud droplet formation, which instead must be accounted for by approximate 

parameterizations (McFarlane, 2011; Knutti, Baumberger and Hirsch Hadorn, 2019; Raju and 

Kumar, 2020).  

The drive to improve model skill and reliability has given rise to climate model 

intercomparison projects (CMIPs) which create opportunities to explore climate sensitivity 

across a large multi-model ensemble (Tebaldi and Knutti, 2007). The quality of an individual 

model is traditionally determined by its consistency with observations of current climate 

with the assumption that models that can reproduce current climate will be best placed to 

predict future changes or estimate ECS, but unfortunately this is not always the case 

(Gleckler, Taylor and Doutriaux, 2008; Waugh and Eyring, 2008; Caldwell, Zelinka and Klein, 

2018). A potential solution that is currently being explored is the concept of ‘emergent 

constraints’ which refer to observable quantities in the current climate that tend to be a good 
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predictor of future changes in GCMs and therefore can be used to identify trustworthy models 

(Caldwell, Zelinka and Klein, 2018; Hall et al., 2019). Potential emergent constraints for 

climate sensitivity have also been identified, with most relating to cloud feedbacks as the 

largest source of uncertainty in ECS in current GCMs (Caldwell, Zelinka and Klein, 2018; Cox, 

Huntingford and Williamson, 2018; Hall et al., 2019; Schlund et al., 2020; Sherwood et al., 

2020). However, not all identified emergent constraints have a solid physical basis and many 

do not hold for more recent GCMs, such as those in CMIP6, and so this method should be 

applied with caution (Caldwell et al., 2014; Caldwell, Zelinka and Klein, 2018; Schlund et al., 

2020; Sherwood and Forest, 2024).  

Despite significant ongoing uncertainty, the evidence from models based on process 

understanding is difficult to reconcile with a low estimate for ECS with most recent 

simulations favouring a sensitivity at the higher end of the IPCC’s range (Knutti, Rugenstein 

and Hegerl, 2017; Gettelman et al., 2019; Bjordal et al., 2020; Meehl et al., 2020; Rugenstein et 

al., 2020; Zelinka et al., 2020; Zhu and Poulsen, 2020).  

1.2.4.2 Historical record 

Since the 18th century, the world has warmed by more than 1°C, primarily due to rise of 

anthropogenic greenhouse gases (GHGs) and aerosols, and this warming is well documented 

by instrumental observations (IPCC, 2013; Allen, 2018). The historical climate record is 

therefore a useful data source to inform estimates of climate sensitivity. Estimates derived 

from the historical record are typically calculated from observed changes in temperature and 

ocean heat uptake using a conceptual or physical model to infer ECS from a present-day 

warming in response to forcing relative to a baseline (Hegerl and Zwiers, 2011; Skeie et al., 

2014; Skeie et al., 2018; Gregory et al., 2020). Alternatively, observations can be used in 

conjunction with model simulations to identify a value for ECS that results in the greatest 

consistency between the two (Knutti and Tomassini, 2008; Skeie et al., 2014; Johansson et al., 

2015). 

Estimates for ECS using this line of evidence are generally lower than from other approaches 

with a best estimate of ~2°C (Knutti, Rugenstein and Hegerl, 2017; Sherwood et al., 2020). 

However, extensive observational uncertainty persists, and data coverage is incomplete in 

certain regions and time periods (Cowtan et al., 2015; Karl et al., 2015; Richardson et al., 

2016; Knutti, Rugenstein and Hegerl, 2017). Moreover, the historical climate record is too 

short to capture feedbacks that operate on longer timescales and natural variability may 

obscure key trends (Olson et al., 2013; Huber, Beyerle and Knutti, 2014). Furthermore, our 

climate is in a transient state and this must be considered when drawing conclusions on ECS 
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from observations of a system undergoing constant change (Huber, Beyerle and Knutti, 2014; 

Yoshimori et al., 2016; Knutti, Rugenstein and Hegerl, 2017; Gregory et al., 2020).  

Until recently, many estimates based on the instrumental record have assumed that 

feedbacks are spatially and temporally constant, which is unrealistic (Otto et al., 2013; 

Gregory and Andrews, 2016; Knutti, Rugenstein and Hegerl, 2017; Andrews et al., 2018). The 

spatial and temporal heterogeneity of feedback strength is partly a consequence of unforced 

‘pattern effects’ wherein the spatial pattern of surface warming will alter the strength of a 

feedback at a particular time (Rose et al., 2014; Armour, 2017; Andrews et al., 2018; Dessler, 

2020; Dong et al., 2020; Chao, Muller and Dessler, 2022). In particular, variations in 

shortwave cloud feedbacks have been identified as the primary contributor to the unforced 

pattern effect (Dessler, Mauritsen and Stevens, 2018; Dessler, 2020; Chao and Dessler, 2021; 

Chao, Muller and Dessler, 2022). Figure 1.3 shows how the strength of the pattern effect 

influences the magnitude of committed warming, that is the GMST change that is ‘inevitable’ 

due to the lifetime of CO2 in the Earth system (Mauritsen and Pincus, 2017; Zhou et al., 2021).  

Figure 1.3: Impact of the pattern effect on equilibrium committed warming with constant 

forcing. White contours indicate thresholds from the Paris Agreement. Black line 

describes the relationship between the pattern effect and λ. Black markers highlight 

the difference in committed warming depending on the strength of the pattern 

effect. From Zhou et al., (2021).  

Due to the pattern effect, some studies have concluded that estimates of ECS that assume 

constant feedbacks are likely underestimated, thereby resolving the apparent discrepancy 

between estimates based on observations versus GCMs (Gregory and Andrews, 2016; Knutti, 

Rugenstein and Hegerl, 2017; Andrews et al., 2018; Dessler, 2020; Sherwood et al., 2020; 
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Tokarska et al., 2020). The overall effect of pattern effects can lead estimates of ECS based on 

historical observations to be as much as 0.5K below the true value of ECS (Dessler, 2020). 

Figure 1.4 depicts a visual comparison of the magnitude of the pattern effect in the CMIP5 and 

CMIP6 ensembles of complex climate models. Whilst the majority of models in both 

ensembles indicate an amplifying effect from multi-decadal feedbacks, with a mean change of 

0.51 Wm-2K-1 from multi-annual to centennial timescales in CMIP5 and 0.4 Wm-2K-1 in CMIP6, 

some models do show a damping effect, as illustrated by their negative change in λ (Andrews, 

Gregory and Webb, 2015; Dong et al., 2020). This highlights the uncertainty that persists and 

that must be remedied to improve estimates of climate sensitivity.  

Figure 1.4: Bar chart showing the difference in magnitude in λ between short timescales (0 – 

20 years) and longer timescales (121-150 years) in CMIP5 and CMIP6. The grey 

lines indicate the ensemble means. CMIP5 data from Andrews, Gregory and Webb 

(2015). CMIP6 data from Dong et al. (2020).  

1.2.4.3 Palaeoclimate record 

Past climates offer a unique insight into the slower feedbacks of the climate system and can 

provide useful information with which to constrain climate sensitivity (Rohling et al., 2012b; 

Rohling et al., 2018; Tierney et al., 2020a). Estimates derived from the palaeoclimate record 

are typically based on periods of time where the climate remained sufficiently stable over 
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multiple centuries to millennia as the system can be assumed to be in quasi-equilibrium 

(Covey, Sloan and Hoffert, 1996; Rohling et al., 2012b; von der Heydt et al., 2016). Climate 

sensitivity can be estimated either by comparing time series of a specific time slice to a pre-

industrial control to determine how the climate responded to the change in radiative 

forcings, or by studying multiple climate cycles over a long time series such as the glacial/ 

interglacial transitions of the Pleistocene (~ past 2.5Ma) (Rohling et al., 2012b; Friedrich et 

al., 2016; von der Heydt et al., 2016; Rohling et al., 2018; Inglis et al., 2020; Tierney et al., 

2020b).  

The growing consensus is that climate sensitivity is influenced by the background climate 

state and is higher in warmer climates (Caballero and Huber, 2013; Meraner, Mauritsen and 

Voigt, 2013; Friedrich et al., 2016; Anagnostou et al., 2020; Zhu and Poulsen, 2020). 

Therefore, both cold periods like the Last Glacial Maximum (LGM ~20,000 years ago) and 

warm periods such as the Mid-Pliocene Warm Period (mPWP ~3.3 – 3.0Ma) must be studied 

with a consideration of changing feedbacks to derive a comprehensive estimate from the 

palaeoclimate record (Schmittner et al., 2011; Caballero and Huber, 2013; von der Heydt et 

al., 2016; Farnsworth et al., 2019; Inglis et al., 2020; Tierney et al., 2020b).  

However, the study of past climates incorporates additional uncertainty. The methods used to 

reconstruct past climates utilise indirect evidence that is unlikely to be spatially complete and 

may be influenced by multiple environmental factors alongside temperature (Rohling et al., 

2012b; von der Heydt et al., 2016; Rohling et al., 2018; Sherwood et al., 2020). For example, 

the Mg/Ca palaeothermometer, utilises the ratio of magnesium to calcium in preserved fossil 

foraminifera from marine sediments to infer past ocean temperatures under the premise that 

in warmer oceans, foraminifera will incorporate more Mg into their calcite shells and the 

Mg/Ca ratio will be higher (Glaubke, 2022). However, the Mg/Ca ratio can also be influenced 

by secondary factors such as seawater chemistry, species type, or partial-dissolution and 

these must be accounted for when calibrating the proxy to reconstruct temperature (Bryan 

and Marchitto, 2008; Lowenstein and Hönisch, 2012). Cross-validation between multiple 

proxy types can provide greater confidence here (e.g (Martínez-Botí et al., 2015; Chalk et al., 

2017; Raitzsch et al., 2018)). Furthermore, palaeoclimate studies must contend with changes 

in topography, surface vegetation, ice cover, and continental configuration, records of which 

may be poorly constrained (Markwick, 2007; Sømme, Helland-Hansen and Granjeon, 2009; 

Farnsworth et al., 2019).  

Estimates of climate sensitivity from the palaeoclimate record generally confirm the IPCC’s 

range but establish that the state-dependency is such that estimates differ between cold and 

warm periods meaning further constraint is difficult (Rohling et al., 2012b; Kutzbach et al., 
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2013; Köhler et al., 2015; Martínez-Botí et al., 2015; Friedrich et al., 2016; Anagnostou et al., 

2020; Sherwood et al., 2020).  

1.2.5 Combining lines of evidence 

The most established and accepted method of combining multiple lines of evidence is the 

Bayesian statistical framework (Annan, 2015; Stevens et al., 2016). The method is based on 

Bayes’ Theorem, where the probability of an unknown value is proportional to the current 

knowledge of the parameter, multiplied by its likelihood to be true based on the consistency 

with new information (Bayes and Price, 1763; Papoulis and Saunders, 1989; Annan and 

Hargreaves, 2006).  

This approach requires the construction of a prior distribution of possible values for climate 

sensitivity as a probability density function (PDF) which represents the current knowledge of 

the parameter (Annan and Hargreaves, 2006; Annan, 2015; Annan and Hargreaves, 2020). A 

likelihood filter then probabilistically constructs a posterior distribution based on 

consistency with other evidence (Annan, 2015; Skeie et al., 2018). This updated PDF 

represents the current best estimate for climate sensitivity based on the available evidence. 

Figure 1.5 depicts how the estimated range for climate sensitivity can be further constrained 

by combining multiple lines of evidence. 

A challenge when combining multiple lines of evidence is determining whether they are 

independent  (Hegerl et al., 2006; Knutti and Hegerl, 2008; Annan and Hargreaves, 2017; 

Sherwood et al., 2020). If there is a significant co-dependency or mutual influence on more 

than one line of evidence then the calculation may be complicated, particularly if the 

relationship is ‘reinforcing’ and amplifies one or both factors (Annan and Hargreaves, 2017; 

Sherwood et al., 2020). This can occur if multiple parameters are uncertain or erroneous and 

they then reinforce each other. Co-dependency errors often originate from model selection 

bias if, for example, observations are used to evaluate the skill of a GCM simulation 

(Sherwood et al., 2020). Other potential co-dependencies may arise if a large proportion of a 

multi-model ensemble originate from the same research centre or if different models share 

code or biases (Annan, 2015; Annan and Hargreaves, 2017).  
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Figure 1.5: Illustrative example of combining multiple constraints for climate sensitivity with 

the PDFs for the estimate from the historical climate record (red), process 

understanding (green), palaeoclimate (blue), and the combined estimate from all 

three constraints (black). Grey boxes indicate the ‘likely’ (66%) and ‘very likely’ 

(90%) combined ranges. From Knutti, Rugenstein and Hegerl (2017).  

1.3 Overall Methodology 

1.3.1 WASP Model 

1.3.1.1 Model structure 

The nature of probabilistic assessment requires the use of very large ensembles of 

simulations to ensure coverage of the full distribution of potential values. Such ensemble 

sizes would be entirely impractical using a complex GCM due to the computing power and 

time required. This computational intensity demands that all values of climate parameters 

within the model are carefully chosen, in hope of producing the most accurate and likely 

simulations within the available run time. Therefore, complex model teams do not sufficiently 

systematically vary the input parameters of their models to enable a rigorous probabilistic 

assessment and less likely values tend to be under-sampled (Goodwin, 2021). The alternative 

is the use of efficient climate models that are specifically designed for the generation of large 

ensembles through reduced resolution and simplified complexity (Nicholls et al., 2020b). 
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The Warming Acidification and Sea level Projector (WASP) model is an efficient 8-box model 

of the atmosphere-ocean-terrestrial earth system that solves for GMST rise for carbon 

emission scenarios, developed by my primary supervisor Dr Phil Goodwin (Goodwin, 

2016;2018). Following a Bayesian statistical framework, the model generates large member 

ensembles using 25 input parameters that are independently varied between simulations 

using the Monte Carlo method. A history-matching approach is then applied to compare 

ensemble members (Williamson et al., 2015) for agreement with specified observational 

constraints of GMST, ocean heat content, and carbon fluxes which act as a likelihood filter to 

extract posterior ensembles (Goodwin, 2018). Since its initial development (figure 1.6), 

WASP has been updated to include climate feedbacks that can independently vary over time 

for each source of forcing (Goodwin, 2018; Goodwin and Cael, 2020).  

Figure 1.6: Schematic of the WASP model. Arrows indicate carbon and heat fluxes. The ocean 

has prescribed e-folding timescales, τ, for tracers to equilibrate. From Goodwin, 

(2016).  

WASP has an advantage over previous attempts to probabilistically constrain climate 

sensitivity using a Bayesian framework  (e.g. (Sherwood et al., 2020)) as it is able to generate 

future climate projections that are consistent with its constrained estimate of climate 

sensitivity. Furthermore, WASP is far more computationally efficient than many other simple 

climate models as it is written in a ‘compiled’ computing language, C++, rather than an 

‘interpreted’ language such as Python. This additional efficiency gives WASP the capability to 

generate very large member ensembles in a short period of time, thereby facilitating a more 

robust probabilistic assessment. The work throughout this thesis has built upon WASPv3, 

which uses time-evolving climate feedbacks split into three components: the instantaneous 

Planck feedback, λPlanck, fast feedbacks, λfast, and multi-decadal feedbacks, λmd, (Goodwin and 
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Cael, 2020). The WASP model is utilised in chapters 2 and 4, with each chapter making 

additional modifications and additions to the existing WASP model to study a specific 

research question. 

1.3.1.2 Time-evolving earth system feedbacks 

Equation 1.1 assumes the existence of a single overall climate feedback response to total 

radiative forcing. As discussed, this assumption is flawed and as such WASPv3 follows 

Goodwin (2018) and later work to include a time-evolving climate feedback parameter, λ, 

where surface warming is modelled as an extended energy balance framework in response to 

i sources of radiative forcing by j climate feedbacks, each operating over different response 

timescales (Goodwin, 2018; Goodwin and Cael, 2020). As such, the surface temperature 

anomaly, ΔT, at time, t, is calculated as follows: 

Δ𝑇(𝑡) = (1 −
𝑁(𝑡)

𝐹𝑡𝑜𝑡𝑎𝑙(𝑡)
) ∑ [

𝐹𝑖(𝑡)

𝜆𝑃𝑙𝑎𝑛𝑐𝑘 + ∑ 𝜆𝑖,𝑗(𝑡)𝑗
]

𝑖
 

Equation 1.3 

Where 𝜆𝑖,𝑗is the summative combination of 𝜆𝑓𝑎𝑠𝑡 and 𝜆𝑚𝑑 in response to i sources of radiative 

forcing. In WASP, the response timescale of 𝜆𝑃𝑙𝑎𝑛𝑐𝑘 is instantaneous. The fast feedbacks, 𝜆𝑓𝑎𝑠𝑡, 

include feedbacks operating on response timescales of water vapour residence in the 

atmosphere, and include clouds and water vapour-lapse rate. The response timescale of 𝜆𝑓𝑎𝑠𝑡 

varies between simulations with a random normal distribution of 8.9 ± 0.4 days following van 

der Ent and Tuinenburg (2017). Also considered a fast feedback, the snow and sea ice albedo 

feedback functionally operates in WASP as a separate term with a timescale that varies 

between simulations according to a uniform prior distribution between 0.5 and 1.5 years. The 

multi-decadal feedbacks, 𝜆𝑚𝑑, include feedbacks that operate on the timescale of the sea 

surface temperature (SST) warming pattern adjustment. In WASP, the response timescale of 

𝜆𝑚𝑑 varies between simulations according to a uniform prior distribution from 20 to 45 

years; the minimum limit follows (Andrews, Gregory and Webb, 2015) and the maximum 

limit follows (Fine et al., 2017). The i sources of radiative forcing in equation 1.3 include: 

atmospheric CO2 forcing after (IPCC, 2013); combined forcing from well-mixed greenhouse 

gases (GHGs) after (Etminan et al., 2016); combined anthropogenic aerosol forcing after 

(Myhre et al., 2013a; Smith et al., 2018); volcanic aerosol forcing from (Gregory et al., 2016; 

Nicholls et al., 2020a); solar forcing; and internal variability with imposed first order 

autoregressive noise following (Trenberth, Fasullo and Balmaseda, 2014).  

The climate feedback response behaves differently in the model depending on whether the 

radiative forcing from source i is increasing in magnitude between two time steps, t + δt 
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(Goodwin and Cael, 2020). When radiative forcing from source i is increasing in magnitude, 

|Fi(t+δt)| > |Fi(t)|, the climate feedback, λi,j evolves from t to t + δt according to: 

𝜆𝑖,𝑗(𝑡 + 𝛿𝑡) = |
𝐹𝑖(𝑡)

𝐹𝑖(𝑡 + 𝛿𝑡)
| (𝜆𝑖.𝑗(𝑡) + (𝜆𝑗

𝑒𝑞𝑢𝑖𝑙
− 𝜆𝑖.𝑗(𝑡)) (1 − 𝑒𝑥𝑝 (

−𝛿𝑡

𝜏𝑗
))) 

Equation 1.4 

On the other hand, when the radiative forcing from source i is not increasing in magnitude, 

|Fi(t+δt)| ≤ |Fi(t)|, the climate feedback, λi,j evolves over time according to: 

𝜆𝑖,𝑗(𝑡 + 𝛿𝑡) = 𝜆𝑖,𝑗(𝑡) + (𝜆𝑗
𝑒𝑞𝑢𝑖𝑙

− 𝜆𝑖,𝑗(𝑡)) (1 − 𝑒𝑥𝑝 (
−𝛿𝑡

𝜏𝑗
)) 

Equation 1.5 

Consequently, the response of climate feedbacks in the model evolves over the e-folding 

response timescales, τj  towards equilibrium such that at any given point in time λ can have a 

different value for each source of radiative forcing (Goodwin, 2018; Goodwin and Cael, 2020). 

1.3.1.3 Bayesian statistical framework 

The WASP model ensembles are built upon a Bayesian statistical framework and as such 

utilise Bayes’ Theorem to calculate the posterior probability that the climate feedback 

parameter, and therefore climate sensitivity, has a specific set of values, X’, given background 

information, I, and observations of the climate system, {𝑜𝑏𝑠}, according to the following: 

𝑝𝑟𝑜𝑏(𝑋 = 𝑋′|{𝑜𝑏𝑠}, 𝐼) ∝ 𝑝𝑟𝑜𝑏({𝑜𝑏𝑠}|𝑋 = 𝑋′, 𝐼) × 𝑝𝑟𝑜𝑏(𝑋 = 𝑋′|𝐼) 

Equation 1.6 

Where 𝑝𝑟𝑜𝑏(𝑋 = 𝑋′|𝐼) is the prior probability that 𝑋 = 𝑋′ for a given climate parameter, and 

𝑝𝑟𝑜𝑏({𝑜𝑏𝑠}|𝑋 = 𝑋′, 𝐼) is the likelihood function which gives the probability of obtaining the 

observations, {𝑜𝑏𝑠}, given the value of the parameter, 𝑋 = 𝑋′, and background information, I. 

The prior ensemble is generated such that the relative frequencies of model parameter values 

match the prior knowledge for each parameter, 𝑝𝑟𝑜𝑏(𝑋 = 𝑋′|𝐼). The prior ensemble assumes 

each different parameter has a value that is independent of all other parameter’s values (for 

example the value of fast climate feedback is independent of the value of multi-decadal 

climate feedback in the prior ensemble).  

In WASP, the prior ensembles are not assumed to be uniform and in the case of λ, a translated 

lognormal distribution is adopted with three choices to set: the distribution’s minimum value, 
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median value, and uncertainty. In this way, for the jth climate feedback term, the prior 

distribution is given as follows: 

𝜆𝑗 ~ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 (𝑙𝑛(𝜇𝑗 − 𝜆𝑗:𝑚𝑖𝑛), 𝑙𝑛 (1 +
𝜎𝑗

2

(𝜇𝑗 − 𝜆𝑗:𝑚𝑖𝑛)
2)) + 𝜆𝑗:𝑚𝑖𝑛 

Equation 1.7 

Where 𝜆𝑗:𝑚𝑖𝑛 is the minimum value that the jth climate feedback can take, 𝜇𝑗 − 𝜆𝑗:𝑚𝑖𝑛 is the 

difference between the distribution’s median and minimum values, and 𝜎𝑗
2 is the variance. 

This study uses the same equations for its prior distributions as Goodwin (2021) and as such, 

for the Planck feedback, assumes a median value of 3.3 and an uncertainty of 0.1. This gives 

the following equation for the prior probability distribution for λPlanck: 

𝜆Planck ~ Lognormal (ln3.3, ln (1 +
0.12

3.32)) 

Equation 1.8 

WASP adopts a position of ignorance when approaching the prior distributions of the fast and 

multi-decadal feedbacks so that there is an assumed equal likelihood of these feedbacks being 

amplifying or damping. WASP also assumes that climate feedbacks are stable for all 

timescales meaning that 𝜆𝑡𝑜𝑡𝑎𝑙 must be negative. For this to be the case for the fast feedbacks, 

the sum of λPlanck and λfast   must therefore be negative, meaning that the minimum value of the 

distribution is equal to minus the Planck Feedback, whilst the median value must be equal to 

0. The uncertainty is assumed to be equal to the difference between the median and 

minimum values. This gives an equation for the prior probability distribution of fast 

feedbacks as follows: 

𝜆𝑓𝑎𝑠𝑡  ~ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝑙𝑛𝜆𝑃𝑙𝑎𝑛𝑐𝑘 , 𝑙𝑛2) − 𝜆𝑃𝑙𝑎𝑛𝑐𝑘 

Equation 1.9 

The same arguments are applied to multi-decadal feedbacks, meaning that the sum of λPlanck, 

λfast, and λmd  must be negative. Again, no assumption is made here as to whether the multi-

decadal feedbacks are amplifying or damping, and the uncertainty scales with the difference 

between the median and minimum values of the distribution. As such, the prior probability 

distribution for multi-decadal feedbacks is calculated as follows: 

𝜆md ~ Lognormal(ln(𝜆Planck + 𝜆fast), ln2) − (𝜆Planck + 𝜆fast) 

  Equation 1.10 
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In this way, fast and multi-decadal feedbacks are directly related to the magnitude of the 

Planck feedback in each WASP simulation. 

To run WASP, the model code is submitted as a job to IRIDIS5 High Performing Computing 

Cluster based at the University of Southampton. For each run, the model generates a large 

Monte Carlo prior ensemble of a specified number of simulations with 25 independently 

varied input parameters (Baez and Tweed, 2013; Kroese et al., 2014). These parameters are 

detailed in appendix A. The method used to extract a posterior ensemble varies between 

work packages. 

1.3.2 Energy balance model 

Chapter 4 utilises an energy balance model (EBM) introduced in Goodwin and Williams 

(2023) with some adjustments. The basic methodology of the published EBM shall be 

described here for clarity and background understanding, with further detail in the original 

publication, whilst chapter 4 shall cover the adjustments and methods relevant to its specific 

research question. 

The magnitude of Earth’s total climate feedback parameter, 𝜆𝑡𝑜𝑡𝑎𝑙 (Wm-2K-1), is typically 

calculated using temporal changes in global temperature and energy balance such that: 

𝜆𝑡𝑜𝑡𝑎𝑙 =  
Δ(𝑆𝑜𝑢𝑡 + 𝐿𝑜𝑢𝑡) 

Δ𝑇
    

Equation 1.11 

Where Δ(𝑆𝑜𝑢𝑡 + 𝐿𝑜𝑢𝑡) is the total change in the outgoing shortwave and longwave radiation 

at the TOA (Wm-2) over a given time interval, and Δ𝑇 is the global surface temperature 

anomaly (K). Goodwin and Williams note that whilst this equation holds for global 

assessments of Earth’s energy balance, it must be extended to consider how the vertical 

radiation balance and horizontal heat transport may differ by latitude when assessing zonal 

variations in 𝜆𝑡𝑜𝑡𝑎𝑙 and temperature. The EBM solves for zonal- and annual-mean surface 

temperature for i = 36 discrete horizontal horizons, spaced from -87.5° to 87.5°, giving a 

resolution of 5° latitudinal bands.  

For the vertical radiation balance at a given latitude, the outgoing radiation at the TOA, 𝑅𝑜𝑢𝑡 

(Wm-2), is given by: 

𝑅𝑜𝑢𝑡 (𝜙) =  𝐿𝑜𝑢𝑡(𝜙) +  𝑆𝑜𝑢𝑡(𝜙) = 𝜀(𝜙)𝜎𝑇𝑠
4(𝜙) + 𝛼(𝜙)𝑅𝑠𝑜𝑙𝑎𝑟(𝜙) 

Equation 1.12 
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Where 𝜙 is the latitude; 𝐿𝑜𝑢𝑡 is the outgoing longwave radiation at the TOA; 𝑆𝑜𝑢𝑡 is the 

outgoing shortwave radiation at the TOA; 𝜀 is the local planetary emissivity, accounting for 

both the surface emissivity and the atmospheric greenhouse effect; 𝜎 is the Stephan-

Boltzmann constant (Wm-2K-4); 𝑇𝑠 is the local surface temperature (K); 𝛼 is the local albedo; 

and 𝑅𝑠𝑜𝑙𝑎𝑟 is the local incoming solar radiation (Wm-2). All variables are the zonal mean for 

the specified latitudinal band. The zonal-mean net heat uptake, ℋ (Wm-2), for a specified 

latitudinal band, per unit area per unit time for a steady state is then calculated as follows: 

ℋ(𝜙) =  𝑐(𝜙)
𝑑𝑇𝑠

𝑑𝑡
(𝜙) = 𝑅𝑠𝑜𝑙𝑎𝑟(𝜙) −

𝛿𝑓

𝛿𝑦
(𝜙) − 𝑅𝑜𝑢𝑡(𝜙) 

Equation 1.13 

Where 𝜙 is the latitude; c is the heat capacity (Jm-2k-1); 
𝑑𝑇𝑠

𝑑𝑡
 is the rate of warming (Ks-1); 𝑅𝑜𝑢𝑡 

is the TOA outgoing radiation (Wm-2), 𝑅𝑠𝑜𝑙𝑎𝑟 is the local incoming solar radiation (Wm-2), and 

−
𝛿𝑓

𝛿𝑦
 is the meridional convergence in the mean poleward heat transport (Wm-2). At a steady 

state, the surface temperature, 𝑇𝑠, stabilises so that ℋ(𝜙) = 0.  

To represent horizontal heat transport, the EBM utilises the horizontal gradient in surface 

temperature, 𝑇𝑠, to diffuse heat horizontally via some effective diffusivity, 𝜅𝑒𝑓𝑓(𝜙) (WK-1m-1) 

so that: 

𝑓(𝜙) = −𝜅𝑒𝑓𝑓(𝜙)
𝛿𝑇𝑠

𝛿𝑦
(𝜙) 

Equation 1.14 

Where 𝑓(𝜙)is the poleward heat transport across a line of latitude per unit latitudinal length 

in Wm-1, and 𝑦 is the poleward displacement in m. 𝑓(𝜙) is the total additive combination of 

heat transport through: dry-static air, 𝑓𝑑𝑟𝑦(𝜙), latent heat within air,  𝑓𝑙𝑎𝑡𝑒𝑛𝑡(𝜙), and ocean 

heat transport, 𝑓𝑜𝑐𝑒𝑎𝑛(𝜙). Therefore, equation 1.14 can be expanded so that: 

𝑓(𝜙) = 𝑓𝑑𝑟𝑦(𝜙) + 𝑓𝑙𝑎𝑡𝑒𝑛𝑡(𝜙) + 𝑓𝑜𝑐𝑒𝑎𝑛(𝜙) = −[𝜅𝑑𝑟𝑦(𝜙) + 𝜅𝑙𝑎𝑡𝑒𝑛𝑡(𝜙) + 𝜅𝑜𝑐𝑒𝑎𝑛(𝜙)]
𝛿𝑇𝑠

𝛿𝑦
(𝜙) 

Equation 1.15 

Where 𝜅𝑑𝑟𝑦(𝜙), 𝜅𝑙𝑎𝑡𝑒𝑛𝑡(𝜙), and 𝜅𝑜𝑐𝑒𝑎𝑛(𝜙) represent the dry static diffusivity, latent heat 

diffusivity, and ocean diffusivity respectively. This is useful because the dominant medium 

through which poleward heat transport takes place will vary between regions. In particular, 

the latent heat diffusivity varies with specific humidity. 
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Meanwhile, the EBM also considers the thermodynamic processes that may influence the 

effective horizontal diffusivity. To reflect the fact that effective diffusivity is affected by local 

surface temperature, 𝑇𝑠, the above equation 1.14 is differentiated to give: 

𝛿𝑓

𝛿𝑦
(𝜙) = −

𝛿

𝛿𝑦
[𝜅𝑒𝑓𝑓(𝜙)

𝛿𝑇𝑠

𝛿𝑦
(𝜙)] 

Equation 1.16 

Where 
𝛿𝑓

𝛿𝑦
(𝜙) is the horizontal heat flux divergence.   

A positive radiative forcing, 𝛿𝐹 (Wm-2), occurs when there is a net increase in incoming 

radiation at the TOA, which can arise either through an increase in incoming solar radiation, 

𝑅𝑠𝑜𝑙𝑎𝑟 , or a decrease in outgoing radiation, 𝑅𝑜𝑢𝑡, whilst the Earth’s surface temperature 

remains unchanged. A negative radiative forcing occurs in the opposite case when there is a 

net decrease in the incoming radiation at the TOA (or a net increase in the TOA outgoing 

radiation). Either perturbation will force a latitudinal radiative response within the model 

where surface temperatures will change to the point at which a new steady state is reached. 

Following a perturbation, equation 1.13 is adjusted to account for the changing surface 

temperatures and change in horizontal heat flux, each of which will vary by latitude. The 

radiative forcing with latitude is then calculated as follows: 

𝛿𝐹(𝜙) = 𝛿𝑅𝑜𝑢𝑡|𝛿𝑇𝑠
(𝜙) − 𝛿 [

𝛿𝑓

𝛿𝑦
] (𝜙) =

𝛿𝑅𝑜𝑢𝑡

𝛿𝑇𝑠

(𝜙)𝛿𝑇𝑠(𝜙) − 𝛿 [
𝛿𝑓

𝛿𝑦
] (𝜙) 

Equation 4.17 

Where 𝛿𝑅𝑜𝑢𝑡|𝛿𝑇𝑠
 is the vertical radiative response from changing surface temperatures; and 

𝛿 [
𝛿𝑓

𝛿𝑦
] (𝜙) is the change in horizontal heat flux.  

𝛿𝑅𝑜𝑢𝑡

𝛿𝑇𝑠
 (Wm-2K-1) is equal to the change in 

outgoing radiation per unit of temperature change at a specific latitude and is therefore 

equivalent to the local latitudinal value of the effective climate feedback parameter, 𝜆𝜙 (Wm-

2K-1). 

As illustrated in figure 1.7, the EBM solves for the steady state zonal- and annual-mean 

surface temperature, 𝑇𝑠 (K), with latitude, 𝜙, for: imposed zonal- and annual-mean incoming 

solar radiation with latitude, 𝑅𝑠𝑜𝑙𝑎𝑟 (Wm-2); parameterised heat transport with imposed 

horizontal effective diffusivity with latitude, 𝜅𝑒𝑓𝑓(𝜙) (WK-1m-1); and imposed cloudiness with 

latitude where 𝑓𝐶𝐴(𝜙) is the cloud amount fraction and 𝑓𝐶𝐼(𝜙) is zonal- and annual-mean 

fraction of incoming shortwave radiation that is incident on clouds.  Note that 𝑓𝐶𝐴(𝜙)and 

𝑓𝐶𝐼(𝜙)differ due to the sub-annual variation in incoming radiation and cloudiness.  
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Whilst the WASP model incorporates time-evolving earth system feedbacks, the EBM is 

concerned with latitudinally-varying feedbacks. The use of both models, therefore, serves to 

address both the temporal and spatial heterogeneity of Earth’s complex climate feedbacks.  

 

Figure 1.7: Schematic of the conceptual energy balance model at a steady state, developed by 

Goodwin and Williams (2023). Here the letter i denotes the prescribed sky 

condition, that can be changed in the model to represent either: entirely clear sky 

conditions (where cloud fraction amount is 0); entirely cloudy sky (where cloud 

fraction amount is 1); or ‘all sky’ conditions where the cloud fraction amount is 

determined by prescribed observed climatology. 

1.4 Outline 

The central focus of this thesis is to explore and quantify the behaviour of Earth’s climate 

feedbacks in the context of the past, present, and future. All chapters shall therefore serve to 

contribute to this aim and narrative. This thesis is structured around the following three 

objectives: 

Objective 1: 

Constrain the magnitude of Earth’s fast and multi-decadal feedbacks and 

quantify the pattern effect through probabilistic assessment 

Objective 2: 

Explore and constrain the magnitude of Earth’s slow ice sheet-albedo 

feedback in the context of the most recent deglaciation 
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Objective 3: 

Investigate Earth’s climate feedbacks under different background mean 

climate states and explore the implications of the ice sheet-albedo 

feedback for long term climate change 

These three objectives form the basis of the central chapters of this thesis: Objective 1 is 

addressed in Chapter 2; Objective 2 is tackled in Chapter 3; and Objective 3 is investigated in 

Chapter 4. In Chapter 2, a new forced temperature profile extracted from the HadCRUT5 

observational dataset is utilised for the first time to act as an observational constraint on the 

magnitude of multi-decadal feedbacks. Of all chapters, Chapter 2 focuses most heavily on the 

improvement of the statistical methodology used to constrain climate feedbacks, and three 

methodological variations are compared to highlight the benefits of each method. Chapter 3 

investigates the currently underrepresented slow feedbacks and uses a proxy data-driven 

approach to quantify both the magnitude and timescale of the ice sheet-albedo feedback since 

the LGM. Finally, Chapter 4 investigates the relationship between the background climatic 

mean state and the total climate feedback parameter and further incorporates the findings of 

Chapter 3 to explore projections of long-term warming under multiple scenarios. Chapter 5 

summarises and collates the findings of all chapters and discusses the implications for 

international climate policy as well as potential future research directions. 
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Chapter 2  Fast & multi-decadal 

feedbacks 

2.1 Introduction 

The magnitude of Earth’s countless climate feedbacks continues to cause considerable 

uncertainty in the prediction of future climate change, greatly hindering our capacity to 

construct effective adaptation and mitigation strategies for the coming decades. A large 

proportion of this uncertainty stems from incomplete understanding of Earth’s feedbacks 

which each operate on differing response timescales (Zeebe, 2013; Knutti and Rugenstein, 

2015; Pfister and Stocker, 2017; Goodwin, 2018; Chao and Dessler, 2021).  

The strength of Earth’s climate feedbacks is quantified by the total climate feedback 

parameter, 𝜆𝑡𝑜𝑡𝑎𝑙 (Wm-2K-1), which is defined here as the change in outgoing radiation at the 

top of the atmosphere (TOA) per unit of temperature change. 𝜆𝑡𝑜𝑡𝑎𝑙 at time, t, is calculated as 

follows: 

𝜆𝑡𝑜𝑡𝑎𝑙(𝑡) =
𝑁(𝑡) − 𝐹𝑡𝑜𝑡𝑎𝑙(𝑡)

Δ𝑇(𝑡)
  

Equation 2.1 

Where N is the net TOA energy imbalance (Wm-2), 𝐹𝑡𝑜𝑡𝑎𝑙is the total radiative forcing (Wm-2), 

and ΔT is the global surface temperature anomaly (K). The total climate feedback parameter 

is considered the sum of multiple terms such that 𝜆𝑡𝑜𝑡𝑎𝑙(𝑡) = ∑ 𝜆𝑖 with 𝑖 denoting the specific 

feedback. I follow the sign convention that positive 𝜆𝑖 terms climate feedback values amplify 

future warming.  

The spatial and temporal heterogeneity of Earth’s feedbacks contribute towards the ‘pattern 

effect’, the magnitude of which greatly affects both how climate sensitivity evolves over time 

and the magnitude of future warming (Rose et al., 2014; Armour, 2017; Andrews et al., 2018; 

Dessler, 2020; Dong et al., 2020; Chao, Muller and Dessler, 2022). The pattern effect is 

primarily driven by feedbacks that operate on multi-decadal timescales which demonstrate a 

significant spread in magnitude across the complex model ensembles of CMIP5 and CMIP6: 

while the majority of complex models find the pattern effect will amplify future warming 

some complex models instead show dampening (Andrews, Gregory and Webb, 2015; Dong et 

al., 2020). 
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This chapter builds on the findings of both Goodwin (2021) and Goodwin & Cael (2020) who 

used a combination of observational constraints on GMST and ocean heat content (OHC) 

anomalies to act as likelihood filters in a probabilistic assessment of Earth’s feedbacks. They 

found two peaks in the posterior probability distributions of the fast and multi-decadal 

feedbacks as shown in figure 2.1, suggesting that there are two observationally consistent 

regions corresponding to either: weak amplifying fast feedbacks (~ 0.6 Wm-2) and strong 

amplifying multi-decadal feedbacks (~ 1.7 Wm-2); or very strong amplifying fast feedbacks (~ 

2.2 Wm-2) and damping multi-decadal feedbacks (~ -1.0 Wm-2) (Goodwin and Cael, 2020).  

The aim here is to constrain the magnitude of Earth’s multi-decadal feedbacks through a 

probabilistic assessment to determine whether multi-decadal feedbacks have an amplifying 

or damping effect on climate sensitivity. This gained knowledge will be used to quantify the 

strength of the pattern effect as a result of multi-decadal feedbacks in the earth system. 

Furthermore, the interactive relationship between Earth’s fast and multi-decadal feedbacks 

means that this assessment shall also improve the constraint of Earth’s faster inter-annual 

feedbacks.   

As figure 2.1 indicates, current knowledge shows that both amplifying and damping multi-

decadal feedbacks are statistically plausible. However, both studies by Goodwin (2021) and 

Goodwin & Cael (2020) utilised 20-year averages for temperature anomalies in their 

probabilistic assessment to target the longer-term multi-decadal trend. While this approach 

determines whether simulations are observation-consistent against the overall 

anthropogenic warming trend, representations of rapid cooling from volcanic forcing are 

averaged out. This chapter shall investigate the use of 1-year averages for temperature 

anomalies in the likelihood function, meaning simulations must also be sufficiently similar 

with the observed inter-annual response to volcanic activity to be considered observation 

consistent. This shall enable me to determine whether multi-decadal feedbacks are 

amplifying or damping, according to the historical record: simulations will only be considered 

observation consistent if they represent both the rapid cooling response to volcanic cooling 

and the overall longer warming trend from anthropogenic forcing. 
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Figure 2.1: Frequency density distributions for the prior and posterior ensembles from the 

study by Goodwin (2021) for a) Planck Feedback, b) fast feedbacks, and c) multi-

decadal feedbacks. Coloured solid lines show the weighted posterior ensembles, and 

the black dashed lines show the prior ensembles. Fast feedbacks are normalised in 

terms of the Planck feedback. Multi-decadal feedbacks are normalised in terms of 

the combined effect of fast feedbacks and the Planck Feedback. Adapted from 

(Goodwin, 2021). Note that sign convention differs to publication. 

A challenge when evaluating a model on annual to inter-annual timescales can be the ratio of 

noise to the target signal as random variability can obscure key trends. I address this by 

utilising a new extracted forced temperature record from Cael & Calafat (in review) that 

extracts the annual forced temperature profile from the HadCRUT5 historical record by 

removing natural variability but leaving the forced signals from anthropogenic and natural 

sources of radiative forcing. The model simulations can thereby be compared directly to the 

desired forced signal to evaluate model skill and further constrain the magnitude of Earth’s 

feedbacks.  
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2.2 Methodology 

The underlying statistical framework and numerical model used in this work are described in 

detail in section 1.3.1 of Chapter 1. This section shall describe the methodology specifically 

relevant to this chapter. In order to demonstrate the comparative benefit of using 1-year 

averages to extract the posterior ensemble, I also repeat the method used by Goodwin (2021) 

and Goodwin & Cael (2020) who used 20-year averages to extract the posterior ensemble. 

This serves to facilitate a direct comparison between the two methods. In addition to varying 

the timescale of comparison, I investigate the effect of two different statistical methods of 

likelihood filter on the resultant posterior ensemble, namely a cost function and a 

multivariate likelihood function. Together, these investigations cumulate in 3 experimental 

methods: 20-year averages and a cost function; 1-year averages and a cost function; and 1-

year averages and a multivariate likelihood function. In all experiments the prior ensemble in 

WASP runs from 1850 to 2020 (171 times 12 monthly time steps), simulating the historical 

period. 

2.2.1 Method 1: 20-year averages 

For Method 1, the WASP model is used to generate a Monte Carlo prior ensemble of 16 

million simulations. The likelihood filter used to extract the posterior ensemble for method 1 

is comprised of an OHC constraint from (Cheng et al., 2017) and an observed temperature 

constraint from the HadCRUT5 dataset (Morice et al., 2021). Each WASP simulation is split 

into 20-year averaged periods from 1900 to present, each relative to the 1850-1900 period. 

The same method is applied to the HadCRUT5 observational dataset and compared to each 

simulation in 20-year sections. Both HadCRUT5 and the WASP simulations are normalised to 

the 1850 - 1900 period to facilitate direct comparison between the two.  

In this statistical framework, ensemble members are selected for the posterior ensemble 

according to consistency with observational evidence. In this case, the relative success of each 

simulation in reproducing the observational record is determined by a cost function that 

compares temperature and OHC to the imposed constraints. The cost function for each 20-

year section of each ensemble member is calculated assuming Gaussian uncertainty: 

𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  𝑒−(𝜇−𝑥)2/2𝜎2
 

Equation 2.2 

Where μ is the observational best estimate, σ is the observational standard deviation, and 𝑥 is 

the simulated value. The overall cost function for each ensemble members is calculated as the 

product of all sections of the temperature time series, combined with the OHC constraint.  
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If the overall cost function of each ensemble member is greater than a prescribed automatic 

acceptance limit, set at 5.0x10-8 for this experiment, then the ensemble member is accepted 

into the posterior ensemble and weighted by the ratio of the cost function to the automatic 

acceptance limit. Otherwise, the ensemble member is either rejected or accepted with a 

weighting of 1 if the cost function was greater than a random number between 0 and the 

automatic acceptance limit. Method 1 generates a posterior ensemble of 8834 simulations. 

Ensemble members are then sorted into percentiles for analysis.  

2.2.2 Method 2: 1-year averages 

In order to target the forced signal when comparing WASP simulations to the observational 

record at an inter-annual timescale, random noise must be ignored and as such WASP is run 

without prescribed internal variability. For Method 2, the WASP model is used to generate a 

prior ensemble of 20 million simulations.  

The likelihood filter for Method 2 is comprised of an OHC constraint from (Cheng et al., 2017) 

and a new forced temperature record that extracts the annual forced anthropogenic 

temperature profile from the HadCRUT5 historical record by removing natural variability 

(Cael and Calafat, in review; Calafat and Cael, Submitted). Both the forced temperature 

constraint and the WASP simulations are normalised to the 1850 - 1900 period to facilitate 

direct comparison between the two.  

In order to extract the forced signal, Cael and Calafat utilise a Bayesian hierarchical energy 

balance model with historical time series of GMST, radiative forcing, OHC, and the ENSO 

Index. GMST anomalies spanning 1850-2020 and associated uncertainties are taken from the 

HadCRUT5 dataset (Morice et al., 2021); the reconstruction of OHC change for 1870-2018 is 

from (Zanna et al., 2019); the time series and uncertainties of the ENSO index for 1850-2020 

are from the Ensemble Oceanic Niño Index (Webb and Magi, 2022); and the ensemble of 

radiative forcing time series is from (Smith et al., 2021). The Bayesian hierarchical model 

used to extract the forced temperature response has three levels:  

1) Data model: a probability model that describes the distributions of GMST, OHC, and 

ENSO index, 

2) Process model: a probability model that describes the dynamics of the latent 

processes, conditional on a set of parameters, 

3) Parameter model: a prior distribution that describes the uncertainty in the model 

parameters and encodes the prior knowledge about the processes and parameters. 

As such, the posterior distributions are proportional to the product of the three levels that 

form the hierarchy. Next, I shall describe how individual processes and uncertainties are 
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modelled in this framework developed by Cael and Calafat. Firstly, the data model for the 

temperature observations can be written as: 

𝑦𝑡 = Δ𝑇𝑡 + 𝑚 + 𝜖𝑦,𝑡,           𝑡 = 1, … , 𝑇 

Equation 2.3 

Where 𝑦𝑡 is the global surface temperature observation at year t, Δ𝑇𝑡 is the true latent 

process, 𝑚 is an unknown offset, and 𝜖𝑦,𝑡 is a zero-mean Gaussian observation error with 

standard deviation equal to the standard errors provided by HadCRUT5, which vary from 

year to year (Morice et al., 2021).  

Reconstructed changes in ocean heat content, 𝑂𝐻𝐶𝑡
𝑅𝑒𝑐, are modelled as a noisy version of the 

true process, 𝑂𝐻𝐶𝑡: 

𝑂𝐻𝐶𝑡
𝑅𝑒𝑐 = 𝑂𝐻𝐶𝑡 + 𝜖𝑂𝐻𝐶,𝑡 

Equation 2.4 

Where 𝜖𝑂𝐻𝐶,𝑡 is a zero-mean Gaussian data error with time-varying standard deviation set 

equal to the standard errors provided in the historical OHC reconstruction by (Zanna et al., 

2019).  

To capture variability in Δ𝑇𝑡 associated with the El Niño-Southern Oscillation, Cael and 

Calafat use an observation-based ENSO index, 𝑥𝐸𝑁𝑆𝑂,𝑡
𝑂𝑏𝑠 , which is modelled as a noisy version of 

the true ENSO index, 𝑥𝐸𝑁𝑆𝑂,𝑡: 

𝑥𝐸𝑁𝑆𝑂,𝑡
𝑂𝑏𝑠 = 𝑥𝐸𝑁𝑆𝑂,𝑡 + 𝜖𝐸𝑁𝑆𝑂,𝑡 

Equation 2.5 

Where, like in equation 2.4, 𝜖𝐸𝑁𝑆𝑂,𝑡 is a zero-mean Gaussian data error with time-varying 

standard deviation equal to the standard errors provided by the data (Webb and Magi, 2022).  

The latent process, Δ𝑇𝑡, in response to radiative forcing, Δ𝑇𝐹,𝑡, is modelled as follows: 

𝑐
𝑑Δ𝑇𝐹,𝑡

𝑑𝑡
= 𝐹𝑡 − 𝜆𝑡Δ𝑇𝐹,𝑡 − 𝐻𝑡 

Equation 2.6 

Where 𝐹𝑡 is the radiative forcing at time t, 𝜆𝑡 is the climate feedback parameter at time t, and 

𝑐 is the heat capacity of the surface layer in Jm-2K-1. 𝐻𝑡 is equal to 
𝑑𝑂𝐻𝐶𝑡

𝑑𝑡
 and, therefore, 
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represents the tendency of the true OHC at time t. The radiative forcing at time t, 𝐹𝑡, is 

modelled as: 

𝐹𝑡~𝑁(𝜇𝐹,𝑡 , Σ𝐹) 

Equation 2.7 

Where 𝜇𝐹,𝑡 is the mean and Σ𝐹is the temporal covariance matrix extracted from the ensemble 

of radiative forcing data (Smith et al., 2021).  

Rather than assuming a constant or linear evolution over time, the climate feedback 

parameter, 𝜆𝑡, is modelled as a non-parametric process and is assumed to follow a random 

walk: 

𝜆𝑡 = 𝜆𝑡−1 + 𝜖𝜆,𝑡 

Equation 2.8 

Where 𝜖𝜆,𝑡 is Gaussian white noise with unknown standard deviation, 𝜎𝜆. The initial value of 

the climate feedback parameter, 𝜆0, is given by a truncated normal prior TN(1,0.4)[0,∞] 

following (Andrews et al., 2018).  

Meanwhile, the ENSO index is assumed to follow a zero-mean AR1 process: 

𝑥𝐸𝑁𝑆𝑂,𝑡 = 𝜙𝐸𝑁𝑆𝑂𝑥𝐸𝑁𝑆𝑂,𝑡−1 + 𝜖𝐸𝑁𝑆𝑂,𝑡 

Equation 2.9 

Where 𝜙𝐸𝑁𝑆𝑂 is the AR1 autocorrelation coefficient for the ENSO index and 𝜖𝐸𝑁𝑆𝑂,𝑡 is 

Gaussian white noise with unknown standard deviation, 𝜎𝐸𝑁𝑆𝑂. The effect of ENSO on ΔT, 

Δ𝑇𝐼,𝑡
𝐸𝑁𝑆𝑂, is given by the linear regression: 

Δ𝑇𝐼,𝑡
𝐸𝑁𝑆𝑂 = 𝛽𝑥𝐸𝑁𝑆𝑂,𝑡 

Equation 2.10 

Where 𝛽 is the regression coefficient associated with the true ENSO index, 𝑥𝐸𝑁𝑆𝑂,𝑡. Internal 

variability that is unrelated to ENSO is captured as a residual term, Δ𝑇𝐼,𝑡
𝑅𝑒𝑠, that is modelled as 

an AR1 process: 

Δ𝑇𝐼,𝑡
𝑅𝑒𝑠 = 𝜙𝑅𝑒𝑠Δ𝑇𝐼,𝑡−1

𝑅𝑒𝑠 + 𝜖𝐼,𝑡 

Equation 2.11 
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Where 𝜙𝑅𝑒𝑠 is the AR1 autocorrelation coefficient and 𝜖𝐼,𝑡 is Gaussian white noise with 

unknown standard deviation, 𝜎𝐼.  

Finally, reconstructed OHC changes exhibit weak variability with large longer-term changes 

(Zanna et al., 2019) and, thus, is modelled as following a random walk: 

𝐻𝑡−1 = 𝐻𝑡 − 𝜖𝑂𝐻𝐶,𝑡 

Equation 2.12 

𝑂𝐻𝐶𝑡 = 𝑂𝐻𝐶𝑡−1 + 𝐻𝑡−1 

Equation 2.13 

Where 𝜖𝑂𝐻𝐶,𝑡 is Gaussian white noise with unknown standard deviation, 𝜎𝑂𝐻𝐶. The initial 

values of 𝑂𝐻𝐶𝑡 and 𝐻𝑡 are unknown and are modelled with imposed prior distributions. 

Using this model, Cael and Calafat separate the forced component of GMST change from 

natural internal variability and random noise within observations. Their estimates offer an 

improvement on other published records as their Bayesian hierarchical approach allows 

them to represent and propagate uncertainty in a more statistically rigorous way. The 

statistical framework accounts for uncertainty in both the observational data and model 

uncertainty relating to the underlying equations governing the evolution of model variables. 

As such, the model yields more realistic estimates of uncertainty and more accurate estimates 

of modelled variables, including the forced temperature response. Cael and Calafat’s forced 

record is generated independently from WASP and so introduces no circularity when 

incorporated into the likelihood filter of Methods 2 and 3 of this Chapter. 

As in Method 1, the relative success of each simulation in reproducing the observational 

record is determined by a cost function (equation 2.2) that compares temperature and OHC 

to the imposed constraints. Due to computer memory capacity concerning the memory 

allocated to floating point numbers, I am unable to calculate the overall cost function for each 

ensemble member as a product of the cost functions of all time steps as the small values cause 

the overall probability to functionally go to zero. Therefore, the time series is split into 10 

sections of 17 years each, multiplying the cost functions within each section and taking the 

17th root to give each section an equivalent weighting of 1. The overall cost function for each 

ensemble member is then the product of each section, combined with the OHC constraint.  

If the cost function is greater than a prescribed automatic acceptance limit, set at 1.0x10-10 for 

this experiment, then the ensemble member is accepted into the posterior ensemble and 

weighted by the ratio of the cost function to the automatic acceptance limit. Otherwise, the 

ensemble member is either rejected or accepted with a weighting of 1 if the cost function was 
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greater than a random number between 0 and the automatic acceptance limit. Method 2 

generates a posterior ensemble of 18848 simulations. Ensemble members are then sorted 

into percentiles for analysis, in the same manner as Method 1. 

A limitation of the cost function method is the assumption that individual years are 

independent from each other, which does not represent reality. Method 3, therefore, attempts 

to rectify this. 

2.2.3 Method 3: Multivariate likelihood function 

As in Method 2, the likelihood filter for Method 3 utilises an OHC constraint from (Cheng et 

al., 2017) and the new forced temperature record (Cael and Calafat, in review). As individual 

years cannot realistically be assumed to be independent from each other, I investigate a new 

likelihood function that incorporates first order autocorrelation via means of a covariance 

matrix, Σ, constructed using posterior samples from the observational time series of Cael and 

Calafat (in review). Diagonal elements of Σ give the variance within individual time steps 

across the posterior ensemble and off-diagonal elements give the covariances between time 

steps. The relative success of each simulation is therefore determined at each time step by the 

probability density function (PDF) of the multivariate normal distribution at a given point on 

a d-dimensional space on which the multivariate distribution is defined, given by the 

following equation: 

𝑓(𝑥, 𝜇, Σ) =  
1

√|Σ|(2𝜋)𝑑
exp (−

1

2
(𝑥 − 𝜇)Σ−1(𝑥 − 𝜇)′) 

Equation 2.14 

Where 𝑥 is the simulated value and 𝜇 is the observational best estimate, both 1 x d vectors, 

and Σ is the d x d covariance matrix. The multivariate normal distribution is a generalisation 

of the univariate normal distribution to two or more variables. Its two parameters, the mean 

vector 𝜇 and a covariance matrix Σ, are analogous to the mean and variance parameters of a 

univariate normal distribution. 

This method creates computational challenges as the 171-year time series requires a very 

large covariance matrix of size 171x171. Therefore, when calculating the relative success of a 

simulation at each timestep the probability can functionally go to infinity or zero due to the 

presence of very large and very small numbers that go beyond the memory capacity of most 

standard analysis tools. This numerical instability means that members of the posterior 

ensemble from Method 3 cannot not be weighted in the same way as Methods 1 and 2 and all 

ensemble members that exceeded an acceptance limit of 5.0x10-8 pass into the posterior 
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ensemble with a weighting of 1. I expect this to be visible in the results. Method 3 generates a 

posterior ensemble of 7807 simulations from a prior ensemble of 24 million simulations, 

which are then sorted into percentiles for analysis.  

2.3 Results 

Here I present the results of the three experimental methods used to extract posterior 

ensembles from WASP with the aim of constraining the magnitude of Earth’s climate 

feedbacks over multiple timescales, with an emphasis on the multi-decadal feedbacks.  

For each method, the main parameters investigated consisted of annual simulated 

temperature anomalies from 1850 to 2020 compared to observational data; the magnitude 

for the total climate feedback parameter, 𝜆𝑡𝑜𝑡𝑎𝑙, over multiple response timescales; 

probability density distributions of both fast, 𝜆𝑓𝑎𝑠𝑡, and multi-decadal, 𝜆𝑚𝑑, feedbacks; and 

analysis of the relationship between 𝜆𝑓𝑎𝑠𝑡  and 𝜆𝑚𝑑, feedbacks in the posterior ensembles of 

WASP.  

2.3.1 Method 1: 20-year averages 

Figure 2.2: Median annual temperature anomalies from 1850 – 2020 for the WASP posterior 

ensemble using Method 1 (solid pink) with 95% confidence limits (dashed pink) 

with 95% confidence limits (dashed pink) and the mean annual temperature 

anomalies from the HadCRUR5 observational dataset (solid black) with 95% 

confidence limits (dashed black). 
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Figure 2.2 compares the simulated annual temperature anomalies from 1850 to 2020 to the 

HADCRUT5 observational dataset using Method 1 of likelihood filter to extract the posterior 

ensemble. Here WASP successfully captures the long-term multi-decadal trend recorded in 

the observations but fails to simulate the short-term variability. Some significant volcanic 

eruptions, such as the Krakatoa eruption of 1883, do appear to be captured in the WASP 

simulation but only to a limited extent. Overall, WASP simulates a median 1.20°C of warming 

since 1850, which is slightly lower than the mean observational value of 1.28°. Uncertainty is 

reduced in comparison to the observational dataset over the full time series, with the greatest 

uncertainty close to the present day where the confidence bands are ~0.16°C. 

The disparity in the WASP model’s ability to target the multi-decadal trend relative to the 

short-term trend is further evidenced in Figure 2.3c which depicts 𝜆𝑡𝑜𝑡𝑎𝑙 over a logarithmic 

timescale to visualise the multiple response timescales Earth’s feedbacks are acting upon. On 

very short timescales of seconds to minutes, the primary contributor to 𝜆𝑡𝑜𝑡𝑎𝑙 is the Planck 

feedback and as such, remains close to -3.3 Wm-2K-1. WASP is able to capture this with a high 

degree of certainty, as illustrated by the narrow confidence bands. Similarly, the confidence 

bands narrow at the 20-year timescale, indicating a greater degree of certainty of the 

magnitude of 𝜆𝑡𝑜𝑡𝑎𝑙 at this timescale compared to1-year (Figure 2.3c: dotted lines). This 

occurs because the time-windows used in the observational constraint of the Method 1 

likelihood filter are of 20-year periods.  

Figures 2.3a and 2.3b show the frequency distributions for the magnitude of multi-decadal 

(a) and fast (b) feedbacks in the posterior ensemble of WASP, extracted using Method 1. This 

method yields a median estimate of -0.03 Wm-2K-1 for 𝜆𝑚𝑑  and 0.75 Wm-2K-1 for 

𝜆𝑓𝑎𝑠𝑡  suggesting that the median estimate of Earth’s fast feedbacks have a greater amplifying 

effect than Earth’s multi-decadal feedbacks. However, uncertainty is large and therefore 

limited information can be gleaned from the median. This method also estimates that the 

magnitude of Earth’s multi-decadal feedbacks is in the range of -0.81 Wm-2K-1 to 0.97 Wm-2K-1 

with 66% confidence and in the range of -1.25 Wm-2K-1 to 1.67 Wm-2K-1 to with 90% 

confidence. This is a wide range of uncertainty and gives little indication of whether multi-

decadal feedbacks have an amplifying or damping effect. This is further evident in Figure 2.3c 

which shows no overall change in 𝜆𝑡𝑜𝑡𝑎𝑙 from a 1-year timescale to a 20-year timescale as 

there is similar likelihood of the multi-decadal feedbacks being amplifying as they are 

damping. There is less uncertainty surrounding Earth’s fast feedbacks using this method with 

66% confidence that the magnitude is in the range of 0.18 Wm-2K-1 to 1.22 Wm-2K-1, and the 

range of -0.38 Wm-2K-1 to1.43 Wm-2K-1 with 90% confidence. The frequency distribution of 

fast feedbacks is positively skewed towards an amplifying effect, and this is supported by the 
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increase in 𝜆𝑡𝑜𝑡𝑎𝑙 from the timescale of days to months in figure 2.3c which represents 

increased amplifying. 

 

Figure 2.3: Findings from the WASP posterior ensemble using Method1: a) Frequency 

distribution for the magnitude of multi-decadal feedbacks. The blue range indicates 

the ensemble best estimate, 66% confidence band (solid blue), and 90% confidence 

band (dotted blue); b) Frequency distribution for the magnitude of fast feedbacks. 

The orange range indicates the ensemble best estimate, 66% confidence band (solid 

orange), and 90% confidence band (dotted orange); c) 𝜆𝑡𝑜𝑡𝑎𝑙 over multiple 

response timescales. Solid green line indicates ensemble best estimate with dashed 

lines showing 66% confidence limits; and d) Scatter plot of fast and multi-decadal 

feedback values in posterior ensemble. 

Finally, figure 2.3d shows the relationship between fast and multi-decadal feedbacks in each 

ensemble member. Each dot represents an individual simulation, with increased opacity 

indicating a greater weighting and therefore closer similarity to the observational constraint. 

The scatter plot indicates a strong correlation between the value of fast and multi-decadal 

feedbacks in an individual simulation, with an R2 value of 0.86.  
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2.3.2 Method 2: 1-year averages 

 

Figure 2.4: Median annual temperature anomalies from 1850 – 2020 for the WASP posterior 

ensemble using Method 2 with 66% confidence limits (pink) and the mean forced 

temperature profile (black) from Cael & Calafat (in review) with 1σ confidence 

bands. 

Figure 2.4 compares the simulated annual temperature anomalies from 1850 to 2020 to the 

forced temperature profile extracted from the observational record by Cael and Calafat (in 

review). Like Method 1, this method estimates a median 1.20°C of warming since 1850, 

compared to 1.26°C in the forced temperature record, but the uncertainty bands are 

narrower throughout the time series, reaching no more than ~0.08°C even close to the 

present day. This method accurately captures the overall long-term temperature trend and 

successfully captures the inter-annual variability and response to volcanic activity with far 

greater skill than Method 1.  

Figure 2.5a shows the frequency distribution for the magnitude of fast feedbacks in the 

posterior ensemble of WASP, extracted using Method 2. This method finds a median estimate 

of 0.88 Wm-2K-1 with a 66% confidence interval of 0.43 Wm-2K-1 to 1.23 Wm-2K-1 and a 90% 

confidence interval of 0.10 Wm-2K-1 to1.39 Wm-2K-1. This suggests a high likelihood that 

Earth’s fast feedbacks have an amplifying effect.  
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Figure 2.5: Findings from the WASP posterior ensemble using Method 2: a) Frequency 

distribution for the magnitude of fast feedbacks. The orange range indicates the 

model best estimate, 66% confidence band (solid orange), and 90% confidence 

band (dotted orange); b) 𝜆𝑡𝑜𝑡𝑎𝑙 over multiple response timescales. Solid green line 

indicates ensemble best estimate with dashed lines showing 66% confidence limits; 

and c) Scatter plot of fast and multi-decadal feedback in posterior ensemble with 

opacity representative of weighting and therefore agreement with observations. 
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This compares to the estimated magnitude of multi-decadal feedbacks, as depicted in Figure 

2.6. Unlike the distribution of fast feedbacks, which was positively skewed, the distribution of 

multi-decadal feedbacks in WASP shows a negative skew. This method yields a median 

estimate of 0.85 Wm-2K-1 for the magnitude of multi-decadal feedbacks, which is similar to the 

estimate of fast feedbacks, suggesting they have a similar magnitude. There is a 66% 

confidence that the magnitude of Earth’s multi-decadal feedbacks is in the range of 0.50 Wm-

2K-1 to 1.25 Wm-2K-1 and 90% confidence that is in the range of 0.32 Wm-2K-1 to 1.59 Wm-2K-1. 

These similar estimated ranges for fast and multi-decadal feedbacks are supported by the 

value of 𝜆𝑡𝑜𝑡𝑎𝑙, as shown in figure 2.5b where 𝜆𝑡𝑜𝑡𝑎𝑙 increases in a stepwise manner from ~-

3.3 Wm-2K-1 at instantaneous timescales, to ~-2.4 Wm-2K-1 on monthly to annual timescales, 

and finally to ~-1.6 Wm-2K-1 on multi-decadal to centennial scale timescales. This indicates 

that Earth’s feedbacks become more amplifying on longer timescales. Figure 2.6 also displays 

the estimated magnitude of multi-decadal feedbacks in the CMIP5 and CMIP6 model 

ensembles for comparison, as well as the estimated range of values used in the probabilistic 

assessment of climate sensitivity by Sherwood et al. (2020). 

Figure 2.5c highlights the relationship between fast and multi-decadal feedbacks in each 

individual simulation from the posterior ensemble from method 2. Although weaker than 

method 1, this method shows a negative correlation between the magnitude of fast and multi-

decadal feedbacks in each ensemble member, with an R2 value of 0.68. This indicates that 

stronger amplifying fast feedbacks correspond to weaker amplifying multi-decadal feedbacks 

in a single simulation, and vice versa. 
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Figure 2.6: Frequency distribution of the magnitude of multi-decadal feedbacks in the WASP 

ensemble using Method 2 (blue). The blue range indicates the WASP ensemble best 

estimate, 66% confidence band (solid blue), and 90% confidence band (dotted 

blue). The black range indicates the best estimate and 90% confidence limits used 

by Sherwood et al. (2020) in their probabilistic assessment. The range of best 

estimates for the pattern effect from multi-decadal feedbacks in the CMIP5 (green) 

and CMIP6 (purple) ensembles are displayed for comparison (the central markers 

indicate the overall ensemble best estimates).  

2.3.3 Method 3: Multivariate likelihood function 

The simulated annual temperature anomalies from 1850 to 2020 from the posterior 

ensemble extracted by Method 3 are depicted in Figure 2.7. Whilst the shape is similar to the 

temperature simulation from Method 2, there is greater uncertainty throughout, as 

illustrated by the wider confidence bands. Like Method 2, this method estimates a median 

temperature rise of 1.20°C since 1850, compared to 1.26°C in the forced temperature 

constraint. However, in places the confidence bands of the simulated time series exceed 0.2°C 

indicating that temperature is not constrained to the same extent using Method 3 as using 

Method 2.  

CMIP5 

CMIP6 

Sherwood et al. (2020) 
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Figure 2.7: Median annual temperature anomalies from 1850 – 2020 for the WASP posterior 

ensemble using Method 3 with 66% confidence limits (pink) and the mean forced 

temperature profile (black) from Cael and Calafat (in review) with 1σ confidence 

bands. 

Meanwhile, the frequency distributions for the magnitude of fast and multi-decadal feedbacks 

for Method 3 are depicted in Figure 2.8. This method gives a median estimate of -0.07 Wm-2K-

1 for 𝜆𝑚𝑑 indicating a very weak damping effect and 1.98 Wm-2K-1 for 𝜆𝑓𝑎𝑠𝑡  which represents a 

strong amplifying effect. Method 3 also estimates that the magnitude of Earth’s multi-decadal 

feedbacks is in the range of -0.46 Wm-2K-1 to 0.31 Wm-2K-1 with 66% confidence and in the 

range of -0.78 Wm-2K-1 to 0.60 Wm-2K-1 with 90% confidence (Figure 2.8a). This contrasts 

with the estimates of Earth’s fast feedbacks using this method with 66% confidence that the 

magnitude is in the range of 1.54 Wm-2K-1 to 2.39 Wm-2K-1, and the range of 1.20 Wm-2K-1 to 

2.62 Wm-2K-1 with 90% confidence (Figure 2.8b).  

These findings are supported by the value of 𝜆𝑡𝑜𝑡𝑎𝑙 over multiple response timescales, as 

shown in Figure 2.8c. Here, 𝜆𝑡𝑜𝑡𝑎𝑙 increases from ~-3.3 Wm-2K-1 at instantaneous timescales 

to ~-1.25 Wm-2K-1at annual timescales, and then decreasing slightly to ~-1.37 Wm-2K-1on 

multi-decadal to centennial timescales. This indicates a very strong amplifying fast feedback 

and very weak damping multi-decadal feedback which contrasts significantly from the 

findings from Method 2. Unlike in Method 2, where the confidence bands for the value of 
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𝜆𝑡𝑜𝑡𝑎𝑙 narrow at multi-decadal timescales compared to annual timescales, in Method 3 the 

uncertainty is only slightly reduced between response timescales. 

Finally, the relationship between fast and multi-decadal feedbacks in Method 3 is shown in 

Figure 2.8d. The negative correlation between the magnitude of fast and multi-decadal 

feedback is weakest using Method 3 relative to Methods 1 and 2, with an R2 value of 0.45. The 

relationship also appears less linear but because the simulations in Method 3 were all given 

equal weighting, it is not possible to determine the relative success of each ensemble member 

in matching the observations and this makes the relationship less clear. 

 

Figure 2.8: Findings from the WASP posterior ensemble using Method 3: a) Frequency 

distribution for the magnitude of multi-decadal feedbacks. The blue range indicates 

the ensemble best estimate, 66% confidence band (solid blue), and 90% confidence 

band (dotted blue); b) Frequency distribution for the magnitude of fast feedbacks. 

The orange range indicates the ensemble best estimate, 66% confidence band (solid 

orange), and 90% confidence band (dotted orange); c) 𝜆𝑡𝑜𝑡𝑎𝑙 over multiple 

response timescales. Solid green line indicates ensemble best estimate with dashed 

lines showing 66% confidence limits; and d) Scatter plot of fast and multi-decadal 

feedback values in posterior ensemble. 

  



Chapter 2 

43 

2.4 Discussion 

The primary objective of this chapter is to constrain the magnitude of Earth’s multi-decadal 

feedbacks with greater statistical certainty and to identify the optimal method of doing so. Of 

the three methods, Method 2, which utilises a cost function, 1-year averaged temperature 

anomalies and a forced temperature profile extracted from the HadCRUT5 observational 

dataset (Cael and Calafat, in review), shows the best agreement between simulated 

temperature and observations from 1850 to 2020, as shown in Figure 2.9. Both the long-term 

trend and the short-term inter-annual variability are captured by the WASP ensemble using 

this method and confidence bands are narrow throughout the time series. This increases 

trust in the feedback estimates of Method 2 as it most successfully reproduces the 

observational constraint. 

 

Figure 2.9: Comparison of temperature anomalies from 1850 – 2020 for Methods 2 and 3 

compared to the observational constraint from Calafat & Cael. The solid pink and 

blue lines indicate median temperature anomalies for Method 2 and Method 3, 

respectively, with shading indicating 66% confidence limits. Solid black link 

indicated mean temperature anomalies from forced temperature profile, with 1σ 

confidence bands (grey shading).  
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All three methods slightly underestimate the overall warming that has occurred in the 

historical period compared to their respective observational constraint, each simulating a 

median temperature increase of approximately 1.20°C since 1850. At present, the slowest 

feedbacks included in WASP are multi-decadal feedbacks which functionally operate on a 

timescale of approximately 20-45 years. However, WASP currently does not adequately 

capture all the processes that influence Earth’s climate beyond this timeframe and therefore 

the omission of slower feedbacks that operate on timescales longer than 100 years could 

explain this apparent discrepancy between WASP and the historical record. This is a common 

problem amongst studies that aim to constrain the strength of climate feedbacks using the 

historical record (Gregory and Andrews, 2016; Knutti, Rugenstein and Hegerl, 2017; Andrews 

et al., 2018; Dessler, 2020; Tokarska et al., 2020). Future work shall look to address this.  

The underestimation of historical warming in all methods could also be attributed to the use 

of outdated radiative forcing estimates in this version of WASP which were derived from the 

5th Assessment Report (AR5) of the IPCC. The 6th Assessment Report (AR6) revised their 

estimates of anthropogenic effective radiative forcing (ERF) from 2.3 Wm-2 (1.1 – 3.3 Wm-2) 

in AR5 to 2.72 Wm-2 (1.96 – 3.48 Wm-2) in AR6 (Myhre et al., 2013b; Forster et al., 2021). This 

increase is attributable to the revised higher estimate of ERF from greenhouse gas (GHG) 

emissions, which is slightly compensated by the revised ERF estimates from aerosol-

radiation and aerosol-cloud interactions. The use of the revised AR6 radiative forcing 

estimates to inform the prior ensembles of WASP would likely have a material impact on the 

resultant estimates of GMST change in the posterior ensemble and could potentially partly 

resolve the current underestimation of historical warming. The decision to use AR5 estimates 

for this study was due to the timing of the publication of AR6, which occurred after work for 

this chapter had initiated. Future work should seek to explore the implications of the AR6 

estimates for WASP’s estimates further. 

The use of 1-year averages in the likelihood filter proves to have a distinct advantage over 20-

year averages in reducing uncertainty. The 90% and 66% confidence ranges are significantly 

narrower for the frequency distributions of 𝜆𝑚𝑑  and 𝜆𝑓𝑎𝑠𝑡  using Methods 2 and 3 over 

Method 1. For example, Method 1 gives a 90% confidence range of 2.93°C for 𝜆𝑚𝑑 compared 

to 1.27°C for Method 2 suggesting that the use of 1-year averages allows the magnitude of 

feedbacks to be more successfully constrained than 20-year averages. This is because the 

new method requires a simulation to successfully reproduce the inter-annual temperature 

variation as well as the overall trend in order to be observation consistent. This is supported 

by the narrow point at the 20-year mark in the graph of 𝜆𝑡𝑜𝑡𝑎𝑙 over multiple response 

timescales for Method 1 (Figure 2.3c) which indicates that the magnitude of 𝜆𝑡𝑜𝑡𝑎𝑙 is well-

constrained at this timescale, but poorly constrained otherwise when using Method 1. In 
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contrast, the plot of 𝜆𝑡𝑜𝑡𝑎𝑙 over multiple response timescales using Method 2 in Figure 2.5b 

has a narrower range of uncertainty throughout but particularly on inter-annual timescales, 

representing the use of 1-year averages to constrain feedbacks in Method 2.  

Method 2 gives a best estimate for 𝜆𝑚𝑑 of 0.85 Wm-2K-1 which represents a more amplifying 

effect than the estimates of 𝜆𝑚𝑑  used in Sherwood et al (2020). This supports the CMIP5 and 

CMIP6 models that simulate stronger amplifying multi-decadal feedbacks and provides 

independent evidence that Earth’s multi-decadal feedbacks are unlikely to be damping 

(Andrews, Gregory and Webb, 2015; Dong et al., 2020). This estimate for 𝜆𝑚𝑑 is 

comparatively high next to the multi-model means of CMIP5 and CMIP6 but is within the 

ranges of best estimates from coupled models in the two ensembles. Furthermore, this 

estimate is similar to other studies that estimate the pattern effect from the historical record; 

Andrews et al. (2022) use 14 atmospheric general circulation models to give an estimate of 

0.70 ± 0.47 Wm-2K-1 for 1871-2010 when forced with sea surface temperatures (SSTs) from 

the Atmospheric Model Intercomparison Project (AMIP) II data set . At present, the 

availability of quantitative estimates of the pattern effect from reduced complexity models is 

very limited, which prohibits a full systematic comparison. Whilst the estimated 66% 

confidence intervals for fast and multi-decadal feedbacks are very similar in Method 2, the 

fast feedbacks display a positive skew and the multi-decadal feedbacks a negative skew, 

indicating that there is a higher frequency of weaker amplifying fast feedbacks and a higher 

frequency of stronger amplifying multi-decadal feedbacks relative to each other.  

Method 3 provides a very different result. Here fast feedbacks are found to have a much 

stronger amplifying effect than multi-decadal feedbacks which have a fairly equal likelihood 

of being weakly amplifying or weakly damping. As supported by 𝜆𝑡𝑜𝑡𝑎𝑙 over multiple response 

timescales, Method 3 suggests that climate sensitivity is driven by fast feedbacks that operate 

on timescales less than a year and that slower feedbacks have very little influence overall, 

which would imply an almost total lack of a pattern effect. This contradicts the findings of 

CMIP5 and CMIP6 which suggest a mean change of 0.51 Wm-2K-1 and 0.4 Wm-2K-1 respectively 

from multi-annual to centennial timescales indicating amplifying multi-decadal feedbacks 

(Andrews, Gregory and Webb, 2015; Dong et al., 2020). This contradiction reduces trust in 

the results of Method 3. 

Nevertheless, Method 3 has limitations and therefore could be seen to be less reliable than 

Method 2 which weights simulations according to their similarity to the observational 

constraint. Method 3 however, considers all simulations equally likely if they exceed the 

acceptance limit and so does not distinguish between better and worse performing 

simulations. This offers an explanation as to why temperature is less constrained over time in 

Method 3 compared to Method 2. It is also possible that if weighted differently, a clearer 
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distinction could be found between simulations with amplifying multi-decadal feedbacks and 

those with damping multi-decadal feedbacks.  

The use of the multivariate likelihood function in Method 3 aims to address the unrealistic 

assumption that the temperature of an individual year is independent and uninfluenced by 

the temperature of the previous year. However, the behaviour of the multi-decadal feedbacks 

in this method suggests that the covariance matrix is overpowered here and putting too much 

emphasis on the fast feedbacks that respond in less than 1 year. Future experiments should 

aim to address the numerical instability of the multivariate likelihood function when working 

with large covariance matrices so that simulations can be weighted. An investigation into the 

accuracy of any covariance matrix used in the likelihood function is also recommended. 

2.5 Conclusions 

This chapter has sought to constrain the magnitude of Earth’s feedbacks, with a particular 

focus on feedbacks that operate on multi-decadal timescales. This has been done using three 

different experimental methods of extracting a posterior ensemble from WASP, with the aim 

of comparing the relative success of each method of likelihood filter. Of the three, this study 

indicates that a likelihood filter comprised of a cost function and 1-year averages is the most 

effective method at this stage, although not without its limitations. The use of a multivariate 

likelihood function that introduces covariance between individual years shows promise but 

there are several numerical and statistical challenges to address before this method proves to 

be an advantage over the existing cost function.  

The new forced temperature profile from Cael and Calafat (in review) provides a substantial 

improvement as a constraint over the unmodified HadCRUT5 observational dataset as this 

allows the forced signal to be targeted and the random noise ignored when comparing the 

relative success of a simulation in reproducing historical temperature change. This allows us 

to constrain the magnitude of Earth’s fast and multi-decadal feedbacks with greater statistical 

accuracy than previous studies such as Goodwin (2021) and Goodwin & Cael (2020). The use 

of 1-year averages in the likelihood filter of Methods 2 and 3 also proves an advantage over 

the 20-year averages used in Method 1 as the filter is able to target both inter-annual and 

multi-decadal response timescales by ensuring that ensemble members successfully simulate 

the short-term volcanic response as well as the longer-term trend in order to be included in 

the posterior ensemble.  

Overall, this study finds a best estimate of 0.85 Wm-2K-1 for the magnitude of multi-decadal 

feedbacks with 90% confidence that the value is within the range of 0.32 Wm-2K-1 to 1.59 Wm-
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2K-1. This provides independent evidence to support the complex models from CMIP5 and 

CMIP6 that simulate stronger amplifying multi-decadal feedbacks. 
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Chapter 3 Ice sheet-albedo 

feedback 

The following work was submitted to Geophysical Research Letters on 03/05/2024, was 

accepted on 29/07/2024, and published on 06/08/2024. It can be cited as:  

Booth, A., Goodwin, P., & Cael, B. B. (2024). Ice sheet-albedo feedback estimated from 

most recent deglaciation. Geophysical Research Letters, 51, e2024GL109953.   

3.1 Abstract 

Ice sheet feedbacks are underrepresented in model assessments of climate sensitivity and 

their magnitudes are still poorly constrained. We combine a recently published record of 

Earth’s Energy Imbalance (EEI) with existing reconstructions of temperature, atmospheric 

composition, and sea level to estimate both the magnitude and timescale of the ice sheet-

albedo feedback since the Last Glacial Maximum. This facilitates the first opportunity to 

quantify this feedback over the most recent deglaciation using a proxy data-driven approach. 

We find the ice sheet-albedo feedback to be amplifying, increasing the total climate feedback 

parameter by 42% and reaching an equilibrium magnitude of 0.55 Wm-2K-1, with a 66% 

confidence interval of 0.45 - 0.63 Wm-2K-1. The timescale to equilibrium is estimated as 3.6ka 

(66% confidence: 1.9 - 5.5ka). These results provide new evidence for the timescale and 

magnitude of the amplifying ice sheet-albedo feedback that will drive anthropogenic warming 

for millennia to come. 

3.2 Plain language summary 

During a deglacial transition, ice sheets melt and retreat, decreasing the reflectivity of the 

land surface and increasing the surface temperature, leading to further melting. It is agreed 

that this feedback amplifies global warming on millennial timescales, but the exact magnitude 

and timescale are still very uncertain. This is important because the stronger the feedback, 

the more sensitive Earth’s climate is to carbon dioxide on long timescales. We use proxy data 

records of the past 25,000 years to quantify the ice sheet-albedo feedback since the Last 

Glacial Maximum and estimate the time taken for the feedback to reach equilibrium and 

stabilise. We find that the ice sheet-albedo feedback strongly amplifies warming over 

thousands of years, increasing our understanding of how human activity today will continue 

to influence our climate for generations into the future. 
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3.3 Introduction 

Constraining the magnitude of Earth’s climate feedbacks has been a high priority for the 

scientific community in recent years to ensure that our predictions of future climate change 

are well-informed by accurate estimates of Earth’s climate sensitivity. However, slow 

feedbacks that operate on timescales of more than a century continue to be overlooked in 

favour of near-term climate impacts. This limits our full understanding of the Earth System 

and how it may be affected by anthropogenic activity for far longer than a human lifetime 

(Clark et al., 2016). Ice sheet extent has a considerable influence on the climate on timescales 

of centuries to millennia, primarily through direct changes to land albedo and indirectly 

through the alteration of cloud cover over the northern Atlantic and Pacific Oceans (Vizcaíno 

et al., 2008; Abe-Ouchi et al., 2015; Fyke et al., 2018; Zhu and Poulsen, 2021; Cooper et al., 

2024). The IPCC Sixth Assessment Report states with high confidence that it is ‘very likely’ 

that the ice sheet-albedo feedback has an amplifying effect on millennial timescales, but the 

specific magnitude or exact response timescale is very uncertain (Forster et al., 2021).  

As many global climate models are primarily used to predict climate change over the next one 

to two centuries, ice sheet-climate interactions are often simplified as their influence on 

climate sensitivity is assumed to be insignificant on these short timescales (Madsen et al., 

2022). Fast feedbacks arising from small-scale changes in snow albedo are well represented 

in global climate models (GCMs) with understanding based on observational data (Box et al., 

2012; Fyke et al., 2018; Ryan et al., 2019). However, on longer timescales, the integration of 

large-scale changes to ice sheet-albedo into a GCM is challenging and no GCM includes a two-

way coupled dynamical ice sheet component (e.g. (Smith, George and Gregory, 2021; Schmidt 

et al., 2023)). When using the deglaciation to estimate present-day climate sensitivity, ice 

sheet-climate interactions are commonly included as a source of radiative forcing rather than 

as a feedback mechanism (Rohling et al., 2012b).  

The challenge of quantifying the ice sheet-albedo feedback stems from an ongoing struggle to 

reconstruct ice sheet extent with sufficient temporal resolution and disentangle the 

relationship between global surface temperatures, ocean heat content, and ice sheet retreat 

in proxy records (Elderfield et al., 2012; Shakun et al., 2015; Rohling et al., 2021). However, a 

newly published proxy-based record for Earth’s Energy Imbalance (EEI: : (Baggenstos et al., 

2019; Shackleton et al., 2023)) since the Last Glacial Maximum (LGM) now allows the 

calculation of the time evolution of the climate feedback parameter, λ, over the last 

deglaciation both with and without the ice sheet-albedo feedback included. This progress 

comes from combining existing reconstructions of surface temperature, atmospheric 
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composition and the albedo effect of changes in ice sheet extent reflected in sea level 

reconstructions.  

This study represents a novel attempt to simultaneously constrain the ice sheet-albedo 

feedback magnitude and response timescale based on proxy-based evidence and without the 

need for model-based assumptions of the time evolution of energy imbalance. Earth’s most 

recent deglaciation (~19 – 7ka before present (BP)) offers a unique opportunity to study ice 

sheet-climate interactions as the period saw the dramatic collapse of the Laurentide and 

Eurasian ice sheets and a subsequent rise in global sea level by ~120m (Lambeck et al., 2014; 

Lecavalier et al., 2014; Simms et al., 2019; Quiquet et al., 2021). Global mean surface 

temperatures increased by approximately 7°C from the onset of the deglaciation to the 

preindustrial period and this relatively rapid change in temperature provides an excellent 

testing ground in which to explore climate feedback behaviour (Snyder, 2016; Kaufman et al., 

2020; Osman et al., 2021). 

3.4 Materials & methods 

The total climate feedback parameter, 𝜆𝑡𝑜𝑡𝑎𝑙, is the additive combination of 𝑗 internal 

feedbacks, ∑ Δ𝜆𝑗, and can be calculated using Earth’s most recent deglaciation according to 

the traditional linear energy budget equation: 

𝜆𝑡𝑜𝑡𝑎𝑙 =  
Δ𝑁 −  Δ𝐹𝑡𝑜𝑡𝑎𝑙 

Δ𝑇
    

Equation 3.1 

Where 𝜆𝑡𝑜𝑡𝑎𝑙 is the total effective climate feedback parameter (Wm-2K-1), and takes the sign 

convention that 𝜆𝑡𝑜𝑡𝑎𝑙 is negative for a stable climate system, such that individual amplifying 

feedbacks are positive contributions to 𝜆𝑡𝑜𝑡𝑎𝑙 and individual damping feedbacks are negative 

contributions to 𝜆𝑡𝑜𝑡𝑎𝑙; Δ𝑁 is the net top-of-atmosphere (TOA) energy imbalance anomaly 

(also referred to as EEI, Wm-2);  Δ𝐹𝑡𝑜𝑡𝑎𝑙  is the sum of 𝑖 external forcings, ∑ Δ𝐹𝑖, and is 

therefore the total radiative forcing anomaly (Wm-2); and Δ𝑇 is the global surface 

temperature anomaly (K), all relative to the LGM. The energy imbalance from ice sheet-

albedo (Wm-2) can be included in the above energy budget equation in two possible ways: 

either as 𝐹𝑎𝑙𝑏 and part of the external forcings, ∑ Δ𝐹𝑖, or as 𝜆𝑎𝑙𝑏and part of the internal 

feedbacks, ∑ Δ𝜆𝑗 (e.g. Rohling et al. (2012b)). We calculate the magnitude of 𝜆𝑡𝑜𝑡𝑎𝑙 using both 

methods.  

In either case, the influence of the ice sheet-albedo feedback on spatial patterns of 

temperature change should not be ignored (Cooper et al., 2024). The total ice sheet feedback 
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is the additive combination of direct and indirect effects on the climate system, but the 

radiative contribution from indirect pattern effects resulting from changes to ice sheet extent 

is very difficult to quantify. Therefore, we specifically target the direct influence of albedo 

change from ice sheet retreat in this study and apply a later adjustment to account for 

indirect pattern effects. With the time-evolving estimate of 𝜆𝑡𝑜𝑡𝑎𝑙 that we calculate here, we 

can constrain the magnitude of the ice sheet-albedo feedback at equilibrium,  𝜆𝑎𝑙𝑏(∞) ,  and its 

timescale. 

The recent record for EEI over the last deglaciation by Baggenstos et al. (2019), and further 

analysed by Shackleton et al. (2023), based on noble gas thermometry data from the West 

Antarctic Ice Sheet Divide and EPICA Dome C ice cores is utilised here to represent a novel 

proxy-based estimate and uncertainty of ΔN in the above equation 3.1. We display alternative 

results using the EEI record based on benthic foraminiferal δO18 proxy data from Shackleton 

et al. (2023) in the supplementary material. ΔT is here calculated from Osman et al. (2021) 

who used model simulations and palaeoclimate proxy data to assimilate a globally resolved 

record of surface temperature change for the past 24 ka (Osman et al., 2021). Δ𝐹𝑡𝑜𝑡𝑎𝑙is 

comprised of instantaneous radiative forcing records for CO2, CH4, and N2O (greenhouse 

gases: GHGs) from Köhler et al. (2017), atmospheric dust, and ice sheet-albedo change since 

the LGM. Radiative forcing from atmospheric dust is calculated from the Lambert et al. 

(2012) dust flux record, which used high resolution ice core data from EPICA Dome C, 

Antarctica, and is converted using a linear scaling following Rohling et al. (2012a): 

Δ𝐹𝑑𝑢𝑠𝑡 =  −1.9 log10(Δ𝜒) 

Equation 3.2 

Where Δ𝜒 is the change in dust flux (Lambert et al., 2012; Rohling et al., 2012a). An additional 

±50% uncertainty was applied to the dust forcing calculation following Rohling et al (2012a) 

to reflect uncertainty in the relationship between measured quantities and climate forcing. 

Meanwhile, radiative forcing from ice sheet-albedo change since the LGM is calculated 

following Rohling et al. (2012a) and Hansen et al. (2008) who established a linear 

relationship between sea level change, Δ𝑆𝐿 (in metres), and subsequent forcing impact in 

Δ𝐹𝑎𝑙𝑏( in Wm-2): 

Δ𝐹𝑎𝑙𝑏 = 0.0308Δ𝑆𝐿 

Equation 3.3 

Where Δ𝑆𝐿 is negative during glacial periods (Hansen, 2008; Rohling et al., 2012a). An 

additional ±20% uncertainty is applied to the calculation of ice sheet-albedo forcing, Δ𝐹𝑎𝑙𝑏, 

following Rohling et al. (2012a). Sea level data is sourced from Lambeck et al. (2014) who 
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reconstruct global sea level and ice volumes since the LGM (Lambeck et al., 2014). All best 

estimates and standard deviations are interpolated to an annual temporal frequency for the 

past 25 ka to capture the LGM and subsequent deglaciation. In the case of Δ𝐹𝑑𝑢𝑠𝑡, the annual 

record is smoothed with a 501-year smoothing spline to extract the long-term signal and 

reduce the influence of random noise. As the focus of this study is the estimation of 𝜆𝑡𝑜𝑡𝑎𝑙 

over the most recent deglaciation, all records are made relative to 18 ka BP to reflect the 

point at which global temperatures started to increase.  

In order to quantify uncertainty, 5000 estimates for 𝜆𝑡𝑜𝑡𝑎𝑙 are generated, with a different 

random number coefficient on a normal distribution, N(0,1), for each variable in the energy 

budget equation (CO2, N2O, CH4, dust, and ice sheet albedo forcing, temperature, and EEI) and 

each simulation. These coefficients are then applied to each simulation as a multiplier on the 

standard deviation across all 18001 time steps of each simulation. In this way, a probability 

distribution of possible values can be generated for each variable, including 𝜆𝑡𝑜𝑡𝑎𝑙.  

Figure 3.1a compares the change in combined radiative forcing from CO2, CH4, and N2O 

(GHGs) and dust over the past 18 ka to the change in radiative forcing from GHGs, dust and 

ice sheet-albedo. When ice sheet-albedo forcing is excluded from forcing, the increase in 

combined forcing increases steadily, before stabilising around 11 ka BP at 5.0 ±0.5 Wm-2, 

coinciding with the early Holocene (Fig. 3.1a: blue). A small decrease to 4.1±0.2 Wm-2 at 6.5 

ka BP is followed by a gentle increase to 5.1 ±0.4 Wm-2 by 3 ka BP and then the sharp rise in 

the industrial period. This contrasts with the pink curve, which includes the added influence 

of radiative forcing from ice sheet-albedo change. In this case, total forcing quickly exceeds 5 

Wm-2 by 13.5 ka BP and maintains an increasing trend throughout the Holocene to stabilise at 

approximately 8.8 ±0.8 Wm-2 in the most recent three millennia before the familiar rapid rise 

in the industrial period (Fig. 3.1a: pink). This illustrates the notable influence of ice sheet-

albedo change on global total radiative forcing over time. The treatment of ice sheet-albedo 

change as a forcing necessitates the inclusion of Δ𝐹𝑎𝑙𝑏, which introduces approximately 1 

Wm-2 of additional uncertainty by the end of the simulated period (Fig. 3.1a: pink). This 

highlights the need for more precise records of ice volume change over time as well as 

improved understanding of the relationship between ice volume and effective radiative 

forcing from ice sheet changes (Zhu and Poulsen, 2021). We assume that orbital changes in 

the amount of solar radiation received by the Earth are significantly smaller than this forcing 

and so are not included in this analysis (Beer, Mende and Stellmacher, 2000; Lisiecki, 2010; 

Rial, Oh and Reischmann, 2013). 

The radiative forcing contribution from ice sheet-albedo change is better illustrated in Figure 

3.1b which depicts the difference between the two curves in Figure 3.1a. The total change in 

radiative forcing from ice sheet retreat (Δ𝐹𝑎𝑙𝑏) continuously increases after 18 ka BP until it 
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stabilises at approximately 3.7 ± 0.4 Wm-2 by 6ka BP, according to the proxy record. This 

value is within the uncertainty range of -3.2 Wm-2 of effective radiative forcing (ERF) from 

land ice sheets at the LGM, estimated by Zhu and Poulsen (2021), lending some confidence to 

the model used in this study. It should be noted that the calculation of ERF also accounts for 

ice sheet-climate interactions with the atmospheric temperature profile, water vapour, and 

clouds, and this contribution should ideally be considered. However, at the time of writing 

we, the authors, are not aware of the existence of any high resolution, transient record for 

ERF from GHGs, dust, or ice sheet-albedo over the course of the last deglaciation. Therefore, 

all references to radiative forcing data in this study refer to instantaneous radiative forcing 

(IRF), as opposed to ERF which is the preferred measure used in assessments of modern 

climate sensitivity (Forster et al., 2016; Smith et al., 2020; Forster et al., 2021).  

Figure 3.1c depicts the change in Earth’s TOA energy imbalance over time, as adapted from 

Shackleton et al. (2023). There is substantial fluctuation over the past 18 ka, but the overall 

trend is that of a gentle decrease in EEI over the simulated period, which would indicate that 

the warming trend since the deglaciation is unforced by changes in the energy budget. Finally, 

Figure 1d shows the global mean surface temperature anomaly since the deglaciation. We see 

approximately 7.5 K of warming over the past 18ka, although most of this warming took place 

in the first 10 ka. The small dip at 12.7ka BP represents the Younger Dryas cold period, the 

most recent and most severe stadial since the LGM. The return to the warming trend 

coincides with a spike in EEI and a sharp rise in total radiative forcing, highlighting good 

temporal agreement between proxy datasets.  

To estimate the magnitude of the millennial scale ice sheet-albedo feedback, 𝜆𝑡𝑜𝑡𝑎𝑙 is 

calculated in two different ways: by considering ice sheet-albedo change as a forcing rather 

than a feedback, and therefore included in Δ𝐹𝑡𝑜𝑡𝑎𝑙  (Eq. 3.1), or as a feedback rather than a 

forcing and so ice sheet-albedo change is excluded from Δ𝐹𝑡𝑜𝑡𝑎𝑙. The difference between these 

two estimates represents the ice sheet-albedo feedback, 𝜆𝑎𝑙𝑏 , and is calculated for all time 

steps in all 5000 simulations. The initial 1.5 ka are excluded from analysis as, during this 

interval, ΔT remains very close to zero, causing numerical instability (Eq. 3.1) and is too small 

to provide a reliable estimate for λ. 
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Figure 3.1: The components of the energy budget equation over the past 18 ka with 1σ 

uncertainty (shaded areas). All plots are displayed as anomalies relative to 18 ka 

BP a) Change in total radiative forcing when forcing from ice sheet-albedo change 

is included (pink) and excluded (blue) b) Change in total radiative forcing from ice 

sheet-albedo change, c) Change in Earth’s Energy Imbalance, d) Global surface 

temperature anomaly.  

In order to identify the timescale of the feedback, 𝜆𝑎𝑙𝑏 is applied to a non-linear regression 

model according to: 

𝜆𝑎𝑙𝑏 =  𝜆𝑎𝑙𝑏(∞)(1 − 𝑒
−𝑡

𝜏⁄ ) 

Equation 3.4 

Where 𝜆𝑎𝑙𝑏 is the estimate of the ice sheet-albedo feedback at timestep, t, and 𝜆𝑎𝑙𝑏(∞)  is the 

magnitude of the ice sheet-albedo feedback at equilibrium. τ is the response timescale that 

𝜆𝑎𝑙𝑏 operates over, that is the time taken to reach equilibrium. The above regression model is 

applied to all 5000 simulations to generate 5000 estimates for 𝜆𝑎𝑙𝑏(∞)  and τ, which are 

subsequently analysed. Standard error weighting is found to have no significant impact on 

the probability distributions for each variable, so it is not used for our main analysis. By its 
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nature, the above equation can yield numerical instabilities where values near very close to 

zero. Such outliers are removed from the overall ensemble of estimates to prevent erroneous 

bias. An outlier is defined here as being three or more scaled Median Absolute Deviations 

from the median.  

Finally, we consider how ice sheets influence other feedbacks by altering the spatial pattern 

of temperature change, utilising proxy-derived estimates from Cooper et al. (2024) as a 

modification applied post-analysis. The total ice sheet feedback, 𝜆𝑖𝑐𝑒 𝑠ℎ𝑒𝑒𝑡𝑠, is therefore 

represented by the following equation: 

𝜆𝑖𝑐𝑒 𝑠ℎ𝑒𝑒𝑡𝑠 = 𝜆𝑎𝑙𝑏 + 𝜆′ 

Equation 3.5 

Where 𝜆′ represents the modification to the total feedback resulting from indirect pattern 

effects. 𝜆′ increases the total ice sheet feedback, 𝜆𝑖𝑐𝑒 𝑠ℎ𝑒𝑒𝑡𝑠, by N(0.37,0.23) Wm-2K-1 (Cooper 

et al., 2024).  

3.5 Results 

Figure 3.2a shows the total climate feedback parameter, 𝜆𝑡𝑜𝑡𝑎𝑙, when ice sheet-albedo change 

is treated as a forcing (pink) or feedback (blue). Prior to 16ka, there is little difference 

between the magnitude of 𝜆𝑡𝑜𝑡𝑎𝑙 of either simulation, each peaking at approximately -1.7 Wm-

2K-1 and -1.6 Wm-2K-1 respectively, supporting the notion that the ice sheet-albedo feedback 

was small on short timescales, although uncertainty is large. Over the course of the 

deglaciation, the two simulations diverge due to the influence of the ice sheet-albedo 

feedback. However, the evolution of 𝜆𝑡𝑜𝑡𝑎𝑙 follows a similar overall trend in either case; both 

increase steadily until ~6.5ka BP, before gently decreasing again and stabilising by ~2.5ka 

BP. When ice sheet-albedo change is included as a forcing, 𝜆𝑡𝑜𝑡𝑎𝑙 stabilises at approximately -

1.2 ±0.1 Wm-2K-1. When ice sheet-albedo change is included as a feedback, 𝜆𝑡𝑜𝑡𝑎𝑙 stabilises at 

-0.7 ±0.07 Wm-2K-1 in the final 2.5 ka BP.  

The difference between the value of 𝜆𝑡𝑜𝑡𝑎𝑙 when ice sheet-albedo change is treated as either a 

forcing or feedback gives the climate feedback contribution from ice sheet-albedo change, 

𝜆𝑎𝑙𝑏, which is displayed over time in Figure 3.2b. There is some fluctuation over time, but the 

overall trend closes to equilibrium after O(10,000) years. Figure 3.2b also shows the 

influence of indirect spatial pattern effects: applying the estimates from Cooper et al. (2024) 

in the form of the modification, 𝜆′, results in a mean increase of 67% in the total ice sheet 

feedback, 𝜆𝑎𝑙𝑏 + 𝜆′ (grey), compared to the ice sheet-albedo feedback, 𝜆𝑎𝑙𝑏, alone (purple). 

However, the influence of indirect pattern effects from ice sheets is still poorly constrained, 
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and this is highlighted in the substantial additional uncertainty applied to the estimate of the 

total ice sheet feedback, 𝜆𝑎𝑙𝑏 + 𝜆′, compared to the estimated magnitude of the ice sheet-

albedo feedback, 𝜆𝑎𝑙𝑏. 

Figure 3.2: The magnitude of the effective climate feedback parameter, λ, over the past 16.5 

ka with 66% confidence interval shaded a) total climate feedback parameter, 

𝜆𝑡𝑜𝑡𝑎𝑙, when ice sheet-albedo is assumed to be a forcing (pink) or feedback (blue), b) 

ice sheet-albedo feedback, 𝜆𝑎𝑙𝑏 (purple) and with pattern effect (grey), c) impact of 

the ice sheet-albedo feedback, 𝜆𝑎𝑙𝑏, on the total climate feedback parameter, 𝜆𝑡𝑜𝑡𝑎𝑙 , 

expressed as a percentage change. 

The impact of the ice sheet-albedo feedback, 𝜆𝑎𝑙𝑏, on the total climate feedback, 𝜆𝑡𝑜𝑡𝑎𝑙 , over 

time is further illustrated in Figure 3.2c which expresses the percentage change in 𝜆𝑡𝑜𝑡𝑎𝑙 
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when 𝜆𝑎𝑙𝑏 is included in the estimate. As 𝜆𝑎𝑙𝑏  progresses to equilibrium, its contribution to 

the magnitude of 𝜆𝑡𝑜𝑡𝑎𝑙  increases substantially. By the late Holocene (5ka BP to present), the 

ice sheet-albedo feedback increases the total climate feedback parameter by 42% on average.  

The probability distribution of the ice sheet-albedo feedback, 𝜆𝑎𝑙𝑏 , is depicted in figure 3.3a 

which shows a best estimate 0.55 Wm-2K-1 with a 66% confidence interval of 0.45 - 0.63 Wm-

2K-1 and 95% confidence interval of 0.33 - 0.77 Wm-2K-1. This represents an amplifying effect, 

which becomes even larger if the influence of the ice sheets on temperature patterns and 

nonlocal feedbacks is accounted for, as shown by the grey range. Figure 3.3b, meanwhile, 

shows the probability distribution of the response timescale, τ, of the ice sheet-albedo 

feedback, meaning the time taken for the feedback to reach equilibrium following a 

perturbation. We find a best estimate for τ of 3.6 ka, with a 66% confidence interval of 1.9 ka 

to 5.5 ka. The 95% confidence interval of 0.5 ka to 9.3 ka reveals a positive skew towards 

longer timescales. 

 

Figure 3.3: Probability density distributions for a) ice sheet-albedo feedback, 𝜆𝑎𝑙𝑏, and b) the 

response timescale, τ, for 𝜆𝑎𝑙𝑏. Uncertainty intervals are displayed above each 

graph. Solid line indicates 66% confidence interval, dotted line indicates 95% 

confidence interval. The best estimate and 66% confidence interval for 𝜆𝑎𝑙𝑏 + 𝜆′ is 

given by the grey solid line for comparison (Fig. 3.3a).  
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3.6 Discussion & conclusions 

The primary aim of this study was to constrain both the magnitude and response timescale of 

Earth’s ice sheet-albedo feedback using proxy records of the last deglaciation. We find that 

𝜆𝑎𝑙𝑏 has a 66% confidence interval of 0.45 - 0.63 Wm-2K-1, with a best estimate of 0.55 Wm-2K-

1 (Fig. 3.3a). The feedback has a 95% confidence interval of 0.33 - 0.77 Wm-2K-1 supporting 

previous work that finds that ice sheet-albedo change has an amplifying effect. Furthermore, 

we find that the inclusion of the ice sheet-albedo feedback increases the total climate 

feedback parameter by approximately 42% at equilibrium, providing increased confidence 

that the amplifying effect of ice sheet retreat is not negligible. This effect becomes even 

stronger when the additional impact on spatial temperature patterns and non-local feedbacks 

are considered, increasing the best estimate of the total ice sheet feedback to 0.86 Wm-2K-1 

with a 66% confidence interval of 0.53 – 1.28 Wm-2K-1. Indeed, considerable uncertainty 

persists around the quantification of the pattern effects resulting from changing ice sheet 

extent and the inclusion of a modification to account for them in this analysis substantially 

widens the estimated range. They are however a vital component in the interaction between 

ice sheets and the wider climate system and further work to increase understanding and 

improve quantification is required.  

Additionally, we find with 66% confidence that 𝜆𝑎𝑙𝑏 operates on a timescale of 1.9 ka to 5.5 

ka, with a best estimate of 3.61 ka (Fig. 3.3b). However, the 95% confidence interval of 0.5 ka 

to 9.3 ka indicates that considerable uncertainty remains surrounding the exact response 

timescale of the ice sheet-albedo feedback. This is a limitation of using a single time interval 

of only 18 ka and certainty could be increased by repeating this experiment using multiple 

glacial cycles, although the limited availability of long, high resolution proxy records for 

radiative forcing and EEI may make this challenging with additional uncertainty introduced. 

However, Shackleton et al. (2023) have now extended the EEI record to 150 ka BP, providing 

new opportunities to do so. 

This timescale estimate is applicable to a deglacial transition where ice sheets are 

experiencing shrinkage. The timescale over which ice sheets grow during a glacial transition 

and subsequently influence Earth’s temperature, are subject to different physical processes 

and the feedback will behave differently. Furthermore, these findings specifically measure the 

magnitude of the ice sheet-albedo feedback for the most recent deglaciation. This is 

important to note as the initial ice sheet extent will differ for other periods of deglaciation. 

Indeed, the amplifying effect of future ice sheet retreat is likely to be comparatively reduced 

as the present extent of the Greenland ice sheet is smaller than that of the Laurentide ice 

sheet. However, ice sheet changes over Antarctica were minimal during the most recent 
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deglaciation, and these could become substantial in the future, contributing to an amplifying 

ice sheet-albedo feedback regardless of the extent of the northern hemisphere ice sheets. 

Future work to estimate the ice sheet-albedo feedback using other glaciations and 

deglaciations in Earth’s history could provide interesting insights as more data on these 

distant palaeoclimate periods is collected. Additionally, this area of research would benefit 

from a full quantification of ERF and transient pattern effects over the most recent 

deglaciation to increase the accuracy of estimates of radiative forcing from ice sheet-climate 

interactions. 

This finding has implications for climate sensitivity and the role of ice sheet-climate 

interactions on long timescales. It is important to reiterate that the climate response to 

forcing is not constant in time, and instead climate sensitivity and climate feedbacks evolve 

over time in response to complex interactions between multiple forcings and feedbacks 

(Zeebe, 2013; Goodwin, 2018; Rohling et al., 2018; Cael et al., 2022; Cael et al., 2023). 

Although the ice sheet-albedo feedback will have a negligible influence on climate sensitivity 

and warming in the 21st century, its influence is substantial on millennial timescales which 

could have a substantial impact on all components of the Earth System, particularly the 

biosphere (Lenton et al., 2006; Stone and Lunt, 2013; Willeit et al., 2014; Cabré, Marinov and 

Leung, 2015; Bao et al., 2021; Spencer and Christy, 2023). This highlights the importance of 

accounting for slow climate feedbacks like that of ice sheet-albedo change in evaluations of 

climate sensitivity (Cooper et al., 2024) as well as the value of measures like Earth System 

Sensitivity that take these processes into account (Lunt et al., 2010; Knutti and Rugenstein, 

2015; Clark et al., 2016; Knutti, Rugenstein and Hegerl, 2017; Golledge et al., 2019). Finally, 

these findings further highlight the increasing urgency for an effective climate change 

mitigation strategy to avoid serious long-term consequences for our planet and its 

ecosystems. 
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Chapter 4 Background state & ice 

sheet feedback on long 

timescales 

4.1 Introduction 

Over the past decade, it has become widely accepted that the magnitude of Earth’s climate 

sensitivity is partly dependent on the background climate state, and is in fact highly likely to 

be greater in warmer climates than cooler climates as a consequence of non-linearities in the 

response of cloud feedbacks to warming (Caballero and Huber, 2013; von der Heydt and 

Ashwin, 2017; Farnsworth et al., 2019; Zhu, Poulsen and Tierney, 2019; Anagnostou et al., 

2020; Cael and Goodwin, 2023). Therefore, the warmer the mean climate, the greater the 

warming required to re-balance the energy budget following a perturbation, such as 

anthropogenic forcing. This also means that estimates of climate sensitivity and feedback 

strength calculated from a specific cooler time period, such as the Last Glacial Maximum 

(LGM), cannot be automatically applied to studies of future climate change, which will be 

warmer.  

Climate sensitivity, a quantitative measure of the earth system response to external forcing, is 

a function of the total effective climate feedback parameter, 𝜆𝑡𝑜𝑡𝑎𝑙 (Wm-2K-1), which expresses 

the overall change in the outgoing TOA radiation per unit of GMST change (Charney et al., 

1979). The IPCC 6th assessment report gives a best estimate with medium confidence for the 

total effective climate feedback parameter, 𝜆𝑡𝑜𝑡𝑎𝑙, of -1.16 Wm-2K-1, with a very likely range of 

-1.81 to -0.51 Wm-2K-1, which is more negative (less sensitive) than the ensemble means of 

CMIP5 (-1.08 Wm-2K-1) and CMIP6 (-1.03 Wm-2K-1) (Forster et al., 2021). The magnitude of 

𝜆𝑡𝑜𝑡𝑎𝑙 remains uncertain because it cannot be measured directly and instead must be inferred 

from indirect evidence about Earth’s energy budget or multiple components of the earth 

system. The spatially- and temporally- heterogeneous relationship between individual 

feedbacks and forcings in the earth system, as well as the role of potential tipping points, 

further increase the complexity of the challenge to quantify 𝜆𝑡𝑜𝑡𝑎𝑙 (Knutti and Rugenstein, 

2015; Armstrong McKay et al., 2022).  

Despite the consensus that a relationship between feedback strength and the background 

state exists, understanding of the exact nature of this relationship is still incomplete, with 

changes in both temperature and atmospheric CO2 concentration considered key drivers and 
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the specific roles of individual feedbacks still being debated (Bjordal et al., 2020; Bloch-

Johnson et al., 2021; Xu and Koll, 2024). In their recent study, Bloch-Johnson et al. (2021) 

identified a non-linear relationship between Equilibrium Climate Sensitivity (ECS: see 

Chapter 1) and atmospheric CO2 concentration, and found that a feedback-temperature 

dependence explained 69% of the sensitivity increase, primarily attributable to the response 

of the long-wave clear-sky feedback. This highlights the need to improve understanding of 

how both 𝜆𝑡𝑜𝑡𝑎𝑙 and individual feedbacks are influenced by temperature change. Here I utilise 

a conceptual energy balance model (EBM) to explore the latitudinal behaviour of 𝜆𝑡𝑜𝑡𝑎𝑙 under 

multiple mean climate states, both warmer and colder than the pre-industrial period, in order 

to quantify the relationship between feedback strength and temperature. In their 2024 paper, 

Booth, Goodwin and Cael quantify the magnitude of the ice sheet-albedo feedback, 𝜆𝑎𝑙𝑏, using 

the most recent deglaciation, from the LGM to the pre-industrial period (see Chapter 3). 

However, as noted, due to the nature of state dependence, this estimate cannot be directly 

applied to a warmer climate state, such as from the present day into the future. I therefore 

use this same EBM to evaluate how the geometry of the planet will reduce the ice sheet-

albedo feedback and thus calculate an adjusted estimate for  𝜆𝑎𝑙𝑏 applicable to future climate 

change from the present day.  

Traditionally, the magnitude of  𝜆𝑡𝑜𝑡𝑎𝑙 (Wm-2K-1), is calculated using temporal changes in 

global or regional temperature (e.g. Dessler (2013)) and calculated using the following 

equation: 

𝜆𝑡𝑜𝑡𝑎𝑙 =  
Δ(𝑆𝑜𝑢𝑡 + 𝐿𝑜𝑢𝑡) 

Δ𝑇
    

Equation 4.1 

Where Δ(𝑆𝑜𝑢𝑡 + 𝐿𝑜𝑢𝑡) is the total change in the outgoing shortwave and longwave radiation 

at the TOA (Wm-2) over a given time interval, and Δ𝑇 is the global surface temperature 

anomaly (K). However, temporal variations in GMST are small for the historical period, on the 

order of just 1 K. Instead, I build on work by Goodwin and Williams (2023) and explore zonal 

latitudinal variations in 𝜆𝑡𝑜𝑡𝑎𝑙 with temperature which are much larger, thereby substantially 

improving the signal-to-noise ratio. By evaluating how 𝜆𝑡𝑜𝑡𝑎𝑙 varies spatially as the climate 

warms, this method has the added advantage of enabling the investigation of polar 

amplification, the phenomenon whereby the temperature response to forcing is greater at 

higher latitudes than low latitudes (Smith et al., 2019). Polar amplification over both poles 

has been observed in historical observations, simulations of future climate, and paleoclimate 

reconstructions (Serreze and Barry, 2011; Pithan and Mauritsen, 2014; Nummelin, Li and 

Hezel, 2017; Forster et al., 2021; Lee et al., 2021). Polar amplification is thought to be driven 

by a combination of local feedbacks, particularly the surface albedo feedback, and changes in 
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poleward heat transport (Huang, Xia and Tan, 2017; Previdi, Smith and Polvani, 2021). As 

both the magnitude and spatial patterns of energy transport changes and local feedbacks are 

thought to experience background state-dependence, polar amplification is also likely to be 

affected by the climate mean state. Therefore, in addition to exploring the relationship 

between temperature and global feedback strength, this study shall also investigate polar 

amplification and zonal changes in feedback strength under multiple mean states. 

Furthermore, I utilise the knowledge gained regarding the relationship between temperature 

and feedback strength to then explore the implications of state dependence for long term 

future warming according to the Shared Socioeconomic Pathways (SSPs) which represent 

possible futures for our planet. The SSPs are part of an established scenario framework based 

on five narratives of plausible demographic, economic, and political global developments 

which would result in different future emissions (Riahi et al., 2017). While the baseline SSP 

scenarios assume a lack of new future climate policy, they can be combined with mitigation 

targets defined by radiative forcing levels (Wm-2) by the year 2100 (Gidden et al., 2019). I 

utilise four illustrative scenarios in this study: SSP1-1.9, which assumes a world focused on 

sustainable development with 1.9 Wm-2 by the year 2100; SSP1-2.6, which also imagines a 

sustainable future but with 2.6 Wm-2 by the year 2100; SSP2-4.5, which imagines a world 

where socioeconomic trends follow historical patterns with 4.5 Wm-2 of radiative forcing by 

the year 2100; and SSP4-6.0, which assumes an increasingly divided and unequal world with 

6.0 Wm-2 of radiative forcing by the year 2100.  

In order to explore the implications of state dependence for long term climate change, I 

extend each of these SSPs beyond the year 2100 and project GMST until the year 9000 using 

the WASP model (see Chapter 1). Due to the significant role of ice sheets in global climate on 

millennial timescales, I also incorporate the adjusted estimate of the ice sheet-albedo 

feedback, 𝜆𝑎𝑙𝑏, based on the findings from Booth, Goodwin and Cael (2024), to also explore 

the influence of this key slow feedback on long-term warming, alongside state dependence. 

4.2 Methodology 

Here I set out the key methodology for this chapter. On a practical level, this chapter builds 

upon the work of Chapter 3 and applies the estimate for the magnitude of the ice sheet-

albedo feedback into the future. Work is organised into the following stages: 

i. An EBM is used to amend the estimate of 𝜆𝑎𝑙𝑏 for the LGM (from Chapter 3) to future 

relevance by accounting for difference in background climate mean state. 

ii. Using the EBM to explore changes in feedback strength with background state also 

facilitates the exploration of polar amplification under multiple mean states. 
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iii. The adjusted estimate of 𝜆𝑎𝑙𝑏, now appropriate for the present day, is applied to the 

WASP model (see Chapter 1 and 2) to project long term future warming under 

multiple SSP scenarios. 

4.2.1 Extension to the Energy Balance Model 

This work utilises an EBM, originally published by Goodwin and Williams (2023), which is 

explained in greater detail in section 1.3.2 of Chapter 1. Since the publication of Goodwin and 

Williams (2023), the EBM has been extended in several ways. In particular, the model 

redefines the albedo of a cloudy sky, 𝛼𝑐𝑙𝑜𝑢𝑑𝑦 𝑠𝑘𝑦, so that clouds act to: reflect a fraction of the 

incident solar radiation into space; allow some radiation to pass through; and reflect a 

fraction of the outgoing shortwave radiation back downwards towards the Earth surface 

(Goodwin et al., 2023). The model adopts an infinite series approach (e.g. Taylor et al., 2007) 

to calculate the global net upwards shortwave radiation above a cloudy sky as well as 

considering the separate directed and diffuse beams of shortwave radiation: 

𝛼𝑐𝑙𝑜𝑢𝑑𝑦 𝑠𝑘𝑦(𝜙) ≈ 𝛼𝑐𝑙𝑜𝑢𝑑:𝑑𝑖𝑟(𝜙) + 𝛼𝑐𝑙𝑒𝑎𝑟 𝑠𝑘𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝜙) ×
(1 − 𝛼𝑐𝑙𝑜𝑢𝑑:𝑑𝑖𝑟(𝜙)) × (1 − 𝛼𝑐𝑙𝑜𝑢𝑑̅̅ ̅̅ ̅̅ ̅̅ )

(1 − 𝛼𝑐𝑙𝑒𝑎𝑟 𝑠𝑘𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝜙) × 𝛼𝑐𝑙𝑜𝑢𝑑̅̅ ̅̅ ̅̅ ̅̅ )
 

Equation 4.2 

Where 𝛼𝑐𝑙𝑜𝑢𝑑𝑦 𝑠𝑘𝑦(𝜙) is the zonal- and annual-mean albedo of cloudy sky with latitude;  

𝛼𝑐𝑙𝑜𝑢𝑑:𝑑𝑖𝑟(𝜙) is the local cloud albedo for directed solar radiation with latitude; 𝛼𝑐𝑙𝑜𝑢𝑑̅̅ ̅̅ ̅̅ ̅̅  is the 

global- and annual-mean albedo of cloud; and 𝛼𝑐𝑙𝑒𝑎𝑟 𝑠𝑘𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝜙) is the planetary albedo for clear 

sky conditions if the all of Earth’s surface was the same as the surface at a given latitude. 

𝛼𝑐𝑙𝑜𝑢𝑑:𝑑𝑖𝑟 and 𝛼𝑐𝑙𝑜𝑢𝑑̅̅ ̅̅ ̅̅ ̅̅   are determined from observationally-based values of 𝛼𝑐𝑙𝑜𝑢𝑑𝑦 𝑠𝑘𝑦, 

𝛼𝑐𝑙𝑒𝑎𝑟 𝑠𝑘𝑦, and 𝛼𝑐𝑙𝑒𝑎𝑟 𝑠𝑘𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , assuming that 𝛼𝑐𝑙𝑜𝑢𝑑:𝑑𝑖𝑟 varies with latitude according to the solar 

zenith angle effect.  

Furthermore, in order to account for the fact role of water vapour content from the surface to 

the TOA as a greenhouse gas, the model also includes an approximation of zonal- and annual-

mean clear sky emissivity, 𝜀𝑐𝑙𝑒𝑎𝑟 𝑠𝑘𝑦, as a function of surface temperature, 𝑇𝑠, surface radiative 

humidity, 𝐻𝑟𝑒𝑙, and the height of the tropopause, 𝑧𝑡𝑟𝑜𝑝, as follows: 

𝜀𝑐𝑙𝑒𝑎𝑟 𝑠𝑘𝑦 ≈ 𝐴 + 𝐵𝑙𝑛𝐻𝑟𝑒𝑙 + 𝐶𝑧𝑡𝑟𝑜𝑝 +
𝐷

𝑇𝑠
 

Equation 4.3 
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Where A, B, C, and D are coefficients (Appendix C) based on the fitted relationship with 

observed climatology (Jones et al., 1999; Hersbach et al., 2018; Morice et al., 2021; Mateus, 

Mendes and Pires, 2022; Goodwin et al., 2023).  

4.2.2 Multiple mean states 

To simulate a pre-industrial steady state, the values for 𝜅𝑒𝑓𝑓(𝜙), 𝑓𝐶𝐴(𝜙), 𝑓𝐶𝐼(𝜙), and 𝑅𝑠𝑜𝑙𝑎𝑟(𝜙) 

(Figure 1.7) are imposed in the above EBM and set the initial temperature is set to 𝑇𝑠(𝜙) =

273.25 𝐾 for all latitudes. The heat capacity is set as c = 4.2 x108 JK-1m-2 which corresponds to 

a 150m deep surface ocean mixed layer covering 70% of Earth’s surface. For all simulations, 

the model is run to an initial steady state that represents the pre-industrial mean climate 

state.  

For this study, I run 40 simulations to calculate: the global, 𝑇𝑠̅, and zonal-mean surface 

temperature, 𝑇𝑠(𝜙); and the global, 𝜆𝑡𝑜𝑡𝑎𝑙, and zonal effective climate feedback parameter, 𝜆𝜙, 

under multiple mean states. From a pre-industrial baseline (𝛿𝐹 = 0), I run 20 simulations of a 

warmer world (𝛿𝐹 > 0) and 20 simulations of a cooler world (𝛿𝐹 < 0), with a step-wise 

change between each simulation. Each step constitutes an incremental change of 1 Wm-2 of 

radiative forcing. The model first calculates zonal values for surface temperature and climate 

feedback for each latitudinal band, with 𝜆𝑡𝑜𝑡𝑎𝑙 calculated as the area-weighted mean of all 

zonal estimates. I also calculate the global effective climate sensitivity, S, for all mean climate 

states, defined as the negative reciprocal of 𝜆𝑡𝑜𝑡𝑎𝑙. S expresses the magnitude of climate 

feedbacks in terms of surface temperature change per unit of radiative forcing and as such is 

a useful variable for accessible communication. 

Polar amplification of surface temperature is calculated for both the Northern and Southern 

Hemispheres for each mean state according to the following basic equation: 

𝑃𝑜𝑙𝑎𝑟 𝐴𝑚𝑝𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =
Δ𝑇𝑠(> 65° 𝑁 𝑜𝑟 𝑆)

Δ𝑇𝑠(𝑒𝑞𝑢𝑎𝑡𝑜𝑟𝑖𝑎𝑙 𝑏𝑎𝑛𝑑)
 

Equation 4.4 

Where the equatorial band is defined as the zonal-mean between 15°S and 15°N.  

4.2.3 Modelling state dependence and long-term warming 

In order to quantify the relationship between 𝜆𝑡𝑜𝑡𝑎𝑙 and global mean surface temperature, 𝑇𝑠̅, 

and therefore gain insight into the nature of background state dependence, I plot the ratio 

change in 𝜆𝑡𝑜𝑡𝑎𝑙 for all mean states relative to when 𝑇𝑠̅ = 0, against the global mean surface 
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temperature anomaly, ∆𝑇𝑠̅, as shown in Figure 4.1, and find the quadratic equation of best fit 

between the variables. The ratio change represents the change in 𝜆𝑡𝑜𝑡𝑎𝑙 for a warmer or 

colder mean state, relative to ‘present day’ conditions. As such, a higher ‘ratio change’ value 

indicates that 𝜆𝑡𝑜𝑡𝑎𝑙 is greater than present day, and vice versa. This relationship is specific to 

the simplified representation of the climate within the EBM. The best fit relationship is as 

follows: 

𝜆𝑡𝑜𝑡𝑎𝑙 = 0.0004986∆𝑇𝑠̅
2

− 0.01148∆𝑇𝑠̅ + 1.0157 

Equation 4.5 

The above equation 4.5 is then incorporated into the WASP model (see Chapter 1) in order to 

explore the implications of this relationship on future warming.  

 

Figure 4.1: Ratio change in 𝜆𝑡𝑜𝑡𝑎𝑙 for all mean states relative to when 𝑇𝑠̅ = 0, against the 

global mean surface temperature anomaly, ∆𝑇𝑠̅ (solid purple), plotted with the 

quadratic best fit relationship (dashed black). R2 value displayed as indicator of 

fit. 

Additionally, I incorporate the key findings from Booth, Goodwin and Cael (2024) relating to 

the long-term ice sheet-albedo feedback, 𝜆𝑎𝑙𝑏, which operates on a response timescale of 

approximately 3.6 ka (see Chapter 3). This study found a best estimate for the magnitude of 

𝜆𝑎𝑙𝑏 of 0.55 Wm-2K-1, indicating that 𝜆𝑎𝑙𝑏 increased the equilibrium magnitude of 𝜆𝑡𝑜𝑡𝑎𝑙 by 

approximately 42%. However, this estimate only applies to a deglacial transition, where 

initial ice extent is large, and therefore the amplifying effect of future ice sheet retreat is likely 

to be smaller. As such, I adjust the estimate of 𝜆𝑎𝑙𝑏 using the latitudinal EBM to reflect the 
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reduced ice sheet extent at the pre-industrial compared to the LGM. As a simplified 

representation of the Earth system, the EBM is best placed to model large-scale ice sheet 

changes as opposed to high resolution cloud processes and as such is an appropriate tool for 

this adjustment. The adjustment is based on the CESM2 estimate of effective radiative forcing 

(ERF) for the LGM of -5.2 Wm-2 from Zhu and Poulsen (2021). I apply this estimate to the 

above energy balance model to estimate the change in 𝜆𝑡𝑜𝑡𝑎𝑙 from 𝛿𝐹 = 0 to 𝛿𝐹 = −5.2 Wm-2. 

I apply this adjustment to calculate a new, reduced estimate for the magnitude of 𝜆𝑎𝑙𝑏 at the 

pre-industrial era of 0.31 ±0.09 Wm-2K-1. This best estimate and uncertainty are used as the 

basis for randomly-generated, normally-distributed input parameters for the ice sheet-albedo 

feedback within the prior ensemble.  

In order to explore long-term future warming, I modify the WASP model so it is capable of 

running and storing long time series on O(10,000) years. In doing so, I reduce the number of 

time steps to 2 per year and run the model to the year 9000 with decadal outputs. I explore 

future warming under multiple SSP scenarios: SSP1-1.9, SSP1-2.6, SSP2-4.5, and SSP4-6.0. 

Each SSP scenario follows the prescribed radiative forcing and atmospheric CO2 

concentration pathways used in the Reduced Complexity Model Intercomparison Project  

(Nicholls et al., 2020a; Nicholls et al., 2020b; Nicholls et al., 2021). For each scenario, I run the 

model in two modes: where equation 4.5 (representing state dependence) and the ice sheet-

albedo feedback are included; and where neither are included, in order to quantify the impact 

on future warming. I generate a prior ensemble of 5 million simulations for each scenario and 

each mode, producing posterior ensembles of approximately 3500 simulations each. Each 

ensemble member is given a weighting dependent on relative agreement with the automatic 

acceptance limit imposed on the cost function (see Chapters 1 and 2). 

4.3 Results 

4.3.1 Surface temperature 

Figure 4.2 depicts the relationship between global mean surface temperature anomaly, ∆𝑇𝑠̅, 

and the anomaly in the radiative forcing from carbon dioxide relative to pre-industrial levels, 

𝛿𝐹 in the latitudinal EBM. A decrease of 20 W/m2 in radiative forcing results in 

approximately 14.1 K of cooling, compared to only 11.2 K of warming for an increase in 

radiative forcing of 20 W/m2. The relationship between radiative forcing and temperature is 

therefore non-linear and gently slopes with increasing radiative forcing. This indicates that 

with each increasing unit of radiative forcing from CO2, there is a diminishing impact on 

global mean temperature which reflects the changing extent of the cryosphere. With global 

warming, the cryosphere shrinks, reducing the amplifying potential of the snow and ice 
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albedo feedback and resulting in the relationship of diminishing returns with global 

temperature. 

 

  Figure 4.2: Global mean temperature anomaly with change in radiative forcing from CO2. 

4.3.2 Climate feedback parameter 

Figure 4.3 depicts the relationship between the global mean temperature anomaly, ∆𝑇𝑠̅, and 

the total climate feedback parameter, 𝜆𝑡𝑜𝑡𝑎𝑙 (figure 4.3a), and effective climate sensitivity, S 

(figure 4.3b) in the latitudinal EBM. The two variables are negative reciprocals of each other, 

explaining the similarity between the two plots.  The relationships between temperature 

change and both 𝜆𝑡𝑜𝑡𝑎𝑙 and S are distinctly non-linear with two obvious peaks at 

approximately -5 K and +6 K temperature change. Overall, there is a change in the magnitude 

of 𝜆𝑡𝑜𝑡𝑎𝑙 of approximately 0.7 Wm-2K-1 for a temperature change of approximately 25.6 K. The 

trend is reversed for S which shows an overall change of ~0.34 KWm-2 for the same interval 

of temperature change.  

It should be noted here that the model variables of 𝜆𝑡𝑜𝑡𝑎𝑙 and S are not perfect 

representations of reality, and some aspects are not considered in the calculation of these 

variables. Nevertheless, the behaviour of these variables in the model can give us valuable 

information about key earth system feedbacks. The overall decrease in S with warming 

shown here may initially be confusing for some readers who may expect higher estimates for 

climate sensitivity in warmer mean climatic states (Caballero and Huber, 2013; von der 

Heydt and Ashwin, 2017; Farnsworth et al., 2019; Zhu, Poulsen and Tierney, 2019; 

Anagnostou et al., 2020; Cael and Goodwin, 2023). In the case of this model, the decrease in S 



Chapter 4 

68 

reflects the reduction in the global mean clear-sky surface albedo as surface cover changes 

from sea/land-ice to ocean/ vegetation. The rate of increase accelerates at higher mean 

temperatures as the sea/land ice area per unit of latitude shrinks for higher latitudinal bands. 

With a smaller cryosphere, the Earth indeed becomes less sensitive to perturbation as the 

relative influence of the snow and ice albedo feedback is minimised. Crucially, for each 

stepwise change in radiative forcing from CO2, the model is run to equilibrium and timescale 

is ignored, as opposed to a transient system where feedback magnitude evolves over time.   

 

Figure 4.3: Relationship between a) total climate feedback parameter and b) effective climate 

sensitivity, S, with the global mean temperature anomaly relative to a pre-

industrial equivalent baseline. In this study, λ and S do not reflect a present-day 

real world, but rather are correct for small perturbations in a theoretical climate 

state that is initially equilibrated at the given radiative forcing. 

Whilst figure 4.3 explores λ as a global mean, figure 4.4 depicts eight illustrative distributions 

of the effective climate feedback parameter, λ, by latitude, with varying degrees of change in 

radiative forcing relative to pre-industrial levels in the latitudinal EBM. Scenarios are colour-

coded such that deeper shades of red indicate an increase in radiative forcing and blue 

indicates a decrease. In all radiative forcing scenarios, the magnitude of λ in the low to mid 
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latitudes shows minimal change with a magnitude of approximately -1.8 Wm-2K-1 at the 

equator, -2.03 ±0.05 Wm-2K-1 at Southern Hemisphere mid-latitudes, and -2.2 ±0.5 Wm-2K-1 

for mid-latitudes in the Northern Hemisphere. The difference in λ between the low and mid 

latitudes reflects the presence of the Intertropical Convergence Zone of heavy cloud over the 

equatorial band which slightly increases sensitivity to temperature change relative to the 

clear sky conditions of the mid latitudes.  

 

Figure 4.4: Effective climate feedback parameter by latitude for eight sample simulations. 

Colour indicates the equilibrated climate mean state with a change in radiative 

forcing relative to a pre-industrial climate state. Red colours indicates an increase 

in radiative forcing (warmer mean state), and blue a decrease (cooler mean 

state). Darkness of colour represents the magnitude of anomaly. 

In both hemispheres, there is a sharp increase in λ in the high latitudes, the position of which 

shifts poleward with increasing radiative forcing and mean temperature. This poleward shift 

reflects the changing ice and snow extent with temperature and the subsequent impact on 

surface albedo. Where the value of λ increases, this indicates a high sensitivity to temperature 

change in the latitudinal bands that transition between ice growth and melting with small 

swings in surface temperature. In the colder climates (reduced radiative forcing: dark blue, 

figure 4.4), λ returns to its baseline level at the South Pole, indicating the stability of the 

Antarctic ice sheets; temperature rise would need to be significant to trigger any melting at 

these latitudes meaning sensitivity to temperature change is limited. However, as the global 

mean background temperature increases, the southern hemisphere ice sheets become more 

sensitive to small temperature variations as they shift closer to a melting threshold and 

possible collapse, as evidenced by the rise in λ at high southern latitudes under the warmer 

climate scenarios (increased radiative forcing: dark red, figure 4.4).  
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Contrastingly, this differs in the Northern Hemisphere. There is a steep increase in λ at 45-

70°N in the coldest climates (blue: figure 4.4), to reflect the changing extent of snow and ice 

cover south of the Arctic Circle, but in warmer mean climates (red: figure 4.4) the northern 

hemisphere is increasingly insensitive to temperature change as Arctic sea ice and high 

latitudinal snow cover such a small area that the influence over global climate is increasingly 

limited. Indeed, the Arctic is expected to be consistently ice-free in summer by the mid-21st 

century according to most emission trajectories (Notz and Community, 2020; Kim et al., 

2023; Jahn, Holland and Kay, 2024). 

4.3.3 Polar amplification 

Figure 4.5 shows the relative temperature change at high latitudes relative to the equator in 

both the northern and southern hemispheres for different background mean global 

temperatures above and below the pre-industrial baseline, in the latitudinal EBM. In the 

northern hemisphere, the polar amplification factor is highest (~3.3: green, figure 4.5) for a 

temperature anomaly of -5 to -6 K, which mirrors the first peak shown in figure 4.3, and is 

consistent with reconstructed temperatures at the LGM (Annan and Hargreaves, 2013; 

Tierney et al., 2020b; Annan, Hargreaves and Mauritsen, 2022). This peak represents the 

point at which northern hemisphere snow and ice extent is particularly sensitive to small 

changes in temperature and is undergoing rapid melting, driving an amplifying snow and ice 

albedo feedback which increases the relative temperature difference between high and low 

latitudes in the north. For increasing temperatures, polar amplification in the northern 

hemisphere rapidly declines to a factor of ~2 for a temperature anomaly greater than +4 K. 

This reduction reflects the shrinking extent of the cryosphere in the northern hemisphere 

with warming that decreases the amplification of polar temperature relative to the equator. 

The fact that the EBM finds Northern Hemisphere polar amplification peaking at an LGM state 

is consistent with the extensive literature demonstrating the major contribution of Northern 

Hemisphere ice sheets to the most recent deglacial transition, building confidence in the 

model skill (Batchelor et al., 2019; Obase, Abe-Ouchi and Saito, 2021; Quiquet et al., 2021; 

Bouttes et al., 2023). 

On the other hand, the southern hemisphere shows a different trend. In cooler background 

climates, polar amplification is relatively low as the southern hemisphere cryosphere is 

stable and insensitive to small temperature variations. However, as the background climate 

warms, the high latitudes begin to undergo increasingly high rates of temperature change 

compared to the equator, eventually reaching a peak of ~3.7 for a temperature anomaly of 

+5.5 K (figure 4.5: purple), which matches the second peak in figure 4.3. At this point, the 

southern hemisphere cryosphere is experiencing its fastest rate of collapse and melting rates 
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are high, driving a strong temperature difference between high and low latitudes. In 

increasingly warm background climates, polar amplification in the southern hemisphere 

begins to decline again as the cryosphere shrinks and has a declining influence on global 

climate sensitivity (figure 4.3b). 

 

Figure 4.5: Polar amplification factor for the Northern Hemisphere (green) and Southern 

Hemisphere (purple) according to the global mean temperature anomaly relative 

to a pre-industrial climate state. 

4.3.4 Implications for future warming 

In this study I utilise the adjusted estimate for 𝜆𝑎𝑙𝑏 and equation 4.5 to generate a posterior 

ensemble of WASP projections of future warming. Figure 4.6 displays the WASP projections 

of GMST anomalies relative to the pre-industrial era from 1850 to the year 9000 based on 

four illustrative SSP scenarios and highlights the implications of state dependence and the ice 

sheet-albedo feedback on the trajectory of future warming. In all scenarios, the radiative 

forcing pathway is prescribed until the year 2300 and so the trajectory of projected warming 

is almost identical for both modes until this point. All scenarios simulate a rapid rise in global 

temperatures from the year 1850 until the mid-21st century, as consistent with observed 

warming. Figure 4.6a shows SSP1-1.9 which predicts a median peak warming of 1.5 K to 

occur around the year 2030 before rapid cooling over the next century and then gently 

stabilising at a median temperature anomaly of approximately 0.9 K by the year 2400. 

Similarly, figure 4.6b depicts SSP1-2.6 which simulates a median peak warming of 1.8 K 

around 2050 before quickly cooling to 1.4 K by the year 2400. As expected, figures 4.6c and 
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4.6d show considerably higher peak warming and stabilisation at higher mean temperatures 

than the more sustainable scenarios. In figure 4,6c, SSP2-4.5 finds a median peak warming of 

2.9 K at the year 2200, with a decrease to 2.7 K by 2400. In SSP4-6.0, depicted in figure 4.6d, 

temperatures reach a median of 3.8 K by 2200, with a small decrease to 3.7 K by the year 

2500 before both modes begin to increase very gently in temperature again.   

 

Figure 4.6: WASP projections of future warming using Shared Socioeconomic Pathways both 

with state dependence and ice sheet-albedo feedback (blue), and without state 

dependence nor feedback (green) a) SSP1-1.9, b) SSP1-2.6, c) SSP2-4.5, d) SSP4-6.0. 

Ranges to the right of each plot indicate the best estimate (central tick), 66% 

confidence interval (solid line) and 95% confidence interval (dotted line) at the 

year 9000 for each scenario.  

Beyond the year 2300, the influence of the ice sheet-albedo feedback is evident in all 

scenarios with the model runs that include the feedback (Figure 4.6: blue) showing gently 

increases temperatures over the millennia, whilst model runs that do not include the ice 

sheet-albedo feedback (Figure 4.6: green) display minimal temperature change beyond the 

year 2500. SSP1-1.9 estimates a median temperature anomaly of 1.0 K by the year 9000, with 
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a 66% confidence interval of 0.58 – 1.8 K and a 95% confidence interval of 0 – 4.4 K when the 

ice sheet-albedo feedback is included (Figure 4.6a: blue). This compares to a best estimate of 

0.88 K by the year 9000 when the feedback is not included, with a 66% confidence interval of 

0.56 – 1.5 K and 95% confidence interval of 0 – 3.5 K (Figure 4.6a: green). SSP1-2.6 estimates 

a median temperature anomaly of 1.6 K by the year 9000, with a 66% confidence interval of 

1.0 – 2.7 K and a 95% confidence interval of 0.91 – 3.5 K when the ice sheet-albedo feedback 

is included (Figure 4.6b: blue). This compares to a best estimate of 1.4 K by the year 9000 

when the feedback is not included, with a 66% confidence interval of 1.0 – 2.2 K and 95% 

confidence interval of 0.57 – 4.5 K (Figure 4.6b: green).  

SSP2-4.5 estimates a median temperature anomaly of 3.2 K by the year 9000, with a 66% 

confidence interval of 2.3 – 5.3 K and a 95% confidence interval of 1.1 – 10.5 K when the ice 

sheet-albedo feedback is included (Figure 4.6c: blue). This compares to a best estimate of 2.8 

K by the year 9000 when the feedback is not included, with a 66% confidence interval of 2.1 – 

4.3 K and 95% confidence interval of 1.4 – 8.2 K (Figure 4.6c: green). SSP4-6.0 estimates a 

median temperature anomaly of 4.5 K by the year 9000, with a 66% confidence interval of 3.1 

– 7.4 K and a 95% confidence interval of 1.7 – 14.5 K when the ice sheet-albedo feedback is 

included (Figure 4.6d: blue). This compares to a best estimate of 3.9 K by the year 9000 when 

the feedback is not included, with a 66% confidence interval of 2.9 – 5.9 K and 95% 

confidence interval of 2.1 – 11.0 K (Figure 4.6d: green). 

Table 4-1: Impact of ice sheet-albedo feedback and state dependence on WASP projections of 

future warming, according to four Shared Socioeconomic Pathways expressed as 

the absolute GMST difference (ΔT) and percentage difference in GMST (%) between 

the two modes at the calendar years 3000, 5000, 7000, and 9000. Both the 

ensemble best estimate (50th percentile) and 66% confidence interval (17th to 83rd 

percentile) are displayed.  
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The difference between the ensembles with the ice sheet-albedo feedback and without is 

made more explicit in table 4.1 which shows both the absolute- and percentage-change 

between the two ensemble modes at specific years into the future. All scenarios find 

increased long term future warming when the ice sheet-albedo feedback is included, with an 

increasing differential over time. Under SSP1-1.9, the ice sheet-albedo feedback increases 

median GMST change by 16.3% by the year 9000, which equates to a difference of 0.14 K. The 

impact on the 83rd percentile is greater, with a percentage change of 21.3%, compared to the 

change in the 17th percentile, which is just 4.1%, suggesting greater uncertainty at the upper 

bound of the range when the feedback is included. The narrative is similar for the other SSP 

scenarios. Under SSP1-2.6, the ice sheet-albedo feedback increases the median GMST change 

by 15.4% (0.22 K), and the impact on the upper bound (24.3%) is greater than the lower 

bound (7.3%). The additional median warming caused by the feedback is estimated at 0.41 K 

(14.3%) for SSP2-4.5, and 0.58 K (14.7%) for SSP4-6.0, whilst the percentage change in the 

upper and lower bounds shows a similar trend to SSP1-1.9 and SSP1-2.6. 

4.4 Discussion 

4.4.1 The impact of background state on climate feedbacks 

and polar amplification 

By evaluating the spatial trends in the magnitude of 𝜆𝑡𝑜𝑡𝑎𝑙 using latitudinal variations in 

GMST, we gain crucial insights into the role of the cryosphere in driving changes in climate 

feedback strength under multiple mean states. I find that the relationship between 

background mean state and the global climate feedback parameter is distinctly non-linear 

and this is likely linked to the changing latitudinal extent of the cryosphere. The two peaks 

observable in 𝜆𝑡𝑜𝑡𝑎𝑙 (Figure 4.3a), S (Figure 4.3b), and polar amplification of the southern 

hemisphere (Figure 4.5: purple) and northern hemisphere (Figure 4.5: green) all occur at 

approximately ∆𝑇𝑠̅ = −5 𝐾 and ∆𝑇𝑠̅ = 6 𝐾which correspond to the global temperatures at 

which the cryosphere is most sensitive to small zonal temperature variations in the model 

(Goodwin and Williams, 2023). This also aligns with estimated GMST at the LGM according to 

palaeoclimate reconstructions (Tierney et al., 2020b; Annan, Hargreaves and Mauritsen, 

2022). At zonal- and annual mean temperatures of approximately ∆𝑇𝑆 ≤ −5 𝐾, the 

cryosphere entirely dominates the clear-sky albedo across all seasons, whilst at 

approximately ∆𝑇𝑆 ≥ 6 𝐾, there is functionally no Northern Hemisphere cryosphere within 

the model as it no longer affects the annual mean clear-sky albedo. The Southern Hemisphere 

has drastically reduced by ∆𝑇𝑆 ≥ 10 𝐾 (Figure 4.4).  These turning points are clearly reflected 

in the results and this highlights the notable influence that zonal changes in the cryosphere 
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can have on global sensitivity to temperature change. Where the cryosphere is close to a 

melting threshold, it is most sensitive to temperature fluctuation, and this increases the 

magnitude of local climate feedbacks. However, beyond this critical threshold, the impact of 

the cryosphere on both local feedbacks and the global total climate feedback parameter is 

relatively reduced as the smaller ice extent has a diminishing influence on the global climate. 

This result further highlights the need to better understand possible tipping points in the 

earth system, especially involving Greenland and West Antarctic ice sheets, which carry the 

risk of major sea level rise, resulting in devastating impacts for societies, economies, and 

ecosystems worldwide (Box et al., 2022; Dietz and Koninx, 2022; Lenton et al., 2024).  

The important role of the cryosphere in the global climate system and vulnerability of the 

polar regions to climate change is further supported here by modelled evolution in polar 

amplification with change in background state in the latitudinal EBM (Figure 4.5). Polar 

amplification of the northern hemisphere rapidly reduces at  ∆𝑇𝑠̅ > −4 𝐾 as the critical 

melting threshold has been crossed, and the northern cryosphere begins to shrink. The 

increased sensitivity to temperature fluctuation in the northern hemisphere compared to the 

southern hemisphere is likely a consequence of the presence of sea ice within the Arctic 

Ocean which has been shown to be more susceptible to melting than snow cover or the land 

based ice sheet of the Antarctic, and the cooling effect of the Antarctic Circumpolar Current 

which limits the poleward transport of heat in across the Southern Ocean (Letterly, Key and 

Liu, 2018; Holland, Nicholls and Basinski, 2020). The model’s ability to recreate the 

weakening of Northern Hemisphere polar amplification in warmer climates provides 

independent verification of the role of ice sheets in glacial-interglacial transitions, and 

increased confidence in the use of the EBM to calculate an adjusted value for the strength of 

the ice sheet-albedo feedback for the present-day climate state. Whilst polar amplification of 

the southern hemisphere is low at cooler mean states, this reflects the stability of the 

Antarctic ice sheet. Once ∆𝑇𝑠̅ > 6 𝐾, the southern cryosphere also begins to experience 

extensive collapse and decline with an accompanying decline in influence on global climate 

sensitivity at equilibrium, and polar amplification also declines as a result. The latitudinal 

shift in the zonal climate feedback parameter under cooler and warmer mean states (Figure 

4.4) further supports this.  

4.4.2 Implications for long term climate change 

By utilising the findings from the EBM to project long term temperature change using the 

WASP model, we can see how a state-dependent ice sheet-albedo feedback could amplify 

human-induced climate change for millennia to come. The inclusion of the feedback increases 

GMST by an average of 15% across all scenarios, which translates to a substantial level of 
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warming for the high emission scenarios (Table 4.1). This reiterates the necessity of reaching 

net zero emissions as soon as possible and for climate change mitigation to be prioritised as a 

matter of urgency to avoid the consequences of the higher risk, high emission scenarios. It 

should be noted that the future projections depicted in this study reflect the global mean, and 

warming is expected to be amplified at the poles. Indeed, for a global temperature anomaly of 

~ 5.5 K, which is compatible with SSP4-6.0, the EBM expects the southern hemisphere to 

experience a polar amplification factor of ~3.7, which would translate to a local temperature 

increase of more than 20 K compared to the pre-industrial era (Figure 4.5). Such a dramatic 

temperature rise could carry the possible risk of the destabilisation of not only the West 

Antarctic Ice Sheet, but potentially the East Antarctic Ice Sheet which holds 52m sea-level-

equivalent (Armstrong McKay et al., 2022; Stokes et al., 2022). Considerable uncertainty 

persists surrounding the sensitivity of the East Antarctic Ice Sheet and more research is 

needed to better understand this low-likelihood but high-impact tipping point.  

4.5 Conclusions 

As simplified representations of the earth system, the results from WASP and the EBM used 

in this study do not perfectly reflect reality but do provide useful insights into the 

relationships between components of Earth’s climate system and Earth’s energy budget. 

Whilst these results suggest a non-linear decrease in the magnitude of the global climate 

feedback parameter in warmer mean states, this reflects the dominance of the cryosphere 

within the model, and the diminishing influence of the snow-albedo feedback as ice extent is 

reduced with warming. An exploration of the climate feedback parameter by latitude shows a 

more nuanced picture, with local climate feedbacks becoming more amplifying when close to 

critical melting thresholds.  

Understanding the relationship between temperature and feedback strength is important for 

the accurate prediction of future climate change and my results provide new evidence for 

how an amplifying ice sheet-albedo feedback would increase long-term warming under all 

SSP scenarios. The influence of state-dependence is minimal relative to the ice sheet-albedo 

feedback in this model, but uncertainty is large on long timescales. Further work to explore 

and constrain other slow feedbacks and the potential impact of different tipping points is 

required to increase confidence in long term climate predictions. 
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Chapter 5 Conclusions 

5.1 Summary 

The overarching narrative of this thesis has focused on several under-investigated aspects of 

earth system dynamics with the aim of improving understanding and reducing uncertainty 

surrounding climate sensitivity via the quantification of the climate feedback parameter. 

Work has been structured around three objectives that have formed the basis of the three 

central chapters of this thesis: 

Objective 1: 

Constrain the magnitude of Earth’s fast and multi-decadal feedbacks and 

quantify the pattern effect through probabilistic assessment 

Objective 2: 

Explore and constrain the magnitude of Earth’s slow ice sheet-albedo 
feedback in the context of the most recent deglaciation 

Objective 3: 

Investigate Earth’s climate feedbacks under different background mean 

climate states and explore the implications of the ice sheet-albedo 

feedback for long term climate change 

This section shall bring together the key findings from Chapters 2, 3, and 4 for discussion in 

the context of the original research objectives. The spatial and temporal heterogeneity of 

Earth’s climate feedbacks has been a central theme of this thesis. The assumption that climate 

sensitivity or any individual feedback is constant over time or space has been accepted as 

false by the research community and we now face the challenge of disentangling the immense 

non-linear complexity of the earth system so we can better understand and anticipate the 

future of our planet. This thesis has aimed to contribute towards this endeavour.  
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5.1.1 Fast and multi-decadal feedbacks 

Chapter 2 was motivated by the findings of two studies, Goodwin (2021) and Goodwin and 

Cael (2020), who used the WASP model (see Chapter 1) to undertake a probabilistic 

assessment of Earth’s feedbacks over multiple timescales using observations of GMST and 

OHC anomalies as likelihood filters. They found two peaks in the posterior probability 

distributions of the fast and multi-decadal feedbacks (Figure 2.1), meaning that the statistical 

plausibility of Earth’s multi-decadal feedbacks being damping could not be ruled out, based 

on observational evidence. I aimed to build on their methodology to constrain the magnitude 

of Earth’s multi-decadal feedbacks further, and in doing do, further constrain the magnitude 

of Earth’s faster inter-annual feedbacks.  

I repeated the method utilised by Goodwin (2021) and Goodwin and Cael (2020) (Method 1) 

and compared the results to the posterior ensembles extracted by two alternative methods of 

likelihood filter to ascertain the optimal statistical method of constraining Earth’s fast and 

multi-decadal feedbacks using the WASP model. Instead of the HadCRUT5 observational 

dataset used in Method 1 (Morice et al., 2021), the alternative methods (Methods 2 and 3) 

used a new forced temperature profile from Cael and Calafat (in review) as a temperature 

constraint. This record proved to be a substantial improvement as a constraint over the 

unmodified HadCRUT5 dataset as it meant that a simulation could be compared directly to 

the forced signal when determining agreement with historical temperature change, without 

the influence of random noise. Methods 2 and 3 further improved on Method 1 by utilising 1-

year averages for the temperature anomalies in the likelihood filter, rather than the 20-year 

averages used in previous studies. This ensured that simulations would only be considered 

observation-consistent if they reproduced both the longer anthropogenic warming trend and 

the rapid inter-annual cooling response to volcanic activity. By targeting multiple timescales 

in the likelihood filter, Methods 2 and 3 successfully constrained the magnitude of Earth’s fast 

and multi-decadal feedbacks with increased statistical certainty compared to Method 1. 

The likelihood filter utilised by Goodwin (2021) and Goodwin and Cael (2020) in their 

probabilistic assessment incorporated a cost function that was used to determine consistency 

between a simulation and the chosen observational constraint. For the purpose of evaluation, 

this same cost function was used in both Methods 1 and 2, with each ensemble member 

weighted by the ratio of the cost function to a prescribed automatic assessment limit, 

meaning that simulations that more closely matched the observations were given a greater 

weighting in the posterior ensemble. However, the cost function assumes that each time step 

is independent, and this is a limitation as in reality, the global average temperature of one 

year will influence the global average temperature of the following year. Therefore, Method 3 

aimed to rectify this by utilising a multivariate likelihood function to extract the posterior 
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ensemble rather than a cost function. The covariance matrix that formed the basis of this 

likelihood function was based on observational data and ensured that individual years were 

no longer considered independent which offers a theoretical improvement in the statistical 

methodology. However, in practice, the computational challenges created by the new 

multivariate likelihood function meant that simulations from Method 3 could not be weighted 

in the same way as Methods 1 and 2 and all posterior ensemble members are considered 

equally likely. As expected, this had an impact on the results. Firstly, the results of Method 3 

would suggest fast, inter-annual feedbacks are the driving amplifying influence on climate 

sensitivity, and that slower multi-decadal feedbacks are much weaker in magnitude and with 

limited consequence for global climate sensitivity (Figure 2.3). This directly contradicts the 

findings of CMIP5 and CMIP6 and all evidence pointing towards a significant multi-decadal 

pattern effect (Andrews, Gregory and Webb, 2015; Dong et al., 2020; Zhou et al., 2021; Chao, 

Muller and Dessler, 2022). It is therefore likely that the covariance matrix used in the 

multivariate likelihood function of Method 3 is overpowered and overemphasises the 

influence of fast feedbacks that operate on timescales of less than a year. Furthermore, 

Method 3 indicated a fairly equal likelihood of multi-decadal feedbacks being amplifying or 

damping, thereby offering limited improvement on Method 1 in this regard. If the 

computational challenges of the multivariate likelihood function could be overcome so that 

ensemble members could be weighted according to their agreement with the observed 

constraints, this could provide some improvement in accuracy. 

Overall, Method 2, which utilised a cost function, 1-year averaged temperature anomalies, 

and the extracted forced temperature profile as a constraint, showed the greatest agreement 

between simulated and observed temperatures over the historical period. Method 2 

successfully captured both the long-term trend and short-term inter-annual variability with 

narrow confidence bands throughout. This method gave a median estimate of 0.85 Wm-2K-1 

for the magnitude of multi-decadal feedbacks, with a 66% confidence interval of 0.50 – 1.25 

Wm-2K-1 (Figure 2.6) which supports the CMIP5 and CMIP6 models that simulate stronger 

amplifying multi-decadal feedbacks. Furthermore, Method 2 estimated that Earth’s fast 

feedbacks have a median magnitude of 0.88 Wm-2K-1 with a 66% confidence interval of 0.43 – 

1.23 Wm-2K-1 (Figure 2.5a). Although the range of magnitudes of fast and multi-decadal 

feedbacks were found to be similarly amplifying, there was a negative correlation between 

the two terms across the ensemble meaning that stronger fast feedbacks were accompanied 

by weaker multi-decadal feedbacks, and vice versa (Figure 2.5c). Nevertheless, all methods 

underestimated the total warming experienced during the historical period, a problem 

common amongst assessments of climate feedbacks based on the historical record (Gregory 

and Andrews, 2016; Knutti, Rugenstein and Hegerl, 2017; Dessler, 2020; Tokarska et al., 

2020; Meyssignac et al., 2023; Mutton et al., 2024). It is likely that the lack of slow feedbacks 
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that operate on timescales longer than 20 years in this version of the WASP model could be to 

blame here and as such, later chapters of this thesis aimed to investigate Earth’s slow 

feedbacks with the intention of rectifying this limitation. Future work should also update the 

radiative forcing estimates utilised in the prior ensembles of the WASP model to explore the 

implications for magnitude of Earth’s fast and multi-decadal feedbacks. 

5.1.2 Ice sheet-albedo feedback 

Many studies have identified the limitations of the underrepresentation of Earth’s slow 

feedbacks in assessments of climate sensitivity (Lunt et al., 2010; von der Heydt et al., 2016; 

Sherwood et al., 2020; Tierney et al., 2020a; Fabiano et al., 2024). The instrumental record is 

too short to fully capture feedbacks that operate on timescales of more than a few decades, 

and this has repeatedly led to an underestimation of climate sensitivity when constrained by 

the historical observational record alone (Knutti, Rugenstein and Hegerl, 2017; Gregory et al., 

2020). Furthermore, it is important to consider how human activity could influence the global 

climate beyond the end of the 21st Century; excessive short-term thinking throughout the 20th 

Century has been a major factor in causing the climate emergency we now find ourselves in 

and we cannot afford to repeat the mistakes of previous generations and not consider the 

long-term future of our planet (Martínez Montero et al., 2024). Chapters 3 and 4 of this thesis 

were therefore motivated by the desire to increase understanding of earth system dynamics 

on centennial to millennial timescales.  

In particular, Chapter 3 aimed to calculate a quantitative estimate for the magnitude of the ice 

sheet-albedo feedback and the response timescale that this feedback operates over, using 

probabilistic assessment of proxy records for Earth’s most recent deglaciation (Lambert et al., 

2012; Lambeck et al., 2014; Köhler et al., 2017; Baggenstos et al., 2019; Osman et al., 2021; 

Shackleton et al., 2023). This estimate was generated under the assumption that the energy 

imbalance caused by ice sheet-albedo change can be considered either an internal feedback 

or an external source of radiative forcing within the energy budget equation. Under this 

premise, the magnitude of the total climate feedback parameter, 𝜆𝑡𝑜𝑡𝑎𝑙, can be calculated 

either way, with the difference representing the magnitude of the ice sheet-albedo feedback, 

𝜆𝑎𝑙𝑏. Using this methodology, a best estimate of 0.55 Wm-2K-1 was generated, with a 66% 

confidence interval of 0.45 - 0.63 Wm-2K-1 and a 95% confidence interval of 0.33 - 0.77 Wm-

2K-1, indicating a distinctly amplifying effect (Figure 3.3a). Furthermore, the ensemble 

indicated that the inclusion of ice sheet-albedo feedback increases 𝜆𝑡𝑜𝑡𝑎𝑙 by ~42% at 

equilibrium (Figure 3.2c). When the radiative contribution of indirect pattern effects from ice 

sheet retreat were also accounted for, based on estimates from Cooper et al. (2024), the best 

estimate for the total ice sheet feedback increased to 0.86 Wm-2K-1, with a 66% confidence 
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interval of 0.53 – 1.28 Wm-2K-1 (Figure 3.3a). Such a strong amplifying effect would have 

significant consequences for all components of the earth system on millennial timescales, 

highlighting the importance of ice sheets for the global climate. Of course, the precise 

radiative contribution of indirect ice sheet-climate interactions are very difficult to quantify, 

and their inclusion introduced considerable uncertainty to the assessment, highlighting the 

need for more data to fully quantify ERF and indirect pattern effects for this and other time 

periods in Earth’s past.  

Efforts to constrain the response timescale of the ice sheet-albedo feedback were limited by 

the use of a single time interval of just 18 ka, and the 66% confidence interval could only be 

constrained to 1.9 ka to 5.5 ka, with a best estimate of 3.6 ka (Figure 3.3b). However, the 

constraint benefits of evidence from multiple glacial cycles might be somewhat counteracted 

by the additional uncertainty that would be introduced from proxy records for further into 

Earth’s history which tend to lack the high temporal resolution of the past 25 ka. There will 

be increasing opportunities to constrain the response timescale of ice sheet feedbacks as new 

records for radiative forcing and EEI are published.  

Both the magnitude and timescale estimates generated in Chapter 3 are specifically 

applicable to the most recent deglacial transition as the initial ice sheet extent is an important 

factor in determining the relative influence of ice sheets on the global climate. I concluded 

that is likely that 𝜆𝑎𝑙𝑏 will be weaker in the future as the extent of the Northern Hemisphere 

ice sheets is substantially smaller today than at the LGM, although the potential future 

significance of the Southern Hemisphere ice sheets cannot be ruled out. As the estimates 

generated in Chapter 3 could not be directly applied to the present day, Chapter 4 sought to 

calculate an adjusted estimate for 𝜆𝑎𝑙𝑏 which could be applied to projections of future climate 

change so to explore the potential influence of ice sheets on long timescales into the future. 

Assuming -5.2 Wm-2 ERF for the LGM (Zhu and Poulsen, 2021), an adjusted estimate of 0.31 

±0.09 Wm-2K-1 for 𝜆𝑎𝑙𝑏 was calculated using an EBM which was then used as an input 

parameter for the WASP prior ensemble. The results indicated that the ice sheet-albedo 

feedback increased GMST change by an average of 15% by the year 9000 across the four SSP 

scenarios modelled which translates to substantial warming for higher emission scenarios. 

The SSP scenarios are only prescribed until the year 2300 and so this study assumed no 

further human intervention beyond this point. This is of course a simplification, and we have 

very little understanding of how human civilisation will have evolved this far into the future 

and how the landscape of GHG emissions would change as a result, but the value of this result 

is not in producing a perfect prediction of the future, but rather to demonstrate the relative 

influence of the cryosphere on global temperatures and climate sensitivity. As both Figure 4.6 

and Table 4.1 show, the ice sheet-albedo feedback was found to increase GMST change by the 
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year 3000 by varying degrees across all ensembles suggesting that ice sheet retreat could 

start to amplify warming, however minimally, within the next few hundred years. One must 

again note the spatial heterogeneity of Earth’s feedbacks and predicted warming; a small 

change in global mean temperature could still have significant impacts on regional and local 

scales (Mahlstein, Daniel and Solomon, 2013; Hansen and Sato, 2016; Arnell et al., 2019). 

These findings emphasise the potential long-term consequences of following a high emission 

pathway with high cumulative emitted carbon and therefore the need to prioritise the goal of 

Net Zero in order to avoid high risk, low likelihood impacts for our planet (Allen et al., 2009; 

IPCC, 2013; Matthews et al., 2018; IPCC, 2021; Wood et al., 2023). 

5.1.3 Background state and latitudinal variation 

Early chapters of this thesis centred primarily on the temporal heterogeneity of Earth’s 

climate feedbacks with particular focus on global mean trends. There is however another key 

characteristic of Earth system dynamics that should be considered; feedbacks are not 

spatially-constant and certain feedbacks are intrinsically tied to latitudinal variation. 

Therefore, in addition to exploring the long-term implications of the ice sheet-albedo 

feedback for global temperatures under multiple future scenarios, Chapter 4 also utilised a 

conceptual EBM to explore the latitudinal behaviour of the total climate feedback parameter, 

and thus climate sensitivity, under multiple mean climate states, both warmer and colder 

than the present. As a simple model, the EBM is especially well-placed to investigate large-

scale trends related to snow and ice albedo, providing crucial insights into the influence of the 

cryosphere on zonal and global feedback behaviour. Results from the EBM indicated that the 

relationship between the magnitude of 𝜆𝑡𝑜𝑡𝑎𝑙 and the background mean state is distinctly 

non-linear and strongly tied to changes in the latitudinal extent of the cryosphere, as 

evidenced by how global 𝜆𝑡𝑜𝑡𝑎𝑙 increased at global temperature anomalies where the 

cryosphere is most sensitive to small temperature fluctuations in the model (Figure 4.3a). 

The poleward latitudinal shift in local feedback strength with increasing temperature and 

radiative forcing further supported this (Figure 4.4). Furthermore, this result suggests that 

local snow and ice feedbacks will have a relatively strong amplifying influence in the 

immediate future as large areas of our Northern cryosphere are currently very close to their 

melting threshold (IPCC, 2019; Boers and Rypdal, 2021; Bochow et al., 2023; ICCI, 2024). As 

temperatures increase further, we can therefore expect local feedbacks within the Southern 

cryosphere to become more powerful and more influential in driving global climate 

sensitivity as parts of Antarctica near their melting points (Rosier et al., 2021; Lau et al., 

2023). This is supported by the rise in polar amplification within the Southern Hemisphere 

with global temperature anomalies of up to +6 K observable in Figure 4.5. 
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It should be reiterated that the EBM used in Chapter 4 is a simple representation of the earth 

system and the relative influence of surface albedo on global climatology is perhaps 

overpowered. This explains why the EBM found an overall decrease in both the modelled 

total climate feedback parameter, 𝜆𝑡𝑜𝑡𝑎𝑙, and climate sensitivity, S, in warmer climates, which 

is not consistent with the many studies that predict higher climate sensitivity in warmer 

background states (Caballero and Huber, 2013; von der Heydt and Ashwin, 2017; Farnsworth 

et al., 2019; Zhu, Poulsen and Tierney, 2019; Anagnostou et al., 2020; Cael and Goodwin, 

2023). Chapter 4 instead suggested that this decrease indicates that the overall contribution 

of snow and ice feedbacks to global climate sensitivity would decline with warming due to 

shrinkage of the cryosphere. Similarly, the EBM indicated that polar amplification of the 

Northern Hemisphere would decrease in warmer climates which is consistent with studies 

that predict a sea ice-free Arctic Ocean within the next few decades (Notz and Community, 

2020; Kim et al., 2023; Jahn, Holland and Kay, 2024). 

5.1.4 Synthesis 

This thesis has sought to reduce uncertainty surrounding the climate feedbacks with a 

consideration of the inherent heterogeneity in the temporal and spatial evolution of both the 

total climate feedback parameter and constituent components of this key parameter. Chapter 

2 improved on previous studies to generate probabilistic estimates of the magnitude of both 

the fast and multi-decadal feedbacks with improved statistical certainty. Chapter 3 utilised 

proxy records to generate a probabilistic estimate of the magnitude and equilibrium response 

timescale of a key slow feedback: the ice sheet-albedo feedback. Finally, Chapter 4 estimated 

the magnitude of the total climate feedback parameter under multiple mean climate states 

both warmer and colder than today in order to gain insights into the state dependence of 

𝜆𝑡𝑜𝑡𝑎𝑙. Chapter 4 also used this gained knowledge to generate an adjusted estimate of the ice 

sheet-albedo feedback for the present day and applied this estimate to probabilistic 

projections of long-term warming under multiple emission pathways. As such, each chapter 

investigates a different aspect of Earth’s complex system of climate feedbacks, providing 

quantitative estimates, and contributing to the collective understanding of climate feedbacks 

and, therefore, climate sensitivity.  

Naturally, this work is but a glimpse into the immense complexity of the system and there are 

numerous other components and factors to consider when attempting to understand climate 

sensitivity. Nonetheless, it should be noted that this work found each of the fast, multi-

decadal, and slow ice sheet-albedo feedbacks to amplify warming and, in each case, this 

amplifying influence is substantial. I hope that the results from this thesis aid future efforts to 

understand our climate system and predict its future changes. 
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5.2 Policy implications & final remarks 

The need to improve the quantification of climate sensitivity and key climate feedbacks goes 

beyond intellectual curiosity. There is an urgent necessity to develop greater certainty in our 

understanding of earth system dynamics to accurately anticipate the global and regional 

impacts of climate change on human populations and confidently prepare adaptation and 

mitigation plans accordingly. A key take away from the work of this thesis is the inevitability 

of ice sheet retreat over the next few centuries. The slow equilibrium timescales involved in 

ice sheet feedbacks are such that some impacts are now irreversible for centuries to 

millennia, even if we rapidly reach net negative emissions (IPCC, 2019; Gregory, George and 

Smith, 2020; Van Breedam, Goelzer and Huybrechts, 2020; Fox-Kemper et al., 2021). Of 

course, this does not automatically mean that complete ice sheet collapse is now unavoidable, 

but we must be prepared for the consequences of some ice mass loss (Pattyn et al., 2018; Hill, 

Gudmundsson and Chandler, 2024; Seroussi et al., 2024).  

The complete loss of the cryosphere would have severe implications for both human and 

natural ecosystems worldwide, and any degree of ice sheet retreat will have implications for 

other components of the earth system. Ice sheets interact with the local and global climate 

system through more ways than just albedo: meltwater output directly influences global 

ocean circulation; ice sheets affect local precipitation, temperature and wind patterns; and 

changes in ice mass can cause isostatic readjustment of the underlying lithosphere (Fyke et 

al., 2018). As noted in Chapter 3, the interactions between ice sheets and the climate system 

can themselves compound the amplifying effect of ice sheet-albedo changes and further 

increase warming. Glacier river runoff supplies water for billions of people; as glaciers 

retreat, freshwater runoff may initially increase, but this supply will decline over time with 

potentially devastating impacts for water availability and food production for the regions that 

depend on this resource (Prasch, Mauser and Weber, 2013; Zhang et al., 2015; Haeberli and 

Weingartner, 2020). Strong water management policies will be required to prevent water 

poverty, food scarcity, and increased water-related conflict (IPCC, 2019). Many regions are 

also dependent on the cryosphere for their livelihoods and cultural identity and cryosphere 

shrinkage is expected to have regional socioeconomic impacts (Xiao, Wang and Qin, 2015; 

Rasul and Molden, 2019; Tschakert et al., 2019). 

Perhaps the most concerning implication of ice sheet retreat for many human populations is 

global sea level rise from the transfer of previously land-based ice to the oceans, which will 

be compounded by thermal expansion as a result of ocean warming (Gregory et al., 2019; Van 

Breedam, Goelzer and Huybrechts, 2020; Klose et al., 2024). As of 2020, approximately 267 

million people live within 2 metres above sea level, a number that is only expected to grow, 
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with a disproportionate number located within tropical Asia and considered highly 

vulnerable to coastal flood risk (Hooijer and Vernimmen, 2021). In addition to coastal 

flooding, rising sea levels also increase the risk of: salinisation of coastal aquifers and 

agricultural land, exacerbating food insecurity; loss of coastal ecosystems such as tidal 

wetlands, coral reefs, and seagrasses; increased storm intensity and frequency; and coastal 

erosion with damage to property and infrastructure (Cazenave and Cozannet, 2014; Hinkel et 

al., 2015; Mentaschi et al., 2018; Elneel et al., 2024; Mohanty, Mohapatra and Mohanty, 2024; 

Wang et al., 2024). Like feedbacks, climate risks are interlinked and with each degree of 

additional warming, the likelihood of compound and cascading risks increases (Zscheischler 

et al., 2018; IPCC, 2019). Multiple potential hazards should be studied in tandem to produce 

comprehensive risk management strategies for vulnerable regions with an emphasis on 

building community resilience (Gallina et al., 2016; Lawrence, Blackett and Cradock-Henry, 

2020; Simpson et al., 2023).  

This thesis has highlighted the ongoing uncertainty surrounding tipping points within the 

earth system; several high impact, low likelihood climate impacts resulting from abrupt 

climate responses cannot be ruled out at this stage, which strongly recommends a 

precautionary approach towards climate change mitigation policy (Brovkin et al., 2021; 

Ritchie et al., 2021; Wunderling et al., 2024). At present, global climate finance is heavily 

targeted towards climate change mitigation (IPCC, 2022). This is not altogether a bad thing 

and strong mitigation policies will be required to reach net zero emissions, but it is important 

to acknowledge the need for adaptation and capacity-building for regions facing unavoidable 

impacts of climate change, and properly allocate funding accordingly (Mostafa, Rahman and 

Huq, 2016; Eriksen et al., 2021). Whilst scientific efforts to further constrain climate 

sensitivity shall continue, some uncertainty will always persist and this should not be used as 

an excuse to further delay decisive action; the economic and human cost of historical inaction 

is already too high and the window of opportunity to secure a liveable future for all is narrow 

and closing (Sanderson and O’Neill, 2020; UNFCCC, 2023). 
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Appendix A  

Prior distributions of model input parameters for WASP, used in Chapter 2 and 4. 

 Input Parameter Prior Distribution 

𝝀𝑷𝒍𝒂𝒏𝒄𝒌 Planck feedback 
Normal, μ = 3.2Wm-2,  

σ = 0.2Wm-2 

𝝀𝒇𝒂𝒔𝒕 Fast feedbacks 
Uniform, min = -3.0Wm-2,  

max = 1.0Wm-2 

𝝉𝒇𝒂𝒔𝒕 Response timescale of fast feedbacks 
Normal, μ = 8.9 days, 

σ = 0.4 days 

𝝀𝒎𝒅 Multi-decadal feedbacks 
Uniform, min = -3.0Wm-2, 

max = 3.0Wm-2 

𝝉𝒎𝒅 
Response timescale of multi-decadal 
feedbacks 

Uniform, min = 20 years,  

max = 45 years 

𝜶𝑪𝑶𝟐 
Radiative forcing coefficient for log 
change in CO2 

Normal, μ = 5.35Wm-2,  

σ = 0.27Wm-2 

 
Dimensionless uncertainty in N2O 
radiative forcing 

Normal, μ = 1.0, σ = 0.05 

 
Dimensionless uncertainty in CH4 
radiative forcing 

Normal, μ = 1.0, σ = 0.07 

 
Dimensionless uncertainty in 
halocarbon radiative forcing 

Normal, μ = 1.0, σ = 0.05 

 
Radiative forcing coefficient for 
volcanic aerosols 

Normal, μ = -19.0Wm-2,  

σ = -0.5Wm-2 

𝜸𝑺𝑶𝒙
𝑬𝑺𝑶𝒙

 
Radiative forcing from SOx aerosols in 
2020 

Normal, μ = -0.31Wm-2,  

σ = 0.11Wm-2 

𝜸𝑩𝑪𝑬𝑩𝑪 
Radiative forcing from black carbon 
aerosols in 2010 

Normal, μ = 0.18Wm-2,  

σ = 0.07Wm-2 

𝜸𝑵𝑶𝒙
𝑬𝑵𝑶𝒙

 
Radiative forcing from NOx aerosols in 
2010 

Normal, μ = -0.032Wm-2,  

σ = 0.016Wm-2 

𝜸𝑺𝑶𝑨𝑬𝑵𝑴𝑽𝑶𝑪 
Radiative forcing from Volatile 
Organic Compound aerosols in 2010 

Normal, μ = -0.06Wm-2,  

σ = 0.09Wm-2 

𝜸𝑶𝑪𝑬𝑶𝑪 
Radiative forcing from organic carbon 
in 2010 

Normal, μ = -0.03Wm-2,  

σ = 0.01Wm-2 

𝜸𝑵𝑯𝟑
𝑬𝑵𝑯𝟑

 
Radiative forcing from NH3 aerosols in 
2010 

Normal, μ = -0.048Wm-2,  

σ = 0.024Wm-2 

−𝑹𝒂𝒄𝒊:𝟐𝟎𝟏𝟏 
Radiative forcing from indirect 
aerosol effects in 2010 

Skew-normal, μ = -0.55Wm-2,  

σ = 0.37Wm-2, skew = -2.0 

 
Carbon exchange timescale between 
atmosphere and surface ocean mixed 
layer 

Uniform, min = 0.5 years,  

max = 1.0 years 
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Tracer exchange timescale surface 
ocean mixed layer to upper 
thermocline 

Uniform, min = 5 years,  

max = 40 years 

 
Tracer exchange timescale surface 
ocean mixed layer to intermediate 
water 

Uniform, min = 15 years,  

max = 60 years 

 
Tracer exchange timescale surface 
ocean mixed layer to deep ocean 

Uniform, min – 100 years,  

max = 500 years 

 
Tracer exchange timescale surface 
ocean mixed layer to bottom water 

Uniform, min = 400 years,  

max = 1500 years 

𝑰𝒃 
Atmosphere-ocean buffered carbon 
inventory 

Uniform, min = 3100PgC, max = 
3500PgC 

𝒓𝟏 
Ratio of surface warming at 
equilibrium: global near surface to 
global sea surface  

Uniform, min = 0.20, max = 1.5 

𝒓𝟐 
Ratio of global whole-ocean warming 
to global sea surface warming at 
equilibrium 

Uniform, min = 0.1, max = 1.0 
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Appendix B  

Supplementary material for Chapter 3, which accompanied the following publication: 

Booth, A., Goodwin, P., & Cael, B. B. (2024). Ice sheet-albedo feedback estimated from most 

recent deglaciation. Geophysical Research Letters, 51, e2024GL109953.   

Introduction  

Here we repeat our methodology from the main text, but using the record for Earth’s Energy 

Imbalance (EEI) based on benthic δ18O data from Shackleton et al. (2023), instead of 

Baggenstos et al. (2019), and show there is minimal difference in the results regardless of 

which dataset is used as ∆𝑁 to calculate 𝜆𝑡𝑜𝑡𝑎𝑙 , 𝜆𝑎𝑙𝑏, or 𝜏. We display the results using the 

alternative dataset for comparison with figures 1, 2 and 3 in the main text. 

Text S1. 

Figure S1a, b, and d use identical data to Figure 1a, b, and d in the main text, whilst Figure S1c 

displays the change in Earth’s top-of-atmosphere energy imbalance, ∆𝑁, over the past 18 ka, 

using data from Shackleton et al. (2023). The overall trend in ∆𝑁 shown in Figure S1c is very 

similar to that of Figure 1c, but with slightly greater uncertainty, slightly greater fluctuation 

from ~ 7.5 ka BP to present, and slightly reduced amplitude in the peaks and troughs over the 

full time series.  
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Figure S1. The components of the energy budget equation over the past 18 

ka with 66% confidence intervals (shaded areas). All plots are displayed as 

anomalies relative to 18 ka BP a) Change in total radiative forcing when 

forcing from ice sheet-albedo change is included (pink) and excluded 

(blue) b) Change in total radiative forcing from ice sheet-albedo change, c) 

Change in Earth’s Energy Imbalance, d) Global surface temperature 

anomaly. 

 

Text S2. 

Figure S2a shows the total climate feedback parameter, 𝜆𝑡𝑜𝑡𝑎𝑙, when ice sheet-albedo change 

is treated as either a forcing (pink) or feedback (blue). Overall, both the overall trend and 

magnitude is almost identical to that shown in Figure 2a, which uses a different dataset to 

represent ∆𝑁, indicating that the choice of dataset makes a negligible impact on the results. 

The same is the case for Figure S2b versus Figure 2b and Figure S2c versus Figure 2c, which 

are very similar. 
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Figure S2. The magnitude of the effective climate feedback parameter, λ, 

over the past 16.5 ka with 66% confidence interval shaded a) total climate 

feedback parameter, 𝝀𝒕𝒐𝒕𝒂𝒍, when ice sheet-albedo is assumed to be a 

forcing (pink) or feedback (blue), b) ice sheet-albedo feedback, 𝝀𝒂𝒍𝒃 

(purple) and with pattern effect (grey), c) impact of the ice sheet-albedo 

feedback, 𝝀𝒂𝒍𝒃, on the total climate feedback parameter, 𝝀𝒕𝒐𝒕𝒂𝒍, expressed 

as a percentage change. 

 

Text S3. 

Figure S3 displays the probability distributions for the magnitude (Figure S3a) and the 

response timescale (Figure S3b) of the ice sheet-albedo feedback, when ∆𝑁 is represented by 

data from Shackleton et al. (2023). For the magnitude of 𝜆𝑎𝑙𝑏, we find a best estimate of 0.55 

Wm-2K-1 with a 66% confidence interval of 0.45 – 0.64 Wm-2K-1 and a 95% confidence interval 
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of 0.32 – 0.77 Wm-2K-1. For the response timescale of the feedback, τ, we find a best estimate 

of 3.6 ka, with a 66% confidence interval of 1.8 ka to 5.6 ka and a 95% confidence interval of 

0.5 ka to 9.7 ka.  

 
 

 

Figure S3. Probability density distributions for a) ice sheet-albedo 

feedback, 𝝀𝒂𝒍𝒃, and b) the response timescale, τ, for 𝝀𝒂𝒍𝒃. Uncertainty 

intervals are displayed above each graph. Solid line indicates 66% 

confidence interval, dotted line indicates 95% confidence interval. The best 

estimate and 66% confidence interval for 𝝀𝒂𝒍𝒃 + 𝝀′ is given by the grey 

solid line for comparison (Fig. S3a). 
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Appendix C  

Coefficients used for statistical model fit for Equation 4.3 in Chapter 4. From 

supplementary material of Goodwin et al. (2023). 

Coeff. Estimate SE t-stat p-value 

A 0.272 0.122 2.22 0.0337 

B -0.0897 0.0212 -4.24 0.0001792 

C (km-1) -0.00329 0.00089 -3.70 0.000816 

D (K) 242.96 10.01 24.27 3.55 x 10-22 
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