
GYRATION STABILITY FOR PROJECTIVE PLANES

SEBASTIAN CHENERY AND STEPHEN THERIAULT

Abstract. Gyrations are operations on manifolds that arise in geometric topology, where a manifold 𝑀

may exhibit distinct gyrations depending on the chosen twisting. For a given𝑀 , we ask a natural question:

do all gyrations of 𝑀 share the same homotopy type regardless of the twisting? A manifold with this

property is said to have gyration stability. Inspired by recent work by Duan, which demonstrated that

the quaternionic projective plane is not gyration stable with respect to diffeomorphism, we explore this

question for projective planes in general. We obtain a complete description of gyration stability for the

complex, quaternionic, and octonionic projective planes up to homotopy.
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Introduction

The classification of manifolds up to a notion of equivalence, be it diffeomorphism, homeomorphism

or homotopy equivalence, is a motivating problem in geometry. Classically, Milnor classified closed

simply-connected 4-manifolds up to homotopy equivalence [Mil58] and then Freedman famously clas-

sified them up to homeomorphism [Fre82]. Their classification up to diffeomorphism remains one of the

great outstanding problems in the subject (see [Mil00] for context). Among the other families of mani-

folds that have been classified are closed smooth simply-connected 5-manifolds [Sma62,Bar65], closed

smooth simply-connected 6-manifolds [Wal66,Jup73,Zhu77], and closed smooth simply-connected spin

7-manifolds [CN19]. Other work has also considered classifications of families of manifolds with spe-

cific properties, such as circle bundles over simply-connected 4-manifolds [DL05], and more recently,

5-manifolds 𝑀 whose fundamental group is isomorphic to ℤ/2ℤ and with 𝜋2(𝑀) being free abelian

and a trivial module over the group ring [HS13].
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A gyration is a surgery on the Cartesian product of a given manifold and a sphere. Originally defined

by González Acuña [GA75], they have since appeared in at least three seemingly distinct contexts. One

is in work of Bosio–Meersseman [BM06] and Gitler–Lopez-de-Medrano [GLdM13] on intersections of

quadrics, carrying with them deep links to the topology of polyhedral products and their underlying

combinatorics. A second is in recent work of Duan [Dua22] on circle actions on smooth manifolds,

subsequently developed by Galaz-Garcı́a–Reiser [GGR23], and used to great effect to classify simply-

connected 6-manifolds that admit circle actions. Third, there is work of Kasprowski–Land–Powell–

Teichner [KLPT17] on 4-manifolds with the fundamental group of an aspherical 3-manifold, which

used gyrations of 3-manifolds and connected sums thereof (cf. [KLPT17, Sections 7.2 and 7.3]) to show

that two such 4-manifolds with isomorphic fundamental groups are stably diffeomorphic if they are

stably homotopy equivalent. Recently, direct study of homotopy theoretic properties of gyrations has

appeared in work of Huang and the second author [HT23], Basu-Ghosh [BG24] and [Hua24]. In this

paper we give a (nearly) complete classification of the homotopy types of gyrations on the projective

planes ℂ𝑃2
, ℍ𝑃2

and 𝕆𝑃2
.

Let 𝑀 be a closed simply-connected 𝑛-manifold. Such an 𝑀 may be thought of as a Poincaré Duality

complex with a single 𝑛-dimensional cell, so we let 𝑀 be its (𝑛 − 1)-skeleton, and there is a homotopy

cofibration

𝑆𝑛−1
𝑓𝑀−−→ 𝑀 → 𝑀

where 𝑓𝑀 is the attaching map for the top-cell. Let 𝑘 ≥ 2 be an integer and take a class 𝜏 ∈ 𝜋𝑘−1(SO(𝑛)).
Using the standard linear action of SO(𝑛) on 𝑆𝑛−1

, define the map

𝑡 : 𝑆𝑛−1 × 𝑆𝑘−1 → 𝑆𝑛−1 × 𝑆𝑘−1

by 𝑡 (𝑎, 𝑥) = (𝜏 (𝑥) · 𝑎, 𝑥). The 𝑘-gyration of 𝑀 by 𝜏 is defined to be the manifold given by the (strict)

pushout

𝑆𝑛−1 × 𝑆𝑘−1 𝑆𝑛−1 × 𝐷𝑘

𝑀 × 𝑆𝑘−1 G𝑘
𝜏 (𝑀)

1×𝜄

(𝑓𝑀×1)◦𝑡

where 𝜄 is the inclusion of the boundary of the disc. When 𝜏 is trivial the class 𝑡 is homotopic to the

identity and the above pushout constitutes a (𝑘 − 1, 𝑛)-type surgery on 𝑀 × 𝑆𝑘−1
with respect to this

trivial choice - we call this the trivial 𝑘-gyration and write it as G𝑘
0
(𝑀). Otherwise, the surgery is

twisted by the action of 𝜏 considered as a diffeomorphism. For this reason the homotopy class 𝜏 is

referred to as a twisting in the context of gyrations. This definition of a general 𝑘-gyration via pushouts

was introduced by [HT23], generalising the 𝑘 = 2 case used in both [Dua22] and [GLdM13], the second

being in the context of the trivial 2-gyration. Via the alternative surgery definition (see for example

[Hua24, Section 12]), it follows that a gyration is an (𝑛 + 𝑘 − 1)-manifold with an orientation inherited

from that of 𝑀 . This more geometric formulation is written in our notation as

G𝑘
𝜏 (𝑀) =

(
(𝑀 − 𝐼𝑛𝑡 (𝐷𝑛)) × 𝑆𝑘−1

)
∪𝑡

(
𝑆𝑛−1 × 𝐷𝑘

)
where 𝐷𝑛 ⊂ 𝑀 is an embedded 𝑛-disc centred at a chosen base point of 𝑀 .

Remark. In previous literature, gyrations have been denoted by ‘G𝜏 (𝑀)’ which does not keep track

of the index 𝑘 . Given the clarity necessary for the arguments in this paper, we have adopted ‘G𝑘
𝜏 (𝑀)’

as our notation.
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This leads us to the two central “gyration stability” questions, referred to throughout this paper as

GSI and GSII.

Question (GSI). For a given 𝑘 ≥ 2 and 𝑛-manifold 𝑀 , do we have G𝑘
𝜏 (𝑀) ≃ G𝑘

𝜔 (𝑀) for all twistings
𝜏, 𝜔 ∈ 𝜋𝑘−1(SO(𝑛))?

If the answer is yes, we say 𝑀 is G𝑘 -stable or that 𝑀 has G𝑘 -stability; when the context is clear this

property is called gyration stability. For a fixed 𝑘 , the property is equivalent to all 𝑘-gyrations having a

single homotopy type whatever twisting 𝜏 is taken. A refined version of the question asks for homotopy

types to be distinguished.

Question (GSII). For a given 𝑘 ≥ 2 and 𝑛-manifold 𝑀 , how many different homotopy types can G𝑘
𝜏 (𝑀)

have as the homotopy class 𝜏 is varied?

Note that the answer to GSI is “yes” if and only if the answer to GSII is “one” and so enumerating the

possible homotopy types of G𝑘
𝜏 (𝑀) is a valid strategy for answering GSI in either the negative or the

positive. Moreover, GSII is the stronger version of the statement - one may think of it as asking that if

we do not have G𝑘
-stability for a given 𝑘 , exactly how unstable are we?

Observe that gyration stability occurs in index 𝑘 whenever 𝜋𝑘−1(SO(𝑛)) is the trivial group, as there

is only one (i.e. the trivial) twisting to pick. If 𝜋𝑘−1(𝑆𝑂 (𝑛)) is not trivial then there are distinct non-

homotopic twistings, but they may nevertheless result in homotopy equivalent gyrations. For example,

when𝑀 is a sphere it is straightforward to show that gyration stability occurs for all 𝑘 (cf. Example 4.3).

Projective planes, on the other hand, behave much more delicately. Duan [Dua22, Example 3.4] showed

that the quarternionic projective plane ℍ𝑃2
is not G2

-stable up to diffeomorphsim by invoking spin

structures. This motivated us to reformulate his result homotopy theoretically in order to consider

other projective planes. Our results are summarised in the following table, with indications of where

in the paper the results are proved.

𝑀 𝑘 GSI? GSII? cf.

ℂ𝑃2
2 Yes 1 Theorem 4.5

ℍ𝑃2
2 No 2 Theorem 6.4

4 Yes 1 Theorem 6.12

𝕆𝑃2
2 No 2 Theorem 7.2

4 No 2, 3 or 5 Theorem 7.10

8 Yes 1 Theorem 7.15

9 Yes 1 Theorem 8.5

10 Yes 1 Theorem 8.10

12 No 4, 6 or 10 Theorem 8.17

Note in particular that we have G2
-instability of ℍ𝑃2

up to homotopy equivalence, so we are able

to rule out stability with respect to homeomorphsim, and therefore have a subtly stronger result than

in [Dua22].

Remark. A comment should be made about the inexact answers to GSII for𝕆𝑃2
when𝑘 = 4 and𝑘 = 12.

These are the result of certain relations between compositions of elements in the homotopy groups of

spheres, and depend on the values of two odd integers when taken modulo 8. These integers arose in

the calculation of the 2-primary homotopy groups of spheres by Toda [Tod62] and Oda [Oda79]. Their

being odd sufficed for Toda and Oda’s calculations. However, in our case, their being unspecified is an
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obstruction to precisely enumerating the homotopy types of gyrations. Details are in Propositions 7.9

and 8.16.

The arguments producing the GSII statements in the table above also give classification results. Write

𝔽 for one of ℂ, ℍ or 𝕆. Note that if the answer to GSII is 1 then the classification is that there is a

homotopy equivalence G𝑘
𝜏 (𝔽𝑃2) ≃ G𝑘

0
(𝔽𝑃2) for all 𝜏 ∈ 𝜋𝑘−1(𝑆𝑂 (𝑛)). The inexact cases when 𝑘 = 4, 12

for 𝕆𝑃2
imply no classification is yet possible. The 𝑘 = 2 case is complete.

Theorem A. Let 𝜏, 𝜔 ∈ 𝜋1(SO(2𝑚)) be twistings. Then:

(i) G2

𝜏 (ℂ𝑃2) ≃ G2

0
(ℂ𝑃2) for all 𝜏 ;

(ii) G2

𝜏 (ℍ𝑃2) ≃ G2

𝜔 (ℍ𝑃2) if and only if 𝜏 ≃ 𝜔 ;
(iii) G2

𝜏 (𝕆𝑃2) ≃ G2

𝜔 (𝕆𝑃2) if and only if 𝜏 ≃ 𝜔 .

This paper is divided into two parts, with Part I containing the theoretical basis for later arguments

and Part II being the site of computations. Part I describes a gyration as a certain homotopy cofibre,

and in the case of a projective plane gives a careful analysis of the homotopy class of the attaching

map for the top dimensional cell. Part II is a systematic study of gyration stability for projective planes,

beginning with some general examples in Section 4. Though we do not present a uniform argument

applicable to all cases from the above table, we lay out a general framework in Section 5. Detailed

computations are contained in Sections 6, 7 and 8, each case relying heavily on known compositions

of elements in the homotopy groups of spheres in the relevant dimensional ranges. We conclude by

proving Theorem A.

Acknowledgement. During preparation of this work, the first author was by supported EPSRC grant

EP/W524621/1 and the Heilbronn Institute for Mathematical Research. The authors also wish to thank

the reviewer for their insightful comments.

Part I: Deviations and Gyrations

This paper works with maps between wedges of spaces in great detail; there are many ways to

assemble such maps, so for the sake of clarity we set up the following notation before beginning in

earnest. Given based maps 𝑓 : 𝐴 → 𝑋 and 𝑔 : 𝐵 → 𝑌 we define the wedge of 𝑓 and 𝑔 to be the map

𝑓 ∨ 𝑔 : 𝐴 ∨ 𝐵 −→ 𝑋 ∨ 𝑌

which is to say, 𝑓 on the first summand and 𝑔 on the second. Furthermore, if 𝑌 = 𝑋 then we may define

the wedge sum of 𝑓 and 𝑔 to be the composite

𝑓 ⊥ 𝑔 : 𝐴 ∨ 𝐵
𝑓 ∨𝑔
−−−→ 𝑋 ∨ 𝑋

∇−−→ 𝑋

where ∇ denotes the fold map. If in addition we have 𝐴 = 𝐵 and 𝐴 is a co-𝐻 -space with comultiplica-

tion 𝜎 , then the sum of 𝑓 and 𝑔 is the composite

𝑓 + 𝑔 : 𝐴
𝜎−−→ 𝐴 ∨𝐴

𝑓 ⊥𝑔
−−−→ 𝑋 .

1. Maps Between Half-Smashes and a Deviation

Let 𝐴 and 𝐵 be path-connected spaces. The right half-smash is the quotient space

𝐴 ⋊ 𝐵 = (𝐴 × 𝐵)/∼
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obtained by collapsing 𝐵 to the basepoint. There is a canonical inclusion, projection and quotient map

𝑖 : 𝐴 → 𝐴 ⋊ 𝐵 𝜋 : 𝐴 ⋊ 𝐵 → 𝐴 𝑞 : 𝐴 ⋊ 𝐵 → 𝐴 ∧ 𝐵

where 𝑞 is given by collapsing 𝐴 to the basepoint.

Suppose that there are maps 𝑓 : 𝐴 → 𝐶 and 𝑔 : 𝐵 → 𝐷 where 𝐶 and 𝐷 are path-connected spaces.

Consider the map

𝐴 ⋊ 𝐵
𝑓⋊𝑔
−−−→ 𝐶 ⋊ 𝐷.

The naturality of 𝜋 and 𝑞 imply that there are commutative diagrams

(1.1)

𝐴 𝐴 ⋊ 𝐵

𝐶 𝐶 ⋊ 𝐷

𝑓

𝑖

𝑓⋊𝑔

𝑖

𝐴 ⋊ 𝐵 𝐴

𝐶 ⋊ 𝐷 𝐶

𝑓⋊𝑔

𝜋

𝑓

𝜋

𝐴 ⋊ 𝐵 𝐴 ∧ 𝐵

𝐶 ⋊ 𝐷 𝐶 ∧ 𝐷

𝑓⋊𝑔

𝑞

𝑓 ∧𝑔

𝑞

Next, suppose that 𝐴 is a co-𝐻 -space with comultiplication 𝜎 . Then 𝐴 ⋊ 𝐵 is a co-𝐻 -space with

comultiplication

𝜎 : 𝐴 ⋊ 𝐵
𝜎⋊1−−−→ (𝐴 ∨𝐴) ⋊ 𝐵

�−→ (𝐴 ⋊ 𝐵) ∨ (𝐴 ⋊ 𝐵).
The following lemma is well known but we give its statement and proof to be explicit about the choices

of maps involved.

Lemma 1.1. If 𝐴 is a simply-connected co-𝐻 -space then the composite

𝑒 : 𝐴 ⋊ 𝐵
𝜎−→ (𝐴 ⋊ 𝐵) ∨ (𝐴 ⋊ 𝐵)

𝜋∨𝑞
−−−→ 𝐴 ∨ (𝐴 ∧ 𝐵)

is a homotopy equivalence. This is natural for co-𝐻 -maps 𝐴 → 𝐶 between simply-connected co-𝐻 -spaces
and any map 𝐵 → 𝐷 .

Proof. Consider the homotopy cofibration 𝐴
𝑖−→ 𝐴 ⋊ 𝐵

𝑞
−→ 𝐴 ∧ 𝐵. Observe that 𝜋 is a left inverse for 𝑖 .

Thus the map 𝑒 splits this homotopy cofibration, implying that it induces an isomorphism in homology.

As 𝐴 is simply-connected, so is 𝐴 ⋊ 𝐵. Therefore Whitehead’s Theorem implies that 𝑒 is a homotopy

equivalence.

As the co-𝐻 -structure on 𝐴 ⋊ 𝐵 is induced by that from 𝐴, the naturality of 𝜋 and 𝑞 imply the

naturality of 𝑒 for co-𝐻 -maps𝐴 → 𝐶 between simply-connected co-𝐻 -spaces and any map 𝐵 → 𝐷 . □

Now, suppose that 𝐴 and 𝐶 are simply-connected co-𝐻 -spaces and there is a map 𝑓 : 𝐴 → 𝐶 which

is not necessarily a co-𝐻 -map, and consider the diagram

(1.2)

𝐴 ⋊ 𝐵 𝐴 ∨ (𝐴 ∧ 𝐵)

𝐶 ⋊ 𝐷 𝐶 ∨ (𝐶 ∧ 𝐷)

𝑓⋊𝑔

𝑒

𝑓 ∨(𝑓 ∧𝑔)

𝑒

If 𝑓 is a co-𝐻 -map then the naturality statement of Lemma 1.1 implies that it homotopy commutes.

However, if 𝑓 is not a co-𝐻 -map then it may not homotopy commute. Analogously to the co-𝐻 -

deviation of a map, let

𝛿 : 𝐴 ⋊ 𝐵 → 𝐶 ∨ (𝐶 ∧ 𝐷)
be the difference 𝛿 = 𝑒 ◦ (𝑓 ⋊ 𝑔) − ((𝑓 ∨ (𝑓 ∧ 𝑔)) ◦ 𝑒) of the two directions around the diagram. In

particular, 𝛿 ≃ ∗ if and only if 𝑓 ⋊ 𝑔 ≃ 𝑓 ∨ (𝑓 ∧ 𝑔). Analysing this deviation 𝛿 is the objective of the

rest of this section.
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Lemma 1.2. The composition 𝐴 ⋊ 𝐵
𝛿−→ 𝐶 ∨ (𝐶 ∧ 𝐷) 𝐼−→ 𝐶 × (𝐶 ∧ 𝐷) is null homotopic, where 𝐼 is the

inclusion of the wedge into the product.

Proof. Since 𝜎 is a comultiplication, 𝐼 ◦𝜎 ≃ Δ, where Δ is the diagonal map. The naturality of 𝐼 and the

definition of 𝑒 then imply that 𝐼 ◦ 𝑒 = 𝐼 ◦ (𝜋 ∨ 𝑞) ◦ 𝜎 = (𝜋 × 𝑞) ◦ 𝐼 ◦ 𝜎 ≃ (𝜋 × 𝑞) ◦ Δ. Therefore the

naturality of Δ and 𝐼 give homotopy commutative diagrams

𝐴 ⋊ 𝐵 𝐶 ⋊ 𝐷 𝐶 ∨ (𝐶 ∧ 𝐷)

(𝐴 ⋊ 𝐵) × (𝐴 ⋊ 𝐵) (𝐶 ⋊ 𝐷) × (𝐶 ⋊ 𝐷) 𝐶 × (𝐶 ∧ 𝐷)

Δ

𝑓⋊𝑔

Δ

𝑒

𝐼

(𝑓⋊𝑔)×(𝑓⋊𝑔) 𝜋×𝑞

𝐴 ⋊ 𝐵 𝐴 ∨ (𝐴 ∧ 𝐵) 𝐶 ∨ (𝐶 ∧ 𝐷)

(𝐴 ⋊ 𝐵) × (𝐴 ⋊ 𝐵) 𝐴 × (𝐴 ∧ 𝐵) 𝐶 × (𝐶 ∧ 𝐷)

Δ

𝑒

𝐼

𝑓 ∨(𝑓 ∧𝑔)

𝐼

𝜋×𝑞 𝑓 ×(𝑓 ∧𝑔)

In the first diagram, along the bottom row the naturality of 𝜋 and 𝑞 imply that 𝜋 ◦ (𝑓 ⋊𝑔) ≃ 𝑓 ◦ 𝜋 and

𝑞 ◦ (𝑓 ⋊ 𝑔) ≃ (𝑓 ∧ 𝑔) ◦ 𝑞. Thus the homotopy commutativity of the diagram gives

𝐼 ◦ 𝑒 ◦ (𝑓 ⋊ 𝑔) ≃ ((𝑓 ◦ 𝜋)) × ((𝑓 ∧ 𝑔) ◦ 𝑞) ◦ Δ.

Notice that the right side of this homotopy is exactly the counter-clockwise direction around the second

diagram, which is homotopic to 𝐼 ◦ (𝑓 ∨ (𝑓 ∧𝑔)) ◦𝑒 . Thus 𝐼 ◦𝑒 ◦ (𝑓 ⋊𝑔) ≃ 𝐼 ◦ (𝑓 ∨ (𝑓 ∧𝑔)) ◦𝑒 . In general,

for a co-𝐻 -space 𝑋 , left-distributivity holds for sums in [𝑋,𝑌 ] when composed with a map 𝑌 → 𝑍 , so

in our case we obtain

𝐼 ◦
(
𝑒 ◦ (𝑓 ⋊ 𝑔) − (𝑓 ∨ (𝑓 ∧ 𝑔)) ◦ 𝑒

)
≃ ∗.

But by definition, 𝛿 = 𝑒 ◦ (𝑓 ⋊ 𝑔) − (𝑓 ∨ (𝑓 ∧ 𝑔)) ◦ 𝑒 , implying that 𝐼 ◦ 𝛿 ≃ ∗, as asserted. □

In general, let 𝑋 and 𝑌 be path-connected spaces. The join of 𝑋 and 𝑌 is the quotient space

𝑋 ∗ 𝑌 = (𝑋 × 𝐼 × 𝑌 )/∼

where 𝐼 = [0, 1] is the unit interval with basepoint 0 and the relation is given by (𝑎, 0, 𝑏) ∼ (𝑎, , 0, 𝑏),
(𝑎, 1, 𝑏) ∼ (𝑎, 1, 𝑏′) and (∗, 𝑡, ∗) ∼ (∗, 0, ∗) for all 𝑎, 𝑎′ ∈ 𝐴, 𝑏,𝑏′ ∈ 𝐵 and 𝑡 ∈ 𝐼 . It is well known that there

is a homotopy equivalence 𝑋 ∗ 𝑌 ≃ Σ𝑋 ∧ 𝑌 . Let 𝑖1 : 𝑋 → 𝑋 ∨ 𝑌 and 𝑖2 : 𝑌 → 𝑋 ∨ 𝑌 be the inclusions

of the left and right wedge summands respectively. Define maps 𝑒𝑣1 and 𝑒𝑣2 by the composites

𝑒𝑣1 : ΣΩ𝑋
𝑒𝑣−→ 𝑋

𝑖1−→ 𝑋 ∨ 𝑌

𝑒𝑣2 : ΣΩ𝑌
𝑒𝑣−→ 𝑌

𝑖2−→ 𝑋 ∨ 𝑌

where 𝑒𝑣 is the canonical evaluation map. Ganea [Gan65] showed that there is a homotopy fibration

Ω𝑋 ∗ Ω𝑌
[𝑒𝑣1,𝑒𝑣2 ]−−−−−−→ 𝑋 ∨ 𝑌

𝐼−→ 𝑋 × 𝑌
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where 𝐼 is the inclusion of the wedge into the product and [𝑒𝑣1, 𝑒𝑣2] is the Whitehead product of 𝑒𝑣1

and 𝑒𝑣2. In our case, the null homotopy for 𝛿 ◦ 𝐼 in Lemma 1.2 implies that there is a lift

(1.3)

Ω𝐶 ∗ Ω(𝐶 ∧ 𝐷)

𝐴 ⋊ 𝐵 𝐶 ∨ (𝐶 ∧ 𝐷)

[𝑒𝑣1,𝑒𝑣2 ]
𝜆

𝛿

for some map 𝜆. In particular, 𝛿 factors through a Whitehead product. To go further we specialize.

Suppose that 𝐴 = 𝑆2𝑚−1
, 𝐶 = 𝑆𝑚 and 𝑓 : 𝑆2𝑚−1 → 𝑆𝑚 is some map. Suppose also that 𝐵 = 𝐷 = 𝑆𝑘−1

and 𝑔 is the identity map. Then (1.3) takes the form

(1.4)

Ω𝑆𝑚 ∗ Ω𝑆𝑚+𝑘−1

𝑆2𝑚−1 ⋊ 𝑆𝑘−1 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1.

[𝑒𝑣1,𝑒𝑣2 ]
𝜆

𝛿

As before, let 𝑖1 and 𝑖2 be the inclusions of the left and right wedge summands into 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1
,

respectively.

Lemma 1.3. The deviation 𝛿 is homotopic to the composite

𝑆2𝑚−1 ⋊ 𝑆𝑘−1
𝑞
−−→ 𝑆2𝑚+𝑘−2

𝑟−−→ 𝑆2𝑚+𝑘−2
[𝑖1,𝑖2 ]−−−−→ 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1

for some map of degree 𝑟 ∈ ℤ.

Proof. Observe that the (2𝑚 + 𝑘 − 2)-skeleton of Ω𝑆𝑚 ∗ Ω𝑆𝑚+𝑘−1
is 𝑆2𝑚+𝑘−2

. Let

𝜄 : 𝑆2𝑚+𝑘−2 → Ω𝑆𝑚 ∗ Ω𝑆𝑚+𝑘−1

be the inclusion of the bottom cell. Since 𝑆2𝑚−1 ⋊ 𝑆𝑘−1
is homotopy equivalent to 𝑆2𝑚−1 ∨ 𝑆2𝑚+𝑘−2

, for

connectivity and dimension reasons the map 𝑆2𝑚−1 ⋊ 𝑆𝑘−1
𝜆−→ Ω𝑆𝑚 ∗Ω𝑆𝑚+𝑘−1

factors as the composite

𝑆2𝑚−1 ⋊ 𝑆𝑘−1
𝑞
−−→ 𝑆2𝑚+𝑘−2

𝑟−−→ 𝑆2𝑚+𝑘−2
𝜄−−→ Ω𝑆𝑚 ∗ Ω𝑆𝑚+𝑘−1

for some map of degree 𝑟 . On the other hand, the composite

𝑆2𝑚+𝑘−2
𝜄−−→ Ω𝑆𝑚 ∗ Ω𝑆𝑚+𝑘−1

[𝑒𝑣1,𝑒𝑣2 ]−−−−−−→ 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1

is homotopic to the Whitehead product [𝑖1, 𝑖2]. Thus there is a sequence

𝛿 ≃ [𝑒𝑣1, 𝑒𝑣2] ◦ 𝜆 ≃ [𝑒𝑣1, 𝑒𝑣2] ◦ 𝜄 ◦ 𝑟 ◦ 𝑞 ≃ [𝑖1, 𝑖2] ◦ 𝑟 ◦ 𝑞

which gives the assertion. □

Remark 1.4. The choices made for the specialization of the spaces 𝐴, 𝐵, 𝐶 , 𝐷 and the maps 𝑓 and 𝑔

is partly due to the applications in mind, and partly so that the deviation 𝛿 has the precise form in

Lemma 1.3. Note that if𝐴 is a sphere of dimension𝑑 for𝑚 < 𝑑 < 2𝑚−1 then 𝜆 would be null homotopic

for connectivity and dimension reasons. But in this range it is a classical result that 𝑓 : 𝑆𝑑 → 𝑆𝑛 is a

suspension, in which case it was already clear that 𝛿 is null homotopic, as suspensions are in particular

co-𝐻 -maps. If 𝑑 > 2𝑚 − 1 then 𝜆 becomes more complex since it involves maps from spheres into the

(𝑑 + 𝑘 − 2)-skeleton of Ω𝑆𝑚 ∗ Ω𝑆𝑚+𝑘−1
. If 𝑑 < 3𝑚 + 𝑘 − 3 then this skeleton is still 𝑆2𝑚+𝑘−2

but now 𝜆

involves a torsion homotopy group of that sphere, and if 𝑑 ≥ 3𝑚 + 𝑘 − 3 then the skeleton involves

more cells.
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Summarizing the results in this section we obtain the following.

Proposition 1.5. Suppose that there is a map 𝑓 : 𝑆2𝑚−1 → 𝑆𝑚 and fix an integer 𝑘 ≥ 2. Then the
deviation from the diagram

𝑆2𝑚−1 ⋊ 𝑆𝑘−1 𝑆2𝑚−1 ∨ 𝑆2𝑚+𝑘−2

𝑆𝑚 ⋊ 𝑆𝑘−1 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1

𝑓⋊1

𝑒

𝑓 ∨Σ𝑘−1 𝑓

𝑒

homotopy commuting is homotopic to the composite

𝑆2𝑚−1 ⋊ 𝑆𝑘−1
𝑞
−−→ 𝑆2𝑚+𝑘−2

𝑟−−→ 𝑆2𝑚+𝑘−2
[𝑖1,𝑖2 ]−−−−→ 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1

for some integer 𝑟 . □

2. Properties of the Homotopy Eqivalence 𝑒

In this section we construct an explicit inverse for the homotopy equivalence

𝑒 : 𝑆𝑚 ⋊ 𝑆𝑘−1 → 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1

for 𝑘 ≥ 2 and relate it to the deviation 𝛿 and the map 𝑓 ⋊ 1 of Section 1. An ingredient map will play a

special role, which we call 𝑗 .

Lemma 2.1. For 𝑘 ≥ 2 there is a map 𝑆𝑚+𝑘−1
𝑗
−→ 𝑆𝑚 ⋊ 𝑆𝑘−1 such that 𝑞 ◦ 𝑗 is homotopic to the identity

map and 𝜋 ◦ 𝑗 is null homotopic. If 𝑘 ≤ 𝑚 − 1 then 𝑗 is a co-𝐻 -map.

Proof. The definition of the homotopy equivalence 𝑒 implies that there is a homotopy commutative

square

𝑆𝑚 ⋊ 𝑆𝑘−1 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1

𝑆𝑚 𝑆𝑚

𝜋

𝑒

𝑝1

where 𝑝1 is the pinch map to the first wedge summand. Thus the homotopy fibre of 𝜋 is homotopy

equivalent to the homotopy fibre of 𝑝1, which by [Gan65] is homotopy equivalent to 𝑆𝑚+𝑘−1 ⋊ Ω𝑆𝑚 ,

which in turn is homotopy equivalent to Ω𝑆𝑚 ∗ 𝑆𝑘−1
. Let 𝑗 be the composite

𝑗 : 𝑆𝑚+𝑘−1
𝜄−−→ Ω𝑆𝑚 ∗ 𝑆𝑘−1 −→ 𝑆𝑚 ⋊ 𝑆𝑘−1

where the map 𝜄 is again the inclusion of the bottom cell and the right map is from the fibre to the total

space in the homotopy fibration for 𝜋 . Then 𝜋 ◦ 𝑗 is null homotopic.

By the Blakers-Massey Theorem, the homotopy fibration

Ω𝑆𝑚 ∗ 𝑆𝑘−1 → 𝑆𝑚 ⋊ 𝑆𝑘−1
𝜋−→ 𝑆𝑚

is a homotopy cofibration in dimensions ≤ 2𝑚 + 𝑘 − 2. In particular, as 𝑚 + 𝑘 − 2 ≤ 2𝑚 + 𝑘 − 2 for

any 𝑚 ≥ 2, the composite 𝑆𝑚+𝑘−1
𝑗
−→ 𝑆𝑚 ⋊ 𝑆𝑘−1

𝜋−→ 𝑆𝑚 is a homotopy cofibration in dimensions ≤
𝑚 + 𝑘 − 1. Consequently, as the spaces in this composite are of dimension ≤ 𝑚 + 𝑘 − 1, the composite

is a homotopy cofibration in all dimensions. Observe that 𝑗∗ induces an isomorphism on homology in

degree 𝑚 + 𝑘 − 1, as does 𝑞∗, so 𝑞 ◦ 𝑗 induces a homology isomorphism in all degrees and is therefore

a homotopy equivalence. As 𝑞 ◦ 𝑗 is a self-map of 𝑆𝑚+𝑘−1
, being a homotopy equivalence implies that
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it is homotopic to a map of degree ±1. If 𝑞 ◦ 𝑗 ≃ −1 then adjust 𝑗 by pre-composing it with the map of

degree −1. Then 𝑞 ◦ 𝑗 ≃ 1 and this adjustment does not affect the fact that 𝜋 ◦ 𝑗 is null homotopic.

Finally, observe that 𝑆𝑚+𝑘−1
𝑗
−→ 𝑆𝑚⋊𝑆𝑘−1 ≃ 𝑆𝑚 ∨𝑆𝑚+𝑘−1

is in the stable range if 𝑘 ≤ 𝑚−1, implying

that it is the suspension of a map 𝑆𝑚+𝑘−2 → 𝑆𝑚−1 ⋊ 𝑆𝑘−1 ≃ 𝑆𝑚−1 ∨ 𝑆𝑚+𝑘−2
. Thus, if 𝑘 ≤ 𝑚 − 1, then 𝑗

is a co-𝐻 -map. □

Next, we relate 𝑖 and 𝑗 to the homotopy equivalence 𝑒 in Section 1. Write 𝑖1 : 𝑋 → 𝑋 ∨ 𝑌 and

𝑖2 : 𝑌 → 𝑋 ∨ 𝑌 for the inclusions of the left and right wedge summands respectively. Recalling the

notation for the wedge sum, observe that 𝑖1 ⊥ 𝑖2 : 𝑋 ∨ 𝑌 → 𝑋 ∨ 𝑌 is the identity map.

Lemma 2.2. Let 𝑘 ≥ 2. The following hold:

(i) the composite 𝑆𝑚
𝑖−→ 𝑆𝑚 ⋊ 𝑆𝑘−1

𝑒−→ 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1 is homotopic to 𝑖1;

(ii) if 𝑘 ≤ 𝑚 − 1 then the composite 𝑆𝑚+𝑘−1
𝑗
−→ 𝑆𝑚 ⋊ 𝑆𝑘−1

𝑒−→ 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1 is homotopic to 𝑖2;

(iii) if 𝑘 ≤ 𝑚 − 1 then the map 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1
𝑖⊥𝑗
−−→ 𝑆𝑚 ⋊ 𝑆𝑘−1 is a homotopy equivalence that is the

inverse of 𝑒 .

Proof. Consider the diagram

𝑆𝑚 𝑆𝑚 ∨ 𝑆𝑚

𝑆𝑚 ⋊ 𝑆𝑘−1 (𝑆𝑚 ⋊ 𝑆𝑘−1) ∨ (𝑆𝑚 ⋊ 𝑆𝑘−1) 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1

𝑖

𝜎

𝑖∨𝑖 1∨∗

𝜎 𝜋∨𝑞

Observe that as 𝑖 is the inclusion of the bottom cell, it is a co-𝐻 -map, so the left square homotopy

commutes. The right-hand triangle homotopy commutes since 𝜋 is a left inverse for 𝑖 and 𝑞 ◦ 𝑖 is null

homotopic for connectivity and dimension reasons. The lower row is the definition of 𝑒 while the upper

composite (1 ∨ ∗) ◦ 𝜎 is the inclusion 𝑖1 of the left wedge summand. The homotopy commutativity of

the diagram therefore implies that 𝑒 ◦ 𝑖 ≃ 𝑖1. This proves (i).

Next, consider the diagram

𝑆𝑚+𝑘−1 𝑆𝑚+𝑘−1 ∨ 𝑆𝑚+𝑘−1

𝑆𝑚 ⋊ 𝑆𝑘−1 (𝑆𝑚 ⋊ 𝑆𝑘−1) ∨ (𝑆𝑚 ⋊ 𝑆𝑘−1) 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1

𝑗

𝜎

𝑗∨𝑗 ∗∨1

𝜎 𝜋∨𝑞

Since 𝑘 ≤ 𝑚 − 1, Lemma 2.1 implies that 𝑗 is a co-𝐻 -map, so the left square homotopy commutes. The

right-hand triangle homotopy commutes by Lemma 2.1. Again, the lower row is the definition of 𝑒

while the upper composite (∗ ∨ 1) ◦ 𝜎 is the inclusion 𝑖2 of the right wedge summand. The homotopy

commutativity of the diagram therefore implies that 𝑒 ◦ 𝑗 ≃ 𝑖2. This proves (ii).

For (iii), it follows from (i) and (ii) that 𝑒 ◦ (𝑖 ⊥ 𝑗) ≃ (𝑒 ◦ 𝑖) ⊥ (𝑒 ◦ 𝑗) ≃ 𝑖1 ⊥ 𝑖2, which is precisely the

identity map on 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1
. □

To prevent confusion, we use 𝑗† to denote the version of 𝑗 for 𝑆2𝑚+𝑘−2 → 𝑆2𝑚−1⋊𝑆𝑘−1
. The following

two lemmas are instrumental in what follows; they relate 𝑗† to the behaviour of the deviation 𝛿 from

Lemma 1.3.

Lemma 2.3. For 𝑘 ≥ 2, the composite 𝑆2𝑚+𝑘−2
𝑗†
−→ 𝑆2𝑚−1⋊𝑆𝑘−1

𝛿−→ 𝑆𝑚∨𝑆𝑚+𝑘−2 is homotopic to 𝑟 · [𝑖1, 𝑖2],
where 𝑟 is the integer appearing in Proposition 1.5.
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Proof. By Proposition 1.5, the deviation 𝛿 is homotopic to the composite

𝑆2𝑚−1 ⋊ 𝑆𝑘−1
𝑞
−−→ 𝑆2𝑚+𝑘−2

𝑟−−→ 𝑆2𝑚+𝑘−2
[𝑖1,𝑖2 ]−−−−→ 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1

for some map of degree 𝑟 . By Lemma 2.1, 𝑞 ◦ 𝑗† is homotopic to the identity map on 𝑆2𝑚+𝑘−2
, so we

obtain 𝛿 ◦ 𝑗† ≃ 𝑟 · [𝑖1, 𝑖2]. □

Finally, we use Lemmas 2.1, 2.2 and 2.3 to relate 𝑗† to the map 𝑓 ⋊ 1 in Section 1.

Lemma 2.4. If 2 ≤ 𝑘 ≤ 2𝑚 − 2 then there is a homotopy commutative diagram

𝑆2𝑚+𝑘−2 𝑆2𝑚−1 ⋊ 𝑆𝑘−1 𝑆𝑚 ⋊ 𝑆𝑘−1

𝑆2𝑚+𝑘−2 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1

𝑗† 𝑓⋊1

𝑒

𝑖2◦Σ𝑘−1 𝑓 +𝑟 · [𝑖1,𝑖2 ]

where 𝑟 is the integer appearing in Proposition 1.5.

Proof. By definition, 𝛿 = 𝑒 ◦ (𝑓 ⋊ 1) − ((𝑓 ∨ (𝑓 ∧ 1)) ◦ 𝑒 . As the identity map 1 is for 𝑆𝑘−1
, we may

rewrite this as 𝛿 = 𝑒 ◦ (𝑓 ⋊ 1) − (𝑓 ∨ Σ𝑘−1 𝑓 ) ◦ 𝑒 . Rearranging gives 𝑒 ◦ (𝑓 ⋊ 1) ≃ (𝑓 ∨ Σ𝑘−1 𝑓 ) ◦ 𝑒 + 𝛿 .

Now precompose with 𝑗†. Since 𝑘 ≤ 2𝑚 − 2, by Lemma 2.1, 𝑗† is a co-𝐻 -map, giving

𝑒 ◦ (𝑓 ⋊ 1) ◦ 𝑗† ≃ ((𝑓 ∨ Σ𝑘−1 𝑓 ) ◦ 𝑒 + 𝛿) ◦ 𝑗† ≃ (𝑓 ∨ Σ𝑘−1 𝑓 ) ◦ 𝑒 ◦ 𝑗† + 𝛿 ◦ 𝑗†.

By Proposition 2.2 (ii), 𝑒 ◦ 𝑗 ≃ 𝑖2, implying by the naturality of 𝑖2 that

(𝑓 ∨ Σ𝑘−1 𝑓 ) ◦ 𝑒 ◦ 𝑗† ≃ (𝑓 ∨ Σ𝑘−1 𝑓 ) ◦ 𝑖2 ≃ 𝑖2 ◦ Σ𝑘−1 𝑓 .

By Lemma 2.3, 𝛿 ◦ 𝑗† ≃ 𝑟 · [𝑖1, 𝑖2]. Therefore

𝑒 ◦ (𝑓 ⋊ 1) ◦ 𝑗† ≃ 𝑖2 ◦ Σ𝑘−1 𝑓 + 𝑟 · [𝑖1, 𝑖2],

and hence the diagram in the statement of the Lemma homotopy commutes. □

3. Gyrations

Let𝑀 be a simply-connected Poincaré Duality complex of dimension 𝑛. Let𝑀 be the (𝑛−1)-skeleton

of 𝑀 . Then there is a homotopy cofibration

𝑆𝑛−1
𝑓𝑀−−→ 𝑀 → 𝑀

where 𝑓𝑀 is the attaching map for the top-cell. Let𝑘 ≥ 2 be an integer and take a map 𝜏 : 𝑆𝑘−1 → SO(𝑛),
then using the standard linear action of SO(𝑛) on 𝑆𝑛−1

define the map

𝑡 : 𝑆𝑛−1 × 𝑆𝑘−1 → 𝑆𝑛−1 × 𝑆𝑘−1

by 𝑡 (𝑎, 𝑥) = (𝜏 (𝑥) · 𝑎, 𝑥).

Definition 3.1. Let 𝑘 ≥ 2 be an integer and let 𝑀 be an 𝑛-dimensional Poincaré Duality complex.

Define the 𝑘-gyration of𝑀 by 𝜏 to be the space defined by the (strict) pushout

(3.1)

𝑆𝑛−1 × 𝑆𝑘−1 𝑆𝑛−1 × 𝐷𝑘

𝑀 × 𝑆𝑘−1 G𝑘
𝜏 (𝑀)

1×𝜄

(𝑓𝑀×1)◦𝑡
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where 𝜄 is the inclusion of the boundary of the disc. When the context is clear, we will usually just

write gyration for G𝑘
𝜏 (𝑀).

If 𝜏 is trivial, then 𝑡 is the identity map and this pushout is a (𝑘 − 1, 𝑛)-type surgery on 𝑀 × 𝑆𝑘−1
.

Otherwise, the surgery is twisted by the action of 𝜏 (considered as a diffeomorphism). In either case,

the gyration is an (𝑛 + 𝑘 − 1)-dimensional Poincaré Duality complex. Since the disc 𝐷𝑘
is contractible,

from (3.1) we obtain a homotopy pushout

(3.2)

𝑆𝑛−1 × 𝑆𝑘−1 𝑆𝑛−1

𝑀 × 𝑆𝑘−1 G𝑘
𝜏 (𝑀)

(𝑓𝑀×1)◦𝑡

𝜋

where 𝜋 is the projection. The clockwise direction around (3.2) is null homotopic when restricted

to 𝑆𝑘−1
, so the commutativity of the diagram implies the same is true in the counter-clockwise direction

around the diagram. Moreover, observe that 𝑡 is the identity map when restricted to 𝑆𝑘−1
. Therefore, if

in general 𝑗2 : 𝐵 −→ 𝐴 × 𝐵 is the inclusion of the second factor, then there is a homotopy commutative

diagram in which the rows are homotopy cofibrations

(3.3)

𝑆𝑘−1 𝑆𝑛−1 × 𝑆𝑘−1 𝑆𝑛−1 ⋊ 𝑆𝑘−1

𝑆𝑘−1 𝑆𝑛−1 × 𝑆𝑘−1 𝑆𝑛−1 ⋊ 𝑆𝑘−1

𝑆𝑘−1 𝑀 × 𝑆𝑘−1 𝑀 ⋊ 𝑆𝑘−1.

𝑗2

𝑡 𝑡 ′

𝑗2

𝑓𝑀×1 𝑓𝑀⋊1

𝑗2

The map 𝑡 ′ is an induced map of cofibres and the map of cofibrations in the lower rectangle follows

from the naturality of the right half-smash. Thus, collapsing out 𝑆𝑘−1
in (3.2) results in a homotopy

pushout

(3.4)

𝑆𝑛−1 ⋊ 𝑆𝑘−1 𝑆𝑛−1

𝑀 ⋊ 𝑆𝑘−1 G𝑘
𝜏 (𝑀) .

(𝑓𝑀⋊1)◦𝑡 ′

𝜋

Lemma 2.1 implies that there is a homotopy cofibration 𝑆𝑛+𝑘−2
𝑗
−→ 𝑆𝑛−1 ⋊ 𝑆𝑘−1

𝜋−→ 𝑆𝑛−1
. Writing this as

a homotopy pushout

𝑆𝑛+𝑘−2 ∗

𝑆𝑛−1 ⋊ 𝑆𝑘−1 𝑆𝑛−1

𝑗

𝜋

and juxtaposing it over (3.4) shows that G𝑘
𝜏 (𝑀) is the homotopy pushout of the trivial map 𝑆𝑛+𝑘−2 −→ ∗

and the composite

𝜙𝜏 : 𝑆𝑛+𝑘−2
𝑗
−→ 𝑆𝑛−1 ⋊ 𝑆𝑘−1

𝑡 ′−→ 𝑆𝑛−1 ⋊ 𝑆𝑘−1
𝑓𝑀⋊1

−−−−→ 𝑀 ⋊ 𝑆𝑘−1.
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Thus we obtain the following.

Lemma 3.2. For 𝑘 ≥ 2 there is a homotopy cofibration 𝑆𝑛+𝑘−2
𝜙𝜏−−→ 𝑀 ⋊ 𝑆𝑘−1 → G𝑘

𝜏 (𝑀). □

Remark 3.3. Notice that as𝑀 is simply-connected and𝑛-dimensional, Poincaré Duality implies that𝑀

is at most (𝑛 − 2)-dimensional, and therefore 𝑀 ⋊𝑆𝑘−1
is at most (𝑛 +𝑘 − 3)-dimensional. Therefore 𝜙𝜏

attaches the top dimensional cell to the Poincaré Duality complex G𝑘
𝜏 (𝑀).

Remark 3.4. As a special case worth noting, if the twisting 𝜏 is trivial then 𝑡 , and hence 𝑡 ′, is the identity

map. Thus, writing G𝑘
0
(𝑀) for a gyration by the trivial twisting, the attaching map 𝜙0 is homotopic to

the composite (𝑓𝑀 ⋊ 1) ◦ 𝑗 .

Remark 3.5. Lemma 3.2 identifies the (𝑛 + 𝑘 − 2)-skeleton of the (𝑛 + 𝑘 − 1)-dimensional Poincaré

Duality complex G𝑘
𝜏 (𝑀) as 𝑀 ⋊ 𝑆𝑘−1

. This reproduces a result of Basu-Ghosh [BG24, Proposition 6.9]

using a different argument, while saying more by identifying the attaching map for the top cell.

The goal is to understand the attaching map 𝜙𝜏 in order to better understand the twisted gyration

G𝑘
𝜏 (𝑀). To do so, we specialize to make use of Sections 1 and 2. Suppose that 𝑀 is one of ℂ𝑃2

, ℍ𝑃2
or

𝕆𝑃2
. Then there are homotopy cofibrations

𝑆3
𝜂2−→ 𝑆2 → ℂ𝑃2 𝑆7

𝜈4−→ 𝑆4 → ℍ𝑃2 𝑆15
𝜎8−→ 𝑆8 → 𝕆𝑃2

where 𝜂2, 𝜈4 and 𝜎8 are maps of Hopf invariant one. Collectively, these may be described by a homotopy

cofibration

𝑆2𝑚−1
𝑓
−→ 𝑆𝑚 → 𝔽𝑃2

where 𝑓 = 𝜂2 and 𝔽 = ℂ if𝑚 = 2, 𝑓 = 𝜈4 and 𝔽 = ℍ if𝑚 = 4, and 𝑓 = 𝜎8 and 𝔽 = 𝕆 if𝑚 = 8. With these

dimensions for the domain and range of 𝑓 , the map 𝑗 appearing in the definition of 𝜙𝜏 is relabelled as 𝑗†

as in Section 2. To analyse 𝜙𝜏 = (𝑓 ⋊ 1) ◦ 𝑡 ′ ◦ 𝑗† we proceed to first consider 𝑓 ⋊ 1, then 𝑡 ′, and finally

put these together and compose with 𝑗†.

The homotopy cofibration for 𝔽𝑃2
implies we are in the context of Proposition 1.5, which describes

the deviation from 𝑓 ⋊ 1 being 𝑓 ∨ Σ𝑘−1 𝑓 , up to the homotopy equivalence 𝑒 . In this case the indeter-

minate degree map 𝑟 in the description of the deviation can be made more precise.

Proposition 3.6. Let 𝑓 : 𝑆2𝑚−1 → 𝑆𝑚 be one of 𝜂2, 𝜈4 or 𝜎8. If 𝑘 ≥ 2 then the deviation 𝛿 from the
diagram

𝑆2𝑚−1 ⋊ 𝑆𝑘−1 𝑆2𝑚−1 ∨ 𝑆2𝑚+𝑘−2

𝑆𝑚 ⋊ 𝑆𝑘−1 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1

𝑓⋊1

𝑒

𝑓 ∨Σ𝑘−1 𝑓

𝑒

homotopy commuting is homotopic to the composite

𝑆2𝑚−1 ⋊ 𝑆𝑘−1
𝑞
−→ 𝑆2𝑚+𝑘−2

[𝑖1,𝑖2 ]−−−−→ 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1.

Proof. By Proposition 1.5 we have that 𝛿 is homotopic to the composite

𝑆𝑚−1 ⋊ 𝑆𝑘−1
𝑞
−→ 𝑆2𝑚+𝑘−2

𝑟−→ 𝑆2𝑚+𝑘−2
[𝑖1,𝑖2 ]−−−−→ 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1

for some map of degree 𝑟 . So it remains to show that 𝑟 = 1. Since the homotopy cofibre of 𝑒 ◦ (𝑓 ⋊ 1)
is G𝑘

0
(𝔽𝑃2) by Remark 3.4, the homotopy commutative square in Lemma 2.4 implies that there is a
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homotopy cofibration diagram

𝑆2𝑚+𝑘−2 𝑆𝑚 ⋊ 𝑆𝑘−1 G𝑘
0
(𝔽𝑃2)

𝑆2𝑚+𝑘−2 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1 𝐶

(𝑓⋊1)◦𝑗†

𝑒 𝜀

𝑖2◦Σ𝑘−1 𝑓 +𝑟 · [𝑖1,𝑖2 ]

that defines the space𝐶 , and where 𝜀 is some induced map of homotopy cofibres. Since 𝑒 is a homotopy

equivalence, it induces an isomorphism in homology, so the Five-Lemma implies that 𝜀 also induces

an isomorphism in homology. Since spaces are simply-connected, 𝜀 is a homotopy equivalence by

Whitehead’s Theorem.

Now use 𝜀 to compare cup products. The homotopy cofibration defining 𝐶 implies that there is a

module isomorphism 𝐻 ∗(𝐶;ℤ) � ℤ{𝑎, 𝑏, 𝑐} where |𝑎 | =𝑚, |𝑏 | =𝑚+𝑘 −1 and |𝑐 | = 2𝑚+𝑘 −1. Since 𝜀 is

a homotopy equivalence we obtain a module isomorphism𝐻 ∗(G𝑘
0
(𝔽𝑃2);ℤ) � ℤ{𝑥,𝑦, 𝑧} where |𝑥 | =𝑚,

|𝑦 | =𝑚+𝑘−1 and |𝑧 | = 2𝑚+𝑘−1, and 𝜀∗ sends 𝑎, 𝑏, 𝑐 to 𝑥,𝑦, 𝑧 respectively. Since G𝑘
0
(𝔽𝑃2) is a manifold,

by Poincaré Duality we obtain 𝑥 ∪𝑦 = 𝑧. As 𝜀∗ is an algebra map, this implies that 𝑎 ∪ 𝑏 = 𝑐 . Therefore

there is an algebra isomorphism𝐻 ∗(𝐶;ℤ) � 𝐻 ∗(𝑆𝑚×𝑆𝑚+𝑘−1
;ℤ), and a homotopy equivalence between

the (2𝑚 + 𝑘 − 3)-skeletons of 𝐶 and 𝑆𝑚 × 𝑆𝑚+𝑘−1
.

On the other hand, the cup product structure on𝐶 is induced by the attaching map 𝑖2◦Σ𝑘−1 𝑓 +𝑟 · [𝑖1, 𝑖2]
for the top-cell of𝐶 . Since the cup product 𝑎∪𝑏 = 𝑐 detects the Whitehead product [𝑖1, 𝑖2] and 𝑖2◦Σ𝑘−1 𝑓

cannot be a multiple of [𝑖1, 𝑖2] due to its image being concentrated in the 𝑆𝑚 wedge summand, it must

be the case that 𝑟 = 1. □

Corollary 3.7. If 2 ≤ 𝑘 ≤ 2𝑚 − 2 and 𝑓 is as in Proposition 3.6 then (𝑓 ⋊ 1) ◦ 𝑗† ≃ ( 𝑗 ◦ Σ𝑘−1 𝑓 ) + [𝑖, 𝑗].

Proof. By Proposition 3.6, 𝑒 ◦ (𝑓 ⋊ 1) ≃ (𝑓 ∨ Σ𝑘−1) ◦ 𝑒 + 𝛿 . Since 𝑘 ≤ 2𝑚 − 2, Lemma 2.1 implies that 𝑗†

is a co-𝐻 -map. A co-𝐻 -map distributes on the right, implying that

𝑒 ◦ (𝑓 ⋊ 1) ◦ 𝑗† ≃ (𝑓 ∨ Σ𝑘−1 𝑓 ) ◦ 𝑒 ◦ 𝑗† + 𝛿 ◦ 𝑗†.

By Lemma 2.2 (ii), 𝑒 ◦ 𝑗† ≃ 𝑖2. Therefore the naturality of 𝑖2 implies that (𝑓 ∨Σ𝑘−1 𝑓 ) ◦𝑒 ◦ 𝑗† ≃ 𝑖2 ◦Σ𝑘−1 𝑓 .

By Lemma 2.3, and using Proposition 3.6, we obtain 𝛿 ◦ 𝑗† ≃ [𝑖1, 𝑖2]. Therefore

𝑒 ◦ (𝑓 ⋊ 1) ◦ 𝑗† ≃ 𝑖2 ◦ Σ𝑘−1 𝑓 + [𝑖1, 𝑖2] .

Apply 𝑒−1
. In general, the sum of two maps in [Σ𝑋,𝑌 ] distributes when composed with a map 𝑌 → 𝑍 ,

so in our case we obtain

(𝑓 ⋊ 1) ◦ 𝑗† ≃ (𝑒−1 ◦ 𝑖2 ◦ Σ𝑘−1 𝑓 ) + (𝑒−1 ◦ [𝑖1, 𝑖2]) .

By Lemma 2.2 (iii), 𝑒−1 ≃ 𝑖 ⊥ 𝑗 , so 𝑒−1 ◦ 𝑖2 = 𝑗 and 𝑒−1 ◦ [𝑖1, 𝑖2] = [𝑖, 𝑗]. Therefore

(𝑓 ⋊ 1) ◦ 𝑗† ≃ ( 𝑗 ◦ Σ𝑘−1 𝑓 ) + [𝑖, 𝑗]

as asserted. □

Remark 3.8. By Remark 3.4, the attaching map for the top-cell of G𝑘
0
(𝔽𝑃2) is (𝑓 ⋊1) ◦ 𝑗†. Corollary 3.7

therefore gives an alternate description of this attaching map. This will be generalized to the case of

G𝑘
𝜏 (𝔽𝑃2) in Theorem 3.13.
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Next, we bring in the twist. Consider the self-equivalence 𝑆2𝑚−1 ⋊ 𝑆𝑘−1
𝑡 ′−→ 𝑆2𝑚−1 ⋊ 𝑆𝑘−1

. Let 𝑡 ′
1

and 𝑡 ′
2

be the composites

𝑡 ′
1

: 𝑆2𝑚−1
𝑖−→ 𝑆2𝑚−1 ⋊ 𝑆𝑘−1

𝑡 ′−→ 𝑆2𝑚−1 ⋊ 𝑆𝑘−1

𝑡 ′
2

: 𝑆2𝑚+𝑘−2
𝑗†
−→ 𝑆2𝑚−1 ⋊ 𝑆𝑘−1

𝑡 ′−→ 𝑆2𝑚−1 ⋊ 𝑆𝑘−1.

Let 𝜏 be the composite

(3.5) 𝜏 : 𝑆2𝑚+𝑘−2
𝑗†
−→ 𝑆2𝑚−1 ⋊ 𝑆𝑘−1

𝑡 ′−→ 𝑆2𝑚−1 ⋊ 𝑆𝑘−1
𝜋−→ 𝑆2𝑚−1.

Lemma 3.9. Let 𝑘 ≥ 2. The following hold:

(i) 𝑡 ′
1
is homotopic to 𝑖 ;

(ii) if 𝑘 ≤ 2𝑚 − 2, then 𝑡 ′
2
is homotopic to 𝑖 ◦ 𝜏 + 𝑗†;

(iii) if 𝜏 is the trivial twisting then 𝑡 ′
2
= 𝑗† and 𝜏 is null homotopic.

Proof. First, the left map in the homotopy cofibration 𝑆𝑘−1 −→ 𝑆2𝑚−1 × 𝑆𝑘−1 −→ 𝑆2𝑚−1 ⋊ 𝑆𝑘−1
has a

left inverse, so the connecting map for the homotopy cofibration is null homotopic, implying that for

any space 𝑍 the induced map [𝑆2𝑚−1 ⋊ 𝑆𝑘−1, 𝑍 ] −→ [𝑆2𝑚−1 × 𝑆𝑘−1, 𝑍 ] is an injection. Therefore, the

definition of 𝑡 ′ in (3.3) implies that its homotopy class is determined by the homotopy class of 𝑡 . Thus

to show that 𝑡 ′
1
= 𝑡 ′ ◦ 𝑖 is homotopic to 𝑖 it suffices to show that 𝑡 ◦ 𝑖1 ≃ 𝑖1, where 𝑖1 : 𝑆2𝑚−1 −→

𝑆2𝑚−1 ×𝑆𝑘−1
is the inclusion of the first factor. But by definition, 𝑆2𝑚−1 ×𝑆𝑘−1

𝑡→ 𝑆2𝑚−1 ×𝑆𝑘−1
is given

by 𝑡 (𝑎, 𝑥) = (𝜏 (𝑥) · 𝑎, 𝑥), implying that 𝑡 (𝑎, ∗) = (𝑎, ∗), and therefore 𝑡 ◦ 𝑖1 = 𝑖1, proving part (i).

Next, consider the composite

(3.6) 𝑗 ′ : 𝑆2𝑚+𝑘−2
𝑗†
−→ 𝑆2𝑚−1 ⋊ 𝑆𝑘−1

𝑡 ′−→ 𝑆2𝑚−1 ⋊ 𝑆𝑘−1
𝑒−→ 𝑆2𝑚−1 ∨ 𝑆2𝑚+𝑘−2.

By the Hilton-Milnor Theorem, for dimensional and connectivity reasons the homotopy class of 𝑗 ′ is

determined by its pinch maps to 𝑆2𝑚−1
and 𝑆2𝑚+𝑘−2

. That is, if

𝑝1 : 𝑆2𝑚−1 ∨ 𝑆2𝑚+𝑘−2 → 𝑆2𝑚−1 𝑝2 : 𝑆2𝑚−1 ∨ 𝑆2𝑚+𝑘−2 → 𝑆2𝑚+𝑘−2

are the pinch maps to the left and right wedge summands respectively, then 𝑗 ′ ≃ 𝑖1 ◦𝑝1 ◦ 𝑗 ′ + 𝑖2 ◦𝑝2 ◦ 𝑗 ′.
Since 𝑡 ′ is a self-equivalence, it must induce an isomorphism in homology. In particular, (𝑡 ′)∗ induces

an isomorphism on𝐻2𝑚+𝑘−2 and therefore so does (𝑡 ′
2
)∗, and therefore in turn so does ( 𝑗 ′)∗. This implies

that 𝑝2 ◦ 𝑗 ′ is a homotopy equivalence, and therefore homotopic to a map of degree ±1. Refining, since

we work with SO(𝑛), the map 𝑡 must preserve orientation, implying that 𝑡∗ is the identity on 𝐻2𝑚+𝑘−2,

which in turn implies that (𝑡 ′)∗, (𝑡 ′2)∗ and ( 𝑗 ′)∗ all induce the identity on 𝐻2𝑚+𝑘−2. Hence 𝑝2 ◦ 𝑗 ′ is

homotopic to the identity map on 𝑆2𝑚+𝑘−2
, implying that 𝑖2 ◦ 𝑝2 ◦ 𝑗 ′ ≃ 𝑖2.

Let 𝜏 = 𝑝1 ◦ 𝑗 ′, and note that post-composing (3.6) with 𝑝1 gives the asserted composite for 𝜏 since

by Lemma 1.1 we have 𝑝1 ◦𝑒 ≃ 𝜋 . Then we have 𝑗 ′ ≃ 𝑖1 ◦𝜏 + 𝑖2. By definition of 𝑗 ′ we have 𝑒−1 ◦ 𝑗 ′ ≃ 𝑡 ′
2
.

On the other hand, as 2 ≤ 𝑘 ≤ 2𝑚 − 2, Lemma 2.2 (iii) gives 𝑒−1 ≃ 𝑖 ⊥ 𝑗†. Therefore 𝑒−1 ◦ 𝑖1 ≃ 𝑖 and

𝑒−1 ◦ 𝑖2 ≃ 𝑗†, giving 𝑒−1 ◦ 𝑗 ′ ≃ 𝑒−1 ◦ (𝑖1 ◦ 𝜏 + 𝑖2) ≃ 𝑖 ◦ 𝜏 + 𝑗†. Hence 𝑡 ′
2
≃ 𝑖 ◦ 𝜏 + 𝑗†, proving part (ii).

Finally, if 𝜏 is the trivial twisting then 𝑡 and hence 𝑡 ′ are identity maps, in which case the definitions

of 𝑡 ′
2

and 𝜏 give 𝑡 ′
2
= 𝑗† and 𝜏 = 𝜋 ◦ 𝑗†. In the latter case we obtain a null homotopy for 𝜏 since 𝜋 ◦ 𝑗† is

null homotopic by Lemma 2.1. □

The map 𝜏 in Lemma 3.9(ii) has an additional property related to the 𝐽 -homomorphism. In general,

the join 𝐴 ∗ 𝐵 and the suspension Σ(𝐴 × 𝐵) are both quotient spaces of 𝐴 × 𝐵 × 𝐼 . In the unreduced

case of the join we identify (𝑎, 𝑏, 1) to (𝑎, ∗, 1) and (𝑎, 𝑏, 0) to (∗, 𝑏, 0), whereas for the suspension we
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identify (𝑎, 𝑏, 1) to (∗, ∗, 1) and (𝑎, 𝑏, 0) to (∗, ∗, 0). Thus the quotient map 𝐴 × 𝐵 × 𝐼 → Σ(𝐴 × 𝐵) factors

through a quotient map 𝐴 ∗ 𝐵 → Σ(𝐴 × 𝐵). In the reduced case, there is the additional relation in both

cases that (∗, ∗, 𝑡) is identified with (∗, ∗, 0). Moreover, there is a homotopy equivalence Σ𝐴∧𝐵 ≃ 𝐴 ∗𝐵,

thus giving a canonical choice of a map 𝔰 : Σ𝐴 ∧ 𝐵 → Σ(𝐴 × 𝐵). The 𝐽 -homomorphism

𝐽 : 𝜋𝑘−1(SO(𝑛)) → 𝜋𝑛+𝑘−1(𝑆𝑛)

is given by the the homotopy class of the composite

𝐽 (𝜏) : 𝑆𝑛+𝑘−1
𝔰−→ Σ(𝑆𝑛−1 × 𝑆𝑘−1)

Σ(1×𝜏 )
−−−−−→ Σ(𝑆𝑛−1 × SO(𝑛)) Σ𝜃−−→ Σ𝑆𝑛−1 ≃ 𝑆𝑛,

where 𝜃 denotes the usual action of SO(𝑛) on 𝑆𝑛−1
. The image of the 𝐽 -homomorphism was calculated

by Adams [Ada66] and Quillen [Qui71]:

(3.7) 𝑖𝑚(𝐽 ) �


0 if 𝑘 ≡ 3, 5, 6, 7 (mod 8)

ℤ/2 if 𝑘 ≡ 1, 2 (mod 8)

ℤ/𝑑𝑠 if 𝑘 = 4𝑠

where 𝑑𝑠 is the demoninator of
𝐵2𝑠

4𝑠
, 𝐵2𝑠 being the 2𝑠-th Bernoulli number.

Proposition 3.10. If 2 ≤ 𝑘 ≤ 2𝑚 − 2 then Σ𝜏 ≃ 𝐽 (𝜏), where 𝐽 denotes the classical 𝐽 -homomorphism.

Proof. Take 𝑛 = 2𝑚. We begin by relating 𝔰 to maps associated with the half-smash. Let

𝔮 : 𝑆2𝑚−1 × 𝑆𝑘−1 → 𝑆2𝑚−1 ⋊ 𝑆𝑘−1

be the quotient map to the half-smash. Consider the composite

𝔧 : 𝑆2𝑚+𝑘−1
𝔰−→ Σ(𝑆2𝑚−1 × 𝑆𝑘−1) Σ𝔮−−→ Σ(𝑆2𝑚−1 ⋊ 𝑆𝑘−1) .

Since Σ(𝑆2𝑚−1 ⋊ 𝑆𝑘−1) ≃ 𝑆2𝑚 ∨ 𝑆2𝑚+𝑘−1
and 𝑘 ≤ 2𝑚 − 2, the map 𝔧 is in the stable range and is a

suspension, 𝔧 ≃ Σ𝔧′. As 𝔧 is a suspension, regarding Σ(𝑆2𝑚−1 ⋊ 𝑆𝑘−1) as 𝑆2𝑚 ∨ 𝑆2𝑚+𝑘−1
, the Hilton-

Milnor Theorem implies that the homotopy class of 𝔧 is determined by its composition with the pinch

maps to 𝑆2𝑚−1
and 𝑆2𝑚+𝑘−1

. The pinch map to 𝑆2𝑚−1
factors as the composite

𝑆2𝑚+𝑘−1
𝔰−→ Σ(𝑆2𝑚−1 × 𝑆2𝑘−1) Σ𝜋1−−−→ Σ𝑆2𝑚,

where 𝜋1 is the projection. This is null homotopic by definition of 𝔰. The pinch map to 𝑆2𝑚+𝑘−1
is

homotopic to the identity map since it induces the identity map in homology. As the same is true of

the map 𝑗†, we have 𝔧 ≃ Σ 𝑗†. Hence Σ 𝑗† ≃ 𝔮 ◦ 𝔰.

We now connect Σ𝜏 and 𝐽 (𝜏). The self-map 𝑡 : 𝑆2𝑚−1×𝑆𝑘−1 → 𝑆2𝑚−1×𝑆𝑘−1
associated to 𝜏 is defined

via the action of SO(2𝑚) on 𝑆2𝑚−1
as well, namely 𝑡 : (𝑎, 𝑥) ↦→ (𝜏 (𝑥) · 𝑎, 𝑥), as in Diagram (3.3). Thus

there is a commutative square

(3.8)

𝑆2𝑚−1 × 𝑆𝑘−1 𝑆2𝑚−1 × 𝑆𝑘−1

𝑆2𝑚−1 × SO(2𝑚) 𝑆2𝑚−1.

1×𝜏

𝑡

𝜋1

𝜃
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Consider the following diagram

(3.9)

𝑆2𝑚+𝑘−1 Σ(𝑆2𝑚−1 × 𝑆𝑘−1) Σ(𝑆2𝑚−1 × 𝑆𝑘−1) 𝑆2𝑚

Σ(𝑆2𝑚−1 ⋊ 𝑆𝑘−1) Σ(𝑆2𝑚−1 ⋊ 𝑆𝑘−1) 𝑆2𝑚 .

𝔰

Σ 𝑗†
Σ𝔮

Σ𝑡

Σ𝔮

Σ𝜋1

Σ𝑡 ′ Σ𝜋

The left-hand triangle homotopy commutes since 𝔰 ≃ 𝜎 ◦ Σ 𝑗†. The middle square homotopy commutes

by the top right square in (3.3). The right square homotopy commutes since 𝜋 and 𝜋1 are both projec-

tions. Diagram (3.8) implies that Σ𝜋1 ◦Σ𝑡 ≃ Σ𝜃 ◦Σ(1×𝜏), so the top direction around (3.9) is homotopic

to 𝐽 (𝜏), whereas the bottom direction gives Σ𝜏 . Thus Σ𝜏 ≃ 𝐽 (𝜏) as asserted. □

Corollary 3.11. Let 2 ≤ 𝑘 ≤ 2𝑚 − 2 and suppose that 𝑘 ≡ 1 or 2 (mod 8). If 𝜏 ∈ 𝜋𝑘−1(SO(2𝑚)) is
non-trivial, then 𝜏 is non-trivial.

Proof. For such 𝑘 Bott periodicity gives 𝜋𝑘−1(SO(2𝑚)) � ℤ/2 and (3.7) gives 𝑖𝑚(𝐽 ) � ℤ/2, implying

that the 𝐽 -homomorphism is an isomorphism onto its image. Thus if 𝜏 is non-trivial then 𝐽 (𝜏) is non-

trivial, so Proposition 3.10 implies that Σ𝜏 is non-trivial. Therefore 𝜏 must be non-trivial. □

Returning to our study of gyrations, by Lemma 3.2 there is a homotopy cofibration

𝑆2𝑚+𝑘−2
𝜙𝜏−−→ 𝑆𝑚 ⋊ 𝑆𝑘−1 → G𝑘

𝜏 (𝔽𝑃2)

for each integer 𝑘 ≥ 2, where 𝜙𝜏 = (𝑓 ⋊ 1) ◦ 𝑡 ′ ◦ 𝑗†. By definition 𝑡 ′ ◦ 𝑗† = 𝑡 ′
2
, so if 2 ≤ 𝑘 ≤ 2𝑚 − 2

Lemma 3.9 gives a homotopy 𝑡 ′ ◦ 𝑗† ≃ 𝑖 ◦𝜏 + 𝑗†, or in the case of the trivial twisting, 𝑡 ′
2
= 𝑗†. This proves

the following.

Lemma 3.12. If 2 ≤ 𝑘 ≤ 2𝑚 − 2 then the attaching map 𝜙𝜏 for the top-cell of G𝑘
𝜏 (𝔽𝑃2) is given by the

composite

𝑆2𝑚+𝑘−2
𝑖◦𝜏+𝑗†
−−−−−→ 𝑆2𝑚−1 ⋊ 𝑆𝑘−1

𝑓⋊1

−−−→ 𝑆𝑚 ⋊ 𝑆𝑘−1.

If 𝜏 is the trivial twisting then the attaching map for the top-cell of G𝑘
0
(𝔽𝑃2) is (𝑓 ⋊ 1) ◦ 𝑗†. □

We conclude Part I of this paper by bringing our description together, giving to a formulation of the

attaching map for the top-cell in G𝑘
𝜏 (𝔽𝑃2) that is easier to compute with.

Theorem 3.13. Let 2 ≤ 𝑘 ≤ 2𝑚 − 2, 𝜏 : 𝑆𝑘−1 → SO(2𝑚), and let 𝜙𝜏 : 𝑆2𝑚+𝑘−2 → 𝑆𝑚 ⋊ 𝑆𝑘−1 denote the
attaching map for the top-cell of the gyration G𝑘

𝜏 (𝔽𝑃2). Then there is a homotopy

𝜙𝜏 ≃ (𝑖 ◦ 𝑓 ◦ 𝜏) + ( 𝑗 ◦ Σ𝑘−1 𝑓 ) + [𝑖, 𝑗]

where Σ𝜏 is in the image of the 𝐽 -homomorphism. Explicitly, the summands are:

𝑆2𝑚+𝑘−2
𝜏−→ 𝑆2𝑚−1

𝑓
−→ 𝑆𝑚

𝑖−→ 𝑆𝑚 ⋊ 𝑆𝑘−1

𝑆2𝑚+𝑘−2
Σ𝑘−1 𝑓
−−−−→ 𝑆𝑚+𝑘−1

𝑗
−→ 𝑆𝑚 ⋊ 𝑆𝑘−1

𝑆2𝑚+𝑘−2
[𝑖, 𝑗 ]
−−−→ 𝑆𝑚 ⋊ 𝑆𝑘−1.

In particular, if 𝜏 is the trivial twisting then 𝜙0 ≃ ( 𝑗 ◦ Σ𝑘−1 𝑓 ) + [𝑖, 𝑗].
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Proof. Noting that 𝔽𝑃2 ≃ 𝑆𝑚 , by Lemma 3.12 the attaching map for the top-cell of G𝑘
𝜏 (𝔽𝑃2) is given by

the composite

𝑆2𝑚+𝑘−2
𝑖◦𝜏+𝑗†
−−−−−→ 𝑆2𝑚−1 ⋊ 𝑆𝑘−1

𝑓⋊1

−−−→ 𝑆𝑚 ⋊ 𝑆𝑘−1.

In general, the sum of two maps in [Σ𝑋,𝑌 ] distributes on the left when composed with a map 𝑌 → 𝑍 .

In our case, this gives

(𝑓 ⋊ 1) ◦ (𝑖 ◦ 𝜏 + 𝑗†) ≃ ((𝑓 ⋊ 1) ◦ 𝑖 ◦ 𝜏) + ((𝑓 ⋊ 1) ◦ 𝑗†) .

The naturality of 𝑖 implies that (𝑓 ⋊ 1) ◦ 𝑖 ≃ 𝑖 ◦ 𝑓 . Therefore (𝑓 ⋊ 1) ◦ 𝑖 ◦ 𝜏 ≃ 𝑖 ◦ 𝑓 ◦ 𝜏 . By Corollary 3.7,

(𝑓 ⋊ 1) ◦ 𝑗† ≃ ( 𝑗 ◦ Σ𝑘−1 𝑓 ) + [𝑖, 𝑗]. Thus

(𝑓 ⋊ 1) ◦ (𝑖 ◦ 𝜏 + 𝑗†) ≃ (𝑖 ◦ 𝑓 ◦ 𝜏) + ( 𝑗 ◦ Σ𝑘−1 𝑓 ) + [𝑖, 𝑗],

as asserted. The case of the trivial attaching map follows from Remark 3.8 (or, in the argument above,

setting 𝜏 to be the constant map). □

For what is to come in the next section, it is convenient to rephrase Theorem 3.13 by letting 𝜑𝜏 be

the composite

𝜑𝜏 : 𝑆2𝑚+𝑘−2
𝜙𝑡−−→ 𝑆𝑚 ⋊ 𝑆𝑘−1

𝑒−→ 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1

and thinking of the attaching map for the top-cell of a gyration as a map from a sphere to a wedge of

spheres. We record this in the following Corollary, which is a direct consequence of Theorem 3.13 and

Lemma 2.2.

Corollary 3.14. Let 2 ≤ 𝑘 ≤ 2𝑚 − 2, 𝜏 : 𝑆𝑘−1 → SO(2𝑚), and let 𝜑𝜏 : 𝑆2𝑚+𝑘−2 → 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1 denote
the adjusted attaching map for the top-cell of the gyration G𝑘

𝜏 (𝔽𝑃2). There is a homotopy

𝜑𝜏 ≃ (𝑖1 ◦ 𝑓 ◦ 𝜏) + (𝑖2 ◦ Σ𝑘−1 𝑓 ) + [𝑖1, 𝑖2] .

Rearranging, we have the identity

𝜑𝜏 ≃ 𝜑0 +𝜓𝜏

where𝜓𝜏 := 𝑖1 ◦ 𝑓 ◦ 𝜏 . □

Corollary 3.14 makes clear that the attaching maps𝜑𝜏 differ from the map from the map for the trivial

twisting (namely 𝜑0) by the addition of a summand𝜓𝜏 whose homotopy class depends on 𝜏 and 𝑓 .

Part II: Gyrations of Projective Planes

From this point onwards, all manifolds are smooth and oriented unless otherwise stated. Given the

structure established in Part I, we now focus on computations. The motivating questions are as in the

Introduction.

Question (GSI). For a given 𝑘 ≥ 2 and 𝑛-manifold 𝑀 , do we have G𝑘
𝜏 (𝑀) ≃ G𝑘

𝜔 (𝑀) for all twistings
𝜏, 𝜔 ∈ 𝜋𝑘−1(SO(𝑛))?

Question (GSII). For a given 𝑘 ≥ 2 and 𝑛-manifold 𝑀 , how many different homotopy types can G𝑘
𝜏 (𝑀)

have as the homotopy class of 𝜏 is varied?

The goal of Part II is to enumerate the homotopy types of G𝑘
𝜏 (𝔽𝑃2) for 𝔽 being each of ℂ, ℍ and 𝕆.
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4. Initial Observations and Examples

After making some initial observations this section considers gyration stability for G2

𝜏 (ℂ𝑃2) as an

illustrative example. First observe that given two twistings 𝜏 and 𝜔 and an explicit homotopy between

them, this cascades through the definitions (cf. Definition 3.1) and one easily checks the following fact.

Lemma 4.1. Let 𝑘 ≥ 2 be an integer, 𝑀 an 𝑛-manifold and let 𝜏, 𝜔 : 𝑆𝑘−1 → SO(𝑛). If 𝜏 ≃ 𝜔 then there
is a homotopy equivalence G𝑘

𝜏 (𝑀) ≃ G𝑘
𝜔 (𝑀). □

Since the homotopy type of a gyration therefore depends (in part) on the homotopy class of the

twisting, the homotopy groups of SO(𝑛) play an important role. In particular, if the relevant group is

trivial then gyration stability follows.

Proposition 4.2. For a given 𝑛-manifold 𝑀 and integer 𝑘 such that 2 ≤ 𝑘 ≤ 𝑛 − 1, 𝑀 is G𝑘 -stable if
𝑘 ≡ 3, 5, 6, 7 (mod 8).

Proof. For 𝑘 in this range, by Bott periodicity we have 𝜋𝑘−1(SO(𝑛)) � 0 if 𝑘 ≡ 3, 5, 6, 7 (mod 8). Hence

Lemma 4.1 implies G𝑘
𝜏 (𝑀) ≃ G𝑘

𝜔 (𝑀) for all 𝜏, 𝜔 ∈ 𝜋𝑘−1(𝑆𝑂 (𝑛)), and thus that 𝑀 is G𝑘
-stable. □

Proposition 4.2 is not an ‘if and only if’ statement. To see why, consider gyrations of spheres.

Example 4.3 (Spheres are G𝑘
-stable for all 𝑘). For a sphere 𝑆𝑛 , we have 𝑆𝑛 ≃ ∗, so by Lemma 3.2 the

𝑘-gyration is given by the homotopy cofibration

𝑆𝑛+𝑘−2
𝜙𝜏−−→ ∗⋊ 𝑆𝑘−1 → G𝑘

𝜏 (𝑆𝑛)

in which we observe that ∗⋊ 𝑆𝑘−1 ≃ ∗. Therefore G𝑘
𝜏 (𝑆𝑛) ≃ 𝑆𝑛+𝑘−1

for all twistings 𝜏 .

We now turn to the case of gyration stability for G2

𝜏 (ℂ𝑃2). Recall that for 𝜏 ∈ 𝜋1(𝑆𝑂 (4)) there is a

homotopy cofibration 𝑆4
𝜑𝜏−−→ 𝑆2 ∨ 𝑆3 → G2

𝜏 (ℂ𝑃2).

Proposition 4.4. There exists a homotopy equivalence 𝜀 : 𝑆2 ∨ 𝑆3 → 𝑆2 ∨ 𝑆3 such that

𝜀 ◦ 𝜑0 ≃ 𝜑1

where ‘0’ denotes the trivial twisting and ‘1’ denotes the twisting from the generator of 𝜋1(SO(4)) � ℤ/2.

Proof. Recalling our notation from the preamble to Part I, consider the map

𝜀 : 𝑆2 ∨ 𝑆3 → 𝑆2 ∨ 𝑆3

defined by 𝟙 + 𝑖1 ◦ (∗ ⊥ 𝜂2),where 𝟙 denotes the identity on the wedge. On homology this map induces

an isomorphism since (𝜂2)∗ = 0. Therefore 𝜀 is a homotopy equivalence by Whitehead’s Theorem.

By Corollary 3.14 with 𝑘 = 2 and 𝑓 = 𝜂2, the map 𝜑0 : 𝑆4 → 𝑆2 ∨ 𝑆3
satisfies 𝜑0 ≃ 𝑖2 ◦ 𝜂3 + [𝑖1, 𝑖2],

where 𝜂3 denotes Σ𝜂2. Now consider the composite 𝜀 ◦ 𝜑0 : 𝑆4 → 𝑆2 ∨ 𝑆3
. In general, if 𝛼, 𝛽 : Σ𝐴 → 𝑋

and 𝛾 : 𝑋 → 𝑌 then 𝛾 distributes on the left, i.e. 𝛾 ◦ (𝛼 + 𝛽) ≃ 𝛾 ◦ 𝛼 + 𝛾 ◦ 𝛽 . Therefore

(4.1) 𝜀 ◦ 𝜑0 ≃ 𝜀 ◦ (𝑖2 ◦ 𝜂3) + 𝜀 ◦ [𝑖1, 𝑖2] .

Write 𝜂2

2
= 𝜂2 ◦ 𝜂3. Since 𝜖 = 𝟙 + 𝑖1 ◦ (∗ ⊥ 𝜂2), we see that 𝜀 ◦ (𝑖2 ◦ 𝜂3) ≃ (𝑖2 ◦ 𝜂3) + (𝑖1 ◦ 𝜂2

2
), and noting

that the Whitehead product in general satisfies 𝛾 ◦ [𝛼, 𝛽] ≃ [𝛾 ◦𝛼,𝛾 ◦𝛽] and [𝛼, 𝛽 +𝛽 ′] ≃ [𝛼, 𝛽] + [𝛼, 𝛽 ′],
we have

𝜀 ◦ [𝑖1, 𝑖2] ≃ [𝜀 ◦ 𝑖1, 𝜀 ◦ 𝑖2] ≃ [𝑖1, 𝑖2 + 𝑖1 ◦ 𝜂2] ≃ [𝑖1, 𝑖2] + [𝑖1, 𝑖1 ◦ 𝜂2] ≃ [𝑖1, 𝑖2] + 𝑖1 ◦ [𝜄, 𝜂2]
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where 𝜄 denotes the identity map on 𝑆2
. Thus (4.1) becomes

𝜀 ◦ 𝜑0 ≃ (𝑖2 ◦ 𝜂3) + (𝑖1 ◦ 𝜂2

2
) + [𝑖1, 𝑖2] + 𝑖1 ◦ [𝜄, 𝜂2] ≃ 𝜑0 + 𝑖1 ◦ (𝜂2

2
+ [𝜄, 𝜂2])

where the last homotopy comes from regrouping the summands. Thus if 𝜓1 ≃ 𝑖1 ◦ (𝜂2

2
+ [𝜄, 𝜂2]) then

𝜀 ◦ 𝜑0 ≃ 𝜑0 +𝜓1, and as 𝜑0 +𝜓1 ≃ 𝜑1 by Corollary 3.14, we obtain 𝜀 ◦ 𝜑0 ≃ 𝜑1, as asserted.

It remains to show that 𝜓1 ≃ 𝑖1 ◦ (𝜂2

2
+ [𝜄, 𝜂2]). Since 𝜋1(SO(4)) � ℤ/2 there is only one non-trivial

twisting, for which we must have 𝜏 ≃ 𝜂2. Therefore, by definition of 𝜓1 in Corollary 3.14, 𝜓1 ≃ 𝑖1 ◦ 𝜂2

2
.

Moreover, [𝜄, 𝜂2] is null homotopic since it represents a class in 𝜋4(𝑆2) � ℤ/2ℤ, which is stable, but

Whitehead products suspend trivially. Therefore

𝑖1 ◦ (𝜂2

2
+ [𝜄, 𝜂2]) ≃ 𝑖1 ◦ (𝜂2

2
+ ∗) ≃ 𝑖1 ◦ 𝜂2

2
≃ 𝜓1,

as required. □

Theorem 4.5. ℂ𝑃2 is G2-stable, i.e. there is a homotopy equivalence G2

0
(ℂ𝑃2) ≃ G2

1
(ℂ𝑃2).

Proof. From the homotopy 𝜀 ◦ 𝜑0 ≃ 𝜑1 in Proposition 4.4 we obtain a homotopy cofibration diagram

𝑆4 𝑆2 ∨ 𝑆3 G2

0
(ℂ𝑃2)

𝑆4 𝑆2 ∨ 𝑆3 G2

1
(ℂ𝑃2)

𝜑0

𝜀

𝜑1

where the dashed arrow is an induced map of homotopy cofibres. This diagram induces a map of long

exact sequences in homology. Therefore, as the left-hand vertical map is the identity and the middle

map is a homotopy equivalence, the Five-Lemma implies that the dashed map induces an isomorphism

in homology and so is a homotopy equivalence by Whitehead’s Theorem since all spaces are simply-

connected. □

Theorem 4.5 shows that it is possible to have two twistings that are not in the same homotopy class

but nevertheless produce gyrations that are homotopy equivalent. The reasoning used for ℂ𝑃2
can be

generalised to tackle gyration stability for G𝑘
𝜏 (ℍ𝑃2) and G𝑘

𝜏 (𝕆𝑃2) on a case-by-case basis, which will

be done in Sections 6, 7 and 8. First however, we establish a general framework for the forthcoming

arguments.

5. Compositions with Self-Eqivalences of Wedges of Spheres

Fix a choice of field 𝔽 ∈ {ℍ,𝕆} (i.e. 𝑚 = 4 or 8) and index 𝑘 in the range 2 ≤ 𝑘 ≤ 2𝑚 − 2. In this

section, we wish to determine conditions for gyrations of 𝔽𝑃2
to be homotopy equivalent. We begin

with a Lemma linking this question to self-equivalences of wedges of spheres.

Lemma 5.1. Let 𝜏 and 𝜔 be distinct homotopy classes in 𝜋𝑘−1(SO(2𝑚)). There is a homotopy equivalence
G𝑘
𝜏 (𝔽𝑃2) ≃ G𝑘

𝜔 (𝔽𝑃2) if and only if there exists a self-equivalence 𝜀 : 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1
≃−→ 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1 such

that 𝜀 ◦ 𝜑𝜏 ≃ ±𝜑𝜔 .
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Proof. Suppose first that there exists a self-equivalence 𝜀 such that 𝜀 ◦ 𝜑𝜏 ≃ ±𝜑𝜔 . From this homotopy

we obtain a homotopy cofibration diagram

𝑆2𝑚+𝑘−2 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1 G𝑘
𝜏 (𝔽𝑃2)

𝑆2𝑚+𝑘−2 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1 G𝑘
𝜔 (𝔽𝑃2)

±

𝜑𝜏

𝜀

𝜑𝜔

where the dashed arrow is an induced map of homotopy cofibres. This diagram induces a map of

long exact sequences in homology. Therefore, as the left-hand and middle vertical maps are homotopy

equivalences, the Five-Lemma implies that the dashed map induces an isomorphism in homology and

so is a homotopy equivalence by Whitehead’s Theorem since all spaces are simply-connected.

Conversely, assume that there is a homotopy equivalence

𝜖 : G𝑘
𝜏 (𝔽𝑃2) → G𝑘

𝜔 (𝔽𝑃2) .

Both spaces are simply-connected𝐶𝑊 -complexes of dimension 2𝑚 +𝑘 − 1 whose (2𝑚 +𝑘 − 2)-skeleton

is homotopy equivalent to 𝑆𝑚 ⋊ 𝑆𝑘−1
. The restriction of 𝜖 to (2𝑚 + 𝑘 − 2)-skeletons gives a map

𝜖′ : 𝑆𝑚 ⋊ 𝑆𝑘−1 → 𝑆𝑚 ⋊ 𝑆𝑘−1.

Since 𝜖 induces an isomorphism on homology so does 𝜖′, and 𝑆𝑚 ⋊ 𝑆𝑘−1
is simply-connected, so 𝜖′

is therefore a homotopy equivalence by Whitehead’s Theorem. We place 𝜖 in the context of self-

equivalences of wedges of spheres by using the homotopy equivalence 𝑒 : 𝑆𝑚 ⋊𝑆𝑘 → 𝑆𝑚 ∨𝑆𝑚+𝑘−1
and

defining a new equivalence

𝜀 = 𝑒 ◦ 𝜖′ ◦ 𝑒−1
: 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1 → 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1.

Let 𝑞𝜏 : 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1 → G𝑘
𝜏 (𝔽𝑃2) and 𝑞𝜔 : 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1 → G𝑘

𝜔 (𝔽𝑃2) denote the respective skeletal

inclusions, and let 𝐹𝜏 and 𝐹𝜔 be their homotopy fibres. Then there is a homotopy fibration diagram

(5.1)

𝐹𝜏 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1 G𝑘
𝜏 (𝔽𝑃2)

𝐹𝜔 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1 G𝑘
𝜔 (𝔽𝑃2)

𝛼

𝑞𝜏

𝜀 𝜖

𝑞𝜔

where the dashed arrow 𝛼 is an induced map of homotopy fibres. The diagram induces a map of long

exact sequences of homotopy groups. Therefore, as the middle and right vertical maps are homo-

topy equivalences, the Five-Lemma implies that the dashed map induces an isomorphism on homotopy

groups, and so is a homotopy equivalence by Whitehead’s Theorem.

Since 𝜑𝜏 and 𝑞𝜏 are consecutive maps in a homotopy cofibration, the composite 𝑞𝜏 ◦ 𝜑𝜏 is null ho-

motopic, so there is a lift 𝛽 that makes the following diagram homotopy commutative

(5.2)

𝑆2𝑚+𝑘−2

𝐹𝜏 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1 G𝑘
𝜏 (𝔽𝑃2) .

𝜑𝜏
𝛽

𝑞𝜏

Since G𝑘
𝜏 (𝔽𝑃2) is (𝑚 − 1)-connected and 𝑆2𝑚+𝑘−2

is (2𝑚 + 𝑘 − 3)-connected, the lift 𝛽 is a (3𝑚 + 𝑘 − 3)-
equivalence by the Blakers-Massey Theorem (cf. [Ark11, Theorem 5.6.4]). Arguing identically with 𝜔
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in place of 𝜏 , there is also a (3𝑚 + 𝑘 − 3)-equivalence 𝛽 ′ : 𝑆2𝑚+𝑘−2 → 𝐹𝜔 . Thus, for dimension reasons,

𝛼 ◦ 𝛽 lifts through 𝛽 ′ to give a homotopy commutative diagram

(5.3)

𝑆2𝑚+𝑘−2 𝐹𝜏

𝑆2𝑚+𝑘−2 𝐹𝜏

𝛽

𝛾 𝛼

𝛽 ′

for some map 𝛾 . As 𝛼 is a homotopy equivalence and both 𝛽 and 𝛽 ′ are (3𝑚 + 𝑘 − 3)-equivalences,

the homotopy commutativity of (5.3) implies that 𝛾 is also a (3𝑚 + 𝑘 − 3)-equivalence. In particular,

𝛾 induces an isomorphism on 𝜋2𝑚+𝑘−2, and therefore must be a homotopy equivalence. Hence 𝛾 ≃ ±1.

Juxtaposing (5.3) and (5.1), and using the factorizations of 𝜑𝜏 and 𝜑𝜔 in (5.2), we obtain a homotopy

cofibration diagram

(5.4)

𝑆2𝑚+𝑘−2 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1 G𝑘
𝜏 (𝔽𝑃2)

𝑆2𝑚+𝑘−2 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1 G𝑘
𝜔 (𝔽𝑃2) .

±1

𝜑𝜏 𝑞𝜏

𝜀 𝜖

𝜑𝜔 𝑞𝜔

The homotopy commutativity of the left-hand square gives that 𝜀 ◦ 𝜑𝜏 ≃ ±𝜑𝜔 . □

The next step is to identify candidates for a self-homotopy equivalence of 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1
. Recall that

we denote the inclusion of wedge summands by 𝑖1 : 𝑆𝑚 → 𝑆𝑚 ∨𝑆𝑚+𝑘−1
and 𝑖2 : 𝑆𝑚+𝑘−1 → 𝑆𝑚 ∨𝑆𝑚+𝑘−1

and that 𝜄𝑚 denotes the identity map on the sphere 𝑆𝑚 .

Lemma 5.2. Let 𝜏 be a homotopy classes in 𝜋𝑘−1(SO(2𝑚)). If 𝜀 : 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1 → 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1 is a
homotopy equivalence then:

(i) the restriction of 𝜀 to 𝑆𝑚 is homotopic to (−1)𝑖 · 𝑖1 for some integer 𝑖 ;
(ii) the restriction of 𝜀 to 𝑆𝑚+𝑘−1 is homotopic to (𝑖1 ◦ 𝜆) + (−1) 𝑗 · 𝑖2 for some 𝜆 ∈ 𝜋𝑚+𝑘−1(𝑆𝑚) and

some integer 𝑗 ;
(iii) for 𝑖, 𝑗 and 𝜆 as in (i) and (ii) there is a homotopy

𝜀 ◦ 𝜑𝜏 ≃ 𝑖1 ◦
(
(−1)𝑖 · 𝑓 ◦ 𝜏 + 𝜆 ◦ Σ𝑘−1 𝑓 + (−1)𝑖 · [𝜄𝑚, 𝜆]

)
+ (−1) 𝑗 · (𝑖2 ◦ Σ𝑘−1 𝑓 ) + (−1)𝑖+𝑗 · [𝑖1, 𝑖2] .

Proof. The map 𝜀 is a map out of a wedge so it is determined up to homotopy by its restriction to each

summand, i.e. 𝜀 ◦ 𝑖1 and 𝜀 ◦ 𝑖2. Note that as 𝜀 is a homotopy equivalence it induces an isomorphism in

homology, so 𝜀 ◦ 𝑖1 and 𝜀 ◦ 𝑖2 induce isomorphisms on 𝐻𝑚 and 𝐻𝑚+𝑘−1 respectively.

For (i), observe that 𝜀 ◦ 𝑖1 factors through the 𝑚-skeleton of 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1
– this implies that it is

homotopic to a composite

𝑆𝑚
𝑑−−→ 𝑆𝑚

𝑖1−−→ 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1

for some map of degree 𝑑 . Since 𝜀 ◦ 𝑖1 induces an isomorphism on 𝐻𝑚 we must have 𝑑 = ±1. Thus there

is a homotopy 𝜀 ◦ 𝑖1 ≃ ±𝑖1.

For (ii), since 𝑚 ≥ 2 the Hilton-Milnor Theorem implies that 𝜀 ◦ 𝑖2 is determined by composing

with the pinch maps to 𝑆𝑚 and 𝑆𝑚+𝑘−1
. The composition to 𝑆𝑚 gives a map 𝜆 : 𝑆𝑚+𝑘−1 → 𝑆𝑚 and

the composition to 𝑆𝑚+𝑘−1
again induces an isomorphism in homology, so is homotopic to a map of

degree ±1. Thus 𝜀 ◦ 𝑖2 ≃ (𝑖1 ◦ 𝜆) ± 𝑖2.
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Summarising, for such a self-equivalence 𝜀 we may write

(5.5) 𝜀 ◦ 𝑖1 ≃ (−1)𝑖 · 𝑖1 and 𝜀 ◦ 𝑖2 ≃ (𝑖1 ◦ 𝜆) + (−1) 𝑗 · 𝑖2

for some integers 𝑖, 𝑗 ∈ {0, 1}.
For (iii), by Corollary 3.14, 𝜑𝜏 ≃ (𝑖1 ◦ 𝑓 ◦ 𝜏) + (𝑖2 ◦ Σ𝑘−1 𝑓 ) + [𝑖1, 𝑖2]. By left-distributivity we obtain

(5.6) 𝜀 ◦ 𝜑𝜏 ≃ (𝜀 ◦ 𝑖1 ◦ 𝑓 ◦ 𝜏) + (𝜀 ◦ 𝑖2 ◦ Σ𝑘−1 𝑓 ) + (𝜀 ◦ [𝑖1, 𝑖2]) .

First, consider 𝜀 ◦ 𝑖1 ◦ 𝑓 ◦ 𝜏 . By (5.5) we have 𝜀 ◦ 𝑖1 ≃ (−1)𝑖 · 𝑖1, so

𝜀 ◦ 𝑖1 ◦ 𝑓 ◦ 𝜏 ≃ (−1)𝑖 · 𝑖1 ◦ 𝑓 ◦ 𝜏 .

Second, consider the composite 𝜀 ◦ 𝑖2 ◦ Σ𝑘−1 𝑓 . In general, if 𝛼, 𝛽 : Σ𝐴 → 𝑋 and Σ𝑔 : Σ𝐵 → Σ𝐴 then Σ𝑔

distributes on the right: (𝛼 + 𝛽) ◦ Σ𝑔 ≃ 𝛼 ◦ Σ𝑔 + 𝛽 ◦ Σ𝑔. Since we demand 𝑘 ≥ 2, the map Σ𝑘−1 𝑓 is a

suspension, and by (5.5) we obtain

𝜀 ◦ 𝑖2 ◦ Σ𝑘−1 𝑓 ≃ ((𝑖1 ◦ 𝜆) ± 𝑖2) ◦ Σ𝑘−1 𝑓 ≃ 𝑖1 ◦ 𝜆 ◦ Σ𝑘−1 𝑓 + (−1) 𝑗 · 𝑖2 ◦ Σ𝑘−1 𝑓 .

Third, consider 𝜀 ◦ [𝑖1, 𝑖2]. Recalling properties of the Whitehead product, we have in our case that

𝜀 ◦ [𝑖1, 𝑖2] ≃ [𝜀 ◦ 𝑖1, 𝜀 ◦ 𝑖2]

≃ [(−1)𝑖 · 𝑖1, (𝑖1 ◦ 𝜆) + (−1) 𝑗 · 𝑖2]

≃ (−1)𝑖 · [𝑖1, 𝑖1 ◦ 𝜆] + (−1)𝑖+𝑗 · [𝑖1, 𝑖2]

≃ (−1)𝑖 · 𝑖1 ◦ [𝜄𝑚, 𝜆] + (−1)𝑖+𝑗 · [𝑖1, 𝑖2] .

Substituting the three parts into (5.6) and then rearranging gives

𝜀 ◦ 𝜑𝜏 ≃ (−1)𝑖 · (𝑖1 ◦ 𝑓 ◦ 𝜏) + (𝑖1 ◦ 𝜆 ◦ Σ𝑘−1 𝑓 ) + (−1) 𝑗 · (𝑖2 ◦ Σ𝑘−1 𝑓 ) + (−1)𝑖 · 𝑖1 ◦ [𝜄𝑚, 𝜆] + (−1)𝑖+𝑗 · [𝑖1, 𝑖2]

= 𝑖1 ◦
(
(−1)𝑖 · 𝑓 ◦ 𝜏 + 𝜆 ◦ Σ𝑘−1 𝑓 + (−1)𝑖 · [𝜄𝑚, 𝜆]

)
+ (−1) 𝑗 · (𝑖2 ◦ Σ𝑘−1 𝑓 ) + (−1)𝑖+𝑗 · [𝑖1, 𝑖2],

proving part (iii). □

Lemma 5.3. Let 𝜏 and 𝜔 be distinct homotopy classes in 𝜋𝑘−1(SO(2𝑚)).
(i) There is a self-equivalence 𝜀 : 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1 → 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1 such that 𝜀 ◦ 𝜑𝜏 ≃ 𝜑𝜔 if and only if

there exists a 𝜆 ∈ 𝜋𝑚+𝑘−1(𝑆𝑚) such that 𝑓 ◦ 𝜏 + 𝜆 ◦ Σ𝑘−1 𝑓 + [𝜄𝑚, 𝜆] ≃ 𝑓 ◦ 𝜔 ;
(ii) There is a self-equivalence 𝜀 : 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1 → 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1 such that 𝜀 ◦ 𝜑𝜏 ≃ −𝜑𝜔 if and only if

there exists a 𝜆 ∈ 𝜋𝑚+𝑘−1(𝑆𝑚) such that 𝑓 ◦ 𝜏 + 𝜆 ◦ Σ𝑘−1 𝑓 + [𝜄𝑚, 𝜆] ≃ −𝑓 ◦ 𝜔 .

Proof. Suppose there is a self-equivalence 𝜀 : 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1 → 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1
such that 𝜀 ◦ 𝜑𝜏 ≃ ±𝜑𝜔 . By

Lemma 5.2 there exists a 𝜆 ∈ 𝜋𝑚+𝑘−1(𝑆𝑚) that gives a homotopy

𝜀 ◦ 𝜑𝜏 ≃ 𝑖1 ◦
(
(−1)𝑖 · 𝑓 ◦ 𝜏 + 𝜆 ◦ Σ𝑘−1 𝑓 + (−1)𝑖 · [𝜄𝑚, 𝜆]

)
+ (−1) 𝑗 · (𝑖2 ◦ Σ𝑘−1 𝑓 ) + (−1)𝑖+𝑗 · [𝑖1, 𝑖2]

and by Corollary 3.14,

𝜑𝜔 ≃ 𝑖1 ◦ 𝑓 ◦ 𝜔 + 𝑖2 ◦ Σ𝑘−1 𝑓 + [𝑖1, 𝑖2] .
Since the terms 𝑖1 ◦ ( ), 𝑖2 ◦ ( ) and [𝑖1, 𝑖2] are linearly independent, we may compare coefficients in

the expressions for 𝜀 ◦ 𝜑𝜏 and ±𝜑𝜔 .

(i) If 𝜀 ◦ 𝜑𝜏 ≃ 𝜑𝜔 then comparing the 𝑖2-terms gives (−1) 𝑗 = 1, so 𝑗 = 0, in which case comparing

the [𝑖1, 𝑖2]-terms gives (−1)𝑖+𝑗 = 1, implying that 𝑖 = 0, and then comparing the 𝑖1-terms results

in 𝑓 ◦ 𝜏 + 𝜆 ◦ Σ𝑘−1 𝑓 + [𝜄𝑚, 𝜆] ≃ 𝑓 ◦ 𝜔 ;
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(ii) If 𝜀◦𝜑𝜏 ≃ −𝜑𝜔 then comparing the 𝑖2-terms gives (−1) 𝑗 = −1, so 𝑗 = 1, in which case comparing

the [𝑖1, 𝑖2]-terms gives (−1)𝑖+𝑗 = −1, implying that 𝑖 = 0, and then comparing the 𝑖1-terms

results in 𝑓 ◦ 𝜏 + 𝜆 ◦ Σ𝑘−1 𝑓 + [𝜄𝑚, 𝜆] ≃ −𝑓 ◦ 𝜔 .

Conversely, suppose that there exists a 𝜆 ∈ 𝜋𝑚+𝑘−1(𝑆𝑚) such that 𝑓 ◦ 𝜏 + 𝜆 ◦ Σ𝑘−1 𝑓 + [𝜄𝑚, 𝜆] ≃ 𝑓 ◦𝜔 .

Define 𝜀 : 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1 → 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1
by letting the restrictions of 𝜀 to 𝑆𝑚 and 𝑆𝑚+𝑘−1

be 𝑖1 and

(𝑖1 ◦ 𝜆) + 𝑖2 respectively. Then 𝑖 = 𝑗 = 0 in Lemma 5.2 (i) and (ii), implying that the same is true in the

expression for 𝜀 ◦ 𝜑𝜏 . Thus by Lemma 5.2 (iii) there is a homotopy

𝜀 ◦ 𝜑𝜏 ≃ 𝑖1 ◦
(
𝑓 ◦ 𝜏 + 𝜆 ◦ Σ𝑘−1 𝑓 + [𝜄𝑚, 𝜆]

)
+ (𝑖2 ◦ Σ𝑘−1 𝑓 ) + [𝑖1, 𝑖2]

≃ 𝑖1 ◦ 𝑓 ◦ 𝜔 + (𝑖2 ◦ Σ𝑘−1 𝑓 ) + [𝑖1, 𝑖2]

≃ 𝜑𝜔 .

Similarly, if 𝑓 ◦𝜏+𝜆◦Σ𝑘−1 𝑓 + [𝜄𝑚, 𝜆] ≃ −𝑓 ◦𝜔 then define the self-equivalence 𝜀 by letting its restrictions

to 𝑆𝑚 and 𝑆𝑚+𝑘−1
be 𝑖1 and (𝑖1 ◦𝜆) − 𝑖2 respectively, so that 𝑖 = 0 and 𝑗 = 1, and obtain 𝜀 ◦𝜑𝜏 ≃ −𝜑𝜔 . □

Lemmas 5.1 and 5.3 are used to prove the following key proposition.

Proposition 5.4. Let 𝜏 and 𝜔 be distinct homotopy classes in 𝜋𝑘−1(SO(2𝑚)). There is a homotopy equiv-
alence G𝑘

𝜏 (𝔽𝑃2) ≃ G𝑘
𝜔 (𝔽𝑃2) if and only if there exists a homotopy class 𝜆 ∈ 𝜋𝑚+𝑘−1(𝑆𝑚) such that

(5.7) 𝑓 ◦ 𝜏 + 𝜆 ◦ Σ𝑘−1 𝑓 + [𝜄𝑚, 𝜆] ≃ ±𝑓 ◦ 𝜔.

Proof. If there is a homotopy equivalence G𝑘
𝜏 (𝔽𝑃2) ≃ G𝑘

𝜔 (𝔽𝑃2), then by Lemma 5.1 there exists a self-

equivalence 𝜀 : 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1 → 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1
such that 𝜀 ◦𝜑𝜏 ≃ ±𝜑𝜔 . Lemma 5.3 then implies that there

is a homotopy 𝑓 ◦ 𝜏 + 𝜆 ◦ Σ𝑘−1 𝑓 + [𝜄𝑚, 𝜆] ≃ ±𝑓 ◦ 𝜔 .

Conversely, suppose there exists a 𝜆 ∈ 𝜋𝑚+𝑘−1(𝑆𝑚) such that (5.7) holds. Then Lemma 5.3 implies

that there is a self-equivalence 𝜀 : 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1 −→ 𝑆𝑚 ∨ 𝑆𝑚+𝑘−1
such that 𝜀 ◦ 𝜑𝜏 ≃ ±𝜑𝜔 . Lemma 5.1

then implies that G𝑘
𝜏 (𝔽𝑃2) ≃ G𝑘

𝜔 (𝔽𝑃2). □

Proposition 5.4 reduces the problem of detecting gyration stability of projective planes to the problem

of finding a 𝜆 ∈ 𝜋𝑚+𝑘−1(𝑆𝑚) such that 𝑓 ◦ 𝜏 + 𝜆 ◦ Σ𝑘−1 𝑓 + [𝜄𝑚, 𝜆] ≃ ±𝑓 ◦ 𝜔 . We formulate this as a

computational strategy for the coming sections.

Strategy 5.5. Fix 𝑚 and 𝑘 . Given twistings 𝜏, 𝜔 ∈ 𝜋𝑘−1(SO(2𝑚)), by (3.5) there are associated maps

𝜏, 𝜔 ∈ 𝜋2𝑚+𝑘−2(𝑆2𝑚−1).

Step1: Let 𝑥1, . . . , 𝑥𝑟 ∈ 𝜋2𝑚+𝑘−2(𝑆2𝑚−1) be a generating set. As 𝑓 = 𝜂2, 𝜈4 or 𝜎8 (for 𝑚 = 2, 4 or 8,

respectively) the morphism 𝑓 ◦ − : 𝜋2𝑚+𝑘−2(𝑆2𝑚−1) → 𝜋2𝑚+𝑘−2(𝑆𝑚) is injective, implying that

𝑓 ◦ 𝑥1, . . . , 𝑓 ◦ 𝑥𝑟 are distinct elements of 𝜋2𝑚+𝑘−2(𝑆𝑚). Thus we may write

𝑓 ◦ 𝜏 ≃ 𝑎1 · (𝑓 ◦ 𝑥1) + 𝑎2 · (𝑓 ◦ 𝑥2) + · · · + 𝑎𝑟 · (𝑓 ◦ 𝑥𝑟 )

and

𝑓 ◦ 𝜔 ≃ 𝑏1 · (𝑓 ◦ 𝑥1) + 𝑏2 · (𝑓 ◦ 𝑥2) + · · · + 𝑏𝑟 · (𝑓 ◦ 𝑥𝑟 )

where 𝑎𝑖 and 𝑏𝑖 are integers modulo the order of 𝑓 ◦ 𝑥𝑖 .

Step2: Find 𝜆1, 𝜆2, . . . 𝜆𝑟 ∈ 𝜋𝑚+𝑘−1(𝑆𝑚) such that 𝜆𝑖 ◦ Σ𝑘−1 𝑓 + [𝜄𝑚, 𝜆𝑖] ≃ 𝑓 ◦ 𝑥𝑖 for all 1 ≤ 𝑖 ≤ 𝑟 .
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Step3: Take 𝜆 = (𝑏1 − 𝑎1) · 𝜆1 + (𝑏2 − 𝑎2) · 𝜆2 + · · · + (𝑏𝑟 − 𝑎𝑟 ) · 𝜆𝑟 . By Steps 1 and 2, and using

right-distributivity, this choice of 𝜆 gives

𝑓 ◦ 𝜏 + 𝜆 ◦ Σ𝑘−1 𝑓 + [𝜄𝑚, 𝜆] ≃ 𝑏1 · (𝑓 ◦ 𝑥1) + 𝑏2 · (𝑓 ◦ 𝑥2) + · · · + 𝑏𝑟 · (𝑓 ◦ 𝑥𝑟 ) ≃ 𝑓 ◦ 𝜔

and therefore satisfies Proposition 5.4. Thus G𝑘
𝜏 (𝔽𝑃2) ≃ G𝑘

𝜔 (𝔽𝑃2).
In arguments proving gyration instability we will show that Step 2 fails. This is done by proving that

there is at least one generator 𝑥𝑖 for which there is no appropriate 𝜆𝑖 , or that for some 𝜆 ∈ 𝜋𝑚+𝑘−1(𝑆𝑚)
the term 𝜆◦Σ𝑘−1 𝑓 + [𝜄𝑚, 𝜆] fails to produce the necessary congruence relations between the coefficients

𝑎𝑖 and 𝑏𝑖 from Step 1. In either case it follows that G𝑘
𝜏 (𝔽𝑃2) ; G𝑘

𝜔 (𝔽𝑃2).

6. Computations for G𝑘
𝜏 (ℍ𝑃2)

Throughout Sections 6, 7 and 8 we will repeatedly use results regarding compositions of elements

in the homotopy groups of spheres. We shall follow Toda’s notation, in particular that 𝜂𝑛 = Σ𝑛−2𝜂2 for

𝑛 ≥ 2, 𝜈𝑛 = Σ𝑛−4𝜈 for 𝑛 ≥ 4 and that there exists a non-trivial homotopy class 𝜈 ′ ∈ 𝜋6(𝑆3). For a cyclic

group Γ we write Γ⟨𝑥⟩ for Γ with the explicit choice of generator 𝑥 ∈ Γ.

For ℍ𝑃2
fix 𝑚 = 4 and 𝑓 = 𝜈4, and consider 𝑘 in the range 2 ≤ 𝑘 ≤ 6. Proposition 4.2 implies

G𝑘
-stability when 𝑘 = 3, 5 or 6, so we are left to investigate gyrations when 𝑘 = 2 and 𝑘 = 4.

The 𝑘 = 2 case. Since 𝜋1(SO(8)) � ℤ/2, there are two gyrations G2

0
(ℍ𝑃2) and G2

1
(ℍ𝑃2) corresponding

to the trivial and non-trivial twistings, respectively. Following Strategy 5.5, given two twistings

𝜏, 𝜔 ∈ 𝜋1(SO(8)) � ℤ/2, the elements 𝜏 , 𝜔 and 𝜆 lie in the following homotopy groups

(6.1) 𝜏, 𝜔 ∈ 𝜋8(𝑆7) � ℤ/2⟨𝜂7⟩ and 𝜆 ∈ 𝜋5(𝑆4) � ℤ/2⟨𝜂4⟩.

For 𝜋8(𝑆4), the following proposition records a synthesis of facts from [Tod62, Proposition 5.8] and its

proof, for ease of reference.

Proposition 6.1 (Toda). For 𝜋8(𝑆4) the following hold:
(i) 𝜋8(𝑆4) � ℤ/2⟨𝜈4 ◦ 𝜂7⟩ ⊕ ℤ/2⟨Σ𝜈 ′ ◦ 𝜂7⟩;
(ii) the composite 𝜂4 ◦ 𝜈5 is homotopic to Σ𝜈 ′ ◦ 𝜂7;
(iii) the kernel of the suspension map 𝐸 : 𝜋8(𝑆4) → 𝜋9(𝑆5) is generated by Σ𝜈 ′ ◦ 𝜂7. □

Thus, Step 1 of Strategy 5.5 amounts to the lemma below.

Lemma 6.2. Given 𝜏 ∈ 𝜋1(SO(8)), if 𝜏 is non-trivial then 𝜈4 ◦ 𝜏 ≃ 𝜈4 ◦ 𝜂7.

Proof. If 𝜏 is non-trivial, then Corollary 3.11 implies that 𝜏 is also non-trivial. Thus as 𝜏 ∈ 𝜋8(𝑆7) by (6.1),

we have 𝜏 ≃ 𝜂7. The lemma then follows immediately. □

As for Step 2 of Strategy 5.5, we first show the following.

Lemma 6.3. The composite 𝜂4 ◦ 𝜈5 + [𝜄4, 𝜂4] is null homotopic.

Proof. By [HW53], the Whitehead product [𝜄4, 𝜂4] is non-trivial. As it represents a class in 𝜋8(𝑆4) and

suspends trivially, Proposition 6.1(iii) implies that is is homotopic to Σ𝜈 ′ ◦ 𝜂7. Also, Proposition 6.1(ii)

says that 𝜂4 ◦ 𝜈5 ≃ Σ𝜈 ′ ◦ 𝜂7 while Proposition 6.1(i) says that Σ𝜈 ′ ◦ 𝜂7 has order two, implying that

𝜂4 ◦ 𝜈5 + [𝜄4, 𝜂4] ≃ 2 · (Σ𝜈 ′ ◦ 𝜂7) ≃ ∗. □

This enables us to show that Step 2 of Strategy 5.5 fails, resulting in the following.
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Theorem 6.4. ℍ𝑃2 is not G2-stable, i.e. G2

0
(ℍ𝑃2) ; G2

1
(ℍ𝑃2).

Proof. We will show that there is no 𝜆 ∈ 𝜋5(𝑆4) � ℤ/2⟨𝜂4⟩ satisfying Proposition 5.4. Note that since

the homotopy group 𝜋8(𝑆4) is isomorphic to a direct sum of ℤ/2 summands there is no distinction

between +1 and −1, so we may operate in the ‘+’ case of Proposition 5.4 without loss of generality.

Proving G2
-instability therefore reduces to checking that is exists no 𝜆 such that

(6.2) 𝜈4 ◦ 𝜂7 + 𝜆 ◦ 𝜈5 + [𝜄4, 𝜆] ≃ ∗.

By (6.1), either 𝜆 ≃ ∗ or 𝜆 ≃ 𝜂4. If 𝜆 ≃ ∗ then (6.2) implies that 𝜈4 ◦ 𝜂7 is null homotopic, contradicting

Proposition 6.1 (i). If 𝜆 ≃ 𝜂4 then Lemma 6.3 shows that 𝜂4 ◦ 𝜈5 + [𝜄4, 𝜂4] is null homotopic, in which

case (6.2) again shows that 𝜈4 ◦ 𝜂7 is null homotopic, a contradiction. □

Remark 6.5. Note that Theorem 6.4 is subtly stronger that what was known before. Duan [Dua22]

showed that G2

0
(ℍ𝑃2) and G2

1
(ℍ𝑃2) are not diffeomorphic, Theorem 6.4 shows that they are also not

homeomorphic or even homotopy equivalent.

The 𝑘 = 4 case: There is a gyration G4

𝜏 (ℍ𝑃2) for each 𝜏 ∈ 𝜋3(𝑆𝑂 (8)) � ℤ. It will be shown in

Theorem 6.12 that they are all homotopy equivalent. We start with two preparatory statements: an

elementary lemma, followed by a classical result regarding Whitehead products and suspensions.

Lemma 6.6. Let Σ𝛼 ∈ 𝜋𝑖 (𝑆𝑛) and Σ𝛽 ∈ 𝜋 𝑗 (𝑆𝑖) be two suspensions of finite order. If their orders are
coprime, then the composition Σ𝛽 ◦ Σ𝛼 is null homotopic.

Proof. Let Σ𝛼 have order 𝑎 and Σ𝛽 have order 𝑏. Since both maps are suspensions we have

𝑎 · (Σ𝛽 ◦ Σ𝛼) ≃ Σ𝛽 ◦ (𝑎 · Σ𝛼) ≃ Σ𝛽 ◦ ∗ ≃ ∗

and similarly that

𝑏 · (Σ𝛽 ◦ Σ𝛼) ≃ (𝑏 · Σ𝛽) ◦ Σ𝛼 ≃ ∗ ◦ Σ𝛼 ≃ ∗.
By assumption, 𝑔𝑐𝑑 (𝑎, 𝑏) = 1, so Bézout’s identity implies that there exist integers 𝑠 and 𝑡 such that

𝑠𝑎 + 𝑡𝑏 = 1. This together with the above null homotopies implies that

Σ𝛽 ◦ Σ𝛼 ≃ (𝑠𝑎 + 𝑡𝑏) · (Σ𝛽 ◦ Σ𝛼) ≃ 𝑠𝑎 · (Σ𝛽 ◦ Σ𝛼) + 𝑡𝑏 · (Σ𝛽 ◦ Σ𝛼) ≃ ∗

where right-distributivity comes from the fact that both maps are suspensions. □

Lemma 6.7 ([Whi78, Theorem X.8.18]). Let 𝛼 ∈ 𝜋𝑝+1(𝑋 ), 𝛽 ∈ 𝜋𝑞+1(𝑋 ), 𝛾 ∈ 𝜋𝑖 (𝑆𝑝) and 𝛿 ∈ 𝜋 𝑗 (𝑆𝑞). Then

[𝛼 ◦ Σ𝛾, 𝛽 ◦ Σ𝛿] ≃ [𝛼, 𝛽] ◦ Σ(𝛾 ∧ 𝛿) . □

The next two propositions, also separated for later ease of reference, describe the relevant homotopy

groups and generators. Note that some generators are not labelled as they will not be needed later.

The statements and notation are taken from [Tod62], except that we use 𝑥 to denote the 2-primary

component of a homotopy class 𝑥 .

Proposition 6.8 (Toda). For 𝑛 > 4 there are group isomorphisms

𝜋𝑛+3(𝑆𝑛) � ℤ/24⟨𝜈𝑛⟩ � ℤ/8⟨𝜈𝑛⟩ ⊕ ℤ/3⟨𝛼1(𝑛)⟩.

where the second isomorphism comes from writing 𝜈7 ≃ 𝜈7 + 𝛼1(7). □

Proposition 6.9 (Toda). There are group isomorphisms:

(i) 𝜋7(𝑆4) � ℤ⟨𝜈4⟩ ⊕ ℤ/4⟨Σ𝜈 ′⟩ ⊕ ℤ/3;
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(ii) 𝜋10(𝑆4) � ℤ/8⟨𝜈4 ◦ 𝜈7⟩ ⊕ ℤ/3⟨𝜈4 ◦ 𝛼1(7)⟩ ⊕ ℤ/3. □

We now move to Step 1 of Strategy 5.5.

Lemma 6.10. For any 𝜏 ∈ 𝜋3(SO(8)) there exist integers 𝑎1 and 𝑎2, modulo 8 and 3 respectively, such
that 𝜈4 ◦ 𝜏 ≃ 𝑎1 · (𝜈4 ◦ 𝜈7) + 𝑎2 · (𝜈4 ◦ 𝛼1(7)).

Proof. With 𝑘 =𝑚 = 4, by (3.5) we have 𝜏 ∈ 𝜋10(𝑆7). By Proposition 6.8 we obtain

𝜏 ∈ 𝜋10(𝑆7) � ℤ/24⟨𝜈7⟩ � ℤ/8⟨𝜈7⟩ ⊕ ℤ/3⟨𝛼1(7)⟩.

Therefore 𝜏 = 𝑎1 · 𝜈̂7 +𝑎2 ·𝛼1(7) for some integers 𝑎1 and 𝑎2 modulo 8 and 3 respectively. The statement

of the lemma follows by left distributivity. □

We also have the following homotopies, due to [Tod62, Propositions 5.8 and 5.11], which will be

crucial for the computations for this case:

(6.3) Σ2𝜈 ′ ≃ 2 · 𝜈5 and Σ𝜈 ′ ◦ 𝜈7 ≃ ∗.

The following lemma constitutes Step 2 of Strategy 5.5.

Lemma 6.11. There exist 𝜆1, 𝜆2 ∈ 𝜋7(𝑆4) such that:

(i) 𝜆1 ◦ 𝜈7 + [𝜄4, 𝜆1] ≃ 𝜈4 ◦ 𝜈7;
(ii) 𝜆2 ◦ 𝜈7 + [𝜄4, 𝜆2] ≃ 𝜈4 ◦ 𝛼1(7).

Proof. Before finding the asserted homotopy classes we consider an element Λ ∈ 𝜋7(𝑆4) which, via

Proposition 6.9(ii), can be written as

Λ = 𝑥 · (𝜈4) + 𝑦 · (Σ𝜈 ′)

for integers 𝑥 and𝑦, with𝑦 considered modulo 4. Both the composite Λ◦𝜈7 and the Whitehead product

[𝜄4,Λ] lie in the homotopy group 𝜋10(𝑆4); the first aim is to express these in terms of the generators

given in Proposition 6.9(ii).

Take Λ ◦ 𝜈7. Since 𝜈7 is a suspension, right-distributivity gives Λ ◦ 𝜈7 ≃ 𝑥 · (𝜈4 ◦ 𝜈7) + 𝑦 · (Σ𝜈 ′ ◦ 𝜈7).
By (6.3), Σ𝜈 ′ ◦ 𝜈7 ≃ ∗. Recalling that 𝜈7 ≃ 𝜈7 + 𝛼1(7), by left-distributivity we therefore have

(6.4) Λ ◦ 𝜈7 ≃ 𝑥 · (𝜈4 ◦ 𝜈7) + 𝑥 · (𝜈4 ◦ 𝛼1(7)) .

Next consider [𝜄4,Λ]. The Whitehead product is additive, so we obtain

[𝜄4,Λ] ≃ 𝑥 · [𝜄4, 𝜈4] + 𝑦 · [𝜄4, Σ𝜈 ′] .

Applying Lemma 6.7 to [𝜄4, Σ𝜈 ′] and using 2 · 𝜈̂7 ≃ Σ4𝜈 ′ from (6.3), there are homotopies

(6.5) [𝜄4, Σ𝜈 ′] ≃ [𝜄4, 𝜄4] ◦ Σ4𝜈 ′ ≃ 2 · ( [𝜄4, 𝜄4] ◦ 𝜈7) .

By [Tod62, (5.8)], there is a homotopy [𝜄4, 𝜄4] ≃ 2 · 𝜈4 − Σ𝜈 ′ so it follows from (6.3) and (6.5) that

[𝜄4, Σ𝜈 ′] ≃ 4 · (𝜈4 ◦ 𝜈7) .

For [𝜄4, 𝜈4], by [Tod62, (5.13)] or [Beh12, Proposition 3.6.1], we have [𝜄4, 𝜈4] ≃ ±2 · (𝜈4 ◦𝜈7). Putting this

together gives

(6.6) [𝜄4,Λ] ≃ (±2𝑥 + 4𝑦) · (𝜈4 ◦ 𝜈7) .

Combining (6.4) and (6.6) therefore gives the homotopy

Λ ◦ 𝜈7 + [𝜄4,Λ] ≃ (𝑥 ± 2𝑥 + 4𝑦) · (𝜈4 ◦ 𝜈7) + 𝑥 · (𝜈4 ◦ 𝛼1(7)) .
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For part (i), to obtain 𝜆1 ◦𝜈7 + [𝜄4, 𝜆1] ≃ 𝜈4 ◦𝜈7 we require 𝑥 ± 2𝑥 + 4𝑦 ≡ 1 (mod 8) and 𝑥 ≡ 0 (mod 3).

There are two cases depending on the sign ±: in the ‘+’ case take 𝑥 = 3 and 𝑦 = 0, giving 𝜆1 = 3 · 𝜈4,

and in the ‘−’ case take 𝑥 = 𝑦 = 3, giving 𝜆1 = 3 · 𝜈4 + 3 · Σ𝜈 ′.
As for part (ii), to obtain 𝜆2 ◦ 𝜈7 + [𝜄4, 𝜆2] ≃ 𝜈4 ◦ 𝛼1(7) we require that 𝑥 ± 2𝑥 + 4𝑦 ≡ 0 (mod 8) and

that 𝑥 ≡ 1 (mod 3). In the ‘+’ case take 𝑥 = 4 and 𝑦 = 1, giving 𝜆2 = 4 · 𝜈4 + Σ𝜈 ′, and in the ‘−’ case take

𝑥 = 4 and 𝑦 = 3, giving 𝜆2 = 4 · 𝜈4 + 3 · Σ𝜈 ′. □

Executing Step 3 of Strategy 5.5 provides the following result for G4
-stability of ℍ𝑃2

.

Theorem 6.12. ℍ𝑃2 is G4-stable, i.e. G4

𝜏 (ℍ𝑃2) ≃ G4

𝜔 (ℍ𝑃2) for all twistings 𝜏, 𝜔 ∈ 𝜋3(SO(8)).

Proof. By Lemma 6.10, for any twistings 𝜏 and 𝜔 we have

𝜈4 ◦ 𝜏 ≃ 𝑎1 · (𝜈4 ◦ 𝜈7) + 𝑎2 · (𝜈4 ◦ 𝛼1(7)) and 𝜈4 ◦ 𝜔 ≃ 𝑏1 · (𝜈4 ◦ 𝜈7) + 𝑏2 · (𝜈4 ◦ 𝛼1(7))

for some integers 𝑎1 and 𝑏1 modulo 8, and 𝑎2 and 𝑏2 modulo 3. Take 𝜆 = (𝑏1 − 𝑎1) · 𝜆1 + (𝑏2 − 𝑏1) · 𝜆2,

where 𝜆1 and 𝜆2 are as in Lemma 6.11. Then Step 3 of Strategy 5.5 implies that G4

𝜏 (ℍ𝑃2) ≃ G4

𝜔 (ℍ𝑃2).
This holds for any choice of 𝜏 and 𝜔 , so ℍ𝑃2

is G4
-stable. □

7. Computations for G𝑘
𝜏 (𝕆𝑃2) when 𝑘 ≤ 8

For 𝕆𝑃2
fix 𝑚 = 8 and 𝑓 = 𝜎8, and consider 𝑘 in the range 2 ≤ 𝑘 ≤ 14. Proposition 4.2 implies

G𝑘
-stability when 𝑘 = 3, 5, 6, 7, 11, 13 or 14, so we are left to investigate 𝑘 = 2, 4, 8, 9, 10 and 12. In this

section we treat the first three of these cases.

Here and in Section 8, following Toda we use the notation 𝜎𝑛 = Σ𝑛−8𝜎8 for 𝑛 > 8 and note there is a

homotopy class 𝜎 ′ ∈ 𝜋14(𝑆7) that satisfies the identity Σ2𝜎 ′ ≃ 2 · 𝜎9.

The 𝑘 = 2 case. As 𝜋1(SO(16)) � ℤ/2, there two gyrations, which (similar to previous sections) will

be denoted by G2

0
(𝕆𝑃2) and G2

1
(𝕆𝑃2). Furthermore, this also implies that Step 1 of the general strategy

reduces to the statement that for any twisting 𝜏 ∈ 𝜋1(SO(16)) either 𝜎8 ◦ 𝜏 ≃ ∗ or 𝜎8 ◦ 𝜏 ≃ 𝜎8 ◦ 𝜂15. We

will show that Step 2 fails, via the following lemma.

Lemma 7.1. 𝜂8 ◦ 𝜎9 + [𝜄8, 𝜂8] ; 𝜎8 ◦ 𝜂15.

Proof. First note that by [Tod62, (5.15)], the composite 𝜎8 ◦ 𝜂15 is not homotopic to a suspension. On

the other hand, the composite 𝜂8 ◦ 𝜎9 is a suspension, being homotopic to Σ(𝜂7 ◦ 𝜎8). By [Tod62, p. 63]

the kernel of the suspension map 𝐸 : 𝜋16(𝑆8) → 𝜋17(𝑆9) is generated by Σ𝜎 ′ ◦ 𝜂15. As this kernel is

generated by a suspension, the Whitehead product [𝜄8, 𝜂8], being an element of this kernel, is also a

suspension. This implies that 𝜂8 ◦ 𝜎9 + [𝜄8, 𝜂8] is a suspension since it is a sum of suspensions. Thus

𝜂8 ◦ 𝜎9 + [𝜄8, 𝜂8] ; 𝜎8 ◦ 𝜂15 since the left side is a suspension while right side is not. □

Theorem 7.2. 𝕆𝑃2 is not G2-stable, i.e., G2

0
(𝕆𝑃2) ; G2

1
(𝕆𝑃2).

Proof. We will show that there is no 𝜆 ∈ 𝜋9(𝑆8) � ℤ/2⟨𝜂8⟩ satisfying Proposition 5.4. Proving G2
-

instability therefore reduces to checking that there exists no 𝜆 such that

(7.1) 𝜎8 ◦ 𝜂15 + 𝜆 ◦ 𝜎9 + [𝜄8, 𝜆] ≃ ∗.

If 𝜆 ≃ ∗ then (7.1) cannot hold since, by [Tod62, Theorem 7.1], 𝜎8 ◦ 𝜂15 ; ∗. If 𝜆 ≃ 𝜂8 then Lemma 7.1

shows that (7.1) cannot hold. Therefore there is no 𝜆 such that (7.1) holds, as required. □

The 𝑘 = 4 case: There is a gyration G4

𝜏 (𝕆𝑃2) for each 𝜏 ∈ 𝜋3(𝑆𝑂 (16)) � ℤ. We first give three results

describing the relevant homotopy groups, generators and relations.
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Proposition 7.3 (Toda). For 𝑛 > 8 there are group isomorphisms

𝜋𝑛+7(𝑆𝑛) � ℤ/240⟨𝜎𝑛⟩ � ℤ/16⟨𝜎𝑛⟩ ⊕ ℤ/5⟨𝛼1(𝑛)⟩ ⊕ ℤ/3⟨𝛼2(𝑛)⟩

where the second isomorphism comes from writing 𝜎𝑛 ≃ 𝜎𝑛 + 𝛼1(𝑛) + 𝛼2(𝑛). The notation 𝛼1(𝑛) is used to
distinguish the 5-torsion class from the 3-torsion class 𝛼1(𝑛). □

Proposition 7.4 (Toda). There is a group isomorphism

𝜋18(𝑆8) � ℤ/8⟨𝜎8 ◦ 𝜈̂15⟩ ⊕ ℤ/8⟨𝜈8 ◦ 𝜎11⟩ ⊕ ℤ/3⟨𝜎8 ◦ 𝛼1(15)⟩ ⊕ ℤ/3⟨𝛽1(8)⟩ ⊕ ℤ/2 □

Lemma 7.5 (Toda, Lemma 5.14). There is a homotopy [𝜄8, 𝜄8] ≃ 2 · 𝜎8 − Σ𝜎 ′. □

Step 1 of Strategy 5.5 is given by the following lemma.

Lemma 7.6. For any 𝜏 ∈ 𝜋3(SO(16)) there exist integers 𝑎1 and 𝑎2, modulo 8 and 3 respectively, such that
𝜎8 ◦ 𝜏 ≃ 𝑎1 · (𝜎8 ◦ 𝜈̂15) + 𝑎2 · (𝜎8 ◦ 𝛼1(15)).

Proof. With 𝑘 = 4 and𝑚 = 8, by (3.5) we have 𝜏 ∈ 𝜋18(𝑆15). By Proposition 6.8 we obtain

𝜏 ∈ 𝜋18(𝑆15) � ℤ/8⟨̂𝜈15⟩ ⊕ ℤ/3⟨𝛼1(15)⟩.

Therefore 𝜏 = 𝑎1 ·𝜈̂15+𝑎2 ·𝛼1(15) for some integers 𝑎1 and 𝑎2 modulo 8 and 3 respectively. The statement

of the lemma follows by left distributivity. □

Now we turn to Step 2 of Strategy 5.5. For 𝜆 ∈ 𝜋11(𝑆8), by Proposition 6.8 we have

𝜆 ≃ 𝑥 · 𝜈̂8 + 𝑦 · 𝛼1(8)

for integers 𝑥 and 𝑦 considered modulo 8 and 3, respectively.

Lemma 7.7. There is an odd integer 𝜉 such that

𝜆 ◦ 𝜎11 + [𝜄8, 𝜆] ≃ 2𝑥 · (𝜎8 ◦ 𝜈̂15) + (𝑥 − 𝑥𝜉) · (𝜈̂8 ◦ 𝜎11) + 2𝑦 · (𝜎8 ◦ 𝛼1(15)) .

Proof. As in Proposition 7.3, write 𝜎11 ≃ 𝜎11 + 𝛼1(11) + 𝛼2(11). Since all these homotopy classes are

suspensions we may distribute on the left. Using this and repeated applications of Lemma 6.6 we obtain

𝜆 ◦ 𝜎11 ≃ (𝑥 · 𝜈̂8 + 𝑦 · 𝛼1(8)) ◦ (𝜎11 + 𝛼1(11) + 𝛼2(11))

≃ 𝑥 · (𝜈̂8 ◦ 𝜎11) + 𝑦 · (𝛼1(8) ◦ 𝛼2(15)) .

By [Tod62, Lemma 13.8], the composite 𝛼1(8) ◦ 𝛼2(15) is homotopic to (−3) · 𝛽1(8). By Proposition 7.4

the class 𝛽1(8) has order 3, so we obtain

(7.2) 𝜆 ◦ 𝜎11 ≃ 𝑥 · (𝜈̂8 ◦ 𝜎11).

For [𝜄8, 𝜆], Proposition 6.8 implies that 𝜆 is suspension, so applying Lemma 6.7 gives

[𝜄8, 𝜆] ≃ [𝜄8, 𝜄8] ◦ Σ7𝜆.

By Lemma 7.5 we have [𝜄8, 𝜄8] ≃ 2 · 𝜎8 − Σ𝜎 ′
. Further, [Tod62, (7.19)] implies that there exists an odd

integer 𝜉 such that Σ𝜎 ′ ◦ 𝜈̂15 ≃ 𝜉 · 𝜈̂8 ◦ 𝜎11. Therefore

(7.3) [𝜄8, 𝜆] ≃ (2 · 𝜎8 − Σ𝜎 ′) ◦ (𝑥 · 𝜈̂15 +𝑦 · 𝛼1(15)) ≃ 2𝑥 · (𝜎8 ◦ 𝜈̂15) − 𝑥𝜉 · (𝜈̂8 ◦ 𝜎11) + 2𝑦 · (𝜎8 ◦ 𝛼1(15))

since Σ𝜎 ′ ◦ 𝛼1(15) is null homotopic by Lemma 6.6.

Combining (7.2) and (7.3) implies that

𝜆 ◦ 𝜎11 + [𝜄8, 𝜆] ≃ 2𝑥 · (𝜎8 ◦ 𝜈̂15) + (𝑥 − 𝑥𝜉) · (𝜈̂8 ◦ 𝜎11) + 2𝑦 · (𝜎8 ◦ 𝛼1(15))

as asserted. □
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Remark 7.8. In this case, Step 3 of Strategy 5.5 aims for a homotopy

(7.4) 𝜎8 ◦ 𝜏 + 𝜆 ◦ 𝜎11 + [𝜄8, 𝜆] ≃ ±𝜎8 ◦ 𝜔.

Both sides of the homotopy are elements in 𝜋18(𝑆8), which by Lemma 7.6 has generators that include

𝜎8 ◦ 𝜈15, 𝜈̂8 ◦ 𝜎11 and 𝜎8 ◦ 𝛼1(15). By Lemma 7.7, the left side of (7.4) involves 𝜈̂8 ◦ 𝜎11 with coefficient

(𝑥 − 𝑥𝜉). By Lemma 7.6, the right side of (7.4) involves 𝜈̂8 ◦ 𝜎11 with coefficient 0. Therefore it must be

the case that 𝑥 − 𝑥𝜉 ≡ 0 (mod 8) if such a homotopy holds. If 𝜉 ≡ 1 (mod 8) then 𝑥 may take any value,

but otherwise 𝑥 is forced to be even.

Proposition 7.9. Let 𝜉 be the odd integer of Lemma 7.7 and let 𝜏 ∈ 𝜋3(SO(16)) be an arbitrary twisting.

(i) If 𝜉 ≡ 1 (mod 8) then G4

𝜏 (𝕆𝑃2) can take exactly two possible homotopy types.
(ii) If 𝜉 ≡ 5 (mod 8) then G4

𝜏 (𝕆𝑃2) can take exactly three possible homotopy types.
(iii) If 𝜉 ≡ 3 or 7 (mod 8) then G4

𝜏 (𝕆𝑃2) can take exactly five possible homotopy types.

Proof. By Lemma 7.6, for twistings 𝜏, 𝜔 ∈ 𝜋3(SO(16)) we may write

𝜎8 ◦ 𝜏 ≃ 𝑎1 · (𝜎8 ◦ 𝜈̂15) + 𝑎2 · (𝜎8 ◦ 𝛼1(15)) and 𝜎8 ◦ 𝜔 ≃ 𝑏1 · (𝜎8 ◦ 𝜈̂15) + 𝑏2 · (𝜎8 ◦ 𝛼1(15))

for some integers 𝑎1 and 𝑏1 modulo 8, and 𝑎2 and 𝑏2 modulo 3. By Proposition 5.4, there is a homotopy

equivalence G4

𝜏 (𝕆𝑃2) ≃ G4

𝜔 (𝕆𝑃2) if and only if there exists a 𝜆 ∈ 𝜋11(𝑆8) that gives rise to a homotopy

𝜎8◦𝜏 +𝜆◦𝜎11+ [𝜄8, 𝜆] ≃ ±𝜎8◦𝜔 . By Lemma 7.7, writing 𝜆 ≃ 𝑥 ·𝜈̂8+𝑦 ·𝛼1(8) and applying the congruence

𝑥 − 𝑥𝜉 ≡ 0 (mod 8) in Remark 7.8, we obtain

𝜎8 ◦ 𝜏 + 𝜆 ◦ 𝜎11 + [𝜄8, 𝜆] ≃ (𝑎1 + 2𝑥) · (𝜎8 ◦ 𝜈̂15) + (𝑎2 + 2𝑦) · (𝜎8 ◦ 𝛼1(15)) .

Therefore there is a homotopy equivalence G4

𝜏 (𝕆𝑃2) ≃ G4

𝜔 (𝕆𝑃2) if and only if

(𝑎1 + 2𝑥) · (𝜎8 ◦ 𝜈̂15) + (𝑎2 + 2𝑦) · (𝜎8 ◦ 𝛼1(15)) ≃ 𝑏1 · (𝜎8 ◦ 𝜈̂15) + 𝑏2 · (𝜎8 ◦ 𝛼1(15)) .

Thus a homotopy equivalence exists if and only if 𝑎1 + 2𝑥 ≡ ±𝑏1 (mod 8) and 𝑎2 + 2𝑦 ≡ ±𝑏2 (mod 3).

Further, given any 𝑎2 and 𝑏2 modulo 3, there always exists a 𝑦 such that 𝑎2 + 2𝑦 ≡ ±𝑏2 (mod 3). Hence

a homotopy equivalence exists if and only if 𝑎1 + 2𝑥 ≡ ±𝑏1 (mod 8).

First observe that 𝑎1 + 2𝑥 ≡ ±𝑏1 (mod 8) implies that 𝑎1 ≡ 𝑏1 (mod 2). So if 𝑎1 . 𝑏1 (mod 2) then

G4

𝜏 (𝕆𝑃2) ; G4

𝜔 (𝕆𝑃2). In particular, if 𝑎1 is even and 𝑏1 is odd then G4

𝜏 (𝕆𝑃2) ; G4

𝜔 (𝕆𝑃2). This implies

that 𝕆𝑃2
is not G4

-stable and hence directly answers GSI in the negative.

We now turn to GSII and enumerating the possible homotopy types for G4

𝜏 (𝕆𝑃2). This depends on

the possible choices of 𝑥 that give 𝑎1 + 2𝑥 ≡ ±𝑏1 (mod 8), while Remark 7.8 implies that 𝑥 must also

satisfy 𝑥 − 𝑥𝜉 ≡ 0 (mod 8). Since 𝑎1 is an integer modulo 8 there are at most eight possible homotopy

types; we label each one by the value of 𝑎1 and write G4

0
(𝕆𝑃2),G4

1
(𝕆𝑃2), . . . ,G4

7
(𝕆𝑃2). There are three

cases, depending on 𝜉 modulo 8.

Part (i): if 𝜉 ≡ 1 (mod 8) then 𝑥 − 𝑥𝜉 ≡ 0 (mod 8) holds for all 𝑥 . Taking 𝑥 = 1, we obtain

𝑎1 + 2 ≡ ±𝑏1 (mod 8) if and only if 𝑎1 ≡ 𝑏1 (mod 2). Thus there are homotopy equivalences:

G4

0
(𝕆𝑃2) ≃ G4

2
(𝕆𝑃2) ≃ G4

4
(𝕆𝑃2) ≃ G4

6
(𝕆𝑃2) and G4

1
(𝕆𝑃2) ≃ G4

3
(𝕆𝑃2) ≃ G4

5
(𝕆𝑃2) ≃ G4

7
(𝕆𝑃2) .

On the other hand, we have already seen that if 𝑎1 . 𝑏1 (mod 2) then G4

𝜏 (𝕆𝑃2) ; G4

𝜔 (𝕆𝑃2). Thus there

are exactly two homotopy types in this case.

Parts (ii) and (iii): if 𝜉 . 1 (mod 8) then we are in one of two situations. If 𝜉 ≡ 5 (mod 8) then the

condition 𝑥−𝑥𝜉 ≡ 0 (mod 8) occurs if and only if 𝑥 is even. Taking 𝑥 = 2, we obtain 𝑎1+4 ≡ ±𝑏1 (mod 8)
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if and only if 𝑎1 ≡ ±𝑏1 (mod 4). Thus there are homotopy equivalences

G4

0
(𝕆𝑃2) ≃ G4

4
(𝕆𝑃2), G4

1
(𝕆𝑃2) ≃ G4

3
(𝕆𝑃2) ≃ G4

5
(𝕆𝑃2) ≃ G4

7
(𝕆𝑃2) and G4

2
(𝕆𝑃2) ≃ G4

6
(𝕆𝑃2) .

On the other hand, no other value of 𝑥 will result in additional homotopy equivalences between these

three homotopy types. This proves (ii). If 𝜉 ≡ 3 or 7 (mod 8) then the condition 𝑥 − 𝑥𝜉 ≡ 0 (mod 8)

occurs if and only if 𝑥 ≡ 0 or 4 (mod 8). This implies that 𝑎1 + 2𝑥 ≡ 𝑎1 (mod 8) and therefore there

is a congruence 𝑎1 + 2𝑥 ≡ ±𝑏1 (mod 8) if and only if 𝑎1 ≡ ±𝑏1 (mod 8). Thus there are homotopy

equivalences

G4

0
(𝕆𝑃2), G4

1
(𝕆𝑃2) ≃ G4

7
(𝕆𝑃2), G4

2
(𝕆𝑃2) ≃ G4

6
(𝕆𝑃2), G4

3
(𝕆𝑃2) ≃ G4

5
(𝕆𝑃2) and G4

4
(𝕆𝑃2) .

This proves (iii). □

Proposition 7.9 shows that for 𝑘 = 4 the answer to GSII for 𝕆𝑃2
is at least 2, so it immediately implies

the following.

Theorem 7.10. 𝕆𝑃2 is not G4-stable. □

The 𝑘 = 8 case. There is a gyration G8

𝜏 (𝕆𝑃2) for each 𝜏 ∈ 𝜋7(𝑆𝑂 (16)) � ℤ. The next two statements

describe the relevant homotopy groups, generators and relations.

Proposition 7.11 (Toda). There are group isomorphisms:

(i) 𝜋15(𝑆8) � ℤ⟨𝜎8⟩ ⊕ ℤ/8⟨Σ𝜎 ′⟩ ⊕ ℤ/5 ⊕ ℤ/3;
(ii) 𝜋22(𝑆8) � ℤ/16⟨𝜎8◦𝜎15⟩⊕ℤ/8⟨Σ𝜎 ′◦𝜎15⟩⊕ℤ/5⟨𝜎8◦𝛼1(15)⟩⊕ℤ/3⟨𝜎8◦𝛼2(15)⟩⊕ℤ/4⊕ℤ/3. □

Lemma 7.12 (Toda, p.101). There is a homotopy [𝜄8, 𝜎8] ≃ ±
(
2 · (𝜎8 ◦ 𝜎15) − (Σ𝜎 ′ ◦ 𝜎15)

)
. □

Step 1 of Strategy 5.5 is given by the following lemma.

Lemma 7.13. For any 𝜏 ∈ 𝜋7(SO(16)) there exist integers 𝑎1, 𝑎2 and 𝑎3, modulo 16, 5 and 3 respectively,
such that 𝜎8 ◦ 𝜏 ≃ 𝑎1 · (𝜎8 ◦ 𝜎15) + 𝑎2 · (𝜎8 ◦ 𝛼1(15)) + 𝑎3 · (𝜎8 ◦ 𝛼2(15)).

Proof. With 𝑘 =𝑚 = 8, by (3.5) we have 𝜏 ∈ 𝜋22(𝑆15). By Proposition 6.8 we obtain

𝜏 ∈ 𝜋22(𝑆15) � ℤ/16⟨𝜎15⟩ ⊕ ℤ/5⟨𝛼1(15)⟩ ⊕ ℤ/3⟨𝛼2(15)⟩.

Therefore 𝜏 = 𝑎1 · 𝜎15 + 𝑎2 · 𝛼1(15) + 𝑎3 · 𝛼1(15) for some integers 𝑎1, 𝑎2 and 𝑎3 modulo 16, 5 and 3

respectively. The statement of the lemma follows by left distributivity. □

The following lemma constitutes Step 2. We will argue similarly to Lemma 6.11.

Lemma 7.14. There exist 𝜆1, 𝜆2, 𝜆3 ∈ 𝜋15(𝑆8) such that:

(i) 𝜆1 ◦ 𝜎15 + [𝜄8, 𝜆1] ≃ 𝜎8 ◦ 𝜎15;
(ii) 𝜆2 ◦ 𝜎15 + [𝜄8, 𝜆2] ≃ 𝜎8 ◦ 𝛼1(15);
(iii) 𝜆3 ◦ 𝜎15 + [𝜄8, 𝜆3] ≃ 𝜎8 ◦ 𝛼2(15) .

Proof. Before finding the asserted homotopy classes we consider an element Λ ∈ 𝜋15(𝑆8) which, by

Proposition 7.11(i), may be written as

Λ ≃ 𝑤 · 𝜎8 + 𝑥 · Σ𝜎 ′

for integers 𝑤 and 𝑥 , with 𝑥 considered modulo 8. The composite Λ ◦ 𝜎15 and the Whitehead product

[𝜄8,Λ] both lie in the homotopy group 𝜋22(𝑆8); the first aim is to express these in terms of the generators

given in Proposition 7.11(ii).
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First consider Λ ◦ 𝜎15. Since 𝜎15 is a suspension, right-distributivity gives

Λ ◦ 𝜎15 ≃ 𝑤 · (𝜎8 ◦ 𝜎15) + 𝑥 · (Σ𝜎 ′ ◦ 𝜎15).

Writing 𝜎15 ≃ 𝜎15 + 𝛼1(15) + 𝛼2(15), repeated application of Lemma 6.6 thus gives a homotopy

(7.5) Λ ◦ 𝜎15 ≃ 𝑤 · (𝜎8 ◦ 𝜎15) +𝑤 · (𝜎8 ◦ 𝛼1(15)) +𝑤 · (𝜎8 ◦ 𝛼2(15)) + 𝑥 · (Σ𝜎 ′ ◦ 𝜎15) .

Next, consider [𝜄8,Λ]. By additivity we may consider [𝜄8, Σ𝜎 ′] and [𝜄8, 𝜎8] separately. Since Σ𝜎 ′
is a

suspension, applying Lemma 6.7 and using the fact that Σ8𝜎 ′ ≃ 2 · 𝜎15 gives

[𝜄8, Σ𝜎 ′] ≃ [𝜄8, 𝜄8] ◦ Σ8𝜎 ′ ≃ 2 · ( [𝜄8, 𝜄8] ◦ 𝜎15).

Further, Lemma 7.5 then shows

[𝜄8, Σ𝜎 ′] ≃ 4 · (𝜎8 ◦ 𝜎15) − 2 · (Σ𝜎 ′ ◦ 𝜎15) .

Hence, applying Lemma 7.12 for [𝜄8, 𝜎8], we obtain

(7.6) [𝜄8,Λ] ≃ (±2𝑤 + 4𝑥) · (𝜎8 ◦ 𝜎15) − (±𝑤 + 2𝑥) · (Σ𝜎 ′ ◦ 𝜎15) .

Now combining (7.5) and (7.6), we have

Λ ◦ 𝜎15 + [𝜄8,Λ] ≃ (𝑤 ± 2𝑤 + 4𝑥) · (𝜎8 ◦ 𝜎15) − (±𝑤 + 𝑥) · (Σ𝜎 ′ ◦ 𝜎15)

+𝑤 · (𝜎8 ◦ 𝛼1(15)) +𝑤 · (𝜎8 ◦ 𝛼2(15)).
(7.7)

For part (i) there are two cases, depending on the ‘±’ signs in (7.6). In the ‘+’ case, (7.7) becomes

𝜆1 ◦ 𝜎15 + [𝜄8, 𝜆1] ≃ (3𝑤 + 4𝑥) · (𝜎8 ◦ 𝜎15) + (−𝑤 − 𝑥) · (Σ𝜎 ′ ◦ 𝜎15) +𝑤 · (𝜎8 ◦ 𝛼1(15)) +𝑤 · (𝜎8 ◦ 𝛼2(15)).

So to obtain 𝜆1 ◦ 𝜎15 + [𝜄8, 𝜆1] ≃ 𝜎8 ◦ 𝜎15 as in (i), we must have 3𝑤 + 4𝑥 ≡ 1 (mod 16), 𝑥 ≡ −𝑤 (mod 8),

𝑤 ≡ 0 (mod 5) and𝑤 ≡ 0 (mod 5). Taking𝑤 = 15 and 𝑥 = 1 solves this system, giving 𝜆1 = 15 ·𝜎8 +Σ𝜎 ′
.

In the ‘−’ case (7.7) becomes

𝜆1 ◦ 𝜎15 + [𝜄8, 𝜆1] ≃ (−𝑤 + 4𝑥) · (𝜎8 ◦ 𝜎15) + (𝑤 − 𝑥) · (Σ𝜎 ′ ◦ 𝜎15) +𝑤 · (𝜎8 ◦ 𝛼1(15)) +𝑤 · (𝜎8 ◦ 𝛼2(15)).

So to obtain 𝜆1 ◦ 𝜎15 + [𝜄8, 𝜆1] ≃ 𝜎8 ◦ 𝜎15 as in (i), we must have −𝑤 + 4𝑥 ≡ 1 (mod 16), 𝑥 ≡ 𝑤 (mod 8),

𝑤 ≡ 0 (mod 5) and𝑤 ≡ 0 (mod 3). Taking𝑤 = 75 and 𝑥 = 3 solves this system, giving 𝜆1 = 75·𝜎8+3·Σ𝜎 ′
.

Thus, in either case, there is a 𝜆1 that satisfies (i).

We now move to part (ii). To obtain 𝜆2 ◦ 𝜎15 + [𝜄8, 𝜆2] ≃ 𝜎8 ◦ 𝛼1(15), with the left side written as

in (7.7), we need a solution to the system of congruences given by

𝑤 ± 2𝑤 + 4𝑥 ≡ 0 (mod 16),±𝑤 + 𝑥 ≡ 0 (mod 8),𝑤 ≡ 1 (mod 5) and 𝑤 ≡ 0 (mod 3).

Taking 𝑤 = 96 and 𝑥 = 0 solves the system, giving 𝜆2 = 96 · 𝜎8.

Finally, we consider part (iii). To obtain 𝜆3 ◦ 𝜎15 + [𝜄8, 𝜆3] ≃ 𝜎8 ◦ 𝛼2(15), with the left side written as

in (7.7), we need to solve

𝑤 ± 2𝑤 + 4𝑥 ≡ 0 (mod 16),±𝑤 + 𝑥 ≡ 0 (mod 8),𝑤 ≡ 0 (mod 5) and 𝑤 ≡ 1 (mod 3).

Taking 𝑤 = 160 and 𝑥 = 0 solves the system, giving 𝜆3 = 160 · 𝜎8. □

Finally, we proceed to Step 3 of Strategy 5.5.

Theorem 7.15. 𝕆𝑃2 is G8-stable, i.e. G8

𝜏 (𝕆𝑃2) ≃ G8

𝜔 (𝕆𝑃2) for all twistings 𝜏, 𝜔 ∈ 𝜋7(SO(16)).
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Proof. By Lemma 7.13 for any two twistings 𝜏 and 𝜔 we may write

𝜎8 ◦ 𝜏 ≃ 𝑎1 · (𝜎8 ◦ 𝜎15) + 𝑎2 · (𝜎8 ◦ 𝛼1(15)) + 𝑎3 · (𝜎8 ◦ 𝛼2(15))

and

𝜎8 ◦ 𝜔 ≃ 𝑏1 · (𝜎8 ◦ 𝜎15) + 𝑏2 · (𝜎8 ◦ 𝛼1(15)) + 𝑏3 · (𝜎8 ◦ 𝛼2(15))

for some integers 𝑎1 and 𝑏1 considered modulo 16, 𝑎2 and 𝑏2 modulo 5, and 𝑎3 and 𝑏3 modulo 3. Take

𝜆 = (𝑏1 −𝑎1) · 𝜆1 + (𝑏2 −𝑏1) · 𝜆2 + (𝑎3 −𝑏3) · 𝜆3, where 𝜆1, 𝜆2 and 𝜆3 are as in Lemma 7.14. Then Step 3 of

Strategy 5.5 implies that G8

𝜏 (𝕆𝑃2) ≃ G8

𝜔 (𝕆𝑃2) holds for any choice of 𝜏 and 𝜔 , so 𝕆𝑃2
is G8

-stable. □

8. Computations for G𝑘
𝜏 (𝕆𝑃2) when 9 ≤ 𝑘 ≤ 14

We now turn to the the three remaining cases when 𝑘 = 9, 𝑘 = 10 and 𝑘 = 12.

The 𝑘 = 9 case. There is a gyration G9

𝜏 (𝕆𝑃2) for each 𝜏 ∈ 𝜋8(𝑆𝑂 (16)) � ℤ/2. The next two statements

describe the relevant homotopy groups, generators, and relations.

Proposition 8.1 (Toda). There are group isomorphisms:

(i) 𝜋23(𝑆15) � ℤ/2⟨𝜈15⟩ ⊕ ℤ/2⟨𝜀15⟩;
(ii) 𝜋16(𝑆8) � ℤ/2⟨𝜎8 ◦ 𝜂15⟩ ⊕ ℤ/2⟨Σ𝜎 ′ ◦ 𝜂15⟩ ⊕ ℤ/2⟨𝜈8⟩ ⊕ ℤ/2⟨𝜀8⟩;
(iii) 𝜋23(𝑆8) � ℤ/2⟨𝜎8 ◦ 𝜈15⟩ ⊕ ℤ/2⟨𝜎8 ◦ 𝜀15⟩ ⊕ ℤ/2⟨Σ𝜎 ′ ◦ 𝜈15⟩ ⊕ ℤ/2⟨Σ𝜎 ′ ◦ 𝜀15⟩ ⊕ ℤ/2 ⊕ ℤ/120. □

Lemma 8.2 ([Tod62, Lemma 6.4]). There is a homotopy 𝜂9 ◦ 𝜎10 ≃ 𝜈9 + 𝜀9, and for 𝑛 ≥ 10 there are
homotopies 𝜂𝑛 ◦ 𝜎𝑛+1 ≃ 𝜎𝑛 ◦ 𝜂𝑛+7 ≃ 𝜈𝑛 + 𝜀𝑛 . □

Step 1 of Strategy 5.5 is given by the following lemma.

Lemma 8.3. Given 𝜏 ∈ 𝜋8(SO(16)), if 𝜏 is non-trivial then 𝜎8 ◦ 𝜏 ≃ 𝜎8 ◦ 𝜈15 + 𝜎8 ◦ 𝜀15.

Proof. If 𝜏 is non-trivial, then Corollary 3.11 implies that 𝜏 is also non-trivial. With 𝑘 = 9 and 𝑚 = 8,

by its definition in (3.5), we have 𝜏 ∈ 𝜋23(𝑆15). By Proposition 3.10 we have Σ𝜏 ∈ 𝑖𝑚(𝐽 ), which by

[Rav04, Theorem 1.1.13]
1

is generated by 𝜂16 ◦𝜎17. By Lemma 8.2, 𝜂16 ◦𝜎17 ≃ 𝜈16 + 𝜀16. As we are in the

stable range, we may desuspend, and thus

(8.1) 𝜏 ∈ ℤ/2⟨𝜈15 + 𝜀15⟩ ⊂ 𝜋23(𝑆15) .

The result then follows immediately by left-distributivity. □

We now move to Step 2.

Lemma 8.4. There exists 𝜆1 ∈ 𝜋16(𝑆8) such that 𝜆1 ◦ 𝜎16 + [𝜄8, 𝜆1] ≃ 𝜎8 ◦ 𝜈15 + 𝜎8 ◦ 𝜀15.

Proof. We prove the asserted homotopy for 𝜆1 = (𝜎8 ◦ 𝜂15) + 𝜈8 + 𝜀8 ∈ 𝜋16(𝑆8). Consider the composite

𝜆1 ◦ 𝜎16. By [Tod62, Lemma 10.7] there are null homotopies for 𝜈8 ◦ 𝜎16 and 𝜀8 ◦ 𝜎16, and so

𝜆1 ◦ 𝜎16 ≃ (𝜎8 ◦ 𝜂15 ◦ 𝜎16) + (𝜈8 ◦ 𝜎16) + (𝜀8 ◦ 𝜎16) ≃ (𝜎8 ◦ 𝜂15 ◦ 𝜎16) + ∗ + ∗.

By Lemma 8.2, there is a homotopy 𝜎8 ◦ 𝜂15 ◦ 𝜎16 ≃ 𝜎8 ◦ 𝜈15 + 𝜎8 ◦ 𝜀15 and hence

𝜆1 ◦ 𝜎16 ≃ 𝜎8 ◦ 𝜈15 + 𝜎8 ◦ 𝜀15.

1
stated citing [Ada66] and [Qui71]
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It therefore remains to show that the Whitehead product [𝜄8, 𝜆1] is null homotopic. By additivity

we consider each of the three summands of 𝜆1 separately. First, since the elements 𝜈8 and 𝜀8 are both

suspensions, by Lemma 6.7 we have

[𝜄8, 𝜈8] ≃ [𝜄8, 𝜄8] ◦ 𝜈15 and [𝜄8, 𝜀8] ≃ [𝜄8, 𝜄8] ◦ 𝜀15.

Recalling Lemma 7.5, and noting that both 𝜎8 ◦ 𝜈15 and 𝜎8 ◦ 𝜀15 have order 2 by Proposition 8.1(iii), we

obtain

(8.2) [𝜄8, 𝜈8] ≃ Σ𝜎 ′ ◦ 𝜈15 and [𝜄8, 𝜀8] ≃ Σ𝜎 ′ ◦ 𝜀15.

On the other hand, for [𝜄8, 𝜎8 ◦ 𝜂15], by Lemma 6.7 we have

[𝜄8, 𝜎8 ◦ 𝜂15] ≃ [𝜄8, 𝜎8] ◦ 𝜂22.

Once again applying Lemma 7.12 for [𝜄8, 𝜎8] and noting that 𝜂22 has order 2, we obtain

[𝜄8, 𝜎8] ◦ 𝜂22 ≃ Σ𝜎 ′ ◦ 𝜎15 ◦ 𝜂22.

By Lemma 8.2, 𝜎15 ◦ 𝜂22 ≃ 𝜈15 + 𝜀15. Thus, putting this together and using left distributivity gives

(8.3) [𝜄8, 𝜎8 ◦ 𝜂15] ≃ Σ𝜎 ′ ◦ 𝜎15 ◦ 𝜂22 ≃ Σ𝜎 ′ ◦ 𝜈15 + Σ𝜎 ′ ◦ 𝜀15.

Combining (8.2) and (8.3) gives

[𝜄8, 𝜆1] ≃ [𝜄8, 𝜎8 ◦ 𝜂15] + [𝜄8, 𝜈8] + [𝜄8, 𝜀8] ≃ 2 · (Σ𝜎 ′ ◦ 𝜈15) + 2 · (Σ𝜎 ′ ◦ 𝜀15) ≃ ∗

where the null homotopy comes from both classes having order two. □

Step 3 of Strategy 5.5 follows swiftly.

Theorem 8.5. 𝕆𝑃2 is G9-stable, i.e. G9

𝜏 (𝕆𝑃2) ≃ G9

𝜔 (𝕆𝑃2) for all twistings 𝜏, 𝜔 ∈ 𝜋8(SO(16)).

Proof. Since 𝜋8(SO(16)) � ℤ/2, there are two choices of twisting, so to prove gyration stability in this

case we need only check when 𝜏 is non-trivial and 𝜔 is trivial. By Lemma 8.3 for 𝜏 and Lemma 3.9 (iii)

for 𝜔 , we may write

𝜎8 ◦ 𝜏 ≃ 𝜎8 ◦ 𝜈15 + 𝜎8 ◦ 𝜀15 and 𝜎8 ◦ 𝜔 ≃ ∗.
It follows that taking 𝜆1 as in Lemma 8.4 gives

𝜎8 ◦ 𝜏 + 𝜆1 ◦ 𝜎16 + [𝜄8, 𝜆1] ≃ 2 · (𝜎8 ◦ 𝜈15 + 𝜎8 ◦ 𝜀15) ≃ ∗ ≃ 𝜎8 ◦ 𝜔

thus proving G9
-stability for 𝕆𝑃2

, by Proposition 5.4. □

The 𝑘 = 10 case. There is a gyration G10

𝜏 (𝕆𝑃2) for each 𝜏 ∈ 𝜋9(𝑆𝑂 (16)) � ℤ/2. The next two

statements describe the relevant homotopy groups, generators and relations. We write 𝜈3

𝑛 to denote the

composite 𝜈𝑛 ◦ 𝜈𝑛+3 ◦ 𝜈𝑛+6 for 𝑛 ≥ 8, and similarly let 𝜂2

𝑛 be 𝜂𝑛 ◦ 𝜂𝑛+1 for 𝑛 ≥ 2.

Proposition 8.6 (Toda). There are group isomorphisms:

(i) 𝜋24(𝑆15) � ℤ/2⟨𝜈3

15
⟩ ⊕ ℤ/2⟨𝜂15 ◦ 𝜀16⟩ ⊕ ℤ/2;

(ii) 𝜋17(𝑆8) � ℤ/2⟨𝜎8 ◦ 𝜂2

15
⟩ ⊕ ℤ/2⟨𝜈3

8
⟩ ⊕ ℤ/2⟨𝜂8 ◦ 𝜀9⟩ ⊕ ℤ/2 ⊕ ℤ/2;

(iii) 𝜋24(𝑆8) � ℤ/2⟨𝜎8 ◦ 𝜈3

15
⟩ ⊕ ℤ/2⟨𝜎8 ◦ 𝜂15 ◦ 𝜀16⟩ ⊕ ℤ/2 ⊕ ℤ/2 ⊕ ℤ/2 ⊕ ℤ/2 ⊕ ℤ/2. □

Lemma 8.7 ([Tod62, Lemma 6.3]). For 𝑛 ≥ 6 there are homotopies 𝜈𝑛 ◦ 𝜂𝑛+8 ≃ 𝜂𝑛 ◦ 𝜈𝑛+1 ≃ 𝜈3

𝑛 . □

We begin with Step 1 of Strategy 5.5.

Lemma 8.8. Given 𝜏 ∈ 𝜋9(SO(16)), if 𝜏 is non-trivial then 𝜎8 ◦ 𝜏 ≃ (𝜎8 ◦ 𝜈3

15
) + (𝜎8 ◦ 𝜂15 ◦ 𝜀16).
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Proof. If 𝜏 is non-trivial, then Corollary 3.11 implies that 𝜏 is also non-trivial. With 𝑘 = 10 and 𝑚 = 8,

by its definition in (3.5), we have 𝜏 ∈ 𝜋24(𝑆15). By Proposition 3.10 we have Σ𝜏 ∈ 𝑖𝑚(𝐽 ), which by

[Rav04, Theorem 1.1.13] is generated by 𝜂2

15
◦ 𝜎17. In turn, by Lemmas 8.2 and 8.7, this composite is

homotopic to the class 𝜈3

15
+ 𝜂15 ◦ 𝜀16. As we are in the stable range we may de-suspend, and thus

(8.4) 𝜏 ∈ ℤ/2⟨𝜈3

15
+ 𝜂15 ◦ 𝜀16⟩ ⊂ 𝜋24(𝑆15).

The result then follows immediately by left-distributivity. □

We move on to Step 2 of Strategy 5.5.

Lemma 8.9. There exists 𝜆1 ∈ 𝜋17(𝑆8) such that 𝜆1 ◦ 𝜎17 + [𝜄8, 𝜆1] ≃ (𝜎8 ◦ 𝜈3

15
) + (𝜎8 ◦ 𝜂15 ◦ 𝜀16).

Proof. We prove the identity for the class 𝜆1 = (𝜎8 ◦𝜂2

15
) +𝜈3

8
+ (𝜂8 ◦ 𝜀9) ∈ 𝜋17(𝑆8). Consider 𝜆1 ◦𝜎17. By

[Tod62, Lemma 10.7] there are null homotopies for the composites 𝜀9 ◦ 𝜎17 and 𝜈9 ◦ 𝜎17, and by Lemma

8.7 we have 𝜂8 ◦ 𝜈9 ≃ 𝜈3

8
. Therefore

𝜂8 ◦ 𝜀9 ◦ 𝜎17 ≃ ∗ and 𝜈3

8
◦ 𝜎17 ≃ 𝜂8 ◦ 𝜈9 ◦ 𝜎17 ≃ ∗,

implying that 𝜆1◦𝜎17 ≃ 𝜎8◦𝜂2

15
◦𝜎17. By Lemma 8.2, 𝜂16◦𝜎17 ≃ 𝜈16+𝜀16. This together with 𝜂15◦𝜈16 ≃ 𝜈3

15

gives

(8.5) 𝜆1 ◦ 𝜎17 ≃ 𝜎8 ◦ 𝜂2

15
◦ 𝜎17 ≃ (𝜎8 ◦ 𝜂15 ◦ 𝜈16) + (𝜎8 ◦ 𝜂15 ◦ 𝜀16) ≃ (𝜎8 ◦ 𝜈3

15
) + (𝜎8 ◦ 𝜂15 ◦ 𝜀16) .

Thus if [𝜄8, 𝜆1] is null homotopic then the homotopy asserted by the lemma holds.

It remains to show that [𝜄8, 𝜆1] is null homotopic. By additivity we consider each of the three sum-

mands of 𝜆1 separately. Both 𝜈3

8
and 𝜂8 ◦ 𝜀9 are suspensions, so by Lemma 6.7 we obtain

[𝜄8, 𝜈3

8
] ≃ [𝜄8, 𝜄8] ◦ 𝜈3

15
and [𝜄8, 𝜂8 ◦ 𝜀9] ≃ [𝜄8, 𝜄8] ◦ 𝜂15 ◦ 𝜀16.

By Lemma 7.5, and noting that both 𝜎8 ◦ 𝜈3

15
and 𝜎8 ◦ 𝜂15 ◦ 𝜀16 have order 2 by Proposition 8.6 (iii), we

obtain

(8.6) [𝜄8, 𝜈3

8
] ≃ Σ𝜎 ′ ◦ 𝜈3

15
and [𝜄8, 𝜂8 ◦ 𝜀9] ≃ Σ𝜎 ′ ◦ 𝜂15 ◦ 𝜀16.

For [𝜄8, 𝜎8 ◦ 𝜂2

15
] we again use Lemma 6.7 to obtain

[𝜄8, 𝜎8 ◦ 𝜂2

15
] ≃ [𝜄8, 𝜎8] ◦ 𝜂2

22
.

Once again applying Lemma 7.12 for [𝜄8, 𝜎8], and since 𝜂2

22
has order 2, we obtain

[𝜄8, 𝜎8 ◦ 𝜂2

15
] ≃ Σ𝜎 ′ ◦ 𝜎15 ◦ 𝜂2

22
.

By Lemma 8.2, 𝜎15 ◦ 𝜂22 ≃ 𝜈15 + 𝜀15. Left distributivity then gives

Σ𝜎 ′ ◦ 𝜎15 ◦ 𝜂2

22
≃ Σ𝜎 ′ ◦ 𝜈15 ◦ 𝜂23 + Σ𝜎 ′ ◦ 𝜀15 ◦ 𝜂23.

Next, Lemma 8.7 gives 𝜈15 ◦ 𝜂23 ≃ 𝜈3

15
, and as 𝜀15 ◦ 𝜂23 is in the stable range it is homotopic to the

composite 𝜂15 ◦ 𝜀16. Therefore, stringing homotopies together, we obtain

(8.7) [𝜄8, 𝜎8 ◦ 𝜂2

15
] ≃ Σ𝜎 ′ ◦ 𝜈3

15
+ Σ𝜎 ′ ◦ 𝜂15 ◦ 𝜀16.

Combining (8.6) and (8.7) then gives

[𝜄8, 𝜆1] ≃ 2 · (Σ𝜎 ′ ◦ 𝜈3

15
) + 2 · (Σ𝜎 ′ ◦ 𝜂15) ◦ 𝜀16.

Both 𝜈3

15
and 𝜂15 have order 2, so [𝜄8, 𝜆1] is null homotopic, as required. □

Theorem 8.10. 𝕆𝑃2 is G10-stable, i.e. G10

𝜏 (𝕆𝑃2) ≃ G10

𝜔 (𝕆𝑃2) for all twistings 𝜏, 𝜔 ∈ 𝜋9(SO(16)).
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Proof. Since 𝜋9(SO(16)) � ℤ/2, there are two choices of twisting, so to prove gyration stability in this

case we need only check when 𝜏 is non-trivial and 𝜔 is trivial. By Lemma 8.8 for 𝜏 and Lemma 3.9 (iii)

for 𝜔 , we may write

𝜎8 ◦ 𝜏 ≃ (𝜎8 ◦ 𝜈3

15
) + (𝜎8 ◦ 𝜂15 ◦ 𝜀16) and 𝜎8 ◦ 𝜔 ≃ ∗.

It follows that taking 𝜆1 as in Lemma 8.9 gives

𝜎8 ◦ 𝜏 + 𝜆1 ◦ 𝜎16 + [𝜄8, 𝜆1] ≃ 2 · ((𝜎8 ◦ 𝜈3

15
) + (𝜎8 ◦ 𝜂15 ◦ 𝜀16)) ≃ ∗ ≃ 𝜎8 ◦ 𝜔

thus proving G10
-stability for 𝕆𝑃2

, by Proposition 5.4. □

The 𝑘 = 12 case. There is a gyration G12

𝜏 (𝕆𝑃2) for each 𝜏 ∈ 𝜋11(𝑆𝑂 (16)) � ℤ. We begin by listing

the relevant homotopy groups and generators. Note that the 𝛼1-class of order 7 is denoted by 𝛼1(𝑛) to

distinguish it from the order 5 and the order 3 classes 𝛼1(𝑛) and 𝛼1(𝑛), and we follow Toda in using

𝛼 ′
3
(𝑛) to denote the 3-primary class with the property that 3 · 𝛼 ′

3
(𝑛) ≃ 𝛼3(𝑛).

Proposition 8.11 (Toda). There are group isomorphisms:

(i) 𝜋26(𝑆15) � ℤ/8⟨𝜁15⟩ ⊕ ℤ/9⟨𝛼 ′
3
(15)⟩ ⊕ ℤ/7⟨𝛼1(15)⟩;

(ii) 𝜋19(𝑆8) � ℤ/8⟨𝜁8⟩ ⊕ ℤ/9⟨𝛼 ′
3
(8)⟩ ⊕ ℤ/7⟨𝛼1(8)⟩ ⊕ ℤ/2⟨𝜈8 ◦ 𝜈16⟩;

(iii) 𝜋26(𝑆8) � ℤ/8⟨𝜎8 ◦ 𝜁15⟩ ⊕ ℤ/9⟨𝜎8 ◦ 𝛼 ′
3
(15)⟩ ⊕ ℤ/7⟨𝜎8 ◦ 𝛼1(15)⟩ ⊕ ℤ/8⟨𝜁8 ◦ 𝜎19⟩ ⊕

ℤ/3⟨𝛼 ′
3
(8) ◦ 𝛼2(19)⟩ ⊕ ℤ/2. □

Step 1 is given by the next lemma.

Lemma 8.12. For any 𝜏 ∈ 𝜋11(SO(16)) there exist integers 𝑎1, 𝑎2 and 𝑎3, modulo 8, 9 and 7 respectively,
such that 𝜎8 ◦ 𝜏 ≃ 𝑎1 · (𝜎8 ◦ 𝜁15) + 𝑎2 · (𝜎8 ◦ 𝛼 ′

3
(15)) + 𝑎3 · (𝜎8 ◦ 𝛼1(15)).

Proof. With 𝑘 = 12 and𝑚 = 8, by (3.5) we have 𝜏 ∈ 𝜋26(𝑆15). So by Proposition 8.11 (i),

𝜏 ∈ ℤ/8⟨𝜁15⟩ ⊕ ℤ/9⟨𝛼 ′
3
(15)⟩ ⊕ ℤ/7⟨𝛼1(15)⟩.

Therefore 𝜏 ≃ 𝑎1 · 𝜁15 + 𝑎2 · 𝛼 ′
3
(15) + 𝑎3 · 𝛼1(15) for some integers 𝑎1, 𝑎2 and 𝑎3 modulo 8, 9 and 7

respectively. The statement of the lemma follows by left distributivity. □

Now we turn to Step 2. For 𝜆 ∈ 𝜋19(𝑆8), by Proposition 8.11 (ii) we have

(8.8) 𝜆 ≃ 𝑤 · 𝜁8 + 𝑥 · 𝛼 ′
3
(8) + 𝑦 · 𝛼1(8) + 𝑧 · (𝜈8 ◦ 𝜈16)

for integers 𝑤, 𝑥,𝑦 and 𝑧 modulo 8, 9, 7 and 2 respectively.

Lemma 8.13. There is an odd integer 𝜗 such that

𝜆 ◦ 𝜎19 + [𝜄8, 𝜆] ≃ 2𝑤 · (𝜎8 ◦ 𝜁15) + 2𝑥 · (𝜎8 ◦ 𝛼 ′
3
(15)) + 2𝑦 · (𝜎8 ◦ 𝛼1(15))

+ (𝑤 − 𝜗𝑤) · (𝜁8 ◦ 𝜎19) + 𝑥 · (𝛼 ′
3
(8) ◦ 𝛼2(19)) .

Proof. First, consider the composite 𝜆 ◦ 𝜎19. Writing 𝜎19 ≃ 𝜎19 + 𝛼1(19) + 𝛼2(19) and using Lemma 6.6

to eliminate compositions of elements of coprime orders, we obtain

𝜆 ◦ 𝜎19 ≃ 𝜆 ◦ (𝜎19 + 𝛼1(19) + 𝛼2(19)) ≃ 𝑤 · (𝜁8 ◦ 𝜎19) + 𝑥 · (𝛼 ′
3
(8) ◦ 𝛼2(19)) + 𝑧 · (𝜈8 ◦ 𝜈16 ◦ 𝜎19) .

By [Tod62, (7.20)], 𝜈16 ◦ 𝜎19 is null homotopic. Therefore

(8.9) 𝜆 ◦ 𝜎19 ≃ 𝑤 · (𝜁8 ◦ 𝜎19) + 𝑥 · (𝛼 ′
3
(8) ◦ 𝛼2(19)).
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Next consider the Whitehead product [𝜄8, 𝜆]. Each of the generators in Proposition 8.11(ii) is a sus-

pension, implying that 𝜆 is a suspension. Therefore Lemma 6.7 implies that

[𝜄8, 𝜆] ≃ [𝜄8, 𝜄8] ◦ Σ7𝜆.

Applying Lemma 7.5 and using the expression for 𝜆 in (8.8) gives

[𝜄8, 𝜆] ≃ (2 · 𝜎8 − Σ𝜎 ′) ◦ (𝑤 · 𝜁15 + 𝑥 · 𝛼 ′
3
(15) + 𝑦 · 𝛼1(15) + 𝑧 · (𝜈15 ◦ 𝜈23))

≃ 2𝑤 · (𝜎8 ◦ 𝜁15) + 2𝑥 · (𝜎8 ◦ 𝛼 ′
3
(15)) + 2𝑦 · (𝜎8 ◦ 𝛼1(15)) + 2𝑧 · (𝜎8 ◦ 𝜈15 ◦ 𝜈23)

−𝑤 · (Σ𝜎 ′ ◦ 𝜁15) − 𝑥 · (Σ𝜎 ′ ◦ 𝛼 ′
3
(15)) − 𝑦 · (Σ𝜎 ′ ◦ 𝛼1(15)) − 𝑧 · (Σ𝜎 ′ ◦ 𝜈15 ◦ 𝜈23).

Applying Lemma 6.6 to eliminate compositions of coprime elements, and observing that 𝜈15 ◦𝜈23 is null

homotopic by [Tod62, (7.22)], gives

(8.10) [𝜄8, 𝜆] ≃ 2𝑤 · (𝜎8 ◦ 𝜁15) + 2𝑥 · (𝜎8 ◦ 𝛼 ′
3
(15)) + 2𝑦 · (𝜎8 ◦ 𝛼1(15)) −𝑤 · (Σ𝜎 ′ ◦ 𝜁15) .

Now, by [Tod62, Lemma 12.12] there exists an odd integer 𝜗 such that Σ𝜎 ′ ◦ 𝜁15 ≃ 𝜗 · (𝜁8 ◦ 𝜎19) and so

(8.9) and (8.10) combine to give

𝜆 ◦ 𝜎19 + [𝜄8, 𝜆] ≃ 2𝑤 · (𝜎8 ◦ 𝜁15) + 2𝑥 · (𝜎8 ◦ 𝛼 ′
3
(15)) + 2𝑦 · (𝜎8 ◦ 𝛼1(15))

+ (𝑤 − 𝜗𝑤) · (𝜁8 ◦ 𝜎19) + 𝑥 · (𝛼 ′
3
(8) ◦ 𝛼2(19))

(8.11)

as asserted. □

Lemma 8.13 has two immediate consequences, giving the following supplementary lemma.

Lemma 8.14. Let 𝜏, 𝜔 ∈ 𝜋11(SO(16)) and let 𝜆 ∈ 𝜋19(SO(16)) be as in (8.8). If there is a homotopy
𝜎8 ◦ 𝜏 + 𝜆 ◦ 𝜎19 + [𝜄8, 𝜆] ≃ ±𝜎8 ◦ 𝜔 then the following congruences hold

(i) 𝑥 ≡ 0 (mod 3);
(ii) 𝑤 − 𝜗𝑤 ≡ 0 (mod 8),

where 𝜗 is the odd integer or Lemma 8.13.

Proof. Consider the homotopy 𝜎8 ◦ 𝜏 + 𝜆 ◦ 𝜎19 + [𝜄8, 𝜆] ≃ ±𝜎8 ◦ 𝜔 . By Lemma 8.13 the left side has

𝛼 ′
3
(8) ◦ 𝛼2(19) with coefficient 𝑥 and 𝜁8 ◦ 𝜎19 with coefficient (𝑤 − 𝜗𝑤), whereas the right side has

both of these with coefficient 0 by Lemma 8.12. Therefore it must be the case that 𝑥 ≡ 0 (mod 3) and

𝑤 − 𝜗𝑤 ≡ 0 (mod 8), since by Proposition 8.11 (iii) these classes are of order 3 and 8, respectively. □

Remark 8.15. This is a similar, slightly more complicated, situation to that of the 𝑘 = 4 case (cf.

Remark 7.8). Although the precise value of the odd integer 𝜗 is not determined, the congruences of

Lemma 8.14 result in the following analogue to Proposition 7.9.

Proposition 8.16. Let 𝜗 be the odd integer of Lemma 8.13 and 𝜏 ∈ 𝜋11(SO(16)) be an arbitrary twisting.
(i) If 𝜗 ≡ 1 (mod 8) then G12

𝜏 (𝕆𝑃2) can take exactly four possible homotopy types.
(ii) If 𝜗 ≡ 5 (mod 8) then G12

𝜏 (𝕆𝑃2) can take exactly six possible homotopy types.
(iii) If 𝜗 ≡ 3 or 7 (mod 8) then G12

𝜏 (𝕆𝑃2) can take exactly ten possible homotopy types.

Proof. By Lemma 8.12, for twistings 𝜏, 𝜔 ∈ 𝜋11(SO(16)) we may write

𝜎8 ◦ 𝜏 ≃ 𝑎1 · (𝜎8 ◦ 𝜁15) + 𝑎2 · (𝜎8 ◦ 𝛼 ′
3
(15)) + 𝑎3 · (𝜎8 ◦ 𝛼1(15))

and

𝜎8 ◦ 𝜔 ≃ 𝑏1 · (𝜎8 ◦ 𝜁15) + 𝑏2 · (𝜎8 ◦ 𝛼 ′
3
(15)) + 𝑏3 · (𝜎8 ◦ 𝛼1(15))
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for some integers 𝑎1 and 𝑏1 considered modulo 8, 𝑎2 and 𝑏2 modulo 9, and 𝑎3 and 𝑏3 modulo 7. By

Proposition 5.4, there is a homotopy equivalence G12

𝜏 (𝕆𝑃2) ≃ G12

𝜔 (𝕆𝑃2) if and only if there exists a

𝜆 ∈ 𝜋19(𝑆8) such that 𝜎8 ◦ 𝜏 + 𝜆 ◦ 𝜎19 + [𝜄8, 𝜆] ≃ ±𝜎8 ◦ 𝜔 . By Lemma 8.13, writing 𝜆 as

𝜆 ≃ 𝑤 · 𝜁8 + 𝑥 · 𝛼 ′
3
(8) + 𝑦 · 𝛼1(8) + 𝑧 · (𝜈8 ◦ 𝜈16)

as in (8.8) and applying the congruences of Lemma 8.14 gives a homotopy

(8.12) 𝜎8 ◦𝜏 +𝜆 ◦𝜎19 + [𝜄8, 𝜆] ≃ (𝑎1 + 2𝑤) · (𝜎8 ◦ 𝜁15) + (𝑎2 + 2𝑥) · (𝜎8 ◦𝛼 ′
3
(15)) + (𝑎3 + 2𝑦) · (𝜎8 ◦𝛼1(15))

Comparing coefficients, this implies that G12

𝜏 (𝕆𝑃2) ≃ G12

𝜔 (𝕆𝑃2) if and only if we have the following

congruences:

𝑎1 + 2𝑤 ≡ ±𝑏1 (mod 8), 𝑎2 + 2𝑥 ≡ ±𝑏2 (mod 9) and 𝑎3 + 2𝑦 ≡ ±𝑏3 (mod 7).

Further, given any 𝑎3 and 𝑏3 modulo 7, there always exists a 𝑦 such that 𝑎3 + 2𝑦 ≡ ±𝑏3 (mod 7). Hence

a homotopy equivalence exists if and only if the first two of the above congruences hold.

First observe that 𝑎1 + 2𝑤 ≡ ±𝑏1 (mod 8) implies that 𝑎1 ≡ 𝑏1 (mod 2). So if 𝑎1 . 𝑏1 (mod 2) then

G12

𝜏 (𝕆𝑃2) ; G12

𝜔 (𝕆𝑃2). In particular, if 𝑎1 is even and 𝑏1 is odd then G12

𝜏 (𝕆𝑃2) ; G12

𝜔 (𝕆𝑃2). Moreover,

the restriction that 𝑥 ≡ 0 (mod 3) implies that the second congruence reduces to 𝑎2 ≡ ±𝑏2 (mod 3), so

if 𝑎2 ≡ 0 (mod 3) and 𝑏2 ≡ ±1 (mod 3) then this would also give G12

𝜏 (𝕆𝑃2) ; G12

𝜔 (𝕆𝑃2). This implies

that 𝕆𝑃2
is not G12

-stable and hence directly answers GSI in the negative.

We now turn to GSII and enumerating the possible homotopy types for G12

𝜏 (𝕆𝑃2). This depends on

the possible choices of 𝑤 that give 𝑎1 + 2𝑤 ≡ ±𝑏1 (mod 8) and whether 𝑎2 ≡ 0 or ± 1 (mod 3). Since

𝑎1 is an integer modulo 8 this implies that are at most sixteen possible homotopy types; we label each

one by the value of 𝑎1 when 𝑎2 ≡ 0 (mod 3), which we write as G12

0
(𝕆𝑃2),G12

1
(𝕆𝑃2), . . . ,G12

7
(𝕆𝑃2), and

the second eight for when 𝑎2 ≡ ±1 (mod 3) are written as G12

0,±(𝕆𝑃2),G12

1,±(𝕆𝑃2), . . . ,G12

7,±(𝕆𝑃2). There

are three cases, which depend on the odd integer 𝜗 modulo 8.

Part (i): if 𝜗 ≡ 1 (mod 8) then 𝑤 −𝑤𝜗 ≡ 0 (mod 8) holds for all 𝑤 . Thus 𝑎1 + 2𝑤 ≡ ±𝑏1 (mod 8) if

and only if 𝑎1 ≡ 𝑏1 (mod 2), so this case there are four possible homotopy types:

G12

0
(𝕆𝑃2) ≃ G12

2
(𝕆𝑃2) ≃ G12

4
(𝕆𝑃2) ≃ G12

6
(𝕆𝑃2),

G12

1
(𝕆𝑃2) ≃ G12

3
(𝕆𝑃2) ≃ G12

5
(𝕆𝑃2) ≃ G12

7
(𝕆𝑃2),

G12

0,±(𝕆𝑃2) ≃ G12

2,±(𝕆𝑃2) ≃ G12

4,±(𝕆𝑃2) ≃ G12

6,±(𝕆𝑃2),

and G12

1,±(𝕆𝑃2) ≃ G12

3,±(𝕆𝑃2) ≃ G12

5,±(𝕆𝑃2) ≃ G12

7,±(𝕆𝑃2) .

On the other hand, we have already seen that if 𝑎1 . 𝑏1(mod 2) or 𝑎2 . ±𝑏2 (mod 3) then G12

𝜏 (𝕆𝑃2) ;
G12

𝜔 (𝕆𝑃2). Thus there are exactly four homotopy types in this case.

Parts (ii) and (iii): if 𝜗 . 1 (mod 8) then we are in one of two situations. If 𝜗 ≡ 5 (mod 8), then the

demand that 𝑤 − 𝑤𝜗 ≡ 0 (mod 8) implies 4𝑤 ≡ 0 (mod 8), forcing 𝑤 to take only even values. Thus

𝑎1 + 2𝑤 ≡ ±𝑏1 (mod 8) if and only if 𝑎1 ≡ ±𝑏1 (mod 4) and hence G12

𝜏 (𝕆𝑃2) can assume six different

homotopy types, represented by

G12

0
(𝕆𝑃2) ≃ G12

4
(𝕆𝑃2), G12

1
(𝕆𝑃2) ≃ G12

3
(𝕆𝑃2) ≃ G12

5
(𝕆𝑃2) ≃ G12

7
(𝕆𝑃2),

G12

0,±(𝕆𝑃2) ≃ G12

4,±(𝕆𝑃2), G12

1,±(𝕆𝑃2) ≃ G12

3,±(𝕆𝑃2) ≃ G12

5,±(𝕆𝑃2) ≃ G12

7,±(𝕆𝑃2),

G12

2
(𝕆𝑃2) ≃ G12

6
(𝕆𝑃2) and G12

2,±(𝕆𝑃2) ≃ G12

6,±(𝕆𝑃2).

This proves (ii). If instead 𝜗 ≡ 3 or 7 (mod 8) then 𝑤 −𝑤𝜗 ≡ 0 (mod 8) implies that 𝑤 ≡ 0 or 4 (mod 8),

in which case 𝑎1+2𝑤 ≡ ±𝑏1 (mod 8) if and only if 𝑎1 ≡ ±𝑏1 (mod 8). So G12

𝜏 (𝕆𝑃2) can take ten possible
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homotopy types:

G12

0
(𝕆𝑃2), G12

1
(𝕆𝑃2) ≃ G12

7
(𝕆𝑃2), G12

2
(𝕆𝑃2) ≃ G12

6
(𝕆𝑃2),

G12

3
(𝕆𝑃2) ≃ G12

5
(𝕆𝑃2), G12

4
(𝕆𝑃2),

G12

0,±(𝕆𝑃2), G12

1,±(𝕆𝑃2) ≃ G12

7,±(𝕆𝑃2), G12

2,±(𝕆𝑃2) ≃ G12

6,±(𝕆𝑃2),

G12

3,±(𝕆𝑃2) ≃ G12

5,±(𝕆𝑃2) and G12

4,±(𝕆𝑃2). □

This proves (iii).

Proposition 8.16 shows that for 𝑘 = 12 the answer to GSII for 𝕆𝑃2
is at least 4, so it immediately

implies the following.

Theorem 8.17. 𝕆𝑃2 is not G12-stable. □

The classification of G2
-homotopy types. We conclude by combining several results to classify the

homotopy types of the gyrations G𝑘
𝜏 (𝔽𝑃2) for 𝔽 one of ℂ, ℍ or 𝕆.

Proof of Theorem A. Part (i) follows since ℂ𝑃2
is G2

-stable by Theorem 4.5. For part (ii), if 𝜏 ≃ 𝜔 then

G2

𝜏 (ℍ𝑃2) ≃ G2

𝜔 (ℍ𝑃2) by Lemma 4.1. Conversely, as 𝜋1(SO(8)) � ℤ/2, there are two distinct choices

of twisting. Theorem 6.4 shows that if 𝜏 ; 𝜔 then G2

𝜏 (ℍ𝑃2) ; G2

𝜔 (ℍ𝑃2). The argument for part (iii) is

the same as for part (ii), replacing Theorem 6.4 with Theorem 7.2. □
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