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given M , we ask a natural question: do all gyrations of M share the same homotopy 
type regardless of the twisting? A manifold with this property is said to have 
gyration stability. Inspired by recent work by Duan, which demonstrated that the 
quaternionic projective plane is not gyration stable with respect to diffeomorphism, 
we explore this question for projective planes in general. We obtain a complete 
description of gyration stability for the complex, quaternionic, and octonionic 
projective planes up to homotopy.
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0. Introduction

The classification of manifolds up to a notion of equivalence, be it diffeomorphism, homeomorphism or 
homotopy equivalence, is a motivating problem in geometry. Classically, Milnor classified closed simply
connected 4-manifolds up to homotopy equivalence [22] and then Freedman famously classified them up 
to homeomorphism [10]. Their classification up to diffeomorphism remains one of the great outstanding 
problems in the subject (see [21] for context). Among the other families of manifolds that have been classified 
are closed smooth simply-connected 5-manifolds [26,3], closed smooth simply-connected 6-manifolds [28,19, 
30], and closed smooth simply-connected spin 7-manifolds [7]. Other work has also considered classifications 
of families of manifolds with specific properties, such as circle bundles over simply-connected 4-manifolds 
[8], and more recently, 5-manifolds M whose fundamental group is isomorphic to ℤ/2ℤ and with π2(M)
being free abelian and a trivial module over the group ring [15].

A gyration is a surgery on the Cartesian product of a given manifold and a sphere. Originally defined by 
González Acuña [11], they have since appeared in at least three seemingly distinct contexts. One is in work 
of Bosio–Meersseman [6] and Gitler–Lopez-de-Medrano [14] on intersections of quadrics, carrying with them 
deep links to the topology of polyhedral products and their underlying combinatorics. A second is in recent 
work of Duan [9] on circle actions on smooth manifolds, subsequently developed by Galaz-García–Reiser 
[13], and used to great effect to classify simply-connected 6-manifolds that admit circle actions. Third, 
there is work of Kasprowski–Land--Powell--Teichner [20] on 4-manifolds with the fundamental group of an 
aspherical 3-manifold, which used gyrations of 3-manifolds and connected sums thereof (cf. [20, Sections 7.2 
and 7.3]) to show that two such 4-manifolds with isomorphic fundamental groups are stably diffeomorphic 
if they are stably homotopy equivalent. Recently, direct study of homotopy theoretic properties of gyrations 
has appeared in work of Huang and the second author [16], Basu-Ghosh [5] and [17]. In this paper we give 
a (nearly) complete classification of the homotopy types of gyrations on the projective planes ℂP 2, ℍP 2

and 𝕆P 2.
Let M be a closed simply-connected n-manifold. Such an M may be thought of as a Poincaré Duality 

complex with a single n-dimensional cell, so we let M be its (n − 1)-skeleton, and there is a homotopy 
cofibration

Sn−1 fM −−→ M → M

where fM is the attaching map for the top-cell. Let k ≥ 2 be an integer and take a class τ ∈ πk−1(SO(n)). 
Using the standard linear action of SO(n) on Sn−1, define the map

t : Sn−1 × Sk−1 → Sn−1 × Sk−1

by t(a, x) = (τ(x)·a, x). The k-gyration of M by τ is defined to be the manifold given by the (strict) pushout

Sn−1 × Sk−1 Sn−1 ×Dk

M × Sk−1 Gk
τ (M)

1×ι

(fM×1)◦t

where ι is the inclusion of the boundary of the disc. When τ is trivial the class t is homotopic to the 
identity and the above pushout constitutes a (k − 1, n)-type surgery on M × Sk−1 with respect to this 
trivial choice - we call this the trivial k-gyration and write it as Gk

0 (M). Otherwise, the surgery is twisted 
by the action of τ considered as a diffeomorphism. For this reason the homotopy class τ is referred to as 
a twisting in the context of gyrations. This definition of a general k-gyration via pushouts was introduced 
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by [16], generalising the k = 2 case used in both [9] and [14], the second being in the context of the trivial 
2-gyration. Via the alternative surgery definition (see for example [17, Section 12]), it follows that a gyration 
is an (n + k − 1)-manifold with an orientation inherited from that of M . This more geometric formulation 
is written in our notation as

Gk
τ (M) =

(
(M − Int(Dn)) × Sk−1) ∪t

(
Sn−1 ×Dk

)
where Dn ⊂ M is an embedded n-disc centred at a chosen base point of M .

Remark. In previous literature, gyrations have been denoted by ‘Gτ(M)’ which does not keep track of the 
index k. Given the clarity necessary for the arguments in this paper, we have adopted ‘Gk

τ (M)’ as our 
notation.

This leads us to the two central ``gyration stability'' questions, referred to throughout this paper as GSI 
and GSII.

Question (GSI). For a given k ≥ 2 and n-manifold M , do we have Gk
τ (M) � Gk

ω(M) for all twistings 
τ, ω ∈ πk−1(SO(n))?

If the answer is yes, we say M is Gk-stable or that M has Gk-stability; when the context is clear this 
property is called gyration stability. For a fixed k, the property is equivalent to all k-gyrations having a 
single homotopy type whatever twisting τ is taken. A refined version of the question asks for homotopy 
types to be distinguished.

Question (GSII). For a given k ≥ 2 and n-manifold M , how many different homotopy types can Gk
τ (M)

have as the homotopy class τ is varied?

Note that the answer to GSI is ``yes'' if and only if the answer to GSII is ``one'' and so enumerating the 
possible homotopy types of Gk

τ (M) is a valid strategy for answering GSI in either the negative or the positive. 
Moreover, GSII is the stronger version of the statement - one may think of it as asking that if we do not 
have Gk-stability for a given k, exactly how unstable are we?

Observe that gyration stability occurs in index k whenever πk−1(SO(n)) is the trivial group, as there is 
only one (i.e. the trivial) twisting to pick. If πk−1(SO(n)) is not trivial then there are distinct non-homotopic 
twistings, but they may nevertheless result in homotopy equivalent gyrations. For example, when M is a 
sphere it is straightforward to show that gyration stability occurs for all k (cf. Example 4.3). Projective 
planes, on the other hand, behave much more delicately. Duan [9, Example 3.4] showed that the quaternionic 
projective plane ℍP 2 is not G2-stable up to diffeomorphism by invoking spin structures. This motivated us 
to reformulate his result homotopy theoretically in order to consider other projective planes. Our results 
are summarised in the following table, with indications of where in the paper the results are proved.

M k GSI? GSII? cf. 
ℂP 2 2 Yes 1 Theorem 4.5

ℍP 2 2 No 2 Theorem 6.4
4 Yes 1 Theorem 6.12

𝕆P 2 2 No 2 Theorem 7.2
4 No 2, 3 or 5 Theorem 7.10
8 Yes 1 Theorem 7.15
9 Yes 1 Theorem 8.5
10 Yes 1 Theorem 8.10
12 No 4, 6 or 10 Theorem 8.17
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Note in particular that we have G2-instability of ℍP 2 up to homotopy equivalence, so we are able to rule 
out stability with respect to homeomorphism, and therefore have a subtly stronger result than in [9].

Remark. A comment should be made about the inexact answers to GSII for 𝕆P 2 when k = 4 and k = 12. 
These are the result of certain relations between compositions of elements in the homotopy groups of spheres, 
and depend on the values of two odd integers when taken modulo 8. These integers arose in the calculation of 
the 2-primary homotopy groups of spheres by Toda [27] and Oda [23]. Their being odd sufficed for Toda and 
Oda’s calculations. However, in our case, their being unspecified is an obstruction to precisely enumerating 
the homotopy types of gyrations. Details are in Propositions 7.9 and 8.16.

The arguments producing the GSII statements in the table above also give classification results. Write 𝔽
for one of ℂ, ℍ or 𝕆. Note that if the answer to GSII is 1 then the classification is that there is a homotopy 
equivalence Gk

τ (𝔽P 2) � Gk
0 (𝔽P 2) for all τ ∈ πk−1(SO(n)). The inexact cases when k = 4, 12 for 𝕆P 2 imply 

no classification is yet possible. The k = 2 case is complete.

Theorem A. Let τ, ω ∈ π1(SO(2m)) be twistings. Then:

(i) G2
τ (ℂP 2) � G2

0(ℂP 2) for all τ ;
(ii) G2

τ (ℍP 2) � G2
ω(ℍP 2) if and only if τ � ω;

(iii) G2
τ (𝕆P 2) � G2

ω(𝕆P 2) if and only if τ � ω.

This paper is divided into two parts, with Part 1 containing the theoretical basis for later arguments and 
Part 2 being the site of computations. Part 1 describes a gyration as a certain homotopy cofibre, and in 
the case of a projective plane gives a careful analysis of the homotopy class of the attaching map for the 
top dimensional cell. Part 2 is a systematic study of gyration stability for projective planes, beginning with 
some general examples in Section 4. Though we do not present a uniform argument applicable to all cases 
from the above table, we lay out a general framework in Section 5. Detailed computations are contained in 
Sections 6, 7 and 8, each case relying heavily on known compositions of elements in the homotopy groups 
of spheres in the relevant dimensional ranges. We conclude by proving Theorem A.

Acknowledgement

During preparation of this work, the first author was by supported EPSRC grant EP/W524621/1 and 
the Heilbronn Institute for Mathematical Research. The authors also wish to thank the reviewer for their 
insightful comments.

Part 1. Deviations and gyrations

This paper works with maps between wedges of spaces in great detail; there are many ways to assemble 
such maps, so for the sake of clarity we set up the following notation before beginning in earnest. Given 
based maps f : A → X and g : B → Y we define the wedge of f and g to be the map

f ∨ g : A ∨B −→ X ∨ Y

which is to say, f on the first summand and g on the second. Furthermore, if Y = X then we may define 
the wedge sum of f and g to be the composite

f ⊥ g : A ∨B
f∨g −−→ X ∨X

∇−−→ X
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where ∇ denotes the fold map. If in addition we have A = B and A is a co-H-space with comultiplication σ, 
then the sum of f and g is the composite

f + g : A σ −−→ A ∨A
f⊥g −−→ X.

1. Maps between half-smashes and a deviation

Let A and B be path-connected spaces. The right half-smash is the quotient space

A⋊B = (A×B)/ ∼

obtained by collapsing B to the basepoint. There is a canonical inclusion, projection and quotient map

i : A → A⋊B π : A⋊B → A q : A⋊B → A ∧B

where q is given by collapsing A to the basepoint.
Suppose that there are maps f : A → C and g : B → D where C and D are path-connected spaces. 

Consider the map

A⋊B
f⋊g −−→ C ⋊D.

The naturality of π and q imply that there are commutative diagrams

A A⋊B

C C ⋊D

f

i

f⋊g

i

A⋊B A

C ⋊D C

f⋊g

π

f

π

A⋊B A ∧B

C ⋊D C ∧D

f⋊g

q

f∧g

q

(1.1)

Next, suppose that A is a co-H-space with comultiplication σ. Then A⋊B is a co-H-space with comul
tiplication

σ : A⋊B
σ⋊1 −−−→ (A ∨A) ⋊B

∼ =  −→ (A⋊B) ∨ (A⋊B).

The following lemma is well known but we give its statement and proof to be explicit about the choices of 
maps involved.

Lemma 1.1. If A is a simply-connected co-H-space then the composite

e : A⋊B
σ −→ (A⋊B) ∨ (A⋊B) π∨q −−→ A ∨ (A ∧B)

is a homotopy equivalence. This is natural for co-H-maps A → C between simply-connected co-H-spaces 
and any map B → D.

Proof. Consider the homotopy cofibration A i−→ A⋊B
q −→ A∧B. Observe that π is a left inverse for i. Thus 

the map e splits this homotopy cofibration, implying that it induces an isomorphism in homology. As A is 
simply-connected, so is A⋊B. Therefore Whitehead’s Theorem implies that e is a homotopy equivalence.

As the co-H-structure on A⋊B is induced by that from A, the naturality of π and q imply the naturality 
of e for co-H-maps A → C between simply-connected co-H-spaces and any map B → D. �
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Now, suppose that A and C are simply-connected co-H-spaces and there is a map f : A → C which is 
not necessarily a co-H-map, and consider the diagram

A⋊B A ∨ (A ∧B)

C ⋊D C ∨ (C ∧D)

f⋊g

e

f∨(f∧g)

e

(1.2)

If f is a co-H-map then the naturality statement of Lemma 1.1 implies that it homotopy commutes. However, 
if f is not a co-H-map then it may not homotopy commute. Analogously to the co-H-deviation of a map, 
let

δ : A⋊B → C ∨ (C ∧D)

be the difference δ = e ◦ (f ⋊ g)− ((f ∨ (f ∧ g)) ◦ e) of the two directions around the diagram. In particular, 
δ � ∗ if and only if f ⋊ g � f ∨ (f ∧ g). Analysing this deviation δ is the objective of the rest of this section.

Lemma 1.2. The composition A ⋊ B
δ −→ C ∨ (C ∧ D) I −→ C × (C ∧ D) is null homotopic, where I is the 

inclusion of the wedge into the product.

Proof. Since σ is a comultiplication, I ◦ σ � Δ, where Δ is the diagonal map. The naturality of I and the 
definition of e then imply that I ◦ e = I ◦ (π ∨ q) ◦ σ = (π× q) ◦ I ◦ σ � (π× q) ◦Δ. Therefore the naturality 
of Δ and I give homotopy commutative diagrams

A⋊B C ⋊D C ∨ (C ∧D)

(A⋊B) × (A⋊B) (C ⋊D) × (C ⋊D) C × (C ∧D)

Δ

f⋊g

Δ

e

I

(f⋊g)×(f⋊g) π×q

A⋊B A ∨ (A ∧B) C ∨ (C ∧D)

(A⋊B) × (A⋊B) A× (A ∧B) C × (C ∧D)

Δ

e

I

f∨(f∧g)

I

π×q f×(f∧g)

In the first diagram, along the bottom row the naturality of π and q imply that π ◦ (f ⋊ g) � f ◦ π and 
q ◦ (f ⋊ g) � (f ∧ g) ◦ q. Thus the homotopy commutativity of the diagram gives

I ◦ e ◦ (f ⋊ g) � ((f ◦ π)) × ((f ∧ g) ◦ q) ◦ Δ.

Notice that the right side of this homotopy is exactly the counter-clockwise direction around the second 
diagram, which is homotopic to I ◦ (f ∨ (f ∧ g)) ◦ e. Thus I ◦ e ◦ (f ⋊ g) � I ◦ (f ∨ (f ∧ g)) ◦ e. In general, 
for a co-H-space X, left-distributivity holds for sums in [X,Y ] when composed with a map Y → Z, so in 
our case we obtain

I ◦
(
e ◦ (f ⋊ g) − (f ∨ (f ∧ g)) ◦ e

)
� ∗.

But by definition, δ = e ◦ (f ⋊ g) − (f ∨ (f ∧ g)) ◦ e, implying that I ◦ δ � ∗, as asserted. �
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In general, let X and Y be path-connected spaces. The join of X and Y is the quotient space

X ∗ Y = (X × I × Y )/ ∼

where I = [0, 1] is the unit interval with basepoint 0 and the relation is given by (a, 0, b) ∼ (a, 0, b), 
(a, 1, b) ∼ (a, 1, b′) and (∗, t, ∗) ∼ (∗, 0, ∗) for all a, a′ ∈ A, b, b′ ∈ B and t ∈ I. It is well known that there is 
a homotopy equivalence X ∗ Y � ΣX ∧ Y . Let i1 : X → X ∨ Y and i2 : Y → X ∨ Y be the inclusions of the 
left and right wedge summands respectively. Define maps ev1 and ev2 by the composites

ev1 : ΣΩX
ev −→ X

i1 −→ X ∨ Y

ev2 : ΣΩY
ev −→ Y

i2 −→ X ∨ Y

where ev is the canonical evaluation map. Ganea [12] showed that there is a homotopy fibration

ΩX ∗ ΩY
[ev1,ev2] −−−−−→ X ∨ Y

I −→ X × Y

where I is the inclusion of the wedge into the product and [ev1, ev2] is the Whitehead product of ev1 and 
ev2. In our case, the null homotopy for δ ◦ I in Lemma 1.2 implies that there is a lift

ΩC ∗ Ω(C ∧D)

A⋊B C ∨ (C ∧D)

[ev1,ev2]λ

δ

(1.3)

for some map λ. In particular, δ factors through a Whitehead product. To go further we specialize. Suppose 
that A = S2m−1, C = Sm and f : S2m−1 → Sm is some map. Suppose also that B = D = Sk−1 and g is 
the identity map. Then (1.3) takes the form

ΩSm ∗ ΩSm+k−1

S2m−1
⋊ Sk−1 Sm ∨ Sm+k−1.

[ev1,ev2]
λ

δ

(1.4)

As before, let i1 and i2 be the inclusions of the left and right wedge summands into Sm∨Sm+k−1, respectively.

Lemma 1.3. The deviation δ is homotopic to the composite

S2m−1
⋊ Sk−1 q −−→ S2m+k−2 r −−→ S2m+k−2 [i1,i2] −−−→ Sm ∨ Sm+k−1

for some map of degree r ∈ ℤ.

Proof. Observe that the (2m + k − 2)-skeleton of ΩSm ∗ ΩSm+k−1 is S2m+k−2. Let

ι : S2m+k−2 → ΩSm ∗ ΩSm+k−1

be the inclusion of the bottom cell. Since S2m−1
⋊ Sk−1 is homotopy equivalent to S2m−1 ∨ S2m+k−2, for 

connectivity and dimension reasons the map S2m−1
⋊ Sk−1 λ−→ ΩSm ∗ ΩSm+k−1 factors as the composite



8 S. Chenery, S. Theriault / Topology and its Applications 369 (2025) 109420 

S2m−1
⋊ Sk−1 q −−→ S2m+k−2 r −−→ S2m+k−2 ι−−→ ΩSm ∗ ΩSm+k−1

for some map of degree r. On the other hand, the composite

S2m+k−2 ι−−→ ΩSm ∗ ΩSm+k−1 [ev1,ev2] −−−−−→ Sm ∨ Sm+k−1

is homotopic to the Whitehead product [i1, i2]. Thus there is a sequence

δ � [ev1, ev2] ◦ λ � [ev1, ev2] ◦ ι ◦ r ◦ q � [i1, i2] ◦ r ◦ q

which gives the assertion. �
Remark 1.4. The choices made for the specialization of the spaces A, B, C, D and the maps f and g is partly 
due to the applications in mind, and partly so that the deviation δ has the precise form in Lemma 1.3. Note 
that if A is a sphere of dimension d for m < d < 2m−1 then λ would be null homotopic for connectivity and 
dimension reasons. But in this range it is a classical result that f : Sd → Sn is a suspension, in which case it 
was already clear that δ is null homotopic, as suspensions are in particular co-H-maps. If d > 2m−1 then λ
becomes more complex since it involves maps from spheres into the (d+k−2)-skeleton of ΩSm ∗ΩSm+k−1. 
If d < 3m + k − 3 then this skeleton is still S2m+k−2 but now λ involves a torsion homotopy group of that 
sphere, and if d ≥ 3m + k − 3 then the skeleton involves more cells.

Summarizing the results in this section we obtain the following.

Proposition 1.5. Suppose that there is a map f : S2m−1 → Sm and fix an integer k ≥ 2. Then the deviation 
from the diagram

S2m−1
⋊ Sk−1 S2m−1 ∨ S2m+k−2

Sm
⋊ Sk−1 Sm ∨ Sm+k−1

f⋊1

e

f∨Σk−1f

e

homotopy commuting is homotopic to the composite

S2m−1
⋊ Sk−1 q −−→ S2m+k−2 r −−→ S2m+k−2 [i1,i2] −−−→ Sm ∨ Sm+k−1

for some integer r. �
2. Properties of the homotopy equivalence e

In this section we construct an explicit inverse for the homotopy equivalence

e : Sm
⋊ Sk−1 → Sm ∨ Sm+k−1

for k ≥ 2 and relate it to the deviation δ and the map f ⋊ 1 of Section 1. An ingredient map will play a 
special role, which we call j.

Lemma 2.1. For k ≥ 2 there is a map Sm+k−1 j −→ Sm
⋊ Sk−1 such that q ◦ j is homotopic to the identity 

map and π ◦ j is null homotopic. If k ≤ m− 1 then j is a co-H-map.
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Proof. The definition of the homotopy equivalence e implies that there is a homotopy commutative square

Sm
⋊ Sk−1 Sm ∨ Sm+k−1

Sm Sm

π

e

p1

where p1 is the pinch map to the first wedge summand. Thus the homotopy fibre of π is homotopy equivalent 
to the homotopy fibre of p1, which by [12] is homotopy equivalent to Sm+k−1

⋊ ΩSm, which in turn is 
homotopy equivalent to ΩSm ∗ Sk−1. Let j be the composite

j : Sm+k−1 ι−−→ ΩSm ∗ Sk−1 −→ Sm
⋊ Sk−1

where the map ι is again the inclusion of the bottom cell and the right map is from the fibre to the total 
space in the homotopy fibration for π. Then π ◦ j is null homotopic.

By the Blakers-Massey Theorem, the homotopy fibration

ΩSm ∗ Sk−1 → Sm
⋊ Sk−1 π −→ Sm

is a homotopy cofibration in dimensions ≤ 2m + k − 2. In particular, as m + k − 2 ≤ 2m + k − 2 for any 

m ≥ 2, the composite Sm+k−1 j −→ Sm
⋊ Sk−1 π −→ Sm is a homotopy cofibration in dimensions ≤ m + k − 1. 

Consequently, as the spaces in this composite are of dimension ≤ m + k − 1, the composite is a homotopy 
cofibration in all dimensions. Observe that j∗ induces an isomorphism on homology in degree m+ k− 1, as 
does q∗, so q ◦ j induces a homology isomorphism in all degrees and is therefore a homotopy equivalence. 
As q ◦ j is a self-map of Sm+k−1, being a homotopy equivalence implies that it is homotopic to a map of 
degree ±1. If q ◦ j � −1 then adjust j by pre-composing it with the map of degree −1. Then q ◦ j � 1 and 
this adjustment does not affect the fact that π ◦ j is null homotopic.

Finally, observe that Sm+k−1 j −→ Sm
⋊Sk−1 � Sm∨Sm+k−1 is in the stable range if k ≤ m−1, implying 

that it is the suspension of a map Sm+k−2 → Sm−1
⋊ Sk−1 � Sm−1 ∨ Sm+k−2. Thus, if k ≤ m− 1, then j

is a co-H-map. �
Next, we relate i and j to the homotopy equivalence e in Section 1. Write i1 : X → X ∨ Y and 

i2 : Y → X ∨Y for the inclusions of the left and right wedge summands respectively. Recalling the notation 
for the wedge sum, observe that i1 ⊥ i2 : X ∨ Y → X ∨ Y is the identity map.

Lemma 2.2. Let k ≥ 2. The following hold:

(i) the composite Sm i−→ Sm
⋊ Sk−1 e−→ Sm ∨ Sm+k−1 is homotopic to i1;

(ii) if k ≤ m− 1 then the composite Sm+k−1 j −→ Sm
⋊ Sk−1 e−→ Sm ∨ Sm+k−1 is homotopic to i2;

(iii) if k ≤ m− 1 then the map Sm ∨Sm+k−1 i⊥j −−→ Sm
⋊Sk−1 is a homotopy equivalence that is the inverse 

of e.

Proof. Consider the diagram

Sm Sm ∨ Sm

Sm
⋊ Sk−1 (Sm

⋊ Sk−1) ∨ (Sm
⋊ Sk−1) Sm ∨ Sm+k−1

i

σ

i∨i
1∨∗

σ π∨q
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Observe that as i is the inclusion of the bottom cell, it is a co-H-map, so the left square homotopy commutes. 
The right-hand triangle homotopy commutes since π is a left inverse for i and q ◦ i is null homotopic for 
connectivity and dimension reasons. The lower row is the definition of e while the upper composite (1∨∗)◦σ
is the inclusion i1 of the left wedge summand. The homotopy commutativity of the diagram therefore implies 
that e ◦ i � i1. This proves (i).

Next, consider the diagram

Sm+k−1 Sm+k−1 ∨ Sm+k−1

Sm
⋊ Sk−1 (Sm

⋊ Sk−1) ∨ (Sm
⋊ Sk−1) Sm ∨ Sm+k−1

j

σ

j∨j
∗∨1

σ π∨q

Since k ≤ m − 1, Lemma 2.1 implies that j is a co-H-map, so the left square homotopy commutes. The 
right-hand triangle homotopy commutes by Lemma 2.1. Again, the lower row is the definition of e while the 
upper composite (∗ ∨ 1) ◦ σ is the inclusion i2 of the right wedge summand. The homotopy commutativity 
of the diagram therefore implies that e ◦ j � i2. This proves (ii).

For (iii), it follows from (i) and (ii) that e ◦ (i ⊥ j) � (e ◦ i) ⊥ (e ◦ j) � i1 ⊥ i2, which is precisely the 
identity map on Sm ∨ Sm+k−1. �

To prevent confusion, we use j† to denote the version of j for S2m+k−2 → S2m−1
⋊ Sk−1. The following 

two lemmas are instrumental in what follows; they relate j† to the behaviour of the deviation δ from 
Lemma 1.3.

Lemma 2.3. For k ≥ 2, the composite S2m+k−2 j† −→ S2m−1
⋊Sk−1 δ −→ Sm∨Sm+k−2 is homotopic to r · [i1, i2], 

where r is the integer appearing in Proposition 1.5.

Proof. By Proposition 1.5, the deviation δ is homotopic to the composite

S2m−1
⋊ Sk−1 q −−→ S2m+k−2 r −−→ S2m+k−2 [i1,i2] −−−→ Sm ∨ Sm+k−1

for some map of degree r. By Lemma 2.1, q ◦ j† is homotopic to the identity map on S2m+k−2, so we obtain 
δ ◦ j† � r · [i1, i2]. �

Finally, we use Lemmas 2.1, 2.2 and 2.3 to relate j† to the map f ⋊ 1 in Section 1.

Lemma 2.4. If 2 ≤ k ≤ 2m− 2 then there is a homotopy commutative diagram

S2m+k−2 S2m−1
⋊ Sk−1 Sm

⋊ Sk−1

S2m+k−2 Sm ∨ Sm+k−1

j† f⋊1

e

i2◦Σk−1f+r·[i1,i2]

where r is the integer appearing in Proposition 1.5.

Proof. By definition, δ = e ◦ (f ⋊ 1)− ((f ∨ (f ∧ 1)) ◦ e. As the identity map 1 is for Sk−1, we may rewrite 
this as δ = e◦ (f ⋊1)− (f ∨Σk−1f)◦ e. Rearranging gives e◦ (f ⋊1) � (f ∨Σk−1f)◦ e+ δ. Now precompose 
with j†. Since k ≤ 2m− 2, by Lemma 2.1, j† is a co-H-map, giving
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e ◦ (f ⋊ 1) ◦ j† � ((f ∨ Σk−1f) ◦ e + δ) ◦ j† � (f ∨ Σk−1f) ◦ e ◦ j† + δ ◦ j†.

By Proposition 2.2 (ii), e ◦ j � i2, implying by the naturality of i2 that

(f ∨ Σk−1f) ◦ e ◦ j† � (f ∨ Σk−1f) ◦ i2 � i2 ◦ Σk−1f.

By Lemma 2.3, δ ◦ j† � r · [i1, i2]. Therefore

e ◦ (f ⋊ 1) ◦ j† � i2 ◦ Σk−1f + r · [i1, i2],

and hence the diagram in the statement of the Lemma homotopy commutes. �
3. Gyrations

Let M be a simply-connected Poincaré Duality complex of dimension n. Let M be the (n− 1)-skeleton 
of M . Then there is a homotopy cofibration

Sn−1 fM −−→ M → M

where fM is the attaching map for the top-cell. Let k ≥ 2 be an integer and take a map τ : Sk−1 → SO(n), 
then using the standard linear action of SO(n) on Sn−1 define the map

t : Sn−1 × Sk−1 → Sn−1 × Sk−1

by t(a, x) = (τ(x) · a, x).

Definition 3.1. Let k ≥ 2 be an integer and let M be an n-dimensional Poincaré Duality complex. Define 
the k-gyration of M by τ to be the space defined by the (strict) pushout

Sn−1 × Sk−1 Sn−1 ×Dk

M × Sk−1 Gk
τ (M)

1×ι

(fM×1)◦t (3.1)

where ι is the inclusion of the boundary of the disc. When the context is clear, we will usually just write 
gyration for Gk

τ (M).

If τ is trivial, then t is the identity map and this pushout is a (k − 1, n)-type surgery on M × Sk−1. 
Otherwise, the surgery is twisted by the action of τ (considered as a diffeomorphism). In either case, the 
gyration is an (n+k−1)-dimensional Poincaré Duality complex. Since the disc Dk is contractible, from (3.1) 
we obtain a homotopy pushout

Sn−1 × Sk−1 Sn−1

M × Sk−1 Gk
τ (M)

(fM×1)◦t

π

(3.2)

where π is the projection. The clockwise direction around (3.2) is null homotopic when restricted to Sk−1, 
so the commutativity of the diagram implies the same is true in the counter-clockwise direction around 
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the diagram. Moreover, observe that t is the identity map when restricted to Sk−1. Therefore, if in general 
j2 : B −→ A × B is the inclusion of the second factor, then there is a homotopy commutative diagram in 
which the rows are homotopy cofibrations

Sk−1 Sn−1 × Sk−1 Sn−1
⋊ Sk−1

Sk−1 Sn−1 × Sk−1 Sn−1
⋊ Sk−1

Sk−1 M × Sk−1 M ⋊ Sk−1.

j2

t t′

j2

fM×1 fM⋊1

j2

(3.3)

The map t′ is an induced map of cofibres and the map of cofibrations in the lower rectangle follows from 
the naturality of the right half-smash. Thus, collapsing out Sk−1 in (3.2) results in a homotopy pushout

Sn−1
⋊ Sk−1 Sn−1

M ⋊ Sk−1 Gk
τ (M).

(fM⋊1)◦t′

π

(3.4)

Lemma 2.1 implies that there is a homotopy cofibration Sn+k−2 j −→ Sn−1
⋊ Sk−1 π −→ Sn−1. Writing this as 

a homotopy pushout

Sn+k−2 ∗

Sn−1
⋊ Sk−1 Sn−1

j

π

and juxtaposing it over (3.4) shows that Gk
τ (M) is the homotopy pushout of the trivial map Sn+k−2 −→ ∗

and the composite

φτ : Sn+k−2 j −→ Sn−1
⋊ Sk−1 t′ −→ Sn−1

⋊ Sk−1 fM⋊1 −−−−→ M ⋊ Sk−1.

Thus we obtain the following.

Lemma 3.2. For k ≥ 2 there is a homotopy cofibration Sn+k−2 φτ −−→ M ⋊ Sk−1 → Gk
τ (M). �

Remark 3.3. Notice that as M is simply-connected and n-dimensional, Poincaré Duality implies that M
is at most (n − 2)-dimensional, and therefore M ⋊ Sk−1 is at most (n + k − 3)-dimensional. Therefore φτ

attaches the top dimensional cell to the Poincaré Duality complex Gk
τ (M).

Remark 3.4. As a special case worth noting, if the twisting τ is trivial then t, and hence t′, is the identity 
map. Thus, writing Gk

0 (M) for a gyration by the trivial twisting, the attaching map φ0 is homotopic to the 
composite (fM ⋊ 1) ◦ j.
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Remark 3.5. Lemma 3.2 identifies the (n+ k − 2)-skeleton of the (n+ k − 1)-dimensional Poincaré Duality 
complex Gk

τ (M) as M ⋊ Sk−1. This reproduces a result of Basu-Ghosh [5, Proposition 6.9] using a different 
argument, while saying more by identifying the attaching map for the top cell.

The goal is to understand the attaching map φτ in order to better understand the twisted gyration 
Gk
τ (M). To do so, we specialize to make use of Sections 1 and 2. Suppose that M is one of ℂP 2, ℍP 2 or 

𝕆P 2. Then there are homotopy cofibrations

S3 η2 −→ S2 → ℂP 2 S7 ν4 −→ S4 → ℍP 2 S15 σ8 −→ S8 → 𝕆P 2

where η2, ν4 and σ8 are maps of Hopf invariant one. Collectively, these may be described by a homotopy 
cofibration

S2m−1 f −→ Sm → 𝔽P 2

where f = η2 and 𝔽 = ℂ if m = 2, f = ν4 and 𝔽 = ℍ if m = 4, and f = σ8 and 𝔽 = 𝕆 if m = 8. With these 
dimensions for the domain and range of f , the map j appearing in the definition of φτ is relabelled as j†
as in Section 2. To analyse φτ = (f ⋊ 1) ◦ t′ ◦ j† we proceed to first consider f ⋊ 1, then t′, and finally put 
these together and compose with j†.

The homotopy cofibration for 𝔽P 2 implies we are in the context of Proposition 1.5, which describes the 
deviation from f ⋊ 1 being f ∨ Σk−1f , up to the homotopy equivalence e. In this case the indeterminate 
degree map r in the description of the deviation can be made more precise.

Proposition 3.6. Let f : S2m−1 → Sm be one of η2, ν4 or σ8. If k ≥ 2 then the deviation δ from the diagram

S2m−1
⋊ Sk−1 S2m−1 ∨ S2m+k−2

Sm
⋊ Sk−1 Sm ∨ Sm+k−1

f⋊1

e

f∨Σk−1f

e

homotopy commuting is homotopic to the composite

S2m−1
⋊ Sk−1 q −→ S2m+k−2 [i1,i2] −−−−→ Sm ∨ Sm+k−1.

Proof. By Proposition 1.5 we have that δ is homotopic to the composite

Sm−1
⋊ Sk−1 q −→ S2m+k−2 r −→ S2m+k−2 [i1,i2] −−−−→ Sm ∨ Sm+k−1

for some map of degree r. So it remains to show that r = 1. Since the homotopy cofibre of e ◦ (f ⋊ 1) is 
Gk

0 (𝔽P 2) by Remark 3.4, the homotopy commutative square in Lemma 2.4 implies that there is a homotopy 
cofibration diagram

S2m+k−2 Sm
⋊ Sk−1 Gk

0 (𝔽P 2)

S2m+k−2 Sm ∨ Sm+k−1 C

(f⋊1)◦j†

e ε

i2◦Σk−1f+r·[i1,i2]
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that defines the space C, and where ε is some induced map of homotopy cofibres. Since e is a homotopy 
equivalence, it induces an isomorphism in homology, so the Five-Lemma implies that ε also induces an 
isomorphism in homology. Since spaces are simply-connected, ε is a homotopy equivalence by Whitehead’s 
Theorem.

Now use ε to compare cup products. The homotopy cofibration defining C implies that there is a module 
isomorphism H∗(C;ℤ) ∼ = ℤ{a, b, c} where |a| = m, |b| = m + k − 1 and |c| = 2m + k − 1. Since ε is 
a homotopy equivalence we obtain a module isomorphism H∗(Gk

0 (𝔽P 2);ℤ) ∼ = ℤ{x, y, z} where |x| = m, 
|y| = m+k−1 and |z| = 2m+k−1, and ε∗ sends a, b, c to x, y, z respectively. Since Gk

0 (𝔽P 2) is a manifold, 
by Poincaré Duality we obtain x ∪ y = z. As ε∗ is an algebra map, this implies that a ∪ b = c. Therefore 
there is an algebra isomorphism H∗(C;ℤ) ∼ = H∗(Sm × Sm+k−1;ℤ), and a homotopy equivalence between 
the (2m + k − 3)-skeletons of C and Sm × Sm+k−1.

On the other hand, the cup product structure on C is induced by the attaching map i2 ◦Σk−1f +r · [i1, i2]
for the top-cell of C. Since the cup product a∪ b = c detects the Whitehead product [i1, i2] and i2 ◦Σk−1f

cannot be a multiple of [i1, i2] due to its image being concentrated in the Sm wedge summand, it must be 
the case that r = 1. �
Corollary 3.7. If 2 ≤ k ≤ 2m− 2 and f is as in Proposition 3.6 then (f ⋊ 1) ◦ j† � (j ◦ Σk−1f) + [i, j].

Proof. By Proposition 3.6, e ◦ (f ⋊ 1) � (f ∨Σk−1) ◦ e+ δ. Since k ≤ 2m− 2, Lemma 2.1 implies that j† is 
a co-H-map. A co-H-map distributes on the right, implying that

e ◦ (f ⋊ 1) ◦ j† � (f ∨ Σk−1f) ◦ e ◦ j† + δ ◦ j†.

By Lemma 2.2 (ii), e ◦ j† � i2. Therefore the naturality of i2 implies that (f ∨Σk−1f) ◦ e ◦ j† � i2 ◦Σk−1f . 
By Lemma 2.3, and using Proposition 3.6, we obtain δ ◦ j† � [i1, i2]. Therefore

e ◦ (f ⋊ 1) ◦ j† � i2 ◦ Σk−1f + [i1, i2].

Apply e−1. In general, the sum of two maps in [ΣX,Y ] distributes when composed with a map Y → Z, so 
in our case we obtain

(f ⋊ 1) ◦ j† � (e−1 ◦ i2 ◦ Σk−1f) + (e−1 ◦ [i1, i2]).

By Lemma 2.2 (iii), e−1 � i ⊥ j, so e−1 ◦ i2 = j and e−1 ◦ [i1, i2] = [i, j]. Therefore

(f ⋊ 1) ◦ j† � (j ◦ Σk−1f) + [i, j]

as asserted. �
Remark 3.8. By Remark 3.4, the attaching map for the top-cell of Gk

0 (𝔽P 2) is (f ⋊ 1) ◦ j†. Corollary 3.7
therefore gives an alternate description of this attaching map. This will be generalized to the case of Gk

τ (𝔽P 2)
in Theorem 3.13.

Next, we bring in the twist. Consider the self-equivalence S2m−1
⋊Sk−1 t′ −→ S2m−1

⋊Sk−1. Let t′1 and t′2
be the composites

t′1 : S2m−1 i−→ S2m−1
⋊ Sk−1 t′ −→ S2m−1

⋊ Sk−1

t′2 : S2m+k−2 j† −→ S2m−1
⋊ Sk−1 t′ −→ S2m−1

⋊ Sk−1.
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Let τ be the composite

τ : S2m+k−2 j† −→ S2m−1
⋊ Sk−1 t′ −→ S2m−1

⋊ Sk−1 π −→ S2m−1. (3.5)

Lemma 3.9. Let k ≥ 2. The following hold:

(i) t′1 is homotopic to i;
(ii) if k ≤ 2m− 2, then t′2 is homotopic to i ◦ τ + j†;
(iii) if τ is the trivial twisting then t′2 = j† and τ is null homotopic.

Proof. First, the left map in the homotopy cofibration Sk−1 −→ S2m−1×Sk−1 −→ S2m−1
⋊Sk−1 has a left 

inverse, so the connecting map for the homotopy cofibration is null homotopic, implying that for any space 
Z the induced map [S2m−1

⋊ Sk−1, Z] −→ [S2m−1 × Sk−1, Z] is an injection. Therefore, the definition of t′
in (3.3) implies that its homotopy class is determined by the homotopy class of t. Thus to show that t′1 = t′◦i
is homotopic to i it suffices to show that t ◦ i1 � i1, where i1 : S2m−1 −→ S2m−1 × Sk−1 is the inclusion of 
the first factor. But by definition, S2m−1×Sk−1 t → S2m−1×Sk−1 is given by t(a, x) = (τ(x) ·a, x), implying 
that t(a, ∗) = (a, ∗), and therefore t ◦ i1 = i1, proving part (i).

Next, consider the composite

j′ : S2m+k−2 j† −→ S2m−1
⋊ Sk−1 t′ −→ S2m−1

⋊ Sk−1 e−→ S2m−1 ∨ S2m+k−2. (3.6)

By the Hilton-Milnor Theorem, for dimensional and connectivity reasons the homotopy class of j′ is deter
mined by its pinch maps to S2m−1 and S2m+k−2. That is, if

p1 : S2m−1 ∨ S2m+k−2 → S2m−1 p2 : S2m−1 ∨ S2m+k−2 → S2m+k−2

are the pinch maps to the left and right wedge summands respectively, then j′ � i1 ◦ p1 ◦ j′ + i2 ◦ p2 ◦ j′. 
Since t′ is a self-equivalence, it must induce an isomorphism in homology. In particular, (t′)∗ induces an 
isomorphism on H2m+k−2 and therefore so does (t′2)∗, and therefore in turn so does (j′)∗. This implies that 
p2 ◦ j′ is a homotopy equivalence, and therefore homotopic to a map of degree ±1. Refining, since we work 
with SO(n), the map t must preserve orientation, implying that t∗ is the identity on H2m+k−2, which in 
turn implies that (t′)∗, (t′2)∗ and (j′)∗ all induce the identity on H2m+k−2. Hence p2 ◦ j′ is homotopic to the 
identity map on S2m+k−2, implying that i2 ◦ p2 ◦ j′ � i2.

Let τ = p1 ◦ j′, and note that post-composing (3.6) with p1 gives the asserted composite for τ since by 
Lemma 1.1 we have p1 ◦ e � π. Then we have j′ � i1 ◦ τ + i2. By definition of j′ we have e−1 ◦ j′ � t′2. 
On the other hand, as 2 ≤ k ≤ 2m − 2, Lemma 2.2 (iii) gives e−1 � i ⊥ j†. Therefore e−1 ◦ i1 � i and 
e−1 ◦ i2 � j†, giving e−1 ◦ j′ � e−1 ◦ (i1 ◦ τ + i2) � i ◦ τ + j†. Hence t′2 � i ◦ τ + j†, proving part (ii).

Finally, if τ is the trivial twisting then t and hence t′ are identity maps, in which case the definitions of 
t′2 and τ give t′2 = j† and τ = π ◦ j†. In the latter case we obtain a null homotopy for τ since π ◦ j† is null 
homotopic by Lemma 2.1. �

The map τ in Lemma 3.9(ii) has an additional property related to the J-homomorphism. In general, the 
join A∗B and the suspension Σ(A×B) are both quotient spaces of A×B× I. In the unreduced case of the 
join we identify (a, b, 1) to (a, ∗, 1) and (a, b, 0) to (∗, b, 0), whereas for the suspension we identify (a, b, 1) to 
(∗, ∗, 1) and (a, b, 0) to (∗, ∗, 0). Thus the quotient map A×B × I → Σ(A×B) factors through a quotient 
map A ∗ B → Σ(A × B). In the reduced case, there is the additional relation in both cases that (∗, ∗, t) is 
identified with (∗, ∗, 0). Moreover, there is a homotopy equivalence ΣA∧B � A ∗B, thus giving a canonical 
choice of a map s : ΣA ∧B → Σ(A×B). The J-homomorphism
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J : πk−1(SO(n)) → πn+k−1(Sn)

is given by the homotopy class of the composite

J(τ) : Sn+k−1 s−→ Σ(Sn−1 × Sk−1) Σ(1×τ) −−−−−→ Σ(Sn−1 × SO(n)) Σθ −−→ ΣSn−1 � Sn,

where θ denotes the usual action of SO(n) on Sn−1. The image of the J-homomorphism was calculated by 
Adams [1] and Quillen [24]:

im(J) ∼ = 

⎧⎪⎪⎨
⎪⎪⎩

0 if k ≡ 3, 5, 6, 7 (mod 8)
ℤ/2 if k ≡ 1, 2 (mod 8)
ℤ/ds if k = 4s

(3.7)

where ds is the demoninator of B2s
4s , B2s being the 2s-th Bernoulli number.

Proposition 3.10. If 2 ≤ k ≤ 2m− 2 then Στ � J(τ), where J denotes the classical J-homomorphism.

Proof. Take n = 2m. We begin by relating s to maps associated with the half-smash. Let

q : S2m−1 × Sk−1 → S2m−1
⋊ Sk−1

be the quotient map to the half-smash. Consider the composite

j : S2m+k−1 s−→ Σ(S2m−1 × Sk−1) Σq −−→ Σ(S2m−1
⋊ Sk−1).

Since Σ(S2m−1
⋊ Sk−1) � S2m ∨ S2m+k−1 and k ≤ 2m − 2, the map j is in the stable range and is a 

suspension, j � Σj′. As j is a suspension, regarding Σ(S2m−1
⋊ Sk−1) as S2m ∨ S2m+k−1, the Hilton-Milnor 

Theorem implies that the homotopy class of j is determined by its composition with the pinch maps to 
S2m−1 and S2m+k−1. The pinch map to S2m−1 factors as the composite

S2m+k−1 s−→ Σ(S2m−1 × S2k−1) Σπ1 −−→ ΣS2m,

where π1 is the projection. This is null homotopic by definition of s. The pinch map to S2m+k−1 is homotopic 
to the identity map since it induces the identity map in homology. As the same is true of the map j†, we 
have j � Σj†. Hence Σj† � q ◦ s.

We now connect Στ and J(τ). The self-map t : S2m−1 ×Sk−1 → S2m−1 ×Sk−1 associated to τ is defined 
via the action of SO(2m) on S2m−1 as well, namely t : (a, x) �→ (τ(x) ·a, x), as in Diagram (3.3). Thus there 
is a commutative square

S2m−1 × Sk−1 S2m−1 × Sk−1

S2m−1 × SO(2m) S2m−1.

1×τ

t

π1

θ

(3.8)

Consider the following diagram
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S2m+k−1 Σ(S2m−1 × Sk−1) Σ(S2m−1 × Sk−1) S2m

Σ(S2m−1
⋊ Sk−1) Σ(S2m−1

⋊ Sk−1) S2m.

s

Σj†
Σq

Σt

Σq

Σπ1

Σt′ Σπ

(3.9)

The left-hand triangle homotopy commutes since s � σ ◦ Σj†. The middle square homotopy commutes by 
the top right square in (3.3). The right square homotopy commutes since π and π1 are both projections. 
Diagram (3.8) implies that Σπ1 ◦Σt � Σθ ◦Σ(1× τ), so the top direction around (3.9) is homotopic to J(τ), 
whereas the bottom direction gives Στ . Thus Στ � J(τ) as asserted. �
Corollary 3.11. Let 2 ≤ k ≤ 2m−2 and suppose that k ≡ 1 or 2 (mod 8). If τ ∈ πk−1(SO(2m)) is non-trivial, 
then τ is non-trivial.

Proof. For such k Bott periodicity gives πk−1(SO(2m)) ∼ = ℤ/2 and (3.7) gives im(J) ∼ = ℤ/2, implying that 
the J-homomorphism is an isomorphism onto its image. Thus if τ is non-trivial then J(τ) is non-trivial, so 
Proposition 3.10 implies that Στ is non-trivial. Therefore τ must be non-trivial. �

Returning to our study of gyrations, by Lemma 3.2 there is a homotopy cofibration

S2m+k−2 φτ −−→ Sm
⋊ Sk−1 → Gk

τ (𝔽P 2)

for each integer k ≥ 2, where φτ = (f ⋊1)◦ t′ ◦ j†. By definition t′ ◦ j† = t′2, so if 2 ≤ k ≤ 2m−2 Lemma 3.9
gives a homotopy t′ ◦ j† � i ◦ τ + j†, or in the case of the trivial twisting, t′2 = j†. This proves the following.

Lemma 3.12. If 2 ≤ k ≤ 2m − 2 then the attaching map φτ for the top-cell of Gk
τ (𝔽P 2) is given by the 

composite

S2m+k−2 i◦τ+j† −−−−→ S2m−1
⋊ Sk−1 f⋊1 −−−→ Sm

⋊ Sk−1.

If τ is the trivial twisting then the attaching map for the top-cell of Gk
0 (𝔽P 2) is (f ⋊ 1) ◦ j†. �

We conclude Part 1 of this paper by bringing our description together, giving to a formulation of the 
attaching map for the top-cell in Gk

τ (𝔽P 2) that is easier to compute with.

Theorem 3.13. Let 2 ≤ k ≤ 2m − 2, τ : Sk−1 → SO(2m), and let φτ : S2m+k−2 → Sm
⋊ Sk−1 denote the 

attaching map for the top-cell of the gyration Gk
τ (𝔽P 2). Then there is a homotopy

φτ � (i ◦ f ◦ τ) + (j ◦ Σk−1f) + [i, j]

where Στ is in the image of the J-homomorphism. Explicitly, the summands are:

S2m+k−2 τ −→ S2m−1 f −→ Sm i−→ Sm
⋊ Sk−1

S2m+k−2 Σk−1f −−−−→ Sm+k−1 j −→ Sm
⋊ Sk−1

S2m+k−2 [i,j] −−→ Sm
⋊ Sk−1.

In particular, if τ is the trivial twisting then φ0 � (j ◦ Σk−1f) + [i, j].
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Proof. Noting that 𝔽P 2 � Sm, by Lemma 3.12 the attaching map for the top-cell of Gk
τ (𝔽P 2) is given by 

the composite

S2m+k−2 i◦τ+j† −−−−→ S2m−1
⋊ Sk−1 f⋊1 −−−→ Sm

⋊ Sk−1.

In general, the sum of two maps in [ΣX,Y ] distributes on the left when composed with a map Y → Z. In 
our case, this gives

(f ⋊ 1) ◦ (i ◦ τ + j†) � ((f ⋊ 1) ◦ i ◦ τ) + ((f ⋊ 1) ◦ j†).

The naturality of i implies that (f ⋊ 1) ◦ i � i ◦ f . Therefore (f ⋊ 1) ◦ i ◦ τ � i ◦ f ◦ τ . By Corollary 3.7, 
(f ⋊ 1) ◦ j† � (j ◦ Σk−1f) + [i, j]. Thus

(f ⋊ 1) ◦ (i ◦ τ + j†) � (i ◦ f ◦ τ) + (j ◦ Σk−1f) + [i, j],

as asserted. The case of the trivial attaching map follows from Remark 3.8 (or, in the argument above, 
setting τ to be the constant map). �

For what is to come in the next section, it is convenient to rephrase Theorem 3.13 by letting ϕτ be the 
composite

ϕτ : S2m+k−2 φt −→ Sm
⋊ Sk−1 e−→ Sm ∨ Sm+k−1

and thinking of the attaching map for the top-cell of a gyration as a map from a sphere to a wedge of spheres. 
We record this in the following Corollary, which is a direct consequence of Theorem 3.13 and Lemma 2.2.

Corollary 3.14. Let 2 ≤ k ≤ 2m − 2, τ : Sk−1 → SO(2m), and let ϕτ : S2m+k−2 → Sm ∨ Sm+k−1 denote 
the adjusted attaching map for the top-cell of the gyration Gk

τ (𝔽P 2). There is a homotopy

ϕτ � (i1 ◦ f ◦ τ) + (i2 ◦ Σk−1f) + [i1, i2].

Rearranging, we have the identity

ϕτ � ϕ0 + ψτ

where ψτ := i1 ◦ f ◦ τ . �
Corollary 3.14 makes clear that the attaching maps ϕτ differ from the map from the map for the trivial 

twisting (namely ϕ0) by the addition of a summand ψτ whose homotopy class depends on τ and f .

Part 2. Gyrations of projective planes

From this point onwards, all manifolds are smooth and oriented unless otherwise stated. Given the 
structure established in Part 1, we now focus on computations. The motivating questions are as in the 
Introduction.

Question (GSI). For a given k ≥ 2 and n-manifold M , do we have Gk
τ (M) � Gk

ω(M) for all twistings 
τ, ω ∈ πk−1(SO(n))?
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Question (GSII). For a given k ≥ 2 and n-manifold M , how many different homotopy types can Gk
τ (M)

have as the homotopy class of τ is varied?

The goal of Part 2 is to enumerate the homotopy types of Gk
τ (𝔽P 2) for 𝔽 being each of ℂ, ℍ and 𝕆.

4. Initial observations and examples

After making some initial observations this section considers gyration stability for G2
τ (ℂP 2) as an illus

trative example. First observe that given two twistings τ and ω and an explicit homotopy between them, 
this cascades through the definitions (cf. Definition 3.1) and one easily checks the following fact.

Lemma 4.1. Let k ≥ 2 be an integer, M an n-manifold and let τ, ω : Sk−1 → SO(n). If τ � ω then there is 
a homotopy equivalence Gk

τ (M) � Gk
ω(M). �

Since the homotopy type of a gyration therefore depends (in part) on the homotopy class of the twisting, 
the homotopy groups of SO(n) play an important role. In particular, if the relevant group is trivial then 
gyration stability follows.

Proposition 4.2. For a given n-manifold M and integer k such that 2 ≤ k ≤ n − 1, M is Gk-stable if 
k ≡ 3, 5, 6, 7 (mod 8).

Proof. For k in this range, by Bott periodicity we have πk−1(SO(n)) ∼ = 0 if k ≡ 3, 5, 6, 7 (mod 8). Hence 
Lemma 4.1 implies Gk

τ (M) � Gk
ω(M) for all τ, ω ∈ πk−1(SO(n)), and thus that M is Gk-stable. �

Proposition 4.2 is not an ‘if and only if’ statement. To see why, consider gyrations of spheres.

Example 4.3 (Spheres are Gk-stable for all k). For a sphere Sn, we have Sn � ∗, so by Lemma 3.2 the 
k-gyration is given by the homotopy cofibration

Sn+k−2 φτ −−→ ∗⋊ Sk−1 → Gk
τ (Sn)

in which we observe that ∗⋊ Sk−1 � ∗. Therefore Gk
τ (Sn) � Sn+k−1 for all twistings τ .

We now turn to the case of gyration stability for G2
τ (ℂP 2). Recall that for τ ∈ π1(SO(4)) there is a 

homotopy cofibration S4 ϕτ −−→ S2 ∨ S3 → G2
τ (ℂP 2).

Proposition 4.4. There exists a homotopy equivalence ε : S2 ∨ S3 → S2 ∨ S3 such that

ε ◦ ϕ0 � ϕ1

where ‘0’ denotes the trivial twisting and ‘1’ denotes the twisting from the generator of π1(SO(4)) ∼ = ℤ/2.

Proof. Recalling our notation from the preamble to Part 1, consider the map

ε : S2 ∨ S3 → S2 ∨ S3

defined by 1 + i1 ◦ (∗ ⊥ η2), where 1 denotes the identity on the wedge. On homology this map induces an 
isomorphism since (η2)∗ = 0. Therefore ε is a homotopy equivalence by Whitehead’s Theorem.
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By Corollary 3.14 with k = 2 and f = η2, the map ϕ0 : S4 → S2 ∨ S3 satisfies ϕ0 � i2 ◦ η3 + [i1, i2], 
where η3 denotes Ση2. Now consider the composite ε ◦ϕ0 : S4 → S2 ∨ S3. In general, if α, β : ΣA → X and 
γ : X → Y then γ distributes on the left, i.e. γ ◦ (α + β) � γ ◦ α + γ ◦ β. Therefore

ε ◦ ϕ0 � ε ◦ (i2 ◦ η3) + ε ◦ [i1, i2]. (4.1)

Write η2
2 = η2 ◦ η3. Since ε = 1 + i1 ◦ (∗ ⊥ η2), we see that ε ◦ (i2 ◦ η3) � (i2 ◦ η3) + (i1 ◦ η2

2), and noting that 
the Whitehead product in general satisfies γ ◦ [α, β] � [γ ◦α, γ ◦ β] and [α, β + β′] � [α, β] + [α, β′], we have

ε ◦ [i1, i2] � [ε ◦ i1, ε ◦ i2] � [i1, i2 + i1 ◦ η2] � [i1, i2] + [i1, i1 ◦ η2] � [i1, i2] + i1 ◦ [ι, η2]

where ι denotes the identity map on S2. Thus (4.1) becomes

ε ◦ ϕ0 � (i2 ◦ η3) + (i1 ◦ η2
2) + [i1, i2] + i1 ◦ [ι, η2] � ϕ0 + i1 ◦ (η2

2 + [ι, η2])

where the last homotopy comes from regrouping the summands. Thus if ψ1 � i1 ◦ (η2
2 + [ι, η2]) then 

ε ◦ ϕ0 � ϕ0 + ψ1, and as ϕ0 + ψ1 � ϕ1 by Corollary 3.14, we obtain ε ◦ ϕ0 � ϕ1, as asserted.
It remains to show that ψ1 � i1◦(η2

2+[ι, η2]). Since π1(SO(4)) ∼ = ℤ/2 there is only one non-trivial twisting, 
for which we must have τ � η2. Therefore, by definition of ψ1 in Corollary 3.14, ψ1 � i1◦η2

2 . Moreover, [ι, η2]
is null homotopic since it represents a class in π4(S2) ∼ = ℤ/2ℤ, which is stable, but Whitehead products 
suspend trivially. Therefore

i1 ◦ (η2
2 + [ι, η2]) � i1 ◦ (η2

2 + ∗) � i1 ◦ η2
2 � ψ1,

as required. �
Theorem 4.5. ℂP 2 is G2-stable, i.e. there is a homotopy equivalence G2

0(ℂP 2) � G2
1(ℂP 2).

Proof. From the homotopy ε ◦ ϕ0 � ϕ1 in Proposition 4.4 we obtain a homotopy cofibration diagram

S4 S2 ∨ S3 G2
0(ℂP 2)

S4 S2 ∨ S3 G2
1(ℂP 2)

ϕ0

ε

ϕ1

where the dashed arrow is an induced map of homotopy cofibres. This diagram induces a map of long exact 
sequences in homology. Therefore, as the left-hand vertical map is the identity and the middle map is a 
homotopy equivalence, the Five-Lemma implies that the dashed map induces an isomorphism in homology 
and so is a homotopy equivalence by Whitehead’s Theorem since all spaces are simply-connected. �

Theorem 4.5 shows that it is possible to have two twistings that are not in the same homotopy class 
but nevertheless produce gyrations that are homotopy equivalent. The reasoning used for ℂP 2 can be 
generalised to tackle gyration stability for Gk

τ (ℍP 2) and Gk
τ (𝕆P 2) on a case-by-case basis, which will be 

done in Sections 6, 7 and 8. First however, we establish a general framework for the forthcoming arguments.

5. Compositions with self-equivalences of wedges of spheres

Fix a choice of field 𝔽 ∈ {ℍ,𝕆} (i.e. m = 4 or 8) and index k in the range 2 ≤ k ≤ 2m − 2. In this 
section, we wish to determine conditions for gyrations of 𝔽P 2 to be homotopy equivalent. We begin with a 
Lemma linking this question to self-equivalences of wedges of spheres.
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Lemma 5.1. Let τ and ω be distinct homotopy classes in πk−1(SO(2m)). There is a homotopy equivalence 
Gk
τ (𝔽P 2) � Gk

ω(𝔽P 2) if and only if there exists a self-equivalence ε : Sm ∨ Sm+k−1 
−→ Sm ∨ Sm+k−1 such 
that ε ◦ ϕτ � ±ϕω.

Proof. Suppose first that there exists a self-equivalence ε such that ε ◦ ϕτ � ±ϕω. From this homotopy we 
obtain a homotopy cofibration diagram

S2m+k−2 Sm ∨ Sm+k−1 Gk
τ (𝔽P 2)

S2m+k−2 Sm ∨ Sm+k−1 Gk
ω(𝔽P 2)

±

ϕτ

ε

ϕω

where the dashed arrow is an induced map of homotopy cofibres. This diagram induces a map of long exact 
sequences in homology. Therefore, as the left-hand and middle vertical maps are homotopy equivalences, 
the Five-Lemma implies that the dashed map induces an isomorphism in homology and so is a homotopy 
equivalence by Whitehead’s Theorem since all spaces are simply-connected.

Conversely, assume that there is a homotopy equivalence

ε : Gk
τ (𝔽P 2) → Gk

ω(𝔽P 2).

Both spaces are simply-connected CW -complexes of dimension 2m + k − 1 whose (2m + k − 2)-skeleton is 
homotopy equivalent to Sm

⋊ Sk−1. The restriction of ε to (2m + k − 2)-skeletons gives a map

ε′ : Sm
⋊ Sk−1 → Sm

⋊ Sk−1.

Since ε induces an isomorphism on homology so does ε′, and Sm
⋊Sk−1 is simply-connected, so ε′ is therefore 

a homotopy equivalence by Whitehead’s Theorem. We place ε in the context of self-equivalences of wedges 
of spheres by using the homotopy equivalence e : Sm

⋊ Sk → Sm ∨ Sm+k−1 and defining a new equivalence

ε = e ◦ ε′ ◦ e−1 : Sm ∨ Sm+k−1 → Sm ∨ Sm+k−1.

Let qτ : Sm ∨ Sm+k−1 → Gk
τ (𝔽P 2) and qω : Sm ∨ Sm+k−1 → Gk

ω(𝔽P 2) denote the respective skeletal 
inclusions, and let Fτ and Fω be their homotopy fibres. Then there is a homotopy fibration diagram

Fτ Sm ∨ Sm+k−1 Gk
τ (𝔽P 2)

Fω Sm ∨ Sm+k−1 Gk
ω(𝔽P 2)

α

qτ

ε ε

qω

(5.1)

where the dashed arrow α is an induced map of homotopy fibres. The diagram induces a map of long exact 
sequences of homotopy groups. Therefore, as the middle and right vertical maps are homotopy equivalences, 
the Five-Lemma implies that the dashed map induces an isomorphism on homotopy groups, and so is a 
homotopy equivalence by Whitehead’s Theorem.

Since ϕτ and qτ are consecutive maps in a homotopy cofibration, the composite qτ ◦ϕτ is null homotopic, 
so there is a lift β that makes the following diagram homotopy commutative



22 S. Chenery, S. Theriault / Topology and its Applications 369 (2025) 109420 

S2m+k−2

Fτ Sm ∨ Sm+k−1 Gk
τ (𝔽P 2).

ϕτ
β

qτ

(5.2)

Since Gk
τ (𝔽P 2) is (m− 1)-connected and S2m+k−2 is (2m + k − 3)-connected, the lift β is a (3m + k − 3)

equivalence by the Blakers-Massey Theorem (cf. [2, Theorem 5.6.4]). Arguing identically with ω in place 
of τ , there is also a (3m + k − 3)-equivalence β′ : S2m+k−2 → Fω. Thus, for dimension reasons, α ◦ β lifts 
through β′ to give a homotopy commutative diagram

S2m+k−2 Fτ

S2m+k−2 Fτ

β

γ α

β′

(5.3)

for some map γ. As α is a homotopy equivalence and both β and β′ are (3m + k − 3)-equivalences, the 
homotopy commutativity of (5.3) implies that γ is also a (3m+k−3)-equivalence. In particular, γ induces an 
isomorphism on π2m+k−2, and therefore must be a homotopy equivalence. Hence γ � ±1. Juxtaposing (5.3) 
and (5.1), and using the factorizations of ϕτ and ϕω in (5.2), we obtain a homotopy cofibration diagram

S2m+k−2 Sm ∨ Sm+k−1 Gk
τ (𝔽P 2)

S2m+k−2 Sm ∨ Sm+k−1 Gk
ω(𝔽P 2).

±1

ϕτ qτ

ε ε

ϕω qω

(5.4)

The homotopy commutativity of the left-hand square gives that ε ◦ ϕτ � ±ϕω. �
The next step is to identify candidates for a self-homotopy equivalence of Sm ∨ Sm+k−1. Recall that we 

denote the inclusion of wedge summands by i1 : Sm → Sm ∨Sm+k−1 and i2 : Sm+k−1 → Sm ∨Sm+k−1 and 
that ιm denotes the identity map on the sphere Sm.

Lemma 5.2. Let τ be a homotopy classes in πk−1(SO(2m)). If ε : Sm ∨ Sm+k−1 → Sm ∨ Sm+k−1 is a 
homotopy equivalence then:

(i) the restriction of ε to Sm is homotopic to (−1)i · i1 for some integer i;
(ii) the restriction of ε to Sm+k−1 is homotopic to (i1 ◦λ)+ (−1)j · i2 for some λ ∈ πm+k−1(Sm) and some 

integer j;
(iii) for i, j and λ as in (i) and (ii) there is a homotopy

ε ◦ ϕτ � i1 ◦
(

(−1)i · f ◦ τ + λ ◦ Σk−1f + (−1)i · [ιm, λ]
)

+ (−1)j · (i2 ◦ Σk−1f) + (−1)i+j · [i1, i2].

Proof. The map ε is a map out of a wedge so it is determined up to homotopy by its restriction to each 
summand, i.e. ε ◦ i1 and ε ◦ i2. Note that as ε is a homotopy equivalence it induces an isomorphism in 
homology, so ε ◦ i1 and ε ◦ i2 induce isomorphisms on Hm and Hm+k−1 respectively.

For (i), observe that ε ◦ i1 factors through the m-skeleton of Sm ∨ Sm+k−1 -- this implies that it is 
homotopic to a composite



S. Chenery, S. Theriault / Topology and its Applications 369 (2025) 109420 23

Sm d−−→ Sm i1 −−→ Sm ∨ Sm+k−1

for some map of degree d. Since ε ◦ i1 induces an isomorphism on Hm we must have d = ±1. Thus there is 
a homotopy ε ◦ i1 � ±i1.

For (ii), since m ≥ 2 the Hilton-Milnor Theorem implies that ε ◦ i2 is determined by composing with 
the pinch maps to Sm and Sm+k−1. The composition to Sm gives a map λ : Sm+k−1 → Sm and the 
composition to Sm+k−1 again induces an isomorphism in homology, so is homotopic to a map of degree ±1. 
Thus ε ◦ i2 � (i1 ◦ λ) ± i2.

Summarising, for such a self-equivalence ε we may write

ε ◦ i1 � (−1)i · i1 and ε ◦ i2 � (i1 ◦ λ) + (−1)j · i2 (5.5)

for some integers i, j ∈ {0, 1}.
For (iii), by Corollary 3.14, ϕτ � (i1 ◦ f ◦ τ) + (i2 ◦ Σk−1f) + [i1, i2]. By left-distributivity we obtain

ε ◦ ϕτ � (ε ◦ i1 ◦ f ◦ τ) + (ε ◦ i2 ◦ Σk−1f) + (ε ◦ [i1, i2]). (5.6)

First, consider ε ◦ i1 ◦ f ◦ τ . By (5.5) we have ε ◦ i1 � (−1)i · i1, so

ε ◦ i1 ◦ f ◦ τ � (−1)i · i1 ◦ f ◦ τ .

Second, consider the composite ε ◦ i2 ◦ Σk−1f . In general, if α, β : ΣA → X and Σg : ΣB → ΣA then Σg

distributes on the right: (α + β) ◦ Σg � α ◦ Σg + β ◦ Σg. Since we demand k ≥ 2, the map Σk−1f is a 
suspension, and by (5.5) we obtain

ε ◦ i2 ◦ Σk−1f � ((i1 ◦ λ) ± i2) ◦ Σk−1f � i1 ◦ λ ◦ Σk−1f + (−1)j · i2 ◦ Σk−1f.

Third, consider ε ◦ [i1, i2]. Recalling properties of the Whitehead product, we have in our case that

ε ◦ [i1, i2] � [ε ◦ i1, ε ◦ i2]
� [(−1)i · i1, (i1 ◦ λ) + (−1)j · i2]
� (−1)i · [i1, i1 ◦ λ] + (−1)i+j · [i1, i2]
� (−1)i · i1 ◦ [ιm, λ] + (−1)i+j · [i1, i2].

Substituting the three parts into (5.6) and then rearranging gives

ε ◦ ϕτ � (−1)i · (i1 ◦ f ◦ τ) + (i1 ◦ λ ◦ Σk−1f) + (−1)j · (i2 ◦ Σk−1f) + (−1)i · i1 ◦ [ιm, λ] + (−1)i+j · [i1, i2]

= i1 ◦
(

(−1)i · f ◦ τ + λ ◦ Σk−1f + (−1)i · [ιm, λ]
)

+ (−1)j · (i2 ◦ Σk−1f) + (−1)i+j · [i1, i2],

proving part (iii). �
Lemma 5.3. Let τ and ω be distinct homotopy classes in πk−1(SO(2m)).

(i) There is a self-equivalence ε : Sm ∨ Sm+k−1 → Sm ∨ Sm+k−1 such that ε ◦ϕτ � ϕω if and only if there 
exists a λ ∈ πm+k−1(Sm) such that f ◦ τ + λ ◦ Σk−1f + [ιm, λ] � f ◦ ω;

(ii) There is a self-equivalence ε : Sm ∨ Sm+k−1 → Sm ∨ Sm+k−1 such that ε ◦ ϕτ � −ϕω if and only if 
there exists a λ ∈ πm+k−1(Sm) such that f ◦ τ + λ ◦ Σk−1f + [ιm, λ] � −f ◦ ω.
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Proof. Suppose there is a self-equivalence ε : Sm ∨ Sm+k−1 → Sm ∨ Sm+k−1 such that ε ◦ ϕτ � ±ϕω. By 
Lemma 5.2 there exists a λ ∈ πm+k−1(Sm) that gives a homotopy

ε ◦ ϕτ � i1 ◦
(

(−1)i · f ◦ τ + λ ◦ Σk−1f + (−1)i · [ιm, λ]
)

+ (−1)j · (i2 ◦ Σk−1f) + (−1)i+j · [i1, i2]

and by Corollary 3.14,

ϕω � i1 ◦ f ◦ ω + i2 ◦ Σk−1f + [i1, i2].

Since the terms i1 ◦ ( ), i2 ◦ ( ) and [i1, i2] are linearly independent, we may compare coefficients in the 
expressions for ε ◦ ϕτ and ±ϕω.

(i) If ε ◦ ϕτ � ϕω then comparing the i2-terms gives (−1)j = 1, so j = 0, in which case comparing 
the [i1, i2]-terms gives (−1)i+j = 1, implying that i = 0, and then comparing the i1-terms results in 
f ◦ τ + λ ◦ Σk−1f + [ιm, λ] � f ◦ ω;

(ii) If ε ◦ ϕτ � −ϕω then comparing the i2-terms gives (−1)j = −1, so j = 1, in which case comparing 
the [i1, i2]-terms gives (−1)i+j = −1, implying that i = 0, and then comparing the i1-terms results in 
f ◦ τ + λ ◦ Σk−1f + [ιm, λ] � −f ◦ ω.

Conversely, suppose that there exists a λ ∈ πm+k−1(Sm) such that f ◦ τ + λ ◦ Σk−1f + [ιm, λ] � f ◦ ω. 
Define ε : Sm ∨ Sm+k−1 → Sm ∨ Sm+k−1 by letting the restrictions of ε to Sm and Sm+k−1 be i1 and 
(i1 ◦ λ) + i2 respectively. Then i = j = 0 in Lemma 5.2 (i) and (ii), implying that the same is true in the 
expression for ε ◦ ϕτ . Thus by Lemma 5.2 (iii) there is a homotopy

ε ◦ ϕτ � i1 ◦
(
f ◦ τ + λ ◦ Σk−1f + [ιm, λ]

)
+ (i2 ◦ Σk−1f) + [i1, i2]

� i1 ◦ f ◦ ω + (i2 ◦ Σk−1f) + [i1, i2]

� ϕω.

Similarly, if f ◦ τ + λ ◦Σk−1f + [ιm, λ] � −f ◦ ω then define the self-equivalence ε by letting its restrictions 
to Sm and Sm+k−1 be i1 and (i1 ◦λ)− i2 respectively, so that i = 0 and j = 1, and obtain ε◦ϕτ � −ϕω. �

Lemmas 5.1 and 5.3 are used to prove the following key proposition.

Proposition 5.4. Let τ and ω be distinct homotopy classes in πk−1(SO(2m)). There is a homotopy equivalence 
Gk
τ (𝔽P 2) � Gk

ω(𝔽P 2) if and only if there exists a homotopy class λ ∈ πm+k−1(Sm) such that

f ◦ τ + λ ◦ Σk−1f + [ιm, λ] � ±f ◦ ω. (5.7)

Proof. If there is a homotopy equivalence Gk
τ (𝔽P 2) � Gk

ω(𝔽P 2), then by Lemma 5.1 there exists a self
equivalence ε : Sm ∨ Sm+k−1 → Sm ∨ Sm+k−1 such that ε ◦ ϕτ � ±ϕω. Lemma 5.3 then implies that there 
is a homotopy f ◦ τ + λ ◦ Σk−1f + [ιm, λ] � ±f ◦ ω.

Conversely, suppose there exists a λ ∈ πm+k−1(Sm) such that (5.7) holds. Then Lemma 5.3 implies that 
there is a self-equivalence ε : Sm ∨ Sm+k−1 −→ Sm ∨ Sm+k−1 such that ε ◦ ϕτ � ±ϕω. Lemma 5.1 then 
implies that Gk

τ (𝔽P 2) � Gk
ω(𝔽P 2). �

Proposition 5.4 reduces the problem of detecting gyration stability of projective planes to the problem 
of finding a λ ∈ πm+k−1(Sm) such that f ◦ τ + λ ◦ Σk−1f + [ιm, λ] � ±f ◦ ω. We formulate this as a 
computational strategy for the coming sections.
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Strategy 5.5. Fix m and k. Given twistings τ, ω ∈ πk−1(SO(2m)), by (3.5) there are associated maps 
τ , ω ∈ π2m+k−2(S2m−1).

Step 1: Let x1, . . . , xr ∈ π2m+k−2(S2m−1) be a generating set. As f = η2, ν4 or σ8 (for m = 2, 4 or 8, 
respectively) the morphism f ◦ − : π2m+k−2(S2m−1) → π2m+k−2(Sm) is injective, implying that 
f ◦ x1, . . . , f ◦ xr are distinct elements of π2m+k−2(Sm). Thus we may write

f ◦ τ � a1 · (f ◦ x1) + a2 · (f ◦ x2) + · · · + ar · (f ◦ xr)

and

f ◦ ω � b1 · (f ◦ x1) + b2 · (f ◦ x2) + · · · + br · (f ◦ xr)

where ai and bi are integers modulo the order of f ◦ xi. 

Step 2: Find λ1, λ2, . . . λr ∈ πm+k−1(Sm) such that λi ◦ Σk−1f + [ιm, λi] � f ◦ xi for all 1 ≤ i ≤ r. 

Step 3: Take λ = (b1 − a1) · λ1 + (b2 − a2) · λ2 + · · · + (br − ar) · λr. By Steps 1 and 2, and using right
distributivity, this choice of λ gives

f ◦ τ + λ ◦ Σk−1f + [ιm, λ] � b1 · (f ◦ x1) + b2 · (f ◦ x2) + · · · + br · (f ◦ xr) � f ◦ ω

and therefore satisfies Proposition 5.4. Thus Gk
τ (𝔽P 2) � Gk

ω(𝔽P 2).

In arguments proving gyration instability we will show that Step 2 fails. This is done by proving that there 
is at least one generator xi for which there is no appropriate λi, or that for some λ ∈ πm+k−1(Sm) the term 
λ ◦ Σk−1f + [ιm, λ] fails to produce the necessary congruence relations between the coefficients ai and bi
from Step 1. In either case it follows that Gk

τ (𝔽P 2) �� Gk
ω(𝔽P 2).

6. Computations for Gk
τ (ℍP 2)

Throughout Sections 6, 7 and 8 we will repeatedly use results regarding compositions of elements in the 
homotopy groups of spheres. We shall follow Toda’s notation, in particular that ηn = Σn−2η2 for n ≥ 2, 
νn = Σn−4ν for n ≥ 4 and that there exists a non-trivial homotopy class ν′ ∈ π6(S3). For a cyclic group Γ
we write Γ〈x〉 for Γ with the explicit choice of generator x ∈ Γ.

For ℍP 2 fix m = 4 and f = ν4, and consider k in the range 2 ≤ k ≤ 6. Proposition 4.2 implies Gk-stability 
when k = 3, 5 or 6, so we are left to investigate gyrations when k = 2 and k = 4.

The k = 2 case. Since π1(SO(8)) ∼ = ℤ/2, there are two gyrations G2
0(ℍP 2) and G2

1(ℍP 2) corresponding to the 
trivial and non-trivial twistings, respectively. Following Strategy 5.5, given two twistings τ, ω ∈ π1(SO(8)) ∼ = 
ℤ/2, the elements τ , ω and λ lie in the following homotopy groups

τ , ω ∈ π8(S7) ∼ = ℤ/2〈η7〉 and λ ∈ π5(S4) ∼ = ℤ/2〈η4〉. (6.1)

For π8(S4), the following proposition records a synthesis of facts from [27, Proposition 5.8] and its proof, 
for ease of reference.

Proposition 6.1 (Toda). For π8(S4) the following hold:

(i) π8(S4) ∼ = ℤ/2〈ν4 ◦ η7〉 ⊕ ℤ/2〈Σν′ ◦ η7〉;
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(ii) the composite η4 ◦ ν5 is homotopic to Σν′ ◦ η7;
(iii) the kernel of the suspension map E : π8(S4) → π9(S5) is generated by Σν′ ◦ η7. �
Thus, Step 1 of Strategy 5.5 amounts to the lemma below.

Lemma 6.2. Given τ ∈ π1(SO(8)), if τ is non-trivial then ν4 ◦ τ � ν4 ◦ η7.

Proof. If τ is non-trivial, then Corollary 3.11 implies that τ is also non-trivial. Thus as τ ∈ π8(S7) by (6.1), 
we have τ � η7. The lemma then follows immediately. �

As for Step 2 of Strategy 5.5, we first show the following.

Lemma 6.3. The composite η4 ◦ ν5 + [ι4, η4] is null homotopic.

Proof. By [18], the Whitehead product [ι4, η4] is non-trivial. As it represents a class in π8(S4) and suspends 
trivially, Proposition 6.1(iii) implies that is homotopic to Σν′◦η7. Also, Proposition 6.1(ii) says that η4◦ν5 �
Σν′ ◦ η7 while Proposition 6.1(i) says that Σν′ ◦ η7 has order two, implying that

η4 ◦ ν5 + [ι4, η4] � 2 · (Σν′ ◦ η7) � ∗. �
This enables us to show that Step 2 of Strategy 5.5 fails, resulting in the following.

Theorem 6.4. ℍP 2 is not G2-stable, i.e. G2
0(ℍP 2) �� G2

1(ℍP 2).

Proof. We will show that there is no λ ∈ π5(S4) ∼ = ℤ/2〈η4〉 satisfying Proposition 5.4. Note that since the 
homotopy group π8(S4) is isomorphic to a direct sum of ℤ/2 summands there is no distinction between +1
and −1, so we may operate in the ‘+’ case of Proposition 5.4 without loss of generality.

Proving G2-instability therefore reduces to checking that there exists no λ such that

ν4 ◦ η7 + λ ◦ ν5 + [ι4, λ] � ∗. (6.2)

By (6.1), either λ � ∗ or λ � η4. If λ � ∗ then (6.2) implies that ν4 ◦ η7 is null homotopic, contradicting 
Proposition 6.1 (i). If λ � η4 then Lemma 6.3 shows that η4 ◦ ν5 + [ι4, η4] is null homotopic, in which 
case (6.2) again shows that ν4 ◦ η7 is null homotopic, a contradiction. �
Remark 6.5. Note that Theorem 6.4 is subtly stronger that what was known before. Duan [9] showed that 
G2

0(ℍP 2) and G2
1(ℍP 2) are not diffeomorphic, Theorem 6.4 shows that they are also not homeomorphic or 

even homotopy equivalent.

The k = 4 case: There is a gyration G4
τ (ℍP 2) for each τ ∈ π3(SO(8)) ∼ = ℤ. It will be shown in Theorem 6.12

that they are all homotopy equivalent. We start with two preparatory statements: an elementary lemma, 
followed by a classical result regarding Whitehead products and suspensions.

Lemma 6.6. Let Σα ∈ πi(Sn) and Σβ ∈ πj(Si) be two suspensions of finite order. If their orders are coprime, 
then the composition Σβ ◦ Σα is null homotopic.

Proof. Let Σα have order a and Σβ have order b. Since both maps are suspensions we have

a · (Σβ ◦ Σα) � Σβ ◦ (a · Σα) � Σβ ◦ ∗ � ∗
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and similarly that

b · (Σβ ◦ Σα) � (b · Σβ) ◦ Σα � ∗ ◦ Σα � ∗.

By assumption, gcd(a, b) = 1, so Bézout’s identity implies that there exist integers s and t such that 
sa + tb = 1. This together with the above null homotopies implies that

Σβ ◦ Σα � (sa + tb) · (Σβ ◦ Σα) � sa · (Σβ ◦ Σα) + tb · (Σβ ◦ Σα) � ∗

where right-distributivity comes from the fact that both maps are suspensions. �
Lemma 6.7 ([29, Theorem X.8.18]). Let α ∈ πp+1(X), β ∈ πq+1(X), γ ∈ πi(Sp) and δ ∈ πj(Sq). Then

[α ◦ Σγ, β ◦ Σδ] � [α, β] ◦ Σ(γ ∧ δ). �
The next two propositions, also separated for later ease of reference, describe the relevant homotopy 

groups and generators. Note that some generators are not labelled as they will not be needed later. The 
statements and notation are taken from [27], except that we use x̂ to denote the 2-primary component of a 
homotopy class x.

Proposition 6.8 (Toda). For n > 4 there are group isomorphisms

πn+3(Sn) ∼ = ℤ/24〈νn〉 ∼ = ℤ/8〈ν̂n〉 ⊕ ℤ/3〈α1(n)〉,

where the second isomorphism comes from writing ν7 � ν̂7 + α1(7). �
Proposition 6.9 (Toda). There are group isomorphisms:

(i) π7(S4) ∼ = ℤ〈ν4〉 ⊕ ℤ/4〈Σν′〉 ⊕ ℤ/3;
(ii) π10(S4) ∼ = ℤ/8〈ν4 ◦ ν̂7〉 ⊕ ℤ/3〈ν4 ◦ α1(7)〉 ⊕ ℤ/3. �

We now move to Step 1 of Strategy 5.5.

Lemma 6.10. For any τ ∈ π3(SO(8)) there exist integers a1 and a2, modulo 8 and 3 respectively, such that 
ν4 ◦ τ � a1 · (ν4 ◦ ν̂7) + a2 · (ν4 ◦ α1(7)).

Proof. With k = m = 4, by (3.5) we have τ ∈ π10(S7). By Proposition 6.8 we obtain

τ ∈ π10(S7) ∼ = ℤ/24〈ν7〉 ∼ = ℤ/8〈ν̂7〉 ⊕ ℤ/3〈α1(7)〉.

Therefore τ = a1 · ν̂7 + a2 · α1(7) for some integers a1 and a2 modulo 8 and 3 respectively. The statement 
of the lemma follows by left distributivity. �

We also have the following homotopies, due to [27, Propositions 5.8 and 5.11], which will be crucial for 
the computations for this case:

Σ2ν′ � 2 · ν̂5 and Σν′ ◦ ν7 � ∗. (6.3)

The following lemma constitutes Step 2 of Strategy 5.5.
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Lemma 6.11. There exist λ1, λ2 ∈ π7(S4) such that:

(i) λ1 ◦ ν7 + [ι4, λ1] � ν4 ◦ ν̂7;
(ii) λ2 ◦ ν7 + [ι4, λ2] � ν4 ◦ α1(7).

Proof. Before finding the asserted homotopy classes we consider an element Λ ∈ π7(S4) which, via Propo
sition 6.9(ii), can be written as

Λ = x · (ν4) + y · (Σν′)

for integers x and y, with y considered modulo 4. Both the composite Λ ◦ ν7 and the Whitehead product 
[ι4,Λ] lie in the homotopy group π10(S4); the first aim is to express these in terms of the generators given 
in Proposition 6.9(ii).

Take Λ◦ν7. Since ν7 is a suspension, right-distributivity gives Λ◦ν7 � x ·(ν4 ◦ν7)+y ·(Σν′ ◦ν7). By (6.3), 
Σν′ ◦ ν7 � ∗. Recalling that ν7 � ν̂7 + α1(7), by left-distributivity we therefore have

Λ ◦ ν7 � x · (ν4 ◦ ν̂7) + x · (ν4 ◦ α1(7)). (6.4)

Next consider [ι4,Λ]. The Whitehead product is additive, so we obtain

[ι4,Λ] � x · [ι4, ν4] + y · [ι4,Σν′].

Applying Lemma 6.7 to [ι4,Σν′] and using 2 · ν̂7 � Σ4ν′ from (6.3), there are homotopies

[ι4,Σν′] � [ι4, ι4] ◦ Σ4ν′ � 2 · ([ι4, ι4] ◦ ν̂7). (6.5)

By [27, (5.8)], there is a homotopy [ι4, ι4] � 2 · ν4 − Σν′ so it follows from (6.3) and (6.5) that

[ι4,Σν′] � 4 · (ν4 ◦ ν̂7).

For [ι4, ν4], by [27, (5.13)] or [4, Proposition 3.6.1], we have [ι4, ν4] � ±2 · (ν4 ◦ ν7). Putting this together 
gives

[ι4,Λ] � (±2x + 4y) · (ν4 ◦ ν7). (6.6)

Combining (6.4) and (6.6) therefore gives the homotopy

Λ ◦ ν7 + [ι4,Λ] � (x± 2x + 4y) · (ν4 ◦ ν̂7) + x · (ν4 ◦ α1(7)).

For part (i), to obtain λ1 ◦ ν7 + [ι4, λ1] � ν4 ◦ ν̂7 we require x± 2x+ 4y ≡ 1 (mod 8) and x ≡ 0 (mod 3). 
There are two cases depending on the sign ±: in the ‘+’ case take x = 3 and y = 0, giving λ1 = 3 · ν4, and 
in the ‘−’ case take x = y = 3, giving λ1 = 3 · ν4 + 3 · Σν′.

As for part (ii), to obtain λ2 ◦ ν7 + [ι4, λ2] � ν4 ◦ α1(7) we require that x ± 2x + 4y ≡ 0 (mod 8) and 
that x ≡ 1 (mod 3). In the ‘+’ case take x = 4 and y = 1, giving λ2 = 4 · ν4 + Σν′, and in the ‘−’ case take 
x = 4 and y = 3, giving λ2 = 4 · ν4 + 3 · Σν′. �

Executing Step 3 of Strategy 5.5 provides the following result for G4-stability of ℍP 2.

Theorem 6.12. ℍP 2 is G4-stable, i.e. G4
τ (ℍP 2) � G4

ω(ℍP 2) for all twistings τ, ω ∈ π3(SO(8)).
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Proof. By Lemma 6.10, for any twistings τ and ω we have

ν4 ◦ τ � a1 · (ν4 ◦ ν̂7) + a2 · (ν4 ◦ α1(7)) and ν4 ◦ ω � b1 · (ν4 ◦ ν̂7) + b2 · (ν4 ◦ α1(7))

for some integers a1 and b1 modulo 8, and a2 and b2 modulo 3. Take λ = (b1 −a1) ·λ1 +(b2 − b1) ·λ2, where 
λ1 and λ2 are as in Lemma 6.11. Then Step 3 of Strategy 5.5 implies that G4

τ (ℍP 2) � G4
ω(ℍP 2). This holds 

for any choice of τ and ω, so ℍP 2 is G4-stable. �
7. Computations for Gk

τ (𝕆P 2) when k ≤ 8

For 𝕆P 2 fix m = 8 and f = σ8, and consider k in the range 2 ≤ k ≤ 14. Proposition 4.2 implies Gk
stability when k = 3, 5, 6, 7, 11, 13 or 14, so we are left to investigate k = 2, 4, 8, 9, 10 and 12. In this section 
we treat the first three of these cases.

Here and in Section 8, following Toda we use the notation σn = Σn−8σ8 for n > 8 and note there is a 
homotopy class σ′ ∈ π14(S7) that satisfies the identity Σ2σ′ � 2 · σ̂9.

The k = 2 case. As π1(SO(16)) ∼ = ℤ/2, there two gyrations, which (similar to previous sections) will be 
denoted by G2

0(𝕆P 2) and G2
1(𝕆P 2). Furthermore, this also implies that Step 1 of the general strategy reduces 

to the statement that for any twisting τ ∈ π1(SO(16)) either σ8 ◦ τ � ∗ or σ8 ◦ τ � σ8 ◦ η15. We will show 
that Step 2 fails, via the following lemma.

Lemma 7.1. η8 ◦ σ9 + [ι8, η8] �� σ8 ◦ η15.

Proof. First note that by [27, (5.15)], the composite σ8 ◦ η15 is not homotopic to a suspension. On the 
other hand, the composite η8 ◦ σ9 is a suspension, being homotopic to Σ(η7 ◦ σ8). By [27, p. 63] the kernel 
of the suspension map E : π16(S8) → π17(S9) is generated by Σσ′ ◦ η15. As this kernel is generated by a 
suspension, the Whitehead product [ι8, η8], being an element of this kernel, is also a suspension. This implies 
that η8 ◦ σ9 + [ι8, η8] is a suspension since it is a sum of suspensions. Thus η8 ◦ σ9 + [ι8, η8] �� σ8 ◦ η15 since 
the left side is a suspension while right side is not. �
Theorem 7.2. 𝕆P 2 is not G2-stable, i.e., G2

0(𝕆P 2) �� G2
1(𝕆P 2).

Proof. We will show that there is no λ ∈ π9(S8) ∼ = ℤ/2〈η8〉 satisfying Proposition 5.4. Proving G2-instability 
therefore reduces to checking that there exists no λ such that

σ8 ◦ η15 + λ ◦ σ9 + [ι8, λ] � ∗. (7.1)

If λ � ∗ then (7.1) cannot hold since, by [27, Theorem 7.1], σ8 ◦ η15 �� ∗. If λ � η8 then Lemma 7.1 shows 
that (7.1) cannot hold. Therefore there is no λ such that (7.1) holds, as required. �
The k = 4 case: There is a gyration G4

τ (𝕆P 2) for each τ ∈ π3(SO(16)) ∼ = ℤ. We first give three results 
describing the relevant homotopy groups, generators and relations.

Proposition 7.3 (Toda). For n > 8 there are group isomorphisms

πn+7(Sn) ∼ = ℤ/240〈σn〉 ∼ = ℤ/16〈σ̂n〉 ⊕ ℤ/5〈α̃1(n)〉 ⊕ ℤ/3〈α2(n)〉

where the second isomorphism comes from writing σn � σ̂n + α̃1(n) + α2(n). The notation α̃1(n) is used to 
distinguish the 5-torsion class from the 3-torsion class α1(n). �
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Proposition 7.4 (Toda). There is a group isomorphism

π18(S8) ∼ = ℤ/8〈σ8 ◦ ν̂15〉 ⊕ ℤ/8〈ν̂8 ◦ σ̂11〉 ⊕ ℤ/3〈σ8 ◦ α1(15)〉 ⊕ ℤ/3〈β1(8)〉 ⊕ ℤ/2 �
Lemma 7.5 ([27, Lemma 5.14]). There is a homotopy [ι8, ι8] � 2 · σ8 − Σσ′. �

Step 1 of Strategy 5.5 is given by the following lemma.

Lemma 7.6. For any τ ∈ π3(SO(16)) there exist integers a1 and a2, modulo 8 and 3 respectively, such that 
σ8 ◦ τ � a1 · (σ8 ◦ ν̂15) + a2 · (σ8 ◦ α1(15)).

Proof. With k = 4 and m = 8, by (3.5) we have τ ∈ π18(S15). By Proposition 6.8 we obtain

τ ∈ π18(S15) ∼ = ℤ/8〈ν̂15〉 ⊕ ℤ/3〈α1(15)〉.

Therefore τ = a1 · ν̂15 + a2 ·α1(15) for some integers a1 and a2 modulo 8 and 3 respectively. The statement 
of the lemma follows by left distributivity. �

Now we turn to Step 2 of Strategy 5.5. For λ ∈ π11(S8), by Proposition 6.8 we have

λ � x · ν̂8 + y · α1(8)

for integers x and y considered modulo 8 and 3, respectively.

Lemma 7.7. There is an odd integer ξ such that

λ ◦ σ11 + [ι8, λ] � 2x · (σ8 ◦ ν̂15) + (x− xξ) · (ν̂8 ◦ σ̂11) + 2y · (σ8 ◦ α1(15)).

Proof. As in Proposition 7.3, write σ11 � σ̂11 + α̃1(11) + α2(11). Since all these homotopy classes are 
suspensions we may distribute on the left. Using this and repeated applications of Lemma 6.6 we obtain

λ ◦ σ11 � (x · ν̂8 + y · α1(8)) ◦ (σ̂11 + α̃1(11) + α2(11))

� x · (ν̂8 ◦ σ̂11) + y · (α1(8) ◦ α2(15)).

By [27, Lemma 13.8], the composite α1(8)◦α2(15) is homotopic to (−3) ·β1(8). By Proposition 7.4 the class 
β1(8) has order 3, so we obtain

λ ◦ σ11 � x · (ν̂8 ◦ σ̂11). (7.2)

For [ι8, λ], Proposition 6.8 implies that λ is suspension, so applying Lemma 6.7 gives

[ι8, λ] � [ι8, ι8] ◦ Σ7λ.

By Lemma 7.5 we have [ι8, ι8] � 2 · σ8 − Σσ′. Further, [27, (7.19)] implies that there exists an odd integer 
ξ such that Σσ′ ◦ ν̂15 � ξ · ν̂8 ◦ σ̂11. Therefore

[ι8, λ] � (2 · σ8 − Σσ′) ◦ (x · ν̂15 + y · α1(15)) � 2x · (σ8 ◦ ν̂15) − xξ · (ν̂8 ◦ σ̂11) + 2y · (σ8 ◦ α1(15)) (7.3)

since Σσ′ ◦ α1(15) is null homotopic by Lemma 6.6.
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Combining (7.2) and (7.3) implies that

λ ◦ σ11 + [ι8, λ] � 2x · (σ8 ◦ ν̂15) + (x− xξ) · (ν̂8 ◦ σ̂11) + 2y · (σ8 ◦ α1(15))

as asserted. �
Remark 7.8. In this case, Step 3 of Strategy 5.5 aims for a homotopy

σ8 ◦ τ + λ ◦ σ11 + [ι8, λ] � ±σ8 ◦ ω. (7.4)

Both sides of the homotopy are elements in π18(S8), which by Lemma 7.6 has generators that include 
σ8 ◦ ν15, ν̂8 ◦ σ11 and σ8 ◦ α1(15). By Lemma 7.7, the left side of (7.4) involves ν̂8 ◦ σ̂11 with coefficient 
(x− xξ). By Lemma 7.6, the right side of (7.4) involves ν̂8 ◦ σ̂11 with coefficient 0. Therefore it must be the 
case that x − xξ ≡ 0 (mod 8) if such a homotopy holds. If ξ ≡ 1 (mod 8) then x may take any value, but 
otherwise x is forced to be even.

Proposition 7.9. Let ξ be the odd integer of Lemma 7.7 and let τ ∈ π3(SO(16)) be an arbitrary twisting.

(i) If ξ ≡ 1 (mod 8) then G4
τ (𝕆P 2) can take exactly two possible homotopy types.

(ii) If ξ ≡ 5 (mod 8) then G4
τ (𝕆P 2) can take exactly three possible homotopy types.

(iii) If ξ ≡ 3 or 7 (mod 8) then G4
τ (𝕆P 2) can take exactly five possible homotopy types.

Proof. By Lemma 7.6, for twistings τ, ω ∈ π3(SO(16)) we may write

σ8 ◦ τ � a1 · (σ8 ◦ ν̂15) + a2 · (σ8 ◦ α1(15)) and σ8 ◦ ω � b1 · (σ8 ◦ ν̂15) + b2 · (σ8 ◦ α1(15))

for some integers a1 and b1 modulo 8, and a2 and b2 modulo 3. By Proposition 5.4, there is a homotopy 
equivalence G4

τ (𝕆P 2) � G4
ω(𝕆P 2) if and only if there exists a λ ∈ π11(S8) that gives rise to a homotopy 

σ8 ◦ τ +λ ◦σ11 +[ι8, λ] � ±σ8 ◦ω. By Lemma 7.7, writing λ � x · ν̂8 + y ·α1(8) and applying the congruence 
x− xξ ≡ 0 (mod 8) in Remark 7.8, we obtain

σ8 ◦ τ + λ ◦ σ11 + [ι8, λ] � (a1 + 2x) · (σ8 ◦ ν̂15) + (a2 + 2y) · (σ8 ◦ α1(15)).

Therefore there is a homotopy equivalence G4
τ (𝕆P 2) � G4

ω(𝕆P 2) if and only if

(a1 + 2x) · (σ8 ◦ ν̂15) + (a2 + 2y) · (σ8 ◦ α1(15)) � b1 · (σ8 ◦ ν̂15) + b2 · (σ8 ◦ α1(15)).

Thus a homotopy equivalence exists if and only if a1 + 2x ≡ ±b1 (mod 8) and a2 + 2y ≡ ±b2 (mod 3). 
Further, given any a2 and b2 modulo 3, there always exists a y such that a2 + 2y ≡ ±b2 (mod 3). Hence a 
homotopy equivalence exists if and only if a1 + 2x ≡ ±b1 (mod 8).

First observe that a1 + 2x ≡ ±b1 (mod 8) implies that a1 ≡ b1 (mod 2). So if a1 �≡ b1 (mod 2) then 
G4
τ (𝕆P 2) �� G4

ω(𝕆P 2). In particular, if a1 is even and b1 is odd then G4
τ (𝕆P 2) �� G4

ω(𝕆P 2). This implies that 
𝕆P 2 is not G4-stable and hence directly answers GSI in the negative.

We now turn to GSII and enumerating the possible homotopy types for G4
τ (𝕆P 2). This depends on the 

possible choices of x that give a1 + 2x ≡ ±b1 (mod 8), while Remark 7.8 implies that x must also satisfy 
x − xξ ≡ 0 (mod 8). Since a1 is an integer modulo 8 there are at most eight possible homotopy types; 
we label each one by the value of a1 and write G4

0(𝕆P 2),G4
1(𝕆P 2), . . . ,G4

7(𝕆P 2). There are three cases, 
depending on ξ modulo 8.

Part (i): if ξ ≡ 1 (mod 8) then x − xξ ≡ 0 (mod 8) holds for all x. Taking x = 1, we obtain a1 + 2 ≡
±b1 (mod 8) if and only if a1 ≡ b1 (mod 2). Thus there are homotopy equivalences:
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G4
0(𝕆P 2) � G4

2(𝕆P 2) � G4
4(𝕆P 2) � G4

6(𝕆P 2) and G4
1(𝕆P 2) � G4

3(𝕆P 2) � G4
5(𝕆P 2) � G4

7(𝕆P 2).

On the other hand, we have already seen that if a1 �≡ b1 (mod 2) then G4
τ (𝕆P 2) �� G4

ω(𝕆P 2). Thus there are 
exactly two homotopy types in this case.

Parts (ii) and (iii): if ξ �≡ 1 (mod 8) then we are in one of two situations. If ξ ≡ 5 (mod 8) then the 
condition x− xξ ≡ 0 (mod 8) occurs if and only if x is even. Taking x = 2, we obtain a1 + 4 ≡ ±b1 (mod 8)
if and only if a1 ≡ ±b1 (mod 4). Thus there are homotopy equivalences

G4
0(𝕆P 2) � G4

4(𝕆P 2), G4
1(𝕆P 2) � G4

3(𝕆P 2) � G4
5(𝕆P 2) � G4

7(𝕆P 2) and G4
2(𝕆P 2) � G4

6(𝕆P 2).

On the other hand, no other value of x will result in additional homotopy equivalences between these three 
homotopy types. This proves (ii). If ξ ≡ 3 or 7 (mod 8) then the condition x − xξ ≡ 0 (mod 8) occurs if 
and only if x ≡ 0 or 4 (mod 8). This implies that a1 +2x ≡ a1 (mod 8) and therefore there is a congruence 
a1 + 2x ≡ ±b1 (mod 8) if and only if a1 ≡ ±b1 (mod 8). Thus there are homotopy equivalences

G4
0(𝕆P 2), G4

1(𝕆P 2) � G4
7(𝕆P 2), G4

2(𝕆P 2) � G4
6(𝕆P 2), G4

3(𝕆P 2) � G4
5(𝕆P 2) and G4

4(𝕆P 2).

This proves (iii). �
Proposition 7.9 shows that for k = 4 the answer to GSII for 𝕆P 2 is at least 2, so it immediately implies 

the following.

Theorem 7.10. 𝕆P 2 is not G4-stable. �
The k = 8 case. There is a gyration G8

τ (𝕆P 2) for each τ ∈ π7(SO(16)) ∼ = ℤ. The next two statements 
describe the relevant homotopy groups, generators and relations.

Proposition 7.11 (Toda). There are group isomorphisms:

(i) π15(S8) ∼ = ℤ〈σ8〉 ⊕ ℤ/8〈Σσ′〉 ⊕ ℤ/5 ⊕ ℤ/3;
(ii) π22(S8) ∼ = ℤ/16〈σ8 ◦ σ̂15〉 ⊕ ℤ/8〈Σσ′ ◦ σ̂15〉 ⊕ ℤ/5〈σ8 ◦ α̃1(15)〉 ⊕ ℤ/3〈σ8 ◦ α2(15)〉 ⊕ ℤ/4 ⊕ ℤ/3. �
Lemma 7.12 (Toda, p.101). There is a homotopy [ι8, σ8] � ±

(
2 · (σ8 ◦ σ̂15) − (Σσ′ ◦ σ̂15)

)
. �

Step 1 of Strategy 5.5 is given by the following lemma.

Lemma 7.13. For any τ ∈ π7(SO(16)) there exist integers a1, a2 and a3, modulo 16, 5 and 3 respectively, 
such that σ8 ◦ τ � a1 · (σ8 ◦ σ̂15) + a2 · (σ8 ◦ α̃1(15)) + a3 · (σ8 ◦ α2(15)).

Proof. With k = m = 8, by (3.5) we have τ ∈ π22(S15). By Proposition 6.8 we obtain

τ ∈ π22(S15) ∼ = ℤ/16〈σ̂15〉 ⊕ ℤ/5〈α̃1(15)〉 ⊕ ℤ/3〈α2(15)〉.

Therefore τ = a1 ·σ̂15+a2 ·α̂1(15)+a3 ·α1(15) for some integers a1, a2 and a3 modulo 16, 5 and 3 respectively. 
The statement of the lemma follows by left distributivity. �

The following lemma constitutes Step 2. We will argue similarly to Lemma 6.11.

Lemma 7.14. There exist λ1, λ2, λ3 ∈ π15(S8) such that:
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(i) λ1 ◦ σ15 + [ι8, λ1] � σ8 ◦ σ̂15;
(ii) λ2 ◦ σ15 + [ι8, λ2] � σ8 ◦ α̃1(15);
(iii) λ3 ◦ σ15 + [ι8, λ3] � σ8 ◦ α2(15).

Proof. Before finding the asserted homotopy classes we consider an element Λ ∈ π15(S8) which, by Propo
sition 7.11(i), may be written as

Λ � w · σ8 + x · Σσ′

for integers w and x, with x considered modulo 8. The composite Λ ◦σ15 and the Whitehead product [ι8,Λ]
both lie in the homotopy group π22(S8); the first aim is to express these in terms of the generators given in 
Proposition 7.11(ii).

First consider Λ ◦ σ15. Since σ15 is a suspension, right-distributivity gives

Λ ◦ σ15 � w · (σ8 ◦ σ15) + x · (Σσ′ ◦ σ15).

Writing σ15 � σ̂15 + α̃1(15) + α2(15), repeated application of Lemma 6.6 thus gives a homotopy

Λ ◦ σ15 � w · (σ8 ◦ σ̂15) + w · (σ8 ◦ α̃1(15)) + w · (σ8 ◦ α2(15)) + x · (Σσ′ ◦ σ̂15). (7.5)

Next, consider [ι8,Λ]. By additivity we may consider [ι8,Σσ′] and [ι8, σ8] separately. Since Σσ′ is a 
suspension, applying Lemma 6.7 and using the fact that Σ8σ′ � 2 · σ̂15 gives

[ι8,Σσ′] � [ι8, ι8] ◦ Σ8σ′ � 2 · ([ι8, ι8] ◦ σ̂15).

Further, Lemma 7.5 then shows

[ι8,Σσ′] � 4 · (σ8 ◦ σ̂15) − 2 · (Σσ′ ◦ σ̂15).

Hence, applying Lemma 7.12 for [ι8, σ8], we obtain

[ι8,Λ] � (±2w + 4x) · (σ8 ◦ σ̂15) − (±w + 2x) · (Σσ′ ◦ σ̂15). (7.6)

Now combining (7.5) and (7.6), we have

Λ ◦ σ15 + [ι8,Λ] � (w ± 2w + 4x) · (σ8 ◦ σ̂15) − (±w + x) · (Σσ′ ◦ σ̂15)

+ w · (σ8 ◦ α̃1(15)) + w · (σ8 ◦ α2(15)).
(7.7)

For part (i) there are two cases, depending on the ‘±’ signs in (7.6). In the ‘+’ case, (7.7) becomes

λ1 ◦ σ15 + [ι8, λ1] � (3w + 4x) · (σ8 ◦ σ̂15) + (−w − x) · (Σσ′ ◦ σ̂15) + w · (σ8 ◦ α̃1(15)) + w · (σ8 ◦ α2(15)).

So to obtain λ1 ◦ σ15 + [ι8, λ1] � σ8 ◦ σ̂15 as in (i), we must have 3w + 4x ≡ 1 (mod 16), x ≡ −w (mod 8), 
w ≡ 0 (mod 5) and w ≡ 0 (mod 5). Taking w = 15 and x = 1 solves this system, giving λ1 = 15 · σ8 + Σσ′. 
In the ‘−’ case (7.7) becomes

λ1 ◦ σ15 + [ι8, λ1] � (−w + 4x) · (σ8 ◦ σ̂15) + (w − x) · (Σσ′ ◦ σ̂15) + w · (σ8 ◦ α̃1(15)) + w · (σ8 ◦ α2(15)).

So to obtain λ1 ◦ σ15 + [ι8, λ1] � σ8 ◦ σ̂15 as in (i), we must have −w + 4x ≡ 1 (mod 16), x ≡ w (mod 8), 
w ≡ 0 (mod 5) and w ≡ 0 (mod 3). Taking w = 75 and x = 3 solves this system, giving λ1 = 75 ·σ8 +3 ·Σσ′. 
Thus, in either case, there is a λ1 that satisfies (i).
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We now move to part (ii). To obtain λ2 ◦σ15 +[ι8, λ2] � σ8 ◦ α̃1(15), with the left side written as in (7.7), 
we need a solution to the system of congruences given by

w ± 2w + 4x ≡ 0 (mod 16),±w + x ≡ 0 (mod 8), w ≡ 1 (mod 5) and w ≡ 0 (mod 3).

Taking w = 96 and x = 0 solves the system, giving λ2 = 96 · σ8.
Finally, we consider part (iii). To obtain λ3 ◦ σ15 + [ι8, λ3] � σ8 ◦ α2(15), with the left side written as in 

(7.7), we need to solve

w ± 2w + 4x ≡ 0 (mod 16),±w + x ≡ 0 (mod 8), w ≡ 0 (mod 5) and w ≡ 1 (mod 3).

Taking w = 160 and x = 0 solves the system, giving λ3 = 160 · σ8. �
Finally, we proceed to Step 3 of Strategy 5.5.

Theorem 7.15. 𝕆P 2 is G8-stable, i.e. G8
τ (𝕆P 2) � G8

ω(𝕆P 2) for all twistings τ, ω ∈ π7(SO(16)).

Proof. By Lemma 7.13 for any two twistings τ and ω we may write

σ8 ◦ τ � a1 · (σ8 ◦ σ̂15) + a2 · (σ8 ◦ α̃1(15)) + a3 · (σ8 ◦ α2(15))

and

σ8 ◦ ω � b1 · (σ8 ◦ σ̂15) + b2 · (σ8 ◦ α̃1(15)) + b3 · (σ8 ◦ α2(15))

for some integers a1 and b1 considered modulo 16, a2 and b2 modulo 5, and a3 and b3 modulo 3. Take 
λ = (b1 − a1) · λ1 + (b2 − b1) · λ2 + (a3 − b3) · λ3, where λ1, λ2 and λ3 are as in Lemma 7.14. Then Step 3 of 
Strategy 5.5 implies that G8

τ (𝕆P 2) � G8
ω(𝕆P 2) holds for any choice of τ and ω, so 𝕆P 2 is G8-stable. �

8. Computations for Gk
τ (𝕆P 2) when 9 ≤ k ≤ 14

We now turn to the three remaining cases when k = 9, k = 10 and k = 12.

The k = 9 case. There is a gyration G9
τ (𝕆P 2) for each τ ∈ π8(SO(16)) ∼ = ℤ/2. The next two statements 

describe the relevant homotopy groups, generators, and relations.

Proposition 8.1 (Toda). There are group isomorphisms:

(i) π23(S15) ∼ = ℤ/2〈ν15〉 ⊕ ℤ/2〈ε15〉;
(ii) π16(S8) ∼ = ℤ/2〈σ8 ◦ η15〉 ⊕ ℤ/2〈Σσ′ ◦ η15〉 ⊕ ℤ/2〈ν8〉 ⊕ ℤ/2〈ε8〉;
(iii) π23(S8) ∼ = ℤ/2〈σ8 ◦ ν15〉 ⊕ ℤ/2〈σ8 ◦ ε15〉 ⊕ ℤ/2〈Σσ′ ◦ ν15〉 ⊕ ℤ/2〈Σσ′ ◦ ε15〉 ⊕ ℤ/2 ⊕ ℤ/120. �
Lemma 8.2 ([27, Lemma 6.4]). There is a homotopy η9 ◦σ10 � ν9 +ε9, and for n ≥ 10 there are homotopies 
ηn ◦ σn+1 � σn ◦ ηn+7 � νn + εn. �

Step 1 of Strategy 5.5 is given by the following lemma.

Lemma 8.3. Given τ ∈ π8(SO(16)), if τ is non-trivial then σ8 ◦ τ � σ8 ◦ ν15 + σ8 ◦ ε15.
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Proof. If τ is non-trivial, then Corollary 3.11 implies that τ is also non-trivial. With k = 9 and m = 8, 
by its definition in (3.5), we have τ ∈ π23(S15). By Proposition 3.10 we have Στ ∈ im(J), which by [25, 
Theorem 1.1.13]1 is generated by η16 ◦ σ17. By Lemma 8.2, η16 ◦ σ17 � ν16 + ε16. As we are in the stable 
range, we may desuspend, and thus

τ ∈ ℤ/2〈ν15 + ε15〉 ⊂ π23(S15). (8.1)

The result then follows immediately by left-distributivity. �
We now move to Step 2.

Lemma 8.4. There exists λ1 ∈ π16(S8) such that λ1 ◦ σ16 + [ι8, λ1] � σ8 ◦ ν15 + σ8 ◦ ε15.

Proof. We prove the asserted homotopy for λ1 = (σ8 ◦ η15) + ν8 + ε8 ∈ π16(S8). Consider the composite 
λ1 ◦ σ16. By [27, Lemma 10.7] there are null homotopies for ν8 ◦ σ16 and ε8 ◦ σ16, and so

λ1 ◦ σ16 � (σ8 ◦ η15 ◦ σ16) + (ν8 ◦ σ16) + (ε8 ◦ σ16) � (σ8 ◦ η15 ◦ σ16) + ∗ + ∗.

By Lemma 8.2, there is a homotopy σ8 ◦ η15 ◦ σ16 � σ8 ◦ ν15 + σ8 ◦ ε15 and hence

λ1 ◦ σ16 � σ8 ◦ ν15 + σ8 ◦ ε15.

It therefore remains to show that the Whitehead product [ι8, λ1] is null homotopic. By additivity we con
sider each of the three summands of λ1 separately. First, since the elements ν8 and ε8 are both suspensions, 
by Lemma 6.7 we have

[ι8, ν8] � [ι8, ι8] ◦ ν15 and [ι8, ε8] � [ι8, ι8] ◦ ε15.

Recalling Lemma 7.5, and noting that both σ8 ◦ ν15 and σ8 ◦ ε15 have order 2 by Proposition 8.1(iii), we 
obtain

[ι8, ν8] � Σσ′ ◦ ν15 and [ι8, ε8] � Σσ′ ◦ ε15. (8.2)

On the other hand, for [ι8, σ8 ◦ η15], by Lemma 6.7 we have

[ι8, σ8 ◦ η15] � [ι8, σ8] ◦ η22.

Once again applying Lemma 7.12 for [ι8, σ8] and noting that η22 has order 2, we obtain

[ι8, σ8] ◦ η22 � Σσ′ ◦ σ15 ◦ η22.

By Lemma 8.2, σ15 ◦ η22 � ν15 + ε15. Thus, putting this together and using left distributivity gives

[ι8, σ8 ◦ η15] � Σσ′ ◦ σ15 ◦ η22 � Σσ′ ◦ ν15 + Σσ′ ◦ ε15. (8.3)

Combining (8.2) and (8.3) gives

[ι8, λ1] � [ι8, σ8 ◦ η15] + [ι8, ν8] + [ι8, ε8] � 2 · (Σσ′ ◦ ν15) + 2 · (Σσ′ ◦ ε15) � ∗

where the null homotopy comes from both classes having order two. �
1 Stated citing [1] and [24].
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Step 3 of Strategy 5.5 follows swiftly.

Theorem 8.5. 𝕆P 2 is G9-stable, i.e. G9
τ (𝕆P 2) � G9

ω(𝕆P 2) for all twistings τ, ω ∈ π8(SO(16)).

Proof. Since π8(SO(16)) ∼ = ℤ/2, there are two choices of twisting, so to prove gyration stability in this case 
we need only check when τ is non-trivial and ω is trivial. By Lemma 8.3 for τ and Lemma 3.9 (iii) for ω, 
we may write

σ8 ◦ τ � σ8 ◦ ν15 + σ8 ◦ ε15 and σ8 ◦ ω � ∗.

It follows that taking λ1 as in Lemma 8.4 gives

σ8 ◦ τ + λ1 ◦ σ16 + [ι8, λ1] � 2 · (σ8 ◦ ν15 + σ8 ◦ ε15) � ∗ � σ8 ◦ ω

thus proving G9-stability for 𝕆P 2, by Proposition 5.4. �
The k = 10 case. There is a gyration G10

τ (𝕆P 2) for each τ ∈ π9(SO(16)) ∼ = ℤ/2. The next two statements 
describe the relevant homotopy groups, generators and relations. We write ν3

n to denote the composite 
νn ◦ νn+3 ◦ νn+6 for n ≥ 8, and similarly let η2

n be ηn ◦ ηn+1 for n ≥ 2.

Proposition 8.6 (Toda). There are group isomorphisms:

(i) π24(S15) ∼ = ℤ/2〈ν3
15〉 ⊕ ℤ/2〈η15 ◦ ε16〉 ⊕ ℤ/2;

(ii) π17(S8) ∼ = ℤ/2〈σ8 ◦ η2
15〉 ⊕ ℤ/2〈ν3

8〉 ⊕ ℤ/2〈η8 ◦ ε9〉 ⊕ ℤ/2 ⊕ ℤ/2;
(iii) π24(S8) ∼ = ℤ/2〈σ8 ◦ ν3

15〉 ⊕ ℤ/2〈σ8 ◦ η15 ◦ ε16〉 ⊕ ℤ/2 ⊕ ℤ/2 ⊕ ℤ/2 ⊕ ℤ/2 ⊕ ℤ/2. �
Lemma 8.7 ([27, Lemma 6.3]). For n ≥ 6 there are homotopies νn ◦ ηn+8 � ηn ◦ νn+1 � ν3

n. �
We begin with Step 1 of Strategy 5.5.

Lemma 8.8. Given τ ∈ π9(SO(16)), if τ is non-trivial then σ8 ◦ τ � (σ8 ◦ ν3
15) + (σ8 ◦ η15 ◦ ε16).

Proof. If τ is non-trivial, then Corollary 3.11 implies that τ is also non-trivial. With k = 10 and m = 8, 
by its definition in (3.5), we have τ ∈ π24(S15). By Proposition 3.10 we have Στ ∈ im(J), which by [25, 
Theorem 1.1.13] is generated by η2

15 ◦ σ17. In turn, by Lemmas 8.2 and 8.7, this composite is homotopic to 
the class ν3

15 + η15 ◦ ε16. As we are in the stable range we may de-suspend, and thus

τ ∈ ℤ/2〈ν3
15 + η15 ◦ ε16〉 ⊂ π24(S15). (8.4)

The result then follows immediately by left-distributivity. �
We move on to Step 2 of Strategy 5.5.

Lemma 8.9. There exists λ1 ∈ π17(S8) such that λ1 ◦ σ17 + [ι8, λ1] � (σ8 ◦ ν3
15) + (σ8 ◦ η15 ◦ ε16).

Proof. We prove the identity for the class λ1 = (σ8 ◦ η2
15) + ν3

8 + (η8 ◦ ε9) ∈ π17(S8). Consider λ1 ◦ σ17. By 
[27, Lemma 10.7] there are null homotopies for the composites ε9 ◦ σ17 and ν9 ◦ σ17, and by Lemma 8.7 we 
have η8 ◦ ν9 � ν3

8 . Therefore

η8 ◦ ε9 ◦ σ17 � ∗ and ν3
8 ◦ σ17 � η8 ◦ ν9 ◦ σ17 � ∗,
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implying that λ1◦σ17 � σ8◦η2
15◦σ17. By Lemma 8.2, η16◦σ17 � ν16+ε16. This together with η15◦ν16 � ν3

15
gives

λ1 ◦ σ17 � σ8 ◦ η2
15 ◦ σ17 � (σ8 ◦ η15 ◦ ν16) + (σ8 ◦ η15 ◦ ε16) � (σ8 ◦ ν3

15) + (σ8 ◦ η15 ◦ ε16). (8.5)

Thus if [ι8, λ1] is null homotopic then the homotopy asserted by the lemma holds.
It remains to show that [ι8, λ1] is null homotopic. By additivity we consider each of the three summands 

of λ1 separately. Both ν3
8 and η8 ◦ ε9 are suspensions, so by Lemma 6.7 we obtain

[ι8, ν3
8 ] � [ι8, ι8] ◦ ν3

15 and [ι8, η8 ◦ ε9] � [ι8, ι8] ◦ η15 ◦ ε16.

By Lemma 7.5, and noting that both σ8 ◦ ν3
15 and σ8 ◦ η15 ◦ ε16 have order 2 by Proposition 8.6 (iii), we 

obtain

[ι8, ν3
8 ] � Σσ′ ◦ ν3

15 and [ι8, η8 ◦ ε9] � Σσ′ ◦ η15 ◦ ε16. (8.6)

For [ι8, σ8 ◦ η2
15] we again use Lemma 6.7 to obtain

[ι8, σ8 ◦ η2
15] � [ι8, σ8] ◦ η2

22.

Once again applying Lemma 7.12 for [ι8, σ8], and since η2
22 has order 2, we obtain

[ι8, σ8 ◦ η2
15] � Σσ′ ◦ σ15 ◦ η2

22.

By Lemma 8.2, σ15 ◦ η22 � ν15 + ε15. Left distributivity then gives

Σσ′ ◦ σ15 ◦ η2
22 � Σσ′ ◦ ν15 ◦ η23 + Σσ′ ◦ ε15 ◦ η23.

Next, Lemma 8.7 gives ν15 ◦η23 � ν3
15, and as ε15 ◦η23 is in the stable range it is homotopic to the composite 

η15 ◦ ε16. Therefore, stringing homotopies together, we obtain

[ι8, σ8 ◦ η2
15] � Σσ′ ◦ ν3

15 + Σσ′ ◦ η15 ◦ ε16. (8.7)

Combining (8.6) and (8.7) then gives

[ι8, λ1] � 2 · (Σσ′ ◦ ν3
15) + 2 · (Σσ′ ◦ η15) ◦ ε16.

Both ν3
15 and η15 have order 2, so [ι8, λ1] is null homotopic, as required. �

Theorem 8.10. 𝕆P 2 is G10-stable, i.e. G10
τ (𝕆P 2) � G10

ω (𝕆P 2) for all twistings τ, ω ∈ π9(SO(16)).

Proof. Since π9(SO(16)) ∼ = ℤ/2, there are two choices of twisting, so to prove gyration stability in this case 
we need only check when τ is non-trivial and ω is trivial. By Lemma 8.8 for τ and Lemma 3.9 (iii) for ω, 
we may write

σ8 ◦ τ � (σ8 ◦ ν3
15) + (σ8 ◦ η15 ◦ ε16) and σ8 ◦ ω � ∗.

It follows that taking λ1 as in Lemma 8.9 gives

σ8 ◦ τ + λ1 ◦ σ16 + [ι8, λ1] � 2 · ((σ8 ◦ ν3
15) + (σ8 ◦ η15 ◦ ε16)) � ∗ � σ8 ◦ ω

thus proving G10-stability for 𝕆P 2, by Proposition 5.4. �
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The k = 12 case. There is a gyration G12
τ (𝕆P 2) for each τ ∈ π11(SO(16)) ∼ = ℤ. We begin by listing 

the relevant homotopy groups and generators. Note that the α1-class of order 7 is denoted by α̌1(n) to 
distinguish it from the order 5 and the order 3 classes α̃1(n) and α1(n), and we follow Toda in using α′

3(n)
to denote the 3-primary class with the property that 3 · α′

3(n) � α3(n).

Proposition 8.11 (Toda). There are group isomorphisms:

(i) π26(S15) ∼ = ℤ/8〈ζ15〉 ⊕ ℤ/9〈α′
3(15)〉 ⊕ ℤ/7〈α̌1(15)〉;

(ii) π19(S8) ∼ = ℤ/8〈ζ8〉 ⊕ ℤ/9〈α′
3(8)〉 ⊕ ℤ/7〈α̌1(8)〉 ⊕ ℤ/2〈ν8 ◦ ν16〉;

(iii) π26(S8) ∼ = ℤ/8〈σ8 ◦ ζ15〉⊕ℤ/9〈σ8 ◦α′
3(15)〉⊕ℤ/7〈σ8 ◦ α̌1(15)〉⊕ℤ/8〈ζ8 ◦ σ̂19〉⊕ℤ/3〈α′

3(8) ◦α2(19)〉⊕
ℤ/2. �

Step 1 is given by the next lemma.

Lemma 8.12. For any τ ∈ π11(SO(16)) there exist integers a1, a2 and a3, modulo 8, 9 and 7 respectively, 
such that σ8 ◦ τ � a1 · (σ8 ◦ ζ15) + a2 · (σ8 ◦ α′

3(15)) + a3 · (σ8 ◦ α̌1(15)).

Proof. With k = 12 and m = 8, by (3.5) we have τ ∈ π26(S15). So by Proposition 8.11 (i),

τ ∈ ℤ/8〈ζ15〉 ⊕ ℤ/9〈α′
3(15)〉 ⊕ ℤ/7〈α̌1(15)〉.

Therefore τ � a1 ·ζ15+a2 ·α′
3(15)+a3 ·α̌1(15) for some integers a1, a2 and a3 modulo 8, 9 and 7 respectively. 

The statement of the lemma follows by left distributivity. �
Now we turn to Step 2. For λ ∈ π19(S8), by Proposition 8.11 (ii) we have

λ � w · ζ8 + x · α′
3(8) + y · α1(8) + z · (ν8 ◦ ν16) (8.8)

for integers w, x, y and z modulo 8, 9, 7 and 2 respectively.

Lemma 8.13. There is an odd integer ϑ such that

λ ◦ σ19 + [ι8, λ] � 2w · (σ8 ◦ ζ15) + 2x · (σ8 ◦ α′
3(15)) + 2y · (σ8 ◦ α̌1(15))

+ (w − ϑw) · (ζ8 ◦ σ̂19) + x · (α′
3(8) ◦ α2(19)).

Proof. First, consider the composite λ ◦ σ19. Writing σ19 � σ̂19 + α̃1(19) + α2(19) and using Lemma 6.6 to 
eliminate compositions of elements of coprime orders, we obtain

λ ◦ σ19 � λ ◦ (σ̂19 + α̃1(19) + α2(19)) � w · (ζ8 ◦ σ̂19) + x · (α′
3(8) ◦ α2(19)) + z · (ν8 ◦ ν16 ◦ σ̂19).

By [27, (7.20)], ν16 ◦ σ̂19 is null homotopic. Therefore

λ ◦ σ19 � w · (ζ8 ◦ σ̂19) + x · (α′
3(8) ◦ α2(19)). (8.9)

Next consider the Whitehead product [ι8, λ]. Each of the generators in Proposition 8.11(ii) is a suspension, 
implying that λ is a suspension. Therefore Lemma 6.7 implies that

[ι8, λ] � [ι8, ι8] ◦ Σ7λ.

Applying Lemma 7.5 and using the expression for λ in (8.8) gives
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[ι8, λ] � (2 · σ8 − Σσ′) ◦ (w · ζ15 + x · α′
3(15) + y · α̌1(15) + z · (ν15 ◦ ν23))

� 2w · (σ8 ◦ ζ15) + 2x · (σ8 ◦ α′
3(15)) + 2y · (σ8 ◦ α̌1(15)) + 2z · (σ8 ◦ ν15 ◦ ν23)

− w · (Σσ′ ◦ ζ15) − x · (Σσ′ ◦ α′
3(15)) − y · (Σσ′ ◦ α̌1(15)) − z · (Σσ′ ◦ ν15 ◦ ν23).

Applying Lemma 6.6 to eliminate compositions of coprime elements, and observing that ν15 ◦ ν23 is null 
homotopic by [27, (7.22)], gives

[ι8, λ] � 2w · (σ8 ◦ ζ15) + 2x · (σ8 ◦ α′
3(15)) + 2y · (σ8 ◦ α̌1(15)) − w · (Σσ′ ◦ ζ15). (8.10)

Now, by [27, Lemma 12.12] there exists an odd integer ϑ such that Σσ′ ◦ ζ15 � ϑ · (ζ8 ◦ σ̂19) and so (8.9) 
and (8.10) combine to give

λ ◦ σ19 + [ι8, λ] � 2w · (σ8 ◦ ζ15) + 2x · (σ8 ◦ α′
3(15)) + 2y · (σ8 ◦ α̌1(15))

+ (w − ϑw) · (ζ8 ◦ σ̂19) + x · (α′
3(8) ◦ α2(19))

(8.11)

as asserted. �
Lemma 8.13 has two immediate consequences, giving the following supplementary lemma.

Lemma 8.14. Let τ, ω ∈ π11(SO(16)) and let λ ∈ π19(SO(16)) be as in (8.8). If there is a homotopy σ8 ◦ τ +
λ ◦ σ19 + [ι8, λ] � ±σ8 ◦ ω then the following congruences hold

(i) x ≡ 0 (mod 3);
(ii) w − ϑw ≡ 0 (mod 8),

where ϑ is the odd integer or Lemma 8.13.

Proof. Consider the homotopy σ8◦τ+λ◦σ19+[ι8, λ] � ±σ8◦ω. By Lemma 8.13 the left side has α′
3(8)◦α2(19)

with coefficient x and ζ8 ◦ σ̂19 with coefficient (w − ϑw), whereas the right side has both of these with 
coefficient 0 by Lemma 8.12. Therefore it must be the case that x ≡ 0 (mod 3) and w − ϑw ≡ 0 (mod 8), 
since by Proposition 8.11 (iii) these classes are of order 3 and 8, respectively. �
Remark 8.15. This is a similar, slightly more complicated, situation to that of the k = 4 case (cf. Remark 7.8). 
Although the precise value of the odd integer ϑ is not determined, the congruences of Lemma 8.14 result in 
the following analogue to Proposition 7.9.

Proposition 8.16. Let ϑ be the odd integer of Lemma 8.13 and τ ∈ π11(SO(16)) be an arbitrary twisting.

(i) If ϑ ≡ 1 (mod 8) then G12
τ (𝕆P 2) can take exactly four possible homotopy types.

(ii) If ϑ ≡ 5 (mod 8) then G12
τ (𝕆P 2) can take exactly six possible homotopy types.

(iii) If ϑ ≡ 3 or 7 (mod 8) then G12
τ (𝕆P 2) can take exactly ten possible homotopy types.

Proof. By Lemma 8.12, for twistings τ, ω ∈ π11(SO(16)) we may write

σ8 ◦ τ � a1 · (σ8 ◦ ζ15) + a2 · (σ8 ◦ α′
3(15)) + a3 · (σ8 ◦ α̌1(15))

and

σ8 ◦ ω � b1 · (σ8 ◦ ζ15) + b2 · (σ8 ◦ α′
3(15)) + b3 · (σ8 ◦ α̌1(15))
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for some integers a1 and b1 considered modulo 8, a2 and b2 modulo 9, and a3 and b3 modulo 7. By 
Proposition 5.4, there is a homotopy equivalence G12

τ (𝕆P 2) � G12
ω (𝕆P 2) if and only if there exists a λ ∈

π19(S8) such that σ8 ◦ τ + λ ◦ σ19 + [ι8, λ] � ±σ8 ◦ ω. By Lemma 8.13, writing λ as

λ � w · ζ8 + x · α′
3(8) + y · α1(8) + z · (ν8 ◦ ν16)

as in (8.8) and applying the congruences of Lemma 8.14 gives a homotopy

σ8 ◦ τ + λ ◦ σ19 + [ι8, λ] � (a1 + 2w) · (σ8 ◦ ζ15) + (a2 + 2x) · (σ8 ◦ α′
3(15)) + (a3 + 2y) · (σ8 ◦ α̌1(15)) (8.12)

Comparing coefficients, this implies that G12
τ (𝕆P 2) � G12

ω (𝕆P 2) if and only if we have the following congru
ences:

a1 + 2w ≡ ±b1 (mod 8), a2 + 2x ≡ ±b2 (mod 9) and a3 + 2y ≡ ±b3 (mod 7).

Further, given any a3 and b3 modulo 7, there always exists a y such that a3 + 2y ≡ ±b3 (mod 7). Hence a 
homotopy equivalence exists if and only if the first two of the above congruences hold.

First observe that a1 + 2w ≡ ±b1 (mod 8) implies that a1 ≡ b1 (mod 2). So if a1 �≡ b1 (mod 2) then 
G12
τ (𝕆P 2) �� G12

ω (𝕆P 2). In particular, if a1 is even and b1 is odd then G12
τ (𝕆P 2) �� G12

ω (𝕆P 2). Moreover, 
the restriction that x ≡ 0 (mod 3) implies that the second congruence reduces to a2 ≡ ±b2 (mod 3), so if 
a2 ≡ 0 (mod 3) and b2 ≡ ±1 (mod 3) then this would also give G12

τ (𝕆P 2) �� G12
ω (𝕆P 2). This implies that 

𝕆P 2 is not G12-stable and hence directly answers GSI in the negative.
We now turn to GSII and enumerating the possible homotopy types for G12

τ (𝕆P 2). This depends on the 
possible choices of w that give a1 + 2w ≡ ±b1 (mod 8) and whether a2 ≡ 0 or ± 1 (mod 3). Since a1
is an integer modulo 8 this implies that are at most sixteen possible homotopy types; we label each one 
by the value of a1 when a2 ≡ 0 (mod 3), which we write as G12

0 (𝕆P 2),G12
1 (𝕆P 2), . . . ,G12

7 (𝕆P 2), and the 
second eight for when a2 ≡ ±1 (mod 3) are written as G12

0,±(𝕆P 2),G12
1,±(𝕆P 2), . . . ,G12

7,±(𝕆P 2). There are 
three cases, which depend on the odd integer ϑ modulo 8.

Part (i): if ϑ ≡ 1 (mod 8) then w−wϑ ≡ 0 (mod 8) holds for all w. Thus a1 + 2w ≡ ±b1 (mod 8) if and 
only if a1 ≡ b1 (mod 2), so this case there are four possible homotopy types:

G12
0 (𝕆P 2) � G12

2 (𝕆P 2) � G12
4 (𝕆P 2) � G12

6 (𝕆P 2),

G12
1 (𝕆P 2) � G12

3 (𝕆P 2) � G12
5 (𝕆P 2) � G12

7 (𝕆P 2),

G12
0,±(𝕆P 2) � G12

2,±(𝕆P 2) � G12
4,±(𝕆P 2) � G12

6,±(𝕆P 2),

and G12
1,±(𝕆P 2) � G12

3,±(𝕆P 2) � G12
5,±(𝕆P 2) � G12

7,±(𝕆P 2).

On the other hand, we have already seen that if a1 �≡ b1(mod 2) or a2 �≡ ±b2 (mod 3) then G12
τ (𝕆P 2) ��

G12
ω (𝕆P 2). Thus there are exactly four homotopy types in this case.
Parts (ii) and (iii): if ϑ �≡ 1 (mod 8) then we are in one of two situations. If ϑ ≡ 5 (mod 8), then 

the demand that w − wϑ ≡ 0 (mod 8) implies 4w ≡ 0 (mod 8), forcing w to take only even values. Thus 
a1 + 2w ≡ ±b1 (mod 8) if and only if a1 ≡ ±b1 (mod 4) and hence G12

τ (𝕆P 2) can assume six different 
homotopy types, represented by

G12
0 (𝕆P 2) � G12

4 (𝕆P 2), G12
1 (𝕆P 2) � G12

3 (𝕆P 2) � G12
5 (𝕆P 2) � G12

7 (𝕆P 2),

G12
0,±(𝕆P 2) � G12

4,±(𝕆P 2), G12
1,±(𝕆P 2) � G12

3,±(𝕆P 2) � G12
5,±(𝕆P 2) � G12

7,±(𝕆P 2),

G12
2 (𝕆P 2) � G12

6 (𝕆P 2) and G12
2,±(𝕆P 2) � G12

6,±(𝕆P 2).
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This proves (ii). If instead ϑ ≡ 3 or 7 (mod 8) then w − wϑ ≡ 0 (mod 8) implies that w ≡ 0 or 4 (mod 8), 
in which case a1 + 2w ≡ ±b1 (mod 8) if and only if a1 ≡ ±b1 (mod 8). So G12

τ (𝕆P 2) can take ten possible 
homotopy types:

G12
0 (𝕆P 2), G12

1 (𝕆P 2) � G12
7 (𝕆P 2), G12

2 (𝕆P 2) � G12
6 (𝕆P 2), 

G12
3 (𝕆P 2) � G12

5 (𝕆P 2), G12
4 (𝕆P 2),

G12
0,±(𝕆P 2), G12

1,±(𝕆P 2) � G12
7,±(𝕆P 2), G12

2,±(𝕆P 2) � G12
6,±(𝕆P 2), 

G12
3,±(𝕆P 2) � G12

5,±(𝕆P 2) and G12
4,±(𝕆P 2). �

This proves (iii).

Proposition 8.16 shows that for k = 12 the answer to GSII for 𝕆P 2 is at least 4, so it immediately implies 
the following.

Theorem 8.17. 𝕆P 2 is not G12-stable. �
The classification of G2-homotopy types. We conclude by combining several results to classify the homotopy 
types of the gyrations Gk

τ (𝔽P 2) for 𝔽 one of ℂ, ℍ or 𝕆.

Proof of Theorem A. Part (i) follows since ℂP 2 is G2-stable by Theorem 4.5. For part (ii), if τ � ω then 
G2
τ (ℍP 2) � G2

ω(ℍP 2) by Lemma 4.1. Conversely, as π1(SO(8)) ∼ = ℤ/2, there are two distinct choices of 
twisting. Theorem 6.4 shows that if τ �� ω then G2

τ (ℍP 2) �� G2
ω(ℍP 2). The argument for part (iii) is the 

same as for part (ii), replacing Theorem 6.4 with Theorem 7.2. �
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