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Decision-Making

by Mark Towers

Deep reinforcement learning has achieved superhuman performance in numerous
environments. Despite these advances, there are limited tools to understand why agents
make decisions. A central issue is how specific actions enable agents to collect rewards
or achieve goals far in the future. Understanding this future context for an agent’s
decision-making is critical to explaining their choices. To date, however, little research
has explored such temporal explanations. Therefore, we investigate how to explain the
future context of agents’ decision-making for both pretrained agents, using a memory of
past behaviour, and architecturally modified agents, explicitly outputting their next N
expected rewards. We evaluate these explanations with user surveys, finding them
preferred and more effective to baseline algorithms in Atari environments.

We develop three novel video-based explanations for pretrained agents. Two of these
require no domain knowledge, a common feature of prior work, while the third
incorporates limited domain knowledge. These approaches are the first local
explanations that use a memory of how an agent acted in the past to explain their
current decision-making. We collect similar decisions from past states or skills,
showcasing them to users to help visualise an action’s possible future outcomes.

We identify that deep reinforcement learning agents implicitly compute their beliefs
about the future when predicting their rewards (i.e., Q-value or State-value). From this,
we prove that an agent’s Q-value can be transformed into computing the expected
reward for each future timestep. This opens up the opportunity to explain an agent’s
confidence and decision-making for individual future timesteps. This innovation allows
us to propose a novel training algorithm referred to as Temporal Reward
Decomposition, where agents output their expected rewards for the next N timesteps.
From this, we pioneer three novel explanations for users with a strong understanding of
reinforcement learning. For non-technical users, we propose a fourth explanation using
Large Language Models to summarise the future rewards in natural language.
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We conduct two user surveys to evaluate our temporal explanations against two
baseline algorithms. In the second, we propose a novel evaluation methodology
inspired by debugging, where users must identify an unknown agent’s goal from an
explanation of its decision-making. We find that in both user surveys, our temporal
explanations were preferred and, in the second, were significantly more effective for
determining an agent’s goal.



v

Contents

List of Figures vii

List of Tables xi

Declaration of Authorship xiii

Acknowledgements xv

Definitions and Abbreviations xvii

1 Introduction 1
1.1 Thesis Contributions and Structure . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 7
2.1 Reinforcement Learning Mathematics . . . . . . . . . . . . . . . . . . . . 7
2.2 Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Explanation Mechanism Properties . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Explanation Audience . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Model Interpretability . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Explanation Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.4 Mechanism Categories . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.5 Explanation Medium . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Literature Review 19
3.1 Challenges in Explainable Reinforcement Learning . . . . . . . . . . . . . 19
3.2 Explainable Reinforcement Learning Survey . . . . . . . . . . . . . . . . 21

3.2.1 Saliency Map Explanations . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Natural Language Explanations . . . . . . . . . . . . . . . . . . . 27
3.2.3 Temporal Explanations . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.4 Reward Explanations . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Evaluating XRL Explanations . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Video-Based Explanations of Deep Reinforcement Learning Agents 39
4.1 Explanation Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Dataset Similarity Explanations . . . . . . . . . . . . . . . . . . . . 41
4.1.2 Skill Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.3 Plan Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Skill Similarity Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



vi CONTENTS

4.2.1 Skill Alignment Metric . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.2 Skill Distribution Metric . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Quality of Explanations and Skills Extracted . . . . . . . . . . . . . . . . 46
4.3.1 Human Evaluation of Explanations . . . . . . . . . . . . . . . . . 46
4.3.2 Skill Extraction Analysis . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Explaining an Agent’s Future Beliefs through Temporally Decomposing Future
Reward Estimators 57
5.1 Temporally Decomposed Future Reward Estimators . . . . . . . . . . . . 59
5.2 Retraining Pretrained Agents for TRD . . . . . . . . . . . . . . . . . . . . 63
5.3 Explaining an Agent’s Future Beliefs and Decision-Making . . . . . . . . 65

5.3.1 What Rewards to Expect and When? . . . . . . . . . . . . . . . . . 65
5.3.2 What Observation Features are Important? . . . . . . . . . . . . . 68
5.3.3 What is the Impact of an Action Choice? . . . . . . . . . . . . . . . 68

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 A Comparative User Evaluation of
Goal Identification using Explanations 73
6.1 Natural Language Summarisation of Future Rewards . . . . . . . . . . . 75
6.2 Comparative User Evaluation Design . . . . . . . . . . . . . . . . . . . . 82
6.3 Analysing User Comprehension . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3.1 Can Users Accurately Predict Agent Goals? . . . . . . . . . . . . . 88
6.3.2 What do Users believe about the Explanation? . . . . . . . . . . . 96

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7 Conclusion and Future Work 105

References 111

Appendix A Impact Assessment 123
Appendix A.1 The Motivation and Purpose of this Research . . . . . . . . . . 123
Appendix A.2 The Use of Human Studies for Impactful Research . . . . . . . 125
Appendix A.3 Conducting Research with the Right Purpose and People . . . 126

Appendix B Saliency Map Hyperparameters 129

Appendix C Temporal Reward Decomposition for State-value function 133

Appendix D Code Implementation of Temporal Reward Decomposition 135

Appendix E LLM Prompts for Atari Games 137

Appendix F Screenshots of Comparative User Evaluation Survey 139

Appendix G More Analysis and Graphs from Comparative User Evaluation 151



vii

List of Figures

1.1 a) Policy-based Explanation: An interpretable decision tree such that the
decision-making paths can be explained. b) Feature-based Explanation:
Piece colour represents their perceived importance to the agent’s decision
making Gupta et al. (2020). c) Temporal Explanation: Explains the agent’s
future decision-making with the numbered sequence of expected future
actions. In practice, a video of these intended moves would be shown to
the user. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Conceptual Diagram of the Chapters, Explanation Mechanisms, User
Surveys completed in this Chapter. . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Reinforcement Learning environment loop with an agent taking action
for a given observation and receiving a reward and updated observation
(along with termination status). . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Visual representation of the definition of Explainable Artificial Intelligence 11
2.3 A graph of explanation properties with example XAI algorithms. Source:

Belle and Papantonis (2021) . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Outline of the motivations of different types of audiences in XAI. Source:

Belle and Papantonis (2021) . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 A saliency map where the purple areas show the points that most influ-
ence the policy of the agent. Source: Greydanus et al. (2018) . . . . . . . 25

3.2 An example of LIME for an image of a dog playing the guitar in the image
and the top 3 classes for the Google Inception v3 model. Source: Ribeiro
et al. (2016a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Shows how the rule-based and learner models use input data to generate
explanations. Source: Wang et al. (2020) . . . . . . . . . . . . . . . . . . . 28

3.4 Directed Acyclic graph for the causal model is used to generate explana-
tions. Source: Madumal et al. (2020a) . . . . . . . . . . . . . . . . . . . . . 30

3.5 a. MDP diagram: the relationship between states and actions. b. SMDP
diagram: Edge colours represent different skills. c. AMDP diagram:
colours represent the clusters of the aggregated states. d. SAMDP di-
agram: colour clusters found after transforming the state space with
dashed arrows for explaining skills and red arrows showing the overall
policy. Source: Zahavy et al. (2016) . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Example skill network for Atari Breakout using hand-labelled skills. . . 44
4.2 Example individual question shown to the user. . . . . . . . . . . . . . . 48
4.3 Example contrastive question shown to the user. . . . . . . . . . . . . . . 49
4.4 Box plot of the user ratings of each explanation mechanism and question

as part of the individual evaluation section in the user survey. . . . . . . 50



viii List of Figures

4.5 A boxplot of prior environment knowledge and per environment expla-
nation ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 Heatmap for each statement of the user preference for each explanation
mechanism. Grid elements are the percentage of users who explicitly
prefer the row explanation mechanism over the column explanation mech-
anism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.7 A stacked histogram of per-user variance in the Explanation type ratings. 53
4.8 The skill alignment of two sets of skills for the hand-labelled and algorithmically-

labelled trajectories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.9 A stacked histogram of skill lengths of hand-labelled and algorithmically

discovered skills. The skill lengths were clipped to 70. . . . . . . . . . . . 55

5.1 Example Gridworld with an agent and two paths (up and down) that
contain different rewards. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Interquantile mean training curves for Atari TRD-DQN agents for three
environments (Breakout, Space Invaders, and Ms Pacman) with three
repeats, normalised by the teacher’s score. Offline and Online indicate
where training used the offline replay buffer and the online environment
steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 The Mean Squared Error between the student (TRD agent) and pretrained
teacher agent averaged over three Atari environments with three repeats.
Offline and Online indicate where training used the offline replay buffer
and the online environment steps. . . . . . . . . . . . . . . . . . . . . . . 65

5.4 A Space Invaders observation (left) with the respective predicted next 40
future expected rewards (right) . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5 A Breakout observation (left) with the respective predicted next 40 future
expected rewards (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.6 A Ms. Pac-man observation (left) with the respective predicted next 40
future expected rewards (right) . . . . . . . . . . . . . . . . . . . . . . . . 67

5.7 A Seaquest observation (left) with the respective predicted next 40 future
expected rewards (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.8 GradCAM saliency maps for the t + 1 and t + 40 expected reward along
with their difference for a Breakout observation. . . . . . . . . . . . . . . 69

5.9 The difference of each future expected reward for taking Fire and Noop
actions of the observation for the Atari Seaquest environment. . . . . . . 70

5.10 The difference of each future expected reward for taking Left and Right
actions of the observation for the Atari Riverraid environment. . . . . . . 71

6.1 Flowchart of the Goal Identification Task . . . . . . . . . . . . . . . . . . 82
6.2 Ms Pacman with the different reward sources labelled . . . . . . . . . . . 83
6.3 Flowchart of the comparative user evaluation. Blue boxes represent user

questions, and the orange boxes represent information given to the user. 85
6.4 The number of users who got each possible number of correct answers

for each explanation mechanism. . . . . . . . . . . . . . . . . . . . . . . . 88
6.5 A bar chart for each explanation mechanism with the accuracy of the

explanation mechanism across each agent goal. Each bar’s accuracy is
averaged across 100 answers from users. The dotted line is 25%, the
expected accuracy for random guesses. . . . . . . . . . . . . . . . . . . . 89



List of Figures ix

6.6 Confusion matrix for the number of times the predicted and true agent
goal for each explanation mechanism occurs, where the rows are the
actual agent goal and the column is the predicted. Correct answers are
found on the top left to bottom right diagonal. Each row will sum to 100
as the 20 observations are each evaluated five times. . . . . . . . . . . . . 90

6.7 A histogram of the time taken for each explanation mechanism. The time
taken is clipped at 60 seconds. . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.8 A scatter plot of each user’s cumulative time taken against their accuracy
across all questions, with the red line being a plot of the linear regression.
Individual question time taken is clipped at 60 seconds. The dashed line
is at 25%, representing the expected accuracy if users are selected randomly. 94

6.9 Barchart of the average accuracy (in blue) and a line plot of the time taken
(in orange) for an ordinal question. . . . . . . . . . . . . . . . . . . . . . . 95

6.10 Bar chart of user accuracy with their selected confidence. Very uncon-
fident and unconfident are grouped as (very) unconfident, and very
confident and confident are grouped as (very) confident. The dashed line
represents the expected accuracy with random guesses. . . . . . . . . . . 97

6.11 Scatter plot of each user’s average accuracy and confidence for all expla-
nation mechanisms. For the user average confidence, we discretise to
Very Unconfident=1, Unconfident=2, Neutral=3, Confident=4, and Very
Confident=5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.12 Histogram of the number of times on the left and the accuracy for each
explanation mechanism, confidence, ease of identification, or understand-
ing is selected by users. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Appendix A.1 The number of papers published each year from 2010 to 2024
that include “Explainable Artificial Intelligence” or “Explainable Rein-
forcement Learning”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Appendix B.1 A comparison of the saliency map explanations, Grad-CAM
and Perturbation-based saliency map for DQN and Rainbow agents for
the three testing environments: Breakout, Space Invaders and Seaquest. 129

Appendix B.2 A comparison of the target DQN neural network layer on the
Grad-CAM explanation for the three testing environments: Breakout,
Space Invaders and Seaquest. . . . . . . . . . . . . . . . . . . . . . . . . . 130

Appendix B.3 A hyperparameter search for the perturbation spacing of 2, 4, 5,
and 8 across three testing observations for the Breakout, Space Invaders
and Seaquest environments. . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Appendix D.1 Example implementation of the TRD Q-value loss function . . 135

Appendix F.1 Consent Page of the comparative user evaluation . . . . . . . 139
Appendix F.2 Submission of User Prior Knowledge in Artificial Intelligence

and Ms Pacman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Appendix F.3 Strategy Identification Outline to Users and Comprehension

testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Appendix F.4 Dataset Similarity Explanation description and comprehension

testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Appendix F.5 Strategy Identification question for the Dataset Similarity Ex-

planation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142



x List of Figures

Appendix F.6 SARFA description and comprehension testing . . . . . . . . . 143
Appendix F.7 Strategy Identification question for the SARFA Explanation . 144
Appendix F.8 TRD Summarisation description and comprehension testing . 145
Appendix F.9 Strategy Identification question for the TRD Summarisation

Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Appendix F.10 Optimal Action Description description and comprehension

testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Appendix F.11 Strategy Identification question for the Optimal Action De-

scription Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Appendix F.12 Overall User Rating of an Explanation Mechanism . . . . . . 148
Appendix F.13 Submission of User Information . . . . . . . . . . . . . . . . . 150

Appendix G.1 An ordered bar chart of Figure 6.6 where the orange bars are
the correct answers (diagonal data from the confusion matrix) and the
blue bars are the incorrect answers. . . . . . . . . . . . . . . . . . . . . . . 151

Appendix G.2 Cumulative density function for each explanation mechanism
and the time taken to answer each strategy identification question, split
by whether users get the answer correct or not. . . . . . . . . . . . . . . . 152

Appendix G.3 The average user accuracy for each observation, irrespective of
the explanation mechanism or strategy. . . . . . . . . . . . . . . . . . . . 152

Appendix G.4 A Swarm plot of each user characteristic with a dot for each
user and their accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Appendix G.5 Scatterplot of the number of correct answers and user self-
reported beliefs for each explanation mechanism with the sizes being
proportional to the number of instances of each permutation. . . . . . . . 155



xi

List of Tables

3.1 Table of XRL techniques comparing their explanation classes, testing en-
vironment, and if they used a human study to evaluate their explanations. 22

6.1 Table of example observations and future expected rewards with the out-
puts for three different prompts: zero-knowledge, environment knowl-
edge, and environment+observation knowledge . . . . . . . . . . . . . . 79

6.2 Table of Explanation Mechanisms used in the Survey with their explana-
tory medium and content. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3 Table of State Selection Algorithms with their average importance and
embedding distance of the selected observations. . . . . . . . . . . . . . . 87

6.4 Each explanation mechanism’s accuracy across all agent goals for the 100
survey participants and an expert user. . . . . . . . . . . . . . . . . . . . 88

6.5 Table of p-values for each explanation mechanism of the time taken for
correct and incorrect answers. . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.6 A Table of User Characteristics with the number of users that selected the
characteristics, the average accuracy, and the time taken (in seconds) for
each question. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.7 Table of Explanation Mechanism and user confidence with the user accu-
racy and their count in brackets. . . . . . . . . . . . . . . . . . . . . . . . 97

6.8 Average user rating for each explanation mechanism on the three overall
rating questions with the Likert Ratings discretised (1.0 for the lowest
rating and 5.0 for the highest rating). . . . . . . . . . . . . . . . . . . . . . 99

Appendix G.1 A table of characteristics coefficients for Ordinary Least Squared
Linear Regression to predict each user’s overall accuracy. . . . . . . . . . 153

Appendix G.2 Table of the number of users who answer each overall rating
Likert rating with the average accuracy of users. . . . . . . . . . . . . . . 156

Appendix G.3 Optional additional thoughts from users for each explanation
mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Appendix G.4 Optional final thoughts from users at the end of the survey. . 159





xiii

Declaration of Authorship

I declare that this thesis and the work presented in it is my own and has been generated
by me as the result of my own original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a research degree
at this University;

2. Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated;

3. Where I have consulted the published work of others, this is always clearly
attributed;

4. Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work;

5. I have acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself;

7. Parts of this work have been published as:
Mark Towers, Yali Du, Christopher Freeman, and Timothy J. Norman. Temporal
explanations of deep reinforcement learning agents. In International Workshop on
Explainable, Transparent Autonomous Agents and Multi-Agent Systems, pages 99–115.
Springer, 2024b. doi: 10.3233/FAIA240814
Mark Towers, Yali Du, Christopher Freeman, and Timothy J. Norman. Explaining
an agent’s future beliefs through temporally decomposing future reward
estimators. In ECAI 2024, pages 2790–2797. IOS Press, 2024a

Signed:.......................................................................... Date:..................





xv

Acknowledgements

I want to express my profound gratitude to my supervisors, Prof. Timothy J. Norman,
Dr. Yali Du, and Prof. Christopher Freeman, whose invaluable guidance, expertise, and
encouragement have been pivotal throughout my PhD. I am also deeply appreciative of
Mohammed Marikar and the Royal Bank of Canada for sponsoring me and showing a
keen interest in my work.

I am incredibly grateful to my family, who have helped inspire me and have been
constant supporters, particularly Maggie, our beloved cat.

To my friends in Southampton, thank you for your fun, encouragement, and support. A
special thanks to my PhD colleagues, in particular, Olaf, Tyler, and John, who’ve sat next
to me and been willing sounding boards, and to my housemates, whose companionship
brought joy and balance to my life. Last but not least, thank you to Highfield Church,
my small groups, my YTH group, and YTH team, as well as to my mentors, Niv and
David, for all your joy, prayers, and thoughtful counsel over the last seven years.

Therefore, there is now no condemnation for those who are in Christ Jesus

Romans 8:1





xvii

Definitions and Abbreviations

E[. . . ] The expected value operator
qπ(s, a) Q-value for policy, π, in state, s, and action, a, (Eq. (2.2))
sπ(s) State-value for policy, π, in state, s (Eq. (2.3))
S The set of all possible states within an MDP,

of which s ∈ S is a particular state
St, At, Rt The state, action and reward for timestep t, respectively
||x||2 Euclidean Distance of x
P||Q Kullback–Leibler (KL) divergence of P to Q equal to

∑x∈X P(x) log
(︂

P(x)
Q(x)

)︂
RL Reinforcement Learning
DRL Deep Reinforcement Learning
XRL Explainable Reinforcement Learning
MDP Markov Decision Process (Puterman, 2014)
DQN Deep Q-learning (Mnih et al., 2015)
Rainbow Combination of DQN extensions and improvements

(Hessel et al., 2018)
ALE Arcade Learning Environment, a.k.a., Atari (Bellemare et al., 2013)
Goal The objective that an agent is attempting to complete to maximise

its rewards
Belief An state, reward or goal that the agent has confidence (can be low or high) will occur in the future
DSE Dataset Similarity Explanation (Section 4.1.1)
SE Skill Explanation (Section 4.1.2)
PE Plan Explanation (Section 4.1.3)
t-SNE t-distributed Stochastic Neighbour Embedding

(Van der Maaten and Hinton, 2008)
KMeans Algorithm proposed in MacQueen (1967)
Smith-Waterman Algorithm proposed in Smith and Waterman (1981)
Likert Rating Rating methodology proposed in Likert (1932)
GradCAM Gradient-weighted Class Activation Mapping (Selvaraju et al., 2017)
PBSM Perturbation-based Saliency Map (Greydanus et al., 2018)
TRD Temporal Reward Decomposition



xviii Definitions and Abbreviations

QDagger Algorithm proposed in Agarwal et al. (2022)
N-Step Multi-step update (Sutton and Barto, 2018)
LoE Linearity of Expectation (Stirzaker, 2003, Page 166)
LLM Large Language Model
OAD Optimal Action Description
SARFA Specific and Relevant Feature Attribution (Gupta et al., 2020)



1

Chapter 1

Introduction

In 2016, AlphaGo (Silver et al., 2016), an advanced neural network-based Reinforcement
Learning (RL) agent, played against Lee Sedol, a former world champion, on the board
game Go, and won. This was the first time a computer had defeated a professional Go
player, winning four out of five games. However, interestingly, in the fourth game,
AlphaGo lost decisively. As shown in a behind-the-scenes documentary (Kohs, 2017) on
move 79, its internal evaluation determined it had a 70% chance of winning, but by
move 141, AlphaGo resigned, believing it had less than a 20% chance of victory. Despite
AlphaGo’s strong performance, decisively winning the first three games and believing it
had an advantageous position, AlphaGo was still flawed and lost.

Although the loss was relatively trivial, with little at stake other than the player’s pride
and prize money, the existence of such flaws in agents is a critical problem that
researchers, industry, and regulators must address if we do not want AI to go wrong in
the real world with possibly more dire consequences. With RL having been proven in
video games and simulations, i.e., virtual world (Mnih et al., 2015; Schulman et al.,
2017), academia and industry have begun working on applying agents to the real world
(Degrave et al., 2022; Ahn et al., 2024). Importantly, this shift in the deployment domain
will result in agents possibly needing to interact with humans, operate in high-risk
settings, etc (Dulac-Arnold et al., 2021) has significantly raised the importance and
interest of research minimising or even eliminating delusions, like in AlphaGo, from
agent behaviour.

This recognition that delusions, also called hallucinations, can occur in critical settings
for a variety of complex problems has promoted a surge in research around safe and
explainable artificial intelligence (AI). Deep neural networks have been the main subject
of research, being the state-of-the-art solution for a large number of problems: image
recognition (He et al., 2016), text generation (Brown et al., 2020), and playing games
(Mnih et al., 2015). Both these subfields (safe and explainable AI) have similar goals of
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building trust with humans through preventing catastrophic failures and providing the
reasons for a particular output, respectively.

In this thesis, we explore explainable artificial intelligence (XAI) in temporal games, as
although safe AI aims to prevent dangerous decisions, providing initial trust for a
system, this may not be enough for humans to fully trust an agent if they cannot
understand how particular decisions are reached even if they know an action will be
safe. This is specifically critical for neural networks, where their behaviour cannot be
verified for all inputs due to their parametric nature.

For supervised learning, e.g., image recognition and text generation, a large body of
research exists investigating how and why machine learning models generate particular
outputs (Belle and Papantonis, 2021). However, a significantly more limited body of
research has extended explanations to Reinforcement Learning (Sutton and Barto, 2018),
a subfield of machine learning in which an agent takes sequential actions over time,
learning to maximise its reward over time. This subfield of Explainable Reinforcement
Learning (XRL) is important as (Agogino et al., 2019) found that while applying a range
of supervised learning XAI algorithms to RL agents could provide “simple insights”,
they struggled to find “good intuitive explanations”. This highlights the need for
specialised XAI algorithms for RL agents.

Within the existing XRL literature, algorithms may be categorised into several groups
(Qing et al., 2022); for example, but not limited to feature-based, policy-based, and
contrastive explanations. Each attempt to explain different elements of an agent, e.g.,
feature-based explanations focus on the importance of each object in an observation;
policy-based explanations consider the agent’s decision-making as symbolic logic; and
those that are contrastive explain why one action was taken over another. A more
comprehensive survey of XRL research is provided in Section 3.2.

b) Feature-based Explanation c) Temporal Explanationa) Policy-based Explanation

FIGURE 1.1: a) Policy-based Explanation: An interpretable decision tree such that
the decision-making paths can be explained. b) Feature-based Explanation: Piece
colour represents their perceived importance to the agent’s decision making Gupta et al.
(2020). c) Temporal Explanation: Explains the agent’s future decision-making with the
numbered sequence of expected future actions. In practice, a video of these intended

moves would be shown to the user.
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In this thesis, within XRL, we investigate temporal explanations, a distinct type of
explanation that has received far less attention to date. Temporal explanations focus on
the future intentions/purposes of the agent policy, i.e., the future goals, rewards, or
actions that the agent wishes to achieve or see. Figure 1.1 illustrates an example
temporal explanation, along with policy and feature-based explanations for a given
chess position. The reason we focus on explaining an agent’s future considerations is
twofold.

First, the nature of sequential decision-making in RL means that agents take a sequence
of actions to achieve a goal or objective with a reward for each decision, which implies
that agents think temporally. This differs significantly from supervised learning, where
models learn a correct answer in a single decision.1 RL agents learn policies that
maximise their total reward over a whole episode. So, when selecting an action, despite
this being for an isolated timestep, an agent’s decision-making must implicitly consider
its future impact, most obviously, on future rewards. Therefore, for explanation
mechanisms to fully explain an agent’s decision-making, they should explain these
future considerations, i.e., potential (sub)goals, future rewards, or actions. As a result,
we argue that temporal explanation offers a more complete picture of an agent’s
decision-making, uncovering not just the what and the why of the agent’s current
decision (for which feature and policy-based explanations focus) but also the
anticipated implications of an action for future observations, actions, rewards, or goals.

Secondly, psychological surveys of human explanatory mechanisms have found that
temporal explanations are one of the most common types, along with feature and
action-based explanations (Miller, 2019; Madumal et al., 2020a). Therefore, as
explanations are ultimately for human consumption, we should mirror how people
explain decisions for RL agents. This ensures that generated explanations are
scientifically accurate and intuitively relatable to the human user.

Taken together, the implicit decision-making of RL agents and common explanation
structures utilised by humans provide strong justification for investigating temporal
explanations for RL. Despite this, surveying the XRL literature, we find that temporal
explanations are a significantly underdeveloped type of mechanism (Section 3.2).
Therefore, for the rest of this thesis, we developed several novel temporal explanation
mechanisms that explain an agent’s future considerations (Sections 4.1, 5.3, and 6.1) and
evaluate if users find these explanations effective (Sections 4.3 and 6.3).

1Text generation is a possible exception where models sequentially generate words (tokens) to answer
an input in Pretrain. Though the more recent paradigm of RLVR (reinforcement learning through verifiable
rewards) for post-training encourages more temporally aware thinking (DeepSeek-AI et al., 2025). See
Chapter 7 for a discussion on applying temporal explanations to large language models.
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1.1 Thesis Contributions and Structure

Across the next six chapters of this thesis, we outline the background knowledge of RL
and XAI, a literature survey of XRL approaches, followed by three research chapters
developing novel temporal explanation mechanisms and evaluation methodologies,
ending with future work that can build upon the work presented. We summarise their
content and contributions below. Two chapters have been peer-reviewed and published.

Chapter 2 sets out background information for the rest of the thesis, including the
mathematical notation for describing RL, training algorithms for RL agents with neural
networks, and descriptions of explainability attributes used in the literature review and
the explanation mechanisms we develop.

In Chapter 3, we first outline the unique set of challenges in XRL that XAI algorithms
for supervised learning problems do not address (Section 3.1). Using the properties of
the explanation mechanism in Section 2.3, we review the literature on XRL,
summarising the surveyed algorithms in Table 3.1 with their respective mechanism
properties, testing environment, and whether a user survey was conducted. In addition,
we provide a detailed overview for a subset of these mechanisms, in particular, saliency
map approaches, natural language explanations, temporal explanations, and reward
explanations in Sections 3.2.1 to 3.2.4. Following this, Section 3.3 reviews the evaluation
approaches of the different user surveys listed in Table 6.2. Finally, we discuss the
recurring strengths and weaknesses of the surveyed XRL algorithms, particularly
temporal explanations (Section 3.4).

Surveying prior temporal explanations found that most required extensive domain
knowledge. Therefore, in Chapter 4, we research temporal explanations with no or
limited domain knowledge of the environment2 through video-based explanations (one
of the first to use as the primary explanation medium). We propose three novel
explanation mechanisms; the first two use a memory of prior agent behaviour to extract
similar contexts or skills to explain an agent’s possible future decision paths (Sections
4.1.1 and 4.1.2 referred to as Dataset Similarity Explanation and Skill Explanation). The
third novel explanation utilises minimal domain knowledge of an agent’s skills to
annotate the Skill Explanation’s video (Section 4.1.3 referred to as the Plan Explanation).
In Section 4.3.1, we conduct and analyse a human survey with our three novel
video-based temporal explanations along with two feature-based explanation
mechanisms (Selvaraju et al., 2017; Greydanus et al., 2018), asking users about their
understanding, details, satisfaction with the explanations, and predictability of the
agent’s next action. We found that our explanations were rated on average 1 point

2We don’t assume any knowledge of an environment, including environment dynamics, reward func-
tion structures, etc, commonly used in utilised-based MDP-style environment. Rather, we assume the
environment is a POMDP (Partially Observable Markov Decision Process) with a human-comprehensible
rendering of its current state.
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higher (rated from 1 to 5) than the feature-based explanations when individually rated.
When compared directly to each other, our explanations were preferred 80.7% of the
time compared to the feature-based explanations. Furthermore, we propose two novel
metrics for evaluating agent skills in Section 4.2 and evaluate them in Section 4.3.2. In
summary, we show that our simplistic video-based temporal explanations are effective
compared to feature-based algorithms, even without specialist domain knowledge.
Chapter 4 was accepted for presentation at the AAMAS EXTRAAMAS workshop 6th
edition and published as part of Springer Lecture Notes of Artificial Intelligence
conference proceedings under the title “Temporal Explanations of Deep Reinforcement
Learning Agents” (Towers et al., 2024b).

In Chapter 5, motivated by the need to extract implicit temporal beliefs from pre-trained
models, which can be challenging to validate. We explore an alternative direction within
temporal explanations to investigate how an agent’s training can be modified to learn
explicit temporal features that can be explained. We novelly identify that the Q-value, a
sum of the expected future rewards, implicitly encodes the agent’s future expectations;
however, as a scalar value, it isn’t interpretable. Therefore, in Section 5.1, for the first
time, we show that the Q-value can be decomposed as a vector of the next N expected
reward (Eq. (5.6)), referred to as Temporal Reward Decomposition (TRD). We prove Eq.
(5.6) equivalence to the standard scalar Q-value (Theorem 5.1 and Eq. (5.7)) and propose
a necessary novel loss function (Eq. (5.14)) to learn it. To test the scalability of TRD, in
Section 5.2, we demonstrate that pre-trained Atari agents can be efficiently retrained to
incorporate TRD, matching a standard DQN agent’s performance in two million steps
for a variety of TRD hyperparameters. To explain an agent’s next N expected rewards,
we propose three methods: visualising the future expected rewards, understanding the
temporal importance of observation features, and a contrastive visualisation of the
impact of actions on future rewards (Sections 5.3.1, 5.3.2, and 5.3.3). Each of these
explainability methods highlights novel information about the agent’s decision-making
process, inaccessible through prior approaches. Chapter 5 was accepted for presentation
and publication at ECAI (European Conference on Artificial Intelligence) 2024, under
the same chapter title, (Towers et al., 2024a). In addition, we gave an invited talk at the
TSDO (Trustworthy Sequential Decision-Making and Optimization) workshop and
completed an outreach activity for the general public and academics at the conference.

With our emphasis on the importance of user evaluations throughout this thesis, in
Chapter 6, we propose a novel evaluation methodology based on the user’s debugging
agent strategies. Before the evaluation, to improve TRD’s perceived interpretability for
end-users, we propose a natural language summarisation technique using large
language models to help explain TRD’s visualisation graphs, reducing the need for
technical knowledge to interpret Chapter 5’s explanations (Section 6.1). We explore
various prompts, from just technical information on what the future expected rewards
represent to multi-modal prompts containing the agent’s observation and a reward
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FIGURE 1.2: Conceptual Diagram of the Chapters, Explanation Mechanisms, User
Surveys completed in this Chapter.

function summary, finding that each could accurately summarise an agent’s next
rewards. For the evaluation, we propose a novel methodology where users identify an
agent’s goal given an observation, explanation, and several options. This provides an
objective measure of an explanation mechanism’s actionability on a task closely related
to debugging an agent’s policy. We additionally ask users for their confidence in each
selection, the explanation mechanisms’ overall ease of use, understanding, and
confidence using a five-point Likert rating (Likert, 1932). This provides a mixture of
objective and subjective measures of each explanation mechanism that can be compared
and analysed. For this survey, we compare four algorithms: Dataset Similarity
Explanation (Section 4.1.1), TRD Summarisation (Section 6.1), Specific and Relevant
Feature Attribution (Gupta et al., 2020), and a description of the optimal action. We find
our temporal explanations had the highest average accuracy of 53.0% and 34.9% for
Dataset Similarity Explanation and TRD Summarisation, respectively. At the same time,
the two baselines achieved accuracy very close to random (25%), 28.7% and 22.5% for
Optimal Action Description and SARFA, respectively. We additionally investigate
correlations between the explanation’s accuracy and the user’s confidence, time taken to
answer, and characteristics, finding weak or no correlation between most of them.

Finally, in Chapter 7, we summarise this thesis, reflecting on the research conducted.
For future work, we highlight three novel directions for Temporal Reward
Decomposition, presented in Chapter 5 and expanded on in Chapter 6, addressing
limitations and future algorithmic applications. Finally, we identify further research
required in XRL to capitalise on the work presented in this thesis.
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Chapter 2

Background

This chapter outlines background information utilised throughout the thesis with
Section 2.1 discussing reinforcement learning’s (RL) mathematical notation, Section 2.2
introducing training RL agents using neural networks, and Section 2.3 summarising
terminology for describing explanation mechanisms.

2.1 Reinforcement Learning Mathematics

Sequential decision-making problems can often be described using Figure 2.1 (Sutton
and Barto, 2018); given an environment’s state St at timestep t, an agent selects an
action, At, with the environment providing the resultant reward, Rt+1 and subsequent
state St+1 at timestep t + 1. This process loops either forever or until a termination state
is reached. Importantly, the agent’s goal is to select actions that maximise its cumulative
reward over time, ∑t=0 Rt. In this section, we outline the mathematical notation used to
describe environments and how optimal agents can be learnt through trial and error,
interacting with the environment.

FIGURE 2.1: Reinforcement Learning environment loop with an agent taking action
for a given observation and receiving a reward and updated observation (along with

termination status).
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For reinforcement learning environments, Markov Decision Process (MDP, Puterman
(2014)) provides a mathematical description using two variables, S and A, and three
functions, R, P, and T. The variable S denotes the set of all possible environment states
on which the agent makes decisions, and A denotes the set of all possible actions the
agent could take in the environment. The function R is the environment’s reward
function, R(s, a) → R, such that for a given state-action pair (s, a), the function returns
the resultant scalar reward. When taking an action, the next state is not always
deterministic; P(s′|s, a) is the transition function computing the probability of the next
state, s′, given the prior state and action (s, a). Finally, environments are often designed
for agents to reach a given goal, where the environment loop will end, referred to as a
goal state. Not shown in Figure 2.1, T(s) prescribes the termination condition on which
the agent has reached a goal (or failure) state, and the environment loop ends.

For simplicity, following Sutton and Barto (2018), we denote St, At and Rt as the state,
action and reward received for timestep t. Additionally, to practically implement the
environment, train and evaluate agents on MDP environments, we utilise Gymnasium
(Towers et al., 2024c), a maintained version of the OpenAI Gym library (Brockman et al.,
2016) which implements a number of popular benchmark environments such as
CartPole and supports the Arcade Learning Environments (Bellemare et al., 2013), more
commonly known as the Atari environments.

For an agent, we wish them to learn a policy, π(S) → A, mapping observations to
actions that maximise its cumulative rewards over an episode. Furthermore, to
incentivise the policy to collect rewards sooner, we apply an exponential discount factor
(γ ∈ [0, 1)). For a policy π, this expected sum of future rewards may be defined in terms
of the q-values, qπ(s, a) or the state-value, vπ(s) that predicts for a given state-action
(s, a) or given state s only (Eqs. (2.2) and (2.3) respectively). These functions model the
expected (mean) sum of discounted future reward as the environment and/or policy
might be stochastic.

qπ(s, a) = Eπ

[︂
Rt + γRt+1 + · · ·+ γnRt+n|St = s, At = a

]︂
(2.1)

= Eπ

[︂ ∞

∑
n=0

γnRt+n|St = s, At = a
]︂

(2.2)

vπ(s) = Eπ

[︂ ∞

∑
n=0

γnRt+n|St = s
]︂

(2.3)

Importantly, the q-value and state-value can be reformulated as recursive functions
using the discounted next state (Eqs. (2.4) and (2.5)). For the Q-value, we assume that
the optimal action is taken, which is the maximum Q-value for the set of possible
actions in the next state.
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qπ(s, a) = Eπ[Rt + γ max
a′∈A

qπ(St+1, a′)|St = s, At = a] (2.4)

vπ(s) = Eπ[Rt + γvπ(St+1)|St = s] (2.5)

Using the recursive nature of the functions, a bootstrapping-based approach is
commonly utilised to learn the optimal policy minimising the error between predicted
future rewards, qπ(s, a) for a given state-action (s, a) and the actual future reward, r,
plus the maximum expected future rewards of the next state, maxa′∈Aqπ(s′, a′) (Eq.
(2.6)). This recursive function is called the Bellman Equation, where α is a learning rate
to control how much qπ is adjusted for each update (Bellman, 1954).

qπ(s, a) = qπ(s, a) + α(r + γ max
a′∈A

qπ(s′, a′)− qπ(s, a)) (2.6)

It was later proved, using the MDP notation and under certain initial conditions, that
Eq. (2.6) will converge to the optimal policy, π∗, given an infinite number of steps
(Watkins and Dayan, 1992). To learn qπ required a large table of state-action pairs, with
the table being iteratively updated until it converged. However, for practical
applications, this posed significant limitations for the observation and action spaces,
such that observation and actions are discretised, and the environment is tractable (all
state-actions are known). As a result, neural networks have become the de facto method
to encode qπ in modern RL.

2.2 Deep Reinforcement Learning

With the limitations of tabular RL approaches outlined above, researchers investigated
numerous alternative methods, with neural networks becoming the dominant approach.
Mnih et al. (2015) was the first general RL algorithm, called Deep Q Learning (DQN),
that achieved superhuman results without changing any hyperparameters in the
Arcade Learning Environment (Bellemare et al., 2013), 60+ ROMs for the Atari 2600
console colloquially referred to as Atari environments. DQN forms the basis of all
agents explained in this thesis.

This was achieved with several important changes to the training setup compared to
Q-learning. The agent policy, previously a table of every state-action Q-value, was
replaced with a single neural network, θ, where the input is the state and the output is
the Q-values for all actions. This allowed efficient look-up for all Q-values of a state
requiring a single forward pass of a neural network and was scalable to
high-dimensional and continuous inputs, e.g., images and robotic actuators. Another
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advantage of DQN over Q-learning was the ability for the environment to be intractably
large (without the need to visit every possible state), as the neural network can
extrapolate to unseen states. Utilised an experienced replay buffer, D, originally
proposed by Lin (1992), a circular queue of a fixed length, the observations, actions, next
observations, rewards, and terminations from an environment step are stored, saving
the last n instances. For Mnih et al. (2015), this equated to 1 million samples. For each
training step, a batch of b samples is uniformly selected from this buffer to learn from.
In the case of Mnih et al. (2015), b = 32.

LQ(D) = E(s,a,R,s′)∼D

(︃
qθ(s, a)− (R + γ max

a′∈A
qθ′(s′, a′))

)︃2

(2.7)

Finally, Mnih et al. (2015) proposed a novel loss function, Eq. (2.7) with a minor change
to the Bellman equation for stability, where θ′ represents a target network. As the
bootstrap error can cause runaway values in the network, caused by a divergence in the
values of st and st+1, Mnih et al. (2015) proposed an online network, θ, that is actively
updated and a target update that is periodically updated. In the case of Mnih et al.
(2015), every 1000 training updates the target network weights are replaced by the
active network’s weights. This prevents the online network from diverging too quickly,
causing policy instability and possible collapse (van Hasselt et al., 2018).

To help minimise the training time of deep RL agents, Agarwal et al. (2022) proposed a
workflow utilising learnt policies to reuse or transfer their knowledge to new agents
called QDagger. We utilise this algorithm in Chapters 5 to show that our algorithm,
TRD, could be efficiently incorporated into previously trained agents. QDagger
proposes two changes to the training schemes of any neural network-based algorithm.
First, adding a distillation loss to the agent’s policy loss that minimises the KL
divergence between a student’s (the new agent) and a teacher’s (a pretrained agent)
policy (Eq. (2.8) where LQ(D) represents the standard loss function of the agent):

LQDagger(D) = LQ(D) + λtEs∼D

[︄
∑

a
πT(a|s) log π(a|s)

]︄
(2.8)

This encourages the new student to mimic the teacher’s expected future rewards,
regulated by λt, equal to the ratio of the teacher’s performance to the student’s
performance. This means that if the student improves upon the teacher, the student’s
policy is not constrained by the teacher. Secondly, QDagger proposes an offline training
stage using a teacher’s (pretrained agent) replay buffer. Before allowing the agent to
explore the environment for itself, Agarwal et al. (2022) rolls out the teacher’s model,
generating high-quality actions from across the observation space. Using the teacher’s
replay buffer, like a supervised learning dataset, enables the agent to approximate the
teacher’s policy, providing a head start in training. Agarwal et al. (2022) showed that
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QDagger allows student agents to match the teacher’s performance for Atari
environments with 20x fewer observations than training from scratch.

2.3 Explanation Mechanism Properties

Within the literature, researchers must select several important properties when
developing an explanation mechanism. These properties are explanation audience,
model interpretability, explanation type, explanation medium, and mechanism category
(Sections 2.3.1 to 2.3.5 respectively). Figure 2.3 links these explanation properties
together with example algorithms. Before discussing these properties, we examine the
definition of explainability that will influence our approach for the rest of this Section.

Machine 
Learning 

Model
UserUnderstanding the 

decision making process

Explainable 
Artificial 

Intelligence

Providing explanations that 
users find helpful

FIGURE 2.2: Visual representation of the definition of Explainable Artificial Intelligence

Within XAI, there is no agreed-upon definition of explainability or interpretability (Belle
and Papantonis, 2021; Puiutta and Veith, 2020), meaning that researchers can have
different aims and criteria for an effective XAI algorithm. In this work, we follow
Puiutta and Veith (2020) who defines explainability as “the ability to not only extract or
generate explanations for the decisions of the model but also to present this information
in a way that is understandable by human (non-expert) users to, ultimately, enable them
to predict a model’s behaviour”. This definition brings together two problems: first, a
model’s decision can have an explanation generated from it, and second, the
explanation must be understandable to humans, allowing users to predict future
behaviour. We believe that these two parts of the definitions are critical for explainable
and interpretable AI algorithms.

A consequence of this definition is that no “optimal” or “ideal” explanation will exist, as
for a particular agent, observation, environment, or user could cause a different
explanation to be subtly preferred or viewed as optimal. Furthermore, the way
explanations are evaluated could cause different explanations to be ranked as the most
effective. Despite the challenges that no optimal explanations exist for all situations, we
don’t believe this differs significantly from other areas of machine learning research. For
different datasets or environments in RL, training algorithms will vary in optimality,
and their effectiveness depends on the testing criteria. Therefore, like the rest of
machine learning, testing XAI across a range of users, settings, and models is an
important component to ensure that researchers can understand the general
effectiveness of an explanation.
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FIGURE 2.3: A graph of explanation properties with example XAI algorithms. Source:
Belle and Papantonis (2021)

Although this definition of explainability is logical and obvious, we show in Section 3.2
that a large number of papers in XRL have ignored the second part of this definition,
not evaluating the effectiveness of their explanations with user surveys. This is
important as Miller et al. (2017) has argued that if XAI researchers ignore user surveys,
then it is like “inmates running the asylum”. That is, if explanations are designed by
and for researchers, who often are not the target audience, the proposed algorithms may
not be effective for the target audience, i.e., end-users and regulators. It should be noted
that some XAI algorithms are designed for researchers to use in debugging models.
However, even in this case, we are unaware of user surveys utilising researchers to
show the effectiveness of a proposed explanation method.

2.3.1 Explanation Audience

When developing explanation mechanisms, knowing the audience/stakeholders, i.e.,
the users utilising the explanations, is critical to ensure an algorithm is effective. Belle
and Papantonis (2021) identifies five types of people interested in explaining a machine
learning model’s decision-making, each with their own goals and desires for an
explanation. This means that we expect explanations to differ depending on the
audience. However, in our review of the literature (Section 3.2), it’s common for work
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not explicitly to state for whom an explanation is designed. Figure 2.4 summarises
stakeholders’ motivations and primary considerations.

• Data Scientists / Academic Researchers: These stakeholders are interested in
utilising, developing, and training different machine learning algorithms to
achieve a task. Therefore, these users are more interested in understanding the
model to debug it, in particular, how the model makes decisions when the model
goes wrong. The second interest of these users is improving performance; the
ability to compare and understand the differences between models is important to
improving an algorithm, for which explanations might help.

• Business Owner: These stakeholders are primarily interested in a high-level
understanding of the model (i.e. global explanations) and how the model will
improve a business. This requires less technical and specialised explanations than
a data scientist or academic researcher.

• Model Risk: An Actuary is an important job within businesses who predict the
risk of certain events happening to ensure that stocks, insurance, etc., are correctly
risk assessed. With the increasing growth of machine learning models, we predict
that a similar role to actuaries will be required for machine learning models. Safe
Artificial Intelligence is already an active field, and we expect that XAI will be an
additional tool used to assess the risks of a model.

• Regulator: Being outside of businesses, regulators ensure that businesses follow a
set of laws or guidelines. Already in GDPR (Council of European Union, 2016),
there are guidelines on explanations for machine learning models, which we
suspect will become a more significant policy issue for governments worldwide.
We believe that the explainability or interpretability of machine learning models
will be a critical element in these decisions. Therefore, regulators are interested in
the truthfulness of explanation algorithms, and the capabilities explanations have
for preventing specific undesirable behaviour.

• Consumer: As noted in Chapter 1, machine learning models are becoming
increasingly important in our daily lives. Therefore, it is important that users who
will soon be consumers and interact with these machine-learning models trust
them. We believe that explanations are a critical way for consumers to learn to
trust machine learning models by providing users with additional information on
the model’s decision-making process. Therefore, explanations must be simple and
easy to understand; however, they must still accurately approximate the model’s
decision-making.
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FIGURE 2.4: Outline of the motivations of different types of audiences in XAI. Source:
Belle and Papantonis (2021)

2.3.2 Model Interpretability

In the way an explanation is generated, researchers have primarily explored two
separate methods of providing explanations: intrinsically explainable algorithms and
post-hoc explainable algorithms (Belle and Papantonis, 2021). These explanation
techniques differ according to the interpretability of the underlying machine-learning
algorithm.

• Intrinsically explainable model - For machine learning algorithms such as
logistic and linear regression, decision trees, rule-based learners, and Bayesian
models are referred to as intrinsically explainable as the models are often small
enough for a human to directly understand how all parts of the model work
(Lipton, 2018). Depending on the complexity of the algorithm, it is even possible
to simulate the decision process that the model takes, the highest level of
interpretability; however, this is only possible in a limited number of cases (Belle
and Papantonis, 2021). Intrinsic algorithms can be more commonly decomposed
so that the model can be divided into input, parameters, and computations with
true and complete explanations generated for each part. However, even for these
simple machine learning models, if they grow too large and contain too many
parameters or computational steps, it may not be possible to provide effective or
complete explanations for any of the inputs, parameters, or outputs to users. It
should be noted that there is disagreement on the possible interpretability of even
these small models, with Lipton (2018) arguing that such interpretability is a
“myth” due to the need for features to be hard-crafted to achieve high
performance. Although Rudin (2019) disagrees, stating that most problems can be
solved with these models for effective explanations.
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• Post-hoc explainable model - For machine learning models that use thousands,
millions, and now billions of parameters for the decision-making process, no
human could understand the model’s decision-making. Unlike intrinsically
explainable algorithms, these models, neural networks, ensemble models, and
support vector machines are not directly explainable. Therefore, these models
require post-hoc explanations where only an approximation of the
decision-making can be explained (Lipton, 2018). The advantage of these models
is due to their complexity; they can achieve higher performance on complex
problems such as image recognition (He et al., 2016), text generation (Brown et al.,
2020) and playing games (Mnih et al., 2015). However, this additional complexity
has prompted concerns that these state-of-the-art algorithms can contain implicit
biases, called algorithmic biases (Hajian et al., 2016), which are difficult to address
once found due to the number of parameters involved in computing a model’s
output.

2.3.3 Explanation Type

Given the target audience and the type of model to explain, it is critical to select what
information the explanation mechanism explains. These are split into Local and Global
explanations that differ in explaining an agent’s decision-making for a single example
and the whole agent’s decision-making for all examples, respectively.

• Local explanations explain a single input to the model. This can be done with
both intrinsically explainable models and post-hoc explainable models, most
commonly through explaining the decision-making process used by the
intrinsically explainable model and for post-hoc explainable models through
feature relevance. Local explanations are important for understanding individual
model output, particularly incorrect model output, to see where the model went
wrong in its decision-making process. We provide examples of local explanations
in Section 3.2.1, where we examine saliency map explanations.

• Global explanations explain how the model works for all possible inputs. For
intrinsically explainable models, such as rule-based learning or decision trees, this
is possible by presenting all the rules the model uses to the user. This gives the
user an explanation of the decisions made, given an input that can be investigated
and evaluated. For post-hoc explainable models, as such complete model
explanations are not possible, global explanations are often achieved through
explanation through simplification. This will reduce a black-box model to an
intrinsically explainable model that can be fully explained. However, this reduced
model can have extremely different decision-making than the original black-box
model.
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2.3.4 Mechanism Categories

Explanation mechanisms can generally be grouped based on the type of explanation
generates, we refer to these as the mechanism category. We note that this is not an
exhaustive list of categories and that some algorithms utilise multiple categories.

• Direct decision-making mechanisms use intrinsically explainable models where
complete decision-making is interpretable. These mechanisms use that
information to present the way that the model reached its output for a global or
local explanation.

• Explanation by simplification mechanisms are similar to the direct
decision-making mechanism for post hoc explainable models where the true
decision-making is too complex. These models attempt to simplify the model to
an intrinsically explainable model that approximates the true black-box model.
This approach may also be taken for models that are normally intrinsically
explainable and too large for humans to comprehend.

• Feature relevance explanation mechanisms, also known as saliency maps, are the
most common type of explanations that rank features for a model based on its
importance to the decision-making. These mechanisms can use the input data or
the model features to highlight the most relevant features when making a decision.
Primarily, this is used with local explanations; however, global explanations are
possible to highlight features that influence the model most across a dataset.

• Counterfactual mechanisms provide a local counterexample to explain why the
decision was made. This differs from the other mechanisms that present a factual
explanation of an input. These mechanisms can provide counterfactual inputs,
decision-making, features, etc, as to what would happen in a similar situation.

• Temporal explanations provide an explanation for the future considerations of
the agent’s decision-making in terms of possible states, actions, and rewards. As
explained in Chapter 1, as agents maximise their reward, they consider the future
impact of an action.

2.3.5 Explanation Medium

As explained in Section 2.3, explainability depends on a user’s understanding of the
decision-making process of a model. Therefore, given the categories of the explanation
mechanism, how this information is shown to the user is important. We group the
possible options into distinct mediums:
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• Text explanations explain concepts using natural language, similar to how
humans talk or write explanations. However, this requires prior domain
knowledge so that the explanation provides helpful and vital information for the
user.

• Visual explanations are the most popular medium for explanations that use
images or videos to convey highly complex information, often without the need
for prior domain knowledge of a system, unlike text explanations.

• Mathematical / Symbolic explanations are an uncommon explanation medium;
however, for particular audiences, e.g., data scientists and academic researchers,
mathematical explanations can provide an essential technical explanation that
textual and visual explanations cannot.

Having introduced reinforcement learning and summarised the key components and
structures used in explanation mechanisms, the next chapter focuses on the research
landscape of Explainable Reinforcement Learning.
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Chapter 3

Literature Review

Agogino et al. (2019) identified that explainable artificial intelligence (XAI) provides
“simple insights” for reinforcement learning agents, but it struggles to produce “good
intuitive explanations”.1 Therefore, in this chapter, we first examine the challenges that
XAI algorithms do not address for reinforcement learning agents, identifying five
sources of difference (Section 3.1). Next, using the properties of the explanation
mechanisms from Section 2.3, in Section 3.2, we survey the literature of Explainable
Reinforcement Learning (XRL) algorithms, summarising a wide range in Table 6.2,
listing their explanation properties, testing environment(s), and if a user survey was
completed. Of these surveyed XRL algorithms, we provide a more detailed discussion
of four mechanism types: saliency maps, natural language explanations, temporal
explanations, and reward explanations in Sections 3.2.1 to 3.2.4, respectively. Next, in
Section 3.3, for the literature that conducted user evaluations, we categorise the
evaluation measurements used and compare them. Finally, we discuss recurring
strengths and weaknesses from the literature review, particularly of temporal
explanations (Section 3.4).

3.1 Challenges in Explainable Reinforcement Learning

Reinforcement Learning (RL) focuses on learning a sequence of actions that maximise
an agent’s total rewards over time. In contrast, supervised learning, an alternative field
within machine learning, trains a model to learn labelled data where the correct
input-output pair is known. RL, therefore, differs in two forms from supervised
learning: time as an agent takes a sequence of actions and uses trial and error to learn
rather than with a set of known right and wrong input/outputs. This distinction

1We reserve the term XAI to solely refer to explanation mechanisms designed primarily or initially
for supervised learning models to help differentiate those algorithms from XRL which for explanation
mechanisms are primarily or initially designed for reinforcement learning agents.
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between RL and supervised learning propagates into a model’s decision-making and,
more importantly for this thesis, the type of explanations that could be generated. We
outline several unique features of RL, not contained within supervised learning, that
necessitate novel XRL algorithms:

• Sequential Decision-Making: For humans, explaining their decision-making in
Chess compared to identifying if a cat is in a photo can produce vastly different
explanations. One of these ways is rationalising the future impact of an action, a
unique axis to their thinking compared to image classification (and all supervised
learning), where no such future decision-making is necessary. As a result,
applying XAI algorithms to RL is feasible but will implicitly miss out on the
sequential/temporal nature of an agent’s decision-making. Therefore, some XRL
algorithms are designed to explain an agent’s future/sequential decision-making,
such as future rewards, actions, or goals, which we generally classify as temporal
explanations.

• Temporal Scale: The reason for taking an action may have multiple valid
explanations depending on the future scope examined. For example, in Chess, an
explanation for a move could be: “This move captures an enemy rook”, or “I
remove the rook that was defending the enemy king to attack it in the future” or
“This helps to set up a checkmating attack on the enemy king to win”. All three
explanations could be valid for the same Chess position; however, they are valid
considering different time scales (i.e., how far in the future do we consider the
effects of an action?). Thus, different XRL algorithms can range from focusing on
an agent’s decision-making in the near term, e.g., the impact of the next action, to
the long-term impact, e.g., how an action helps achieve the agent’s overall goal.
Though linked to an agent’s sequential decision-making, the challenge of how far
to explain an action in the future is a unique challenge for algorithms to solve.

• Multi-agent: In situations with other agents, humans commonly explain how
their actions might be prevented by competing agents or how to collaborate with
another agent to achieve a common goal. For example, a chess player might
explain that they “retreat my queen to prevent the opponent’s rook from
capturing it”. Interacting with other agents is a unique feature of agent systems,
requiring at least an implicit theory of mind for the other agents to understand
their decision-making and how it might affect an agent’s behaviour. Though not
exclusive to RL anymore, with agentic systems being built with Large Language
Models (Sypherd and Belle, 2024), multi-agent systems require novel explanation
mechanisms from those traditionally built for XAI. Additionally, depending on
whether agents are acting in cooperative, competitive or mixed
cooperative-competitive environments would require the design of novel
explanation algorithms.
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• Partially-observable environments: For some environments, agents have
incomplete or imperfect information about the environment; e.g. in Poker (Brown
and Sandholm, 2019) agents are unaware of the opponent’s cards, and in Starcraft
2 (Vinyals et al., 2019), the agent can only observe a small region of the
environment at a time. These environments are formally referred to as Partially
Observable Markov Decision Processes (POMDPs), which contain a large class of
environments, including many real-world problems. Unlike supervised learning,
where the model might similarly have to rationalise from incomplete data, in
sequential systems, this incomplete information can change over time, appearing
and disappearing, or can be partially inferred from other agent’s behaviour. Thus,
specialist XRL algorithms should be designed to explicitly account for agent
behaviour where there is incomplete data from their observations.

• Evaluation: RL’s temporal (sequential) nature poses difficulties in evaluating the
effectiveness of explanation mechanisms. This is compared to supervised learning,
where a given input will have a known (singular) true output that is expected.
From this, using an explanation, an XAI algorithm’s effectiveness can be
measured through users’ understanding or capability to reach the same output. In
contrast, RL has no true outputs in the same sense but rather a range of decisions
that lead to varying outcomes. This poses more options for what an explanation
explains and is thus measured. See Gyevnar and Towers (2025) for a larger
discussion on possible objective measurements for XRL, of which a few are
discussed in Section 3.3.

It should be noted that it is feasible for all these unique challenges to be present in an
environment, e.g., an automated driving agent where a car must drive to a location
considering other drivers and pedestrians, in which an area of observation might be
blocked by other cars. As a result of these unique challenges for XRL, a variety of
algorithms have been designed, and we outline a selection in the next section.

3.2 Explainable Reinforcement Learning Survey

In this section, we present table 3.1, a non-exhaustive list of XRL algorithms containing
a short description of the explanation mechanism, what environments the algorithm
was tested on and whether a human evaluation was conducted. From this table, in
Sections 3.2.1 to 3.2.4, we summarise several key explanation types related to novel
work presented or that are utilised as a comparison in this thesis: saliency maps, natural
language explanations, temporal explanations and reward explanations, respectively.
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TABLE 3.1: Table of XRL techniques comparing their explanation classes, testing envi-
ronment, and if they used a human study to evaluate their explanations.

Paper Explanation Mechanism
Properties

Testing Environment User
Survey

Bewley and
Lawry (2021)

Direct Decision Making with
Image / Logic explanations

Toy ✗

Coppens et al.
(2019)

Visual explanations and expla-
nation through simplification

Supermario Bro ✗

Costa et al. (2024) Intrinsically interpretable de-
cision tree

Cartpole, Mountain
Car, Lunar Lander
and Crop Manage-
ment

✗

Cruz et al. (2019) Text explanation using feature
relevant data

Bounded and un-
bounded Gridworld

✗

Cruz et al. (2021) Probabilistic-success of obser-
vation explanation

Deterministic and
stochastic navigation
task, and continuous
visual sorting task

✗

Déletang et al.
(2021)

Counterfactuals and domain
knowledge

Gridworld ✗

Deproost et al.
(2024)

Generic Programming for
symbolic policy encoding

Toy ✗

Dodson et al.
(2011)

Direct Decision Making and
Text explanation

Recommendation Sys-
tem

✗

Gottesman et al.
(2020)

Identify observations with the
greatest influence on kernel
and linear least square Q-
value estimator

Intensive Care Unit
dataset

✓

Greydanus et al.
(2018)

Visual explanation (saliency
map)

Breakout ✓

Grupen et al.
(2022)

Intrinsically interpretable,
concept-based policies

Meltingpot ✗

Guo et al. (2021) Temporal explanation Mujoco and Atari ✗

Gupta et al. (2020) Saliency Map Chess, Go ✓

Gyevnar et al.
(2022)

Causal explanation with text Carla Driving Simula-
tor

✗

Gyevnar et al.
(2024)

Counterfactual simulation
with text

IPG2 (Top-Down
Driving Simulator)

✓

Hayes and Shah
(2017)

Text explanation Gridworld, Cart-pole,
Inspection task

✗
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He et al. (2020) Feature relevant explanations UAV autonomous
navigation

✗

Hein et al. (2017) Explanation through simplifi-
cation

Mountain Car, Cart-
pole balance and
swing up

✗

Huber et al.
(2021)

Strategy summarisation with
saliency maps

Pacman ✓

Huber et al.
(2023)

Counterfactual Observations Pacman ✓

Iyer et al. (2018) Object Identification Saliency
Map

Pacman ✓

Juozapaitis et al.
(2019)

Feature relevant explanation
for the output

Cliff world and Lunar
Lander

✗

Kenny et al.
(2023)

Task and example-based ex-
planation

Car Racing ✓

Liu et al. (2018) Two feature relevant expla-
nations and an explanation
through simplification

Mountain Car, Cart-
pole and Flappy Bird

✗

Lu et al. (2023) Reward Decomposition with
LLM summarisation

Robotics hand grab-
ber

✗

Lu et al. (2024) Causal model of rewards Gopher and Ms. Pac-
man

✗

Lyu et al. (2019) Direct decision making with
symbolic explanations

Toy and Montezuma’s
Revenue

✗

Madumal et al.
(2020a)

Text explanations with coun-
terfactuals

Starcraft 2 ✓

Mahmud et al.
(2024)

Sequential Feature Attribu-
tion

Autonomous Driving ✗

Pan et al. (2020) Imitation learning based local
and global feature-based ex-
planations

Real-world Traffic
data

✗

Ragodos et al.
(2022)

Explain prototypical be-
haviour in situations

Supermario Bros ✗

Silva et al. (2019) Intrinsically interpretable De-
cision tree

CartPole, Lunar Lan-
der, Wildfire Tracking
and Starcraft 2

✓

Sequeira et al.
(2019)

Text explanation with feature
relevant data

Frogger ✓

Septon et al.
(2023)

Strategy summarisation with
reward decomposition

Highway simulator
and Pacman

✓
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Terra et al. (2022) Feature-based and reward de-
composition with contrastive
explanations

Telecom-antenna-tilt
task, CartPole and
Lunar Lander

✗

Topin and Veloso
(2019)

Explanation through simplifi-
cation

Gridworld ✗

Tsuchiya et al.
(2023)

State transition Q-value De-
composition

Electricity Grid Simu-
lator

✗

van der Waa et al.
(2018)

Text explanations with coun-
terfactuals

Gridworld ✓

Verma et al.
(2018)

Text explanations Car Racing Simulator ✗

Wang et al. (2020) Text explanation through sim-
plification

Ms. Pacman ✓

Yao et al. (2022) Global Contrastive natural
language explanations of pol-
icy changes

Toy ✗

Yau et al. (2020) Future State Visitation Decom-
position

Blackjack, CartPole &
Taxi

✗

Yu et al. (2023) Causal World Model Lunar Lander and
Starcraft 2

✗

Zahavy et al.
(2016)

Visual explanation Breakout, Seaquest,
Ms. Pacman

✗

3.2.1 Saliency Map Explanations

There is a reason for the adage “a picture is worth a thousand words”, as visualisation is
one of the most expressive forms of explanation. Saliency maps are visual explanations
inspired by neuroscience, also called feature attribution explanations, that highlight
areas of an observation that receive the most attention or are most important to the
agent.

Initially intended for image classification models, Grad-CAM (Selvaraju et al., 2017)
uses the convolutional layers of the model to find a feature’s importance for one of the
outputs through differentiation. For a given convolutional layer, Grad-CAM computes
the gradients from the layer’s features to one of the network’s outputs such that the
gradient is proportional to the feature’s importance for the output. Computing a
Grad-CAM explanation is very quick, requiring a single backpropagation through a
neural network to the selected convolutional layer, and is highly versatile for any model
that contains convolutional layers, including RL agents applied to image-based
environments. Importantly, selecting the convolutional layer significantly impacts the
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explanations generated, as shallower layers generally identify higher-level general
features, whereas deep layers find more detailed but sparse features. This produces
interesting and visually appealing images; however, don’t link these regions to what
will happen in the future, the agent’s rewards, or generally any sequential information.
This makes producing actionable responses for users in practical RL applications
difficult.

FIGURE 3.1: A saliency map where the purple areas show the points that most influence
the policy of the agent. Source: Greydanus et al. (2018)

Specially designed for RL, Greydanus et al. (2018) proposes adding noise to particular
areas of an observation to measure its impact on a policy’s output. The regions of the
observation with the largest policy difference due to the noise are perceived to have the
most significant importance for the policy when making decisions. We refer to this
noise as perturbation and thus the algorithm as Perturbation-based Saliency Map
(PBSM), and it is used in Chapter 4. More formally, Greydanus et al. (2018) modifies the
observation with Gaussian noise applied to different regions using a circular mask of
fixed radius (Eq. (3.1)). Using the perturbed images at each coordinate, (i, j), Eq. (3.2)
computes the saliency map using the mean squared error between policy Q-values of
the original image and the perturbed image. Figure 3.1 is an example saliency map
produced.

Perturbed Imagei,j = Image ⊙ (1 − Maski,j) + Blurred Image ⊙ Maski,j (3.1)

Si,j =
1
2 ∑

a∈A
||Q(Image, a)− Q(Perturbed Imagei,j, a)||2 (3.2)

To validate PBSM, Greydanus et al. (2018) conducted a user survey with 31 students
where participants were asked to identify which of two agents was acting; the first
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learnt to play from scratch using Atari observations, and the second where particular
pixels encoded an expert agent’s policy that the agent learnt to follow. Researchers
found that the students trusted the expert-following agent more than the
learnt-from-scratch agent without access to the saliency map. However, upon viewing
the saliency map, the student’s trust in the expert-following agent dropped from 48.4%
to 25.8% as they could see the agent focused on several unimportant pixels which didn’t
match human expectations. Compared to Grad-CAM, PBSM is significantly slow to
generate an explanation as the saliency map requires repeatedly computing the agent’s
policy, making the algorithm less scalable to large images.

Building on the perturbation-based method in Greydanus et al. (2018) with Eq. (3.1),
Gupta et al. (2020) proposes SARFA, an improvement for better identifying regions of
importance than computing the policy error. Gupta et al. (2020) reasoned that using the
mean squared error across all actions can identify regions that change Q-values
unrelated to the optimal action taken, possibly producing confusing saliency maps.
Therefore, Gupta et al. (2020) proposes focusing on specific and relevant regions of the
observation relevant only to the optimal action, â. Eq. (3.3) computes the difference of
softmax between the optimal action and other actions for the original observation, s,
and the perturbed observation, s′ for (i, j). To find only relevant changes to the policy,
Eq. (3.4) computes the softmax difference without the optimal action, then the KL
divergence between the original and perturbed observation, Prem(s′, â)||Prem(s, â).2 This
equation discourages regions with significant changes between non-optimal actions for
the original and perturbed observations. Using Eqs. (3.3) and (3.4), Gupta et al. (2020)
computing the saliency map with 2Kδp

K+δp where K = 1
1+DKL

. To demonstrate SARFA’s
effectiveness, Gupta et al. (2020) presents illustrative examples for Atari, Chess, and Go
against Greydanus et al. (2018) and Iyer et al. (2018). Further, they measured the time
users took to solve a puzzle using a dataset of Chess puzzles with 40 proficient chess
players (1600 to 2000 ELO). SARFA was fastest compared to Greydanus et al. (2018),
Iyer et al. (2018), and no saliency map. Additional ablative experiments were conducted
using different functions to combine Eqs. (3.3) and (3.4). SARFA produces significantly
more interpretable saliency maps across a wide array of environments; however, it still
struggles to explain sequential or RL-specific features of the agent’s decision-making.

∆pa′ =
exp(Q(s, â))

∑a∈A exp(Q(s, a))
− exp(Q(s′, â))

∑a∈A exp(Q(s′, a))
(3.3)

Prem(s, â) =
exp(Q(s, â))

∑a∈A/âexp(Q(s,a))
(3.4)

One of the saliency map’s general limitations is that it only highlights areas of
importance and does not explain the decision-making behind the policy. Local

2See Definitions and Abbreviations for the mathematical definition of the KL Divergence.
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Interpretable Model-agnostic Explanations (Ribeiro et al. (2016a), LIME) is a
model-agnostic mechanism that learns an interpretable model approximating the
original black-box model, including deep RL agents. Rather than trying to approximate
the model for the whole dataset, LIME learns an interpretable model for an individual
input by generating a dataset of modified inputs and their outputs for the original
model. Then, using a weighted importance function to compare how similar the
modified input is to the original, an interpretable model (e.g., a decision tree) can learn a
function for the input. One of the advantages of LIME is that it is model and
data-agnostic, allowing it to work with any function and complex data types, e.g., text,
tabular, and images. Figure 3.2 is an example of LIME using a superpixel (groups of
pixels representing an object) to find the features in an interpretable model. This
approach is popular within supervised learning; however, it hasn’t had large-scale
adoption to reinforcement learning, and it is unknown how effective the algorithm is.

FIGURE 3.2: An example of LIME for an image of a dog playing the guitar in the image
and the top 3 classes for the Google Inception v3 model. Source: Ribeiro et al. (2016a)

3.2.2 Natural Language Explanations

In our daily lives, natural language-based explanations, including verbal explanations,
are the most common type of explanation that humans produce. Therefore, text-based
explanations interest researchers when designing explanations that humans use most.
However, one of the limitations of natural language explanations is that there is a
complexity to following the rules of a language, and it often requires additional domain
knowledge. In contrast, visual explanations often do not require domain knowledge but
are limited in the types of information provided to users.

To minimise the quantity of necessary domain knowledge, Wang et al. (2020) proposes
first learning a simplified version of the agent’s policy using a rule-based model created
from a small quantity of domain knowledge. This rule-based model can have natural
language descriptions of the policy programmatically generated, however, it doesn’t
match the performance of the original agent. Therefore, using the rule-based
explanations as training data, Wang et al. (2020) proposed a feature encoder and verbal
decoder to generate more comprehensive explanations to expand the list of rule-based
explanations for more general situations. This learning structure is shown in Figure 3.3.
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FIGURE 3.3: Shows how the rule-based and learner models use input data to generate
explanations. Source: Wang et al. (2020)

They tested seven different encoder-decoder neural network models, finding that
attention-based neural networks performed best. In a human evaluation trial, users
were asked to rate their satisfaction and to predict an agent’s next action. They found
that their explanation improved the satisfaction rate of the system and that the extended
neural network-based learner had higher satisfaction rates than the rule-based system.

Customers are a core audience for explanations, as noted in Section 2.3.1, due to the
importance of building trust with users who may use a system regularly. Dodson et al.
(2011) proposes an explanation mechanism for recommendation systems to explain the
optimal action using argumentation-based techniques. The explanation mechanism
incorporates domain-specific and independent information that Dodson et al. (2011)
applies to a university’s student module selection website. Using a tractable MDP and a
policy of recommended actions, the mechanism extracts action-factored differential
values that specify how much better the optimal action is regarding the actions in the
next state. However, the explanations require computing the policy for every state in
the MDP given an input. This, while possible for small environments, is infeasible for
larger or multi-agent environments, which we develop explanations for in this thesis.
Deploying the explanations for the module selection website, Dodson et al. (2011) found
that students had high satisfaction and understood the short-term outcomes of a
decision; however, long-term explanations were more difficult for users to accept.
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When robots collaborate with humans to achieve a task, Hayes and Shah (2017)
proposes a natural language query and response explanation mechanism. They
implement this with a four-stage algorithm: understand the query, resolve the states
necessary to explain, summarise the features of the states to explain, and compose the
summarises into natural language to present to the user. This requires an environment
where every state is tractable, such that the agent’s policy for every state action can be
queried and understood to answer questions. Further, Hayes and Shah (2017) utilises
templating for language queries or responses, meaning that only particular questions
are possible to answer, e.g., “When [do | will] you action take?”. Testing this for a
gridworld where a robot delivers packages, CartPole, and an inspection robot that
locates and inspects components on a stock feeder. With detailed natural language
descriptions of state components, Hayes and Shah (2017) can generate similar
explanations to domain experts. However, no user survey was conducted to validate
this. A core limitation is language templating, as this minimises the number of possible
questions or responses that can be given to users and requires significant domain
knowledge to implement.

3.2.3 Temporal Explanations

RL agents take a sequence of actions over time to achieve their goals. Therefore, their
decision-making should incorporate future or temporal components into their
reasoning. This matches the expectation of human explanations from psychological
studies (Miller, 2019; Madumal et al., 2020a). Despite the strong reasons for these types
of explanations, more thoroughly discussed in Chapter 1, there has been relatively little
XRL research. In this section, we outline a majority of the literature on Temporal
Explanations for XRL.

Psychology studies have found that humans are often more interested in why another
action was not taken than why a particular action was taken based on their future
impact (Miller, 2019). Therefore, van der Waa et al. (2018) explores contrastive
explanations that use foil or counterfactual actions, an action or state that is not taken or
viewed. To explain an agent, they propose contrasting the consequence of an agent’s
optimal action with a foil action that a user can query. For this foil action, a new policy
was trained from the original policy that completes the foil action, from which a
comparison of the original and counterfactual / foil policy can be generated as an
explanation. In a human study, users found that explanations that explain the whole
policy rather than a single action are more helpful, as the next action can be noticeable,
but not the agent’s plan. A limitation of van der Waa et al. (2018) is that this was only
demonstrated for Gridworld environments and the need to retrain the policy for each
explanation, making it difficult to scale to more complex domains.
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FIGURE 3.4: Directed Acyclic graph for the causal model is used to generate explana-
tions. Source: Madumal et al. (2020a)

Using causality, humans commonly ask why or why not an action was taken in terms of
its future outcome. Madumal et al. (2020a) proposes a text-based explanation generated
from a preconstructed structured causal model where the relationship between the
states and actions is learnt, allowing the causality between actions to be found. The
advantage of using causal structures is the reduced search for counterfactual
possibilities compared to van der Waa et al. (2018), where a search algorithm and
tractable MDP must be used. Despite this, the structured causal model must be
hand-generated for each environment (Figure 3.4), which may introduce errors or fail to
account for the possible causes of action. Interestingly, in a human study, they found
that while the explanation helped increase understanding, it did not increase user trust
in agents. More research is required to understand if this is a unique problem for the
setting or explanation, or a more general problem with prior work that did not ask this
question. Madumal et al. (2020a) differs from work proposed in Chapter 4 as its model
is hand-crafted and uses interpretable environment observations, whereas our work
learns a similar temporal model without prior domain knowledge and can work with
complex agent observation, e.g., images.

CEMA (Causal Explanations in Multi-Agent systems, Gyevnar et al. (2024)) is an
alternative causal explanation of counterfactual actions that uses a probability model for
forward simulation rather than the structured causal model of Madumal et al. (2020b).
For questions like “Why did you not take Y instead of X?”, Gyevnar et al. (2024) first
rolls back the environment simulation to before X was taken, then forward, taking
action Y (achieved through Monte Carlo Tree Search). From the new state, a mechanistic
or teleological (temporal is the terminology of this thesis) can be produced by analysing
the system’s features that have changed with the largest causal effect. The mechanistic
explanation focuses on the action of the other agents in the simulation, while the
teleological explanation focuses on the effects on the agent’s future rewards.
Implementing this for an automated driving simulator with predefined interesting
features, Gyevnar et al. (2024) surveyed users for various situations, including
roundabouts, T-junctions, and crossings. First, users were asked to write their own
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explanations of an agent’s behaviour. Then, a second group of users were asked to
compare the CEMA and the best user-generated explanations, ranking them and
specifying their trust. Gyevnar et al. (2024) found that CEMA explanations were ranked
similarly to human explanations, though they didn’t affect the trust levels significantly.
A limitation is that the explanation mechanism doesn’t incorporate any information
from the policy being explained, solely the effect on other agents if counterfactual
actions were taken.

FIGURE 3.5: a. MDP diagram: the relationship between states and actions. b. SMDP
diagram: Edge colours represent different skills. c. AMDP diagram: colours represent
the clusters of the aggregated states. d. SAMDP diagram: colour clusters found after
transforming the state space with dashed arrows for explaining skills and red arrows

showing the overall policy. Source: Zahavy et al. (2016)

To anticipate changes in the future, Zahavy et al. (2016) proposes extending an
environment’s notation to group states that are similar and sequences of actions into
skills. As most reinforcement learning environments use Markov Decision Processes
(MDP), Zahavy et al. (2016) extends the state and action space to form a
semi-aggregated MDP (SAMDP) that can group states and actions. Figure 3.5 shows
how grouping states and actions can produce interpretable policies. Using an agent’s
observations dataset, they propose using internal neural network information (the final
hidden layer for an Atari agent neural network) and t-SNE (Van der Maaten and Hinton,
2008) to embed the agent’s policy in a 2D space. With the policy embedding, Zahavy
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et al. (2016) proposes a novel spatio-temporal distance metric for K-Means clustering
that finds clusters of temporally close states meant to represent an agent’s skills. From
these groupings, researchers can provide in-depth explanations of the agent’s policy
from the skill clusters, a transition matrix of the skills, and domain knowledge of the
environment. However, no human studies were ever completed to evaluate the
effectiveness of the explanation, nor were any local explanation mechanisms proposed.

How important is an observation or action (relative to others) for achieving the final
environment’s results? Guo et al. (2021) proposed a self-explainable model that
augments a Gaussian Process (GP) with a custom kernel function and interpretable
predictor, referred to as EDGE (strategy-level Explanations of Drl aGEnt). Assuming no
direct access to the agent’s Q-value or policy, Guo et al. (2021) learns to predict an
episode’s cumulative reward for embedding observations from 1 : T and the final
observation of an episode. The embeddings are generated through an RNN for the
observation sequence from 1 : T and a shallow MLP for the final observation. These
embeddings are combined through a Gaussian Process to capture the timesteps’
correlations. From this combined embedding, a linear regression model is used to
predict an episode’s cumulative reward, as the variable coefficients can be used to
identify important timesteps across an episode. This enables strategy-level
interpretation of an agent to be generated. EDGE was implemented for two robotics
environments (You-Shall-Not-Pass and Kick-And-Defend) and Atari Pong. It was
evaluated by replacing the top K important states (and the next N states) with random
actions and then evaluating the difference in the resultant episode’s cumulative rewards.
Guo et al. (2021) conducts this fidelity evaluation with alternative self-explainable
approaches such as Saliency, Attention, and Rational Nets, finding EDGE the most
effective.

How does an agent’s policy internalise their beliefs about the future? Yau et al. (2020)
and Tsuchiya et al. (2023) proposed similar approaches to decompose an agent’s beliefs
about their future state transitions. For a tractable MDP where the set of possible states
is known, Yau et al. (2020) proposes learning a novel future state-visitation function that
computes the probability that a particular (future) state will be visited within an
episode. Implementing this for a temporal difference (bootstrap-based) and Monte
Carlo rolling training algorithm, Yau et al. (2020) demonstrates that this explanation
could accurately predict what future states will be visited in Blackjack, CartPole, and
Taxi environments. This requires knowledge of the whole environment state space and
discretising continuous spaces, such as CartPole, limiting its applications. Inspired by
Yau et al. (2020), rather than learning a separate future state visiting function, Tsuchiya
et al. (2023) proposed directly modifying an agent’s Q-value into the expected reward in
several predetermined state types. This is similar to Juozapaitis et al. (2019), outlined in
Section 3.2.4, where the Q-value is decomposed into reward components. For resource
allocation of a power system environment, Tsuchiya et al. (2023) demonstrated that the
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decomposed Q-values could explain the quantity of rewards collected in each state type.
However, unlike Yau et al. (2020), it required domain knowledge to categorise these
states. Further, both algorithms were only applied to toy problems and contained
inherent problems when scaling to more complex environments.

3.2.4 Reward Explanations

Reinforcement learning agents are optimised to maximise their expected rewards over
time. Therefore, researchers have proposed explanation algorithms to explain how or
what rewards the agent will receive.

The formulation of RL described in Section 2.2 utilises scalar rewards; however, for
more complex environments, this scalar reward is often composed of sub-rewards from
different sources/components. For environments that provide information on these
reward components, Juozapaitis et al. (2019) identifies that the reward at timestep, Rt, is
equivalent to the sum of reward components, ∑c∈C Rt,c. As a result, Q-values, Q(s, a),
could be learned as the sum of expected rewards for each component, ∑c∈C Qc(s, a).
Therefore, Juozapaitis et al. (2019) proposes extending a deep reinforcement learning
agent’s output to include the reward components and a novel loss function to minimise
the error for each reward component. Using these predicted future reward components,
Juozapaitis et al. (2019) proposed a novel contrastive method that explains the minimal
component differences between two actions. They demonstrate that this learning
methodology can scale to complex domains with the lunar lander and Atari
environments. However, Juozapaitis et al. (2019) requires that the environment provide
the decomposed rewards, a feature uncommon in most RL environments but with
growing support (Felten et al., 2023).

Further work has built on Juozapaitis et al. (2019). Integrating policy summary by Amir
and Amir (2018) with reward decomposition, Septon et al. (2023) proposes combining
the global and local capabilities of each to complement one another. This enables
explaining important states (global) found during training and predicting the quantity
of rewards for each source of each state (local). They demonstrate that this explanation
is effective for Highway-Env and Atari MsPacman environments, where users predict
an agent’s strategy. For robotics environments, Lu et al. (2023) demonstrated applying
reward decomposition for an abstracted action space by mapping an observation to
task-specific rather than the base actions. Importantly, these task-specific actions have
natural language summaries to describe them; therefore, Lu et al. (2023) proposes
utilising Large Language Models to summarise the reward decompositions with natural
language descriptions of the action taken. However, this requires significant quantities
of domain knowledge (task-specific action specifications, LLM explanation templates,
and the decomposed reward sources) to implement.
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When interpreting a policy, an important question is why an agent believes it will
receive a reward in the future. Lu et al. (2024) proposes learning a causal model of the
state and actions to an agent’s expected rewards. This differs from Madumal et al.
(2020a), which learnt a causal relationship between states and future states. Driven by
three objectives: sufficiency, sparsity, and orthogonality, Lu et al. (2024) proposes two
separate training approaches to learning the causal model. The first learns to distil the
reward components of an environment from a state, referred to as R-mask, and the
second uses the reward components and state to distil the Q-value, referred to as
Q-mask. From these two masks, Lu et al. (2024) use Grad-CAM (Selvaraju et al., 2017) to
generate saliency maps of the mask’s areas of importance. Utilising both approaches for
two Atari games, Ms Pacman and Gopher, to identify observation regions with the most
significant causal influence for determining the reward components and the Q-value.
Despite the novel causal-based explanations, it is difficult to identify novel information
that the causal inferences provide to the saliency maps that is not already available
using algorithms provided in Section 3.2.1.

3.3 Evaluating XRL Explanations

Given the XRL algorithms surveyed in Section 3.2, we summarise several human-based
evaluation procedures. As noted in Section 3.1, evaluation is a novel challenge within
XRL, and more generally, XAI, with minimally agreed upon or common evaluation
procedures. Gyevnar and Towers (2025) have identified two general applications for
explanations: debugging, where researchers and developers validate an agent’s
behaviour before deployment, or for fault investigation and human-agent teaming,
where explanations could be used as communication for coordination, accountability,
etc.

RL policies map states to actions with some explanation mechanisms focusing on
illuminating this function to users. To test this, researchers have evaluated whether
users shown an explanation for a policy can determine the agent’s next action. We refer
to this approach as Next Action Prediction, with several papers implementing this
evaluation style (Silva et al., 2019; Madumal et al., 2020b). Modelling an agent’s policy
as a decision tree that is specialised for RL, Silva et al. (2019) ran an interpretability
study (alongside computational evaluations) comparing their discrete decision tree, a
decision list, and a binarized neural network trained on the CartPole toy problem.
Fifteen participants were asked to predict the policy output for five different states and
rank their feelings of interpretability for each model. Silva et al. (2019) found that the
decision tree and decision list had the lowest time at 2.3 and 2.1 seconds, compared to
the binarized MLP at 7.8 seconds. These results matched the self-reported feelings, with
the decision tree having the highest rating, with the decision list a couple of points
lower (40 and 36, respectively), whereas the MLP scored 25 points. Madumal et al.
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(2020b) ran a more complex survey using the Starcraft 2 environment where 120
participants were asked to answer “what will the agent do next?” along with two
subjective questions of Explanation Satisfaction Scale and Trust Scale (proposed by
Hoffman et al. (2018)) using a 5 Point Likert scale (Likert, 1932). For 8 questions,
Madumal et al. (2020b) found that users scored the highest with their causal explanation
at 11 out of 16, however, for confidence, predictability, reliability and safety, no
explanation had a significant difference in score. Overall, a limitation of Next Action
prediction is that for environments with hundreds or thousands of actions,
understanding an agent’s behaviour might require reviewing vast numbers of
explanations. Compared to other explanatory objectives below, the Next Action
prediction explanation gives a microscopic understanding of an agent’s policy, focused
solely on a particular state action and not providing a more extensive, general
understanding of the policy for users.

In RL, a policy is optimised to maximise the cumulative rewards for an environment’s
reward function. Researchers can modify that reward function to produce multiple
policies for the same environment dynamics to maximise different rewards and achieve
different goals. Several papers conduct variations on these evaluations with different
reward functions to produce different policies where, using explanations, users must
identify the underlying goal (Amir and Amir, 2018; Huber et al., 2023; Septon et al.,
2023). Huber et al. (2023) implemented a variant of Goal prediction where users select
the items they believe were most important to the agent (not the goal itself). Three
agents were trained in the Atari MsPacman environment with different reward
functions (standard, power pill, fear-ghosts). Users were further tested by asking which
agent they would select to achieve different goals, and the user’s subjective satisfaction
with the explanation. Huber et al. (2023) found that the explanations tested achieved
scores of 0.8, 1.18, and 1.65 out of a maximum score of 3. However, user satisfaction
didn’t significantly vary between users. For two environments (Highway-Env and Atari
MsPacman), each with two goals, Septon et al. (2023) proposed asking users to rank
which goal was prioritised by an agent or if neither was using an explanation. Users
were further asked to rank their opinions of the explanations using a 7-point Likert Scale
for five questions. For the four explanation mechanisms, the highest accuracy found for
either environment was around 60%, where random is 33%. Overall, a limitation of the
Goal prediction evaluation outlined above is that the different goals implemented
appear to have some significant overlap, meaning that if two agents perform a common
task, it might not be possible to differentiate between the agents’ behaviour/goal. This
can be solved by using more clearly differentiated goals for agents.

For human-agent teaming applications, Gupta et al. (2020) evaluates their explanations
as support for players attempting chess puzzles, a common training technique to
improve players’ intuition for challenging positions. Gupta et al. (2020) proposed
SARFA, a saliency map algorithm to highlight pieces of importance to help users when
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solving. Surveying 40 chess players ranked between 1600 and 2000 ELO, each was
shown 15 puzzles taken from chess.com with either no saliency map or a saliency map
from Greydanus et al. (2018), Iyer et al. (2018), or Gupta et al. (2020). The explanation’s
performance was measured based on the time taken to solve and its accuracy for the
puzzle. Gupta et al. (2020) found their explanation was 10 seconds faster than no
saliency map (67.02 seconds to 77.53 seconds, respectively) and over 15% better at
solving the puzzle (72.41% to 56.67%). It is important to note that one of the
explanations (Iyer et al., 2018) significantly worsens player performance, taking 102.26
seconds on average with 24.60% accuracy. This reinforces the importance and value of
human evaluations, as an explanation can appear effective while being more ineffective
than no explanation for users solving a task.

3.4 Discussion

Using the outlined unique challenges in XRL (Section 3.1), a survey of the literature
(Section 3.2) and evaluation methodologies (Section 3.3), in this Section, we discuss the
general strengths and weaknesses of XRL research we identify. A primary strength of
the literature is the wide range of explanation techniques explored, as seen in Table 3.1,
many of which offer interesting and novel approaches. However, despite the number of
XRL papers we surveyed, we found three recurring weaknesses:

1. The definition of explainability specified in Section 2.3 combines an understanding
of a policy’s content and human comprehension of an explanation. The problem is
that of the 43 surveyed papers, only 14 (32.6%) completed a human study to
evaluate the effectiveness of their proposed explanation. This is important as
researchers reviewing the literature cannot know how effective over half of the
proposed algorithms are. This has several knock-on effects. One is that researchers
cannot know if future work should build upon prior work or go in new directions.
This could explain why so little literature has built upon a common base, unlike
RL, where a handful of algorithms are regularly improved, e.g., DQN (Mnih et al.,
2015), PPO (Schulman et al., 2017), and SAC (Haarnoja et al., 2018).

2. Along with whether a human study was completed, for the literature surveyed in
Table 3.1, we record the setting(s) used to test the effectiveness of the proposed
algorithms. The number of papers that use Toy environments, e.g., gridworld or
CartPole, represents 37.2% (16 of 43) of the papers surveyed. This is critical as toy
problems normally have small state and/or action spaces, whereas the XRL
algorithm must be scalable to real-world problems that are common complex
image-based observations with large action spaces.

chess.com
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3. Although not recorded in Table 3.1, while surveying the research, we found that
very few papers provided open-source code that allows for a better
understanding of the algorithms proposed and an easy implementation for future
work to use either as a building block or comparison. We believe this has partially
resulted in only a handful of research, including prior work as a
comparison/baseline, further limiting the capability to compare research.

Collectively, the lack of human surveys, standardised testing environments, and limited
open source code mean that it is completely unknown the current state-of-the-art
algorithm for XRL. In addition, several important questions cannot be answered due to
these problems: Are certain algorithms effective depending on who evaluates them
(general public vs academics)? Are visual explanations better than text explanations?
How important are counterfactual explanations? These challenges pose a significant
problem for the long-term health of XRL that we are working on addressing, see
Chapter 7 for more detail.

Section 3.2.3 summarises almost all approaches taken for Temporal Explanation in the
literature. There is a strong variety of approaches to explain different properties of
agents, the most popular being counterfactual futures (van der Waa et al., 2018;
Madumal et al., 2020b; Gyevnar et al., 2024). One of the weaknesses across the
approaches is the need for domain knowledge in most approaches, with Guo et al.
(2021) being the only algorithm that doesn’t require it and scales to complex domains. A
problem we investigate in Chapter 4. A second weakness in the approaches is that only
Yau et al. (2020) and Tsuchiya et al. (2023) explain an agent’s future rationale based on
the internal properties of the neural network and only of the future states that could be
taken. Whereas all others build externally on the policy or are based on the observations
of how the agent acts. Therefore, we explore internal explanations of agent beliefs in
Chapters 5 and 6.
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Chapter 4

Video-Based Explanations of Deep
Reinforcement Learning Agents

Reinforcement learning agents work to maximise their rewards over time, meaning that
to completely explain an agent’s decision-making is to explain an action’s future impact
on the agent. We refer to these as “temporal explanations” which explain an agent by
highlighting the future outcomes of a decision. Investigating prior work on temporal
explanation, Chapter 3 found that most heavily relied on domain / expert knowledge
for the explanation, e.g., natural language descriptions of the state components
(Madumal et al., 2020b). Although useful, domain knowledge can be costly to gather in
terms of time, money, and availability, and may contain errors or biases. Therefore, this
chapter investigates temporal explanation mechanisms for a state’s outcome that
require no or limited domain knowledge.

Our approach is inspired by two common human strategies for understanding agent
behaviour: contextualising an observation based on previously observed behaviour to
predict future actions, and grouping prior behaviour by its goals to identify and explain
new observations’ current goal. For example, having previously observed an agent take
a sequence of actions from a state, humans might infer that in a similar setting, the
agent will take the same or similar sequences of actions. Alternatively, in understanding
the objective/goal that an agent is completing, humans might infer the sequence of
actions that would be required to complete it. As this conception of a goal is human
imposed upon an agent, not learn as an objective or necessary component of the agent.
We utilise skill identifications from agent behaviour to group similar behaviour, referred
to as skills that, taken collectively, can be viewed as an agent’s high-level plan of an
environment using the skills. Therefore, we propose three video-based temporal
explanations designed to enable the user to contextualise and visualise these possible
future decision paths of agents for an observation (Section 4.1). Two of the mechanisms
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require no domain knowledge, and the third requires minimal knowledge only of what
each of the agent’s skills achieves.

To assess their effectiveness, we conducted a user survey comparing them against two
feature-based explanation mechanisms surveyed in Section 3.2.1. We find that all our
temporal explanations had a higher average rating than both prior mechanisms across
four different statements. Further, when users were presented with two explanations,
they preferred our temporal explanations 83.3% of the time over the prior explanations.
Finally, as two of our explanations rely on agent skills (i.e. a repeated sequence of
actions with a common goal), we propose two novel metrics to measure skill coherence.
In summary, this chapter makes the following contributions to explainable
reinforcement learning:

• We propose a Dataset Similarity Explanation mechanism (Section 4.1.1) that
doesn’t require domain knowledge. Using a dataset of pre-collected
observation-action pairs, essentially a memory of how an agent has behaved in
the past, to explain an observation, we retrieve the most similar observation from
the memory of prior agent behaviour and present a video to the user of the next n
observation-actions from memory following the retrieved observation. This
provides users with a video of possible future behaviour, assuming an agent
behaves similarly in similar prior situations, which, for fixed agents, should be
true.

• We propose a Skill Explanation mechanism in Section 4.1.2 that doesn’t require
domain knowledge. To explain a new observation, we identify the skill (repeated
sequences of actions with a common goal) an agent is currently performing and
samples an example skill from a set of prior recorded examples, presenting it as a
video to the user. This contextualises an agent’s behaviour based on the agent’s
current goal.

• In Section 4.1.3, building upon the Skill Explanation, we propose a Plan
Explanation mechanism. This uses a small amount of domain knowledge by
annotating each skill and the transitions between them. To apply this domain
knowledge, we augment the Skill Explanations to incorporate a natural language
description of an agent’s skill within the video.

• As our Skill and Plan Explanations require annotating agent behaviour with
discrete skills, in Section 4.2, we propose two novel metrics to measure the skill’s
quality, Skill Alignment and Skill Length Distribution. We demonstrate their
effectiveness for human-labelled skills as a baseline against algorithmically
labelled skills proposed by Zahavy et al. (2016) in Section 4.3.2.
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4.1 Explanation Mechanisms

We propose three novel video-based temporal explanation mechanisms that present
possible future decision-making of an agent using a dataset of prior observation-actions:
Dataset Similarity Explanation, Skill Explanation, and Plan Explanation. Dataset
Similarity Explanations and Skill Explanations do not require domain knowledge,
whereas Plan Explanations require small amounts of domain knowledge. Examples of
each explanation mechanism and source code are provided on Github 1.

4.1.1 Dataset Similarity Explanations

One way to explain an agent’s behaviour is to identify how it has acted in similar
situations in the past and extrapolate the expected behaviour for the current state.
Using a large dataset of known observation-action pairs and an embedding function,
the Dataset Similarity Explanation explains the agent by presenting a video of possible
future observation-action pairs based on similar observations from memory.

We maintain a dataset of observation-action pairs of length L, D = ((o1, a1), (o2, a2), . . . ,
(oL, aL)), an observation encoder E(o) → e to map an observation to a vector
embedding, and observation to explain, ô, assumed to be not contained within the
dataset. To find the most similar observation in the dataset, we find the smallest
Euclidean embedding distance between the observation to explain and those in
memory: arg mini∈{0,1,2,...,L} ∥E(oi)− E(ô)∥2. Using the most similar observation in
memory, we generate a video of the next n future observation-actions for the user,
(D[i], D[i + 1], . . . , D[i + n]). Importantly, due to randomness in the environment and
agent policy (epsilon greedy), there can be numerous future decision paths that the
agent could take. We extend the dataset similarity explanation to generate multiple
non-overlapping explanations and present some of these future paths to the user. We
achieve this through iteratively generating explanations with a mask to ignore all
observations within n timesteps of previously selected observations when computing
the most similar observation in memory.

In this work, we use the embedding method from Zahavy et al. (2016) outlined in
Section 3.2.3 that computes the t-SNE projections of PCA reduction for a neural
network’s hidden layer activations of the dataset. There are other and possibly better
embedding functions (e.g. autoencoders that are designed to learn embeddings), but we
focus on using such embeddings to generate explanations rather than the embedding
algorithms themselves. For our user survey (Section 4.3.1), we present 2 explanation
videos each with n = 50 resulting in videos of 5 second at 10 observations (frames) per
second. We selected these values as we believed there was a trade-off in explanation

1https://github.com/pseudo-rnd-thoughts/temporal-explanations-4-drl

https://github.com/pseudo-rnd-thoughts/temporal-explanations-4-drl
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Algorithm 1 Pseudocode implementation of the Dataset Similarity Explanation

Require: D = ((o1, a1), (o2, a2), . . . , (oL, aL)) ▷ Observation-action Dataset
Require: ô ▷ Observation to Explain
Require: E : O → Rm ▷ Embedding function
Require: n ▷ Explanation length
Require: K ▷ Number of Explanations

Dd = (||E(ô)− E(oi)||2 ∀i ∈ {0, 1, . . . , L}) ▷ Compute the dataset distance
e = {} ▷ Explanations
for k ∈ {1, . . . , K} do ▷ Generate explanations

i = arg min Dd
e = e ∪ (D[i], D[i + 1], . . . , D[i + n])
Dd[(i − n, i − n + 1, . . . , i + n − 1, i + n)] = ∞

end for

complexity (e.g., presenting 10 different 1 second videos) compared to simplicity (e.g.,
presenting 1 video of 10 seconds). We believed that 2 videos of 5 seconds at 10 frames
per second would provide adequate time for users to understand both explanations
while providing multiple future decision paths for the user to view.

4.1.2 Skill Explanation

When humans describe agent behaviour, we commonly describe the goal that an agent
is working towards by grouping sequences of actions into discrete skills. For example,
to describe someone making a cup of tea, we could describe the sequence of actions
taken: collect a mug, place a teabag in the mug, boil water, and add water to the mug.
This type of description provides temporal information about the agent’s behaviour that
leads to a goal. A difference to the Dataset Similarity Explanations is the dynamic
length of skills enables the Skill Explanation to adapt to the observation context rather
than a predetermined fixed length (n). For example, baking a cake and making a cup of
tea requires significantly different time lengths/scales to properly explain the agent’s
behaviour. Secondly, in explaining a skill, this can include observations from “before”
the observation to explain would occur in the skill’s sequence, providing additional
context to the user on what could have led to this state and what could happen after.
Skill Explanations, therefore, aim to contextualise an agent’s decision-making based on
an estimate of the skill is currently completing through visualising the decision path
that the agent will take.

Skill Explanations rely on a skill identification function, I(o) → k, mapping an
observation to a skill (e.g. a hierarchical RL policy or an offline skill discovery
algorithm), a dataset of known agent skills DK and an observation to explain ô. We find
all skill instances from the dataset of the same type as the observation:
K = {k ∈ DS|I(ô) = k}. With the set of skill instances, K, we select one, k ∈ K, to
present to the user as a video, (k[0], k[1], . . . ).
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For this work, we use the skill discovery mechanism proposed by Zahavy et al. (2016).
This mechanism can produce a large number of example skills in K, so we filter the skills
to find instances that contain similar observations using the same embedding distance
procedure as the Dataset Similarity Explanation (Section 4.1.1). Additionally, due to the
large variance of skill lengths (see Figure 4.9), we find that some skills were only a
couple of actions long (less than a second in a video) and others that were hundreds of
actions, resulting in several minute long videos. As a result, we limit the videos in
length to avoid. We do not believe this is a limitation of the explanation mechanism
itself, but rather the skill identification algorithm that it is paired with, Zahavy et al.
(2016) in this case. For this reason, in Section 4.2, we propose two skill similarity metrics
for evaluating the quality of the skill collected and utilised in the explanations.

4.1.3 Plan Explanation

Over an episode, an agent will aim to maximise the rewards it receives by using a series
of skills to accomplish various goals and sub-goals. These skills can be represented as
nodes in a directed network, where the edges (referred to as skill transitions) represent
the probabilities of the agent changing from one skill to another. For instance, after
getting out of bed, the agent may make coffee. This skill-based plan offers a simplified
global representation of the agent’s policy and can be enriched with minimal domain
knowledge for each skill and skill transition. Figure 4.1 is an example plan for an Atari
breakout agent where, after starting, the agent will only take Skill 2, from which, a
majority of the time, it will take Skill 0. We developed the Plan Explanations (PE) to
utilise text-based domain knowledge to complement our Skill Explanation mechanism
(Section 4.1.2) and provide additional domain-specific insights into the agent’s
decision-making process.

To construct a plan, we create a complete directed network, Q, with N + 2 nodes where
N represents the number of unique skills along with two skills to indicate the beginning
and end of an episode. Using a list of skills from the dataset, DK, we assign each edge
weight to an adjacency matrix, Qij, the probability that given skill i is taken, the agent’s
next skill is j. To incorporate domain knowledge into the plan, we reviewed examples
of the corresponding skill (Qk) or skill transition. Given an annotated plan to explain an
agent’s decision-making for observation, ô, the domain knowledge associated with the
observation skill, QI(ô), is included with the Skill Explanation video as above. In this
work, as the skill discovery mechanism only predicts the skill taken, we are limited to
presenting the current skill’s domain knowledge.
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FIGURE 4.1: Example skill network for Atari Breakout using hand-labelled skills.

4.2 Skill Similarity Metrics

Our Skill and Plan Explanation mechanisms (Section 4.1.2 and 4.1.3) utilise past skill
examples to contextualise an agent’s decision-making. It’s important, therefore, that
instances of the same skill resemble each other as closely as possible. We propose two
novel metrics to quantify this similarity: the first evaluates the similarity in actions for
two skill instances, while the second metric assesses the similarity of skill instances in
terms of their lengths.

4.2.1 Skill Alignment Metric

Given two instances of a skill, we expect both to share a common sequence of actions to
complete a common goal. To quantify this alignment of actions, we propose the Skill
Alignment metric that scores the similarity between two skill instances by identifying
the longest subsequence of common actions between them. We employ the
Smith-Waterman algorithm (Smith and Waterman, 1981) to implement our skill
alignment metric, which is commonly utilised in bioinformatics for identifying
comparable sequences in protein and DNA databases (Pearson, 1991), as well as in text
analysis (Su et al., 2008). Importantly, the algorithm can skip sequence elements to
create a more optimal alignment, e.g. to ignore a mutation in a DNA sequence. This
ability to skip elements is critical in evaluating skills as policies are frequently stochastic,
and minor variations between instances of a skill are expected.

The Smith-Waterman algorithm (Smith and Waterman, 1981) uses dynamic
programming to build a scoring matrix for two sequences along with a similarity (or
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scoring) function and penalty (or gap) score through iteratively computing the highest
score of possible subsequences by choosing to include the sequence element or skip
with a penalty. As a result, the optimal subsequence is the maximum score in the matrix.
We adapt the Smith-Waterman algorithm for computing the alignment of two skill
instances, K1 and K2. Using the scoring matrix H, for each element of the matrix, we
solve Eq. (4.1) where s(a, b) → R is a similarity scoring function to compare two actions
and W is gap penalty for allowing particular actions to be skipped/ignored at a cost.
The equation evaluates the score at the previous subsequence plus the score of moving
to ij, either including the actions K1

i and K2
j in the subsequence or skipping either K1

i or
K2

j in the subsequence.

Hi,j = max(Hi−1,j−1 + s(S1
i , S2

j ), Hi−1,j + W, Hi,j−1 + W, 0) (4.1)

Importantly, to provide a comparable score between skill instances of different lengths,
we normalise the metric to [0, 1]. Selecting the best sequence’s score, max(H), we divide
it by the highest possible score of any two skill instances with the same length as K1 and
K2. Therefore, for two skill instances that are equivalent, their normalised score will be
1, while two skills with zero common action sequences will have a score of 0, no matter
the skill instance’s length.

Algorithm 2 Adapted Waterman-Smith Algorithm for Normalised Skill Align-
ment Metric using Discrete Actions

Require: K1 = (a1
0, a1

1, . . . , a1
L1
) and K2 = (a2

0, a2
1, . . . , a2

L2
) ▷ Skill Instances to compare

Require: w : R ▷ Penalty
Require: s(a1, a2) → R ▷ Score function

H0,j = 0 ∀j ∈ {0, 1, . . . , L1} ▷ Initialise Alignment Matrix
Hi,0 = 0 ∀i ∈ {0, 1, . . . , L2}
for i ∈ (1, . . . , L1) do

for j ∈ (1, . . . , L2) do
Hi,j = max(Hi−1,j−1 + s(K1

i , K2
j ), Hi−1,j + W, Hi,j−1 + W, 0) ▷ Eq. 4.1

end for
end for
Score = max(H) ▷ Score
Normalised score = max(H)÷ min(L1, L2) ▷ Normalised score for discrete actions

We use the Arcade Learning Environment (Bellemare et al., 2013), commonly known as
Atari, in which agents take discrete actions. We therefore define our scoring function as
s(a1, a2) = a1 ≡ a2, such that the score is 1 if the actions are equivalent and 0 otherwise.
We use a linear gap penalty of −1 for W. To normalise the metric, given our scoring
function, the maximum score occurs when one of the skills is a subsequence of the other.
Consequently, the maximum possible score is the length of the shorter skill instance.
Algorithm 2 provides a pseudo-code implementation for our normalised skill alignment
metric.
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4.2.2 Skill Distribution Metric

If instances of a skill contain a similar sequence of actions, we would expect them to
contain a similar number of actions; for example, each time an agent makes a cup of
coffee, we expect it to take roughly the same amount of time. For a set of skill instances,
the Skill Distribution metric quantifies the probability that their lengths could have been
sampled from the same probability distribution.

We use the Kolmogorov-Smirnov test to assess the likelihood that a set of skill lengths
could have been sampled from a given distribution. It measures the probability that the
distance between the actual skill length distribution and the expected reference
distribution matches. Given skill lengths are all positive discrete values, we use the
Poisson distribution, commonly used for modelling counting events, e.g. the number of
mutations in DNA or the number of times a web server is accessed. Following (Paszek,
2007, Section 3.6), the reference Poisson distribution has a mean, λ, equal to the value of
the average skill length.

4.3 Quality of Explanations and Skills Extracted

In this section, we present an analysis of our novel temporal explanations and skill
similarity metrics (Sections 4.3.1 and 4.3.2 respectively). We use the Arcade Learning
Environment (Bellemare et al., 2013), commonly known as Atari, for its image
observations, long episodes, and complex objectives in this analysis. We selected the
Breakout, Space Invaders, and Seaquest games from the 60 available Atari games for
their variety of skills and the expected prior knowledge of users, which was confirmed
by our users, see Figure 4.5. To support the reproducibility of this work, we used
open-source pre-trained DQN (Mnih et al., 2015) and Rainbow (Hessel et al., 2018)
agents released by Castro et al. (2018). Furthermore, our code is open source to promote
future comparative user surveys with our explanations 1. For our explanations, we used
a dataset of 60, 000 observation-action pairs and, following Zahavy et al. (2016),
conducted a grid search across different window sizes and the number of skills for the
skill clustering algorithm to find the optimal number of skills. See Section 3.2.1 on
Zahavy et al. (2016) for more details.

4.3.1 Human Evaluation of Explanations

The ultimate goal is to enable people to understand the behaviour of autonomous
agents so that the quality of explanations can only be evaluated by people. We,
therefore, conducted a user survey to compare our three novel temporal explanation
mechanisms with two state-of-the-art feature-based explanation mechanisms:
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Grad-Cam (Selvaraju et al., 2017) and Perturbation-based Saliency Maps (Greydanus
et al., 2018) referred to as PBSM (both are explained in Section 3.2.1). We adapt
Grad-CAM for Atari agents using the agent’s action as the discrete neural network
output to differentiate by and the second convolutional layer of the DQN neural
network architecture as the target layer. Appendix B includes example Grad-CAM
saliency maps for each possible convolutional layer within the neural network. We
decided not to use Madumal et al. (2020b) or other temporal explanation surveyed in
Section 3.2.3 for two reasons. First, that Madumal et al. (2020b) requires the use of an
interpretable environment feature for the structured causal model, which Atari does not
provide and that it requires significantly more domain knowledge compared to our
Plan Explanations.

For the survey, users evaluated the explanations using two methods: individually
rating observation/explanation for four statements and comparing two explanations for
the same observation, selecting the preferred explanation for four statements (referred
to as individual and contrastive evaluations). On average, the user survey took 20
minutes to complete for 26 volunteer university students.2

For the individual evaluation, users are shown three observation explanations for each
explanation mechanism (one for each testing environment). Users are asked to rate their
agreement on four statements, “From the explanation, I understand how the agent
works.”, “This explanation of how the agent works has sufficient detail” and “This
explanation of how the agent works is satisfying” (all inspired by Hoffman et al. (2018))
and “Using the explanation, I can predict the agent’s next action” (inspired by
Madumal et al. (2020b)), from Strongly disagree to Strongly agree, based on the Likert
scale (Likert, 1932). See Figure 4.2 for an example figure shown to the user. This
evaluation generates 60 ratings per user (4 statements × 3 explanation-observations × 5
explanation mechanisms). To minimise bias due to the order in which explanations are
presented to the participants, some saw the temporal explanations first, while others
saw the feature-based explanations first.

For the contrastive evaluation, users were presented with an observation and two
explanations and asked to select their preferred explanation (“This is more true of
explanation 1 than explanation 2”, “This is more true of explanation 2 than explanation
1”, and “This is equally true for explanation 1 and 2”) across the same four statements
as the individual evaluation. We presented users with nine observations/explanations,
one for each permutation of the explanation mechanism (excluding the Skill and Plan
explanation pair, as the only difference is the addition of domain knowledge). We infer
the effect of adding domain knowledge from the performance difference for the Skill
and Plan Explanations to another explanation mechanism. This contrastive evaluation
enables us to elicit explicit preferences among explanation mechanisms in addition to
user ratings from the individual evaluation to confirm user opinions on explanations.

2We obtained ethical approval for the survey from our institutional review board (ERGO FEPS/78297).
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FIGURE 4.2: Example individual question shown to the user.

To mitigate potential sources of selection bias introduced by researchers when choosing
observations for the explanation mechanisms, we adopted an unsupervised
environment-agnostic approach to generate observations to be explained. We assume
that unimportant observations should exhibit low variance in their Q-values across
their actions, as if there are minimal differences; none of the agent’s actions has a greater
impact on the agent’s future rewards than any other action for the observation.
Therefore, we focus on explaining observations with the highest Q-value variances for a
dataset of example observations from the agent. Furthermore, we implemented a
masking mechanism to ensure a diverse selection of observations across time.
Specifically, we mask out observations that occur within 20 timesteps of any previously
selected observation within the same episode. This approach is similar to the
HIGHLIGHT-DIV algorithm (Amir and Amir, 2018) though using a previously
collected dataset of observations rather than online sampling.

For the individual user survey, Figure 4.4 presents the user ratings for each explanation
mechanism and statement where strongly disagree has a score of 1 and strongly agree
has a score of 5. Our Plan Explanation (PE) had the highest average rating of 4.0 across
the statements, while Grad-CAM and PBSM had the lowest average rating of 2.5. In
comparison, our Dataset Similarity Explanation (DSE) and Skill Explanation (SE),
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FIGURE 4.3: Example contrastive question shown to the user.

which, like the feature-based mechanisms, do not require domain knowledge, had a
higher average rating of 3.5 and 3.3, respectively. In particular, users found our
explanations had significantly higher ratings than Grad-CAM and PBSM regarding
explanation detail and the predictability of the next action. This is unsurprising due to
the additional information shown in our video explanations compared to the
image-based feature explanations of the prior work.

Interestingly, we found differences in the explanation mechanism ratings based on the
environment tested. Before completing the survey, we asked users to self-rate their prior
experience in the three environments, using “Never played and have no idea how the
game works”, “Have played once or twice and have minimal knowledge of the game”,
and “Have played and understand the game well” with ratings 1, 2 and 3 respectively.
We found that, on average, users had a score of 2.5 and 2.3 for Breakout and Space
Invaders, respectively, while Seaquest had a score of 1.3, indicating that participants
had generally strong prior knowledge of Breakout and Space Invaders while few had
prior knowledge of Seaquest. As shown in Figure 4.5, despite the majority of users
having minimal prior knowledge of the Seaquest environment, we found that user
ratings for our temporal explanation had the smallest average difference between
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FIGURE 4.4: Box plot of the user ratings of each explanation mechanism and question
as part of the individual evaluation section in the user survey.

Breakout or Space Invaders and Seaquest (−0.15, +0.25 and −0.1 for DSE, SE and PE
respectively). In comparison, Grad-CAM and PBSM had the largest average decrease
from Breakout or Space Invaders to Seaquest of −0.2 and −0.25, respectively. We
hypothesise this performance difference is due to the saliency maps requiring users to
understand why an agent focuses on specific observation features, requiring prior
knowledge of the environment, without which the explanation is more difficult to
understand. These findings indicate that our temporal explanations can be equally
effective regardless of the users’ prior knowledge of the environment. Furthermore, it
suggests that while Grad-CAM and PBSM do not need domain knowledge to generate
explanations, users still need familiarity with the environment to comprehend the
explanations. Further work is required to understand if this phenomenon is
reproducible for more explanation mechanisms and environments.

In Figure 4.6, we present the results from contrastive questions, with each cell giving the
percentage of users who explicitly prefer the row explanation over the column
explanation. For example, with respect to the two benchmarks, Grad-CAM and PBSM,
67% of users prefer Grad-CAM over PBSM, and 17% of users expressed the opposite
preference, with 16% of users expressing no preference. Similarly, 50% of users were
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FIGURE 4.5: A boxplot of prior environment knowledge and per environment explana-
tion ratings.

more satisfied with Grad-CAM explanations than PBSM explanations, with 17% of
users more satisfied with PBSM and a third of users expressing no preference.

With respect to our temporal explanations, we observe that most participants had an
equal preference for DSE and SE, with only 17% of users explicitly preferring one
explanation over the other (except for Explanation understanding with 33% of users
preferring DSE to SE). In comparison, 67% of users explicitly preferred PE over DSE, a
50% improvement over SE where the sole difference is due to the inclusion of domain
knowledge. Comparing our temporal explanations to the prior feature-based
explanations, we find that they are explicitly preferred 63%, 87% and 100% (DSE, SE
and PE, respectively) for an average of 83.3% over Grad-CAM and PBSM. While there is
minimal preference for DSE over SE, we do find that user preference for DSE or SE for
the feature-based explanation does increase, indicating that the skill-based approach
appears to have inherent advantages. Additionally, the inclusion of domain knowledge
from SE to PE has a similar increase in performance, recognising that users prefer it
when domain knowledge is included. Lastly, comparing the feature-based explanations,
we find that Grad-CAM is explicitly preferred on average 63% to DSE while vice versa,
DSE is preferred 17% on average. This is despite PBSM being specifically designed for
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FIGURE 4.6: Heatmap for each statement of the user preference for each explanation
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explanation mechanism over the column explanation mechanism.

RL agents, while Grad-CAM was originally designed to explain image recognition
neural networks. In summary, these contrastive evaluations reinforce our finding from
the individual evaluation that our novel temporal explanations are significantly
preferred over the tested prior feature-based explanation mechanisms.

Finally, we analysed the variances of user ratings for each explanation mechanism to see
if users had significantly different answers based on the statements or explanations
presented. In Figure 4.7, we present a stacked histogram of the user rating variance for
each explanation mechanism irrespective of the question asked. For each explanation
mechanism, we found, on average, 79% of users’ ratings stayed within 1 rating for each
explanation mechanism, showing that user opinion was consistent given an
observation/explanation for each mechanism. Of the explanation mechanisms, we
found that our novel Dataset Similarity, Skill and Plan Explanations had the largest
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FIGURE 4.7: A stacked histogram of per-user variance in the Explanation type ratings.

variances, with the variance at the 80th percentile being 1.65, 1.17 and 1.01 respectively.
The Grad-CAM and Perturbation-based Saliency Map had a variance of 0.89 and 0.88 at
the 80th percentile. This shows that the users were consistent in their lower rating of the
feature-based explanations regardless of observation, whereas our temporal
explanations were more variable in rating depending on observation. Further work is
required to understand the reason for these variances.

4.3.2 Skill Extraction Analysis

As our Skill and Plan Explanation requires a dataset of skills, we investigated the
extracted skills from Zahavy et al. (2016), referred to as algorithmically labelled, using
our two novel skill similarity metrics, Skill Alignment and Skill Distribution defined in
Section 4.2. Using an Atari Breakout Rainbow agent, we extracted four episodes worth
of skills and additionally hand-labelled the episodes as a baseline comparison using the
following skills: “Skill 0 - Agent isn’t moving, waiting for the ball to get lower”; “Skill 1
- Agent moves left to hit the ball”; or “Skill 2 - Agent moves right to hit the ball”. These
skill labels were selected from previously viewing the episodes and summarising the
agent’s simple behaviour of sticking to the left or right of the screen until the ball
moved low enough to hit.

For well-differentiated skills, we expect our Normalised Skill Alignment Metric (Section
4.2.1) to find higher alignment given two instances of the same skill type compared to
different types. In Figure 4.8, we plot the mean Normalised Skill Alignment for 200
randomly selected instances of the column and row skill type for both the hand and
algorithmically labelled skills. We found that hand-labelled skills exhibit this expected
feature where the diagonal (same skills) has higher alignment than the rest of the matrix
(the alignment between different skills). In comparison, such a feature does not exist for
the algorithmically labelled skill, with only Skill 1 presenting an above-average skill
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FIGURE 4.8: The skill alignment of two sets of skills for the hand-labelled and
algorithmically-labelled trajectories.

alignment of 0.78 compared to the average of 0.52. This implies that algorithmically
labelled skills 0, 2 and 3 all lacked a distinctive subsequence of common actions
compared to the other skills and, possibly, a common purpose. This is partially
unsurprising as Zahavy et al. (2016)’s clustering algorithm does not consider the actions
taken by the agent.

In common with the Skill Alignment metric, for the Skill Length Distribution (Section
4.2.2), using well-defined skills, we expected each skill to have a similar length. Figure
4.9 presents a stacked histogram of skill lengths for the hand and algorithmically
labelled skills along with the optimal Poisson distribution for the Skill Length
Distribution metric. We again found that the algorithmically labelled skills did not
follow the expected Poisson distribution largely due to the range of skill lengths, with
some being just a single action while others being several hundred. In comparison, we
found that the distribution of hand-labelled skill lengths more closely matched the
expected Poisson distribution.

Using our two novel skill metrics, we found that the algorithmically labelled skills often
lacked a common sequence of actions or pattern in their length, particularly when
compared to human-labelled skills. Therefore, further work should investigate the
effectiveness of alternative skill discovery algorithms using our metrics.

4.4 Discussion

In this chapter, we developed novel explanation mechanisms for understanding and
visualising agent behaviour and future decision paths based on a dataset of prior
collected observation-action. Two mechanisms do not utilise domain knowledge, while
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FIGURE 4.9: A stacked histogram of skill lengths of hand-labelled and algorithmically
discovered skills. The skill lengths were clipped to 70.

the third requires knowledge only for each agent’s skills (Section 4.1). An additional
impact is that these are one of the first RL explanations designed around videos as the
medium to communicate an agent’s decision-making. These explanations are
demonstrated in the Atari 2600 environments, and we anticipate that the approach will
be scalable to robotics or more complex domains such as chess with minimal changes.
One of these changes is modifying the embedding encoder to an Autocoder (Bank et al.,
2023) that learns the vital data from observations or neural network activations rather
than filtering using PCA and embedding with t-SNE, as in this chapter. We utilise this
approach in Chapter 6. Furthermore, we propose two novel skill metrics for measuring
the coherence of agent skills, as we assume that explaining an agent’s skill requires
them to be consistent and intelligible (Section 4.2). Importantly, we found that using
these metrics for algorithmically discovered skills, using Zahavy et al. (2016), lacked the
coherence of skills labelled by a domain expert (Section 4.3.2).

Finally, in this chapter, from our user evaluation, we find that users rated all our
proposed explanations higher across four areas (understanding, detail, satisfaction, and
prediction) than two feature-based explanations. Further, when asked to explicitly
select the preferred explanations for an observation, users preferred our explanation on
average 83.3% over the feature-based explanations. This was raised to 100% for the plan
explanations against both feature-based explanations tested.

Despite these remarkable user preferences in Figures 4.4 and 4.6, it is unclear how to
unify the results from Sections 4.3.1 and 4.3.2. In Section 4.3.1, we find that users rate
our explanations, in particular Skill and Plan Explanations, above the feature-based
explanations. In Section 4.3.2, however, we find that the skills discovered lacked
coherence compared to human-labelled skills. We hypothesise two reasons for the
difference in results. First, with the significant difference in what the explanation
methods describe, feature-based explanations highlight an agent’s focus while the
temporal explanation showcases the possible near future decisions of the agent, users
might significantly prefer this future knowledge of the agent’s observational
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importance. This means that even if the temporal explanations had flaws, users still
preferred them over the feature-based explanations. For example, when validating the
feature-based explanation implementations, we found that the saliency-map image
could be unintelligible, with seemingly unimportant areas of observation for humans
being highlighted or viewed as highly important. In contrast, our temporal explanation
videos are significantly more straightforward to understand, demonstrating what the
agent has previously done. Secondly, the user survey conducted only used
self-reported/subjective questions, i.e., user preference or understanding, without any
questions that validate if users actually understood or could use the explanations to do
something. This lack of an objective question means we can only infer that users
significantly preferred our temporal explanations, not that the explanations are actually
more effective. This limitation of the user survey is rectified in Chapter 6, where users
are asked to use various explanations to predict known objective data about several
agents, for which we find the Dataset Similarity Explanation still highly effective.
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Chapter 5

Explaining an Agent’s Future Beliefs
through Temporally Decomposing
Future Reward Estimators

While found to be effective in a user survey, the video-based explanations of Chapter 4
required extracting skills from pre-trained agents, which we found lacked coherence
and consistency compared to human-extracted skills (Section 4.3.2). This highlights one
of the weaknesses of post-hoc explanations that neural networks, when not explicitly
trained on a task, i.e., learning discrete skills, extracting such information is highly
complex and difficult to confirm truthfulness to the original model’s decision making.
In this Chapter, we investigated how agent training and architecture can be modified to
explicitly output temporal information about the agent’s decision-making that can be
explained, avoiding the problems associated with post-hoc explanations.

Central to RL agents is a future reward estimator (Q-value, Eq. (2.2) or state-value
function, Eq. (2.3)) predicting the sum of future rewards for a given state. These
functions are used either explicitly in the policy itself (e.g., DQN (Mnih et al., 2015)) or
for learning with a critic (e.g., PPO (Schulman et al., 2017) and TD3 (Fujimoto et al.,
2018)). However, few XRL algorithms have devised methods to explain these functions
directly. One problem is that their scalar outputs provide no information on its
composition (i.e., when and what future rewards the agent believes it will receive), just
its expected cumulative sum.

An example of this problem is illustrated in Figure 5.1, where a drone has two paths: up
or down. Depending on the path taken, the drone can receive coins for 1 point each or
the treasure chest for 4 points. Using a discount factor of 0.95, the drone’s Q-value for
moving up is 3.26 while moving down is 3.52. Despite this small difference in Q-values,
the quantity and temporal immediacy of these expected rewards are radically different;
moving up, the drone receives a single large reward, while moving down receives many
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Future Reward Estimators

FIGURE 5.1: Example Gridworld with an agent and two paths (up and down) that
contain different rewards.

smaller rewards. A fact unknown from observing the Q-values alone, although critical
to agent behaviour in selecting whether to move up or down and importantly is
impossible to diagnose in more complex environments, e.g., Atari or Robotics.

To solve this, we propose a novel future reward estimator that predicts the agent’s next
N expected rewards for a given state, referred to as Temporal Reward Decomposition
(TRD) (Section 5.1). We prove that TRD is equivalent to the scalar Q-value and
state-value functions. In this way, TRD can report the temporal immediacy and quantity
of future rewards for different action choices, enabling decisions to be explained and
contrasted. For example, using Figure 5.1, the agent’s TRD Q-value for moving down is
[0, 0.95, 0.90, 0.86, 0.81] and moving up is [0, 0, 0, 0, 3.26], enabling us to produce
explanations such as “while the sum of actual rewards is equal, taking the route down
has more immediate rewards, which are preferred by the drone due to its discount
factor”.

Implementing TRD requires only two changes to a deep RL agent’s future reward
estimator: increase the network output by N+1 for predicting the future rewards and a
novel element-wise loss function of future rewards (Section 5.1). Importantly, TRD can
achieve similar performance as DQN (Mnih et al., 2015) agents for Atari environments
(Bellemare et al., 2013) across a wide range of N (Section 5.2).

Building on this direct access to an agent’s predictions for individual future rewards, we
explore three novel applications for understanding an agent’s decision-making (Section
5.3). The first is to generate explanations for an action choice based on when and what
rewards it will receive and, for particular environments, the agent’s confidence in
collecting a reward (Section 5.3.1). Importantly, as TRD exposes the agent’s predictions
of the future, we refer to these as future beliefs or confidence of collecting particular
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individual rewards. The second explains how the importance of an observation feature
changes depending on how far into the future a reward is expected, e.g., identifying
features that are more relevant for earlier rewards (Section 5.3.2). Thirdly, we produce
contrastive explanations using the difference in future expected rewards for two actions,
which can reveal changes in expected rewards the agent will receive between them
(Section 5.3.3). Together, these three explanation mechanisms demonstrate the value of
Temporal Reward Decomposition for XRL.

In summary, this chapter contributes the following to the state-of-the-art in XRL:

Temporally Decomposed Future Reward Estimator (Section 5.1) - We propose a
novel future reward estimator that outputs the expected rewards for the next N
timesteps (Eq. (5.6)). Using the Linearity of Expectation, we prove our
decomposed future reward estimator is equivalent to the standard scalar
estimator. We propose a novel loss function to learn the estimator using an
element-wise mean-squared error.

Scaling TRD to Atari environments (Section 5.2) - We show that pretrained DQN
agents for Atari environments can be efficiently retrained to incorporate TRD with
minimal impact on agent performance. Testing across a range of hyperparameters
for the number of decomposed timesteps and timestep widths demonstrates
neither has a significant impact on final agent performance. Additionally, we find
that the retrained agent learns Q-values similar to those of the original agent.

Explaining Decomposed Future Rewards (Section 5.3) - We propose three
explanation approaches that utilise TRD’s decomposed rewards. First, we show
how TRD explicitly provides the agent’s understanding of when and what
quantity rewards it will receive and their confidence in them. Second, by adapting
prior saliency map algorithms, we show that an observation feature has temporal
importance, such that its influence on an agent’s decision-making varies
depending on the temporal immediacy of the predicted reward. Third, we present
a contrastive explanation for two actions to highlight the difference in when and
what rewards the agent expects to receive.

5.1 Temporally Decomposed Future Reward Estimators

As illustrated in Figure 5.1, due to the scalar output of future reward estimators (i.e.,
Q-value and state-value functions), their reward composition cannot be known,
preventing understanding when and what future rewards the agent expects to receive.
We, therefore, propose a novel future reward estimator (Eqs. (5.6)), referred to as
Temporal Reward Decomposition (TRD), that predicts an agent’s next N expected
rewards. Furthermore, we prove its equivalence to scalar future reward estimators and
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provide a bootstrap-based loss function to learn the estimator (Eq. (5.14)). For
consistency, all equations in this section are for the Q-value with TRD-based state-value
equations in Appendix A.

Before defining our TRD-based future reward estimators, to prove their equivalence to
scalar future reward estimators (Eq. (5.7)), we first prove that the expected sum of
future rewards is equivalent to the sum of expected future rewards enabling the
decomposition of rewards in Eq. (5.6): Theorem 5.1.1 This theorem swaps the position
of the summation and expectation operators (∑ and E), proving that rather than
learning the expected sum of rewards for all time (Eq. (2.2)), this equation can be
decomposed. We rely on this theorem for Eqs. (5.7) and (5.9) to prove that our novel
functions are equivalent to standard scalar Q-values, preserving any properties of the
original agent to be explained.

Theorem 5.1. Given a state s and action a, the expected sum of rewards is equal to the sum of
expected rewards, more precisely
Eπ

[︁
∑∞

i=0 γiRt+i|St = s, At = a
]︁
≡ ∑∞

i=0 Eπ[γiRt+i|St = s, At = a] for all s ∈ S and a ∈ A.

Proof.

Eπ

[︄
∞

∑
i=0

γiRt+i

⃓⃓⃓
St = s, At = a

]︄
(5.1)

=Eπ

[︄
Rt +

∞

∑
i=1

γiRt+i

⃓⃓⃓
St = s, At = a

]︄
(5.2)

=Eπ[Rt|St = s, At = a] + Eπ

[︄
∞

∑
i=1

γiRt+i

⃓⃓⃓
St = s, At = a

]︄
(given LoE1) (5.3)

=Eπ[Rt|St = s, At = a] + Eπ[γRt+1|St = s, At = a]

+ Eπ

[︄
∞

∑
i=2

γiRt+i

⃓⃓⃓
St = s, At = a

]︄
(5.4)

=
∞

∑
i=0

Eπ[γ
iRt+i|St = s, At = a] (5.5)

Using the notation in Section 2.1, we propose Eq. (5.6) that outputs a vector of the next
N expected rewards with the last element being equal to the cumulative sum of
expected rewards from N to ∞. Each element i refers to the expected reward in t + i
timesteps, with the final element being the sum of rewards beyond N timesteps. Using
Theorem 5.1, Eq. (5.6) is provably equivalent to the scalar Q-value by summing over the

1Linearity of Expectation (LoE) is a property that any expectation can be split into its linear components,
even for dependent random variables (Stirzaker, 2003, Page 166).
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array elements (Eq. (5.7)) through expanding Eq. (5.4) with N+1 expectations.
Critically, this equivalence is not reversible such that given a scalar Q-value, Eq. (5.6)
cannot be known.

Implementing TRD within a deep RL agent’s future reward estimator requires two
primary changes. The first is increasing the neural network output by N+1; i.e., the size
of Eq. (5.6) for predicting the next N future rewards. The second is the loss function (Eq.
(5.14)) for the network to learn Eq. (5.6). Additionally, as the network now outputs a
vector of future rewards rather than a scalar, for action selection and other applications,
qπ can be recovered by summing across vector elements before being applied as normal.
We provide a single-file implementation of a DQN-modified TRD training algorithm
using Gymnasium (Towers et al., 2024c) on Github2.

qTRD
π (s, a) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Eπ[Rt|St = s, At = a]

Eπ[γRt+1|St = s, At = a]
...

Eπ[γN−1Rt+N−1|St = s, At = a]

Eπ

[︁
∑∞

i=N γiRt+i|St = s, At = a
]︁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.6)

∑ qTRD
π (s, a) ≡ qπ(s, a) ∀s ∈ S, ∀a ∈ A (5.7)

For long-horizon environments where an agent may take hundreds or thousands of
actions, TRD is limited in scale as the number of predicted rewards scales linearly with
the number of output neurons. We, therefore, propose an alternative approach to
preserve the temporal distance that can be explained using a fixed number of output
neurons. Rather than each vector element predicting an individual reward, Eq. (5.8)
groups rewards in each vector element; e.g., for pair grouping
[Rt + Rt+1, Rt+2 + Rt+3, . . . ]. This approach, denoted w for the reward grouping size,
scales linearly with the number of future rewards by w for a fixed N such that the total
number of predicted rewards N · w. Importantly, like Eq. (5.6), Eq. (5.8) is equivalent to
the Q-value by summing across elements (Eq. (5.9)) using N · w + 1 expansions of Eq.
(5.4). Additionally, for w = 1, Eq. (5.8) is equivalent to Eq. (5.6) and implementation
only requires utilising an N-step (Sutton and Barto, 2018) experience replay buffer to
compute the sum of the first w rewards and the next observation in w timesteps.

2https://github.com/pseudo-rnd-thoughts/temporal-reward-decomposition

https://github.com/pseudo-rnd-thoughts/temporal-reward-decomposition
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qTRD
π (s, a) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Eπ[Rt|St = s, At = a] + · · ·+ Eπ[γw−1Rt+w−1|St = s, At = a]

Eπ[γwRt+w|St = s, At = a] + · · ·+ Eπ[γ2w−1Rt+2w−1|St = s, At = a]
...

∑Nw
i=(N−1)w Eπ[γiRt+i|St = s, At = a]

Eπ[∑∞
i=Nw γiRt+i|St = s, At = a]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.8)

∑ qTRD
π (s, a) ≡ qπ(s, a) ∀s ∈ S, ∀a ∈ A (5.9)

As a result, N and w present a trade-off between the reward vector size (N) and precise
knowledge of each timestep’s expected reward (w). For example using Figure 5.1, if
w = 2 and N = 2 then the qTRD

π for moving up is [0, 0, 3.26] as [0 + 0, 0 + 0, 3.26] and
moving down is [0.95, 1.76, 0.81] as [0 + 0.95, 0.90 + 0.86, 0.81]. Furthermore, to predict,
for example, the next 30 rewards, N = 30, w = 1 and N = 6, w = 5 are both valid
parameters. We explore the impact of these parameters on training in Section 5.2.

Through experiment, we found that converting qTRD
π to qπ by summing over elements

(Eq. (5.7)), then using the scalar loss function (Eq. (2.7)) does not converge to qTRD
π .

Therefore, based on the Q-learning loss function (Eq. (2.7)), we define a novel
element-wise mean squared error of reward vectors (Eq. (5.14)) where a′ denotes the
optimal next action (arg maxa∈A ∑ qTRD

π (st+w, a)) and we use the following notation to
index an element of the reward vector:

qTRD0
π (s, a) = Eπ[Rt|St = s, At = a] (5.10)

qTRD1
π (s, a) = Eπ[γRt+1|St = s, At = a] (5.11)

qTRDN
π (s, a) = Eπ[γ

N−1Rt+N−1|St = s, At = a] (5.12)

qTRDN+1
π (s, a) = Eπ

[︄
∞

∑
i=N

γiRt+i|St = s, At = a

]︄
(5.13)

For Eq. (5.14), we construct a predicted and bootstrap-based target value (cf.
Q-learning), computing the element-wise mean squared error of the predicted and
target reward vectors. The prediction is the reward vector for the action taken in state t,
qTRD

π (st, at). For the target, the first element is the actual reward collected (Rt to Rt+w)
followed by the reward vector for the optimal action in st+w, qTRD

π (st+w, a′), shifted
along one position with the last two elements combined. We do this because element i
of the reward vector, qTRDi

π (st, at), refers to the predicted reward in t+i timesteps, for the
next observation, t+w, the equivalent reward vector element is i−1 in the target vector,
γqTRDi−1

π (st+w, a′).
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LTRD = E(st,at,Rt+i ,st+w)∼D

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(︂
qTRD0

π (st, at)− ∑w
i=0 Rt+i

)︂2

(︂
qTRD1

π (st, at)− γwqTRD0
π (st+w, a′)

)︂2

(︂
qTRD2

π (st, at)− γwqTRD1
π (st+w, a′)

)︂2

...(︂
qTRDN

π (st, at)− γwqTRDN−1
π (st+w, a′)

)︂2

(︂
qTRDN+1

π (st, at)− γw(qTRDN
π (st+w, a′) + qTRDN+1

π (st+w, a′))
)︂2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.14)

Importantly, this loss function can be efficiently implemented into code with our
example pseudocode in Appendix D.

5.2 Retraining Pretrained Agents for TRD

The goal of Temporal Reward Decomposition (TRD) is to provide information about an
agent’s future expected rewards over time so that we can use this information to better
understand its behaviour. For this to be practically effective, TRD agents should be
capable of achieving performance similar to the associated RL agents. In this section, we
evaluate the performance of DQN agents (Mnih et al., 2015) that incorporate TRD for a
range of Atari environments (Bellemare et al., 2013) and assess the impact of TRD’s two
hyperparameters on training: reward vector size, N and reward grouping, w.

We conduct hyperparameter sweeps across each independently, varying N, w, and
N · w, across three Atari environments (Breakout, Space Invaders and Ms. Pacman),
each containing different reward functions. To account for variability in training, we
repeat our hyperparameter sweeps three times. The training hyperparameters and
hardware used in training, along with the agent’s final scores, are presented in
Appendix B. Rather than training agents from scratch for these environments, we use
open-sourced pretrained Atari agents (Huang et al., 2023) and the QDagger training
workflow (Agarwal et al., 2022) described in Section 2.2. Training scripts and final
neural network weights for all runs are provided in the associated GitHub repository.

Using periodic evaluation on the same ten seeds, Figure 5.2 plots the teacher normalised
interquartile mean (Agarwal et al., 2021) of the episodic reward. We find that all three
hyperparameter sweeps enable the agent to approach the pretrained (teacher) agent’s
score, with neither parameter having a significant detrimental impact. Only the offline
training for a constant temporal distance (N · w = 24) does agents with smaller values
of w show a greater initial performance, however, this difference is resolved during the
online training stage.
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b) Sweep over the rewards grouped (w) with N=5
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FIGURE 5.2: Interquantile mean training curves for Atari TRD-DQN agents for three
environments (Breakout, Space Invaders, and Ms Pacman) with three repeats, nor-
malised by the teacher’s score. Offline and Online indicate where training used the

offline replay buffer and the online environment steps.

Interestingly, for the sweep of N, we did not find any degradation in performance,
which was unexpected as we believed that larger values of N would require more
training to reach the same performance. As a result in Section 5.3, we trained agents
with N=40, w=1. Further work is required to understand if these performance curves
hold for larger values of N and more complex environments or agents.

To verify that our TRD loss function (Eq. (5.14)) converges to a policy similar to the
pretrained agent’s scalar Q-value. Figure 5.3 plots the mean squared error between the
pretrained DQN agent’s and TRD agent’s Q-values during training. We find all
parameters get close to the pretrained agent’s Q-value with w=1 being an important
factor.

Regarding the computation impact of incorporating TRD, we found that our
QDagger+TRD DQN agents took ≈ 10% fewer steps per second than our base DQN
agents, 248 to 274 steps per second, respectively. This performance will be jointly
caused by QDagger requiring an additional forward pass from the teacher agent and
TRD using a larger network output and a more complex loss function.
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b) Sweep over the rewards grouped (w) with N=5
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FIGURE 5.3: The Mean Squared Error between the student (TRD agent) and pretrained
teacher agent averaged over three Atari environments with three repeats. Offline and
Online indicate where training used the offline replay buffer and the online environment

steps.

5.3 Explaining an Agent’s Future Beliefs and Decision-Making

Utilising TRD’s access to the agent’s future rewards, in this Section, we explore how this
information can be used to inform our understanding of the agent’s beliefs about the
future for a given observation, i.e., their future beliefs. We present three novel
explanation mechanisms using TRD’s future expected rewards: understanding what
rewards the agent expects to receive and when, and their confidence in this prediction;
visualising an observation feature’s importance for predicting rewards at near and far
timesteps; and a contrastive explanation using the difference in future rewards to
understand the impact of different action choices (Sections 5.3.1, 5.3.2, and 5.3.3
respectively). We showcase these applications using three different Atari environments
with more examples in Appendices C, D, and E. All agents were retrained DQN agents
incorporating TRD using N=40 and w=1.

5.3.1 What Rewards to Expect and When?

For environments with complex transition dynamics or reward functions such as Atari,
understanding how an agent maximises its future rewards or predicting what rewards
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it will receive and when is impossible, unlike with the toy example illustrated in Figure
5.1. We show here how a TRD agent’s predicted future rewards supply this information,
presenting an important explanatory perspective for understanding agent decisions.
Furthermore, for environments with binary reward functions (i.e., where the rewards
are either zero or a constant value), the agent’s expected reward can be further
decomposed into the probability of the reward function components. Atari uses integer
rewards, and DQN agents clip rewards to -1 to 1, so for these examples, the agent’s
probability of collecting a reward is equivalent to the reward’s expectation.

FIGURE 5.4: A Space Invaders observation (left) with the respective predicted next 40
future expected rewards (right)
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FIGURE 5.5: A Breakout observation (left) with the respective predicted next 40 future
expected rewards (right)

Figures 5.4 and 5.5 plot the agent’s expected rewards over the next 40 timesteps for the
observation on the left. As w=1, the discount factor is constant for each predicted
timestep, and so we factor it out, leaving just the expected reward. Without domain
knowledge of each environment and its reward functions, we can observe from the
expected rewards plots that the agent expects periodic non-zero rewards every 8 to 9
timesteps for Space Invaders and every 15 timesteps for Breakout. Additionally,
considering that the expected rewards (for these environments) are equivalent to the
agent’s confidence (probability) in receiving a reward for a particular timestep, users
can infer that the agent’s confidence reduces over time for the specific timestep that the
agent will receive a reward. As such, for space invaders, the agent has high confidence
for the close timesteps (t+6 and t+15), with the expected rewards for the third and
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fourth rewards being distributed across several timesteps (t+23 to t+24 and t+30 to
t+40).

Further, utilising domain knowledge of each environment, Figures 5.4 and 5.5 correlate
with our understanding as agents can only shoot aliens or break bricks periodically.
Additionally, as the policy is stochastic due to epsilon-greedy action selection and with
randomness in the environment, the uncertainty of timesteps far in the future is
unsurprising and matches with human expectations.

Building on the two figures, we can generate videos of the agent’s expected rewards
across entire episodes, plotting the expected reward for each observation. For the Atari
environments tested, we find that future rewards move like waves towards the current
timestep, demonstrating the agent’s clear understanding of future rewards. Example
videos are provided in the associated GitHub repository and contain significant
additional context for users to visualise how the agent’s predicted future rewards
change over time as the environment’s state evolves.
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FIGURE 5.6: A Ms. Pac-man observation (left) with the respective predicted next 40
future expected rewards (right)

Observation t+1 t+6 t+12 t+17 t+23 t+28 t+34 t+40
Future time step

0.0

0.1

0.2

0.3

Ex
pe

ct
ed

 R
ew

ar
d

FIGURE 5.7: A Seaquest observation (left) with the respective predicted next 40 future
expected rewards (right)

As a result, we anticipate that TRD has the potential to aid researchers and developers
in debugging RL agents; Figure 5.4 and the related videos provide novel information
about an agent’s future beliefs and its understanding of an environment’s reward
function.
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5.3.2 What Observation Features are Important?

Understanding the areas of an input that have the greatest impact on a neural network
is a popular technique for generating explanations, called saliency maps. These allow
users to visualise what features of an observation most influence an agent’s decision.
With access to an agent’s beliefs about its future expected rewards, TRD provides novel
saliency map opportunities to understand how the agent’s focus with respect to an
observation varies.

Utilising GradCAM (Selvaraju et al., 2017) (a popular saliency map algorithm described
in Section 3.2.1), we can select individual expected rewards as the output to discover its
feature importance. Figure 5.8 plots an Atari Breakout observation and the normalised
feature importance for the expected reward of the next timestep (t+1) and the most
distance expected reward (t+40) along with their normalised difference. The feature
importance plots highlight areas of focus (red), influencing its decision and ignored
areas (blue). We find that the agent’s focus on the ball and bricks varies depending on
how far in the future a reward is predicted. For the t+1 feature importance, the agent is
highly focused (shown in red) on the ball in the centre. In comparison, for t+40, the
agent focuses more on the bricks than the ball. Using domain knowledge of the
environment validates human expectations as the number of bricks left and their
position will have greater long-term importance to the agent than the ball. This
difference is highlighted when subtracting the feature importance of t+1 from t+40
such that the ball’s importance is significantly lower (shown in blue) and the bricks
have relatively greater importance (shown in red).

To help visualise this change in an observation feature’s importance across each
predicted future reward, we provide a video of Figure 5.8 within the associated GitHub
repository. Additionally, we provide a video of an episode plotting the first and last
predicted reward’s feature importance for each timestep. Like visualising an agent’s
expected reward in Section 5.3.1, Figure 5.8 and videos can help researchers and
developers understand in what context a feature has importance for an agent.
Previously, it was only possible to understand a feature’s importance to predict the
agent’s total reward, whereas TRD provides us with the ability to investigate the
importance of features in a more granular way.

5.3.3 What is the Impact of an Action Choice?

Within an environment, there are often multiple (possibly similar) paths to complete a
goal, with humans interested in understanding the differences between them (e.g.,
Figure 5.1). Contrastive explanations are a popular approach to understanding the
reasons for taking one decision over another. In our case, this is the choice between two
alternative actions in some state (Miller, 2021). With the future expected rewards, TRD
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FIGURE 5.8: GradCAM saliency maps for the t + 1 and t + 40 expected reward along
with their difference for a Breakout observation.

provides additional information to compare and contrast states and actions using what
rewards the agent expects to receive and when along different paths. In this section, we
show how simple explanations only using the timestep-wise difference in expected
rewards can help understand an action’s impact on an agent’s future rewards.

Figure 5.9 shows the expected reward for taking no action (noop) and firing and the
differences between the expected reward for noop and firing in the Atari Seaquest
environment. The right-hand side figure shows that the difference in future rewards
produces a positive and negative spike, after which the expected rewards converge. We
can infer from these spikes that if the agent fires rather than noop then there is a more
immediate reward, whereas if the agent waits, taking no action, the reward is delayed
resulting in a later spike. Crucially, this difference in reward outcomes is resolved
afterwards, causing no long-term difference in the agent’s expected rewards. Using
domain knowledge, we can assume that this means if the agent doesn’t fire in this
timestep, it will most likely fire in the following timestep or soon after, thus receiving a
slightly delayed reward.

Collectively, with the explanations from Sections 5.3.1 and 5.3.2, contrastive
explanations provide a greater understanding of an action’s impact on an agent’s future
rewards.
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FIGURE 5.9: The difference of each future expected reward for taking Fire and Noop
actions of the observation for the Atari Seaquest environment.

5.4 Discussion

In this chapter, we identified a novel problem for XRL when describing future reward
estimators (i.e., Q-value or state-value) that their scalar nature makes explaining the
differences between two actions impossible in some cases. To address this novel
problem, we propose TRD using a novel future reward estimator to output the next N
expected rewards, which can be easily implemented through modifying an agent’s
neural network output and their loss function (Eqs. (5.6) and (5.14)). Critically, this
estimator cannot be reverse-engineered from a state’s reward and must be learnt as a
separate function. Due to the TRD estimator’s provable equivalence to scalar future
reward estimators (Theorem (5.1) and Eq. (5.7)), TRD can be incorporated into all deep
reinforcement learning algorithms, adding the capability to output and explain an
agent’s future expected rewards.

Extending DQN, we show in Section 5.2 that TRD agents can achieve performance
approximating standard scalar DQN agents within 4 million frames (with the help of
QDagger (Agarwal et al., 2022)), 10x less than the base agent. Importantly, we found
that this performance held across a range of TRD hyperparameters, the number of
reward bins, bin widths, and the reward distance. We were surprised by this result as
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FIGURE 5.10: The difference of each future expected reward for taking Left and Right
actions of the observation for the Atari Riverraid environment.

we expected the number of bins to negatively impact training efficiency and possible
performance. In particular, we feared the problem of bootstrapping (Sutton and Barto,
2018, Page 264), where the agent uses itself to improve, would be exacerbated compared
to scalar agents due to numerous distinct though interlinked outputs with each bin. We
believe that QDagger’s offline training stage, originally utilised to minimise training
time, had the unexpected impact of strongly preventing individual reward outputs
from diverging during training, which could cause unexpected policy collapse.

As TRD agents learn similar Q-values (and performance) to the base agent, closely
mimicking the base scalar DQN agent, the TRD agent can be used either as an explainer
of the base DQN agent or as the actual policy replacing the DQN agent with
incorporated explainable capability. However, this research does have limitations.
Primarily is that TRD can only explain the next N rewards that can cause problems
explaining environments with highly sparse rewards for which we propose a solution
in Chapter 7. An additional weakness of this research is the lack of user evaluation and
that the explanations provided in Section 5.3 require a prior understanding of RL to
interpret the future expected rewards. For both of these weaknesses, we address them
in Chapter 6.
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Chapter 6

A Comparative User Evaluation of
Goal Identification using
Explanations

In Chapters 4 and 5, we researched and developed novel temporal explanations for
deep reinforcement learning, explaining the impacts of actions on future states and
rewards for pre-trained agents and architecturally modified agents, respectively. In this
Chapter, we primarily focus on the design of a novel comparative user evaluation
methodology for XRL, addressing limitations identified in prior research (Section 3.3)
and Chapter 4’s user survey (Section 4.3.1).

Before proposing our method for comparative user evaluation of XRL methods,
however, we explore one of the limitations of our explanation mechanisms for TRD
(Section 5.3): the need for users to have sufficient technical knowledge to interpret the
presentation of an agent’s future expected rewards (e.g., Figure 5.6). This limitation is
expected to be more significant when presenting explanations to a general audience
rather than technical experts. Therefore, in Section 6.1, we improve TRD’s
interpretability by adding natural language summarisation of an agent’s future
expected rewards through a large language model (LLM), referred to as TRD
Summarisation. This was opted for over natural language templating as Brown et al.
(2020) has demonstrated that LLMS have the capacity, with a few example questions
and answers, to generalise for unseen tasks not in their training dataset. Thus, the
approach for generating explanations is not limited to the structure or context designed
in the language template, but can adapt to a range of domains without further
fine-tuning due to the general knowledge and understanding of LLMs. We showcase
this novel summarisation for when and what rewards an agent expects to receive with
GPT4o (Hurst et al., 2024), a state-of-the-art multi-modal LLM in Table 6.1 across several
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atari environments and with prompts that contain no domain knowledge and prompts
that describe the environment’s reward function and the current observation.

Next, building upon the surveys discussed in Section 3.3 and conducted in Chapter 4,
Section 6.2 sets out a novel comparative user evaluation centred on whether
explanations can be used to debug agent behaviour. This evaluation aims to simulate
the real-world task of: (i) understanding what an agent is doing; (ii) what (sub)goals it
is working towards; and (iii) why. In particular, for the same environment, we train
unique agents to optimise different reward functions, producing policies that work to
accomplish different goals with different goals. Using these different policies, selecting
one at random, we test whether an explanation allows users to identify the agent’s goal.
We pair each “Which task?” question with questions to elicit the user’s confidence in
their selection, the clarity of the explanation, and how easy the user found identifying
the task. This combination of questions allows us to investigate correlations among
users’ judgements with their confidence and assessments of how good/helpful an
explanation is.

In Section 6.3, we analyse the survey results for 100 participants, evaluating how
effective each explanation mechanism was, the relationship between user confidence
and goal accuracy, and overall user opinions of the explanations. Of the four tested
mechanisms, our temporal explanations (Dataset Similarity Explanations and TRD
Summarisation) had the highest accuracy of 53.0% and 34.9%, respectively, compared to
two baseline algorithms (Optimal Action Description and Specific and Relevant Feature
Attribution) of 28.7% and 22.5% where 25% is the expected accuracy for random
guessing. We find that explanation mechanism accuracy can vary depending on the
goal being explained, the time taken can correlate to the user’s accuracy, and no user
characteristic was correlated to user performance.

In summary, this Chapter contributes the following to the state-of-the-art in XRL:

• We demonstrate the application of LLMs to summarise an agent’s future expected
rewards, testing several prompts containing varying levels of domain knowledge
across several environments. For carefully designed prompts, we find that
high-quality summaries of an agent’s future expected rewards can be generated
even without environmental domain knowledge. Furthermore, including domain
knowledge of the reward function further improved the summaries, allowing
simpler and contextually aware explanations.

• We propose a novel evaluation methodology for testing if survey participants can
debug/identify an agent’s goal. This methodology involves asking users to
identify the task an agent is completing from among a fixed set of alternatives to
assess mechanism effectiveness. We pair these objective questions with subjective
questions, testing whether algorithmic effectiveness correlates with user
preference.
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• Across 100 participants, we demonstrate that users’ self-reported confidence,
understanding, and ease of identification are weakly correlated with their goal
prediction accuracy and vary between explanation mechanisms. Further, we find
that a user’s average confidence is very weakly correlated with their accuracy.

6.1 Natural Language Summarisation of Future Rewards

To explain a TRD agent’s future expected rewards, we plot a bar chart of each reward
for each timestep and describe the figures to the reader (e.g., Figures 5.4, 5.5, and 5.6).
Interpreting these figures requires some technical knowledge of reinforcement learning:
what an expected reward means and, optionally, domain knowledge of the particular
environment to understand what might lead to a reward. This is a limitation of the
explanation mechanisms that, without some technical knowledge, users may be
confused or misunderstand an agent’s future expected rewards. For this reason, we
investigate the use of natural language to explain the figure’s meaning to end-users
who may lack the technical knowledge to initially understand it. To generate this
natural language, we utilise LLMs rather than natural language templating due to their
ability to more easily adapt to new environments, contextual information, and
implementation speed. We investigate whether these natural language explanations of
an agent’s future expected rewards can reduce the quantity of technical or domain
knowledge necessary to understand the explanations. We refer to this novel explanation
mechanism as TRD Summarisation.

Large Language Models (LLMs) based on the Transformer architecture (Vaswani et al.,
2017) are designed to process sequential data and iteratively predict the next element of
the sequence. This approach has been successfully applied to text prediction, language
translation, image recognition, and more (Islam et al., 2023). Crucial for this work,
Brown et al. (2020) and Kaplan et al. (2020) have found that LLMs can exhibit novel
capabilities as the number of parameters increases. This is an important property for us,
as explaining an agent’s future reward will not be contained in any model’s training
dataset; however, explaining sequential data will be. Using domain knowledge to
condition the model on the task being asked and providing several examples for the
agent, we would expect LLMs of adequate size to generate reasonable summarisations
of the agent’s future expected rewards to users.

Prompt engineering is important when utilising LLMs, determining what information
the model acts upon. We consider three use cases of LLMs; the first is where the model
is provided with a technical description of what the data means and a list of rewards
but doesn’t contain a description of the environment or reward source; we refer to this
as a “zero-environment knowledge prompt”. This is important for applications with
minimal knowledge of the underlying environment or where we wish not to bias the
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user by including domain knowledge. The second includes environmental information,
describing what the game is, how it works, and when or why rewards are given to the
agent, referred to as an “environment knowledge prompt”. This prompt, using the
environment description, enables the model to infer possible sources of rewards for a
list of future expected rewards. Finally, the previous two methods did not incorporate
the agent’s observation into the model’s context, requiring the LLM to induce the cause
of the rewards for an unseen state. Utilising multi-modal LLMs allows the images, text,
sound or videos to be simultaneously processed to condition the model’s output. For
multi-modal LLMs, we can prompt the agent with the environmental details and
observation context, referred to as an “environment+observation knowledge prompt”.
Including the observation for the model could enable it to link the observational
features to the future expected futures to improve the contextual information of the
future reward summary.

System You are an assistant providing summaries of an agent’s predicted rewards
in future timesteps playing a sequential game. Help describe in a one-
sentence summary the pattern of rewards, highlighting how far in the future
this happens, if the pattern is periodic or consistent, positive or negative, etc.
Ignore rewards close to zero compared to the rest of the pattern, as this is
related to data noise.

User [0, 0, 0, 0, 4, 0, 0]

Assistant The agent expects a reward of 4 in 5 timesteps

User [1, 1, 1, 1, 1, 1]

Assistant The agent expects consistent positive rewards

Prompt 1: Zero-enviornment knowledge prompt

In designing these prompts, we found several important components crucial to their
effectiveness. For the zero-environment knowledge prompt (Prompt 1), first, “help
describe in a one-sentence summary the pattern of rewards” limits the model’s output
as we found GPT4o would produce longwinded explanations and additionally forces
the LLM to summarise the important aspects of the data, e.g., when the rewards
happen, if the reward pattern is periodic or constant, and if the rewards were positive or
negative. Second, as the TRD models were not extensively trained, the future expected
rewards can be relatively noisy around zero. As Atari environments have sparse
rewards, it was common for most timesteps to be around zero, causing the model to
describe this data, not the non-zero rewards. Therefore, the sentence “ignore rewards
close to zero compared to the rest of the pattern” helped prevent the LLM from
becoming distracted. Finally, we include two example prompts for the LLM, referred to
as few-shot examples, to help prime the model on the expected outputs it should
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produce. To prevent biasing the model for the task, we selected the expected future
rewards from Figure 5.1 with a very short summary of both moving up and down, as
they describe cases of dense and sparse future rewards to the model and the type of
answers we are interested in. Without these examples, we found that the model
reverted to answers closer to its training data, unrelated to what we wanted. Finally,
TRD agents predict an agent’s future rewards to five or six digits of precision, which is
unnecessary for the model or any human when understanding an agent’s beliefs.
Therefore, we round each future reward to 2 decimal places, helping reduce the
complexity of the data for the model and making any quoted expected rewards shorter.

System You are an assistant providing summaries of an agent’s predicted rewards
in future timesteps playing the Atari game Breakout. In the game Breakout,
the agent receives a reward of 1 each time the ball breaks a brick. Help
describe in a one-sentence summary the pattern of rewards, highlighting
how far in the future this happens, the agent’s confidence (as the reward is
either 1 or 0, then expected rewards are equivalent to the probability of the
agent breaking a brick), etc. Ignore rewards close to zero compared to the
rest of the pattern, as this is related to data noise.

User [0, 0, 0, 0, 1, 0, 0]

Assistant The agent will break a brick in 5 timesteps

User [1, 1, 1, 1, 1, 1]

Assistant The agent expects to break a brick every timestep

Prompt 2: Environment knowledge prompt for Atari Breakout

For the environment knowledge prompts (Prompt 2), we change two details from the
zero-knowledge prompt. First, we add a description of the environment’s reward
function, explaining what the rewards are related to, e.g., for Breakout, “the agent
receives a reward of 1 each time the ball breaks a brick”. Given this, we updated the
few-shot examples for each environment to match the reward function description.
Second, as the Atari rewards are clipped between -1 and 1 for environments with only
positive or negative rewards, a timestep’s expected reward is equivalent to the
probability of the non-zero reward happening. We include the “the agent’s confidence
...“ statement in our prompt, explaining that the expected rewards should be interpreted
as the probability of the reward, enabling the model to rationalise the expected rewards
in terms of overall confidence in the reward happening. This prevented the model from
believing that, for example reward of 0.84, the agent would receive a reward of 0.84, but
rather, there is an 84% chance of getting a reward of 1. Despite not using this confidence
analysis in our few-shot prompts, we found the models highly capable of incorporating
this knowledge into their summaries. See Table 6.1 for examples.
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To compare these prompts, we test across three Atari environments (Breakout, Ms
Pacman, and Space Invaders) with GPT4o (Hurst et al., 2024), a state-of-the-art
multi-modal LLM. We decided against using time series LLMs (Zhang et al., 2024),
designed for very long series of high-dimensional data, as the data used in this work is
scalar and relatively short (40 elements long), meaning that time series specialisation
was unnecessary. Table 6.1 showcases the three prompts across six observations.
Prompt 1 is the zero-environment knowledge prompt, and Prompt 2 is the
environment-knowledge prompt specialised for Atari Breakout. Appendix E contains
the specialised prompts for Space Invaders and Ms Pacman.
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6.2 Comparative User Evaluation Design

Outlining XAI in Section 2.3, we adopted a definition of explainability that requires an
explanation to accurately describe a model’s working and present this information in a
way that users can understand. Therefore, we view user surveys as a critical feedback
component of XAI research, testing whether a user understands an explanation and
whether it is effective in describing a model’s decision-making. This section outlines a
novel comparative user evaluation methodology centred on the practical problem of
identifying the goal that an agent is completing and testing if explanations can be
utilised for this task, referred to as goal identification.

Predict Agent Goal

Randomly 
select agent 

goal

Generate 
Explanation for 
Agent goal for 
observation

Goal 1

Goal 2

Goal 3

...

Randomly 
select 

observation

Match Actual and 
Predicted Goal

Show User the 
observation and 

Explanation

FIGURE 6.1: Flowchart of the Goal Identification Task

Figure 6.1 illustrates how we implement goal identification questions. For a common
environment, we implement several non-overlapping goals by modifying the reward
function.1 By training a unique agent for each reward function (i.e., goal), each agent’s
decision-making should produce unique reasoning to complete each goal. Given a
selected environment state and an agent trained for a goal, we can generate an
explanation of why the agent took the decision it did. From this environment state and
explanation of the agent’s decision-making, we ask users to select the goal description
that best describes the agent’s decision-making. This requires users to rationalise from
the explanation content to what goal could cause this explanation; i.e., users must
debug a model’s decision-making through explanations to determine the agent’s goal.

We implement this goal identification evaluation methodology for the Atari (Bellemare
et al., 2013) Ms Pacman environment, where we devise four goals (reward functions) by
intercepting and filtering the environment’s standard rewards. As two of the agent’s
goals are to live for as long as possible and die as quickly as possible, we terminate an
episode when an agent loses a life, rather than the standard four lives given in Ms
Pacman. Videos of agents pursuing these goals are available on GitHub2. Figure 6.2
presents an example observation from Ms Pacman with reward sources labelled.

1Importantly, with a common environment, all possible observations are viable for each agent to act
with distinct decision-making and goals to complete.

2https://github.com/pseudo-rnd-thoughts/eval-xrl-goal-identification

https://github.com/pseudo-rnd-thoughts/eval-xrl-goal-identification


6.2. Comparative User Evaluation Design 83

Pacman

Blue Ghost 

Ghost Dot

Energy 
Pill

FIGURE 6.2: Ms Pacman with the different reward sources labelled

Eat Dots - Each time the agent eats a dot, the agent is given a reward of 1. This gives
the agent a regular positive reward of 1 every two to three timesteps. To maximise
this reward, the agent’s policy should be to try to eat every dot on the screen and
avoid ghosts.

Eat Energy Pills and Ghosts - The Ms Pacman environment has four energy pills that,
upon eating, the agent will receive a reward of 1 and turn the ghosts blue for 500
timesteps. Being blue, the ghosts can now be eaten by the Pacman (rather than
dying when non-blue) and will give the agent a reward of 1. This gives the agent a
relatively sparse positive reward of 1 every 20 to 30 timesteps from the energy
pills or eating ghosts. To maximise the reward, the agent’s policy aims to eat an
energy pill and then all the blue ghosts, repeating for all four energy pills. As the
agent can learn to eat all four energy pills, after which the agent would have no
goal left, we truncated the episode when all energy pills are eaten and the ghosts
have returned to their normal colour, i.e., 500 timesteps after the fourth energy pill
is eaten.

Survive - Atari reports agents’ lives on each timestep. We can use this data to
determine if a ghost has eaten the agent, losing a life. Therefore, for each timestep,
the agent is rewarded +0.5 if it survives and is not eaten, providing a consistent
positive reward for every timestep. To maximise the rewards, the agent policy will
move to maximise their distance from the ghosts and use the energy pills when in
danger (turning the ghosts blue and preventing Pacman from being eaten).

Lose a Life - The opposite of the survival goal, the agent receives a reward of -0.5 every
timestep it is alive. This negative reward encourages the agent to lose a life
quickly. Due to Ms Pacman’s deterministic initial states, to help train the agent on
a variety of initial states, we used a pretrained Ms Pacman agent for the standard
reward function to take the first 100 to 400 timesteps before the Lose a Life agent
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starts acting. To maximise the rewards, the agent will move towards ghosts to be
eaten unless the ghosts are blue (as contact will eat the ghost, not the Pacman)
when it will move away until the ghosts return to their normal colour.

The first three goals represent rational (sub)goals that we could easily expect a normal
agent to pursue, while the Lose a Life goal is irrational with respect to the norms of the
game. These goals were selected because we believe it is critical for explanations to
recognise rational and irrational behaviour from a human perspective due to their use
to confirm expected behaviour and understand unexpected behaviour. For each goal,
we train a standard DQN agent (Mnih et al., 2015) for 10 million steps with an Impala
vision encoder (Espeholt et al., 2018), proven to improve performance significantly
(Clark et al., 2024).

With the evaluation procedure outlined above, we incorporate it into our user survey as
shown in Figure 6.3 with screenshots of the implemented survey provided in Appendix
F. The first stage of the survey informs the user of the survey’s purpose and content,
and then we collect user information: age, gender, level of education, prior knowledge
of AI, and Ms Pacman. We collect this data to investigate questions of correlation
between participants’ characteristics and goal accuracy. Next, we outline the goal
identification problem with comprehension testing to ensure users understand the
questions. This includes two questions on the survey’s objective of identifying agent
goals and selecting the corresponding goal option for a description. Users who do not
get one of the questions correct are removed from the survey and are not allowed to
continue. For users who continue, we evaluate each explanation mechanism in a
random order containing an explanation summary, comprehension question, 4 goal
identification questions, and an overall explanation rating section. For the
goal-identification questions, from 20 observations (5 from each goal), we generate an
explanation for each goal, producing 80 unique observation-goal questions. From these
questions, each was randomly selected to be shown an equal number of times across all
participants. Included in each goal-identification question, alongside selecting the
agent’s goal, we ask users to select their confidence in the prediction, from a 5-point
Likert Scale (Likert, 1932) of “Very Unconfident” to “Very Confident”. Additionally, we
include a hidden timer to measure the time users take to answer each question. Once
the user has answered the four goal identification questions, the survey moves to elicit
the user’s opinions on the explanation mechanism. Again, we use a 5-point Likert Scale
to measures users’ overall confidence from “Very Unconfident” to “Very Confident”,
their ease of identifying the agent goals from “Very Difficult” to “Very Easy”, and the
user’s general understanding of the explanation from “Did Not Understand At All” to
“Completely Understood”.

This survey structure has two advantages over the survey presented in Chapter 4. The
“Which goal?” questions provide concrete data on how good an explanation is for goal
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Introduction

Collect User Information

Evaluate Random Explanation Mechanism

Evaluate Random Strategy-Identification Question

Predict the agent's strategy 

What is the prediction confidence?

Show user Observation and  Explanation

Evalaute Overall Explanation Quality

Do you consent to the survey?

How old are you? Whats your level of education?

Have you studied or implemented  Artificial Intelligence before? 

Do you have experience playing the Atari game Ms Pacman

Strategy Identification Comprehension Testing

What is the survey goal? What strategy is this?

How easy was it to identify the agent's strategy based 
on the explanation provided?

How well did the explanation help you understand the 
agent's strategy?

Explanation Mechanism Comprehension Testing

Selection Timer (hidden to user)

Repeated 3 Times

What does the explanation do?

End of Survey

Describe the survey with data collected

Describe strategy identification and what users do 

Describe how the explanation mechanism works

What was your overall confident using the explanations 
to prediction of the agent?s strategy?

Repeat for each Explanation Mechanism

End of Survey
2 incorrect answers

FIGURE 6.3: Flowchart of the comparative user evaluation. Blue boxes represent user
questions, and the orange boxes represent information given to the user.
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identification, allowing us to measure correlations between the user’s self-reported
views and the explanations’ accuracy. Additionally, we added comprehension testing
and question randomisation to help ensure the results collected are more robust to
confirm user understanding and question variance. Compared to the literature in
Section 3.3, our survey design differs through the use of self-reported questions on both
individual questions (confidence) and the overall explanation (confidence, ease of
identification, and understanding). Second, for goal prediction surveys like Huber et al.
(2023) and Septon et al. (2023), we provide the user four goal options and ask them to
pick the agent’s, compared to selecting characteristics that the agent is focusing on
(Huber et al., 2023) or with binary options (Septon et al., 2023).

We use four explanation mechanisms: TRD Summarisation (Section 6.1), Dataset
Similarity explanations3 (Chapter 4), Gupta et al. (2020) called Specific And Relevant
Feature Attributed (SARFA) described in Section 3.4 (and improved upon
Perturbation-based Saliency Maps (Greydanus et al., 2018) used in Chapter 4). Finally,
to understand if users can predict an agent’s goal with just a description of the next
action as an explanation, referred to as Optimal Action Description (OAD). Table 6.2
summarises each mechanism’s medium and content.

TABLE 6.2: Table of Explanation Mechanisms used in the Survey with their explanatory
medium and content.

Explanation Mechanism Medium Content
TRD Summarisation
(Section 6.1)

Text & Image Natural language summary of future
expected rewards

Dataset Similarity Ex-
planation (Section 4.1.1,
DSE)

Video Video of similarity observations in a
previously collected dataset

Specific and Relevant
Feature Attribution
(Gupta et al. (2020),
SARFA)

Image Saliency map for the optimal action.

Optimal Action Descrip-
tion (OAD)

Text A description of the agent’s optimal
action

It is essential to control for bias when selecting observations for the survey. Prior work
largely uses importance-based metrics rather than hand-selecting observations (Huber
et al., 2023; Amir and Amir, 2018; Septon et al., 2023). Most use importance-based
metrics (the difference between a state’s maximum and minimum Q-values) from an
agent’s rollout to select states with the highest importance. This can be highly effective
in picking states that could be considered interesting to explain, as a right or wrong
action will result in significantly worse or better outcomes for the agent. However, this

3As suggested in Section 4.4, we use an Autoencoder to learn the observation embedding, which was
trained from 40,000 observations gathered from across all four agent goals. For each agent goal, using
the pretrained agent, we extract the hidden layer activations for the 40,000 observations, with a two-layer
encoder and decoder neural network with a hidden layer of 128 and ReLU activation with the bottleneck
layer containing 16 features.
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selection can bias observations to a limited subset of the state space with high Q-value
importance but minimal observational differences.

To promote the selection of diverse and interesting observations across all agents, we
propose a novel greedy selection algorithm that uses a state’s importance and
embedding distances between it and previously selected states to explain. To compute
the embedding, we train an autoencoder on a dataset of an agent’s hidden layer
activations generated from rolling out each agent for 10, 000 steps and removing
duplicates. We test this approach against alternative approaches with the average
importance and embedding distance to other selection algorithms and present the
results in Table 6.3. The combined importance and embedding approach maximises the
product of the importance and diversity (represented by the embedding distance).

TABLE 6.3: Table of State Selection Algorithms with their average importance and
embedding distance of the selected observations.

Selection algorithm Average Importance Average Embedding
Distance

Importance 0.476 0.162
Importance with Masking 0.452 0.213
Embedding Distance 0.234 0.372
Embedding Cosine Similarity 0.258 0.172
Importance & Embedding Distance 0.408 0.296

6.3 Analysing User Comprehension

We conducted the comparative user evaluation of the four explanation mechanisms
considered (Table 6.2) with 100 participants, using Prolific, a crowdsourcing website
that provides access to participants across the globe, and Qualtrics for hosting and
implementing our online surveys.4 The pool of participants was filtered to those in
North America and the UK whose first language is English and with at least High
School GEDs / A-levels. Each user was paid £5 to complete the survey, with the median
competition time being 14 minutes and 8 seconds.

For the survey, we have four agent goals, four explanation mechanisms, and 20
observations (five from each goal), generating 320 observation-goal-explanation
questions to evaluate. With 100 participants in the survey, each was asked four
randomly selected questions per explanation mechanism, giving 1600 answers. This
resulted in all questions being independently evaluated five times. The raw
anonymised survey results are provided in the associated GitHub project 2. From these
results, we investigate various research questions regarding how well users identify an

4We obtained ethical approval for the survey from our institutional review board (ERGO FEPS/99644).
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agent’s goal given an explanation (Section 6.3.1) and the subjective self-reported
answers (Section 6.3.2).

6.3.1 Can Users Accurately Predict Agent Goals?

The comparative evaluation methodology proposed in Section 6.2 is centred on goal
identification, where users are given an observation and an explanation, and they must
select the goal description that most closely matches the explanation’s content. This
provides an objective measure to compare various components of users’ accuracy for
each explanation mechanism.

TABLE 6.4: Each explanation mechanism’s accuracy across all agent goals for the 100
survey participants and an expert user.

Explanation mechanism Survey Participant Accuracy
Dataset Similarity Explanation (DSE, Section
4.1.1)

53.0%

TRD Summarisation (TRD Sum, Section 6.1) 34.9%
Optimal Action Description (OAD) 28.7%
Specific and Relevant Feature Attribution
(SARFA, Gupta et al. (2020))

22.5%

DSE OAD SARFA TRD Sum
Explanation Mechanism
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40
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nt

Number of Correct Answers per User
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FIGURE 6.4: The number of users who got each possible number of correct answers for
each explanation mechanism.
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Table 6.4 lists the accuracy of each explanation mechanism across all agent goals. Our
temporal explanations (DSE and TRD Sum) have the highest accuracy of 53.0% and
34.9%, respectively, while the two baseline algorithms (OAD and SARFA) had the
lowest accuracies of 28.7% and 22.5%, respectively. If users were to guess randomly,
their expected accuracy would be 25.0%. Investigating each user’s performance for each
explanation mechanism, Figure 6.5 plots how many users got 0, 1, 2, 3, or 4 answers
correct for each explanation mechanism. Our temporal explanations had the most users
who got at least one answer correct, at 91 and 87 for DSE and TRD Sum, respectively,
compared to 72 and 67 for OAD and SARFA. However, DSE is the only algorithm where
a consistent number of users could correctly identify 3 or 4 agent goals with 33 and 11,
respectively, compared to 8, 5, and 9 for OAD, SARFA and TRD Sum that got either 3 or
4 correct answers.

DSE TRD Sum OAD SARFA
Explanation Mechanism

0%

10%

20%

30%

40%

50%

60%

70%

A
cc

ur
ac

y

Agent Goal
Eat Dots
Eat EPaG
Survival
Lose a Life

FIGURE 6.5: A bar chart for each explanation mechanism with the accuracy of the
explanation mechanism across each agent goal. Each bar’s accuracy is averaged across
100 answers from users. The dotted line is 25%, the expected accuracy for random

guesses.

Is an explanation mechanisms’ accuracy influenced by the agent’s goal being explained?
Figure 6.5 plots each explanation mechanism’s accuracy across each agent’s goal.
Ideally, each explanation mechanism should achieve the same performance for all goals.
For DSE, there is nearly a 30% difference in accuracy with 69.3% for Eat Energy Pills
and Ghosts (Eat EPaG) and 58.0% for Survival, while its performance for Eat Dots and
Lose a Life drops to 40.5% and 44.1%, respectively. Why the difference in performance?
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FIGURE 6.6: Confusion matrix for the number of times the predicted and true agent
goal for each explanation mechanism occurs, where the rows are the actual agent goal
and the column is the predicted. Correct answers are found on the top left to bottom
right diagonal. Each row will sum to 100 as the 20 observations are each evaluated five

times.

Using Figure 6.6 that plots the number of instances of each combination of true and
predicted agent goals selected. For DSE, we can identify that for the Eat Dots goal, users
are highly likely to misidentify it as Eat EPaG (41 to 46 selections), while for the Lose a
Life goal, users mistook the explanation for the Eat EPaG or Survival goal, with 28 and
21 selections compared to 45 for the correct answer. Overall, for DSE, we can infer that
users can generally understand the video of agent behaviour and link it to the related
goal. However, for goals that have some overlap, users can struggle to differentiate.

For TRD Summarisation and OAD, we find a significant difference between each agent
goal’s overall and individual accuracy. For three of the agent goals, their average
accuracy is between 29.8% and 23.0%, very close to that expected of random guessing;
then, for Lose a Life and Survive, respectively, their accuracy increases to 50.5% and
46.5%. For TRD Summarisation, the reason for this difference in performance can be
explained by the reward functions of the four goals. For Eat Dots, Eat EPaG, and
Survival, the reward functions are all positive with different quantities and frequencies
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of rewards, while the Lose a Life goal is the only reward function with negative rewards.
This means that users could accurately predict the Lose a Life goal solely by observing
the signs of future rewards, while the other three goals required additional attention
and knowledge of the goal’s reward functions to comprehend the future rewards.
Utilising the confusion matrix of Figure 6.6, we can decipher that for Eat Dots and Eat
EPaG goals, users selected the other three positive reward goals (Eat Dots, Eat EPaG,
and Survival) roughly evenly with 31, 34 and 32 for Eat Dots and 27, 31, and 24 for Eat
EPaG. For Survival, we observe that users often confuse the goal for the Eat Dots goal,
unlike the other two positive reward goals, with Eat Dots being selected 42 times
compared to 27 and 28 for Eat EPaG and Survival, respectively. In summary, the TRD
Summarisation mechanism for end-users is effective when the reward function differs
in a significant and obvious quality; however, most users cannot identify the subtleties
of reward frequencies or quantities. The reason for this is likely a lack of technical
knowledge about how RL agents act to maximise their reward over time; thus, users
struggle to identify the reward frequency and quantities and correlate this to goals’
reward functions. Therefore, TRD Summarisation could be viewed as user-specific
(which requires necessary technical knowledge to understand) for its effective
deployment. We note in Section 6.4 how future surveys and TRD Summarisation could
be improved to alleviate this problem.

Optimal Action Description was included within this survey as a baseline algorithm to
understand how users predict agent goals only with the next action, requiring that users
“simulate” the goal options to select the correct answer. Like TRD Summarisation, users
could predict one of the goals, Survival, more accurately than the other three. Further,
from Figure 6.6, we can observe that users unevenly predict the Survival and Eat Dots
goals with 144 and 111 selections compared to 59 and 86 for the Eat EPaG and Lose a
Life goals. One of the reasons for this skewed selection distribution is that OAD doesn’t
consider if other agents share the optimal action, such that if a significant number of Eat
Dots and Survival agents shared actions, then this could explain the sampling bias.
Reviewing the optimal actions for the different agent goals for the 20 observations, we
found a common optimal action for nine, of which five were for Eat Dots and Survival.
While this may partially explain the oversampling, we don’t believe it can fully account
for the significant difference in the observed sampling quantities. An alternative
contributing factor might be human bias for particular goals we prefer, e.g., Eat Dots
and Survival, compared to Lose a Life, when favouring outcomes or behaviours.

We observe the lowest average accuracy for SARFA (Gupta et al., 2020) of 22.5%, below
that expected of random guessing. A unique feature of user predictions for SARFA is
that users consistently misinterpret the agent’s decision-making for a different goal.
From Figure 6.6, we can observe that users consistently predict different goals for each
goal option: the Eat Dots goal is predicted as the Eat EPaG goal, Eat EPaG as Survival,
Lose a Life as Eat Dots, and Survival as Eat EPaG. We believe the cause of this confusion
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is that for saliency maps to be effective, the features humans view as important for an
agent’s goal must align with the neural network’s feature importance. Otherwise, users
will consistently misinterpret an agent’s feature importance, mistaking an agent’s goal
for a different one. We observe this most strongly for the Lose a Life goal, where the
most selected goal is actually the Eat Dots goal, with 37 compared to the next highest of
25.

TABLE 6.5: Table of p-values for each explanation mechanism of the time taken for
correct and incorrect answers.

Explanation Mechanism Number of correct /
incorrect samples

Test Statistic p-value

DSE 213 / 187 0.055 0.900
OAD 115 / 285 0.158 0.029
SARFA 91 / 309 0.086 0.632
TRD Summarisation 140 / 260 0.064 0.819
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FIGURE 6.7: A histogram of the time taken for each explanation mechanism. The time
taken is clipped at 60 seconds.

From Figures 6.4, 6.5, and 6.6, we have identified each explanation mechanism’s
accuracy, but is this accuracy affected by the time users take to select a goal? Figure 6.7
plots a histogram of the time taken for each question split by whether the user answered
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the question correctly or not. To formally test this, we compute the p-value using the KS
test (Massey Jr, 1951) where the null hypothesis is that the time taken for correct and
incorrect answers is from the same distribution. We set the significance level at 0.05 (5%),
meaning we must reject the null hypothesis if the p-value is less than the significance
level. Table 6.5 lists each explanation mechanism with the number of samples from both
distributions, the Test Statistic measuring the degrees of differences between samples,
and the p-value representing the probability of observing the results from the null
hypothesis. For DSE, SARFA, and TRD Summarisation, their p-values are significantly
greater than the significance level at 0.900, 0.63,2 and 0.819, respectively. This means
that we can’t reject the null hypothesis, and most likely, the distributions for the time
taken for incorrect and correct answers are the same. However, for Optimal Action
Description, the p-value is 0.029, meaning there is evidence to reject the null hypothesis,
and we cannot conclude that the time taken for incorrect and correct answers is
sampled from the same distribution. Figure G.2 plots the cumulative density functions
of each explanation mechanism, from which we can observe that for OAD, users who
took more time were more likely to get the correct answer. This is because, with OAD,
users need to simulate or imagine each goal using the action description to see if they
match before selecting the goal. This additional thinking time was most likely used to
simulate the goal, helping with the user performance. This makes OAD the only goal
where the longer users thought about the explanation, the higher their performance
was, indicating a higher complexity to fully understand and predict the agent’s goal.

Does a user’s total time taken for all questions correlate with their overall accuracy?
Figure 6.8 plots a scatter graph of each user’s total time to answer all 16 goal
identification questions and their accuracy with weak correlation (R = 0.325).
Therefore, a link cannot be drawn between the two user properties. Of the time taken,
most users took between 3 and 6 minutes, which could indicate that some might be
randomly selecting an answer and moving on. Contrastingly, almost all users who took
more than 8 minutes achieved over 35% average accuracy. To address this, in Section
6.4, we discuss the application of attention questions to discourage users from not
engaging with explanations or fully reading descriptions.

Because the survey is sequential, and users iteratively answer similar questions, we
investigate whether users exhibit a learning effect over time. As we provide no
feedback to users after each question, we do not expect any significant change. In
Figure 6.9, we plot the average user accuracy and time taken for the ordinal position of
the question (irrespective of the explanation mechanism, goal or observation). The
figure shows no clear change in accuracy over time, neither consistently increasing nor
decreasing, with the average user accuracy for the first and last questions being 31.7%
and 30.7%. This matches expectations that users do not explicitly learn more
information over time, as they are not told if they are correct or incorrect for each
question. Interestingly, this also implies that observing the other explanation
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FIGURE 6.8: A scatter plot of each user’s cumulative time taken against their accuracy
across all questions, with the red line being a plot of the linear regression. Individual
question time taken is clipped at 60 seconds. The dashed line is at 25%, representing

the expected accuracy if users are selected randomly.

mechanisms doesn’t influence the users for future explanations and that each
explanation is independent, not helping users if they had seen particular explanations
previously. In Figure 6.9, we also plot the average time for users to answer each
question. In contrast to the user accuracy, the time taken progressively reduces as the
survey progresses from an average of over 30 seconds on the first question to around 15
seconds for the last question. An additional quantity visible in Figure 6.9 is that the time
taken substantially increases every fourth question, i.e., 1, 5, 9, and 13. This is as in
every fourth question, users are shown a new explanation mechanism. This
demonstrates that while user accuracy doesn’t substantially change over an explanation
mechanism’s four questions, users generally take more time the first time they see each
explanation mechanism and then tend to speed up over subsequent questions using the
same explanation mechanism. This indicates that additional questions could be shown
for an explanation mechanism and wouldn’t substantially increase the overall time
taken for the survey, a change we suggest for future user surveys (Section 6.4).

Finally, we investigate whether user characteristics collected from the survey, i.e., prior
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FIGURE 6.9: Barchart of the average accuracy (in blue) and a line plot of the time taken
(in orange) for an ordinal question.

knowledge of AI or MsPacman, age, gender, and education level, affect user accuracy.
Table 6.6 lists the number of users, average accuracy, and time taken in seconds for each
characteristic. This data shows no significant impact on accuracy or time taken for any
characteristic. To confirm this, we trained a linear regression model (using ordinary
least squares) to predict a user’s accuracy using their reported characteristics. We use
this linear regression model to indicate if user characteristics can be correlated to their
accuracy using the overall error (R2) and the coefficients indicating a variable’s
importance to the predictions. As characteristics are categorical data, we one-hot
encode each characteristic and include a constant column for a total of 19 columns. We
find the R2 value is 0.221, where 1.0 equals the perfect prediction, meaning the linear
regression model can’t reliably predict the user’s accuracy from their characteristics.
Further, the characteristic with the greatest coefficient was the constant, and the second
being “Gender - Non-binary / prefer not to say” (Table G.1). This means no user
characteristic (prior knowledge of AI / MsPacman, level of education, age, or gender)
had a significant independent correlation to their accuracy. We further investigated the
Variance Inflation Factor (James, 2013, Page 108) that measures multi-column
correlations, also finding no column had a multicollinearity value greater than five, a
standard cutoff value.

TABLE 6.6: A Table of User Characteristics with the number of users that selected the
characteristics, the average accuracy, and the time taken (in seconds) for each question.
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Characteristic Number of
Users

Accuracy
(%)

Time
Taken (s)

Prior experience with Atari MsPacman
Never played and have no idea how the

game works
3 31.3% 23.6

Have played once or twice and have
minimal knowledge of the game

46 35.6% 22.2

Have played and understand the game
well

51 34.6% 20.1

Do you have prior experience with AI?
No 61 36.2% 20.0
Yes 39 33.0% 22.9

What level of education do you have?
High School 31 35.3% 20.0
Bachelor’s Degree 49 35.3% 21.0
Master’s Degree 17 33.8% 22.8
Doctorate or Professional Degree (e.g.,

PhD, MD or JD)
3 31.3% 26.0

What is your age?
18–24 16 39.1% 21.2
25–34 30 33.1% 20.3
35–44 27 39.1% 22.5
45–54 15 30.8% 21.5
55–64 8 27.3% 20.2
65 and older 4 34.4% 18.2

What is your gender?
Female 57 33.1% 19.8
Male 42 37.2% 22.9
Non-binary / prefer not to say 1 43.8% 22.7

6.3.2 What do Users believe about the Explanation?

Within the survey, alongside the goal identification questions, we ask users to
self-report their confidence for each answer and, for each explanation mechanism, their
overall confidence, ease of identification, and understanding. In this section, we first
analyse this subjective data for each “Which goal?” question to understand the
relationship between the user’s confidence and accuracy. We then investigate how users’
overall ratings of each explanation mechanism correlate with their accuracy. Finally, we
look at the optional comments made by users about each explanation mechanism and
the survey as a whole.
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TABLE 6.7: Table of Explanation Mechanism and user confidence with the user accuracy
and their count in brackets.

Explanation
Mechanism

Very
Unconfident

Unconfident Neutral Confident Very
Confident

DSE 80.0% (5) 31.2% (32) 48.9% (92) 55.9% (213) 60.3% (58)
OAD 55.6% (9) 28.6% (42) 28.7% (129) 29.7% (172) 20.8% (48)
SARFA 21.4% (14) 16.9% (83) 25.2% (115) 23.8% (143) 24.4% (45)
TRD Sum 56.2% (16) 30.6% (72) 32.6% (132) 36.9% (149) 35.5% (31)
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FIGURE 6.10: Bar chart of user accuracy with their selected confidence. Very uncon-
fident and unconfident are grouped as (very) unconfident, and very confident and
confident are grouped as (very) confident. The dashed line represents the expected

accuracy with random guesses.

For each goal identification question, users select the goal that matches the explanation
content and their confidence using a 5-point Likert Rating between Very Unconfident
and Very Confident. Table 6.7 lists each explanation mechanism’s accuracy for each
confidence level. For Figure 6.10, to visualise Table 6.7, we group Very Confident and
Confident into (Very) Confident due to the limited number of answers for Very
Confident. We repeat this for Very Unconfident due to the same respective result. For
DSE, there is a clear correlation between the user’s confidence and their accuracy, with
each confidence rank increasing the expected accuracy. In contrast, OAD has the
opposite confidence-accuracy correlation, decreasing for each confidence rank. For TRD
Summarisation, user accuracy isn’t correlated with accuracy, with the lowest number of
users who selected Very Confident at 31 (out of 400) questions and the most with
Neutral confidence at 136. For SARFA, it had the most users who were (Very)
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FIGURE 6.11: Scatter plot of each user’s average accuracy and confidence for all explana-
tion mechanisms. For the user average confidence, we discretise to Very Unconfident=1,

Unconfident=2, Neutral=3, Confident=4, and Very Confident=5.

Unconfident at 97 (out of 400), for which they have significantly lower accuracy at 17.5%
than the other confidence ranks, Neutral and (Very) Confident, at 25.2% and 23.9%
accuracy. However, it should be noted that the users selecting Very Confident still only
achieved an accuracy very close to that expected of random selection. This highlights a
general problem of only using self-reported metrics for understanding an explanation’s
effectiveness with user confidence (and other measures), which are sometimes
positively correlated, but in other cases, there is no correlation, and even a negative
correlation.

From our testing on the individual question correlation between user confidence and
accuracy, is this a feature of general user behaviour in their confidence to accuracy? In
Figure 6.11, we present a scatter plot of each user’s average accuracy and confidence
(converted to discrete values of 1.0 for Very Unconfident to 5.0 for Very Confident) for
all 16 questions. We observe that average user confidence is weakly positively
correlated to their accuracy (R = 0.159). However, as seen in the histogram above, most
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TABLE 6.8: Average user rating for each explanation mechanism on the three overall
rating questions with the Likert Ratings discretised (1.0 for the lowest rating and 5.0 for

the highest rating).

Explanation
Mechanism

Selection
Confidence

Ease of
Identification

Explanation
Understanding

DSE 3.48 3.23 3.56
OAD 3.25 3.06 3.50
SARFA 2.98 2.72 3.23
TRD Summarisation 2.94 2.61 3.01

of the average user confidence is concentrated between Neutral (3.0) and Confident
(4.0). It is also interesting to note that there are more outliers with lower average
confidence and high accuracy (top left) than users with high confidence and low
accuracy (bottom right). This has important consequences for research that finds users
have low confidence in an explanation, as it doesn’t necessarily mean the explanation is
ineffective.

After answering each explanation mechanism’s goal identification questions, users
select their overall confidence, ease of identification, or understanding of the
explanations. Therefore, we investigate how users view their overall rating related to
their performance in the explanation mechanism. Figure 6.12 plots the number of users
who select a Likert Rating and the number of questions correctly answered.5 From this
data, we can observe that DSE is the only algorithm with more users who rate their
selection confidence as Confident rather than Neutral, and that user performance
positively correlates with accuracy. Meanwhile, SARFA has the highest level of users
who select Unconfident in their predictions, and TRD Summarisation has a significantly
larger number of users who selected that they are Very Unconfident in their prediction,
compared to the other mechanisms. Despite this, for TRD Summarisation, OAD and
SARFA, there isn’t a correlation between the average user accuracy and confidence
rating selected. Additionally, these overall confidence ratings don’t significantly differ
from the individual question user confidence result, either in accuracy or count.
Viewing the average overall ratings in Table 6.8, each question follows the same
explanation preference order (DSE, OAD, SARFA, and TRD Summarisation), with DSE
having the highest average rating and TRD Summarisation the lowest.

For the overall ratings, we asked two more questions of users compared to the goal
identification questions: “How easy was it to identify the agent’s goal based on the
explanation provided?” and “How well did the explanation help you understand the
agent’s goal?”. Like overall user confidence, TRD Summarisation had significantly
higher numbers of users who selected that they found the explanation “Very Difficult”

5Due to the limited numbers of users who rated any explanation mechanism as either the highest or
lowest Likert Rating, e.g., Very Confident or Very Unconfident, Figure 6.12 combines these selections into
the second highest and lowest ratings. Table G.2 includes the accuracy and user counts for all ratings, and
Figure G.5 for the per-user data.
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FIGURE 6.12: Histogram of the number of times on the left and the accuracy for each
explanation mechanism, confidence, ease of identification, or understanding is selected

by users.
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in ease of identification for the goal and “Did not understand anything at all” from the
explanation. This presents a probable failure to explain the explanation mechanism to
users before the goal identification questions and/or that users lacked the skills to
interpret the explanations. This is ironic as the natural language summarisation (Section
6.1) attempted to alleviate this anticipated problem.

Finally, we summarise the optional additional thoughts that users provided for each
explanation mechanism and the whole survey (with all user comments provided in
Tables G.3 and G.4). As the questions were optional, there is a sampling bias in the
responses. For TRD Summarisation, most comments were on the difficulty of
interpreting the explanations: “this was more difficult to interpret”, “... I didn’t
understand the graph part in relationship to the Pacman part”, and “this one was more
difficult than the others”. These comments reflect the overall user ratings for TRD
Summarisation, which showed that users found the explanation more difficult to
understand than the other (Figure 6.12). One user commented, “... without being more
involved in that sort of mathematics I would not feel confident identifying them from a
graphical analysis”. This implies that the explanation summary stage for TRD failed to
adequately explain what the explanation means to users. Though one user did
comment on the explanation’s effectiveness, “I think this seemed like a better way to see
into the Agent’s ‘mind’ and make a guess as to what it was planning.” reflecting the
goal of the explanation mechanism, showcasing the agent’s expected future rewards.
We discuss in Section 6.4 how this problem can be rectified. For SARFA, users
commented that “whilst the heat map gives a clue, it was much harder to discern
without movement or the wider context” and “the heat maps don’t show the
chronology of movement, just an average of all movement”. This highlights a generally
noted problem with saliency maps in RL, as they are static and struggle to present the
temporal component of agent decision-making. For OAD, several users commented
that the optional action was not possible: “action described wasn’t possible”, “this was
tricky when it suggested directions that would block” and “there were frames were [sic]
it said ‘move right’ or ‘move down’ when this was not possible”. This can be fixed in
future surveys by including a comment during the explanation summary that some
actions might not be possible to complete. One user commented that they valued
knowing the agent’s intentions “I found it a bit easier as I knew the intentions”,
something that is not specified for the other three mechanisms. For DSE, the comments
don’t share a common theme: “I think it’s a small screen and difficult to see”, “Some
videos I thought I understood, others I didn’t understand the intention”, and “the
videos weren’t long enough to judge the goal accurately”. These comments highlight
survey parameters that can be addressed (video size and length) rather than systemic
problems with the mechanism. For general comments on the survey, we had both users
who expressed difficulty at the survey (“Its very tricky for me”, “I feel dumb after that”
and “it was difficult to be confident without feedback”) and those who enjoyed the
survey (“A very enjoy survey.”, “It was a really interesting survey” and “interesting.
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love the game. thanks”). A general point noted in explanation mechanisms is that some
images were very small on some users’ screens. This can be solved by enabling users to
increase image sizes or specifying image widths as a percentage of the screen width.

6.4 Discussion

Building upon the prior research in Chapters 4 and 5, we have explored improving the
interpretability of visualising TRD’s future expected rewards through natural language
summarisation using an LLM (Section 6.1, TRD Summarisation) and proposed and
conducted a novel evaluation methodology for XRL containing objective and subjective
questions (Sections 6.2 and 6.3).

When implementing the TRD Summarisation, we found that prompt engineering, the
fine-tuning of the prompt, was critical. Once refined, in Table 6.1, we show that the LLM
could produce effective summarisations both with and without domain knowledge for
sparse and dense rewards. Disappointingly, including observations in the prompts did
not significantly change the summaries generated. We believe this is because LLMs,
GPT4o in our case, are most likely not trained to understand Atari frames, limiting their
capability to link the expected reward and the observation features. Despite this,
overall, we believe these summarisations should significantly increase the accessibility
of TRD to users without technical knowledge of reinforcement learning.

Taking inspiration from the application of explainability to debug/understand a trained
RL agent, either pre-deployment to assess for flaws or post-deployment to identify why
a decision was taken. We devised a novel evaluation methodology, proposed in Section
6.2, conducted with 100 participants, with the user answers analysed in Section 6.3.
Overall, our Dataset Similarity Explanation in Section 4.1.1 had the highest accuracy
(53.0%) and user ratings. Meanwhile, our TRD Summarisation explanation (Section 6.1)
had the second highest accuracy of 34.9% but the lowest overall user ratings for every
category (Table 6.8). The two baseline explanations achieved close to expected random
performance at 28.7% and 22.5% for Optimal Action Description and SARFA (Gupta
et al., 2020). Overall, we find the following features of the survey:

• Low accuracy - The average user accuracy for the survey was 34.9%, with the
lowest being 6.3% and the highest being 56.3%. Against an expected random
accuracy of 25.0%, only one of the explanation mechanisms (DSE) achieves
accuracy success significantly above random for all agent goals. While we have
not tested a wide variety of explanation mechanisms, we believe this survey
demonstrates that there are still substantial performance gaps within the literature.
We discuss in Chapter 7 how this can begin to be solved.
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• Self-reported questions cannot determine effectiveness - In Section 3.3, our
literature survey finds that a significant quantity of research on XRL with user
surveys solely uses self-reported questions (including our research in Chapter 4).
We identified that self-reported measures can only specify an explanation’s
preference, not its effectiveness for an application. The evaluation methodology
proposed in this Chapter centres on an objective question to assess an
explanation’s effectiveness, “What goal?”. Comparing users’ answers for the
self-reported and objective questions, we find a weak correlation between user
confidence and their accuracy, and mostly no correlation between the overall
explanation ratings and accuracy. These results highlight a graver issue: not just
that self-reported measures can only specify an explanation preference, but that
these answers provide very weak or even misleading information on the
explanation’s effectiveness. This poses further problems in analysing user survey
results from the literature, as only a few (though growing) number of papers
conduct user surveys with objective user questions.

• Overconfidence - Like self-reported questions, user confidence is a critical feature
to correlate correctly with user accuracy, as in real-world situations where true
answers don’t exist, then we don’t want users to be misled by an explanation.
Ideally, in XRL, we hope that users only select that they have high confidence in
an answer when they are correct. However, in Section 6.3.2, we find that users’
confidence is not correlated with their accuracy, implying that users were tricked
into believing they knew the answer when they didn’t. This possibly poses a
critical problem for applying explanations in real-world situations where
misunderstanding an explanation can result in significant consequences.

If conducting the survey again, we would consider changing the survey in the
following ways:

• Improve survey/explanation descriptions - In the optional thoughts from users,
several noted that they were either confused by what they needed to do in the
survey or by the explanations themselves. If conducted again, further time would
have been spent optimising the descriptions of the explanation mechanisms to
ensure that the users could interpret the explanation most effectively. This could
be achieved through a pilot study.

• Increase the number of questions asked - The median time for users was 14
minutes to complete the survey, including 16 goal identification questions across
four explanation mechanisms. With only four questions per explanation
mechanism, this provides relatively little data that is more sensitive to user
mistakes. Therefore, if conducted again, we would explore increasing the number
of goal identification questions for each explanation mechanism to five or six;
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alternatively, reducing the number of explanation mechanisms to three could
increase the number of questions to ten or twelve. This should make the results
more resilient to user mistakes.

• Add attention checks - For this survey, we included comprehension questions at
the beginning to check that users understood the survey. However, we did not
include attention checks throughout the survey to validate that users consistently
checked and read the prompts/explanations. Adding such checks could help
prevent super-speedy users from completing the survey without the necessary
attention.

• Policy Optimality - For this survey, we trained deep reinforcement learning
agents for 10 million steps with a relatively strong algorithm, DQN (Mnih et al.,
2015) with an IMPALA neural network (Espeholt et al., 2018). However, we know
from observing policy rollouts (videos of the agents) that they occasionally take
sub-optimal actions from a human’s perspective with knowledge of the action’s
goal. It is difficult to assess, but the sub-optimality of agents could cause issues
explaining behaviour that is irrational (sub-optimal) from a human’s perspective.
The use of more powerful training algorithms, e.g., Rainbow DQN (Hessel et al.,
2018) or Beyond the Rainbow (Clark et al., 2024) that are trained for longer, e.g.,
200 million steps, might minimise this issue if it exists.
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Conclusion and Future Work

In this thesis, we have investigated the importance of temporality for Explainable
Reinforcement Learning (XRL), a relatively undeveloped research topic within the field.
From this desire to understand and explain an agent’s decision-making about the future,
we developed several explanation mechanisms for implicit and explicit policy features:
skills and future rewards with Chapters 4, 5, and 6, respectively. In particular, Chapter 4
investigated post-hoc agents’ groups of actions (skills) and which might be taken in the
future, and how skills might be used together to complete the environment’s goal of
maximising its rewards, referred to as the agent’s plan. In Chapter 5, we took a different
direction to investigate an agent’s predictions about their future rewards, providing
greater understanding to researchers on the agent’s beliefs/confidence about collecting
individual future rewards. To validate these algorithms, we conducted two user
surveys using baseline algorithms, finding that our temporal explanations are preferred
by users and, in the second survey, were better at identifying agent strategies. We’ve
shown the potential of temporal explanations for XRL and believe that further research
is warranted. Next, we identified patterns from this thesis that we think other
researchers and the field should learn, as well as the limitations of the research
conducted, and then extensions and improvements that could be made.

Across our research, we identify two common features that impact, and we think,
should be learned by the field more widely. First, researchers should not trust user
self-reported questions as a source of objective explanation performance, only as a
measure of user preferences. In Section 6.3.2, we found that self-reported user
preferences rarely correlated with the user’s performance with the explanation for our
task. Therefore, researchers should not infer a causal link between user preferences and
an explanation’s true effectiveness. Adopting this would influence the design and
conduct of future work evaluating explanations, such that researchers utilise evaluation
methodologies that centre on objective user questions with known answers, like the one
proposed in Section 6.2, where user preference can be collected as a secondary quality.
Secondly, neural networks and reinforcement learning agents do not necessarily learn
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policies or features similar to those of humans. We found this when evaluating the
discovered skills in Section 4.3.2 and using saliency maps to identify agent strategies in
Section 6.3. Researchers should be aware of how to confirm that the feature accurately
represents how the agent thinks and to evaluate whether a feature matches human
expectations.

For the broader field, it is important to note that the user survey results collected are
limited to the video games, i.e., Atari. The application of video games, while a common
setting for testing reinforcement learning agents, is unknown how explanation’s
effectiveness will translate to more real-world, safety-critical settings, such as robotics,
healthcare, or automated driving. One reason to think there may be a difference is how
users treat video games as more playful, with minimal consequences for their decisions,
compared to safety-critical agents’ decisions, which may be more closely examined due
to their potential impacts. This problem is widespread, with the majority of XRL
research being conducted within video-game-like environments (Section 3.2). A
challenge that future researchers could address by developing more explicitly
safety-critical environments. To adapt our explanation mechanisms to these
safety-critical settings, minimal changes would be necessary, as our algorithms were
developed around RL principles rather than video game components. For example,
Chapter 4 is based around visualising an agent’s actions and using a dataset of prior
actions, and Chapters 5 and 6 on agents receiving rewards over time. These features are
expected in all RL settings, though they are particularly prevalent within video games
with fast actions and easy-to-understand scores to maximise. Adapting for
safety-critical settings, we believe, will primarily centre on how to present the
explanations or how to contextualise them for users, rather than needing to modify the
central working of the explanation mechanisms proposed in this thesis.

The research methodology used in this thesis is that we first developed algorithms to
explain a particular RL agent’s behaviour, and then explored how this could be
presented to users. The approach that appears most commonly in the XRL literature.
An alternative approach, most common in Human-Computer Interface (HCI) research
(Interaction Design Foundation - IxDF, 2016) and present in a few XRL papers (Lucas
et al., 2024; Madumal et al., 2019), is first to gather user requirements or designs and
then develop explanations to replicate these specifications. A result of the difference in
methodology means that there may be numerous ways our explanations could be
improved, solely through how the information is presented or contextualised for users,
beyond any technical changes to improve our explanations. Further, in this thesis and
XRL literature evaluations have centred on user preferences and the actionability
explanation for users to answer questions. Future research could be inspired by HCI for
evaluations of explanations, testing user experience of explanations beyond preferences,
e.g., eye tracking to understand user focus, mental load using physiological signals
(skin response, heart rate, EEG), or contextual inquires where structured interviews are
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conducted to understand how users utilise explanations and difficulties with them
(Song et al., 2023).

After reviewing the research we completed, we believe that several components of the
proposed explanation mechanisms can be further improved or combined with prior
work for greater potential impact. In Chapter 4, we propose video-based explanations,
one of the most under-utilised explanation mediums (Table 3.1) compared to images,
natural language, or symbolic/mathematical approaches. For RL, where agents take
sequences of actions over time, videos should be a more prevalent medium, which we
demonstrate their effectiveness in Section 6.3 against saliency maps (images) and text
summarisation (natural language) explanations. For Temporal Reward Decomposition
(TRD) proposed in Chapter 5 and extended in Section 6.1, we believe this provides a
significant capability in any other XRL algorithm, explaining interesting and important
qualities of deep RL algorithms that are scalable to complex environments. We can
envision several extensions that combine TRD’s capabilities with prior XRL and RL
algorithms to improve its explainability.

1. The advantage of the Dataset Similarity Explanation (DSE, Section 4.1.1) is that the
videos produced are easy to understand for users (Section 6.3). While the
advantage of TRD is that it provides access to the “true” thinking of the agent, we
found that users struggled to interpret the graphical explanations (e.g., Figure 5.5).
Therefore, we believe it is feasible to combine the two approaches to get both of
their advantages, providing a video of an agent’s behaviour and a description of
the anticipated rewards of an agent. These explanations could be similar to 1,
though from a memory of an agent’s prior behaviour, rather than online.

2. Rewards in RL are traditionally scalar, which recent work (Felten et al., 2024) has
challenged, recognising that complex environments often have several competing
reward sources for agents to optimise, referred to as Multi-Objective
Reinforcement Learning (MORL). TRD assumes the use of scalar rewards while
prior work (Juozapaitis et al., 2019) has proposed decomposing an agent’s future
reward estimator into the environment multi-objective reward components, e.g.,
coins and chests in Figure 5.1 using this MORL framework. Reward Component
Decomposition (Juozapaitis et al., 2019) can be combined with our Temporal
Reward Decomposition to explain the when and quantity of each reward
component for the next N timesteps. This should improve TRD for environments
like Figure 5.1 or robotics environments where researchers wish to understand
how agents trade off different reward sources in time. This can be implemented
by expanding TRD’s network output for the number of reward components and
the loss function to minimise the error for each reward component and timestep.

1https://github.com/pseudo-rnd-thoughts/temporal-reward-decomposition/blob/main/figs/
Breakout-expected-reward.mp4

https://github.com/pseudo-rnd-thoughts/temporal-reward-decomposition/blob/main/figs/Breakout-expected-reward.mp4
https://github.com/pseudo-rnd-thoughts/temporal-reward-decomposition/blob/main/figs/Breakout-expected-reward.mp4
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3. In Section 5.3.1, we show how the agent’s confidence in a future reward can be
computed, conditional on the environment reward having a binary structure. This
limits TRD for RL environments that don’t contain a binary reward function,
which is common outside Atari. Therefore, we propose utilising research from
distributional RL (Bellemare et al., 2017) where agents learn the probability
distribution of the Q-value rather than the scalar sum of future rewards. We
believe this probability distribution learning approach could be applied at the
individual reward level, computing the distribution of each predicted reward.
This would enable understanding an agent’s confidence in the next N future
reward, regardless of an environment’s reward function structure. As a result,
extending the explanation mechanisms proposed in Section 5.3.1.

4. TRD is primarily effective in environments containing dense rewards where
several elements of the reward vector are non-zero. However, this is not true in
sparse or episodic reward scenarios where almost all rewards are zero. One
approach to solving this could be to scale N, the number of time steps explained,
beyond that tested in this work, e.g., 100. However, we believe there will be a
practical limit to the scale, and more importantly, noise will cause interference
when interpreting the expected future rewards. Addressing this weakness would
require learning the Q-value distribution over time. This might be possible by
modelling the Q-value as a cumulative density function over time, where Dabney
et al. (2018) showed infinitely wide probability distributions can be modelled with
neural networks. We propose constructing a separate function that can be learned
and explain a Q-value to infinity (and beyond) through a novel recursive
optimisation function and loss function.

In Section 3.4, we lament the inability to identify the state-of-art for XRL, limiting any
discussion about the effectiveness of different algorithms from the lack of comparative
user surveys on common benchmarks. Using the evaluation methodology proposed in
Chapter 6 as the foundation, we plan to submit a competition proposal to NeurIPS 2025.
The competition would allow researchers to submit explanation mechanisms that are
evaluated to explain agents for a common problem alongside other submitted
algorithms. If accepted and completed, this will provide a leaderboard of explanation
mechanisms, all tested on the same problem case using a high-quality user survey
containing objective and self-reported subjective questions. A longer-term hope would
be that this competition could continue as a yearly competition, with the complexity of
the problem increasing each year, allowing iterative development of new algorithms
over time, with dreams that this will increase the health and growth of the field.

For inspirations from this thesis beyond XRL, as noted in Chapter 1, supervisor learning
differs from reinforcement learning as a known answer exists for each output. This
means that models take a single “step” before computing their error to the true label.
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This is still true for text-based systems, but there is some sense that they are also trying
to optimise for a sequence of characters, not just the next character in the sequence.
More formally, in the case of Large Language Models, they output a probability
distribution over possible tokens and aim to maximise the cumulative probability for a
batch of tokens, ∑S

i Pti where ti is the correct token at index i of the sequence. This
function resembles the Q-value (Eq. (2.2)) where ti would be the action ai taken at
timestep i. We posit that LLMs could expand their output probability distribution like
TRD does for time to enable an explicit understanding of when a token could appear in
the future sequence. If realised, this could allow researchers to understand when the
model expected different tokens in the future sequence based on the prior tokens
shown. This idea is in confluence with Qi et al. (2024) critiquing prior work for only
investigating safety alignment “a few tokens deep” and wishing to understand LLMs
for large sequences of tokens and the future impacts on token selection.
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Appendix A

Impact Assessment

As described in Chapter 1, the motivation for this work within Explainable Artificial
Intelligence (XAI) and Explainable Reinforcement Learning (XRL) is the perceived
social need for explanatory tools to understand machine learning algorithms, which are
becoming an increasingly prevalent part of daily life. In this appendix, we utilise the
Orbit Responsible Research and Innovation framework, AREA 4Ps, adopted by EPSRC
(UK Engineering and Physical Science Research Council) to ensure that this work
produces impactful research in academia and for the general public. Following the 4Ps
of the framework (process, product, purpose and people), in Section A.1, we first
consider the purpose of the research. Then, in Section A.2, we consider the importance
of human studies to evaluate the effectiveness of explanations as a critical way of
informing impactful research. This ensures that the product and the explanatory
mechanisms match the users’ (people) needs. Finally, in Section A.3, we consider how
this research is conducted to ensure that the other 3Ps (product, purpose, and people)
are being achieved.

A.1 The Motivation and Purpose of this Research

In Chapter 1, we presented a case study of AlphaGo that shows the importance of
explanations for machine learning as a mechanism to increase trust and confidence that
the algorithms work as intended. As a result, explanations have been viewed as an
increasingly important feature of machine learning by academia, governments, and
regulatory agencies, each with their motivations and applications (see Figure 2.4 for
example stakeholders).

In academia, as Figure 2.3 shows, the number of papers with the keywords “explainable
artificial intelligence” or “explainable reinforcement learning” has increased
exponentially over the last few years. Currently, one of the primary applications of XAI
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FIGURE A.1: The number of papers published each year from 2010 to 2024 that include
“Explainable Artificial Intelligence” or “Explainable Reinforcement Learning”.

is for researchers who wish to understand what their machine learning models are
learning to debug and improve them. An example algorithm for this is LIME (Local
Interpretable Model-agnostic Explanations, Ribeiro et al. (2016b)), which uses simpler
machine learning models to try to understand the sections of an input with respect to an
output. LIME has been used for text and image explanations, highlighting the most
important pixels or words.

Arguably, a second important motivation has been the recent development of laws
across the globe on the “right to explanation” (e.g., GDPR in the EU and UK, and credit
scores in the US), the idea that people should have the right to understand how or why
an algorithm outputted a particular decision for them. In the United States, it is
federally mandated that credit risk scores being given to customers that determine if a
bank will offer you a credit card, loan, mortgage, etc. (12 C.F.R. § 1002.1(b), 2017), must
be “explainable” to ensure that customers are not denied these important services due
to algorithmic bias or human prejudice. This is currently an open challenge to provide
the most accuracy while explainable credit risk score algorithms with FICO, one of the
leading credit scoring companies, who organised a competition in 2019 to explore this
(FICO, 2019).

In the European Union, similar laws have been enacted with GDPR (General Data
Protection Regulation, Council of European Union (2016)), which came into effect in
2018, requiring companies in certain situations to provide “an explanation for the
decision reached”.1 This is important because while the law provides example settings
where the explanation is required (e.g., online credit applications or e-recruiting

1GDPR has been enacted into British law, post-Brexit, as the Data Protection Act 2018 (UK Parliament,
2018).
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practices), it is not a complete list, making it unknown how far this law could be applied
without legal precedence.

The data subject should have the right not to be subject to a decision, which
may include a measure, evaluating personal aspects relating to him or her
which is based solely on automated processing and which produces legal
effects concerning him or her or similarly significantly affects him or her,
such as automatic refusal of an online credit application or e-recruiting
practices without any human intervention.

...

In any case, such processing should be subject to suitable safeguards, which
should include specific information to the data subject and the right to
obtain human intervention, to express his or her point of view, to obtain an
explanation of the decision reached after such an assessment and to
challenge the decision.

As a result of such regulations, some research has explored explainable algorithms that
provide mathematical guarantees to the explanations provided. The most popular
approach for this is SHAP (SHapley Additional exPlanations, Lundberg and Lee (2017)),
which uses game theory to provide a precise mathematical approach to understanding
which input parts are most important for an algorithm. As a result, some researchers
have suggested that SHAP is the only legally compliant explainable method due to its
mathematical properties (Molnar, 2021).

We believe that these two laws (12 C.F.R. § 1002.1(b), 2017; Council of European Union,
2016) are likely to be expanded in the future (Wu, 2020) to include cases involving
reinforcement learning, and the current academic interest gives strong empirical
evidence for the social desirability of this research.

A.2 The Use of Human Studies for Impactful Research

As explained in Section A.1, there are strong motivations for the research we conduct in
this thesis. In this section, we discuss how human studies ensure that the research
conducted is not just of academic interest but is impactful and important for a range of
real-world applications and people.

By placing human studies front and centre in this research, we believe that this forces
researchers to consider the system’s potential applications and ethics and actively
engage with public stakeholders. These actual people would use the system as the
primary metric of success. To assess the possible applications of XAI and XRL, we will
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consider the places where humans most commonly and importantly require
explanations. These are primarily environments where machine learning interacts or
collaborates with humans such that the resulting decision by a model can have a
noticeable impact on a person, e.g., medical diagnosis or jail sentencing. It should be
noted that this list of examples will continue to grow as machine learning is applied to
an increasing number of areas in people’s lives.

When considering the application of research, it is important to consider possible
misuse of the technology. The only misuse we believe with this work is the problem of
uncritical trusting, a problem that also exists with humans in that people overly trust
another person (or a machine learning model in this case). When this happens, people
do not critically assess whether the explanations provided are true and can have
unintended consequences. This can be very difficult when the machine learning models
are better than humans in the application, making evaluating model output difficult
even with expert knowledge. An example is chess, where computer engines are
popularly used to evaluate a board position. However, commentators have often noted
that this is unreliable for assessing a board state for the two players, as it assumes that
both players make the optimal move each turn, which is normally impossible for
humans. In addition, it is more difficult because, depending on the strength of the chess
engine and the time allowed to evaluate the board position, computer engines can
arrive at completely different evaluations and move selections. We believe that it is
likely that an analogue problem could exist in XAI where, depending on the complexity
of the explanatory mechanism, different explanations could be provided that are
difficult to compare and, importantly, difficult to assess which explanations are true.

For the stakeholders involved, we believe that human studies help survey them to
ensure that the research is impactful and effective for them. In addition, this allows
researchers to assess what training is required to understand the project and the
intended and unintended consequences for people. As shown in Figure 2.4, there are a
range of stakeholders, each with motivations, applications, and expected explanations.
For this work, our primary stakeholders are non-expert users and developers, who we
believe are a critical demographic for explanations in a wide range of applications in the
future.

A.3 Conducting Research with the Right Purpose and People

In the previous two sections (Sections A.1 and A.2), we have discussed the role of
designing research with the right purpose and people in mind so that the resulting
research is impactful. In this section, we discuss the actual research completed, how it
links to the previous two sections and if it is impactful.
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In Chapter 4, we presented three video-based temporal explanation mechanisms for
image-based and complex environments. This research helps produce important
incremental improvements to post-hoc temporal explanations that do not require
domain knowledge. This is confirmed by the user survey in Section 4.3.1 showing that
users significantly preferred our novel temporal explanation over prior state-of-the-art
feature-based explanations (Selvaraju et al., 2017; Greydanus et al., 2018). In Chapter 5,
we demonstrate how to extract normally implicit beliefs for RL agents by modifying an
agent’s output function. Our explanations can extract previously hidden information on
an agent’s beliefs about the future (Section 5.3). Building upon this, Chapter 6 conducts
a novel evaluation methodology with explanation mechanisms from Chapters 4 and 5
with two baseline explanation mechanisms. We found that our temporal explanations
were more effective at agent goal identification. These user surveys demonstrate and
confirm the impact of our research on stakeholders.

Reflecting on the research process, there were several ways we worked to confirm the
research’s impact. The first is through supervisors with whom this author has had
discussions on the research’s aims, motivations, technical details, and more, helping to
shape and form the resulting research into an effective and impactful project. The
second way is through academic conferences, where researchers help to discuss
research in workshops with other active researchers and anonymous reviewers who
critique the work when submitting it for publication. Both workshops and publications
help provide an external perspective on the research. Finally, since this work is critically
focused on using human studies to assess the effectiveness of the explanations
generated, this is believed to ground the research with an objective metric to evaluate
the effectiveness of the proposed work.

As repeated in Section A.2, there is a range of stakeholders that this research can engage,
with non-expert users considered primary. Therefore, the participation and
understanding of what these stakeholders consider important and effective for an
explanation can be assessed during the proposed human studies. For data collection
during human studies approved by the University of Southampton and the School of
Electronics and Computer Science Ethics Board, we followed a data management plan
to provide anonymity of the responses provided by participants following the
requirements of the Data Protection Act 2018.

An additional stakeholder who is important to consider is other researchers, as we wish
to create research that allows other researchers in both academia and industry to use the
proposed algorithms for their work. As a result, we released all the code used for the
project onto Github with documentation to allow others to understand the
programming design choices. Along with using Github to improve accessibility for
other researchers, we plan to use agile project management for iterative, flexible
research and development as our understanding of how to explain reinforcement
learning agents can change rapidly.
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Appendix B

Saliency Map Hyperparameters

In Chapter 4’s user survey, we utilised two saliency map explanation mechanisms,
Grad-CAM (Selvaraju et al., 2017) and Perturbation-based Saliency Map (Greydanus
et al. (2018), PSBM) which in testing we found are sensitive to the choice of
hyperparameter for Atari agents. This appendix discusses and justifies the
hyperparameter choices utilised in that user survey.

Agent Observations DQN Grad-CAM Rainbow Grad-CAM DQN Perturbation Rainbow Perturbation

FIGURE B.1: A comparison of the saliency map explanations, Grad-CAM and
Perturbation-based saliency map for DQN and Rainbow agents for the three test-

ing environments: Breakout, Space Invaders and Seaquest.

In figure B.1, we present representative saliency maps for DQN (Mnih et al., 2015) and
Rainbow (Hessel et al., 2018) agents for three testing environments: Breakout, Space
Invaders and Seaquest, respectively. As can be seen, the behaviour between Grad-CAM
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and PSBM is significantly different despite explaining the same DQN and Rainbow
neural network.

FIGURE B.2: A comparison of the target DQN neural network layer on the Grad-CAM
explanation for the three testing environments: Breakout, Space Invaders and Seaquest.

In figure B.2, we compare the effect of the target layer for Grad-CAM given an
observation. For both the DQN (Mnih et al., 2015) and Rainbow (Hessel et al., 2018), the
implemented Atari neural network uses three sequential convolutional layers for the
input observation, which we evaluate Grad-CAM’s output for each layer. As figure B.2
shows, the first layer explanation highlights fine grain detail, in particular, the ball in
Breakout, the aliens in Space Invaders and the submarine in Seaquest. In the second
layer, much higher level detail is shown to the user around the fine grain detail areas
identified in layer 1, in particular, with the bricks in Breakout being shown to the user.
Finally, the third layer appears to select periphery information in the environments with
no clear or immediate understanding for humans. Therefore, we selected the second
layer of the network as Grad-CAM’s target layer for two reasons. First, as there are more
regions highlighted (in layer two than in layer one), more information (more regions
highlighted) is presented to the user. Second, as layer two highlighted more areas than
layer 1, this makes it easier to spot, particularly when imposed onto the original
observation. This is a particular issue for layer one due to only highlighting fine-grain
objects, which often doesn’t highlight critical features like the bricks in Breakout.

Finally, Figure B.3 showcases the saliency maps generated for PSBM with different
spacing for the perturbation algorithm. We experimented with 2, 4, 5 and 8 where 5 is
Greydanus et al. (2018) is the suggested value. For a value of 2, the neural network can
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identify the smallest features, particularly for Breakout, while the largest value, 8, can
only identify the larger features. As there doesn’t appear to be a significant difference
between the perturbation-based spacing values, we use the suggested value of 5.

Breakout Spacing: 2 Spacing: 4 Spacing: 5 Spacing: 8

SpaceInvaders

Seaquest

FIGURE B.3: A hyperparameter search for the perturbation spacing of 2, 4, 5, and
8 across three testing observations for the Breakout, Space Invaders and Seaquest

environments.





133

Appendix C

Temporal Reward Decomposition for
State-value function

Section 5.1 outlines the Temporal Reward Decomposition for the Q-value only for
consistency. Therefore, in this Appendix, we provide the equivalent Temporal Reward
Decomposition for the state-value with theorem C.1 providing the equivalent given
only a state s, Eqs. (C.6) and (C.7) for the state-value based reward vector and Eq. (C.9)
for the loss function.

Theorem C.1. Given a state s, the expected sum of rewards is equal to the sum of expected
rewards, more precisely Eπ

[︁
∑∞

i=0 γiRt+i
⃓⃓

St = s] ≡ ∑∞
i=0 Eπ[γiRt+i|St = s].

Proof.

Eπ

[︄
∞

∑
i=0

γiRt+i

⃓⃓⃓
St = s

]︄
(C.1)

=Eπ

[︄
Rt +

∞

∑
i=1

γiRt+i

⃓⃓⃓
St = s

]︄
(C.2)

=Eπ[Rt|St = s] + Eπ

[︄
∞

∑
i=1

γiRt+i

⃓⃓⃓
St = s

]︄
(C.3)

=Eπ[Rt|St = s] + Eπ[γRt+1|St = s]+

Eπ

[︄
∞

∑
i=2

γiRt+i

⃓⃓⃓
St = s

]︄
(C.4)

=
∞

∑
i=0

Eπ[γ
iRt+i|St = s] (C.5)
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vTRD
π (s) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Eπ[Rt|St = s]

Eπ[γRt+1|St = s]
...

Eπ[γN−1Rt+N−1|St = s]

Eπ

[︁
∑∞

i=N γiRt+i|St = s
]︁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(C.6)

vTRD
π (s) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Eπ[Rt|St = s] + · · ·+ Eπ[γw−1Rt+w−1|St = s]

Eπ[γwRt+w|St = s] + · · ·+ Eπ[γ2w−1Rt+2w−1|St = s]
...

∑Nw
i=(N−1)w Eπ[γiRt+i|St = s]

Eπ[∑∞
i=Nw γiRt+i|St = s]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(C.7)

∑ vTRD
π (s) ≡ vπ(s) ∀s ∈ S (C.8)

LTRD = E(st,Rt+i ,st+w)∼D

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(︂
vTRD0

π (st)− ∑w
i=0 Rt+i

)︂2

(︂
vTRD1

π (st)− γwvTRD0
π (st+w)

)︂2

(︂
vTRD2

π (st)− γwvTRD1
π (st+w)

)︂2

...(︂
vTRDN

π (st)− γwvTRDN−1
π (st+w)

)︂2

(︂
vTRDN+1

π (st)− γw(vTRDN
π (st+w) + vTRDN+1

π (st+w))
)︂2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(C.9)
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Appendix D

Code Implementation of Temporal
Reward Decomposition

import numpy as np

def trd_loss(obs, actions, next_obs, rewards, terminations):
next_q_values = model(next_obs)
next_actions = np.argmax(np.sum(next_q_values))
next_q_values = next_q_values[next_actions]

q_targets = (1 - terminations) * discount_factor * next_q_values
q_targets = np.roll(q_targets, shift=1)
q_targets[-1] += q_targets[0]
q_targets[0] = rewards

q_values = model(obs)
q_actions = q_values[actions]

loss = np.mean(np.square((q_actions - q_targets)))
return loss

FIGURE D.1: Example implementation of the TRD Q-value loss function

Listing D.1 implements TRD from Chapter 5 where N and w are called num_bins and
reward_width respectively. The implementation requires two core changes to a
standard DQN-based loss function: selecting the next_q_values and determining the
q_targets. For computing the next_q_values is np.max(next_q_values, axis=-1)

however, due to the output including the future expected rewards, we first need to roll
up the rewards to compute the scalar Q-value to know the optimal next actions, which
can be used to collect the optimal future expected rewards for each observation. The
second change is to compute the q_targets which is normally (1 - terminations) *

discount_factor * next_q_values. As the number of future rewards is variable, we
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multiply the discount factor by the reward width. Next, we np.roll the targets by 1;
this is equivalent to moving the first index to the second index, second to third, etc, and
the last index to the first. Using the shifted predicted future rewards, we update the last
element to include the new first element (previously the last element of the predicted
rewards). Finally, we set the first element as the actual rewards collected by the agent.
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Appendix E

LLM Prompts for Atari Games

In this Appendix, we provide copies of the LLM prompts for the Atari Space Invaders
and Ms Pacman games shown in Table 6.1 within Chapter 6.

System You are an assistant providing summarises of an agent playing the Atari
game Space Invaders, predicting their future rewards for the next few
timesteps. In the game Space Invaders, the agent receives a reward of
1 each time that the agent shoots an alien. Help describe in a one-sentence
summary the pattern of rewards highlighting how far in the future this
happens, the agent’s confidence (as the reward is either 1 or 0, then expected
rewards are equivalent to the probability of the agent shooting an alien), etc.
Ignore rewards close to zero compared to the rest of the pattern, as this is
related to data noise.

User [0, 0, 0, 0, 1, 0, 0]

Assistant The agent will shoot an alien in 5 timesteps

User [1, 1, 1, 1, 1, 1]

Assistant The agent will shoot an alien every timestep
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Prompt 3: Environment knowledge prompt for Space Invaders

System You are an assistant providing summarises of an agent playing the Atari
game Ms Pacman, predicting their future rewards for the next few timesteps.
In the game Ms Pacman, the agent receives a reward of 1 each time Pacman
eats a dot, energy pill or ghost. Help describe in a one-sentence summary
the pattern of rewards highlighting how far in the future this happens, the
agent’s confidence (as the reward is either 1 or 0, then expected rewards are
equivalent to the probability of the agent eating a dot), etc. Ignore rewards
close to zero compared to the rest of the pattern, as this is related to data
noise.

User [0, 0, 0, 0, 1, 0, 0]

Assistant The agent will eat a dot in 5 timesteps

User [1, 1, 1, 1, 1, 1]

Assistant The agent will eat dots every timestep

Prompt 4: Environment knowledge prompt for Ms. Pacman



139

Appendix F

Screenshots of Comparative User
Evaluation Survey

FIGURE F.1: Consent Page of the comparative user evaluation
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FIGURE F.2: Submission of User Prior Knowledge in Artificial Intelligence and Ms
Pacman
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FIGURE F.3: Strategy Identification Outline to Users and Comprehension testing
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FIGURE F.4: Dataset Similarity Explanation description and comprehension testing.

FIGURE F.5: Strategy Identification question for the Dataset Similarity Explanation
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FIGURE F.6: SARFA description and comprehension testing
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FIGURE F.7: Strategy Identification question for the SARFA Explanation
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FIGURE F.8: TRD Summarisation description and comprehension testing
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FIGURE F.9: Strategy Identification question for the TRD Summarisation Explanation
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FIGURE F.10: Optimal Action Description description and comprehension testing
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FIGURE F.11: Strategy Identification question for the Optimal Action Description
Explanation

FIGURE F.12: Overall User Rating of an Explanation Mechanism
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FIGURE F.13: Submission of User Information
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Appendix G

More Analysis and Graphs from
Comparative User Evaluation
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FIGURE G.1: An ordered bar chart of Figure 6.6 where the orange bars are the correct
answers (diagonal data from the confusion matrix) and the blue bars are the incorrect

answers.
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FIGURE G.2: Cumulative density function for each explanation mechanism and the
time taken to answer each strategy identification question, split by whether users get

the answer correct or not.

Observations
0%

10%

20%

30%

40%

A
cc

ur
ac

y

Random

FIGURE G.3: The average user accuracy for each observation, irrespective of the expla-
nation mechanism or strategy.
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TABLE G.1: A table of characteristics coefficients for Ordinary Least Squared Linear
Regression to predict each user’s overall accuracy.

Characteristics Coefficient Standard Error
Constant 0.1411 0.017
Age Group

18–24 0.0820 0.025
25–34 0.0069 0.021
35–44 0.0717 0.022
45–54 -0.0076 0.026
55–64 -0.0478 0.034
65 and older 0.0360 0.046

Gender
Female -0.0143 0.033
Male 0.0369 0.033
Non-binary / other 0.1185 0.076

Level of Education
High School 0.0339 0.023
Bachelor’s Degree 0.0310 0.020
Master’s Degree 0.0420 0.026
Doctorate or Professional Degree (e.g.,

PhD, MD, JD)
0.0342 0.049

Level of Pacman Knowledge
Never played and have no idea how the

game works
0.0214 0.044

Have played once or twice and have
minimal knowledge of the game

0.0704 0.022

Have played and understand the game
well

0.0493 0.022

Has prior knowledge of AI
No 0.0907 0.014
Yes 0.0504 0.015
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FIGURE G.4: A Swarm plot of each user characteristic with a dot for each user and their
accuracy.
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TABLE G.2: Table of the number of users who answer each overall rating Likert rating
with the average accuracy of users.

Explanation
Mechanism

What was your overall confidence using the explana-
tions to predict the agent’s strategy?
Very Un-
confident

Unconfident Neutral Confident Very Confi-
dent

DSE 68.8% (4) 25.0% (7) 48.5% (34) 59.0% (47) 56.2% (8)
OAD 33.3% (3) 25.0% (17) 24.4% (40) 36.7% (32) 25.0% (8)
SARFA 6.2% (4) 22.6% (31) 23.4% (32) 21.6% (29) 43.8% (4)
TRD Sum 36.4% (11) 35.7% (21) 32.4% (34) 37.1% (31) 33.3% (3)

How easy was it to identify the agent’s strategy based
on the explanation provided?
Very Diffi-
cult

Somewhat
Difficult

Neutral Somewhat
Easy

Very Easy

DSE 62.5% (4) 47.9% (24) 45.7% (23) 59.3% (43) 54.2% (6)
OAD 31.2% (4) 27.4% (31) 30.2% (24) 31.1% (37) 6.2% (4)
SARFA 16.7% (9) 23.7% (38) 23.2% (28) 20.5% (22) 41.7% (3)
TRD Sum 36.1% (18) 39.2% (30) 32.4% (27) 31.5% (23) 37.5% (2)

How well did the explanation help you understand the
agent’s strategy?
Did not un-
derstand at
all

Understood
very little

Neutral Mostly Un-
derstood

Completely
Under-
stood

DSE 62.5% (4) 46.4% (7) 50.0% (30) 56.9% (47) 47.9% (12)
OAD 0.0% (1) 31.2% (16) 26.0% (24) 29.0% (50) 33.3% (9)
SARFA 8.3% (3) 19.2% (26) 26.0% (25) 23.6% (37) 25.0% (9)
TRD Sum 42.3% (13) 42.1% (19) 31.2% (28) 30.9% (34) 37.5% (6)

TABLE G.3: Optional additional thoughts from users for each explanation mechanism.

Explanation
Mechanism

User Thoughts
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DSE – I think it’s a small screen and difficult to see
– No ADDITIONAL THOUHTS, THIS IS GREAT OVERALL
– Sometimes it seemed like two different agent’s strategies could

be in play, so I felt like I needed to watch it a few times, as they
could arguably overlap.

– Im confused a little
– This was easier than the pictures, and easier than the word

explanations.
– task was written in a confusing way
– Some videos I thought I understood, others I didn’t understand

the intention.
– The videos weren’t long enough to accurately judge the strategy.
– It was sometimes difficult to understand if the agent was trying

to avoid the ghosts but was just a little bit rubbish. Did it intend
to get eaten or did it just make a mistake?

– Some of my first impressions seem to depend on the direction
that the agent is facing

OAD – action described wasnt possible
– This was tricky when it suggested directions that would block
– the agent in, as it pigeon holes you into thinking it would be for

self-destruction but it could also be to hide/for survival. It can
be hard to tell the difference between the two.

– The only explanation that wasnt helpful was the agent wants to
move up when there was a wall in the way, that made it more
of a random choice given the context

– this one was the easiest
– This was easier than using the pictures
– I think that the terms used in the study were confusing

e.g.explanation, strategy.
– I felt that I understood this more in written words.
– This game was fun and mentally stimulating.
– There were frames were it said "move right" or "move down"

when this was not possible.
– An optional comments box might be useful so that participants

can explain their thoughts when a strategy isn’t 100% clear.
– i found it a bit easier as I knew the intentions
– It was a little complex to understand which was the agent. But

otherwise it was good
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SARFA – the second image was difficult to see with the colours
– found it hard to see the red areas in the first 2 explanations.
– Depending on the position of the ghosts the heat maps could

be interpreted in multiple different ways
– Whilst the heat map gives a clue, it was much harder to discern

without movement or the wider context.
– It was harder using this context to ascertain what each agents

strategy was given the placement or lack of energy pills in some
of the images

– better but there could be several answers for some of them I
think like the one where the red was on the pacman

– It was hard to see in the pictures - if the pictures were bigger I
think it may have been easier to understand and see what was
happening.

– I used to play pacman when I was younger (many years ago)!
But I struggled to determine the correct answers.

– This one was pretty tricky. I wasn’t sure if the AI/Agent was
identifying places to escape to, or items (ghosts/pills) in the
areas of interest.

– it was alot harder to tell with just an image rather than a video
– the heat maps don’t show the chronology of movement, just an

average of all movements

TRD Sum – this was more difficult to interpret
– did not really understand
– This one was more difficult than the others.
– it was kinda hard I didn’t understand the graph part in relation

to the Pacman part
– I found this difficult to understand
– Hadn’t got a clue how to read the charts, very difficult for me.
– I think this seemed like a better way to see into the Agent’s

’mind’ and make a guess as to what it was planning.
– harder to consume this information as you don’t know what

their goal is
– It was clear that for each type, there was going to be a per-

centage value for increased or decreased likelihood of reward
fulfilment, but without being more involved in that sort of
mathmatics I would not feel confident identifying them from a
graphical analysis.
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TABLE G.4: Optional final thoughts from users at the end of the survey.

– gibberish
– It was difficult to interpret the game footage due to it being atari (i think) pac-man

and not the arcade version most know of.
– Its very tricky for me
– I feel dumb after that
– difficult to understand the task based on how it was written. Could rename

components like explanation agent etc
– interesting. love the game. thanks
– It was difficult to be confident without feedback
– A very enjoyable survey. As I wrote in a previous step, a text box to explain why I

made the selections I did might be useful for both you and me. For me to organise
my thinking and for you to understand it. Thank you, this has been fun

– Not sure if the Heatmap on the final section was displaying as you intended. Was
not clear.

– this was very different
– It was a really interesting survey and I’d have like to seen more detail on the

methods. However the images were a little small on my desktop to see clearly.
Perhaps they didnt scale well?




	Contents
	List of Figures
	List of Tables
	Declaration of Authorship
	Acknowledgements
	Definitions and Abbreviations
	1 Introduction
	1.1 Thesis Contributions and Structure

	2 Background
	2.1 Reinforcement Learning Mathematics
	2.2 Deep Reinforcement Learning
	2.3 Explanation Mechanism Properties
	2.3.1 Explanation Audience
	2.3.2 Model Interpretability
	2.3.3 Explanation Type
	2.3.4 Mechanism Categories
	2.3.5 Explanation Medium


	3 Literature Review
	3.1 Challenges in Explainable Reinforcement Learning
	3.2 Explainable Reinforcement Learning Survey
	3.2.1 Saliency Map Explanations
	3.2.2 Natural Language Explanations
	3.2.3 Temporal Explanations
	3.2.4 Reward Explanations

	3.3 Evaluating XRL Explanations
	3.4 Discussion

	4 Video-Based Explanations of Deep Reinforcement Learning Agents
	4.1 Explanation Mechanisms
	4.1.1 Dataset Similarity Explanations
	4.1.2 Skill Explanation
	4.1.3 Plan Explanation

	4.2 Skill Similarity Metrics
	4.2.1 Skill Alignment Metric
	4.2.2 Skill Distribution Metric

	4.3 Quality of Explanations and Skills Extracted
	4.3.1 Human Evaluation of Explanations
	4.3.2 Skill Extraction Analysis

	4.4 Discussion

	5 Explaining an Agent's Future Beliefs through Temporally Decomposing Future Reward Estimators
	5.1 Temporally Decomposed Future Reward Estimators
	5.2 Retraining Pretrained Agents for TRD
	5.3 Explaining an Agent's Future Beliefs and Decision-Making
	5.3.1 What Rewards to Expect and When?
	5.3.2 What Observation Features are Important?
	5.3.3 What is the Impact of an Action Choice?

	5.4 Discussion

	6 A Comparative User Evaluation of Goal Identification using Explanations
	6.1 Natural Language Summarisation of Future Rewards
	6.2 Comparative User Evaluation Design
	6.3 Analysing User Comprehension
	6.3.1 Can Users Accurately Predict Agent Goals?
	6.3.2 What do Users believe about the Explanation?

	6.4 Discussion

	7 Conclusion and Future Work
	References
	Appendix A Impact Assessment
	Appendix A.1 The Motivation and Purpose of this Research
	Appendix A.2 The Use of Human Studies for Impactful Research
	Appendix A.3 Conducting Research with the Right Purpose and People

	Appendix B Saliency Map Hyperparameters
	Appendix C Temporal Reward Decomposition for State-value function
	Appendix D Code Implementation of Temporal Reward Decomposition
	Appendix E LLM Prompts for Atari Games
	Appendix F Screenshots of Comparative User Evaluation Survey
	Appendix G More Analysis and Graphs from Comparative User Evaluation

