Research Article

Research Article

FcγRIIB (CD32B) antibodies enhance immune responses through activating FcγRs

Alexander P. Simpson^{1,4}, Robert J. Oldham¹, Kerry L Cox¹, Martin C. Taylor¹, Sonya James¹, Ann L. White^{1,5}, Yury Bogdanov¹, Martin J. Glennie¹, Björn Frendeus^{1,2}, Mark S. Cragg^{1,3,‡,*} and Ali Roghanian^{1,3,‡,*}.

¹Antibody and Vaccine Group, School of Cancer Sciences, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton, Hampshire, UK

²BioInvent International AB, Sölvegatan 41, Lund, Sweden

³Institute for Life Sciences, University of Southampton, Highfield, Southampton, UK

Present address: Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK.

⁵Present address: Mestag Therapeutics Ltd., Cambridge, UK.

[‡]These authors contributed equally to this work and share senior authorship.

*Correspondence: Ali Roghanian, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, UK. Email: A.Roghanian@soton.ac.uk and Mark S Cragg, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, UK. Email: msc@soton.ac.uk

Abstract

Fc receptors (FcR) play a key role in coordinating responses from both the innate and adaptive immune system. The inhibitory Fc gamma receptor (FcγRIIB/CD32B; referred to as FcγRII/CD32 in mice) restrains the immune response, specifically through regulating immunoglobulin G (IgG) effector functions. FcγRII-deficient mice demonstrate elevated incidence and severity of autoimmunity and increased responses to immunization and infections. To explore the potential of FcγRIIB as a target for augmenting vaccines, we tested the ability of monoclonal antibodies (mAb) against mouse FcγRII and human FcγRIIB to enhance humoral responses in preclinical models. We used wild-type (WT), FcγR-deficient, and human FcγRIIB transgenic (Tg) mice with either a functional intracellular domain (hFcγRIIB Tg) or lacking immunoreceptor tyrosine-based inhibitory motif (ITIM) signalling capacity (NoTIM). Targeting mouse FcγRII and human FcγRIIB with antibodies significantly augmented humoral immune responses against experimental antigens and enhanced tumour clearance *in vivo*. Surprisingly, mAbs without a functional Fc (N297Q; blocking both signalling-competent and signalling-defective (NoTIM) FcγRIIB in Tg mice with a WT, but not Fc-null, FcγRIIB mAb equally enhanced immunity. These data indicate the redundancy of inhibitory signalling in potentiating immune responses *in vivo*. Collectively, our data suggest that mAb-targeting of FcγRIIB stabilizes mAb Fc and enhances immune responses via Fc-mediated crosslinking of activating FcγRs, irrespective of the inhibitory function of FcγRIIB. These findings support a strategy to boost immune responses in immunization protocols.

Keywords: Fc receptors, immunotherapy, antibodies, inhibitory/activating receptors, vaccination

Introduction

Fc gamma receptors (FcγR), expressed on various leukocyte subsets, are receptors for the Fc domain of IgG and can facilitate clearance of immune complexes (IC) and phagocytosis of opsonized targets (e.g. bacteria), among other important immunoregulatory functions [1–5]. There are six FcγRs in humans, four in mice, but only a single inhibitory receptor in each species; FcγRIIB (CD32B) [3, 6]. Both human FcγRIIB and mouse FcγRII are glycoproteins consisting of two Ig-like extracellular domains, a transmembrane region and a cytoplasmic tail containing an ITIM domain [2, 7]. In humans and mice, alternative splicing of FcγRIIB transcripts results in FcγRIIB1 and FcγRIIB2 isoforms. FcγRIIB1 has a longer cytoplasmic tail (19 and 47 amino acids in humans and mice, respectively), which impedes it from entering

clarthrin-coated pits and prevents endocytosis/internalization of the receptor following engagement of IgG ICs [8–10]. Ligation of FcγRIIB negatively regulates various immune cells through its inhibitory effects on activating FcγRs, as well as other activating receptors. Ligation of FcγRIIB in conjunction with other receptors, such as the B cell receptor (BCR), inhibits and regulates various immune cells through the tempering of activating signalling. FcγRIIB1 is the main FcγRIIB isoform expressed in B cells. Here, its colocalization with the BCR by antigen:antibody ICs limits B cell expansion and prevents autoimmunity [11, 12], by curtailing BCR signalling, increasing the threshold for B cell activation and reducing B cell-mediated Ag presentation to T cells [13]. In the absence of the BCR, such as on plasma cells, FcγRIIB1 ligation by ICs and subsequent signalling can induce apoptosis, to limit further

antibody generation [14]. The ITIM domain (and specifically a single tyrosine residue, phosphorylated following stimulation) in the cytoplasmic domain of FcyRIIB1, is responsible for inhibition of Ca²⁺ flux downstream of BCR stimulation through the activation of phosphatases [2]. Additionally, FcyRIIB1 can inhibit B cell activation by blocking the colocalization of the BCR and CD19 micro-clusters within the immunological synapse, in an ITIM-independent manner requiring the transmembrane domain [15]. Similarly, FcyRIIB1 is critical for limiting self-reactive immune responses during an infection [16]. Therefore, FcyRIIB1 provides three mechanisms pivotal to maintenance of B-cell tolerance: apoptosis of self-reactive cells, follicular exclusion of low-affinity autoreactive B cells and curtailing B cell activation. FcyRIIB2, the main FcyRIIB isoform expressed by myeloid cells, can similarly inhibit their function and negatively regulate responses from activating receptors co-expressed on myeloid cells [2, 17–19] and enforce peripheral tolerance by regulating dendritic cell (DC) function [19]. Amongst others, this has been shown for FcyRIIA (on basophils/monocytes/macrophages) and the IgE receptor FceRI (on mast cells/basophils) [20]. Moreover, antigen endocytosed by FcyRIIB on DCs accesses a non-degradative intracellular vesicular compartment that recycles to the cell surface, enabling interaction of native antigen with BCR on B cells, thereby enhancing immunization with IgG-opsonized, T-cell-independent antigens [21]. Additionally, high FcyRIIB expression on follicular DCs regulates germinal centre diversity and limits somatic hypermutation by B cells [22]. Therefore, FcyRIIB expression on myeloid cells is of importance for a number of reasons. Firstly, in contrast to the context of the BCR, FcyRIIB2 co-localizes with activating FcyRs including FcyRIIA following binding to ICs, in an antigen non-specific manner. Secondly, the efficacy of monoclonal antibodies (mAb) therapies, which require activating FcyRs for their functions, are limited by myeloid cell FcyRIIB2 (and FcyRIIB1) interactions [3, 23–25].

In preclinical models lacking FcγRII (e.g. FcγRII knockout [KO] mice), immune responses to model antigens and pathogens are significantly elevated [26–32], and FcγRII KO mice are more susceptible to developing autoimmune disorders [33–35]. Similarly, interaction of maternal antibodies with FcγRIIB inhibits B-cell responses during pregnancy [36]; and the levels of FcγRIIB on naïve and marginal zone B cells are reduced in multiple sclerosis patients [37], on leukocytes in patients with systemic lupus erythematosus [38] and on circulatory B cells in Graves' disease [39]. Importantly, the presence of FcγRIIB can significantly influence anti-tumour cellular and humoral immune responses [40], supports immunoevasion by tumours [41] and hinders the deletion of cancer cells by mAbs [23, 42, 43].

Given these observations, we set out to test whether blocking FcγRIIB with specific mAbs [44–46], would enhance humoral immune responses following immunization with model antigens. We further tested whether these effects were dependent on the engagement of activating FcγRs (by using Fc-null mAbs and FcγR KO mice) or the inhibitory ITIM signalling domain downstream of FcγRIIB (by using NoTIM mice [47]). Our data indicate that treatment of mice with FcγRIIB mAbs prior to immunization significantly boosts humoral immune responses to model antigens as well as potentiating anti-tumour immunity, similar to FcγRII KO mice. Surprisingly, the enhanced immune responses were

dependent on the presence and engagement of activating FcγRs by FcγRIIB mAbs, as Fc-null mAbs were inert in the same settings. Furthermore, lack of a functional ITIM in a novel hFcγRIIB Tg mouse model (NoTIM), recently developed by our group [47], failed to affect the responses following FcγRIIB blocking, indicating the redundancy of ITIM-mediated signalling in these experimental settings.

Materials and methods

Mice

C57BL/6J and Balb/c mice were purchased from Charles River, UK, and then bred and maintained in local animal facilities, alongside other strains, in accordance with the UK Home Office guidelines. Mouse (m) FcγRII-/-, activating mFcγR-/and human (h) FcYRIIB-/+ x mFcYRII-/- mice have been described previously [45, 48]. OT-II TCR Tg mice were sourced from Charles River Laboratories, UK. For NoTIM+/- mice, the ITIM Y273F and Y254F mutations were generated using sitedirected mutagenesis from the full length FCGR2B2 coding region amplified from the human Burkitt's lymphoma Raji cell cDNA and introduced into the mouse genome through microinjection of C57BL/6J oocytes by Cyagen, as previously described [47]. NoTIM+/- and hFcyRIIB+/- mice were inter-crossed with mFcyRII-/- mice (C57BL/6J) to remove the endogenous mouse inhibitory receptor. NoTIM progenies were screened by PCR (amplifying genomic DNA extracted from ear tips) or flow cytometry of peripheral blood. All experiments were conducted under UK Home Office licenses PPL30/1269 and P4D9C89EA and following approval by local ethical committees, reporting to the Home Office Animal Welfare Ethical Review Board (AWERB) at the University of Southampton. Experiments used both male and female mice which were age- and sex-matched within experiments. For the majority of experiments mice were aged between 8-16 weeks. Littermates of the same sex were randomly assigned to experimental groups at the start of the experiment. Food (irradiated RM1 (E)) and water was available ad libitum, mice were maintained on a 12-hour light/dark cycle and environmental enrichment was provided; temperature was maintained between 20 and 24°C.

Immunization protocols

Age- and sex-matched WT mice were intraperitoneally (I.P.) injected with 0.5 mg isotype control (iso ctrl; mIgG1) or mouse FcyRII mAbs (clones AT128 and AT130-5 [mouse IgG1] [44, 49]) or human FcyRIIB mAb (clone BI-1206 [human IgG1] [45]) on day -1, followed by intravenous (I.V.) injection of 0.5 mg chicken ovalbumin (OVA; Sigma, UK), spiked with 2-10 µg LPS (Sigma, UK), on day 0. Mice were bled 7, 14 and 28 days post immunization and serum anti-OVA IgG levels were measured by ELISA, as before [50]. Mice were then rechallenged with 50 µg OVA (I.V.) and anti-OVA IgG assayed over the subsequent 28 days as above. In experiments where OT-II CD4+ T cells were assayed, a total of 2×10^6 splenocytes from an OT-II mouse was injected (I.V.) 1 day prior to immunization. For CD4+ T cell depletion experiments, mice were injected with a cocktail of CD4-depleting mAbs (500 µg; clones GK1.5 and YTA3.1.2) on Day -7 and Day -3, prior to immunization, as before [51]. For macrophage depletion experiments, clodronate liposomes were generated as before [52]. Freshly prepared clodronate liposomes or PBS liposomes were then injected (I.V.) into mice on Days -3 and -1, before the initiation of immunization.

Cell lines

B16-OVA melanoma cells were maintained in Dulbecco's modified Eagles Medium supplemented with glutamine (2 mM), pyruvate (1 mM), penicillin and streptomycin (100 IU/mL), amphotericin (2 mg/mL) and 20% foetal calf serum (FCS), and maintained as before [51].

Antibodies

Anti-human Fc γ RIIB hIgG1 mAb (clone 6G11 [BI-1206]) and its N297Q mutant (clone BI-1607), were generated by BioInvent International AB, as previously described [45, 47]. Anti-mouse Fc γ RII mIgG1 mAbs (clones AT128 and AT130-5) were produced in-house using stably transfected CHO-K1 cells, as previously described [44, 49]. Purity was assessed by CE-SDS electrophoresis (Beckman EP; Beckman, USA) and lack of aggregation confirmed by size exclusion high performance liquid chromatography. Unless otherwise stated, all antibodies were administered I.V. or I.P. in 200 μ L sterile PBS.

Flow cytometry antibodies used were as follows: B220-PerCP (clone RA3-6B2), CD19-APC (clone HIB19) and CD138-PE (clone 281-2) were all sourced from BioLegend, UK. For OT-II cell staining, anti-mouse Vα2–TcR-FITC (clone B20.1), anti-mouse Vβ5.1,5.2 TcR-PE (clone MR9-4), and allophycocyanin-labelled anti-CD4 (clone RM4-5; all from BD Biosciences, USA) were used, as before [50]. Allophycocyanin-labelled F4/80 antibody (rat IgG2b; clone CI:A3-1) was purchased from BioRad, UK.

Flow cytometry

Samples were stained with the appropriate antibody-fluorophore conjugate for 30 minutes at 4°C in the dark. Samples were then washed in Erytholyse red blood cell lysing buffer (BioRad, UK) and subsequently washed in FACS buffer (PBS, 1% BSA, 0.1% sodium azide). Samples were stored in the dark at 4°C until analysis. FACSCalibur and FACSCanto II flow cytometers were used for data acquisition (BD Biosciences, USA).

Immunofluorescence

Tissues were frozen in OCT media (Cellpath, UK) and placed in isopentane on a bed of dry ice. 10 µm frozen sections were then cut, fixed in acetone and blocked with 5% normal goat serum before incubation with F4/80 antibody followed by goat anti-rat-AF488 (Invitrogen, UK). Slides were mounted using Vectashield hardset with 4′,6-diamidino-2-phenylindole (DAPI; Vector Laboratories, UK). Images were collected with a CKX41 inverted microscope using a Plan Achromat 10 × 0.25 objective lens (Olympus, Japan). RGB images (TIFF) were transferred to Adobe Photoshop CS6 and RGB image overlays created. Background autofluorescence was removed, contrast stretched, and brightness adjusted to maximize clarity, with all images treated equivalently.

Quantification and statistical analysis

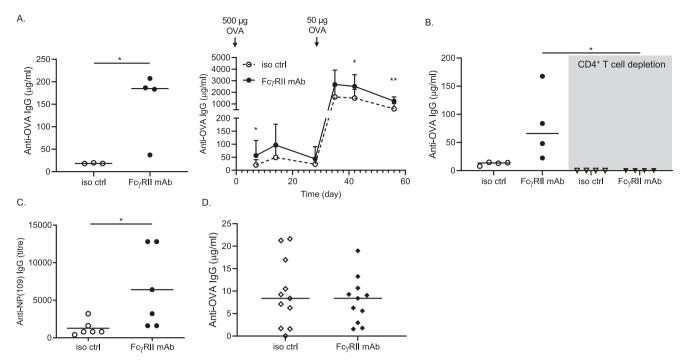
Flow cytometry data analysis was performed using FlowJo version 10.6 (BD Biosciences, USA). All other data analysis was performed using GraphPad Prism versions 7-9 (GraphPad Software, USA). Statistical significance between two factors was analysed using a two-tailed unpaired *t*-test. The statistical

significance in long term survival experiments was analysed using Kaplan–Meier survival test with the Mantel–Cox test used to assess significance between groups. Throughout, * P < 0.05, ** P < 0.01, *** P < 0.001.

Results

Mouse $Fc\gamma RII$ mAbs enhance immune responses in WT mice

In order to investigate whether targeting FcyRII was capable of enhancing immune responses, WT mice were treated with an irrelevant isotype control mAb or anti-mouse FcγRII mAbs prior to immunization with the model antigen OVA. FcyRII mAb pre-treatment led to a significant increase in serum anti-OVA IgG following both primary and secondary immunization (Fig. 1A). OVA is a T-cell-dependent antigen and, in agreement with this, depleting CD4+ T cells prior to OVA immunization abrogated immune responses to OVA, regardless of FcyRII mAb treatment (Fig. 1B). Similarly, depletion of macrophages by clodronate liposomes (Supplementary Fig. 1A) prior to immunization led to a ~2-fold reduction in anti-OVA serum IgG levels (Supplementary Fig. 1B). Despite this, blocking FcyRII mAb was still capable of boosting anti-OVA IgG responses post immunization, albeit at lower levels in mice lacking macrophages (Supplementary Fig. 1). This is likely due to the blocking of FcyRII on B cells, that lack activating FcyRs, thereby potentiating BCR responses.


We further tested whether mouse FcγRII mAbs were capable of potentiating immune responses to a T cell-independent antigen, NP-AECM-FICOLL (referred to as NP(109)). As with OVA immunization, pre-treatment of mice with FcγRII mAbs significantly enhanced serum—antibodies against NP(109), suggesting that blocking FcγRII boosts humoral responses to both T cell-dependent and -independent antigens *in vivo* (Fig. 1C).

FcyRII mAbs fail to potentiate immune responses in the absence of activating FcyRs

Antibodies are composed of two key components: The F(ab) which recognizes the target antigen and Fc, which engages FcγRs on leukocytes, such as macrophage and natural killer cells [53]. As such, WT FcγRII mAbs can engage activating FcγRs via the Fc after binding FcγRII through the F(ab) regions. To investigate whether activating mouse FcγRs (namely FcγRI, FcγRIII and FcγRIV) were involved in the FcγRII mAb-mediated enhancement of humoral immune responses after immunization, activating FcγR KO mice were immunized as above. To our surprise, the absence of activating FcγRs abrogated the enhancement of humoral responses by FcγRII mAb (Fig. 1D). This suggests that once bound to FcγRII by the F(ab), the Fc interacts with activating FcγRs on effector cells to elicit stronger humoral responses.

FcγRII mAbs enhance anti-tumour immune responses

We next explored whether Fc γ RII mAbs could enhance cell-mediated and/or anti-tumour immune responses. To assess the cellular response, we injected WT mice with OT-IITg CD4⁺T cells that specifically recognize OVA peptides, and then immunized them with OVA in the presence or absence of Fc γ RII mAb. As hypothesized, Fc γ RII mAb treatment significantly enhanced humoral immune responses (Fig. 2A) and antigen-specific CD4⁺

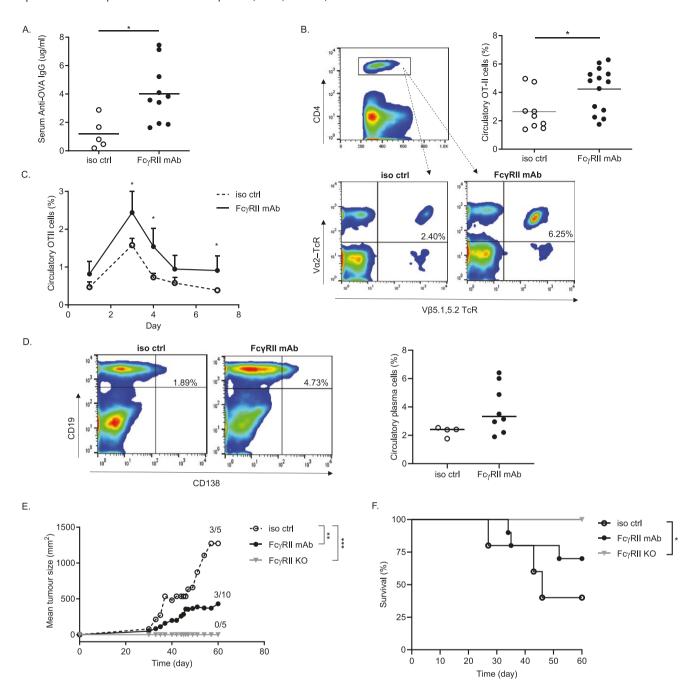
Figure 1: FcγRII mAbs enhance humoral immune responses in WT mice and depend on activating FcγRs. **(A)** Age- and sex-matched WT mice were injected with 0.5 mg isotype control (iso ctrl; mlgG1) or FcγRII mAb (I.P.) on Day -1, followed by 0.5 mg chicken OVA + LPS (I.V.) on day 0. Serum anti-OVA lgG levels were measured by ELISA on days 7, 14, and 28. Mice were then rechallenged with 50 μg OVA and anti-OVA lgG assayed, as before. Representative data for Day 7 post primary immunization shown on the left and longitudinal data shown in the right panel. Mean + SD shown (n = 3 independent experiments; 8–16 mice/group). **(B)** CD4+T cells were depleted prior to the immunization of mice and serum anti-OVA lgG was assessed as above (Day 14 results shown). **(C)** Age- and sex-matched WT mice were injected with 0.5 mg isotype control (iso ctrl; mlgG1) or FcγRII mAb (I.P.) on Day -1, followed by NP(109) on Day 0. Serum anti-NP(109) lgG was assessed post immunization (Day 14 results shown). **(D)** Age- and sex-matched mice lacking activating FcγRs (FcγR^{-/-}) were injected with 0.5 mg isotype control (iso ctrl; mlgG1) or FcγRII mAb (I.P.) on Day -1, followed by 0.5 mg chicken OVA (I.V.) + LPS on Day 0. Serum anti-OVA lgG levels were measured by ELISA, as before (Day 7 results shown). Each dot represents an individual mouse; * P < 0.005, *** P < 0.005

T cells (Fig. 2B-C) *in vivo*. Furthermore, in-line with the increase in anti-OVA IgG levels, FcγRII mAb-treated mice had an expansion in CD19+CD138+ plasma cells post immunization (Fig. 2D), albeit not reaching statistical significance.

To evaluate anti-tumour immune responses, WT and FcγRII KO mice were immunized as before, and then subcutaneously injected with B16-OVA melanoma cells and then monitored over time. Tumour growth was significantly retarded in FcγRII KO mice and WT mice treated with FcγRII mAbs, compared with mice that received an irrelevant isotype control mAb (Fig. 2E). This translated into a significant increase in the survival of FcγRII KO mice and a modest increase in the survival of FcγRII mAb-treated WT mice, compared with isotype control-treated WT mice (Fig. 2F). Collectively, these results indicate that deletion, or blockade of FcγRII can potentiate anti-tumour immune responses.

WT but not Fc-null FcγRIIB mAbs enhance humoral immune responses

Next, we sought to test the ability of human FcγRIIB mAbs to enhance antibody responses in a hFcγRIIB Tg mouse model [45]. Here, we tested both the WT mAb and Fc-null variant of the same clone (6G11) containing the N297Q mutation [54]. The latter would be expected to engage FcγRIIB but not activating FcγRs, in a model akin to the activating FcγR KO mice, described above. As above, treatment of hFcγRIIB Tg mice with the WT mAb prior to immunization led to a significant enhancement of anti-OVA IgG levels; whereas, the Fc-null mAb failed to cause any increase (Figure 3A).


Similarly, the WT human FcγRIIB mAb treatment enhanced OT-II CD4⁺ T cell expansion *in vivo* (Figure 3B), indicating the potential of FcγRIIB mAb to enhance immune responses and vaccination-induced antibody titres *in vivo*.

FcyRIIB mAb enhancement of immune responses is not dependent on the FcyRIIB ITIM

Given the opposing effects of the two FcyRIIB mAb formats and dependence of the augmentation effect on activating FcyR expression/interaction, we next addressed whether this activity was dependent on the ITIM signalling capacity of FcyRIIB, using hFcyRIIB Tg mice containing a defective ITIM (NoTIM). NoTIM mice were treated with either WT or Fc-null FcyRIIB mAbs and immunized with OVA, and then their primary and secondary humoral response evaluated. Similar to the responses observed in hFcyRIIB Tg mice (Fig. 2), WT but not Fc-null human FcyRIIB mAb enhanced both primary and secondary anti-OVA IgG responses in NoTIM mice (Fig. 3C-D). These data strongly suggest that the enhancement of immune responses is independent of inhibitory ITIM signalling, and instead are Fc dependent. Once the F(ab) is bound to FcyRIIB, the Fc engages activating FcyRs to augment the vaccinal response (Figure 4).

Discussion

The immune response to infection is tightly regulated to ensure optimal defence from pathogens whilst avoiding the consequences of excessive inflammation. Likewise, negative

Figure 2: FcγRII blockade potentiates expansion of antigen-specific CD4*T cells and reduces tumour growth in OVA-immunized mice. Age- and sexmatched WT mice were injected with OT-II splenocytes (2×10^6 cells; I.V.) and 0.5 mg isotype control (iso ctrl; mlgG1) or FcγRII mAb (I.P.) on Day -1, followed by 0.5 mg chicken OVA + LPS (I.V.) on Day 0. Serum anti-OVA lgG levels were measured by ELISA on Days 7, 14, and 28, as before. **(A)** FcγRII mAb treatment resulted in a significant increase in serum anti-OVA lgG levels (Day 14 results shown), **(B–C)** circulatory antigen-specific T cells (OT-II cells) and **(D)** a considerable expansion of CD19*CD138* plasma cells (Day 4 post primary immunization). Day 3 results of a representative experiment shown in **(B)**. **(E–F)** B16-OVA melanoma cells (5×10^5 cells) were subcutaneously engrafted into immunized mice and tumour growth was monitored over time **(E)**. **(E)** Mean (+ SD) of a representative experiment shown (n = 2); tumour volumes were compared on day 60 using a two-tailed unpaired t-test. **(F)** Mice from **(E)** were monitored over time and sacrificed upon evidence of terminal tumour development. Survival was compared using the Mantel–Cox test; *P < 0.05. **(A–D)** Each dot represents an individual mouse; *P < 0.05. **(B and D)** Representative flow cytometry plots for circulatory OT-II CD4*T cells and plasma cells shown, respectively. **(A-F)** *P < 0.05, ***P < 0.005, ***P < 0.005

immunoregulatory circuits comprised of inhibitory molecules exist to prevent the onset of autoimmune disorders by suppressing autoreactive lymphocytes. FcyRIIB is one such immunoregulatory molecule, whose expression on both myeloid and lymphoid cells modulates humoral and cellular immune responses [2, 55]. Deleting, downregulating or blocking of FcyRIIB modifies immune

responses during both steady state and infection, with FcγRIIB deficiency contributing to a number of pathologies [14, 15, 18, 26–32, 35, 37, 40]. Expectedly, FcγRII KO mice exhibit elevated immune responses and are prone to the development of a range of autoimmune disorders [12, 26, 33, 34], which is believed to be due to hyperactivation of B cells and myeloid cells.

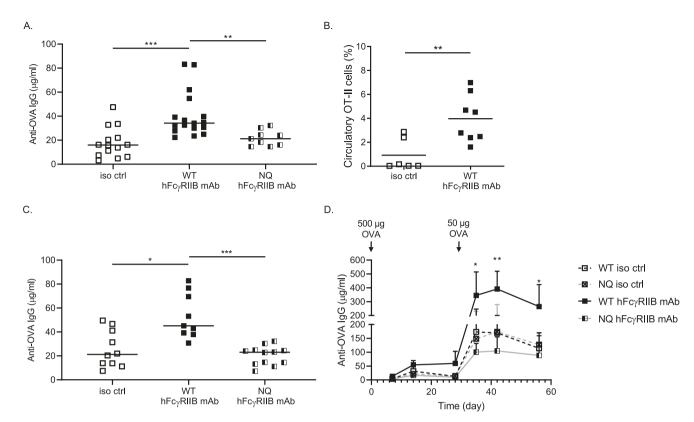
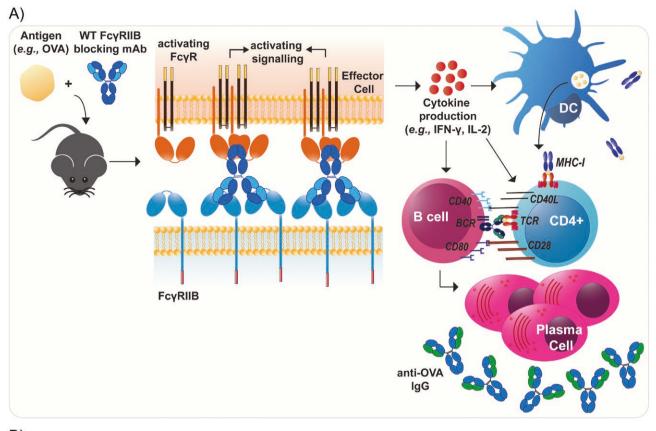



Figure 3: WT but not Fc-null FcγRIIB mAbs enhance immune responses in hFcγRIIB Tg mice, independent of ITIM signalling. (A) Age- and sex-matched hFcγRIIB Tg mice were injected with 0.5 mg isotype control (iso ctrl; mlgG1) or WT or Fc-null (NQ) human (h) FcγRIIB mAb (I.P.) on Day −1, followed by 0.5 mg chicken OVA + LPS (I.V.) immunization on Day 0. Serum anti-OVA lgG levels were measured by ELISA on Days 7, 14, and 28. Mice were then rechallenged with 50 μg OVA and anti-OVA lgG was assayed, as before. Human FcγRIIB mAb significantly enhanced immune responses compared with the isotype control-treated group (Day 14 results shown). Each dot represents an individual mouse (*n* = 3 independent experiments). (B) Circulatory OT-II CD4*T cells were assayed by flow cytometry, as above (Day 3 post-primary immunization shown). (C-D) Age- and sex-matched NoTIM mice were injected with 0.5 mg isotype control (iso ctrl; mlgG1) or WT or Fc-null (NQ) human FcγRIIB mAb (I.P.) on Day −1, followed by 0.5 mg chicken OVA + LPS (I.V.) immunization on Day 0. Serum anti-OVA lgG levels were measured by ELISA on Days 7, 14, and 28. Mice were then rechallenged with 50 μg OVA and anti-OVA lgG was assayed, as before. Representative data for Day 14 post-primary immunization shown in (C) and longitudinal data shown in (D). Mean + SD shown. Each dot represents an individual mouse; * P < 0.005, *** P < 0.005.

Since genetic targeting of FcyRIIB in situ is not yet practical, using previously generated specific mAbs against mouse FcyRII [44, 49] and human FcyRIIB [45, 47], we set out to examine whether mAb targeting of FcyRIIB would enhance humoral immune responses in relevant preclinical models. WT mAbs have a Fc domain, which facilitates engagement with FcyRs on leukocytes, in particular myeloid effector cells. Hence, we sought to compare WT and Fc-null (deglycosylated Fc due to introduction of a N297Q point mutation) mAbs [54] for their ability to enhance immune responses. To our surprise, the Fc-null mAb failed to augment vaccine responses, suggesting that blocking the activity of FcyRIIB was less important than engagement of activating FcyRs by the mAb Fc. This was further confirmed by immunizing FcyR KO mice, which lack all activating FcyRs but retain FcyRII [52]. Unlike in WT mice, targeting of FcγRII in activating FcγR KO mice failed to modulate humoral immune responses against the experimental antigen. Collectively, these complementary models indicate that engagement of activating FcyRs is central to the effects seen above and suggest that the blocking of the inhibitory FcyRII by mAb per se was not responsible for the enhanced vaccinal effects seen.

FcγRIIB signals through its intracellular ITIM domain, to deliver its inhibitory signals and impede immune responses [2, 7]. To test whether blocking of FcγRIIB-mediated inhibitory

signalling using specific mAbs contributes to the augmented vaccinal response, we utilized the NoTIM mouse model [47]. As before, WT FcyRIIB mAb induced a significant increase in humoral responses post primary and secondary immunizations in NoTIM mice, whereas the Fc-null mAb was inert. These findings are contrary to our initial hypothesis, where we expected that FcyRIIB blocking mAbs (WT and Fc-null) would limit FcyRIIB engagement of ICs and thereby potentiate BCR and FcγR-mediated responses in B cells and myeloid cells (e.g. DCs and macrophages), respectively. Although deficiency in FcyRIIB potentiates immune responses via the reduction in inhibitory signals, FcyRIIB mAbs were shown to confer a similar effect via a totally different mechanism, namely by engaging activating FcyRs via their Fc domain. This phenomenon has been shown in other experimental systems and is referred to as the 'scorpion' or 'Kurlander' effect, where the antibody Fc is able to bind to proximal FcyRs [56-59]. Indeed, this effect is commonly observed on cells expressing FcyRs, responsible for inhibiting (e.g. anti-CD20) or potentiating (e.g. anti-CD40) activity through stabilization of the mAb via Fc binding to proximal FcγRIIB [25, 43, 47, 50, 60– 64]. Therefore, these data have important implications for engineering optimal therapeutic mAbs. For immunostimulatory mAbs, a WT format may be optimal in order to enhance their crosslinking capacity. On the other hand, where blocking of

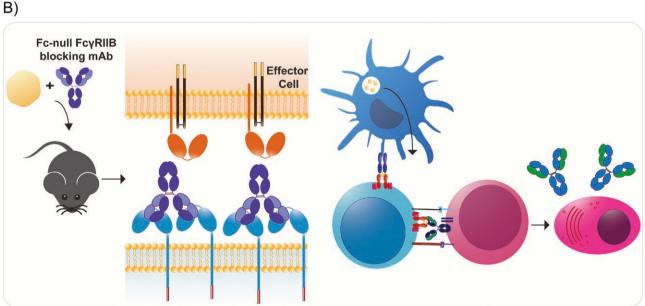


Figure 4. Schematic diagram demonstrating the proposed mode of action of FcγRIIB mAbs *iv vivo*. (A) Blocking FcγRIIB with WT FcγRIIB mAbs results in crosslinking of neighbouring activating FcγRs and enhancement of immune responses following immunization. (B) Fc-null FcγRIIB mAbs, which fail to engage activating FcγRs on neighbouring effector cells, e.g. macrophages and DCs, fail to enhance immune responses to antigens.

the target is desired, Fc-null mAbs may be superior. In the case of Fc γ RIIB and boosting responses following immunization, our data suggest that WT mAb format would be the preferred choice, given that Fc-null mAb was inert.

Our study has a number of limitations, including the choice of immunogen, route of immunization and limited number of FcyRIIB mAbs assessed. We mainly utilized chicken OVA,

found in egg whites, as the main model antigen, due to the availability of the reagents and preclinical models. However, while OVA can be used to study basic principles of the immune system, it may not fully recapitulate immune responses to more physiological antigens. The applicability of our findings needs to be determined through further testing of FcyRIIB mAbs with these antigens, in models of infection.

Moreover, the intravenous immunization route employed in this study differs from typical human vaccination methods, such as intramuscular or intranasal administration. Finally, our investigation focused solely on the antagonistic human FcγRIIB antibody clone 6G11 (BI-1206) [45]. To gain a more comprehensive understanding of optimal FcγRIIB targeting for immunization, future studies should incorporate additional clones recognising distinct epitopes with varying functional effects, including agonistic clones [45]. Although we observed similar responses with both antagonistic (AT128) and agonistic (AT130-5) mouse FcγRII antibodies [44] (data not shown), further investigation with a broader range of human clones is warranted.

Conclusion

In summary, our data show that WT anti-mouse FcyRII and anti-human FcyRIIB mAbs can augment humoral immune responses via interaction of their Fc with activating FcyRs. They further reveal that the enhancement of immune responses is not a direct consequence of impeding FcyRIIB ITIMmediated signalling. Rather the F(ab) binding to FcyRIIB acts as an anchor to promote the engagement of neighbouring (cis or trans) activating FcYRs via their Fc domain, in order to initiate a more potent immune response. Although FcyRIIB is expressed by both B cells and myeloid cells, since B cells lack activating FcyRs, it is expected that the enhancement of immune responses is primarily a consequence of engagement of activating FcYRs on myeloid cells. This was evident when macrophages were depleted in a cohort of immunized mice, where there was a ~50% reduction in anti-OVA antibodies. Regardless of the mode of action of the FcyRIIB antibodies, our study provides a strong basis for the therapeutic application of FcyRIIB mAbs to promote immune responses against antigens, such as tumour-associated and non-self antigens. A human FcyRIIB mAb, previously developed by us [45], is currently in Phase I/IIa clinical trials (Clinical trial #NCT03571568 and NCT04219254). This antibody, which has been granted Orphan Drug Designation by the FDA for the treatment of follicular lymphoma and exhibited clinical benefit in other refractory lymphoma patients [65], has the potential for broader clinical applications, including vaccine enhancement.

Supplementary data

Supplementary data is available at *Clinical and Experimental Immunology* online.

Acknowledgments

We would like to thank the Antibody and Vaccine Group antibody production team and Pre-Clinical Unit staff for their continuous technical support.

Ethical approval

All experiments were conducted under UK Home Office licenses PPL30/1269 and P4D9C89EA and following approval by local ethical committees, reporting to the Home Office Animal Welfare Ethical Review Board (AWERB) at the University of Southampton.

Conflicts of interests

M.S.C acts as a consultant for a number of biotech companies, being retained as a consultant for BioInvent International and has received research funding from BioInvent International, GSK, UCB, iTeos, and Roche. A.R. receives institutional support for grants and patents from BioInvent International and acts as a consultant for a number of biotech companies. M.J.G previously acted as a consultant to a number of biotech companies and received institutional payments and royalties from antibody patents and licenses. B.F. is an employee of BioInvent International.

Funding

This work was supported by a BBSRC and GSK iCASE PhD studentship for A.P.S (1943869). A.R. was a recipient of a Blood Cancer UK Visiting Fellowship (14043).

Data availability

All data are available within the manuscript and any additional data are available upon request.

Author contributions

Alex Simpson (Data curation, Formal analysis, Writing—review & editing), Robert Oldham (Data curation, Formal analysis), Kerry Cox (Data curation, Formal analysis), Martin Taylor (Funding acquisition, Supervision, Writing review & editing), Sonya James (Data curation, Formal analysis), Ann White (Data curation, Formal analysis, Methodology), Yury Bogdanov (Formal analysis, Funding acquisition, Resources), Björn Frendéus (Formal analysis, Investigation, Resources, Writing-review & editing), M Cragg (Conceptualization, Formal analysis, Funding acquisition, Investigation, Supervision, Writing-review & editing), and Ali Roghanian (Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Supervision, Writing—original draft)

References

- 1. Koenderman L. Inside-out control of Fc-receptors. Front Immunol 2019, 10, 544. doi:10.3389/fimmu.2019.00544
- Roghanian A, Stopforth RJ, Dahal LN, Cragg MS. New revelations from an old receptor: immunoregulatory functions of the inhibitory Fc gamma receptor, FcgammaRIIB (CD32B). J Leukoc Biol 2018, 103, 1077–1088. doi:10.1002/JLB.2MIR0917-354R
- Dahal LN, Roghanian A, Beers SA, Cragg MS. FcgammaR requirements leading to successful immunotherapy. Immunol Rev 2015, 268, 104–22. doi:10.1111/imr.12342
- Frampton S, Smith R, Ferson L, Gibson J, Hollox EJ, Cragg MS, et al. Fc gamma receptors: their evolution, genomic architecture, genetic variation, and impact on human disease. Immunol Rev 2024, 328, 65–97. doi:10.1111/imr.13401
- Galvez-Cancino F, Simpson AP, Costoya C, Matos I, Qian D, Peggs KS, et al. Fcgamma receptors and immunomodulatory antibodies in cancer. Nat Rev Cancer 2024, 24, 51–71. doi:10.1038/s41568-023-00637-8
- Hargreaves CE, Iriyama C, Rose-Zerilli MJ, Nagelkerke SQ, Hussain K, Ganderton R, et al. Evaluation of high-throughput genomic assays for the Fc Gamma receptor locus. PLoS One 2015, 10, e0142379. doi:10.1371/journal.pone.0142379

- Isnardi I, Lesourne R, Bruhns P, Fridman WH, Cambier JC, Daeron M. Two distinct tyrosine-based motifs enable the inhibitory receptor FcgammaRIIB to cooperatively recruit the inositol phosphatases SHIP1/2 and the adapters Grb2/Grap. J Biol Chem 2004, 279, 51931–8. doi:10.1074/jbc.M410261200
- Miettinen HM, Matter K, Hunziker W, Rose JK, Mellman I. Fc receptor endocytosis is controlled by a cytoplasmic domain determinant that actively prevents coated pit localization. J Cell Biol 1992, 116, 875–88. doi:10.1083/jcb.116.4.875
- 9. Amigorena S, Bonnerot C, Drake JR, Choquet D, Hunziker W, Guillet JG, et al. Cytoplasmic domain heterogeneity and functions of IgG Fc receptors in B lymphocytes. Science 1992, 256, 1808–12. doi:10.1126/science.1535455
- Muta T, Kurosaki T, Misulovin Z, Sanchez M, Nussenzweig MC, Ravetch JV. A 13-amino-acid motif in the cytoplasmic domain of Fc gamma RIIB modulates B-cell receptor signalling. Nature 1994, 368, 70–3. doi:10.1038/368070a0
- 11. Heyman B. Feedback regulation by IgG antibodies. Immunol Lett 2003, 88, 157–61. doi:10.1016/s0165-2478(03)00078-6
- Horton HM, Chu SY, Ortiz EC, Pong E, Cemerski S, Leung IW, et al. Antibody-mediated coengagement of FcgammaRIIb and B cell receptor complex suppresses humoral immunity in systemic lupus erythematosus. J Immunol 2011, 186, 4223–33. doi:10.4049/ jimmunol.1003412
- Smith KG, Clatworthy MR. FcgammaRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat Rev Immunol 2010, 10, 328–43. doi:10.1038/nri2762
- Xiang Z, Cutler AJ, Brownlie RJ, Fairfax K, Lawlor KE, Severinson E, et al. FcgammaRIIb controls bone marrow plasma cell persistence and apoptosis. Nat Immunol 2007, 8, 419–29. doi:10.1038/ ni1440
- 15. Xu L, Li G, Wang J, Fan Y, Wan Z, Zhang S, et al. Through an ITIM-independent mechanism the FcgammaRIIB blocks B cell activation by disrupting the colocalized microclustering of the B cell receptor and CD19. J Immunol 2014, 192, 5179–91. doi:10.4049/ jimmunol.1400101
- Danzer H, Glaesner J, Baerenwaldt A, Reitinger C, Lux A, Heger L, et al. Human Fcgamma-receptor IIb modulates pathogen-specific versus self-reactive antibody responses in lyme arthritis. Elife 2020, 9, e55319. doi:10.7554/eLife.55319
- Bournazos S, Gazumyan A, Seaman MS, Nussenzweig MC, Ravetch JV. Bispecific anti-HIV-1 antibodies with enhanced breadth and potency. Cell 2016, 165, 1609–20. doi:10.1016/j.cell.2016.04.050
- Dhodapkar KM, Banerjee D, Connolly J, Kukreja A, Matayeva E, Veri MC, et al. Selective blockade of the inhibitory Fcgamma receptor (FcgammaRIIB) in human dendritic cells and monocytes induces a type I interferon response program. J Exp Med 2007, 204, 1359–69. doi:10.1084/jem.20062545
- Desai DD, Harbers SO, Flores M, Colonna L, Downie MP, Bergtold A, et al. Fc gamma receptor IIB on dendritic cells enforces peripheral tolerance by inhibiting effector T cell responses. J Immunol 2007, 178, 6217–26. doi:10.4049/jimmunol.178.10.6217
- Daeron M, Latour S, Malbec O, Espinosa E, Pina P, Pasmans S, et al. The same tyrosine-based inhibition motif, in the intracytoplasmic domain of Fc gamma RIIB, regulates negatively BCR-, TCR-, and FcR-dependent cell activation. Immunity 1995, 3, 635–46. doi:10.1016/1074-7613(95)90134-5
- Bergtold A, Desai DD, Gavhane A, Clynes R. Cell surface recycling of internalized antigen permits dendritic cell priming of B cells. Immunity 2005, 23, 503–14. doi:10.1016/j.immuni.2005.09.013
- 22. van der Poel CE, Bajic G, Macaulay CW, van den Broek T, Ellson CD, Bouma G, et al. Follicular dendritic cells modulate germinal center B cell diversity through FcgammaRIIB. Cell Rep 2019, 29, 2745–55.e4. doi:10.1016/j.celrep.2019.10.086
- Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med 2000, 6, 443–6. doi:10.1038/74704
- 24. Roghanian A, Hu G, Fraser C, Singh M, Foxall RB, Meyer MJ, et al. Cyclophosphamide enhances cancer antibody immunotherapy

- in the resistant bone marrow niche by modulating macrophage FcgammaR expression. Cancer Immunol Res 2019, 7, 1876–90. doi:10.1158/2326-6066.CIR-18-0835
- Roghanian A, Cragg MS, Frendeus B. Resistance is futile: targeting the inhibitory FcgammaRIIB (CD32B) to maximize immunotherapy. Oncoimmunology 2016, 5, e1069939. doi:10.1080/21624 02X.2015.1069939
- 26. Sharp PE, Martin-Ramirez J, Boross P, Mangsbo SM, Reynolds J, Moss J, et al. Increased incidence of anti-GBM disease in Fcgamma receptor 2b deficient mice, but not mice with conditional deletion of Fcgr2b on either B cells or myeloid cells alone. Mol Immunol 2012, 50, 49–56. doi:10.1016/j.molimm.2011.12.007
- Clatworthy MR, Smith KG. FcgammaRIIb balances efficient pathogen clearance and the cytokine-mediated consequences of sepsis. J Exp Med 2004, 199, 717–23. doi:10.1084/jem.20032197
- 28. Flores M, Chew C, Tyan K, Huang WQ, Salem A, Clynes R. FcgammaRIIB prevents inflammatory type I IFN production from plasmacytoid dendritic cells during a viral memory response. J Immunol 2015, 194, 4240–50. doi:10.4049/jimmunol.1401296
- Getahun A, Dahlstrom J, Wernersson S, Heyman B. IgG2a-mediated enhancement of antibody and T cell responses and its relation to inhibitory and activating Fc gamma receptors. J Immunol 2004, 172, 5269–76. doi:10.4049/jimmunol.172.9.5269
- Takai T, Ono M, Hikida M, Ohmori H, Ravetch JV. Augmented humoral and anaphylactic responses in Fc gamma RII-deficient mice. Nature 1996, 379, 346–9. doi:10.1038/379346a0
- 31. Tiller T, Kofer J, Kreschel C, Busse CE, Riebel S, Wickert S, et al. Development of self-reactive germinal center B cells and plasma cells in autoimmune Fc gammaRIIB-deficient mice. J Exp Med 2010, 207, 2767–78. doi:10.1084/jem.20100171
- 32. Wu YH, Chang WT, Hsu CL, Lu YF, Wang JT, Tzeng SJ. FcgammaRIIB modulates splenic germinal center response against immune subversion during acute influenza A virus infection. J Microbiol Immunol Infect 2024, 57, 64–75. doi:10.1016/j.jmii.2023.11.007
- 33. Bolland S, Ravetch JV. Spontaneous autoimmune disease in Fc(gamma)RIIB-deficient mice results from strain-specific epistasis. Immunity 2000, 13, 277–85. doi:10.1016/s1074-7613(00)00027-3
- 34. Boross P, Arandhara VL, Martin-Ramirez J, Santiago-Raber ML, Carlucci F, Flierman R, et al. The inhibiting Fc receptor for IgG, FcgammaRIIB, is a modifier of autoimmune susceptibility. J Immunol 2011, 187, 1304–13. doi:10.4049/jimmunol.1101194
- 35. Willcocks LC, Smith KG, Clatworthy MR. Low-affinity Fegamma receptors, autoimmunity and infection. Expert Rev Mol Med 2009, 11, e24. doi:10.1017/S1462399409001161
- 36. Kim D, Huey D, Oglesbee M, Niewiesk S. Insights into the regulatory mechanism controlling the inhibition of vaccine-induced seroconversion by maternal antibodies. Blood 2011, 117, 6143–51. doi:10.1182/blood-2010-11-320317
- 37. Trend S, Leffler J, Teige I, Frendeus B, Kermode AG, French MA, et al. FcgammaRIIb expression is decreased on naive and marginal zone-like B cells from females with multiple sclerosis. Front Immunol 2020, 11, 614492. doi:10.3389/fimmu.2020.614492
- 38. Su K, Yang H, Li X, Li X, Gibson AW, Cafardi JM, et al. Expression profile of FcgammaRIIb on leukocytes and its dysregulation in systemic lupus erythematosus. J Immunol 2007, 178, 3272–80. doi:10.4049/jimmunol.178.5.3272
- 39. Liu Y, Feng Y, Tang S, Zhang L, Huang Z, Shi X, et al. Aberrant expression of inhibitory receptors on B cells in patients with Graves' disease. Hum Immunol 2021, 83, 144–52. doi:10.1016/j. humimm.2021.12.001
- Kasahara Y, Shirota H, Umegaki S, Ishioka C. Contribution of Fcgamma receptor IIB to creating a suppressive tumor microenvironment in a mouse model. Cancer Immunol Immunother 2019, 68, 1769–78. doi:10.1007/s00262-019-02413-w
- 41. Wu L, Xu Y, Zhao H, Zhou Y, Chen Y, Yang S, et al. FcgammaRIIB potentiates differentiation of myeloid-derived suppressor cells to mediate tumor immunoescape. Theranostics 2022, 12, 842–58. doi:10.7150/thno.66575

- Knorr DA, Blanchard L, Leidner RS, Jensen SM, Meng R, Jones A, et al. FcgammaRIIB is an immune checkpoint limiting the activity of Treg-targeting antibodies in the tumor microenvironment. Cancer Immunol Res 2024, 12, 322–33. doi:10.1158/2326-6066.CIR-23-0389
- 43. Arce Vargas F, Furness AJS, Solomon I, Joshi K, Mekkaoui L, Lesko MH, et al.; Melanoma TRACERx Consortium. Fc-optimized anti-CD25 depletes tumor-infiltrating regulatory T cells and synergizes with PD-1 blockade to eradicate established tumors. Immunity 2017, 46, 577–86. doi:10.1016/j.immuni.2017.03.013
- 44. Williams EL, Tutt AL, French RR, Chan HT, Lau B, Penfold CA, et al. Development and characterisation of monoclonal antibodies specific for the murine inhibitory FcgammaRIIB (CD32B). Eur J Immunol 2012, 42, 2109–20. doi:10.1002/eji.201142302
- 45. Roghanian A, Teige I, Martensson L, Cox KL, Kovacek M, Ljungars A, et al. Antagonistic human FcgammaRIIB (CD32B) antibodies have anti-tumor activity and overcome resistance to antibody therapy in vivo. Cancer Cell 2015, 27, 473–88. doi:10.1016/j.ccell.2015.03.005
- 46. Williams EL, Tutt AL, Beers SA, French RR, Chan CH, Cox KL, et al. Immunotherapy targeting inhibitory Fcgamma receptor IIB (CD32b) in the mouse is limited by monoclonal antibody consumption and receptor internalization. J Immunol 2013, 191, 4130–40. doi:10.4049/jimmunol.1301430
- Simpson AP, Roghanian A, Oldham RJ, Chan HTC, Penfold CA, Kim HJ, et al. FcgammaRIIB controls antibody-mediated target cell depletion by ITIM-independent mechanisms. Cell Rep 2022, 40, 111099. doi:10.1016/j.celrep.2022.111099
- 48. Beers SA, Chan CH, James S, French RR, Attfield KE, Brennan CM, et al. Type II (tositumomab) anti-CD20 monoclonal antibody out performs type I (rituximab-like) reagents in B-cell depletion regardless of complement activation. Blood 2008, 112, 4170–7. doi:10.1182/blood-2008-04-149161
- Tutt AL, James S, Laversin SA, Tipton TR, Ashton-Key M, French RR, et al. Development and characterization of monoclonal antibodies specific for mouse and human Fcgamma receptors. J Immunol 2015, 195, 5503–16. doi:10.4049/jimmunol.1402988
- White AL, Chan HT, Roghanian A, French RR, Mockridge CI, Tutt AL, et al. Interaction with FcgammaRIIB is critical for the agonistic activity of anti-CD40 monoclonal antibody. J Immunol 2011, 187, 1754–63. doi:10.4049/jimmunol.1101135
- Buchan SL, Fallatah M, Thirdborough SM, Taraban VY, Rogel A, Thomas LJ, et al. PD-1 blockade and CD27 stimulation activate distinct transcriptional programs that synergize for CD8(+) T-celldriven antitumor immunity. Clin Cancer Res 2018, 24, 2383–94. doi:10.1158/1078-0432.CCR-17-3057
- 52. Beers SA, French RR, Chan HT, Lim SH, Jarrett TC, Vidal RM, et al. Antigenic modulation limits the efficacy of anti-CD20 antibodies:

- implications for antibody selection. Blood 2010, 115, 5191–201. doi:10.1182/blood-2010-01-263533
- Bournazos S, Corti D, Virgin HW, Ravetch JV. Fc-optimized antibodies elicit CD8 immunity to viral respiratory infection. Nature 2020, 588, 485–90. doi:10.1038/s41586-020-2838-z
- Wang X, Mathieu M, Brezski RJ. IgG Fc engineering to modulate antibody effector functions. Protein Cell 2018, 9, 63–73. doi:10.1007/s13238-017-0473-8
- Bournazos S, Wang TT, Ravetch JV. The role and function of fcgamma receptors on myeloid cells. Microbiol Spectr 2016, 4. doi:10.1128/microbiolspec.MCHD-0045-2016
- Kurlander RJ. Blockade of Fc receptor-mediated binding to U-937 cells by murine monoclonal antibodies directed against a variety of surface antigens. J Immunol 1983, 131, 140–7.
- 57. Kurlander RJ. Reversible and irreversible loss of Fc receptor function of human monocytes as a consequence of interaction with immunoglobulin G. J Clin Invest 1980, 66, 773–81. doi:10.1172/ICI109915
- Hogarth PM, Pietersz GA. Fc receptor-targeted therapies for the treatment of inflammation, cancer and beyond. Nat Rev Drug Discov 2012, 11, 311–31. doi:10.1038/nrd2909
- Tipton TR, Mockridge CI, French RR, Tutt AL, Cragg MS, Beers SA. Anti-mouse FcgammaRIV antibody 9E9 also blocks FcgammaRIII in vivo. Blood 2015, 126, 2643–5. doi:10.1182/blood-2015-09-671339
- 60. Wines BD, Trist HM, Esparon S, Impey RE, Mackay GA, Andrews RK, et al. Fc binding by FcgammaRIIa is essential for cellular activation by the anti-FcgammaRIIa mAbs 8.26 and 8.2. Front Immunol 2021, 12, 666813. doi:10.3389/fimmu.2021.666813
- Lim SH, Vaughan AT, Ashton-Key M, Williams EL, Dixon SV, Chan HT, et al. Fc gamma receptor IIb on target B cells promotes rituximab internalization and reduces clinical efficacy. Blood 2011, 118, 2530–40. doi:10.1182/blood-2011-01-330357
- Moreno-Vicente J, Willoughby JE, Taylor MC, Booth SG, English VL, Williams EL, et al. Fc-null anti-PD-1 monoclonal antibodies deliver optimal checkpoint blockade in diverse immune environments. J ImmunoTher Cancer 2022, 10, e003735. doi:10.1136/jitc-2021-003735
- Walker JA, Smith KG. Dependence of surface monoclonal antibody binding on dynamic changes in FcgammaRIIb expression. Immunology 2008, 124, 412–8. doi:10.1111/j.1365-2567.2007.02791.x
- 64. Vaughan AT, Iriyama C, Beers SA, Chan CH, Lim SH, Williams EL, et al. Inhibitory FcgammaRIIb (CD32b) becomes activated by therapeutic mAb in both cis and trans and drives internalization according to antibody specificity. Blood 2014, 123, 669–77. doi:10.1182/blood-2013-04-490821
- https://www.bioinvent.com/en/press/bioinvent-fda-grants-orphandrug-designation-bi-1206-treatment-follicular-lymphoma-1980273