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A B S T R A C T

Storm surge barriers provide flood protection to many major coastal cities in estuaries around the world. 
Maintenance of these assets is critical to ensure they remain reliable and continue to comply with national legal 
protection standards. There are often critical thresholds of environmental conditions, beyond which maintenance 
work is unsafe to be carried out. However, as storm surge barriers age and with climate change effects such as 
sea-level rise and possible changes in storminess, periods when environmental conditions exceed set thresholds 
will occur more frequently, so carrying out the required work in available maintenance windows will become 
increasingly challenging. Probabilistic models enable the use of ensemble forecasts of upcoming water levels to 
determine the likelihood of conditions exceeding the threshold and so can inform on decision making regarding 
maintenance. This paper evaluates a probabilistic model currently in operational use by Rijkswaterstaat, the 
Dutch Ministry of Infrastructure and Water Management, to guide maintenance decisions at the Maeslant barrier 
in the Netherlands. Sixteen years of historic highwater level forecasts from a combination of European Centre for 
Medium-Range Weather Forecasts and Dutch Continental Shelf Model v5 are used with observations from the 
Hoek van Holland tide gauge to evaluate and sensitivity test the probabilistic model. Binary classification is used 
to assess the performance of the probabilistic model. Findings show that the model is conservative with 33.1 % of 
outcomes resulting in a False Alarm. Changing the baseline parameters of critical probability and water level 
threshold impacts the balance between False Alarm and Miss outcomes. Increasing the critical probability re
duces the number of False Alarms but increases the Miss situations, emphasising the trade-off between acceptable 
risk and time available to carry out maintenance work. This study highlights the delicate balance between model 
parameter selection and the associated risk with respect to the maintenance of storm surge barriers.

1. Introduction

Many coastal cities and towns are located in estuaries which are 
particularly vulnerable to natural disasters such as flooding, due to their 
location at the interface of the sea and rivers. The impacts of climate 
change, such as accelerating sea-level rise and increases in storminess, 
along with changes in rainfall and river discharge, are increasing the risk 
of damage to infrastructure and loss of life in low-lying coastal regions 
(Brown et al., 2013; Del-Rosal-Salido et al., 2021; Hinkel et al., 2014).

In estuaries with long exposed coastlines, where space is limited, 
storm surge barriers can provide a technical and economic solution for 
new and/or improved flood protection measures (Aerts et al., 2014; 

Jonkman et al., 2013; Kirshen et al., 2020). Storm surge barriers are 
hard engineering structures consisting of partly or fully movable gates 
(Mooyaart and Jonkman, 2017), located in an estuary, river (Mooyaart 
et al., 2014) or lake (Deltares, 2018). These flood defences can be closed 
temporarily to prevent extreme water levels from propagating inland 
and thus protect the hinterland from flooding (Zhong et al., 2012). 
Presently, there are over 50 storm surge barriers in operation worldwide 
(Smaling, 2024), including: the Hollandsche IJssel (Hamerslag and 
Bakker, 2023), Eastern Scheldt (Knoester et al., 1984) and Maeslant 
(Bol, 2005) barriers in the Netherlands; the Thames (Wilkes and Lavery, 
2005) and Boston (ICE, 2020) barriers in the UK; the MOSE barrier in 
Italy (Munaretto et al., 2012); New Bedford Hurricane protection barrier 
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in Massachusetts (US Army Corps of Engineers, 2015) and the Lake 
Borgne Surge Barrier which is part of the Hurricane Storm Damage Risk 
Reduction System in New Orleans, USA (Flood Protection Authority 
East, 2014). In addition to the operational barriers, many new schemes 
are being planned or constructed such as in Galveston (Merrell et al., 
2011), New York and New Jersey (Kluijver et al., 2019) in the US; 
Bridgwater in the UK (Somerset Council, 2024) and Nieuwpoort in 
Belgium (Jan De Nul, 2024).

Like other engineering structures, storm surge barriers require 
specialist management, maintenance and operation due to their 
complexity (Walraven et al., 2022). Regular maintenance is required to 
ensure storm surge barriers are reliable, remain functional and comply 
with national legal protection requirements. Maintenance is highly 
varied involving test closures, inspections, repair and replacement of 
key parts, along with major upgrades of systems. These maintenance 
tasks can require substantial time to complete, and the more often a 
barrier closes, the more inspection and maintenance work needs to be 
carried out to ensure the barrier remains reliable. In the UK, for example, 
maintenance is carried out year-round. Whereas, in other counties, like 
the Netherlands, maintenance is currently completed from the middle of 
April to the end of September during the so-called maintenance season. 
However, this puts pressure on the teams carrying out the work, as a 
large number and wide range of tasks need to be completed in a limited 
time window. Furthermore, maintenance can only be carried out when 
conditions are safe to ensure the safety of the workers at the barrier. 
Therefore, thresholds of environmental conditions such as water level 
are defined beyond which maintenance work cannot be carried out. 
These health and safety thresholds vary among barriers. At the Maeslant 
barrier in the Netherlands, which is located 6 km from the coast, 
maintenance work is required to stop when the water level reaches a 
certain height, as elaborated in Section 2.1. At the Eastern Scheldt 
barrier in the Netherlands, which is located on an exposed coastline, 
maintenance work is stopped when water level or the combination of 
water level and significant wave height exceed defined thresholds. In 
London at the Thames barrier maintenance work is impacted by river 
discharge as well as water level (Haigh et al., 2024).

Completing the required maintenance for storm surge barriers is 
getting increasingly challenging (Walraven et al., 2022), due to a 
number of key reasons. Firstly, existing barriers are ageing. Some, bar
riers were constructed over 40 years ago, meaning they require addi
tional maintenance to continue being reliable. Secondly, over time, 
sea-level rise will result in barriers having to close more often 
(Haasnoot et al., 2018), at some locations possibly exacerbated by 
increased storminess and changes in river discharge (Chen et al., 2020). 
Closure of the Thames Barrier in May 2020, where previously closures 
had not occurred later than March, is an illustration that climate change 
may already have an influence on the traditional closure season at this 
barrier. As time progresses, storm surge barriers will need to close more 
often and increasingly in summer months (Haigh et al., 2024), impacting 
planned maintenance projects. Thirdly, climate change will not only 
continue to influence the number of closures but will also increase the 
number of times maintenance thresholds are reached, interrupting 
work; especially as maintenance thresholds will typically be lower than 
closure thresholds resulting in these being exceeded more often. Such 
that the influence of sea-level rise will be noticed more for maintenance 
thresholds than closure levels. A detailed assessment of past and likely 
future maintenance threshold exceedances (under different climate 
scenarios) was undertaken for the Maeslant barrier (Trace-Kleeberg 
et al., 2023). Findings showed that of the past maintenance threshold 
exceedances, 13 % occurred during the maintenance season which could 
have interrupted the planned maintenance work (Trace-Kleeberg et al., 
2023). As sea-level rise increases mean sea level, a point will be reached 
when the highest astronomic tides alone exceed the maintenance 
threshold, without a meteorological contribution, decreasing the avail
ability of safe working windows (Trace-Kleeberg et al., 2023).

As it is getting harder to carry out the required maintenance, 

investigations are beginning into new ways to maximise the available 
time to complete maintenance work. For example, Dutch governmental 
departments are exploring means of carrying out maintenance work 
year-round by considering more extensive use of operational forecasts of 
environmental conditions. To do this, a thorough risk analysis of the 
consequences of wrong predictions is required besides mitigation mea
sures. For instance, adequate precautions need to be in place to ensure 
the safety of workers and to guarantee that the barrier will be ready for 
an operational closure, if called upon (Trace-Kleeberg et al., 2023). This 
requires accurate forecasting of upcoming water levels to manage, 
maintain and operate the storm surge barriers.

At many storm surge barriers, water level forecasts are used to 
determine when they are required to close. These forecasts could also be 
used to aid maintenance decision making of when upcoming conditions 
are safe. At the Maeslant storm surge barrier in the Netherlands, staff 
have recently developed a probabilistic model based on ensemble water 
level forecasts, to provide guidance in the short term (next 7 days) to aid 
decision making whether or not it is safe to do maintenance. The 
developed model has - up to this point - not been evaluated in depth to 
test, and identify possible adjustments, to maximise its performance. 
Thus, this paper explores the use of forecasts to guide when maintenance 
can be safely carried out. A detailed evaluation of the probabilistic 
model using historic forecasts over the 16-year period from 2008 to 
2023 is conducted. Three specific objectives are defined: (1) evaluate the 
performance of the probabilistic model using the existing model pa
rameters; (2) conduct sensitivity tests to explore how adjusted param
eters affect model performance; and (3) analyse instances when the 
probabilistic model outcome is incorrect.

This paper is structured as follows. The case study barrier and 
probabilistic model are described in Section 2, followed by the method 
used for evaluating the model baseline, sensitivity testing and analysing 
incorrect model outcomes which are outlined in Section 3. Section 4
presents the results of the three paper objectives. These are discussed in 
Section 5 and the paper finishes with conclusions in Section 6.

2. Background to case study barrier and model

This paper uses the Maeslant storm surge barrier in the Netherlands 
as a case study. The following section provides an overview of the 
Maeslant barrier and maintenance thresholds (Section 2.1) and de
scribes the probabilistic model that has been developed to aid decision 
making regarding maintenance (Section 2.2).

2.1. Overview of the Maeslant barrier and maintenance threshold

The Maeslant barrier is located approximately 30 km west of Rot
terdam city in the Netherlands (Fig. 1a). It consists of two horizontal 
sector gates (Fig. 1b). Three water level thresholds are important for 
barrier management, maintenance and operation. The gates close when 
the forecast water level in central Rotterdam exceeds 300 cm above NAP 
or the forecast water level at Dordrecht exceeds 290 cm above NAP 
(Dutch: Normaal Amsterdams Peil, NAP; Amsterdam’s Ordnance 
Datum). This happened for the first time in December 2023 (Zijderveld 
et al., 2024). At a forecast water level of 260 cm above NAP, the oper
ational team is called onsite. The Maeslant barrier is operated by a 
computer system which switches state from “at rest” to “operational” 
when predicted water levels exceed 230 cm above NAP.

In addition to the thresholds mentioned above, a health and safety 
threshold exists. When water levels at the barrier reach 170 cm above 
NAP, maintenance work is stopped. This is due to the risk posed by 
waves and wakes from passing vessels, which reach the lowered terrain 
between the ball joint and barrier gate impeding access to the structure, 
and water overtopping the dock doors making work in the docks 
dangerous (Fig. 1c).

The maintenance season at the Maeslant Barrier is currently between 
the 15th of April and the 30th of September, with the storm season in the 
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remaining months. Inspections and the annual test closure before the 
start of storm season effectively shorten the actual duration available for 
maintenance by a month. Currently, maintenance works are not un
dertaken at the Maeslant barrier during the storm season. However, 

analysis has shown that water levels in past storm seasons have been 
below the maintenance threshold for extended periods, meaning work 
could have been carried out (Trace-Kleeberg et al., 2023). Maintenance 
jobs vary in frequency and duration from short daily tasks to infrequent 

Fig. 1. (a) Overview of case study area indicating location of tide gauge, Maeslant barrier and Rotterdam city (b) Arial view of Maeslant barrier. Dotted box indicates 
region represented in panel c. (Image credits: Rijkswaterstaat, 2022) (c) Schematic illustration of Maeslant barrier and regions at risk of flooding at maintenance 
threshold of 170 cm.
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replacement that can take up to four successive seasons to complete. 
Maintenance planning and delivery is a challenge due to the quantity 
and complexity of the work and short time-period when work is carried 
out. This will be exacerbated by sea-level rise, which reduces the safe 
weather windows as the number of maintenance threshold exceedances 
per year increase (Trace-Kleeberg et al., 2023). Therefore, it is important 
to utilise all potentially available maintenance windows including 
possibly undertaking maintenance work all year round. However, to 
achieve this, adequate precautions need to be in place to ensure the 
safety of workers and to guarantee that the barrier will be ready if 
needed for an operational closure. One way of doing this is to use 
forecasts to predict when upcoming water levels are likely to be lower 
than the maintenance threshold, accounting for uncertainty. Such a 
system can aid decision making of when maintenance work can safely be 
carried out in relation to the criteria considered.

2.2. Probabilistic model

Conventional forecasting systems produce a single, deterministic 
forecast, which is subject to two main sources of error: (1) uncertainty in 
initial conditions and (2) approximation of processes in the models 
(Buizza, 2006). These sources of uncertainties limit the skill of deter
ministic forecasts in an unpredictable way. An ensemble prediction 
technique addresses these issues by producing several forecasts over the 
same period, allowing quantitative estimates of uncertainty (Flowerdew 
et al., 2010). The combination of models used in this study determine 
the probability that upcoming water levels exceed certain thresholds. 
This output is used to guide decision making for whether it is safe or not 
to carry out short term maintenance at a storm surge barrier.

To reach a decision multiple steps are needed, these are outline 
below and shown in Fig. 2. 

1. A 50-member ensemble of meteorological conditions is computed by 
the medium range Ensemble Prediction System (EPS) at the Euro
pean Centre for Medium-range Weather Forecasts (ECMWF), with a 
ten-day lead time (Buizza, 2006). This model has undergone multiple 
updates which are described in the annual technical memorandums 
(e.g., ECMWF Tech. Memos. 880, 884 and 902).

2. The 10-m wind and mean sea level pressure ensembles from the 
ECMWF EPS are used to drive the depth-averaged hydrodynamic 
Dutch Continental Shelf Model (DCSMv5) (Gerritsen et al., 1995; Zijl 
et al., 2013). This model produces fifty forecasts of surge height for 
the coming seven days (Irazoqui Apecechea, 2018). To obtain fore
casts of total water level, calculated astronomical tide is needed to 
add to the forecast surge height. The astronomic tides are calculated 
by running the DCSMv5 model without wind forcing.

3. Total high waters taken from the forecasted time series, are used as 
input to the newly developed probabilistic model named 4SVK. This 
model calculates the probability the different threshold levels 
explained in section 2.1 are exceeded.

4. The model outcome is used by staff at the barrier to guide their de
cision making for whether the upcoming water levels are safe for 
maintenance work to be carried out or not.

Some parts of the operational system use different time references, 
this has been accounted for to ensure correct comparison. Note, new 
versions of the meteorological and hydrodynamic models are now 
available, that have replaced the ECMWF EPS/DCSMv5 forecasting 

Fig. 2. Overview of forecast models and the process steps to reach a decision on upcoming short-term maintenance at storm surge barrier.
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combination. However, the older version is used in this study as 16-years 
of past data are available, which is not yet the case for the new model 
combination.

Step three, outlined above, is a novel probabilistic model. To produce 
an outcome on the risk associated with upcoming water levels, four 
calculation steps are needed. These are as follows. 

1. The 50-member ensemble forecast of upcoming highwater levels 
from the combination of ECMWF and DCSMv5 models (Fig. 3a) are 
used as input to the probabilistic model 4SVK. For the following 
equations this is generalised to N members where each member has 
NT high waters. Therefore, each high water is denoted as Hn,it where 
n = 1 … N and it = 1 … NT. It is assumed that every member, at each 
timestep has equal probability of occurring (Buizza et al., 1999; 
Leutbecher and Palmer, 2008; Stephenson et al., 2005). The 
assumption that each ensemble member has an equal probability of 
occurrence is a common simplification used in ensemble-based an
alyses, this is a conservative assumption. As such, each high water 
level value (Hn,it) is defined as a stochastic variable with a Gaussian 
probability density function and standard deviation, σ. The opera
tional and maintenance water level thresholds introduced earlier are 
denoted by Hop.

2. As a function of both forecast surge height and lead time (Fig. 3b), 
the standard deviation, σn,it, is calculated for each member (n = 1 … 
N) at every timestep (it = 1 … NT). If the forecast surge is less than 
50 cm then σn,it is set to 10 cm. If the surge (Hsurge) is greater than 50 
cm, then the standard deviation is calculated as σn,it = 10 + 0.1* 
(Hsurge-50.0). The contribution of lead time is that for every succes
sive high water 0.5 cm is added to σn,it such that σn,it = σn,it-1 + 0.5. 
These values are based on verification of the combination of ECMWF 
and DSCMv5 models (de Vries, 2008, 2009; Wagenaar, 2018; Zijl 
et al., 2013).

3. The cumulative density function (Pn,it) is calculated for each 
ensemble member (n) at each time step (it) from the forecast high 
water level (Hn,it) (Fig. 3c) and is given by: 

Pn,it =φ(− βn.it) (Eq. 1) 

Where φ is the notation for the probability of exceeding the standard 
normal distribution with associated standardised β-factor: 

βn,it =

(
Hn,it − Hop

)

sn,it
(Eq. 2) 

The cumulative density function is calculated for every value of 
Hop.

4. The resulting probabilities (Pn,it) of the N members at each timestep 
(it) are then averaged (Fig. 3d): 

Pit =
1
N

∑N

n=1
Pn,it (Eq. 3) 

To calculate the cumulative exceedance probability for the high 
waters at each timestep (it) as follows: 

Pcumit =1 −
∏j=it

j=1
(1 − Pit) (Eq. 4) 

Resulting probabilities are compared to a critical probability value 
(Pcrit) (Fig. 3d). The safety criterion is met when the cumulative 
exceedance probability (Pcumit) is less than or equal to the critical 
probability (Pcumit ≤ Pcrit). Conversely, the safety criterion is not met 
when the cumulative exceedance probability is greater than the 
critical probability (Pcumit > Pcrit).

Depending on the value of Hop, the forecasted high waters are split 
into different forecast horizons to compare calculated probability 
against a critical probability value (Fig. 4). The model criteria depicted 
in Fig. 4 correspond to the baseline.

This probabilistic model has been used at the Maeslant barrier to 
guide decision making in real time since late 2021. The critical proba
bility values illustrated in Fig. 4, were selected by expert judgement, 
however, to date, no detailed evaluation of the model performance has 
been undertaken, especially not considering past surge height forecasts. 
Thus, in this paper, the model is evaluated in detail, as described in the 
next section.

3. Methodology - model evaluation

The following sections outline the framework developed to evaluate 
the performance of the probabilistic model (Section 3.1), conduct 
sensitivity tests (Section 3.2) and analyse any incorrect model outcomes 
(Section 3.3).

3.1. Baseline evaluation

The first objective is to evaluate the performance of the probabilistic 
model using historic forecasts between 2008 and 2023. To illustrate the 
evaluation framework, the results from the model outcomes at Hop 170 
cm and in the time frame of days 1–3 are presented in this paper.

Results from the combined ECMWF/DCSMv5 ensemble forecasting 
approach are used to run the probabilistic model in hindcast. Water level 

Fig. 3. Overview of probabilistic model (a) Ensemble of future highwater levels 
with the horizontal line indicating a value of Hop. (b) Standard deviation σn,it, 
for each member (n = 1 … N) at every timestep (it = 1 … NT). (c) Exceedance 
probability of Hop for each member at every timestep (d) Average ensemble 
cumulative exceedance probability of Hop with horizontal lines indicating 
critical probability values (Pcrit). Instances where Pcum ≤ Pcrit safety criterion is 
met, while when Pcum > Pcrit the safety criterion is not met.
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observations from the Hoek van Holland tide gauge (51.9775◦N, 4.12◦E) 
are used to assess the outcome of the probabilistic model. The obser
vational data were provided directly by Rijkswaterstaat, at 10-min 
recording interval.

The total number of model outcomes analysed is 5802. This is less 
than the number of days over the analysed period because on 42 occa
sions there were fewer than 50 ensemble members in the forecast or 
there were no forecasts available on that day. For consistency, these days 
are omitted from the analysis. Operationally, in instances where a 
forecast update is missing, the previous forecast remains accessible, 
ensuring that the system continues to function. The probabilistic model 
outcome displays the date and time of the last update, allowing users to 
identify the most recent model run and assess its reliability. The ECMWF 
forecast models are run twice daily, this study uses the forecast from the 
midnight run as this run is available at the beginning of the working day 
and so is used at the barrier for decision making of upcoming mainte
nance work.

To evaluate the performance of the probabilistic model, binary 
classification is used, i.e., a framework where models predict one of two 
mutually exclusive classes, the positive and negative class (Fahmy, 
2022; Starovoitov and Golub, 2020). For this probabilistic model, the 
positive class is water levels are at or above threshold, while the nega
tive class is water levels are below threshold. The outcome of the 
probabilistic model is compared against observed water levels and the 
results are used to populate a 2x2 confusion matrix with four possible 
results: (1) Correct - True Negative (TN), (2) Hit - True Positive (TP), (3) 
False Alarm - False Positive (FP), and (4) Miss - False Negative (FN) 
(Figure). In this case, Correct - True Negatives correspond to correct 
model outcomes where the safety criterion is met, and observed water 
levels were below the threshold (top left quadrant in Fig. 5). While Hits - 
True Positives are also correct model outcomes of safety criterion not 
being met and observed water levels above the threshold value (bottom 
right quadrant in Fig. 5). In this way, False Alarms - False Positives are 
defined as incorrect model outcomes where safety criterion was not met 
but the observed water levels were below the operational threshold (top 
right quadrant in Fig. 5). These instances mean that a potential main
tenance window has been missed as water levels were safe for mainte
nance work, but the model outcome forecasted otherwise. On the other 
hand, Misses - False Negatives outcomes are when the probabilistic model 
output that the safety criterion is met, but observations show that water 

levels were above the threshold (bottom left quadrant in Fig. 5). 
Therefore, these occasions are “increased risk” situations. To increase 
the useable intervals when maintenance work is carried out at the bar
rier, it is important to minimise the number of False Alarms as these 
restrict maintenance work. On the other hand, it is also important to 
mitigate the number of Misses as these can pose a risk to health and 
safety.

Binary classification defines metrics to quantify model performance 
(Fawcett, 2006). Outlined below are the metrics used in this paper and 
the equations to calculate them. All metrics applied are expressed as 
percentages.

The metric Recall shows how sensitive the model is towards identi
fying the true positives in the positive class (Eq. (5)). This is calculated as 
the number of true positives divided by the sum of true positives and 
false negatives, as follows: 

Recall=
TP

(TP + FN)
x 100 (Eq. 5) 

This makes it a suitable metric for identifying models with low 
numbers of misses or “increased risk” situations as high model Recall 
indicates low miss rates.

Specificity is the ratio of the number of correctly classified negative 
outcomes (true negatives) to the number of actual negative events (Eq. 
(6)) which is the sum of true negative and false positives. 

Specificity=
TN

(TN + FP)
x 100 (Eq. 6) 

This metric is useful when trying to limit the number of false alarm or 
“waste of time” situations, as high model Specificity indicates a low false 
alarm rate.

Prevalence shows how many of the total outcomes are in the positive 
class (Eq. (7))), this is calculated as follows: 

Prevalence=
FN + TP

(FN + TP + TN + FP)
x 100 (Eq. 7) 

This indicates the number of instances when observed water levels 
were above the maintenance threshold.

In classification problems when the number of instances within each 
class differ by an order of magnitude or more, they are unbalanced 
(Starovoitov and Golub, 2020). In such cases, balanced accuracy shows 

Fig. 4. Schematic overview of input, forecast horizons and output of the probabilistic decision support model (4SVK).

Fig. 5. Binary classification confusion matrix indicating Correct-True Negative, False alarm-False positive, Miss-False Negative and Hit-True Positive outcomes.
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the number of correct model outcomes (Eq. (8))). It is calculated by 
dividing the sum of Recall and Specificity by two: 

Balanced accuracy=
1
2

(
TP

(TP + FN)
+

TN
(TN + FP)

)

x 100 (Eq. 8) 

3.2. Sensitivity testing

The second objective is to explore how adjusting parameters effect 
the model performance. This is done by altering two model parameters: 
critical probability (Pcrit) and water level threshold (Hop). In the baseline 
model critical probability (Pcrit) is set at 1 %. The values tested are 
increased at 10 % intervals from 10 % to 50 %, resulting in five critical 
probability sensitivity tests. In the baseline probabilistic model, the 
values for water level threshold (Hop) are 170, 230 and 260 cm. Five 
alternative water level thresholds are tested ranging from 110 cm to 210 
cm at 20 cm intervals. In these sensitivity tests the baseline critical 
probability value of 1 % is used. Water level threshold values lower than 
170 cm provide a proxy for sea-level rise, where a lower criterion 
applied now represents a smaller water level margin that may be 
available in the future. The thresholds of 110 cm, 130 cm and 150 cm 
correspond to a proxy of 60 cm, 40 cm and 20 cm sea-level rise. This 
could be experienced at Hoek van Holland by 2101, 2072 and 2043 
respectively under a sea-level rise scenario of SSP2-4.5 (50th percentile 
intermediate scenario) or 2083, 2065 and 2042 respectively under a sea- 
level rise scenario of SSP5-8.5 (50th percentile high scenario) 
(Fox-Kemper et al., 2021; Van Dorland et al., 2024). Water level 
thresholds greater than 170 cm allow the impact of increasing the 
operational water level threshold on the model performance to be 
assessed. In practice, the operational threshold can either be altered 
procedurally or through physical alterations at the barrier, this is dis
cussed in more detail in section 5.2.

3.3. Analysis and interpretation of incorrect model outcomes

The third objective is to analyse the occasions when the outcome of 
the probabilistic model is incorrect. There are two types of incorrect 
outcomes: (1) False Alarms and (2) Misses. Results of incorrect model 
outcomes are presented as annual and monthly percentage occurrence. 
For the False Alarms, percentage occurrence is calculated by deter
mining the proportion of False Alarms from the positive class, while the 

Misses are out of the total of negative class events.
In addition, the extent to which the False Alarms in the end actually 

were below the Hop threshold (referred to hereon as freeboard) and the 
amount by which Misses exceeded the threshold (referred to hereon as 
threshold exceedance) are also shown. Freeboard is calculated by 
determining the minimum difference between the observed highwaters 
and threshold Hop in the forecast days 1–3. Threshold exceedance is 
calculated by determining the maximum difference between the day 1–3 
observed highwaters and the threshold Hop.

4. Results

The following sections present results from the probabilistic model 
baseline evaluation (Section 4.1), sensitivity testing (Section 4.2) and 
analysis of incorrect model outcomes (Section 4.3).

4.1. Baseline evaluation

The distribution of outcomes for the baseline model considered is 
depicted in Fig. 6 (and Supplementary Table 1). Results show that in the 
baseline configuration (i.e., critical probability of 1 % and water level 
threshold of 170 cm), 4175 (71.9 %) outcomes matched the status ac
cording to the observed water levels. Of which 3284 (78.7 %) accounted 
for correct outcomes with water levels below threshold and the other 
891 (21.3 %) were Hit outcomes when water levels are above threshold. 
The remaining 1627 (28.0 %) outcomes were incorrect with 1626 False 
Alarms and 1 Miss.

4.2. Sensitivity testing

Results for the critical probability and water level threshold sensi
tivity tests are presented in sub-sections 4.2.1 and 4.2.2, respectively.

4.2.1. Critical probability (Pcrit)
The first set of sensitivity tests presented here alter the critical 

probability (Pcrit). Results from the model outcome classification and 
metrics are illustrated in Fig. 6 (and Supplementary Table 2).

Classification of the model outcome shown in Fig. 6a illustrate the 
shift in distribution of model outcomes depending on the critical prob
ability. Results show that as the critical probability is increased from the 
baseline of 1 % – 50 % the number of Correct outcomes increase from 

Fig. 6. (a) model outcome classification for critical probability sensitivity tests at Hop 170 cm. Dotted horizonal line indicates prevalence. Model metrics for critical 
probability sensitivity tests (b) Recall and Specificity (c) Balanced Accuracy and Prevalence.
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3284 (56.6 %) to 4789 (82.5 %), while the number of Hits decrease from 
891 (15.3 %) to 605 (10.4 %). The number of False Alarms decrease 
from 1626 (28.0 %) to 121 (2.1 %), while the number of Misses increase 
from 1 (0.017 %) to 287 (4.9 %). The incorrect model outcomes from the 
critical probability sensitivity tests are analysed in further detail in 
section 4.3.1. When the critical probability is set to 40 % there are a 
greater number of Misses than False Alarms. The ratio of Correct and 
False Alarms (light and dark blue) to Misses and Hits (light and dark red) 
is constant at 15.3 % in each sensitivity test as shown in Fig. 6a. This is 
because the positive and negative class totals are dependent on the 
observed water levels which remain the same in each of the sensitivity 
tests as shown by the constant Prevalence value of 15.4 % in Fig. 6c.

The model performance metrics are visualised in Fig. 6b and c. As 
critical probability increases the model Recall decreases from 99.9 % to 
67.8 % shown in Fig. 6b, as the number of Misses increase. While the 
Specificity increases from 66.8 % to 97.5 % due to a decrease in the 
number of False Alarms. Balanced accuracy increases from 83.3 % in the 
baseline model to 91.1 % in the 10 % critical probability test. At higher 
critical probability values, the balanced accuracy decreases to 82.6 % at 
50 % Pcrit.

4.2.2. Water level threshold (Hop)
Results from the model outcome classification and metrics are 

illustrated in Fig. 7 (and Supplementary Table 3).
Classification of the model outcomes shown in Fig. 7a illustrate the 

shift in distribution of classification depending on the water level 
threshold. Results show that as the water level threshold is increased 
from 110 cm to 210 cm the correct outcomes increase significantly from 
38 to 5,303, while the number of Hits decrease from 5213 to 119. The 
number of False Alarms increase from 551 in the 110 cm test to 2250 in 
the 150 cm test after which the number of False Alarms decrease again to 
380 at 210 cm threshold value. While the number of Hit outcomes 
remain low with only three tests returning Hits, these are 150 cm with 2 
instances, 170 cm with 1 instance and 190 cm with 8 Hits. The incorrect 
model outcomes from water level threshold sensitivity tests are analysed 
in further detail in section 4.3.2.

The model performance metrics are visualised in Fig. 7b and c. The 
model Recall is fairly stable for the different water level thresholds 
tested. The drop in Recall to 97.5 % occurs at 190 cm when 8 Misses 
occur. The model Specificity increases greatly from 6.4 % at 110 cm to 
93.3 % at 210 cm which is related to a decrease in the number of False 

Alarms. As the number of outcomes in the positive and negative classes 
changes depending on the water level the Prevalence changes in these 
sensitivity tests. It decreases from 89.8 % at 110 cm to 2.1 % at 210 cm. 
Conversely, the Balanced Accuracy increases from 53.2 % at the lowest 
water level tested to 96.6 % in the test of highest water level.

4.3. Analysis and interpretation of incorrect model outcomes

Incorrect model outcomes for the critical probability and water level 
threshold sensitivity tests are presented in sub-sections 4.3.1 and 4.3.2, 
respectively.

4.3.1. Critical probability (Pcrit)
The distribution of False Alarms are shown in Fig. 8 and the Misses 

are illustrated in Fig. 9, for the critical probability tests. In the baseline 
configuration, the model resulted in 1626 False Alarm outcomes which 
correspond to 33.1 % of the negative class. There was only one Miss in 
the baseline hindcast (Supplementary Table). This occurred on the 
January 16, 2016 when the measured water level was 180 cm, so 10 cm 
above the operational water level threshold of 170 cm.

In the critical probability sensitivity tests, the percentage of incorrect 
outcomes decreased as the critical probability increased, from 12 % to 7 
% under the 10 % and 50 % critical probability tests respectively. Within 
the incorrect outcomes, the number of False Alarms fell while the 
number of Misses rose (Supplementary Table 2). The total number of 
False Alarms decreased from 667 in the 10 % to 121 in the 50 % critical 
probability tests. The annual distribution of False Alarms is shown in 
Fig. 8a–f. This shows a slight decrease in the annual number of False 
Alarms. The trend is most noticeable in the 1 % critical probability test 
shown in Fig. 8a, as this has the highest number of False Alarms. The 
monthly distribution of model False Alarms is shown in Fig. 8g–l. This 
reveals a seasonal pattern in the occurrence of False Alarms, with fewer 
occurring in the months of April to August, while the model returns 
more False Alarms between September and March. The number of False 
Alarms in August decreases noticeably as critical probability value is 
increased. However, this seems to be dependent on the given Pcrit value 
and not on the month.

Fig. 9 illustrates the number of Misses where the left column shows 
annual distribution (panels a–d) and the right column monthly distri
bution (panels e–h). The number of Miss outcomes increase from 36 to 
287 under the 10 % and 50 % tests respectively. When a Miss occurs in a 

Fig. 7. (a) model output classification for water level threshold sensitivity tests, where the critical probability value is set at 1 %. Model metrics for water level 
threshold sensitivity tests (b) Recall and Specificity (c) balanced accuracy and prevalence.
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test run at a particular critical probability, it will also be present in the 
successive runs with a higher critical probability value.

The annual distribution of Misses reveals an increasing trend over 
the 16 years of the hindcast as seen most noticeably in Fig. 9e. The years 
2014, 2020 and 2023 stand out as having large numbers of model out
comes classified as Misses, although the reason for this is not yet known. 
The 30 % critical probability sensitivity test has the greatest increase in 
Miss events.

The monthly distribution of Misses shows a clear seasonal pattern, 
with higher percentage occurrence in the months April to August 
compared to the rest of the year. As the critical probability value in
creases so does the percentage occurrence of Misses. In the 50 % critical 

probability test, June resulted in misclassification of all instances where 
the water levels were above the 170 cm threshold.

The following section describes the analysis of the difference be
tween forecasted and measured water level for all instances where an 
incorrect model outcome occurred. The freeboard and threshold ex
ceedance amount for the False Alarm and Miss events are shown in 
Fig. 10a and b respectively, these are presented in standard box plots. 
Summary statistics are presented in Supplementary Table 4.

The maximum value of the freeboard decreases as critical probability 
value increases, the interquartile range also decreases from 15 cm at 1 % 
critical probability to 9 cm at 50 % critical probability. The opposite 
trend is seen in threshold exceedance, which increases with increasing 

Fig. 8. Percentage occurrence of annual (a–f) and monthly (g–l) False Alarm outcomes from the critical probability sensitivity tests.

Fig. 9. Percentage occurrence of annual (a–e) and monthly (f–j) Misses from the critical probability sensitivity tests.
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critical probability value. The interquartile range increases between the 
10 % and 20 % critical probability tests and then remains stable for the 
other tested values.

4.3.2. Water level threshold (Hop)
The annual distribution of False Alarms for different values of Hop is 

shown in Fig. 11a–f and the monthly distribution is shown in Fig. 11g–l. 
Overall, the results show that the percentage occurrence of False Alarms 
decreases with increasing water level thresholds and exhibit stronger 
seasonal patterns at higher water level thresholds. A declining trend in 
False Alarm occurrence is most noticeable in the 150 cm sensitivity test. 
For the 110 cm water level threshold, a slight decline in recent years is 
shown but the percentage occurrence of False Alarms remains above 80 
%. In the 150 cm sensitivity test a gradual declining trend is evident after 
2015. The two highest water level threshold tests of 190 cm and 210 cm 
show minimal year to year variation in the proportion of False Alarms.

The seasonal pattern of False Alarms varies depending on the water 
level threshold value tested. At lower water levels of 110 cm and 150 cm 
there is higher occurrence of false alarms in the maintenance season 
(April–September) compared to the storm season (October–March). At 
the baseline level of 170 cm there is little variation. While at the higher 

threshold levels of 190 cm and 210 cm show higher False Alarm rates in 
the storm season compared to the maintenance season.

Summary statistics of freeboard for the false alarms from the water 
level threshold sensitivity tests are shown in Fig. 12 (and summarised in 
Supplementary Table 5).

As the water level threshold increases, freeboard also increases. At 
the water level threshold of 210 cm there were the fewest number of 
False Alarms, however these events had higher freeboard values.

At three water level thresholds Misses occurred, these are 150 cm, 
170 cm and 190 cm, with 2, 1 and 8 instances respectively. These events 
are summarised in Supplementary Table 6, which indicates the 
threshold water level of each event the date it occurred and the extent to 
which the threshold was exceeded. At 150 cm the two Miss events 
occurred in the last 2 years and only exceeded the threshold by 1 cm. As 
mentioned previously, the baseline model had one Miss which exceeded 
the threshold by 10 cm. The Misses that occurred at 190 cm, have all 
been since 2018 which is the latter third of the hindcast period. Six of the 
Misses occurred in pairs where consecutive days resulted in incorrect 
outcomes, these are November 2022, October and November 2023. Not 
all Misses are equally critical, as their severity depends on how much 
they exceed the threshold value by.

Fig. 10. Standard box plot of (a) False Alarm freeboard extent (b) Miss threshold exceedance amount for the critical probability sensitivity tests.

Fig. 11. Distribution of (a–f) annual and (g–l) monthly False Alarms from water level threshold sensitivity tests.
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5. Discussion

The aim of this paper was to describe and evaluate a probabilistic 
model that is used to aid decision making regarding maintenance at 
storm surge barriers. To address this aim three objectives were defined. 
Findings from these objectives are discussed in the following sections, 
with the final part addressing the wider implications of this research and 
future work.

5.1. Baseline

Of the 5802 days analysed, observations showed that water levels 
were below the maintenance threshold on 4910 (85 %) days meaning 
conditions were safe for work to be carried out (the negative class). The 
remaining 892 (15 %) days had water levels above the 170 cm main
tenance threshold meaning it could have been dangerous for staff 
working at the barrier (the positive class). Therefore, this classification 
had unbalanced classes as the number of days within each class differ by 
an order of magnitude or more (Starovoitov and Golub, 2020). This had 
implications for the metrics that were used to analyse the performance 
of the probabilistic model, as the high number of negative class out
comes could mask the small number of positive class outcomes. For this 
reason, Balanced Accuracy is used as a combined measure of model 
performance.

Performance analysis of the baseline probabilistic model, with values 
of 1 % for critical probability and 170 cm for water level threshold, 
illustrated that these parameters were highly conservative. As 33.1 % of 
model outcomes were False Alarms. On the other hand, of the 892 days 
when observed water levels were above the maintenance threshold, the 
model correctly gave the outcome that the safety criterion had not been 
met on 891 of these days. So, there was only one instance when the 
model incorrectly returned an outcome that the safety criterion had 
been met. This showed that the model was very good at avoiding the 
“increased risk” situations. However, the implications of this for main
tenance work at the barrier were that the model underestimates the 
amount of time when water levels were below the threshold meaning 
conditions were safe for work to be carried out. Improving the model 
performance relates to increasing the amount of time when maintenance 
work can safely be carried out at the barrier. To achieve this, the number 
of False Alarms need to be decreased, while on the other hand, it is also 
important to mitigate the number of Misses as these can pose a risk to 
health and safety. As a means to achieve this, sensitivity tests were 
conducted to analyse the impact changes in baseline parameters had on 
model performance.

5.2. Sensitivity testing

Results for the critical probability and water level threshold sensi
tivity tests are discussed in sub-sections 5.2.1 and 5.2.2, respectively.

5.2.1. Critical probability (Pcrit)
Hindcast runs of the probabilistic model with adjusted parameter 

values allowed the performance of the modified model to be evaluated. 
Increasing the critical probability value (Pcrit) from 1 % to 50 % reduced 
the number of False Alarms (Fig. 6a), as shown by the increase in 
Specificity (Fig. 6b), but this change resulted in a simultaneous increase 
in the number of Misses as indicated by reduction in model Recall. 
Critical probability values greater than 50 % were not tested as this 
scenario and the 40 % critical probability resulted in larger numbers of 
Misses than False Alarms, suggesting an optimum value of critical 
probability had been exceeded. The rate of change in False Alarms and 
Misses differed between the critical probability tests. The largest in
crease in Specificity was seen between critical probability test of 1 % and 
10 %. This was due to the greatest decrease in number of False Alarm 
events (959). The rate of increase then reduced with each successive 
critical probability value tested. On the other hand, the decrease in 
Recall was almost linear between critical probability tests of 10 % – 50 
%, with the exception between the 1 % and 10 % critical probability 
values which had the smallest increase in Miss events and therefore the 
lowest rate of change. The values of Specificity and Recall intersected at 
a critical probability slightly less than 20 %. The highest balanced ac
curacy occurred at the 10 % critical probability test with 91.2 %. At 
higher critical probability values the balanced accuracy decreased, 
which was due to the greater increase in number of Misses than the 
decrease in False Alarms. The choice of operational critical probability 
value therefore depends on how model performance is measured, and 
thus which metric is used to determine this.

Due to the nature of binary classification, adjustments to the prob
abilistic model parameters which decrease False Alarms will increase the 
number of Misses. This can be visualised by a shift in the number of 
events from the right-hand column to the left-hand column of the 
confusion matrix (Fig. 4). This means any tuning of model parameters, 
result in a trade-off between the risk willing to be taken and the loss of 
maintenance time due to False Alarms. A way to overcome this, is to 
mitigate the risks posed by the Misses, so that the number of False 
Alarms can be kept low while ensuring health and safety standards are 
sufficient. At the Maeslant Barrier this is addressed by sounding an alarm 
when the water level reaches the maintenance threshold indicating that 
any ongoing work has to stop.

5.2.2. Water level threshold (Hop)
In all water level threshold tests the Recall values were above 97 % 

which was due to the low critical probability value of 1 % used in the 
tests. This indicated that there were very few Miss outcomes from the 
model. On the other hand, Specificity increased with increasing water 
level threshold as the proportion of False Alarms decreased. This was 
linked to the prevalence which decreased due to a reduction in the 
number of days when water levels where above the threshold. This can 
be considered as a shift in the number of events from the bottom row to 
the top row of the confusion matrix (Fig. 4). This trend resulted in higher 
balanced accuracy as the ratio of Correct model outcomes in the positive 
and negative classes improved. This was due to the constantly low 
number of Misses while the False Alarms became a smaller proportion of 
the negative class outcomes. This highlighted that at a given critical 
probability value, the model had more outcomes where the safety cri
terion was met at higher water level thresholds, which would have 
indicated more safe weather windows when maintenance work could be 
carried out. This confirmed that the water level of the maintenance 
threshold was fundamental to the amount of time available to carry out 
maintenance safely, highlighting the challenge posed by increasing 
water levels due to sea-level rise.

Fig. 12. Standard box plot of False Alarm freeboard extent for the water level 
threshold tests.
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In practice, increasing the water level threshold is not as straight
forward as just changing the value, other measures need to be taken to 
ensure workability and safety under such conditions (Trace-Kleeberg 
et al., 2023). For example, procedural changes could be introduced, such 
as assessing health and safety risks on a job-specific basis and assigning 
individual water level thresholds that dictate when work must stop. This 
would allow tasks in lower-risk areas, such as the control room, to 
continue at higher water levels compared to more exposed locations. 
Alternatively, physical modifications, such as retrofitting the barrier to 
prevent flooding around the ball joint and on the terrain or overtopping 
of the dock door, could be considered. However, such interventions 
could involve significant financial and constructional considerations 
and must ensure that the barrier’s operational integrity is not 
compromised.

5.3. Analysis and interpretation of incorrect model outcomes

The critical probability tests showed a decreasing trend in annual 
distribution of False Alarms (Fig. 8a–f) and increasing trend in Misses 
(Fig. 9a–e). Further analysis is required to understand the drivers of the 
identified trends.

Only counting the number of incorrect model outcomes did not 
entirely quantify the risk associated with these events. To determine by 
how much the outcome was incorrect, values of freeboard and threshold 
exceedances were calculated (Figs. 10 and 12). The results from critical 
probability sensitivity testing showed a clear trade-off between free
board and threshold exceedance. As critical probability increased from 
1 % to 50 %, freeboard values decreased while the threshold exceedance 
slightly increased. Such that higher critical probabilities were associated 
with lower freeboard values but slightly higher threshold exceedances, 
thus emphasising the possible increase in risk associated with incorrect 
model outcomes at higher critical probability values.

Results in the water level threshold sensitivity tests showed that 
False Alarms were associated with increasing freeboard values as water 
level threshold increased. This trend was accompanied by greater vari
ability and more extreme outliers at higher thresholds. So, although 
there were fewer False Alarms at higher water level thresholds the dif
ference between the forecast and observed water levels for those events 
was greater, this demonstrates a larger risk associated with those 
incorrect model outcomes.

The Miss that resulted in a 38 cm threshold exceedance, corre
sponding to a water level of 208 cm, occurred on April 28, 2018. The 
probabilistic model outcome was that the safety criterion had been met 
which indicated upcoming water levels would be below the mainte
nance threshold. However, observations showed that the 6th highwater 
(i.e., just under 3 days from the forecast run time) the maintenance 
threshold was exceeded resulting in the Miss outcome. This instance 
occurred because the forecasted highwaters for 28 April did not capture 
the upcoming event. However, for the 29 April the water level forecasts 
adjusted, and the probabilistic model outcome changed to safety criteria 
not met which matched the observed water levels. The same thing 
occurred in the maximum threshold exceedance event at 50 % critical 
probability value. where on the forecast run of November 28, 2020 the 
threshold exceedance was 53 cm indicating a water level of 223 cm. This 
again corresponded to the 6th highwater, a lead time of 74 h, which by 
the next forecast run had adjusted to result in a correct probabilistic 
model outcome of safety criterion not met. This illustrates the impor
tance of accurate water level forecasts as input to the probabilistic model 
to increase the chance of correct model outcomes with regard to safety 
criterion and therefore supporting the decision making at the barrier 
whether it is safe or not for maintenance to be carried out.

Even though the total number of events in the positive class was 
smaller between April and August the model is not able to correctly 
classify these events resulting in the incorrect model outcomes and 
possibly decisions on whether maintenance could be carried out. The 
reason for the shift in distribution of summer and winter False Alarms 

(Fig. 11h–l) has not yet been identified. Such investigation and a more 
detailed assessment of the meteorological and hydrodynamic conditions 
of incorrect model outcomes could form the basis for a more compre
hensive future study.

5.4. Wider implications and further work

To the authors’ knowledge, the probabilistic model described and 
evaluated in the study is the first to use ensemble forecasts to aid deci
sion making at a storm surge barrier on whether upcoming water levels 
are safe for maintenance work to be carried out. The evaluation of model 
performance conducted in this study, is a starting point for further 
development. Such development could be in any of the system steps as 
outlined in Fig. 2, namely the meteorological model, hydrodynamic 
model, probabilistic model or the end user decision.

The combination of meteorological and hydrodynamic models used 
in this study only captures the uncertainty in initial weather conditions 
through the European Centre for Medium-range Weather Forecast 
ensemble prediction system. It does not capture uncertainties in the 
boundary conditions of the hydrodynamic model such as ocean currents, 
or river discharge. This can lead to differences between the forecast and 
observed water levels which could result in incorrect model outcomes 
and therefore impact the False Alarm or Miss situations.

The model combination used in this paper namely the ECMWF EPS/ 
DCSMv5 models are no longer used operationally. Since November 
2023, newer models of both the meteorological conditions and hydro
dynamics are used for water level forecasting. This presents an oppor
tunity to apply the evaluation method of this paper to another case study 
as the new dataset extends.

The probabilistic model analysed here, solely examines highwater 
levels to determine the risk to upcoming maintenance work. At the 
Maeslant barrier this is sufficient, but to extend the model to other 
barriers it may need to account for other variables. As mentioned in the 
introduction, maintenance at the Eastern Scheldt is also governed by 
wave height and in London at the Thames barrier river discharge in 
addition to water levels determine whether the barrier will need to close 
and so limit maintenance work. The other requirement for extending the 
application of the probabilistic model is the existence of ensemble 
forecasts of the required parameters in the relevant locations. In addi
tion, the relative contributions of tidal and surge components to total 
water levels could be investigated in detail to better understand their 
respective roles, particularly in the model’s performance for different 
water level thresholds. Furthermore, there is considerable uncertainty in 
future changes in intensity, duration and tracks of storms, which drive 
storm surges, and the implications for this could be considered in future 
assessment of the probabilistic model.

The probabilistic model is a decision support tool and requires 
knowledgeable people at the barrier to interpret the model output and 
make informed decisions about the risk posed by upcoming water levels 
to determine if short term maintenance can be done. Additional research 
could be undertaken to understand how the probabilistic model output 
is interpreted and used by barrier staff and contractors to aid their de
cision making. It is likely that other factors influence the decision 
making on maintenance work, such as criticality, complexity and 
duration of the planned work which all affect the risk associated with the 
maintenance. Systematically documenting this could allow the output of 
the probabilistic model to be better tailored to the end user’s needs and 
build confidence in the teams of the model’s output.

Probabilistic models such as the one used in this study provide a tool 
for addressing the challenge of completing the required maintenance 
work in reducing periods of time. This is one option to address the 
challenge posed by a changing climate and sea-level rise, but is unlikely 
to be the sole solution. Rather a combination of methods will be needed 
to alleviate the challenge of completing all required maintenance in the 
available safe working windows (Trace-Kleeberg et al., 2023). It is also 
likely that other barriers around the world, where set threshold values - 
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based on water levels or other drivers - are in operation can benefit from 
a probabilistic model as presented in this paper. The international 
knowledge sharing network I-STORM (www.i-storm.org) can support 
the expansion of this decision support tool, both in terms of further 
method development and application at other locations, through sharing 
expertise and experience between its members.

6. Conclusions

This paper has described and evaluated a probabilistic model used to 
aid decision making to determine if the upcoming high-water levels are 
safe for maintenance work to be carried out at the Maeslant storm surge 
barrier or not. The probabilistic model performance was evaluated by 
comparison of model outcome with observations over a 16-year period 
(2008–2023). The baseline configuration with a critical probability of 1 
% and a water level threshold of 170 cm. demonstrated strong perfor
mance but was conservative, with 33.1 % of model outcomes resulting in 
a False Alarm. Conversely, only one miss occurred during the hindcast 
period. Sensitivity analysis showed that adjusting the critical probability 
could improve model performance, reducing False Alarms but 
increasing in the number of Misses. This trade-off underscores the 
importance of balancing safety and efficiency in the model’s configu
ration. Additionally, water level threshold sensitivity tests revealed that 
sea-level rise could eventually limit the ability to carry out maintenance, 
highlighting a potential tipping point where operation of the barrier 
may be jeopardised. Ultimately, the probabilistic model provides valu
able insight into the likelihood of exceeding upcoming water level 
thresholds to aid decision making regarding the safety of maintenance. 
However, ongoing evaluation and model parameter tuning is needed, as 
well as a better understanding of external risk mitigating strategies. 
Parallel studies are underway to address these knowledge gaps.

Beyond the Maeslant barrier, the probabilistic model presented in 
this study offers a promising tool for assessing safe maintenance across 
other storm surge barriers, provided ensemble forecasts and clear 
operational thresholds are available. The model’s approach, incorpo
rating binary classification and sensitivity analysis for evaluation, could 
be adapted to other coastal infrastructure that relies on similar main
tenance protocols. To ensure effective use, the probabilistic model must 
be tailored to specific contexts with careful consideration of risk toler
ance and mitigation measures. Furthermore, training personnel to 
interpret the model’s output is crucial for successful integration into 
decision-making processes. Given its flexibility, the model could serve as 
a valuable resource for improving maintenance and operational safety in 
other locations vulnerable to storm surges in order to contribute to 
enhanced resilience in the face of climate change induced sea-level rise.
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