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ARTICLE INFO ABSTRACT

Keywords: Storm surge barriers provide flood protection to many major coastal cities in estuaries around the world.
Storm surge barriers Maintenance of these assets is critical to ensure they remain reliable and continue to comply with national legal
Management

protection standards. There are often critical thresholds of environmental conditions, beyond which maintenance
work is unsafe to be carried out. However, as storm surge barriers age and with climate change effects such as
sea-level rise and possible changes in storminess, periods when environmental conditions exceed set thresholds
will occur more frequently, so carrying out the required work in available maintenance windows will become
increasingly challenging. Probabilistic models enable the use of ensemble forecasts of upcoming water levels to
determine the likelihood of conditions exceeding the threshold and so can inform on decision making regarding
maintenance. This paper evaluates a probabilistic model currently in operational use by Rijkswaterstaat, the
Dutch Ministry of Infrastructure and Water Management, to guide maintenance decisions at the Maeslant barrier
in the Netherlands. Sixteen years of historic highwater level forecasts from a combination of European Centre for
Medium-Range Weather Forecasts and Dutch Continental Shelf Model v5 are used with observations from the
Hoek van Holland tide gauge to evaluate and sensitivity test the probabilistic model. Binary classification is used
to assess the performance of the probabilistic model. Findings show that the model is conservative with 33.1 % of
outcomes resulting in a False Alarm. Changing the baseline parameters of critical probability and water level
threshold impacts the balance between False Alarm and Miss outcomes. Increasing the critical probability re-
duces the number of False Alarms but increases the Miss situations, emphasising the trade-off between acceptable
risk and time available to carry out maintenance work. This study highlights the delicate balance between model
parameter selection and the associated risk with respect to the maintenance of storm surge barriers.

Maintenance and operation
Probabilistic model
Decision support system
Ensemble forecasting

1. Introduction Jonkman et al., 2013; Kirshen et al., 2020). Storm surge barriers are

hard engineering structures consisting of partly or fully movable gates

Many coastal cities and towns are located in estuaries which are
particularly vulnerable to natural disasters such as flooding, due to their
location at the interface of the sea and rivers. The impacts of climate
change, such as accelerating sea-level rise and increases in storminess,
along with changes in rainfall and river discharge, are increasing the risk
of damage to infrastructure and loss of life in low-lying coastal regions
(Brown et al., 2013; Del-Rosal-Salido et al., 2021; Hinkel et al., 2014).

In estuaries with long exposed coastlines, where space is limited,
storm surge barriers can provide a technical and economic solution for
new and/or improved flood protection measures (Aerts et al., 2014;
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(Mooyaart and Jonkman, 2017), located in an estuary, river (Mooyaart
et al., 2014) or lake (Deltares, 2018). These flood defences can be closed
temporarily to prevent extreme water levels from propagating inland
and thus protect the hinterland from flooding (Zhong et al., 2012).
Presently, there are over 50 storm surge barriers in operation worldwide
(Smaling, 2024), including: the Hollandsche IJssel (Hamerslag and
Bakker, 2023), Eastern Scheldt (Knoester et al., 1984) and Maeslant
(Bol, 2005) barriers in the Netherlands; the Thames (Wilkes and Lavery,
2005) and Boston (ICE, 2020) barriers in the UK; the MOSE barrier in
Italy (Munaretto et al., 2012); New Bedford Hurricane protection barrier
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in Massachusetts (US Army Corps of Engineers, 2015) and the Lake
Borgne Surge Barrier which is part of the Hurricane Storm Damage Risk
Reduction System in New Orleans, USA (Flood Protection Authority
East, 2014). In addition to the operational barriers, many new schemes
are being planned or constructed such as in Galveston (Merrell et al.,
2011), New York and New Jersey (Kluijver et al., 2019) in the US;
Bridgwater in the UK (Somerset Council, 2024) and Nieuwpoort in
Belgium (Jan De Nul, 2024).

Like other engineering structures, storm surge barriers require
specialist management, maintenance and operation due to their
complexity (Walraven et al., 2022). Regular maintenance is required to
ensure storm surge barriers are reliable, remain functional and comply
with national legal protection requirements. Maintenance is highly
varied involving test closures, inspections, repair and replacement of
key parts, along with major upgrades of systems. These maintenance
tasks can require substantial time to complete, and the more often a
barrier closes, the more inspection and maintenance work needs to be
carried out to ensure the barrier remains reliable. In the UK, for example,
maintenance is carried out year-round. Whereas, in other counties, like
the Netherlands, maintenance is currently completed from the middle of
April to the end of September during the so-called maintenance season.
However, this puts pressure on the teams carrying out the work, as a
large number and wide range of tasks need to be completed in a limited
time window. Furthermore, maintenance can only be carried out when
conditions are safe to ensure the safety of the workers at the barrier.
Therefore, thresholds of environmental conditions such as water level
are defined beyond which maintenance work cannot be carried out.
These health and safety thresholds vary among barriers. At the Maeslant
barrier in the Netherlands, which is located 6 km from the coast,
maintenance work is required to stop when the water level reaches a
certain height, as elaborated in Section 2.1. At the Eastern Scheldt
barrier in the Netherlands, which is located on an exposed coastline,
maintenance work is stopped when water level or the combination of
water level and significant wave height exceed defined thresholds. In
London at the Thames barrier maintenance work is impacted by river
discharge as well as water level (Haigh et al., 2024).

Completing the required maintenance for storm surge barriers is
getting increasingly challenging (Walraven et al., 2022), due to a
number of key reasons. Firstly, existing barriers are ageing. Some, bar-
riers were constructed over 40 years ago, meaning they require addi-
tional maintenance to continue being reliable. Secondly, over time,
sea-level rise will result in barriers having to close more often
(Haasnoot et al., 2018), at some locations possibly exacerbated by
increased storminess and changes in river discharge (Chen et al., 2020).
Closure of the Thames Barrier in May 2020, where previously closures
had not occurred later than March, is an illustration that climate change
may already have an influence on the traditional closure season at this
barrier. As time progresses, storm surge barriers will need to close more
often and increasingly in summer months (Haigh et al., 2024), impacting
planned maintenance projects. Thirdly, climate change will not only
continue to influence the number of closures but will also increase the
number of times maintenance thresholds are reached, interrupting
work; especially as maintenance thresholds will typically be lower than
closure thresholds resulting in these being exceeded more often. Such
that the influence of sea-level rise will be noticed more for maintenance
thresholds than closure levels. A detailed assessment of past and likely
future maintenance threshold exceedances (under different climate
scenarios) was undertaken for the Maeslant barrier (Trace-Kleeberg
et al., 2023). Findings showed that of the past maintenance threshold
exceedances, 13 % occurred during the maintenance season which could
have interrupted the planned maintenance work (Trace-Kleeberg et al.,
2023). As sea-level rise increases mean sea level, a point will be reached
when the highest astronomic tides alone exceed the maintenance
threshold, without a meteorological contribution, decreasing the avail-
ability of safe working windows (Trace-Kleeberg et al., 2023).

As it is getting harder to carry out the required maintenance,
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investigations are beginning into new ways to maximise the available
time to complete maintenance work. For example, Dutch governmental
departments are exploring means of carrying out maintenance work
year-round by considering more extensive use of operational forecasts of
environmental conditions. To do this, a thorough risk analysis of the
consequences of wrong predictions is required besides mitigation mea-
sures. For instance, adequate precautions need to be in place to ensure
the safety of workers and to guarantee that the barrier will be ready for
an operational closure, if called upon (Trace-Kleeberg et al., 2023). This
requires accurate forecasting of upcoming water levels to manage,
maintain and operate the storm surge barriers.

At many storm surge barriers, water level forecasts are used to
determine when they are required to close. These forecasts could also be
used to aid maintenance decision making of when upcoming conditions
are safe. At the Maeslant storm surge barrier in the Netherlands, staff
have recently developed a probabilistic model based on ensemble water
level forecasts, to provide guidance in the short term (next 7 days) to aid
decision making whether or not it is safe to do maintenance. The
developed model has - up to this point - not been evaluated in depth to
test, and identify possible adjustments, to maximise its performance.
Thus, this paper explores the use of forecasts to guide when maintenance
can be safely carried out. A detailed evaluation of the probabilistic
model using historic forecasts over the 16-year period from 2008 to
2023 is conducted. Three specific objectives are defined: (1) evaluate the
performance of the probabilistic model using the existing model pa-
rameters; (2) conduct sensitivity tests to explore how adjusted param-
eters affect model performance; and (3) analyse instances when the
probabilistic model outcome is incorrect.

This paper is structured as follows. The case study barrier and
probabilistic model are described in Section 2, followed by the method
used for evaluating the model baseline, sensitivity testing and analysing
incorrect model outcomes which are outlined in Section 3. Section 4
presents the results of the three paper objectives. These are discussed in
Section 5 and the paper finishes with conclusions in Section 6.

2. Background to case study barrier and model

This paper uses the Maeslant storm surge barrier in the Netherlands
as a case study. The following section provides an overview of the
Maeslant barrier and maintenance thresholds (Section 2.1) and de-
scribes the probabilistic model that has been developed to aid decision
making regarding maintenance (Section 2.2).

2.1. Overview of the Maeslant barrier and maintenance threshold

The Maeslant barrier is located approximately 30 km west of Rot-
terdam city in the Netherlands (Fig. 1a). It consists of two horizontal
sector gates (Fig. 1b). Three water level thresholds are important for
barrier management, maintenance and operation. The gates close when
the forecast water level in central Rotterdam exceeds 300 cm above NAP
or the forecast water level at Dordrecht exceeds 290 cm above NAP
(Dutch: Normaal Amsterdams Peil, NAP; Amsterdam’s Ordnance
Datum). This happened for the first time in December 2023 (Zijderveld
et al., 2024). At a forecast water level of 260 cm above NAP, the oper-
ational team is called onsite. The Maeslant barrier is operated by a
computer system which switches state from “at rest” to “operational”
when predicted water levels exceed 230 cm above NAP.

In addition to the thresholds mentioned above, a health and safety
threshold exists. When water levels at the barrier reach 170 cm above
NAP, maintenance work is stopped. This is due to the risk posed by
waves and wakes from passing vessels, which reach the lowered terrain
between the ball joint and barrier gate impeding access to the structure,
and water overtopping the dock doors making work in the docks
dangerous (Fig. 1c).

The maintenance season at the Maeslant Barrier is currently between
the 15th of April and the 30th of September, with the storm season in the
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Fig. 1. (a) Overview of case study area indicating location of tide gauge, Maeslant barrier and Rotterdam city (b) Arial view of Maeslant barrier. Dotted box indicates
region represented in panel c. (Image credits: Rijkswaterstaat, 2022) (c) Schematic illustration of Maeslant barrier and regions at risk of flooding at maintenance

threshold of 170 cm.

remaining months. Inspections and the annual test closure before the
start of storm season effectively shorten the actual duration available for
maintenance by a month. Currently, maintenance works are not un-
dertaken at the Maeslant barrier during the storm season. However,

analysis has shown that water levels in past storm seasons have been
below the maintenance threshold for extended periods, meaning work
could have been carried out (Trace-Kleeberg et al., 2023). Maintenance
jobs vary in frequency and duration from short daily tasks to infrequent
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replacement that can take up to four successive seasons to complete.
Maintenance planning and delivery is a challenge due to the quantity
and complexity of the work and short time-period when work is carried
out. This will be exacerbated by sea-level rise, which reduces the safe
weather windows as the number of maintenance threshold exceedances
per year increase (Trace-Kleeberg et al., 2023). Therefore, it is important
to utilise all potentially available maintenance windows including
possibly undertaking maintenance work all year round. However, to
achieve this, adequate precautions need to be in place to ensure the
safety of workers and to guarantee that the barrier will be ready if
needed for an operational closure. One way of doing this is to use
forecasts to predict when upcoming water levels are likely to be lower
than the maintenance threshold, accounting for uncertainty. Such a
system can aid decision making of when maintenance work can safely be
carried out in relation to the criteria considered.

2.2. Probabilistic model

Conventional forecasting systems produce a single, deterministic
forecast, which is subject to two main sources of error: (1) uncertainty in
initial conditions and (2) approximation of processes in the models
(Buizza, 2006). These sources of uncertainties limit the skill of deter-
ministic forecasts in an unpredictable way. An ensemble prediction
technique addresses these issues by producing several forecasts over the
same period, allowing quantitative estimates of uncertainty (Flowerdew
et al., 2010). The combination of models used in this study determine
the probability that upcoming water levels exceed certain thresholds.
This output is used to guide decision making for whether it is safe or not
to carry out short term maintenance at a storm surge barrier.

ECMWEF
EPS forecast

Meteorological model

level

4SVK

Decision

50-member ensemble:
10 m U and V winds
Mean Sea Level Pressure

DCSMVv5 forecast

Hydrodynamic model

50-member ensemble:
High waters from total water

Probabilistic model
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To reach a decision multiple steps are needed, these are outline
below and shown in Fig. 2.

1. A 50-member ensemble of meteorological conditions is computed by
the medium range Ensemble Prediction System (EPS) at the Euro-
pean Centre for Medium-range Weather Forecasts (ECMWF), with a
ten-day lead time (Buizza, 2006). This model has undergone multiple
updates which are described in the annual technical memorandums
(e.g., ECMWF Tech. Memos. 880, 884 and 902).

2. The 10-m wind and mean sea level pressure ensembles from the
ECMWF EPS are used to drive the depth-averaged hydrodynamic
Dutch Continental Shelf Model (DCSMv5) (Gerritsen et al., 1995; Zijl
et al., 2013). This model produces fifty forecasts of surge height for
the coming seven days (Irazoqui Apecechea, 2018). To obtain fore-
casts of total water level, calculated astronomical tide is needed to
add to the forecast surge height. The astronomic tides are calculated
by running the DCSMv5 model without wind forcing.

3. Total high waters taken from the forecasted time series, are used as
input to the newly developed probabilistic model named 4SVK. This
model calculates the probability the different threshold levels
explained in section 2.1 are exceeded.

4. The model outcome is used by staff at the barrier to guide their de-
cision making for whether the upcoming water levels are safe for
maintenance work to be carried out or not.

Some parts of the operational system use different time references,
this has been accounted for to ensure correct comparison. Note, new
versions of the meteorological and hydrodynamic models are now
available, that have replaced the ECMWF EPS/DCSMv5 forecasting

Outcome whether safety
criteria is met or not

Fig. 2. Overview of forecast models and the process steps to reach a decision on upcoming short-term maintenance at storm surge barrier.
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combination. However, the older version is used in this study as 16-years
of past data are available, which is not yet the case for the new model
combination.

Step three, outlined above, is a novel probabilistic model. To produce
an outcome on the risk associated with upcoming water levels, four
calculation steps are needed. These are as follows.

1. The 50-member ensemble forecast of upcoming highwater levels
from the combination of ECMWF and DCSMv5 models (Fig. 3a) are
used as input to the probabilistic model 4SVK. For the following
equations this is generalised to N members where each member has
NT high waters. Therefore, each high water is denoted as Hy ;; where
n=1...Nandit=1 ... NT. It is assumed that every member, at each
timestep has equal probability of occurring (Buizza et al., 1999;
Leutbecher and Palmer, 2008; Stephenson et al., 2005). The
assumption that each ensemble member has an equal probability of
occurrence is a common simplification used in ensemble-based an-
alyses, this is a conservative assumption. As such, each high water
level value (Hy;) is defined as a stochastic variable with a Gaussian
probability density function and standard deviation, 6. The opera-
tional and maintenance water level thresholds introduced earlier are
denoted by Hyp.

2. As a function of both forecast surge height and lead time (Fig. 3b),
the standard deviation, o5, is calculated for each member (n=1 ...
N) at every timestep (it = 1 ... NT). If the forecast surge is less than
50 cm then o0y, ;; is set to 10 cm. If the surge (Hgurge) is greater than 50
cm, then the standard deviation is calculated as op i = 10 + 0.1*
(Hsurge-50.0). The contribution of lead time is that for every succes-
sive high water 0.5 cm is added to oy, such that oy = 6pnir7 + 0.5.
These values are based on verification of the combination of ECMWF
and DSCMv5 models (de Vries, 2008, 2009; Wagenaar, 2018; Zijl
et al., 2013).

3. The cumulative density function (P,;) is calculated for each
ensemble member (n) at each time step (it) from the forecast high
water level (Hy ;) (Fig. 3c) and is given by:

Pn,it = [p(_ﬂn.it) (Eq 1)

Where ¢ is the notation for the probability of exceeding the standard
normal distribution with associated standardised p-factor:

(Hn,it - Hop)

sn,it

ﬁ n,it = (Eq 2)

The cumulative density function is calculated for every value of
Hop-
4. The resulting probabilities (P ;) of the N members at each timestep
(it) are then averaged (Fig. 3d):

_ 1 &
Py =N an.it (Eq. 3)
n=1

To calculate the cumulative exceedance probability for the high
waters at each timestep (it) as follows:
j=it B
Pcum, =1 — H (1-Py)

j=1

(Eq. 4

Resulting probabilities are compared to a critical probability value
(Peri) (Fig. 3d). The safety criterion is met when the cumulative
exceedance probability (Pcum;) is less than or equal to the critical
probability (Pcum;, < P.;). Conversely, the safety criterion is not met
when the cumulative exceedance probability is greater than the
critical probability (Pcum; > Pey).

Coastal Engineering 200 (2025) 104766

50

40

30

20

Member, N

Forecast
Water level (cm)

0 2 4 6 8 10 12 14 16 18 20
Highwater, NT

w
o

Standard
Deviation (cm)
S

[
oo

20

Member, N Highwater, NT

Exceedance
Probability
o
[4,]

5
co

40

30

20

Member, N Highwater, NT

@ ‘ ‘ ' ' “ /\

=
o

Exceedance
Probability
o
£

o

M
T
.

0 2 4 6 8 10 12 14 16 18 20
Highwater, NT

Fig. 3. Overview of probabilistic model (a) Ensemble of future highwater levels
with the horizontal line indicating a value of Hp. (b) Standard deviation oy, s,
for each member (n =1 ... N) at every timestep (it = 1 ... NT). (c) Exceedance
probability of H,p, for each member at every timestep (d) Average ensemble
cumulative exceedance probability of H,, with horizontal lines indicating
critical probability values (P). Instances where Py, < Py safety criterion is

met, while when Py, > Pt the safety criterion is not met.

Depending on the value of Hyp, the forecasted high waters are split
into different forecast horizons to compare calculated probability
against a critical probability value (Fig. 4). The model criteria depicted
in Fig. 4 correspond to the baseline.

This probabilistic model has been used at the Maeslant barrier to
guide decision making in real time since late 2021. The critical proba-
bility values illustrated in Fig. 4, were selected by expert judgement,
however, to date, no detailed evaluation of the model performance has
been undertaken, especially not considering past surge height forecasts.
Thus, in this paper, the model is evaluated in detail, as described in the
next section.

3. Methodology - model evaluation

The following sections outline the framework developed to evaluate
the performance of the probabilistic model (Section 3.1), conduct
sensitivity tests (Section 3.2) and analyse any incorrect model outcomes
(Section 3.3).

3.1. Baseline evaluation

The first objective is to evaluate the performance of the probabilistic
model using historic forecasts between 2008 and 2023. To illustrate the
evaluation framework, the results from the model outcomes at Hop, 170
cm and in the time frame of days 1-3 are presented in this paper.

Results from the combined ECMWEF/DCSMv5 ensemble forecasting
approach are used to run the probabilistic model in hindcast. Water level
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Health and Safety | 170 cm
Day 1-3 | HW 16
P-cumulative(HW>170) < 1%

ECMWF/DCSMV5 ensemble
50 members
Hoek van Holland

Health and Safety | 170 cm

Safety Criterion met
Day 47 | HW 7-15

P (HW(i)>170) <0.1% Safety Criterion not met

o, = f(lead time) “Rest” to “Operational” | 230 cm
Day 1-3 | HW 1-6

P-cumulative(HW>230) < 0.001%

o, = f(surge)

“Rest” to “Operational’ | 230 cm

Safety Criterion met

Day 47 | HW 7-15

P (HW(i)>230) < 0.01% Safety Criterion not met

Critical probability

Operational Team Call Level | 260 cm
Day 1-7 | HW 1-15
P-cumulative(HW>260) < 0.0001%

Safety Criterion met

Safety Criterion not met

Key

Water Level Threshold
Forecast Horizon
Safety Criterion

Fig. 4. Schematic overview of input, forecast horizons and output of the probabilistic decision support model (4SVK).

observations from the Hoek van Holland tide gauge (51.9775°N, 4.12°E)
are used to assess the outcome of the probabilistic model. The obser-
vational data were provided directly by Rijkswaterstaat, at 10-min
recording interval.

The total number of model outcomes analysed is 5802. This is less
than the number of days over the analysed period because on 42 occa-
sions there were fewer than 50 ensemble members in the forecast or
there were no forecasts available on that day. For consistency, these days
are omitted from the analysis. Operationally, in instances where a
forecast update is missing, the previous forecast remains accessible,
ensuring that the system continues to function. The probabilistic model
outcome displays the date and time of the last update, allowing users to
identify the most recent model run and assess its reliability. The ECMWF
forecast models are run twice daily, this study uses the forecast from the
midnight run as this run is available at the beginning of the working day
and so is used at the barrier for decision making of upcoming mainte-
nance work.

To evaluate the performance of the probabilistic model, binary
classification is used, i.e., a framework where models predict one of two
mutually exclusive classes, the positive and negative class (Fahmy,
2022; Starovoitov and Golub, 2020). For this probabilistic model, the
positive class is water levels are at or above threshold, while the nega-
tive class is water levels are below threshold. The outcome of the
probabilistic model is compared against observed water levels and the
results are used to populate a 2x2 confusion matrix with four possible
results: (1) Correct - True Negative (TN), (2) Hit - True Positive (TP), (3)
False Alarm - False Positive (FP), and (4) Miss - False Negative (FN)
(Figure). In this case, Correct - True Negatives correspond to correct
model outcomes where the safety criterion is met, and observed water
levels were below the threshold (top left quadrant in Fig. 5). While Hits -
True Positives are also correct model outcomes of safety criterion not
being met and observed water levels above the threshold value (bottom
right quadrant in Fig. 5). In this way, False Alarms - False Positives are
defined as incorrect model outcomes where safety criterion was not met
but the observed water levels were below the operational threshold (top
right quadrant in Fig. 5). These instances mean that a potential main-
tenance window has been missed as water levels were safe for mainte-
nance work, but the model outcome forecasted otherwise. On the other
hand, Misses - False Negatives outcomes are when the probabilistic model
output that the safety criterion is met, but observations show that water

levels were above the threshold (bottom left quadrant in Fig. 5).
Therefore, these occasions are “increased risk” situations. To increase
the useable intervals when maintenance work is carried out at the bar-
rier, it is important to minimise the number of False Alarms as these
restrict maintenance work. On the other hand, it is also important to
mitigate the number of Misses as these can pose a risk to health and
safety.

Binary classification defines metrics to quantify model performance
(Fawcett, 2006). Outlined below are the metrics used in this paper and
the equations to calculate them. All metrics applied are expressed as
percentages.

The metric Recall shows how sensitive the model is towards identi-
fying the true positives in the positive class (Eq. (5)). This is calculated as
the number of true positives divided by the sum of true positives and
false negatives, as follows:

Recall=

x 100 (Eq. 5)

TP
(TP + FN)

This makes it a suitable metric for identifying models with low
numbers of misses or “increased risk” situations as high model Recall
indicates low miss rates.

Specificity is the ratio of the number of correctly classified negative
outcomes (true negatives) to the number of actual negative events (Eq.
(6)) which is the sum of true negative and false positives.

Specificity = ( ) x 100 (Eq. 6)

TN
TN + FP
This metric is useful when trying to limit the number of false alarm or
“waste of time” situations, as high model Specificity indicates a low false
alarm rate.
Prevalence shows how many of the total outcomes are in the positive
class (Eq. (7))), this is calculated as follows:

FN + TP

1
(EN+ TP+ TN+ FP) 00

Prevalence =

(Eq- 7)

This indicates the number of instances when observed water levels
were above the maintenance threshold.

In classification problems when the number of instances within each
class differ by an order of magnitude or more, they are unbalanced
(Starovoitov and Golub, 2020). In such cases, balanced accuracy shows

Outcome of model

Safety Criterion met

Safety Criterion not met

Water level < H,, Correct
E True Negative
©
2 Water level 2 H Miss Hit
False Negative (Increased risk) True Positive

Fig. 5. Binary classification confusion matrix indicating Correct-True Negative, False alarm-False positive, Miss-False Negative and Hit-True Positive outcomes.
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the number of correct model outcomes (Eq. (8))). It is calculated by
dividing the sum of Recall and Specificity by two:

TP
TP + FN)

T
(TN + FP)

Balanced accuracy = % ( ( )x 100 (Eq. 8)

3.2. Sensitivity testing

The second objective is to explore how adjusting parameters effect
the model performance. This is done by altering two model parameters:
critical probability (P.;) and water level threshold (Hp). In the baseline
model critical probability (P.;) is set at 1 %. The values tested are
increased at 10 % intervals from 10 % to 50 %, resulting in five critical
probability sensitivity tests. In the baseline probabilistic model, the
values for water level threshold (H,,) are 170, 230 and 260 cm. Five
alternative water level thresholds are tested ranging from 110 cm to 210
cm at 20 cm intervals. In these sensitivity tests the baseline critical
probability value of 1 % is used. Water level threshold values lower than
170 cm provide a proxy for sea-level rise, where a lower criterion
applied now represents a smaller water level margin that may be
available in the future. The thresholds of 110 cm, 130 ¢cm and 150 cm
correspond to a proxy of 60 cm, 40 cm and 20 cm sea-level rise. This
could be experienced at Hoek van Holland by 2101, 2072 and 2043
respectively under a sea-level rise scenario of SSP2-4.5 (50th percentile
intermediate scenario) or 2083, 2065 and 2042 respectively under a sea-
level rise scenario of SSP5-8.5 (50th percentile high scenario)
(Fox-Kemper et al., 2021; Van Dorland et al., 2024). Water level
thresholds greater than 170 cm allow the impact of increasing the
operational water level threshold on the model performance to be
assessed. In practice, the operational threshold can either be altered
procedurally or through physical alterations at the barrier, this is dis-
cussed in more detail in section 5.2.

3.3. Analysis and interpretation of incorrect model outcomes

The third objective is to analyse the occasions when the outcome of
the probabilistic model is incorrect. There are two types of incorrect
outcomes: (1) False Alarms and (2) Misses. Results of incorrect model
outcomes are presented as annual and monthly percentage occurrence.
For the False Alarms, percentage occurrence is calculated by deter-
mining the proportion of False Alarms from the positive class, while the
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Misses are out of the total of negative class events.

In addition, the extent to which the False Alarms in the end actually
were below the H,, threshold (referred to hereon as freeboard) and the
amount by which Misses exceeded the threshold (referred to hereon as
threshold exceedance) are also shown. Freeboard is calculated by
determining the minimum difference between the observed highwaters
and threshold H,p, in the forecast days 1-3. Threshold exceedance is
calculated by determining the maximum difference between the day 1-3
observed highwaters and the threshold Hop.

4. Results

The following sections present results from the probabilistic model
baseline evaluation (Section 4.1), sensitivity testing (Section 4.2) and
analysis of incorrect model outcomes (Section 4.3).

4.1. Baseline evaluation

The distribution of outcomes for the baseline model considered is
depicted in Fig. 6 (and Supplementary Table 1). Results show that in the
baseline configuration (i.e., critical probability of 1 % and water level
threshold of 170 cm), 4175 (71.9 %) outcomes matched the status ac-
cording to the observed water levels. Of which 3284 (78.7 %) accounted
for correct outcomes with water levels below threshold and the other
891 (21.3 %) were Hit outcomes when water levels are above threshold.
The remaining 1627 (28.0 %) outcomes were incorrect with 1626 False
Alarms and 1 Miss.

4.2. Sensitivity testing

Results for the critical probability and water level threshold sensi-
tivity tests are presented in sub-sections 4.2.1 and 4.2.2, respectively.

4.2.1. Critical probability (P

The first set of sensitivity tests presented here alter the critical
probability (Pci¢). Results from the model outcome classification and
metrics are illustrated in Fig. 6 (and Supplementary Table 2).

Classification of the model outcome shown in Fig. 6a illustrate the
shift in distribution of model outcomes depending on the critical prob-
ability. Results show that as the critical probability is increased from the
baseline of 1 % — 50 % the number of Correct outcomes increase from
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3284 (56.6 %) to 4789 (82.5 %), while the number of Hits decrease from
891 (15.3 %) to 605 (10.4 %). The number of False Alarms decrease
from 1626 (28.0 %) to 121 (2.1 %), while the number of Misses increase
from 1 (0.017 %) to 287 (4.9 %). The incorrect model outcomes from the
critical probability sensitivity tests are analysed in further detail in
section 4.3.1. When the critical probability is set to 40 % there are a
greater number of Misses than False Alarms. The ratio of Correct and
False Alarms (light and dark blue) to Misses and Hits (light and dark red)
is constant at 15.3 % in each sensitivity test as shown in Fig. 6a. This is
because the positive and negative class totals are dependent on the
observed water levels which remain the same in each of the sensitivity
tests as shown by the constant Prevalence value of 15.4 % in Fig. 6c.

The model performance metrics are visualised in Fig. 6b and c. As
critical probability increases the model Recall decreases from 99.9 % to
67.8 % shown in Fig. 6b, as the number of Misses increase. While the
Specificity increases from 66.8 % to 97.5 % due to a decrease in the
number of False Alarms. Balanced accuracy increases from 83.3 % in the
baseline model to 91.1 % in the 10 % critical probability test. At higher
critical probability values, the balanced accuracy decreases to 82.6 % at
50 % Perit.

4.2.2. Water level threshold (H,p)

Results from the model outcome classification and metrics are
illustrated in Fig. 7 (and Supplementary Table 3).

Classification of the model outcomes shown in Fig. 7a illustrate the
shift in distribution of classification depending on the water level
threshold. Results show that as the water level threshold is increased
from 110 cm to 210 cm the correct outcomes increase significantly from
38 to 5,303, while the number of Hits decrease from 5213 to 119. The
number of False Alarms increase from 551 in the 110 cm test to 2250 in
the 150 cm test after which the number of False Alarms decrease again to
380 at 210 cm threshold value. While the number of Hit outcomes
remain low with only three tests returning Hits, these are 150 cm with 2
instances, 170 cm with 1 instance and 190 cm with 8 Hits. The incorrect
model outcomes from water level threshold sensitivity tests are analysed
in further detail in section 4.3.2.

The model performance metrics are visualised in Fig. 7b and c. The
model Recall is fairly stable for the different water level thresholds
tested. The drop in Recall to 97.5 % occurs at 190 cm when 8 Misses
occur. The model Specificity increases greatly from 6.4 % at 110 cm to
93.3 % at 210 cm which is related to a decrease in the number of False
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Alarms. As the number of outcomes in the positive and negative classes
changes depending on the water level the Prevalence changes in these
sensitivity tests. It decreases from 89.8 % at 110 cm to 2.1 % at 210 cm.
Conversely, the Balanced Accuracy increases from 53.2 % at the lowest
water level tested to 96.6 % in the test of highest water level.

4.3. Analysis and interpretation of incorrect model outcomes

Incorrect model outcomes for the critical probability and water level
threshold sensitivity tests are presented in sub-sections 4.3.1 and 4.3.2,
respectively.

4.3.1. Critical probability (P

The distribution of False Alarms are shown in Fig. 8 and the Misses
are illustrated in Fig. 9, for the critical probability tests. In the baseline
configuration, the model resulted in 1626 False Alarm outcomes which
correspond to 33.1 % of the negative class. There was only one Miss in
the baseline hindcast (Supplementary Table). This occurred on the
January 16, 2016 when the measured water level was 180 cm, so 10 cm
above the operational water level threshold of 170 cm.

In the critical probability sensitivity tests, the percentage of incorrect
outcomes decreased as the critical probability increased, from 12 % to 7
% under the 10 % and 50 % critical probability tests respectively. Within
the incorrect outcomes, the number of False Alarms fell while the
number of Misses rose (Supplementary Table 2). The total number of
False Alarms decreased from 667 in the 10 % to 121 in the 50 % critical
probability tests. The annual distribution of False Alarms is shown in
Fig. 8a—f. This shows a slight decrease in the annual number of False
Alarms. The trend is most noticeable in the 1 % critical probability test
shown in Fig. 8a, as this has the highest number of False Alarms. The
monthly distribution of model False Alarms is shown in Fig. 8g-1. This
reveals a seasonal pattern in the occurrence of False Alarms, with fewer
occurring in the months of April to August, while the model returns
more False Alarms between September and March. The number of False
Alarms in August decreases noticeably as critical probability value is
increased. However, this seems to be dependent on the given P value
and not on the month.

Fig. 9 illustrates the number of Misses where the left column shows
annual distribution (panels a-d) and the right column monthly distri-
bution (panels e-h). The number of Miss outcomes increase from 36 to
287 under the 10 % and 50 % tests respectively. When a Miss occurs in a
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test run at a particular critical probability, it will also be present in the
successive runs with a higher critical probability value.

The annual distribution of Misses reveals an increasing trend over
the 16 years of the hindcast as seen most noticeably in Fig. 9e. The years
2014, 2020 and 2023 stand out as having large numbers of model out-
comes classified as Misses, although the reason for this is not yet known.
The 30 % critical probability sensitivity test has the greatest increase in
Miss events.

The monthly distribution of Misses shows a clear seasonal pattern,
with higher percentage occurrence in the months April to August
compared to the rest of the year. As the critical probability value in-
creases so does the percentage occurrence of Misses. In the 50 % critical

probability test, June resulted in misclassification of all instances where
the water levels were above the 170 cm threshold.

The following section describes the analysis of the difference be-
tween forecasted and measured water level for all instances where an
incorrect model outcome occurred. The freeboard and threshold ex-
ceedance amount for the False Alarm and Miss events are shown in
Fig. 10a and b respectively, these are presented in standard box plots.
Summary statistics are presented in Supplementary Table 4.

The maximum value of the freeboard decreases as critical probability
value increases, the interquartile range also decreases from 15 cm at 1 %
critical probability to 9 cm at 50 % critical probability. The opposite
trend is seen in threshold exceedance, which increases with increasing
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Fig. 10. Standard box plot of (a) False Alarm freeboard extent (b) Miss threshold exceedance amount for the critical probability sensitivity tests.

critical probability value. The interquartile range increases between the
10 % and 20 % critical probability tests and then remains stable for the
other tested values.

4.3.2. Water level threshold (H,p)

The annual distribution of False Alarms for different values of Hop, is
shown in Fig. 11a-f and the monthly distribution is shown in Fig. 11g-1.
Overall, the results show that the percentage occurrence of False Alarms
decreases with increasing water level thresholds and exhibit stronger
seasonal patterns at higher water level thresholds. A declining trend in
False Alarm occurrence is most noticeable in the 150 c¢m sensitivity test.
For the 110 cm water level threshold, a slight decline in recent years is
shown but the percentage occurrence of False Alarms remains above 80
%. In the 150 cm sensitivity test a gradual declining trend is evident after
2015. The two highest water level threshold tests of 190 cm and 210 cm
show minimal year to year variation in the proportion of False Alarms.

The seasonal pattern of False Alarms varies depending on the water
level threshold value tested. At lower water levels of 110 cm and 150 cm
there is higher occurrence of false alarms in the maintenance season
(April-September) compared to the storm season (October—-March). At
the baseline level of 170 cm there is little variation. While at the higher

Water Level Threshold: 110 cm

threshold levels of 190 cm and 210 cm show higher False Alarm rates in
the storm season compared to the maintenance season.

Summary statistics of freeboard for the false alarms from the water
level threshold sensitivity tests are shown in Fig. 12 (and summarised in
Supplementary Table 5).

As the water level threshold increases, freeboard also increases. At
the water level threshold of 210 cm there were the fewest number of
False Alarms, however these events had higher freeboard values.

At three water level thresholds Misses occurred, these are 150 cm,
170 cm and 190 cm, with 2, 1 and 8 instances respectively. These events
are summarised in Supplementary Table 6, which indicates the
threshold water level of each event the date it occurred and the extent to
which the threshold was exceeded. At 150 cm the two Miss events
occurred in the last 2 years and only exceeded the threshold by 1 cm. As
mentioned previously, the baseline model had one Miss which exceeded
the threshold by 10 cm. The Misses that occurred at 190 cm, have all
been since 2018 which is the latter third of the hindcast period. Six of the
Misses occurred in pairs where consecutive days resulted in incorrect
outcomes, these are November 2022, October and November 2023. Not
all Misses are equally critical, as their severity depends on how much
they exceed the threshold value by.
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5. Discussion

The aim of this paper was to describe and evaluate a probabilistic
model that is used to aid decision making regarding maintenance at
storm surge barriers. To address this aim three objectives were defined.
Findings from these objectives are discussed in the following sections,
with the final part addressing the wider implications of this research and
future work.

5.1. Baseline

Of the 5802 days analysed, observations showed that water levels
were below the maintenance threshold on 4910 (85 %) days meaning
conditions were safe for work to be carried out (the negative class). The
remaining 892 (15 %) days had water levels above the 170 cm main-
tenance threshold meaning it could have been dangerous for staff
working at the barrier (the positive class). Therefore, this classification
had unbalanced classes as the number of days within each class differ by
an order of magnitude or more (Starovoitov and Golub, 2020). This had
implications for the metrics that were used to analyse the performance
of the probabilistic model, as the high number of negative class out-
comes could mask the small number of positive class outcomes. For this
reason, Balanced Accuracy is used as a combined measure of model
performance.

Performance analysis of the baseline probabilistic model, with values
of 1 % for critical probability and 170 cm for water level threshold,
illustrated that these parameters were highly conservative. As 33.1 % of
model outcomes were False Alarms. On the other hand, of the 892 days
when observed water levels were above the maintenance threshold, the
model correctly gave the outcome that the safety criterion had not been
met on 891 of these days. So, there was only one instance when the
model incorrectly returned an outcome that the safety criterion had
been met. This showed that the model was very good at avoiding the
“increased risk” situations. However, the implications of this for main-
tenance work at the barrier were that the model underestimates the
amount of time when water levels were below the threshold meaning
conditions were safe for work to be carried out. Improving the model
performance relates to increasing the amount of time when maintenance
work can safely be carried out at the barrier. To achieve this, the number
of False Alarms need to be decreased, while on the other hand, it is also
important to mitigate the number of Misses as these can pose a risk to
health and safety. As a means to achieve this, sensitivity tests were
conducted to analyse the impact changes in baseline parameters had on
model performance.
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5.2. Sensitivity testing

Results for the critical probability and water level threshold sensi-
tivity tests are discussed in sub-sections 5.2.1 and 5.2.2, respectively.

5.2.1. Critical probability (P

Hindcast runs of the probabilistic model with adjusted parameter
values allowed the performance of the modified model to be evaluated.
Increasing the critical probability value (Pc¢) from 1 % to 50 % reduced
the number of False Alarms (Fig. 6a), as shown by the increase in
Specificity (Fig. 6b), but this change resulted in a simultaneous increase
in the number of Misses as indicated by reduction in model Recall.
Critical probability values greater than 50 % were not tested as this
scenario and the 40 % critical probability resulted in larger numbers of
Misses than False Alarms, suggesting an optimum value of critical
probability had been exceeded. The rate of change in False Alarms and
Misses differed between the critical probability tests. The largest in-
crease in Specificity was seen between critical probability test of 1 % and
10 %. This was due to the greatest decrease in number of False Alarm
events (959). The rate of increase then reduced with each successive
critical probability value tested. On the other hand, the decrease in
Recall was almost linear between critical probability tests of 10 % — 50
%, with the exception between the 1 % and 10 % critical probability
values which had the smallest increase in Miss events and therefore the
lowest rate of change. The values of Specificity and Recall intersected at
a critical probability slightly less than 20 %. The highest balanced ac-
curacy occurred at the 10 % critical probability test with 91.2 %. At
higher critical probability values the balanced accuracy decreased,
which was due to the greater increase in number of Misses than the
decrease in False Alarms. The choice of operational critical probability
value therefore depends on how model performance is measured, and
thus which metric is used to determine this.

Due to the nature of binary classification, adjustments to the prob-
abilistic model parameters which decrease False Alarms will increase the
number of Misses. This can be visualised by a shift in the number of
events from the right-hand column to the left-hand column of the
confusion matrix (Fig. 4). This means any tuning of model parameters,
result in a trade-off between the risk willing to be taken and the loss of
maintenance time due to False Alarms. A way to overcome this, is to
mitigate the risks posed by the Misses, so that the number of False
Alarms can be kept low while ensuring health and safety standards are
sufficient. At the Maeslant Barrier this is addressed by sounding an alarm
when the water level reaches the maintenance threshold indicating that
any ongoing work has to stop.

5.2.2. Water level threshold (H,p)

In all water level threshold tests the Recall values were above 97 %
which was due to the low critical probability value of 1 % used in the
tests. This indicated that there were very few Miss outcomes from the
model. On the other hand, Specificity increased with increasing water
level threshold as the proportion of False Alarms decreased. This was
linked to the prevalence which decreased due to a reduction in the
number of days when water levels where above the threshold. This can
be considered as a shift in the number of events from the bottom row to
the top row of the confusion matrix (Fig. 4). This trend resulted in higher
balanced accuracy as the ratio of Correct model outcomes in the positive
and negative classes improved. This was due to the constantly low
number of Misses while the False Alarms became a smaller proportion of
the negative class outcomes. This highlighted that at a given critical
probability value, the model had more outcomes where the safety cri-
terion was met at higher water level thresholds, which would have
indicated more safe weather windows when maintenance work could be
carried out. This confirmed that the water level of the maintenance
threshold was fundamental to the amount of time available to carry out
maintenance safely, highlighting the challenge posed by increasing
water levels due to sea-level rise.
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In practice, increasing the water level threshold is not as straight-
forward as just changing the value, other measures need to be taken to
ensure workability and safety under such conditions (Trace-Kleeberg
etal., 2023). For example, procedural changes could be introduced, such
as assessing health and safety risks on a job-specific basis and assigning
individual water level thresholds that dictate when work must stop. This
would allow tasks in lower-risk areas, such as the control room, to
continue at higher water levels compared to more exposed locations.
Alternatively, physical modifications, such as retrofitting the barrier to
prevent flooding around the ball joint and on the terrain or overtopping
of the dock door, could be considered. However, such interventions
could involve significant financial and constructional considerations
and must ensure that the barrier’s operational integrity is not
compromised.

5.3. Analysis and interpretation of incorrect model outcomes

The critical probability tests showed a decreasing trend in annual
distribution of False Alarms (Fig. 8a-f) and increasing trend in Misses
(Fig. 9a-e). Further analysis is required to understand the drivers of the
identified trends.

Only counting the number of incorrect model outcomes did not
entirely quantify the risk associated with these events. To determine by
how much the outcome was incorrect, values of freeboard and threshold
exceedances were calculated (Figs. 10 and 12). The results from critical
probability sensitivity testing showed a clear trade-off between free-
board and threshold exceedance. As critical probability increased from
1 % to 50 %, freeboard values decreased while the threshold exceedance
slightly increased. Such that higher critical probabilities were associated
with lower freeboard values but slightly higher threshold exceedances,
thus emphasising the possible increase in risk associated with incorrect
model outcomes at higher critical probability values.

Results in the water level threshold sensitivity tests showed that
False Alarms were associated with increasing freeboard values as water
level threshold increased. This trend was accompanied by greater vari-
ability and more extreme outliers at higher thresholds. So, although
there were fewer False Alarms at higher water level thresholds the dif-
ference between the forecast and observed water levels for those events
was greater, this demonstrates a larger risk associated with those
incorrect model outcomes.

The Miss that resulted in a 38 cm threshold exceedance, corre-
sponding to a water level of 208 cm, occurred on April 28, 2018. The
probabilistic model outcome was that the safety criterion had been met
which indicated upcoming water levels would be below the mainte-
nance threshold. However, observations showed that the 6th highwater
(i.e., just under 3 days from the forecast run time) the maintenance
threshold was exceeded resulting in the Miss outcome. This instance
occurred because the forecasted highwaters for 28 April did not capture
the upcoming event. However, for the 29 April the water level forecasts
adjusted, and the probabilistic model outcome changed to safety criteria
not met which matched the observed water levels. The same thing
occurred in the maximum threshold exceedance event at 50 % critical
probability value. where on the forecast run of November 28, 2020 the
threshold exceedance was 53 cm indicating a water level of 223 cm. This
again corresponded to the 6th highwater, a lead time of 74 h, which by
the next forecast run had adjusted to result in a correct probabilistic
model outcome of safety criterion not met. This illustrates the impor-
tance of accurate water level forecasts as input to the probabilistic model
to increase the chance of correct model outcomes with regard to safety
criterion and therefore supporting the decision making at the barrier
whether it is safe or not for maintenance to be carried out.

Even though the total number of events in the positive class was
smaller between April and August the model is not able to correctly
classify these events resulting in the incorrect model outcomes and
possibly decisions on whether maintenance could be carried out. The
reason for the shift in distribution of summer and winter False Alarms

12

Coastal Engineering 200 (2025) 104766

(Fig. 11h-1) has not yet been identified. Such investigation and a more
detailed assessment of the meteorological and hydrodynamic conditions
of incorrect model outcomes could form the basis for a more compre-
hensive future study.

5.4. Wider implications and further work

To the authors’ knowledge, the probabilistic model described and
evaluated in the study is the first to use ensemble forecasts to aid deci-
sion making at a storm surge barrier on whether upcoming water levels
are safe for maintenance work to be carried out. The evaluation of model
performance conducted in this study, is a starting point for further
development. Such development could be in any of the system steps as
outlined in Fig. 2, namely the meteorological model, hydrodynamic
model, probabilistic model or the end user decision.

The combination of meteorological and hydrodynamic models used
in this study only captures the uncertainty in initial weather conditions
through the European Centre for Medium-range Weather Forecast
ensemble prediction system. It does not capture uncertainties in the
boundary conditions of the hydrodynamic model such as ocean currents,
or river discharge. This can lead to differences between the forecast and
observed water levels which could result in incorrect model outcomes
and therefore impact the False Alarm or Miss situations.

The model combination used in this paper namely the ECMWF EPS/
DCSMv5 models are no longer used operationally. Since November
2023, newer models of both the meteorological conditions and hydro-
dynamics are used for water level forecasting. This presents an oppor-
tunity to apply the evaluation method of this paper to another case study
as the new dataset extends.

The probabilistic model analysed here, solely examines highwater
levels to determine the risk to upcoming maintenance work. At the
Maeslant barrier this is sufficient, but to extend the model to other
barriers it may need to account for other variables. As mentioned in the
introduction, maintenance at the Eastern Scheldt is also governed by
wave height and in London at the Thames barrier river discharge in
addition to water levels determine whether the barrier will need to close
and so limit maintenance work. The other requirement for extending the
application of the probabilistic model is the existence of ensemble
forecasts of the required parameters in the relevant locations. In addi-
tion, the relative contributions of tidal and surge components to total
water levels could be investigated in detail to better understand their
respective roles, particularly in the model’s performance for different
water level thresholds. Furthermore, there is considerable uncertainty in
future changes in intensity, duration and tracks of storms, which drive
storm surges, and the implications for this could be considered in future
assessment of the probabilistic model.

The probabilistic model is a decision support tool and requires
knowledgeable people at the barrier to interpret the model output and
make informed decisions about the risk posed by upcoming water levels
to determine if short term maintenance can be done. Additional research
could be undertaken to understand how the probabilistic model output
is interpreted and used by barrier staff and contractors to aid their de-
cision making. It is likely that other factors influence the decision
making on maintenance work, such as criticality, complexity and
duration of the planned work which all affect the risk associated with the
maintenance. Systematically documenting this could allow the output of
the probabilistic model to be better tailored to the end user’s needs and
build confidence in the teams of the model’s output.

Probabilistic models such as the one used in this study provide a tool
for addressing the challenge of completing the required maintenance
work in reducing periods of time. This is one option to address the
challenge posed by a changing climate and sea-level rise, but is unlikely
to be the sole solution. Rather a combination of methods will be needed
to alleviate the challenge of completing all required maintenance in the
available safe working windows (Trace-Kleeberg et al., 2023). It is also
likely that other barriers around the world, where set threshold values -



S. Trace-Kleeberg et al.

based on water levels or other drivers - are in operation can benefit from
a probabilistic model as presented in this paper. The international
knowledge sharing network I-STORM (www.i-storm.org) can support
the expansion of this decision support tool, both in terms of further
method development and application at other locations, through sharing
expertise and experience between its members.

6. Conclusions

This paper has described and evaluated a probabilistic model used to
aid decision making to determine if the upcoming high-water levels are
safe for maintenance work to be carried out at the Maeslant storm surge
barrier or not. The probabilistic model performance was evaluated by
comparison of model outcome with observations over a 16-year period
(2008-2023). The baseline configuration with a critical probability of 1
% and a water level threshold of 170 cm. demonstrated strong perfor-
mance but was conservative, with 33.1 % of model outcomes resulting in
a False Alarm. Conversely, only one miss occurred during the hindcast
period. Sensitivity analysis showed that adjusting the critical probability
could improve model performance, reducing False Alarms but
increasing in the number of Misses. This trade-off underscores the
importance of balancing safety and efficiency in the model’s configu-
ration. Additionally, water level threshold sensitivity tests revealed that
sea-level rise could eventually limit the ability to carry out maintenance,
highlighting a potential tipping point where operation of the barrier
may be jeopardised. Ultimately, the probabilistic model provides valu-
able insight into the likelihood of exceeding upcoming water level
thresholds to aid decision making regarding the safety of maintenance.
However, ongoing evaluation and model parameter tuning is needed, as
well as a better understanding of external risk mitigating strategies.
Parallel studies are underway to address these knowledge gaps.

Beyond the Maeslant barrier, the probabilistic model presented in
this study offers a promising tool for assessing safe maintenance across
other storm surge barriers, provided ensemble forecasts and clear
operational thresholds are available. The model’s approach, incorpo-
rating binary classification and sensitivity analysis for evaluation, could
be adapted to other coastal infrastructure that relies on similar main-
tenance protocols. To ensure effective use, the probabilistic model must
be tailored to specific contexts with careful consideration of risk toler-
ance and mitigation measures. Furthermore, training personnel to
interpret the model’s output is crucial for successful integration into
decision-making processes. Given its flexibility, the model could serve as
a valuable resource for improving maintenance and operational safety in
other locations vulnerable to storm surges in order to contribute to
enhanced resilience in the face of climate change induced sea-level rise.
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