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Abstract
The ability of an agent to comprehend a sentence is tightly connected to the agent’s
prior experiences and backgroundknowledge. The article suggests to interpret compre-
hension as a modality and proposes a complete bimodal logical system that describes
an interplay between comprehension and knowledge modalities. The main technical
result is a completeness theorem for the proposed system

1 Introduction

In this article, we introduce a logic-based framework for defining and reasoning about
comprehension. Comprehension often requires an elimination of the ambiguity present
in natural language. This usually can be done by taking into account the background
knowledge. As an example, consider the following dialog that took place on January
25, 1990, near John F. Kennedy International Airport in New York:

Air Traffic Controller Avianca 052 heavy I’m gonna bring you about
fifteen miles north east and then turn you back onto the approach is that fine
with you and your fuel
First Officer I guess so thank you very much

About 8min after this conversation, Avianca flight 052 ran out of fuel and crashed.
Out of 158 persons aboard, 73 died ((NTSB, 1991), page v). In its report, the National
Transportation Safety Board lists “the lack of standardized understandable terminol-
ogy” as a contributing factor to the crash ((NTSB, 1991), page v). While analyzing
the crash, Helmreich points out that Colombia and the United States score very dif-
ferently on cultural dimensions such as power distance, individualism-collectivism,
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and uncertainty avoidance. He argues that these cultural factors contributed to the
lack of understanding between the Colombian crew and the American air traffic con-
troller (Helmreich 1994); others agree (Orasanu, Fischer, and Davison, 1997).

In a low power distance culture, “I guess so” is an informal way to confirm that
the aircraft has enough fuel while, perhaps, communicating the crew’s unhappiness
to make another loop in the air. In a high power distance culture, such as Colombia,
it would be too disrespectful to express the same idea with “I guess so”. Instead, in
such cultures, “I guess so” is a mitigated expression of a concern, a respectful way
to warn about an imminent danger. The United States, where this sentence could be
interpreted either way1, falls in the middle of power distance scale ((Hofstede, 2001),
page 87).

Note that this ambiguity disappears if the controller has additional knowledge about
the cultural background of the crew. As the example shows, knowledge might play
a key role in comprehension. In this article, we propose a logic that describes the
interplay between knowledge and comprehension.

2 Outline

The rest of this article is structured as follows. First, we define a model of our logical
system and relate this model to the above example. Then, we define the syntax and the
formal semantics of our system and review the related literature. When investigating a
logical system with more than one modality, it is natural to first decide if one of these
modalities can be defined through another and, thus, is redundant. In Sect. 6 and Sect. 7,
we show that neither of the two modalities, knowledge and comprehension, of our
logical system is definable through the other. In Sect. 8, we list the axioms of our logical
system. In the three sections that follow, we prove the soundness and completeness
of our system. To simplify the presentation, the proof of the completeness is divided
into two parts. First, we establish completeness with respect to pseudo models and
then we show how such models can be transformed into our standard semantics. A
preliminary version of this work, with an outline of the proof of completeness, has
appeared as (Naumov and Ros, 2021).

3 Contextual Epistemic Model

We assume a fixed countable set of propositional variables and a fixed countable set
of agents A. Let us start with a definition of a contextual epistemic model which will
be used in the next section to define the semantics of our logical system.

Definition 1 A tuple (W , {∼a}a∈A, M, π) is a contextual epistemic model if

1 When American air traffic controllers were asked by the investigators what words they would respond
immediately when a flight crew communicates a low fuel emergency, they replied “MAYDAY”, “PAN,
PAN, PAN”, and “Emergency” ((NTSB, 1991) page 63). Avianca 052 communication transcripts show that
the word “Emergency” was used in the communication between the pilot and the first officer, but not with
the air traffic controller ((NTSB, 1991), page 10).
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Fig. 1 Landing in Bogotá,
Columbia

Fig. 2 Landing in New York,
USA

1. W is a (possibly empty) set of states,
2. ∼a is an indistinguishability equivalence relation on set W for each agent a ∈ A,
3. M is a (possibly empty) set of contexts,
4. π is a valuation function such that π(p) ⊆ W ×M for each propositional variable

p.

Aswe discussed in the introduction, locution “I guess so” is a real-world example of
the kind of ambiguity that one should be able to reason about in order to comprehend
human verbal communication. In this section, we interpret it as the statement “the
words ‘I guess so’ give an accurate description of the current state”. We denote this
statement by propositional variable p.

Figure 1 depicts a contextual epistemic model capturing a hypothetical landing
of Avianca 052 in Bogotá, Columbia, where the flight originated. Since the traffic
controllers at Bogotá airport have the same high-power-distance cultural background
as Avianca’s pilots, this model has a single high-power-distance context H. The model
has two states, “Enough Fuel” and “Not Enough Fuel”, indistinguishable (before the
pilots say “I guess so”) to the air traffic controllers. In the high-power-distance context
H, the statement p is true in the state “Not Enough Fuel” and false in the state “Enough
Fuel”. Once the Bogotá controllers hear “I guess so”, they likely will conclude that
the plane is low on fuel and issue an emergency landing order.

Figure 2 depicts a contextual epistemic model describing the actual landing of
Avianca 052 at JFK International Airport in New York. It also has two states indis-
tinguishable to the air traffic controllers. We capture the ambiguity of the locution
“I guess so” to New York controllers by two distinct contexts: a low-power-distance
culture context L and a high-power-distance culture context H. We visualize these
contexts using lower-left and upper-right semi-circles forming each state. Statement
p (“the words ‘I guess so’ give an accurate description of the current state”) is true in
state “Enough Fuel” only in context L. The same statement is true in the state “Not
Enough Fuel” only in context H, see Fig. 2.
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4 Syntax and Semantics

In this section, we describe the syntax and the formal semantics of our logical system.
The language � of our system is defined by the grammar

ϕ := p | ¬ϕ | ϕ → ϕ | Kaϕ | Caϕ,

where p is a propositional variable and a ∈ A is an agent. We read Kaϕ as “agent
a knows that ϕ” and Caϕ as “agent a comprehends ϕ”. We assume that conjunction
∧, biconditional ↔, and true � are defined through negation ¬ and implication → in
the usual way. For any finite set of formulae Y ⊆ �, by ∧Y we mean the conjunction
of all formulae in set Y . By definition, ∧∅ is formula �. Next, we define the formal
semantics of our logical system.

Definition 2 For any formula ϕ ∈ �, any state w ∈ W , and any context m ∈ M , the
satisfaction relation (w,m) � ϕ is defined recursively as follows:

1. (w,m) � p if (w,m) ∈ π(p),
2. (w,m) � ¬ϕ if (w,m) � ϕ,
3. (w,m) � ϕ → ψ if (w,m) � ϕ or (w,m) � ψ ,
4. (w,m) � Kaϕ if (u,m′) � ϕ for each state u ∈ W such that w ∼a u and each

context m′ ∈ M ,
5. (w,m) � Caϕ when for each state u ∈ W and any contexts m′,m′′ ∈ M , if

w ∼a u and (u,m′) � ϕ, then (u,m′′) � ϕ.

Item 5 of Definition 2 is the key definition of this article. It formally specifies the
semantics of the comprehension modality C. As defined in item 4, the statement “an
agent a knows that ϕ” means that ϕ is true in each context in each a-indistinguishable
state. We say that agent a comprehends ϕ if ϕ is consistent across the contexts
in each a-indistinguishable state. In other words, a comprehends ϕ if, for each a-
indistinguishable state, ϕ is true in one context if and only if it is true in any other
context.

In our example from Fig. 1, in high-power-distance context H , the statement

KTraffic Controllers p (1)

is false in both states because p is true in the context H in the right state and is false
in the context H in the left state. At the same time, the statement

CTraffic Controllers p (2)

is true in both states because in both states the value of the propositional variable p is
vacuously consistent across all contexts (of which there is only one). In other words,
in the example from Fig. 1, the air traffic controllers do not know (before the pilots
say “I guess so”) if statement p is true or not, but they comprehend this statement due
to the lack of multiple contexts.
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In the example depicted in Fig. 2, statement (1) is still false under both contexts in
both indistinguishable states because propositional variable p is false under at least one
context in at least one states of themodel. In addition, statement (2) is also false in both
states of this example because the value of the propositional variable p is not consistent
across the contexts in at least one (in our case, both) of the two indistinguishable states.

To summarize, before the pilots say “I guess so”, in both examples the air traffic
controllers do not know if statement p is true or not. However, the controllers in Bogotá
comprehend p and the controllers in New York do not.

The next lemma holds because, by item 5 of Definition 2, the validity of (w,m) �
Caϕ does not depend on the value m.

Lemma 1 (w,m) � Caϕ iff (w,m′) � Caϕ for any state w ∈ W and any contexts
m,m′ ∈ M.

5 Related Literature

In the philosophy of language, the type of semantics given in Definition 2 is often
called 2D semantics. In general, 2D semantics defines the meaning of a statement
based on the possible world w and some other information. That other information
could be called index (Lewis, 1980), counterfactual world (Chalmers, 2004), possible
world (Stalnaker, 2004), or scenario (Fritz, 2013). We use the word “context”. Many
completeness results for logical systems based on 2D semantics can be found in the
literature. Some of them suppose that context is another state (Marx and Venema,
1997; Sano, 2010). Others consider a setting where the context is an agent (Grove and
Halpern, 1991, 1993 ; Grove, 1995, Epstein and Naumov 2021, Epstein, Naumov, and
Tao, 2023, Naumov and Tao, 2023, Naumov and Wu, 2024).

Halpern andKets (2014) suggest that different agents can have different understand-
ings of propositional variables. In our terms, thismeans having agent-specific contexts.
They consider the cases when agents are aware and not aware of other agents inter-
preting propositions differently. However, the focus of their work is on probabilistic
beliefs. They do not define comprehension as a modality and do not propose any logi-
cal system. Gattinger andWang (2019) propose a logical system in which the meaning
of a propositional variable is a Boolean expression. They give a sound and complete
axiomatization of the expression P ≡ Q that stands for “propositional formulae P
and Q have the same meanings”.

Themost relatedwork to ours is Li andGuo’sALogicLU forUnderstanding (2010),
where the authors proposed a traditional semantics for modality U (understandable).
The Kripke-like models that they consider have a reflexive and Euclidean reachability
relation. A formulaUϕ is satisfied in a worldw if either ϕ is satisfied in all worlds from
the set {u | wRu} or ϕ is not satisfied in all such worlds. In other words, they assume
that a formula is understandable if its truth value is consistent among all reachable
worlds. This interpretation of understanding is close to the one we use in item 5 of
Definition 4. They also propose a complete logical system, but their system does not
contain either knowledge modality or multiple agents. One can consider our approach

123



P. Naumov, K. Ros

Fig. 3 Two Models

as an attempt to bring their modality into the setting of the multiagent epistemic logic.
More generally, the connection between knowledge and comprehension has long

been a subject of psychology and literacy studies (Pearson, Hansen, and Gordon,
1979; Keysar, Barr, Balin, and Brauner, 2000; Hagoort, Hald, Bastiaansen, and Peters-
son 2004; Kennard, Anderegg, and Ewoldsen 2017) Langer (1984) states that “the
knowledge and experience an individual brings to a reading task are critical factors in
comprehension”. Within the field of psychology, the comprehension of logical con-
nectives is investigated in (Paris, 1973). D’Hanis (2002) suggests to use adaptive logic
for capturing metaphors. Another logical system for metaphors in the Chinese lan-
guage is advocated in (Zhang and Zhou, 2004). Neither of the last two papers claims
a complete axiomatization.

6 Undefinability of Comprehension through Knowledge

In this section, we prove that the comprehension modality C is not definable through
knowledge modality K. More precisely, we show that modality C cannot be expressed
in the language �−C defined by the grammar

ϕ := p | ¬ϕ | ϕ → ϕ | Kaϕ.

We prove this by constructing two models indistinguishable in language �−C, but
distinguishable in the full language� of our logical system.Without loss of generality,
we can assume that the set of agents A consists of a single agent a and the set of
propositional variables contains a single propositional variable p. The two models
that we use to prove undefinability are depicted in Fig. 3.

We refer to them as the left and the right models. Both models have two states: 1
and 2 indistinguishable by agent a. Both models also have two contexts: 1 and 2. In
the diagram, the number outside of a circle is the name of the state, while the number
inside of a semi-circle is the name of the context. It will be important for our proof that
states and contexts have the same names. Valuation functions πl of the left model and
πr of the right model are specified in Fig. 3. For example, πl(p) = {(1, 1), (1, 2)}. In
other words, in state 1 of the left model, propositional variable p is true in context 1 and
in context 2. By �l and �r we denote the satisfaction relation of the left and the right
model respectively. The next lemma proves that the two models are indistinguishable
in language �−C. Note that the order of x and y is different on the left-hand side of
the two satisfaction statements in this lemma.

Lemma 2 (x, y) �l ϕ iff (y, x) �r ϕ for any integers x, y ∈ {1, 2} and any formula
ϕ ∈ �−C.
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Fig. 4 Two Models

Proof We prove the statement by induction on the structural complexity of formula
ϕ. First, we consider the case when ϕ is a propositional variable p. Observe that
(x, y) ∈ πl(p) iff (y, x) ∈ πl(p) for any integers x, y ∈ {1, 2}, see Fig. 3. Thus,
(x, y) �l p iff (y, x) �r p by item 1 of Definition 2.

If formula ϕ is a negation or an implication, then the required follows from items
2 and 3 of Definition 2 and the induction hypothesis in the standard way.

Suppose that formula ϕ has the form Kaψ . By item 4 of Definition 2, the statement
(x, y) �l Kaψ implies that (x ′, y′) �l ψ for any integers x ′, y′ ∈ {1, 2}. Hence, by
the induction hypothesis, (y′, x ′) �r ψ for any integers x ′, y′ ∈ {1, 2}. Therefore,
(y, x) �r Kaψ again by item 4 of Definition 2. The proof in the other direction is
similar.

The next lemma shows that the left and the right models are distinguishable in the
language � of our logical system.

Lemma 3 (1, 1) �l Ca p and (1, 1) �r Ca p.

Proof Note that (x, 1) ∈ πl(p) iff (x, 2) ∈ πl(p) for any integer x ∈ {1, 2}, see Fig. 3.
Thus, (x, 1) �l p iff (x, 2) �l p for any integer x ∈ {1, 2} by item 1 of Definition 2.
Therefore, (1, 1) �l Ca p by item 5 of Definition 2.

Next, observe that (1, 1) ∈ πr (p) and (1, 2) /∈ πr (p), see Fig. 3. Thus, (1, 1) �r p
and (1, 2) �r p by item 1 of Definition 2. Therefore, (1, 1) �r Ca p by item 5 of
Definition 2.

The next theorem follows from the two lemmas above.

Theorem 1 Comprehension modality C is not definable in language �−C.

7 Undefinability of Knowledge through Comprehension

In this section we prove that knowledge modality K is not definable in the language
�−K specified by the grammar

ϕ := p | ¬ϕ | ϕ → ϕ | Caϕ.

The proof is similar to the one in the previous section. The left and the right models
are depicted in Fig. 4.

The left model has a single state 1, while the right model has two states, 1 and 2,
indistinguishable by agent a. Both models have only one context, which we refer to
as context 1. Valuation functions πl and πr are defined as shown in Fig. 4. Namely,
πl(p) = πr (p) = {(1, 1)}.
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First, we show that state 1 in the left model is indistinguishable in language �−K

from state 1 in the right model.

Lemma 4 (1, 1) �l ϕ iff (1, 1) �r ϕ for any ϕ ∈ �−K .

Proof We prove the statement of the lemma by induction on structural complexity of
formula ϕ. Note that (1, 1) ∈ πl(p) and (1, 1) ∈ πr (p), see Fig. 4. Thus, (1, 1) �l p
and (1, 1) �r p by item 1 of Definition 2. Therefore, the statement of the lemma holds
if formula ϕ is propositional variable p.

If formula ϕ is a negation or an implication, then the required follows from items
2 and 3 of Definition 2 and the induction hypothesis in the standard way.

Suppose that formula ϕ has the form Caψ . Note that (1, 1) �l Caψ by item 5 of
Definition 2 because there is only one context in the left model. Similarly, (1, 1) �r

Caψ because there is only one context in the right model. Therefore, the statement of
the lemma holds in the case when formula ϕ has the form Caψ . Note that the proof of
this case does not use the induction hypothesis.

The next lemma shows that the left and the right models are distinguishable in the
language � of our logical system.

Lemma 5 (1, 1) �l Ka p and (1, 1) �r Ka p.

Proof Note that (1, 1) ∈ πl(p), see Fig. 4. Thus, (1, 1) �l p by item 1 of Definition 2.
Therefore, (1, 1) �l Ka p by item 4 of Definition 2.

At the same time, (1, 1) ∈ πr (p) and (2, 1) /∈ πr (p), see Fig. 4. Thus, (1, 1) �r p
and (2, 1) �r p by item 1 of Definition 2. Therefore, (1, 1) �r Ka p by item 4 of
Definition 2 and because 1 ∼a 2, see Fig. 4.

The next theorem follows from the two previous lemmas.

Theorem 2 Knowledge modality K is not definable in language �−K .

8 Axioms

In the rest of the article, we give a sound and complete logical system that captures
the interplay between the knowledge modality K and the comprehension modality C.
In addition to propositional tautologies in language�, our logical system contains the
following axioms:

1. Truth: Kaϕ → ϕ,
2. Negative Introspection: ¬Kaϕ → Ka¬Kaϕ,
3. Distributivity: Ka(ϕ → ψ) → (Kaϕ → Kaψ),
4. Comprehension of Known: Kaϕ → Caϕ,
5. Introspection of Comprehension: Caϕ → KaCaϕ,
6. Comprehension of Negation: Caϕ → Ca¬ϕ,
7. Comprehension of Implication: Caϕ → (Caψ → Ca(ϕ → ψ)),
8. Substitution: Ka(ϕ ↔ ψ) → (Caϕ → Caψ),
9. Comprehension of Comprehension: CaCbϕ,
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10. Comprehension of Reflexivity: Ca(Cbϕ → ϕ).

The Truth, the Negative Introspection, and the Distributivity axioms are standard
axioms of epistemic logic S5. TheComprehension ofKnown axiom states that an agent
must comprehend any statement that she knows. The Introspection of Comprehension
axiom states that if an agent comprehends a statement, then she must know that she
comprehends it. The Comprehension of Negation and the Comprehension of Impli-
cation axioms capture the fact that all agents are assumed to understand the meaning
of Boolean connectives. Thus, if an agent comprehends ϕ and ψ , then she must com-
prehend the negation ¬ϕ and the implication ϕ → ψ . The Substitution axiom states
that if an agent knows that two sentences are equivalent and she comprehends one of
them, then she must comprehend the other. The Comprehension of Comprehension
axiom states that any agent must comprehend the statement Cbϕ, even if she does not
comprehend ϕ. In other words, the axiom states that the notion of comprehension is
unambiguous; there is a common agreement on what it means to comprehend.

The Comprehension of Reflexivity axiom states that any agent a must comprehend
the statement Cbϕ → ϕ. The formal proof of soundness for this axiom is given in
Lemma 13. See Lemma 16 for a related property.

We write � ϕ, and say that formula ϕ is a theorem of our logical system, if ϕ

is provable from the above axioms using the Modus Ponens and the Necessitation
inference rules:

ϕ, ϕ → ψ

ψ

ϕ

Kaϕ
.

We write X � ϕ if formula ϕ is provable from the theorems of our logical system and
the set of additional axioms X using only the Modus Ponens inference rule. Thus, the
statements � ϕ and ∅ � ϕ are equivalent.

The proof of the next standard lemma is given in the appendix.

Lemma 6 (deduction) If X , ϕ � ψ , then X � ϕ → ψ .

9 Soundness

The Truth, the Negative Introspection, and the Distributivity axioms are standard
axioms of epistemic logic S5. Below we show as a separate lemma the soundness of
each of the remaining axioms in a state w ∈ W under a contextm ∈ M of an arbitrary
contextual epistemic model (W , {∼a}a∈A, M, π).

Lemma 7 If (w,m) � Kaϕ, then (w,m) � Caϕ.

Proof Consider any state u ∈ W and any two contexts m′,m′′ ∈ M such that w ∼a u
and (u,m′) � ϕ. By item 5 of Definition 2, it suffices to show that (u,m′′) � ϕ.

Note that the assumption (w,m) � Kaϕ of the lemma implies (u,m′′) � ϕ by item
4 of Definition 2 and the assumption w ∼a u.

Lemma 8 If (w,m) � Caϕ, then (w,m) � KaCaϕ.
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Proof Consider any state u and any context m′ ∈ M such that w ∼a u. By item 4 of
Definition 2, it suffices to prove that (u,m′) � Caϕ. Towards this proof, consider any
state v ∈ W and any two contexts m1,m2 ∈ M such that u ∼a v and (v,m1) � ϕ.
By item 5 of Definition 2, it suffices to show that (v,m2) � ϕ.

The assumptions w ∼a u and u ∼a v imply that w ∼a v because ∼a is an
equivalence relation. Then, the assumption (v,m1) � ϕ implies (v,m2) � ϕ by item
5 of Definition 2 and the assumption (w,m) � Caϕ of the lemma.

Lemma 9 If (w,m) � Caϕ, then (w,m) � Ca¬ϕ.

Proof Consider any state u ∈ W and any two contexts m′,m′′ ∈ M such that w ∼a u
and

(u,m′) � ¬ϕ. (3)

Note that by item 5 of Definition 2, it suffices to show that (u,m′′) � ¬ϕ.
Suppose that (u,m′′) � ¬ϕ. Thus, (u,m′′) � ϕ by item 2 of Definition 2. Hence,

(u,m′) � ϕ by item 5 of Definition 2, the assumption (w,m) � Caϕ of the lemma,
and the assumptionw ∼a u. Therefore, (u,m′) � ¬ϕ by item 2 of Definition 2, which
contradicts statement (3).

Lemma 10 If (w,m) � Caϕ and (w,m) � Caψ , then (w,m) � Ca(ϕ → ψ).

Proof Consider any state u ∈ W and any two contexts m′,m′′ ∈ M such that w ∼a u
and

(u,m′) � ϕ → ψ. (4)

Note that by item 5 ofDefinition 2, it suffices to prove that (u,m′′) � ϕ → ψ . Towards
this proof, suppose that (u,m′′) � ϕ. By item 3 of Definition 2, it suffices to show
that (u,m′′) � ψ .

The assumption (u,m′′) � ϕ implies that (u,m′) � ϕ by item 5 of Definition 2,
the assumption (w,m) � Caϕ of the lemma, and the assumption w ∼a u. Hence,
(u,m′) � ψ by item 3 of Definition 2 and statement (4). Thus, (u,m′′) � ψ , by item
5 of Definition 2, the assumption (w,m) � Caψ of the lemma, and the assumption
w ∼a u.

Lemma 11 If (w,m) � Ka(ϕ ↔ ψ) and (w,m) � Caϕ, then (w,m) � Caψ .

Proof Consider any state u ∈ W and any two contexts m′,m′′ ∈ M such that w ∼a u
and (u,m′) � ψ . By item 5 of Definition 2, it suffices to show that (u,m′′) � ψ .

By Definition 2, the assumption (w,m) � Ka(ϕ ↔ ψ) of the lemma implies that

(u,m′) � ψ → ϕ, (5)

(u,m′′) � ϕ → ψ. (6)

By item 3 of Definition 2, the assumption (u,m′) � ψ and statement (5) imply
that (u,m′) � ϕ. Hence, (u,m′′) � ϕ by item 5 of Definition 2, the assumption
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(w,m) � Caϕ of the lemma, and the assumption w ∼a u. Thus, (u,m′′) � ψ by item
3 of Definition 2 and statement (6).

Lemma 12 (w,m) � CaCbϕ.

Proof Consider any state u ∈ W and any two contexts m′,m′′ ∈ M such that w ∼a u
and (u,m′) � Cbϕ. Note that by item 5 of Definition 2, it suffices to prove that
(u,m′′) � Cbϕ. The last statement is true by Lemma 1.

Lemma 13 (w,m) � Ca(Cbϕ → ϕ).

Proof Consider any state u ∈ W and any two contexts m′,m′′ ∈ M such that w ∼a u
and

(u,m′) � Cbϕ → ϕ. (7)

Note that by item 5 of Definition 2, it suffices to prove that (u,m′′) � Cbϕ → ϕ.
Towards this proof, suppose that (u,m′′) � Cbϕ. By item 3 of Definition 2, it suffices
to show that (u,m′′) � ϕ. Indeed, by Lemma 1, the assumption (u,m′′) � Cbϕ
implies that (u,m′) � Cbϕ. It follows by item 3 of Definition 2 and statement (7)
that (u,m′) � ϕ. Thus, (u,m′′) � ϕ by the assumption (u,m′′) � Cbϕ, item 5 of
Definition 2 and because u ∼b u.

10 Completeness for PseudoModels

In this section, we define the class of pseudo models for our logical system and prove
its completeness with respect to this class. In Sect. 11, we use this result to prove the
completeness of our system with respect to the class of contextual epistemic models.

10.1 PseudoModels

Unlike contextual epistemic models, pseudo models allow each state to have its own
set of contexts. This is reflected in the definition below. In order to avoid the use of the
dependent product type, the same definition also slightly changes the specification of
valuation function π .

Definition 3 A tuple (W , {∼a}a∈A, {Mw}w∈W , {πw}w∈W ) is a pseudo model if

1. W is an arbitrary set of states,
2. ∼a is an indistinguishability equivalence relation on set W for each agent a ∈ A,
3. Mw is a nonempty set of contexts for each state w ∈ W ,
4. πw is a valuation function from propositional variables into the powerset of Mw

for each state w ∈ W .

Definition 4 For any formula ϕ ∈ �, any state w ∈ W of a pseudo model, and any
contextm ∈ Mw, the satisfaction relation (w,m) � ϕ is defined recursively as follows:
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Fig. 5 Canonical pseudo model

1. (w,m) � p if m ∈ πw(p),
2. (w,m) � ¬ϕ if (w,m) � ϕ,
3. (w,m) � ϕ → ψ if (w,m) � ϕ or (w,m) � ψ ,
4. (w,m) � Kaϕ if (u,m′) � ϕ for each state u ∈ W such that w ∼a u and each

context m′ ∈ Mu ,
5. (w,m) � Caϕ when for each state u ∈ W and any contexts m′,m′′ ∈ Mu , if

w ∼a u and (u,m′) � ϕ, then (u,m′′) � ϕ.

10.2 Completeness Proof Overview

In Sect. 10.3 through Sect. 10.7, we prove the completeness of our logical system with
respect to pseudo models. In this subsection, we outline the main ideas behind the
proof.

A completeness theorem for a modal logical system is usually proven by construct-
ing a canonical model in which states are defined to be maximal consistent sets of
formulae. This is different in our case because we define contexts, rather than states,
to be maximal consistent sets of formulae. The set of all such context will be denoted
by M .

Definition 3 specifies that any pseudo model should have a state-specific set of
contexts Mw for each state w ∈ W . Sets of contexts Mw and Mu corresponding to
distinct statesw and u can but do not have to be disjoint. In our canonical pseudomodel,
they are disjoint. In otherwords, we partition the set of all contexts (maximal consistent
sets of formulae) M into sets of contexts {Mw}w∈W corresponding to different states.
We define this partition through an equivalence relation ≡ on set M . Then, we define
states as equivalence classes of this relation, see Fig. 5.

The exact definition of relation ≡ is based on the intuition that if Caϕ is true under
a context in a state, then ϕ must be consistent across all contexts in the given state.
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To capture this, we say that m ≡ m′ when for each formula Caϕ ∈ m, if ϕ ∈ m, then
ϕ ∈ m′, see Definition 8.

To define indistinguishability relation ∼a between states, we first define it as a
relation between contexts and then show that this relation is well-defined on states
(equivalence classes of contexts with respect to relation ≡). Our definition of indis-
tinguishability of contexts by an agent a is equivalent to the standard approach in
epistemic logic: m ∼a m′ if contexts m and m′ contain the same K-formulae.

A typical proof of completeness in modal logic includes a step where for each
state w that does not contain a modal formula �ϕ the proof constructs a “reachable”
state u such that ¬ϕ ∈ u. This step is often phrased as an “existence” lemma. In our
proof, such a step for modality K is very standard and it is carried out in Lemma 36.
The case of modality C, however, is significantly different. Indeed, because item 5
of Definition 4 refers to two different contexts, m′ and m′′, the corresponding step
for modality C involves construction of two maximal consistent sets corresponding to
these contexts. Since m′ and m′′ in item 5 of Definition 4 are two contexts in the same
state, we must guarantee that m′ ≡ m′′. This means that sets m′ and m′′ must agree
on all formulae ϕ such that Caϕ belongs to at least one of them.

To construct sets m′ and m′′, we introduce a new technique that we call perfect
conforming sets. First, we define the notion of a conforming set and consider a set
Y of formulae that “must” belong to both: set m′ and m′′. We show that set Y is
conforming. Then, we define perfect conforming set and show that any conforming set
can be extended to a perfect conforming set. We extend set Y to a perfect conforming
set Y ′ and show that sets Y ′ ∪ {ϕ} and Y ′ ∪ {¬ϕ} are consistent. Finally, we use
Lindenbaum’s lemma to extend sets Y ′ ∪ {ϕ} and Y ′ ∪ {¬ϕ} to maximal consistent
sets of formulae m′ and m′′, respectively.

10.3 Derivable Formulae

In this subsection, we give several formal proofs in our logical system. The results
from this section are used later in the completeness proof.

Lemma 14 The inference rule
ϕ ↔ ψ

Caϕ → Caψ
is derivable in our logical system.

Proof Suppose � ϕ ↔ ψ . Thus, � Ka(ϕ ↔ ψ) by the Necessitation inference rule.
Therefore, � Caϕ → Caψ by the Substitution axiom and the Modus Ponens rule.

Lemma 15 � Ca¬Cbψ .

Proof Note that� CaCbψ by theComprehension ofComprehension axiom.Therefore,
� Ca¬Cbψ by theComprehension ofNegation axiom and theModus Ponens inference
rule.

The next property is an interesting counterpart of the Comprehension of Reflexivity
axiom.

Lemma 16 � Ca(Cbϕ → ¬ϕ).
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Proof Note that ¬¬ϕ ↔ ϕ is a propositional tautology. Thus, � Ca¬¬ϕ → Caϕ
by Lemma 14. At the same time, � Cb¬ϕ → Cb¬¬ϕ by the Comprehension of
Negation axiom. Thus, � Cb¬ϕ → Cbϕ by propositional reasoning. Also, by the
Comprehension of Negation axiom, � Cbϕ → Cb¬ϕ. Hence, � Cb¬ϕ ↔ Cbϕ by
propositional reasoning. Then, � (Cb¬ϕ → ¬ϕ) ↔ (Cbϕ → ¬ϕ) by propositional
reasoning. Hence, � Ca(Cb¬ϕ → ¬ϕ) → Ca(Cbϕ → ¬ϕ) by Lemma 14. Observe
that Ca(Cb¬ϕ → ¬ϕ) is an instance of the Comprehension of Reflexivity axiom.
Thus, � Ca(Cbϕ → ¬ϕ) the Modus Pones inference rule.

Lemma 17 � Ca(ϕ ∧ Cbϕ).

Proof Note that formula ¬(Cbϕ → ¬ϕ) ↔ (ϕ ∧ Cbϕ) is a propositional tautology.
Thus, by the Necessitation inference rule,

� Ka(¬(Cbϕ → ¬ϕ) ↔ (ϕ ∧ Cbϕ)). (8)

At the same time, � Ca(Cbϕ → ¬ϕ) by Lemma 16. Thus, � Ca¬(Cbϕ → ¬ϕ) by the
Comprehension of Negation axiom and the Modus Ponens inference rule. Therefore,
� Ca(ϕ ∧ Cbϕ) by the Substitution axiom, statement (8), and the Modus Ponens
inference rule.

The proof of the next lemma is similar to the proof of the lemma above except that
Lemma 18 uses the Comprehension of Reflexivity axiom instead of Lemma 16.

Lemma 18 � Ca(¬ϕ ∧ Cbϕ).

Lemma 19 � Ca(ϕ → ψ) → (Kaϕ → Caψ).

Proof Note that ϕ → ((ϕ → ψ) ↔ ψ) is a propositional tautology. Thus, � Ka(ϕ →
((ϕ → ψ) ↔ ψ)) by the Necessitation inference rule. Hence,

� Kaϕ → Ka((ϕ → ψ) ↔ ψ) (9)

by the Distributivity axiom and the Modus Pones inference rule. At the same time, by
the Substitution axiom,

� Ka((ϕ → ψ) ↔ ψ) → (Ca(ϕ → ψ) → Caψ).

Thus, by propositional reasoning using statement (9),

� Kaϕ → (Ca(ϕ → ψ) → Caψ).

Then, � Ca(ϕ → ψ) → (Kaϕ → Caψ) again by propositional reasoning.

Lemma 20 � Caϕ → (Caψ → Ca(ϕ ∧ ψ)).
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Proof � Caϕ → (Ca¬ψ → Ca(ϕ → ¬ψ)) by the Comprehension of Implication
axiom. Thus, by the Comprehension of Negation axiom and propositional reasoning,
� Caϕ → (Caψ → Ca(ϕ → ¬ψ)). Hence, again by the Comprehension of Negation
axiom and propositional reasoning,

� Caϕ → (Caψ → Ca¬(ϕ → ¬ψ)). (10)

Notice that ¬(ϕ → ¬ψ) ↔ ϕ ∧ ψ is a propositional tautology. Thus, by Lemma 14,
statement (10), and propositional reasoning,

� Caϕ → (Caψ → Ca(ϕ ∧ ψ)).

Lemma 21

� Caγ1 ∧ Caγ2 ∧ Ca(γ1 ∧ ψ → ϕ) ∧ Ca(γ2 ∧ ¬ψ → ϕ) → Ca(γ1 ∧ γ2 → ϕ).

Proof By the Comprehension of Implication axiom,

� Caγ2 ∧ Ca(γ1 → (ψ → ϕ)) → Ca(γ2 → (γ1 → (ψ → ϕ))).

Hence, by Lemma 14 and propositional reasoning,

� Caγ2 ∧ Ca(γ1 → (ψ → ϕ)) → Ca(γ1 ∧ γ2 → (ψ → ϕ)).

Thus, again by Lemma 14 and propositional reasoning,

� Caγ2 ∧ Ca(γ1 ∧ ψ → ϕ) → Ca(γ1 ∧ γ2 → (ψ → ϕ)).

Similarly,

� Caγ1 ∧ Ca(γ2 ∧ ¬ψ → ϕ) → Ca(γ1 ∧ γ2 → (¬ψ → ϕ)).

Hence, by Lemma 20 and propositional reasoning,

� Caγ1 ∧ Caγ2 ∧ Ca(γ1 ∧ ψ → ϕ) ∧ Ca(γ2 ∧ ¬ψ → ϕ)

→ Ca((γ1 ∧ γ2 → (ψ → ϕ)) ∧ (γ1 ∧ γ2 → (¬ψ → ϕ))).

Finally, the following formula is a propositional tautology:

((γ1 ∧ γ2 → (ψ → ϕ)) ∧ (γ1 ∧ γ2 → (¬ψ → ϕ))) ↔ (γ1 ∧ γ2 → ϕ).

Therefore,

� Caγ1 ∧ Caγ2 ∧ Ca(γ1 ∧ ψ → ϕ) ∧ Ca(γ2 ∧ ¬ψ → ϕ) → Ca(γ1 ∧ γ2 → ϕ)

by Lemma 14 and propositional reasoning.
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Lemma 22 � Caϕ → (Ca(ϕ → ¬ψ) → Ca(ϕ → ψ)).

Proof By Lemma 20,

� Caϕ → (Ca(ϕ → ¬ψ) → Ca(ϕ ∧ (ϕ → ¬ψ))).

Hence, by the Comprehension of Negation axiom and propositional reasoning,

� Caϕ → (Ca(ϕ → ¬ψ) → Ca¬(ϕ ∧ (ϕ → ¬ψ))).

Note that ¬(ϕ ∧ (ϕ → ¬ψ)) ↔ (ϕ → ψ) is a propositional tautology. Therefore,

� Caϕ → (Ca(ϕ → ¬ψ) → Ca(ϕ → ψ))

by Lemma 14 and propositional reasoning.

The next two lemmas state well-known properties of S5 modality. To keep the
article self-contained, we give their proofs in the appendix.

Lemma 23 Kaϕ1, . . . , Kaϕn � Ka(ϕ1 ∧ · · · ∧ ϕn).

Lemma 24 (Positive Introspection) � Kaϕ → KaKaϕ.

10.4 Conforming Sets

In this subsection, we introduce the core notion in our construction, conforming set,
and prove its basic properties. The intuition behind this notion has been discussed in
Sect. 10.2.

Definition 5 For any set X ⊆ �, any agent a ∈ A, and any ϕ ∈ � such that X � Caϕ,
a formulae Y is (X , a, ϕ)-conforming if

1. X � Caγ for each formula γ ∈ Y ,
2. X � Ca(∧Y ′ → ϕ) for each finite set Y ′ ⊆ Y .

Weuse theword “conforming” to emphasize that setY conforms to the requirements
imposed by triple (X , a, ϕ).

Lemma 25 X � Ca(∧Y ′) for any finite subset Y ′ ⊆ Y of any (X , a, ϕ)-conforming
set Y .

Proof If set Y ′ is empty, then ∧Y ′ is Boolean constant �. Thus, ∧Y ′ is a tautol-
ogy. Hence, � Ka(∧Y ′) by the Necessitation inference rule. Thus, � Ca(∧Y ′) by the
Comprehension of Known axiom and the Modus Ponens inference rule. Therefore,
X � Ca(∧Y ′).

If set Y ′ contains a single element γ , then the required follows from item 1 of
Definition 5 and the assumption of the lemma that set Y is (X , a, ϕ)-conforming.

Suppose that set Y ′ contains at n ≥ 2 elements. Note that X � Caγ for each
formula γ ∈ Y by item 1 of Definition 5 and the assumption of the lemma that set Y
is (X , a, ϕ)-conforming. Therefore, X � Ca(∧Y ′) by propositional reasoning using
n − 1 times Lemma 20.
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Lemma 26 If X � Caϕ, then set {ψ | Kaψ ∈ X} is (X , a, ϕ)-conforming.

Proof We verify conditions 1 and 2 from Definition 5 separately:
Condition 1. Consider any Kaψ ∈ X . Then, X � Caψ by the Comprehension of
Known axiom and the Modus Ponens inference rule.
Condition 2. Suppose that X � Ca(ψ1 ∧ · · · ∧ ψn → ϕ) for some formulae
Kaψ1, . . . , Kaψn ∈ X . Note that X � Ka(ψ1 ∧ · · · ∧ψn) by Lemma 23 and the choice
of formulae Kaψ1, . . . , Kaψn . Therefore, X � Caϕ by Lemma 19 and the Modus
Ponens inference rule, which contradicts the assumption X � Caϕ of the lemma.

Lemma 27 If set Y is (X , a, ϕ)-conforming, then Y � ϕ.

Proof Suppose that Y � ϕ. Thus, Y ′ � ϕ for some finite subset Y ′ ⊆ Y . Hence,
� ∧Y ′ → ϕ by Lemma 6. Then, � Ka(∧Y ′ → ϕ) by the Necessitation inference rule.
Thus,� Ca(∧Y ′ → ϕ) by theComprehension ofKnown axiom and theModus Ponens
inference rule. Therefore, by item 2 of Definition 5, set Y is not (X , a, ϕ)-conforming.

Lemma 28 If set Y is (X , a, ϕ)-conforming, then Y is (X , a,¬ϕ)-conforming.

Proof Bycondition 1ofDefinition 5, the assumption that setY is (X , a, ϕ)-conforming
implies that

X � Caγ for each formula γ ∈ Y . (11)

Suppose that set Y is not (X , a,¬ϕ)-conforming. Hence, by Definition 5 and state-
ment (11), there is a finite set Y ′ ⊆ Y such that X � Ca(∧Y ′ → ¬ϕ). Note that
X � Ca ∧ Y ′ by Lemma 25 because Y ′ ⊆ Y . Hence, by Lemma 22 and the Modus
Ponens inference rule, X � Ca(∧Y ′ → ϕ). Therefore, by Definition 5, set Y is not
(X , a, ϕ)-conforming.

10.5 Perfect Sets

In this subsection, we show that any conforming set can be extended in a certain way
with the result still being a conforming set. Then, we define a set to be perfect if it
is extended in this way as much as possible. The contexts m′ and m′′, that have been
discussed in Sect. 10.2 and are formally defined in the proof of Lemma 38, are not just
conforming, but perfect conforming sets.

Lemma 29 For any (X , a, ϕ)-conforming set Y and any formula Cbψ , at least one of
the following sets is (X , a, ϕ)-conforming:

1. Y ∪ {¬Cbψ},
2. Y ∪ {ψ ∧ Cbψ},
3. Y ∪ {¬ψ ∧ Cbψ}.
Proof Bycondition 1ofDefinition 5, the assumption that setY is (X , a, ϕ)-conforming
implies that

X � Caγ for each formula γ ∈ Y . (12)
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Note also that by Lemmas 15, 17, and 18, respectively,

� Ca¬Cbψ, � Ca(ψ ∧ Cbψ), and � Ca(¬ψ ∧ Cbψ). (13)

Suppose that none of the sets Y ∪ {¬Cbψ}, Y ∪ {ψ ∧ Cbψ}, and Y ∪ {¬ψ ∧ Cbψ}
are (X , a, ϕ)-conforming. Thus, by Definition 5, statement (12), and statement (13),
there are three finite subsets Y1 ⊆ Y ∪ {¬Cbψ}, Y2 ⊆ Y ∪ {ψ ∧ Cbψ}, and Y3 ⊆
Y ∪ {¬ψ ∧ Cbψ} such that

X � Ca(∧Y1 → ϕ), (14)

X � Ca(∧Y2 → ϕ), (15)

X � Ca(∧Y3 → ϕ). (16)

Note that if any of the sets Y1, Y2, or Y3 is a subset of Y , then the above statements
imply, by Definition 5, that set Y is not (X , a, ϕ)-conforming. The latter contradicts
the assumption of the lemma. Thus, Y1,Y2,Y3 � Y .

Hence, there are finite sets Y ′
1,Y

′
2,Y

′
3 ⊆ Y such that Y1 = Y ′

1 ∪ {¬Cbψ}, Y2 =
Y ′
2 ∪ {ψ ∧ Cbψ}, and Y3 = Y ′

3 ∪ {¬ψ ∧ Cbψ}. Then, by Lemma 14, statements (14),
(15), and (16) imply that

X � Ca(∧Y ′
1 ∧ ¬Cbψ → ϕ), (17)

X � Ca(∧Y ′
2 ∧ Cbψ ∧ ψ → ϕ), (18)

X � Ca(∧Y ′
3 ∧ Cbψ ∧ ¬ψ → ϕ). (19)

Recall that set Y is (X , a, ϕ)-conforming by the assumption of the lemma. Thus,

X � Ca(∧Y ′
1), (20)

X � Ca(∧Y ′
2), (21)

X � Ca(∧Y ′
3), (22)

X � Ca(∧(Y ′
2 ∪ Y ′

3)) (23)

by Lemma 25 and the assumption Y ′
1,Y

′
2,Y

′
3 ⊆ Y .

Also, � CaCbψ by the Comprehension of Comprehension axiom. Then, by
Lemma 20 and and propositional reasoning, statements (21), (22), and (23) imply
that

X � Ca(∧Y ′
2 ∧ Cbψ), (24)

X � Ca(∧Y ′
3 ∧ Cbψ), (25)

X � Ca(∧(Y ′
2 ∪ Y ′

3) ∧ Cbψ). (26)

Additionally, � CaCbψ implies � Ca¬Cbψ by the Comprehension of Negation axiom
and the Modus Ponens inference rule. Thus, again by Lemma 20 and propositional
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reasoning, statement (20) implies

X � Ca(∧Y ′
1 ∧ ¬Cbψ). (27)

The following statement is an instance of Lemma 21:

� Ca(∧Y ′
2 ∧ Cbψ) ∧ Ca(∧Y ′

3 ∧ Cbψ)

∧Ca(∧Y ′
2 ∧ Cbψ ∧ ψ → ϕ)

∧Ca(∧Y ′
3 ∧ Cbψ ∧ ¬ψ → ϕ)

→ Ca(∧Y ′
2 ∧ Cbψ ∧ (∧Y ′

3) ∧ Cbψ → ϕ).

Hence, by propositional reasoning using statements (24), (25), (18), and (19),

X � Ca(∧Y ′
2 ∧ Cbψ ∧ (∧Y ′

3) ∧ Cbψ → ϕ).

Thus, by Lemma 14,

X � Ca(∧(Y ′
2 ∪ Y ′

3) ∧ Cbψ → ϕ). (28)

Note that the following statement is also an instance of Lemma 21:

� Ca(∧(Y ′
2 ∪ Y ′

3) ∧ Cbψ) ∧ Ca(∧Y ′
1 ∧ ¬Cbψ)

∧Ca(∧(Y ′
2 ∪ Y ′

3) ∧ Cbψ → ϕ)

∧Ca(∧Y ′
1 ∧ ¬Cbψ → ϕ)

→ Ca(∧(Y ′
2 ∪ Y ′

3) ∧ (∧Y ′
1) → ϕ).

Hence, by propositional reasoning using statements (26), (27), (28), and (17),

X � Ca(∧(Y ′
2 ∪ Y ′

3) ∧ (∧Y ′
1) → ϕ).

Thus, by Lemma 14,
X � Ca(∧(Y ′

1 ∪ Y ′
2 ∪ Y ′

3) → ϕ).

Therefore, set Y is not (X , a, ϕ)-conforming by Definition 5 and the assumption
Y ′
1,Y

′
2,Y

′
3 ⊆ Y , which contradicts the assumption of the lemma.

Definition 6 A set of formulae Y ⊆ � is perfect if for any agent b ∈ A and any
formula ψ ∈ � at least one of the formulae ¬Cbψ , ψ ∧Cbψ , and ¬ψ ∧Cbψ belongs
to set Y .

Note that although an (X , a, ϕ)-conforming set could be finite, a perfect set is
always infinite because set � is infinite.

Lemma 30 Any (X , a, ϕ)-conforming set Y could be extended to a perfect (X , a, ϕ)-
conforming set Y ′.
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Proof Consider any enumeration Cb1ψ1,Cb2ψ2, . . . of all C-formulae in set �. By
Lemma 29, there is a chain of (X , a, ϕ)-conforming sets Y0 ⊆ Y1 ⊆ Y2 ⊆ . . . such
that Y0 = Y and set Yk+1 is one of the following sets:

Yk ∪ {¬Cbkψk}, Yk ∪ {ψk ∧ Cbkψk}, Yk ∪ {¬ψk ∧ Cbkψk}

for each k ≥ 0. Let Y ′ = ⋃
k Yk . Set Y

′ is (X , a, ϕ)-conforming because, by Defini-
tion 5, the union of any chain of (X , a, ϕ)-conforming sets is (X , a, ϕ)-conforming.

10.6 Canonical PseudoModel

We now define the canonical pseudo model (W , {∼a}a∈A, {Mw}w∈W , {πw}w∈W ) for
our logical system. The key building blocks of this pseudo model are maximal consis-
tent sets that we refer to as “contexts”. We partition contexts into equivalence classes.
As discussed in Sect. 10.2, each state is an equivalence class of the contexts.

Definition 7 The set of contextsM is the set of all maximal consistent sets of formulae.

Definition 8 For any contexts m1,m2 ∈ M , let m1 ≡ m2 when for each formula
Caϕ ∈ m1, if ϕ ∈ m1, then ϕ ∈ m2.

Lemma 31 Relation ≡ is an equivalence relation on set M.

Proof Reflexivity: Consider any formula Caϕ ∈ � and any context m ∈ M . Suppose
that ϕ ∈ m and Caϕ ∈ m. It suffices to show that ϕ ∈ m, which is our assumption.
Symmetry: Consider any formula Caϕ ∈ � and any contexts m1,m2 ∈ M such that
m1 ≡ m2, Caϕ ∈ m2, and ϕ ∈ m2. It suffices to show that ϕ ∈ m1.

Claim Ca¬ϕ ∈ m1.

Proof of Claim The assumption Caϕ ∈ m2 implies

¬Caϕ /∈ m2 (29)

because set m2 is consistent. At the same time, � CaCaϕ by the Comprehension
of Comprehension axiom. Thus, by Comprehension of Negation axiom and Modus
Ponens inference rule, � Ca¬Caϕ. Hence, Ca¬Caϕ ∈ m1 because set m1 is maximal.
Then, ¬Caϕ /∈ m1 by Definition 8 using statement (29) and the assumptionm1 ≡ m2.
Thus,Caϕ ∈ m1 becausem1 ismaximal. Hence,m1 � Ca¬ϕ by theComprehension of
Negation axiom and theModus Ponens rule. Therefore,Ca¬ϕ ∈ m1 by themaximality
of m1.

To finish the proof that relation ≡ is symmetric, suppose ϕ /∈ m1. Thus, ¬ϕ ∈ m1
becausem1 is a maximal consistent set. Hence, ¬ϕ ∈ m2 by Definition 8, Claim 10.6,
and the assumption m1 ≡ m2. Then, ϕ /∈ m2 because set m2 is consistent, which
contradicts our assumption that ϕ ∈ m2.
Transitivity: Consider any formula Caϕ ∈ � and any contexts m1,m2,m3 ∈ S such
that m1 ≡ m2, m2 ≡ m3, Caϕ ∈ m1, and ϕ ∈ m1. It suffices to show that ϕ ∈ m3.
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Note that � CaCaϕ by the Comprehension of Comprehension axiom. Thus,
CaCaϕ ∈ m1 due to the maximality of set m1. Hence, Caϕ ∈ m2 by Definition 8
and the assumptions m1 ≡ m2 and Caϕ ∈ m1. At the same time, ϕ ∈ m2 by Def-
inition 8 and the assumptions m1 ≡ m2, Caϕ ∈ m1, and ϕ ∈ m1. The statements
Caϕ ∈ m2 and ϕ ∈ m2 imply ϕ ∈ m3 by Definition 8 and the assumption m2 ≡ m3.

Definition 9 Set of states W is the set of equivalence classes of M with respect to
relation ≡.

We now are ready to define the equivalence relation ∼a on states from set W . We
do this in two steps. First, we define this relation on contexts, then we show that this
relation is well-defined on ≡-classes of contexts, which are states.

Definition 10 For any two contexts m1,m2 ∈ M and any agent a ∈ A, let m1 ∼a m2
when for each formula ϕ, if Kaϕ ∈ m1, then ϕ ∈ m2.

Alternatively, one can define m1 ∼a m2 if sets m1 and m2 contain the same K-
formulae.Our definition simplifies the proof of completeness, but it requires the lemma
below.

Lemma 32 Relation∼a is an equivalence relation on set of contexts M for each agent
a ∈ A.

Proof Reflexivity: Consider any formula ϕ ∈ �. Suppose that Kaϕ ∈ m. It suffices to
show that ϕ ∈ m. Indeed, the assumption Kaϕ ∈ m implies m � ϕ by the Truth axiom
and the Modus Ponens inference rule. Therefore, ϕ ∈ m because set m is maximal.
Symmetry: Consider any contextsm1,m2 ∈ M such thatm1 ∼a m2 and any formula
Kaϕ ∈ m2. It suffices to show that ϕ ∈ m1. Suppose the opposite. Then, ϕ /∈ m1.
Hence, m1 � ϕ because set m1 is maximal. Thus, m1 � Kaϕ by the contraposition of
the Truth axiom. Then, ¬Kaϕ ∈ m1 because set m1 is maximal. Thus, m1 � Ka¬Kaϕ
by the Negative Introspection axiom and the Modus Ponens inference rule. Hence,
Ka¬Kaϕ ∈ m1 because set m1 is maximal. Then, ¬Kaϕ ∈ m2 by the assumption
m2 ∼a m1 and Definition 10. Therefore, Kaϕ /∈ m2 because set m1 is consistent,
which contradicts the assumption Kaϕ ∈ m2.
Transitivity: Consider any contexts m1,m2,m3 ∈ W such that m1 ∼a m2 and
m2 ∼a m3 and any formula Kaϕ ∈ m1. It suffices to show thatϕ ∈ m3. The assumption
Kaϕ ∈ m1 implies m1 � KaKaϕ by Lemma 24 and the Modus Ponens rule. Thus,
KaKaϕ ∈ m1 because set m1 is maximal. Hence, Kaϕ ∈ m2 by the assumption m1 ∼a

m2 and Definition 10. Then, ϕ ∈ m3 by the assumption m2 ∼a m3 and Definition 10.

Lemma 33 If m1 ≡ m2, then m1 ∼a m2 for each agent a ∈ A.

Proof Consider any formula Kaϕ ∈ m1. By Definition 10, it suffices to show that
ϕ ∈ m2. Indeed, the assumption Kaϕ ∈ m1 implies m1 � KaKaϕ by Lemma 24
and the Modus Ponens inference rule. Thus, m1 � CaKaϕ by the Comprehension of
Known axiom and the Modus Ponens inference rule. Hence, CaKaϕ ∈ m1 because set
m1 is maximal. Then, Kaϕ ∈ m2 by Definition 8, the assumption m1 ≡ m2, and the
assumption Kaϕ ∈ m1. Hence, m2 � ϕ by the Truth axiom and the Modus Ponens
inference rule. Therefore, ϕ ∈ m2 because set m2 is maximal.
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Lemma 34 Relation ∼a is well-defined on set W of states.

Proof Suppose that m1 ∼a m2, m1 ≡ m′
1, and m2 ≡ m′

2. It suffices to show that
m′

1 ∼a m′
2, which follows from Lemmas 33 and 32.

The next statement follows from Lemma 32.

Lemma 35 Relation ∼a is an equivalence relation on set W for each agent a ∈ A.

As we mentioned earlier, contexts in a state w are the contexts that belong to set w.

Definition 11 Mw = w for each state w ∈ W .

Recall that each state w ∈ W is an equivalence class of set M by Definition 9.
Thus, Mw = w is a nonempty set.

Definition 12 πw(p) = {m ∈ w | p ∈ m}, for each state w ∈ W and each proposi-
tional variable p.

This concludes the definition of the canonical pseudo model.

10.7 Completeness: Final Steps

In this subsection, we prove the “induction” or “truth” Lemma 39 for our canonical
pseudo model and use it to finish the proof of strong completeness in the usual way.
To keep the proof by induction of the “truth” lemma manageable, we separate three
major cases of the induction into Lemmas 36, 37, and 38 below. Note that Lemma 38
is using perfect conforming sets. The four lemmas below refer to the canonical pseudo
model defined in the previous subsection.

Lemma 36 For any context m and any formula Kaϕ /∈ m, there is a context m′ ∈ M
such that m ∼a m′ and ϕ /∈ m′.

Proof Let X be the set of formulae {¬ϕ} ∪ {ψ | Kaψ ∈ m}.
First, we show that set X is consistent. Assume the opposite. Thus, there are for-

mulae Kaψ1, . . . , Kaψn ∈ m such that � ∧
i≤n ψi → ϕ. Hence, by the Necessitation

inference rule,� Ka
(∧

i≤n ψi → ϕ
)
.Then, by theDistributivity axiomand theModus

Ponens inference rule, � Ka
∧

i≤n ψi → Kaϕ. Thus, Kaψ1, . . . , Kaψn � Kaϕ by
Lemma 23 and the Modus Ponens inference rule. Hence, m � Kaϕ by the choice
of the formulae Kaψ1, . . . , Kaψn . Then, Kaϕ ∈ m because set m is maximal, which
contradicts an assumption of the lemma. Therefore, set X is consistent.

Let m′ be any maximal consistent extension of set X . Note that m ∼a m′ by
Definition 10 and the choice of sets X and m′. Also, ¬ϕ ∈ X ⊆ m′ implies that
ϕ /∈ m′ because set m′ is consistent.

Lemma 37 If Caϕ ∈ m, m ∼a m′, m′ ≡ m′′, and ϕ ∈ m′, then ϕ ∈ m′′.

Proof The assumption Caϕ ∈ m implies m � KaCaϕ by the Introspection of Com-
prehension axiom and the Modus Ponens inference rule. Thus, KaCaϕ ∈ m because
set m is maximal. Hence, Caϕ ∈ m′ by Definition 10 and the assumption m ∼a m′.
Therefore, ϕ ∈ m′′ by Definition 8 and the assumptions ϕ ∈ m′ and m′ ≡ m′′.
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Lemma 38 If Caϕ /∈ m, then there are contexts m′,m′′ ∈ M such that m ∼a m′,
m′ ≡ m′′, ϕ ∈ m′, and ϕ /∈ m′′.

Proof The assumption Caϕ /∈ m implies that m � Caϕ because set m is maximal.
Hence, set Y = {ψ | Kaψ ∈ m} is (m, a, ϕ)-conforming by Lemma 26.

Let Y ′ be a perfect (m, a, ϕ)-conforming extension of set Y . Such set Y ′ exists by
Lemma 30. Note that set Y ′ is also (m, a,¬ϕ)-conforming by Lemma 28. Thus, the
set Y ′ ∪ {ϕ} is consistent by Lemma 27. Let m′ be any maximal consistent extension
of this set. Note that m ∼a m′ by Definition 10 and the choice of sets Y and Y ′. Also,
ϕ ∈ Y ′ ∪ {ϕ} ⊆ m′ by the choice of set m′.

By Lemma 27, the set Y ′ ∪ {¬ϕ} is also consistent because set Y ′ is (m, a, ϕ)-
conforming. Let m′′ be any maximal consistent extension of this set. Then, ¬ϕ ∈
Y ′ ∪ {¬ϕ} ⊆ m′′. Thus, ϕ /∈ m′′ because set m′′ is consistent.

Finally, we show that m′ ≡ m′′. Consider an arbitrary formula Cbψ ∈ m′ such that
ψ ∈ m′. By Definition 8, it suffices to show that ψ ∈ m′′. Indeed, the assumptions
Cbψ ∈ m′ and ψ ∈ m′ imply that ψ ∧ Cbψ ∈ m′ because set m′ is maximal. Thus,
¬Cbψ /∈ m′ and ¬ψ ∧ Cbψ /∈ m′ because set m′ is consistent. Hence, ¬Cbψ /∈ Y ′
and ¬ψ ∧ Cbψ /∈ Y ′ because Y ′ ⊆ Y ′ ∪ {ϕ} ⊆ m′ by the choice of set m′. Then,
ψ ∧ Cbψ ∈ Y ′ by Definition 6 and the assumption that set Y ′ is perfect. Thus,
ψ ∧ Cbψ ∈ m′′ because Y ′ ⊆ Y ′ ∪ {¬ϕ} ⊆ m′′ by the choice of set m′′. Therefore,
ψ ∈ m′′ because set m′′ is maximal.

By [m] we mean the equivalence class (state) of the context m with respect to
relation ≡.

Lemma 39 ([m],m) � ϕ iff ϕ ∈ m for any context m ∈ M and any formula ϕ ∈ �.

Proof We prove the lemma on structural induction of formula ϕ. If formula ϕ is
a propositional variable, then the required follows from item 1 of Definition 4 and
Definition 12. The case when formula ϕ is a negation or an implication follows from
items 2 and 3 of Definition 4 and the maximality and the consistency of set m in the
standard way.

Assume that formula ϕ has the form Kaψ .
(⇒) : Suppose that Kaψ /∈ m. Thus, by Lemma 36, there is a context m′ ∈ M such
that m ∼a m′ and ψ /∈ m′. Hence, [m] ∼a [m′] and, by the induction hypothesis,
([m′],m′) � ψ . Therefore, ([m],m) � Kaψ by item 4 of Definition 4.
(⇐) : Assume Kaψ ∈ m. Consider any context m′ in a state [m′] such that [m] ∼a

[m′]. By item 4 of Definition 4, it suffices to show that ([m′],m′) � ψ . Indeed, the
assumption [m] ∼a [m′] implies that m ∼a m′. Hence, ψ ∈ m′ by Definition 10 and
the assumption Kaψ ∈ m. Thus, ([m′],m′) � ψ by the induction hypothesis.

Finally, suppose that formula ϕ has the form Caψ .
(⇒) : Assume that Caψ /∈ m. Thus, by Lemma 38, there are contexts m′,m′′ ∈ M
such that m ∼a m′, m′ ≡ m′′, ψ ∈ m′, and ψ /∈ m′′. Hence, [m] ∼a [m′] and,
by the induction hypothesis, ([m′],m′) � ψ as well as ([m′′],m′′) � ψ . Note that
[m′] = [m′′] because m′ ≡ m′′. Therefore, ([m],m) � Caψ by item 5 of Definition 4.
(⇐) : Assume that Caψ ∈ m. Consider any state u ∈ W and any contexts m′,m′′ ∈ u
such that [m] ∼a u and (u,m′) � ψ . By item 5 of Definition 4, it suffices to prove
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that (u,m′′) � ψ . Indeed, note that [m′] = [m′′] = u because m′,m′′ ∈ u. Then,
by the induction hypothesis, the assumption (u,m′) � ψ implies that ψ ∈ m′. Also,
m ∼a m′ because [m] ∼a u andm′ ∈ u. Additionally,m′ ≡ m′′ because [m′] = [m′′].
Thus, ψ ∈ m′′ by Lemma 37. Hence, ([m′′],m′′) � ψ by the induction hypothesis.
Therefore, (u,m′′) � ψ because [m′′] = u.

We are finally ready to state and prove the strong completeness theorem for our
logical system with respect to pseudo models.

Theorem 3 (strong completeness for pseudo models) If X � ϕ, then there is a state w

of a pseudo model and a context m in state w such that (w,m) � χ for each formula
χ ∈ X and (w,m) � ϕ.

Proof The assumption X � ϕ implies that the set X ∪{¬ϕ} is consistent. Letm be any
maximal consistent extension of this set. Thus, χ ∈ m for each formula χ ∈ X . Also,
ϕ /∈ m because¬ϕ ∈ X ∪{¬ϕ} ⊆ m and setm is consistent. Therefore, ([m],m) � χ

for each formula χ ∈ X and ([m],m) � ϕ by Lemma 39.

11 Completeness for Contextual Epistemic Models

In this section, we use our completeness results for pseudo models to prove the com-
pleteness with respect to the contextual epistemic models. We start the proof by
defining a contextual epistemic model (W ′, {∼′

a}a∈A, M ′, π ′) for each given pseudo
model (W , {∼a}a∈A, {Mw}w∈W , {πw}w∈W ).

Let W ′ = W and ∼′
a=∼a for each agent a ∈ A. Also, let

M =
⋃

w∈W
Mw.

We use the above definition of the set of contexts M even if sets {Mw}w∈W are not
pairwise disjoint.Recall that byDefinition 3, setMw is nonempty for each statew ∈ W .
Letmw denote a fixed arbitrary context of each statew ∈ W . In the construction below,
we treat mw as a “default” context of state w.

For each state w ∈ W , function τw maps set M into set Mw:

τw(m) =
{
m, if m ∈ Mw

mw, otherwise.

We are now ready to define valuation function π ′ for the contextual epistemic model:

π ′(p) = {(w,m) ∈ W × M | τw(m) ∈ πw(p)}.

The next lemma can be shown by induction on the structural complexity of formula
ϕ.
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Lemma 40 w,m �′ ϕ iff w, τw(m) � ϕ, where � is the satisfaction relation for the
pseudo model (W , {∼a}a∈A, {Mw}w∈W , {πw}w∈W ) and �′ is the satisfaction relation
for the epistemic contextual model (W ′, {∼′

a}a∈A, M ′, π ′).

The theorem below follows from Theorem 3 and Lemma 40.

Theorem 4 (strong completeness) If X � ϕ, then there is a state w of an epistemic
contextual and a context m such that (w,m) � χ for each formula χ ∈ X and
(w,m) � ϕ.

12 Alternative Languages

In this article, we considered modalities K and C defined through a combination
of multiple quantifiers over different domains. In addition to them, one can poten-
tially consider more primitive modalities: context-specific knowledge modality Kcs ,
state-specific comprehension modality Css , and “for any contexts” modality �. Their
semantics is defined as follows:

(w,m) � Kcsϕ when (u,m) � ϕ for each state u ∈ W such that w ∼a u.

(w,m) � Cssϕ when for any contexts m′,m′′ ∈ M , if (w,m′) � ϕ, then (w,m′′) � ϕ.

(w,m) � �ϕ if (w,m′) � ϕ for any context m′ ∈ M .

These five modalities are not unrelated. Namely, it is easy to show that

�ϕ ≡ ϕ ∧ Cssϕ,

Cssϕ ≡ �(ϕ → �ϕ),

Caϕ ≡ KaCssϕ ≡ Kcsa Cssϕ ≡ Ka(ϕ → �ϕ),

Kaϕ ≡ Kcsa �ϕ ≡ �Kcsa ϕ.

We have chosen to study modalities K and C because we think they better reflect the
intuitive notions of knowledge and comprehension. We did this at the expense of a
more complicated set of axioms and a more complicated proof of the completeness.

13 Conclusion

The contribution of this article is three-fold. First, we introduced a novel modality
“comprehensible” and gave its formal semantics in contextual epistemic models. Sec-
ond, we have shown that this modality cannot be defined through knowledge modality
andvice versa. Finally,weproposed a sound and complete logical system that describes
the interplay between the knowledge and the comprehension modalities.

In modal logic, the filtration technique is often used to prove the completeness
of a logical system with respect to a class of finite models (Gabbay, 1972). Such
completeness normally implies the decidability of the system. For this approach to
work in our case, the class of finite models would require not only the number of states
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to be finite, but the number of contexts to be finite as well.We have not been successful
in adopting the filtration technique to achieve this. Thus, proving the decidability of
the proposed logical system remains an open question.

Appendix: Auxiliary Lemmas

Lemma 6 If X , ϕ � ψ , then X � ϕ → ψ .

Proof Suppose that sequenceψ1, . . . , ψn is a proof from set X ∪{ϕ} and the theorems
of our logical system that uses the Modus Ponens inference rule only. In other words,
for each k ≤ n, either

1. � ψk , or
2. ψk ∈ X , or
3. ψk is equal to ϕ, or
4. there are i, j < k such that formula ψ j is equal to ψi → ψk .

It suffices to show that X � ϕ → ψk for each k ≤ n. We prove this by induction on k
through considering the four cases above separately.
Case 1: � ψk . Note that ψk → (ϕ → ψk) is a propositional tautology, and thus, is an
axiom of our logical system. Hence, � ϕ → ψk by the Modus Ponens inference rule.
Therefore, X � ϕ → ψk .
Case 2: ψk ∈ X . Note again that ψk → (ϕ → ψk) is a propositional tautology, and
thus, is an axiom of our logical system. Therefore, by the Modus Ponens inference
rule, X � ϕ → ψk .
Case 3: formulaψk is equal toϕ. Thus,ϕ → ψk is a propositional tautology. Therefore,
X � ϕ → ψk .
Case 4: formula ψ j is equal to ψi → ψk for some i, j < k. Thus, by the induction
hypothesis, X � ϕ → ψi and X � ϕ → (ψi → ψk). Note that formula (ϕ →
ψi ) → ((ϕ → (ψi → ψk)) → (ϕ → ψk)) is a propositional tautology. Therefore,
X � ϕ → ψk by applying the Modus Ponens inference rule twice.

Lemma 23 Kaϕ1, . . . , Kaϕn � Ka(ϕ1 ∧ · · · ∧ ϕn).

Proof Note that the following formula is a tautology:

ϕ1 → (ϕ2 → . . . (ϕn → (ϕ1 ∧ · · · ∧ ϕn)) . . . ).

Thus, by the Necessitation inference rule,

� Ka(ϕ1 → (ϕ2 → . . . (ϕn → (ϕ1 ∧ · · · ∧ ϕn)) . . . )).

Hence, by the Distributivity axiom and the Modus Ponens inference rule,

� Kaϕ1 → Ka(ϕ2 → . . . (ϕn → (ϕ1 ∧ · · · ∧ ϕn)) . . . )).
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Then, again by the Modus Ponens inference rule,

Kaϕ1 � Ka(ϕ2 → . . . (ϕn → (ϕ1 ∧ · · · ∧ ϕn)) . . . )).

Therefore, Kaϕ1, . . . , Kaϕn � Ka(ϕ1 ∧ · · · ∧ ϕn) by repeating the previous steps n − 1
more times.

Lemma 24 � Kaϕ → KaKaϕ.

Proof Formula Ka¬Kaϕ → ¬Kaϕ is an instance of the Truth axiom. Thus, �
Kaϕ → ¬Ka¬Kaϕ by contraposition. Hence, taking into account that ¬Ka¬Kaϕ →
Ka¬Ka¬Kaϕ is an instance of the Negative Introspection axiom, we have

� Kaϕ → Ka¬Ka¬Kaϕ. (30)

At the same time, ¬Kaϕ → Ka¬Kaϕ is an instance of the Negative Introspection
axiom. Thus, � ¬Ka¬Kaϕ → Kaϕ by the law of contrapositive in the propositional
logic. Hence, by the Necessitation inference rule, � Ka(¬Ka¬Kaϕ → Kaϕ). Thus,
by the Distributivity axiom and the Modus Ponens inference rule, � Ka¬Ka¬Kaϕ →
KaKaϕ. The latter, together with statement (30), implies the statement of the lemma
by propositional reasoning.
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