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Medical image classification plays an important role in
medical imaging. In this work, we present a novel approach to
enhance deep learning models in medical image classification
by incorporating clinical variables without overwhelming
the information. Unlike most existing deep neural network
models that only consider single-pixel information, our
method captures a more comprehensive view. Our method
contains two main steps and is effective in tackling the
extra challenge raised by the scarcity of medical data.
Firstly, we employ a pre-trained deep neural network
served as a feature extractor to capture meaningful image
features. Then, an exquisite discriminant analysis is applied
to reduce the dimensionality of these features, ensuring
that the low number of features remains optimized for the
classification task and striking a balance with the clinical
variables information. We also develop a way of obtaining
class activation maps for our approach in visualizing
models’ focus on specific regions within the low-dimensional
feature space. Thorough experimental results demonstrate
improvements of our proposed method over state-of-the-art
methods for tuberculosis and dermatology issues for example.
Furthermore, a comprehensive comparison with a popular
dimensionality reduction technique (principal component
analysis) is also conducted.

1. Introduction
The integration of deep learning techniques with medical
imaging modalities has become widespread in current research
and clinical practice. This proliferation of machine learning and
deep learning in the healthcare field is driven by their abil-
ity to successfully automate tasks, thereby alleviating the high
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cognitive workload of busy physicians [1,2]. In particular, the escalating workload demands in
radiological imaging examinations imply that an average radiologist must interpret an image within a
mere 3−4 s, working for 8 h a day. Such a workload contributes to fatigue and burnout, significantly
increasing the error rate, which is an urgent concern to address in the context of patient lives. With the
rapid advancement of deep learning technologies, an increasing number of endeavours have recently
highlighted the widely discussed foundation models in the fields like computer vision and medical
imaging [3,4]. This has led to a growing trend of effortlessly adapting these models to a wide range
of downstream applications. Characterized by their vast scale on various datasets, foundation models
have demonstrated remarkable capabilities in generating meaningful representations across multiple
domains [5,6].

The field of modern medicine heavily depends on the integration of diverse data sources, such as
imaging pixel data, structured laboratory data, unstructured narrative data and occasionally audio or
observational reports, to inform clinical practice [7]. The outcome of diagnostic decisions is hard to be
independently determined based on a single image. As it is known that radiologists generally express
a desire for additional clinical information when interpreting images, this information significantly
influences their reporting. In a survey conducted among radiologists, an overwhelming majority (87%)
indicated that clinical information plays a substantial role in their interpretation process [8].

The accurate interpretation of imaging data, including radiology, pathology, ophthalmology and
dermatology, relies heavily on the knowledge of clinical context. In this regard, the integration of
relevant clinical and patient information assumes a crucial role in guiding the interpretation process,
providing valuable insights for clinical decision-making and informing optimal patient care [9,10].
Early deep learning models in medical image analysis primarily focused on using pixel data as a single
modality for input, without incorporating other clinical information as observed in actual medical
practice (e.g. [11–13]). While those approaches have still contributed to the success of deep/machine
learning in the healthcare field, they ultimately constrain their clinical translation. Other works, such
as [14–17], employ pre-trained models for medical imaging without extensive fine-tuning, demonstrat-
ing that pre-trained models alone may offer valuable insights especially in the limited medical data
scenario.

Our interest in this work lies in incorporating clinical contexts/variables, such as patient informa-
tion, patient history, prior diagnoses and laboratory values, into the fusion of image features. This
approach aims to simulate the diagnostic process carried out by radiologists in clinical practice. Note
that, owing to the uniqueness of medical images and factors such as information confidentiality or the
labour-intensive nature of data annotation, the available dataset size is often limited and therefore the
medical image classification problem itself here is intrinsically challenging.

One primary benefit of employing deep learning in different fields is its capacity to autonomously
extract features, eliminating the need for laborious manual feature engineering. Nevertheless, a
corresponding drawback is the substantial volume of parameters needed by deep neural network’s
multiple layers, a factor that can amplify the risk of overfitting to new and unseen data. One
approach to address this challenge involves introducing additional training samples. However, this
often becomes impractical in dealing with medical datasets owing to the expenses associated with
conducting physical examinations and clinical tests on patients. In such cases, we believe reducing
the dimensions of those high-dimensional representations could bring up better performance. Existing
methods, such as pooling layers or simply passing the data through neural networks, however, may
not effectively capture the discriminative nature of the data and be interpretable.

Our approach in this work incorporates clinical variables for medical image classification by using
pre-trained deep neural networks and discriminant dimensionality reduction techniques. Specifically,
we first map each medical image into a fixed-dimensional feature space, where the dimensions,
denoted as M, are determined by the number of neurons in the penultimate fully connected layer of
the network. Typically, popular architectures have dimensions of 1024 or 2048 for this layer. This leads
us to a scenario where the number of available data items, denoted as N, is comparable with or even
smaller than the dimension of the feature space, necessitating the use of techniques for dimensionality
reduction. While previous works, such as [18], have used principal component analysis (PCA) for this
purpose, we apply discriminant analysis (DA) [19] as a technique for dimensionality reduction, in that
it effectively preserves discriminative information in the low-dimensional representations, enabling
better separation of different categories of image data, especially in classification problems. Simultane-
ously, we find that this method helps localize the images within a subspace and reduce noise, while
also convenient to incorporate clinical information as a foundation for subsequent analysis, preventing
the overwhelming of these clinical variables with the features extracted by pre-trained networks. In

2
royalsocietypublishing.org/journal/rsos 

R. Soc. Open Sci. 12: 241222

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

17
 J

un
e 

20
25

 



detail, after obtaining the dimension-reduced features by DA, the clinical variables will no longer be
overwhelmed by the high-dimensional feature space. We then merge the clinical variables with the
dimension-reduced features and employ a classifier to make the final decision. The schematic diagram
of our method is given in figure 1. Moreover, we also develop an innovative class activation map
(CAM) for our method to visually represent the reduced features that accentuate regions pertinent
to disease classification. This represents another distinctive contribution that has hitherto not been
explored. Thorough experimental results are conducted to demonstrate the great performance of
our proposed method over state-of-the-art (SOTA) methods in different disease classifications for
example tuberculosis and dermatology. We also make a comprehensive comparison with the popu-
lar dimensionality reduction technique, i.e. PCA [20], further enforcing the superior performance of
our proposed method. The code of our proposed method is available at: https://gitfront.io/r/Rachel/
mGKvf81UJVr9/Incorporating-Clinical-Variables.

The remainder of this paper is organized as follows. In §2, we provide comprehensive details of
related work including DA. Our proposed method is introduced in §3. Section 4 presents the main
outcomes obtained from our experimental work. Lastly, §5 concludes the paper by summarizing our
findings and offering further insights.

2. Related work
2.1. Fusion of imaging features with clinical variables
Although imaging findings for instance on chest X-rays consistent with pneumonia generally have
imaging features that can differentiate alternative diagnoses, they are non-specific. Accurate diagno-
sis requires the incorporation of clinical and laboratory data [7]. In other words, imaging findings
suggestive of pneumonia on chest X-rays may be accurate in a patient with supporting clinical
features such as fever and elevated white blood cell count, but for another patient without those
supporting characteristics and laboratory values, similar imaging findings may instead represent other
aetiologies such as atelectasis, pulmonary oedema or even lung cancer. Such examples are abun-
dant in the medical field, where single-pixel-level images alone cannot adequately replicate clinical
practice. Similar to their real-life counterparts, automated detection and classification systems that can
effectively use both medical imaging data and metadata from electronic health records, such as patient
demographics, previous diagnoses and laboratory values, may result in improved performance and
increased clinical relevance of the models. This idea has already been explored in recent literature,
where neural networks were applied to extract features and then the extracted imaging features were
simply concatenated with clinical features [21,22].

Kharazmi et al. [21] employed a sparse auto-encoder to capture hidden characteristics and obtain
image representations for addressing a classification problem related to basal cell carcinoma skin
cancer. They further generated feature maps, which were subsequently condensed through a pool-
ing layer to reduce dimensionality. Following the reduction in dimensionality, these features were
integrated with patient profile information (including lesion location, size, elevation, patient age and
gender) and fed into the softmax layer. However, untrained features do not yield satisfactory results,
especially when relying solely on the pooling layer for dimensionality reduction without any label
information. Moreover, owing to the lack of loss updates, using only the pooling layer may result in a
loss of valuable information. Numerous studies in the literature have employed similar pooling-based
methods for dimensionality reduction [23,24].

Yap et al. [22] also addressed a skin lesion classification problem, incorporating metadata such
as age, gender and body location. They achieved this by directly passing the image information to
ResNet50 without including the last layer. Subsequently, the extracted features were concatenated with
a metadata feature vector. Finally, the combined feature representation was passed to the softmax
layer. Owing to the extensive architecture of the ResNet50 model, the feature representation before
incorporating metadata already possesses a dimensionality of 1024. Combining a small amount of
metadata with this representation would only result in further information loss. Therefore, they claim
an improvement of less than 1%, which is even not consistently achieved. Similarly, Spasov et al. [25]
adopted a comparable approach with three-dimensional structural magnetic resonance imaging (MRI)
data to address Alzheimer’s disease classification. They proposed a convolutional neural network
(CNN) architecture, which takes structural MRI scans and clinical assessment (e.g. age, gender,
ethnic and racial categories, and years in education) as input. These fusion methods have also been
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widely employed in the context of predicting short-term future disease activity in patients with early
symptoms of multiple sclerosis [26]. In line with this, they proposed a CNN architecture specifically
designed for this purpose, which effectively extracted latent lesion features from MRI scans. Addi-
tionally, the model incorporated user-defined MRI and clinical measurements (e.g. body mass index
(BOD), brain parenchymal fraction (BPF), gender, cerebrum, optic nerve, cerebellum, brainstem, spinal
cord, extended disability status scale (EDSS) and cistype) at the second fully connected layer, allow-
ing for a comprehensive fusion of data sources and improving the accuracy of disease progression
predictions.

As mentioned in an earlier section, our approach in contrast involves obtaining features from a
pre-trained deep learning model and subsequently employing DA to reduce the high-dimensional
features and then combine them with clinical variables. We below briefly recall the fundamental
mathematical concepts proposed by Foley & Sammon [19] to support the dimensionality reduction
technique segment.

2.2. Discriminant analysis
In our proposed medical image classification method, we use DA to project the original features onto a
lower-dimensional space while preserving discriminatory information. This reduction of dimensional-
ity is achieved by minimizing the intra-class scatter and maximizing the inter-class scatter. The widely
held assumption is that features based on discrimination are more effective than those based on fitting
or describing the data. However, the traditional method of obtaining discriminant vectors for binary
classification can only produce one direction owing to the rank of inter-class scatter. Foley & Sammon
[19] discovered a method that employs orthogonality between vectors to generate a set of optimal
discriminant vectors for binary classification. More details see below.

Given N samples yi = (yi1, yi2,⋯ , yiM)⊤ ∈ ℝM, 1 ≤ i ≤ N, we form a data matrixY = (y1,y2,⋯ ,yN)⊤ ∈ ℝN × M, where M is the number of features of every sample. Suppose that theseN samples belong to c different classes, namely Λj, and their cardinality |Λj| = Nj, 1 ≤ j ≤ c. Let y‾
and y‾j, respectively, be the mean of the whole samples and the samples in class j, i.e. y‾ = 1N∑i = 1

N yi,y‾j = 1Nj∑y ∈ Λjy, 1 ≤ j ≤ c. For c = 2, let SB and SW denote the inter- and intra-class scatters, respectively,
i.e.:

(2.1)SB = sbsb
⊤, SW = βSW

1 + (1 − β)SW
2 ,

where sb = y‾1 − y‾2 and β = (N2 − 1)/(N1 + N2 − 2).

Figure 1. Schematic diagram of the proposed method for medical image classification by fusing extracted features with clinical
variables. From left to right: a pre-trained deep neural network (e.g. ResNet18/ViT) is exploited to extract features (e.g. with 512/4096
dimensions) from input medical images, followed by subspace representations of the extracted features by dimensionality reduction
using DA. The reduced features are then merged with clinical variables (which could also be embedded in a different space) and fed
into a classifier (e.g. support vector machine (SVM) or a fully connected layer) for final prediction.
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In the binary classification scenario, different from the traditional method which only produces
one projection direction, the method in [19] offers the potential to discover additional discriminant
directions. The optimality of this method stems from its ability to determine a set of projection
directions, denoted as dn, satisfying multiple constraints provided below.

The projection direction, denoted by d ∈ ℝM, plays a crucial role in Fisher discriminant analysis.
The Fisher criterion reads:

(2.2)R(d) = d⊤SBdd⊤SWd .

It is noteworthy that the function R(d) is independent of the magnitude of the projection direction d. In
the context of binary classification, the optimal discriminant direction d1 is obtained by maximizing the
value of R(d). Once this has been achieved, we can derive

(2.3)d1 = α1SW
−1sb,

where α1 is the normalizing constant such that ‖d1‖2 = 1 (i.e., α1
2 = (sb

⊤[SW
−1]2sb)−1). The second discrimi-

nant direction d2 is required to maximize R(d) given in equation (2.2), while being orthogonal to d1.
This can be accomplished using the method of Lagrange multipliers, i.e.:

(2.4)R(d2) − λ[d2
⊤d1],

where λ is the Lagrange multiplier. We can then obtain

(2.5)d2 = α2 SW
−1 −

sb
⊤(SW

−1)2sbsb
⊤(SW

−1)3sb
(SW

−1)2 sb,

where α2 is the normalizing constant such that ‖d2‖2 = 1.
The aforementioned procedure can be recursively expanded to any number of directions in the

following manner. The n-th discriminant direction dn must maximize R(d) in equation (2.2) while also
being orthogonal to dk, k = 1,2,⋯ ,n − 1. It can be shown that:

(2.6)

dn = αnSW
−1 sb − d1⋯dn − 1 Sn − 1

−1

1/α1

0

⋮
0

,

where αn is the normalizing constant such that ‖dn‖2 = 1 and Sn − 1 ∈ ℝ(n − 1) × (n − 1) whose (i, j) entries are
defined as

(2.7)di⊤SW
−1dj,   1 ≤ i, j ≤ n − 1.

Through the above procedure, we are able to obtain {dk}k = 1
n  without being constrained by the rank

of SB. These discriminant directions can then be used to reduce the dimensionality of our original
obtained features to the desired low-dimensional subspace. Subsequently, they can be integrated with
clinical information to support downstream tasks like medical image classification.

3. Proposed method
In this section, we present our proposed method for medical image classification and provide a
comprehensive description of the use of the developed CAM on dimension-reduced features for
visualization.

3.1. Proposed framework
Figure 1 depicts a simplified diagram illustrating the framework of the proposed method. As shown in
the diagram, the left side represents the medical image data, say {Ii}i = 1

N , where Ii represents one input
image. The images are fed into a pre-trained deep neural network say ϕ, which has been trained on
natural images from the ImageNet dataset in our case here. This network extracts high-dimensional
image features yi from every image Ii, i.e. yi = ϕ(Ii), without performing fine-tuning. Subsequently,
these features undergo dimensionality reduction by using the projection matrix
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(3.1)P = (d1,d2,⋯,dL)⊤ ∈ ℝL × M, L ≪ M,

obtained by DA introduced in §2.2, and we then have a low-dimensional feature vector

(3.2)y‾ i = Pyi ∈ ℝL.
Let vi ∈ ℝLcv represent the Lcv number of clinical variables corresponding to image Ii. We then combine
the low-dimensional feature vector y‾ i with the clinical information vi and form a new feature vector
say zi (more details of the fusion strategies are given below). The resulting low-dimensional feature
vector zi is finally processed with mature machine learning classifiers (like support vector machine
(SVM) or a fully connected layer) to make the final prediction.

Given the high costs of physical examinations and clinical tests, acquiring numerous medical
images is generally impractical. Consequently, training a large deep neural network from scratch
conventionally proves ineffective. To cope with the data scarcity in the medical domain, we use
pre-trained deep neural networks, such as ResNet18, VGGNet or ViT, as feature extractors. Specifically,
the medical images are firstly projected onto a fixed-dimensional feature space, congruent with the
number of neurons present in the penultimate fully connected layer of a network. As previously
mentioned, in this high-dimensional space, it often leads to data sparsity, overfitting and/or high
complexity, making it imperative to employ pertinent dimensionality reduction techniques.

3.1.1 Feature fusion strategies

We propose the following two distinct strategies to explore the integration of the features extracted
from pre-trained models with clinical variables.

Our first strategy is straightforward. The feature vector zi is formed by concatenating the features y‾ i
that have undergone dimensionality reduction with clinical variables vi, i.e.:

(3.3)zi = (y‾ i⊤,vi⊤)⊤ ∈ ℝL + Lcv.

The second strategy involves extracting features from clinical variables vi using a foundation model like
BERT [27] to generate embeddings firstly, and then applying DA for dimensionality reduction on the
clinical variable embeddings. Let v‾i represent the dimension-reduced clinical variable embeddings ofvi. The feature vector zi is analogously formed by concatenation, i.e.:

(3.4)zi = (y‾ i⊤,v‾i⊤)⊤.

A key consideration in our work is the nature of the clinical variable texts, such as patient gender
and skin tone, which are often repetitive and lack diversity. Consequently the use of, for example the
BERT foundation model in this context may not significantly enhance the performance of our method.
We hypothesize that for the scenarios of datasets with a richer and more varied range of textual
information, employing foundation models like BERT for text embeddings in our second feature fusion
strategy could benefit the performance of our method.

We below present the detailed description of our developed CAM for our approach in figure 1 in
visualizing models’ focus on specific regions within the low-dimensional feature space. For simplicity,
the first fusion strategy in equation (3.3) is used for description.

3.2. Developed class activation map
CAMs can help us understand the specific regions and features that a model focuses on during
image classification tasks [28]. Traditional CAM generates attention maps associated with each class
by multiplying the input of the global average pooling layer with the weights of the classification
layer. These attention maps can be overlaid on the original image to highlight the regions relevant
to specific classes. However, this standard CAM pipeline does not directly support the visualization
on dimension-reduced features. Below, for pre-trained CNN models, we present our developed CAM
specifically designed for visualization of the classification decision process on dimension-reduced
features. Here a fully connected layer say ϕ* is used as the classifier (instead of SVM) to find the
weights.

Let F ∈ ℝM × H × W be the feature map produced by the last convolutional layer of the pre-trained
network ϕ corresponding to a given test image I, where M,H and W  represent the number of channels,
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height and width of the feature map. For instance, if using the pre-trained ResNet18 model, F will
have dimensions 512 × 7 × 7, dependent on the choice of the model. After flattening the channel-wise
feature map F, then F is changed to a matrix say F = ℝM × H ⋅ W. Note that in this case for image I, the
high-dimensional image feature vector y = ϕ(I) is obtained by global average polling on the feature
map F channel by channel with M = 512. The feature vector y is then projected into an L-length
low-dimensional feature vector say y‾ by the projection matrix P, i.e. y‾ = Py ∈ ℝL.

Let W = (w1,⋯ ,wc) ∈ ℝ(L + Lcv) × c be the weight matrix of ϕ*. Note that c is the total number of classes
of the classification problem, Lcv is the total number of the clinical variables and wj, 1 ≤ j ≤ c is the
weights vector for class j prediction of classifier ϕ*. Given that ϕ* is a fully connected layer, for the
fused feature vector z corresponding to image I, the class label prediction for image I is given by

(3.5)u = W⊤z ∈ ℝc.
Assume class i is predicted for image I, i.e. the largest component of u is its i-th entry. We use the
weight vector wi to form the CAM. Let wi be the first L components of wi. The weight vector w′ for
feature map F is generated by

(3.6)w′ = P⊤wi ∈ ℝM.

The initial CAM result is formed by reshaping F⊤w′ ∈ ℝH ⋅ W to a matrix R′ ∈ ℝH × W. The final CAM
result R is achieved by resizing R′ to the size of the test image I by interpolation. The whole procedure
of generating the CAM for models with dimension-reduced features is summarized in algorithm
1. Analogously, algorithm 1 is also applied to generate CAM for other dimensionality reduction
techniques like PCA.

Once we obtain the CAM R, it is overlaid onto the original image. This overlay effectively highlights
the discriminative regions of the image pertaining to different classes. By adopting this approach to
dimensionality reduction, we are able to perceive the spatial feature information of the feature map,
consequently augmenting the interpretability of the visualization results.

4. Experimental results
4.1. Experimental setting
In the experiments, to demonstrate the efficacy of our proposed method in addressing medical
issues by considering clinical variables, four distinct datasets encompassing two different diseases
are adopted (see below). We compare the performance of our method with SOTA techniques in [29,30]
and commonly employed dimensionality reduction technique PCA, including different ways of using
features. The performance of all the methods is evaluated by the metrics of accuracy (ACC) and the
area under the curve (AUC).

To thoroughly test the performance of our method, we adopt various popular pre-trained deep
neural networks, such as ResNet18, VGGNet16 and ViT, which have been trained on large natural
image classification problems (i.e. ImageNet). These networks are used in the medical domain to
obtain their respective representations. The foundation model BERT is also tested as our second feature
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fusion strategy with clinical variables for medical image classification. Unless particularly specified,
our first feature fusion strategy is applied.

All the quantitative results are obtained under fivefold cross-validation, ensuring their reliability.
The number of the discriminant directions L in our method is set to 10, i.e. the number of the original
features is reduced to 10. The number of clinical variables considered in all the individual datasets is
≤ 3. All the experiments are conducted using Python 3.8. For the SVM classifier implementation, the
scikit-learn library is used, with the Bayesian optimization process being facilitated by the bayes_opt
library. Unless particularly specified, SVM is applied as the classifier in our framework.

4.2. Data
In our study, we concentrate on two distinct diseases, i.e. tuberculosis and dermatology, which
both rely on metadata. The first disease tuberculosis poses a significant global health challenge. For
tuberculosis-related investigations, we use two publicly available datasets, i.e. the Montgomery and
Shenzhen datasets, published by the US National Institute of Health1. The second disease dermatology
has led to significant morbidity and mortality worldwide, affecting millions of people and causing
suffering even in developed countries [31]. For the study of dermatology, we use the publicly availa-
ble dataset Diverse Dermatology Images (DDI)2 and PAD-UFES-20 dataset, which comprise diverse
skin tones. Brief descriptions of these individual datasets together with our implementations are
given below. Table 1 summarizes the number of images used and the associated clinical variables
in the datasets. In particular, images from these datasets are resized for different pre-trained deep
neural networks, i.e. the resized image sizes are 512 × 512, 224 × 224, and 384 × 384 for the pre-trained
ResNet18, VGGNet16 and ViT, respectively.

(i) The Montgomery dataset [32] is a binary problem that was created by the National Library
of Medicine in collaboration with the Department of Health and Human Services in Montgom-
ery County, Maryland, USA. It consists of X-ray data collected as part of Montgomery Coun-
ty’s tuberculosis screening programme. In particular, it comprises 58 cases with tuberculosis
manifestations and 80 normal cases, with images sized at 4020 × 4892 pixels. It also includes age
and gender information as clinical variables. In our implementation, the dataset is balanced by
random sampling.

(ii) The Shenzhen dataset [32] represents another binary problem specifically related to tuberculosis
and was collected in collaboration with Shenzhen No. 3 People’s Hospital, Guangdong Medical
College, Shenzhen, China. This dataset comprises a collection of 662 frontal chest X-rays, among
which 326 are classified as normal cases, while the remaining 336 exhibit manifestations of
tuberculosis, including paediatric X-rays. The images in the dataset have varying sizes but
are approximately 3000 × 3000 pixels. Additionally, it provides age and gender information as
clinical variables for each case.

(iii) The DDI dataset [30] was assembled retrospectively by reviewing histopathologically confirmed
lesions diagnosed at Stanford Clinics between 2010 and 2020. It, comprising both dark and light
skin tone images, was specifically designed for a binary problem. In our work, we exploit this
dataset, using the images as well as additional clinical variables (i.e. skin tones). Notably, we
incorporate 208 light skin tone images and 207 dark skin tone images in our analysis.

(iv) PAD-UFES-20 [33] is a skin lesion dataset composed of patient data and clinical images. This
collection was collated in conjunction with the dermatological and surgical support initiative
at the Federal University of Espírito Santo. It encompasses six distinct skin lesions, i.e. basal
cell carcinoma, squamous cell carcinoma (SCC), actinic keratosis (ACK), seborrheic keratosis,
melanoma and nevus. Within the scope of our study, we consciously selected an equitable
quantity of SCCs and ACKs, specifically 192 cases, while also considering variables such as
alcohol and tobacco consumption, alongside the patients’ age, as clinical information.

4.3. Results of prediction performance
Table 2 shows the quantitative results of different methods using fivefold cross-validation with
pre-trained ResNet18 in terms of the ACC and AUC metrics. The results of the existing SOTA methods

1https://openi.nlm.nih.gov/faqfaq-tb-coll.
2https://stanfordaimi.azurewebsites.net/datasets/35866158-8196-48d8-87bf-50dca81df965.
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are presented in the last column of table 2. The other six different approaches are following the
framework in figure 1, with different ways of using features, i.e. original features obtained by using
the pre-trained ResNet18 and dimension-reduced features obtained by using PCA and DA techniques
individually, with and without incorporating clinical variables. Note that our proposed method is the
one using DA with clinical variables (i.e. the penultimate column of table 2), achieving the best results
among all the methods compared for all the datasets and the metrics. The results underscore the value
of incorporating clinical variables in determining the presence of cancer, and the great performance of
our method. It is understandable, as prior knowledge about patients’ baseline information is essential
in the medical field for doctors making diagnoses and these individual details can indeed significantly
influence the outcomes.

Table 3 presents results in a similar manner of table 2 but using a fully connected layer as a classifier
instead of the SVM classifier. Analogous performance is obtained as that in table 2, i.e. our proposed
method again achieves the best results among all the methods compared for all the datasets and the
metrics. It is also observed that the SVM classifier is slightly better than the simple fully connected
layer, which is reasonable since the SVM classifier is optimized by the built-in library. It is worth
highlighting that using a fully connected layer will assist us to form CAMs for feature visualization,
results of which will be deferred in next subsection.

Table 4 presents further results in a similar manner of table 2, where the original features are
extracted by using the pre-trained VGGNet16 and the widely popular ViT model separately. Note
that the number of feature dimensions by different pre-trained models can be different, e.g. 4096
dimensions in the penultimate layer of the VGGNet16 compared with the 512 dimensions in ResNet18.
Specifically, the results in the first and second columns of table 4 (and tables 2 and 3) are almost
identical, indicating that directly incorporating high-dimensional features without dimensionality
reduction along with clinical variables leads to the clinical variable information being overshadowed
within the vast feature space. The results also demonstrate the necessity and usefulness of dimension-
ality reduction by DA against PCA which achieves poor results, as the original high-dimensional
features contain redundancy information which may be misleading, with the number of dimensions
exceeding even the number of samples. Again, our proposed method achieves the best results among
all the methods compared for all the datasets and the metrics except for one outlier on the DDI dataset
in terms of the AUC metric, demonstrating the great performance of our method and the significant
improvement in predictive performance when incorporating clinical variables after dimensionality
reduction by DA. It is also observed that among the pre-trained networks ResNet18, VGGNet16 and
ViT, they each have better performance on some datasets, showing the diversity of the features they
produce.

Table 5 presents the results using different base models for feature extraction with the second
feature fusion strategy (i.e. the foundation model BERT is used for clinical variable embeddings). It
shows that the results using the second feature fusion strategy are not as good as using our first feature
fusion strategy, but are better than the ones without incorporating the clinical variables (cf. tables 1–4),
again demonstrating the importance of clinical variables in disease prediction. We hypothesize that
as the complexity of clinical variables increases, the use of foundation models like BERT for feature
embedding from text could become evident. This could be a significant aspect of ongoing research
endeavours.

4.4. Results of class activation map visualization
Finally, we show the developed CAMs, which are capable of emphasizing regions of interest on
dimension-reduced features, visually highlighting regions of the input image that play a significant

Table 1. Data description in terms of the number of images and the clinical variables associated with each dataset.

data number of images clinical variables

Montgomery 138 age and gender

Shenzhen 662 age and gender

DDI 194 skin tone colour

PAD-UFES-20 384 tobacco consumption and age
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role in classification prediction. This visualization could improve network comprehension and provide
visual assistance when generating diagnostic reports for radiologists.

Figure 2 presents some CAM examples on the Montgomery dataset, covering different cases like
correct/incorrect classification predictions. For all the cases, we see that the CAMs of our proposed
method can preserve superior localization (i.e. more centralized), compared with the ones obtained
by using the original features and the dimension-reduced features by PCA. Moreover, the highlighted
areas in the CAMs of our method are more focused on the chest area, whereas the focus of the CAMs

Table 2. Prediction performance comparison in terms of metrics ACC and AUC. (Four distinct datasets are used, with pre-trained
ResNet18. Six different ways of using features following the framework in figure 1, with and without clinical variables, including the
existing SOTA methods, are evaluated. ‘CV’ stands for ‘clinical variables’. Our method is the column of ‘DA + CV’, which performs the
best for all cases.)

prediction performance across various feature utilization techniques

data metrics original original +
CV

PCA PCA + CV DA DA + CV SOTA
methods

Montgomery ACC 0.82 ± 0.02 0.81 ± 0.05 0.71 ±
0.05

0.70 ± 0.06 0.82 ± 0.08 0.85 ± 0.08 0.79 [29]

AUC 0.87 ± 0.05 0.87 ± 0.05 0.78 ±
0.02

0.78 ± 0.02 0.88 ± 0.05 0.89 ± 0.05 0.81 [29]

Shenzhen ACC 0.87 ± 0.02 0.87 ± 0.02 0.85 ±
0.02

0.85 ± 0.02 0.87 ± 0.02 0.88 ± 0.03 0.84 [29]

AUC 0.92 ± 0.01 0.92 ± 0.01 0.89 ±
0.01

0.90 ± 0.01 0.92 ± 0.01 0.93 ± 0.01 0.90 [29]

DDI ACC 0.71 ± 0.02 0.72 ± 0.01 0.66 ±
0.03

0.68 ± 0.04 0.73 ± 0.01 0.74 ± 0.02 N/A

AUC 0.74 ± 0.07 0.75 ± 0.06 0.70 ±
0.06

0.71 ± 0.07 0.75 ± 0.08 0.77 ± 0.08 0.72 ± 0.05
[30]

PAD-UFES-20 ACC 0.67 ± 0.01 0.66 ± 0.02 0.60 ±
0.02

0.61 ± 0.03 0.69 ± 0.02 0.70 ± 0.02 N/A

AUC 0.71 ± 0.02 0.70 ± 0.04 0.61 ±
0.05

0.63 ± 0.06 0.71 ± 0.04 0.72 ± 0.02 N/A

Table 3. Prediction performance comparison in terms of metrics ACC and AUC with the same settings as in table 2 except that a fully
connected layer is used as the classifier instead of the SVM classifier. (Again, our method (i.e. the column of ‘DA+CV’) performs the
best for all cases.)

prediction performance across various feature utilization techniques

data metrics original original +
CV

PCA PCA + CV DA DA + CV

Montgomery ACC 0.72 ± 0.05 0.72 ± 0.06 0.65 ± 0.04 0.66 ± 0.04 0.76 ± 0.06 0.77 ± 0.07

AUC 0.83 ± 0.05 0.84 ± 0.06 0.74 ± 0.03 0.76 ± 0.05 0.85 ± 0.06 0.86 ± 0.07

Shenzhen ACC 0.84 ± 0.03 0.84 ± 0.04 0.82 ± 0.03 0.82 ± 0.03 0.86 ± 0.02 0.87 ± 0.03

AUC 0.93 ± 0.02 0.93 ± 0.02 0.89 ± 0.03 0.89 ± 0.03 0.93 ± 0.01 0.93 ± 0.01

DDI ACC 0.68 ± 0.05 0.68 ± 0.06 0.65 ± 0.06 0.66 ± 0.08 0.71 ± 0.05 0.72 ± 0.07

AUC 0.72 ± 0.09 0.73 ± 0.10 0.69 ± 0.09 0.70 ± 0.11 0.72 ± 0.11 0.73 ± 0.11

PAD-UFES-20 ACC 0.67 ± 0.04 0.66 ± 0.06 0.61 ± 0.02 0.62 ± 0.02 0.66 ± 0.03 0.68 ± 0.02

AUC 0.72 ± 0.04 0.70 ± 0.04 0.60 ± 0.06 0.59 ± 0.05 0.70 ± 0.03 0.72 ± 0.04
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related to the original features and the dimension-reduced features by PCA is quite random and
deviates from the chest area (see the last three rows in figure 2).

To gain more insight into how the outcomes of our method align with the diagnoses of radiolog-
ists in treating patients, we integrate the ChestX-ray8 dataset [34], which contains a select group
of pathological images accompanied by manually annotated bounding boxes indicating the areas
of interest. Figure 3 illustrates the performance of different methods on effusion conditions, with
instances where all the methods make correct classification prediction. It shows that only the CAMs
of our proposed method highlight the areas that are more consistent with the manually annotated

Table 4. Prediction performance comparison with the same settings as in table 2 but pre-trained VGGNet16 and ViT.

prediction performance across various feature utilization techniques

data metrics original original +
CV

PCA PCA + CV DA DA + CV

results with pre-trained VGGNet16

Montgomery ACC 0.76 ± 0.07 0.76 ± 0.07 0.69 ± 0.06 0.69 ± 0.06 0.81 ± 0.06 0.82 ± 0.06

AUC 0.85 ± 0.06 0.85 ± 0.06 0.79 ± 0.06 0.79 ± 0.06 0.89 ± 0.04 0.90 ± 0.04

Shenzhen ACC 0.86 ± 0.03 0.86 ± 0.03 0.83 ± 0.02 0.83 ± 0.02 0.87 ± 0.02 0.88 ± 0.02

AUC 0.90 ± 0.02 0.90 ± 0.02 0.89 ± 0.02 0.89 ± 0.02 0.92 ± 0.01 0.92 ± 0.01

DDI ACC 0.68 ± 0.03 0.68 ± 0.03 0.61 ± 0.04 0.61 ± 0.04 0.70 ± 0.07 0.71 ± 0.08

AUC 0.74 ± 0.05 0.74 ± 0.05 0.61 ± 0.07 0.61 ± 0.07 0.73 ± 0.09 0.73 ± 0.08

PAD-UFES-20 ACC 0.63 ± 0.03 0.64 ± 0.04 0.62 ± 0.04 0.63 ± 0.03 0.67 ± 0.05 0.67 ± 0.04

AUC 0.65 ± 0.05 0.65 ± 0.04 0.63 ± 0.06 0.64 ± 0.07 0.68 ± 0.08 0.69 ± 0.08

results with pre-trained ViT

Montgom
ery

ACC 0.68 ± 0.05 0.68 ± 0.04 0.66 ± 0.08 0.66 ± 0.08 0.76 ± 0.04 0.77 ± 0.05

AUC 0.77 ± 0.09 0.77 ± 0.09 0.67 ± 0.14 0.67 ± 0.13 0.80 ± 0.09 0.81 ± 0.09

Shenzhe
n

ACC 0.82 ± 0.02 0.82 ± 0.02 0.79 ± 0.01 0.79 ± 0.02 0.82 ± 0.01 0.82 ± 0.02

AUC 0.87 ± 0.02 0.87 ± 0.02 0.87 ± 0.01 0.87 ± 0.01 0.86 ± 0.01 0.87 ± 0.01

DDI ACC 0.76 ± 0.06 0.76 ± 0.06 0.70 ± 0.10 0.70 ± 0.10 0.78 ± 0.05 0.79 ± 0.05

AUC 0.79 ± 0.08 0.79 ± 0.08 0.70 ± 0.14 0.70 ± 0.13 0.81 ± 0.09 0.83 ± 0.07

PAD-
UFES-
20

ACC 0.65 ± 0.04 0.66 ± 0.05 0.62 ± 0.02 0.64 ± 0.01 0.68 ± 0.04 0.70 ± 0.04

AUC 0.67 ± 0.05 0.68 ± 0.04 0.66 ± 0.03 0.66 ± 0.02 0.70 ± 0.05 0.71 ± 0.05

Table 5. Prediction performance comparison in terms of metrics ACC and AUC, with different pre-trained models and the second
feature fusion strategy (i.e. the foundation model BERT is used for clinical variable embeddings).

prediction performance across various feature extraction models

data metrics ResNet18+BERT VGGNet16+BERT ViT+BERT

Montgomery ACC 0.85 ± 0.07 0.81 ± 0.07 0.75 ± 0.07

AUC 0.89 ± 0.05 0.89 ± 0.05 0.80 ± 0.09
Shenzhen ACC 0.88 ± 0.02 0.87 ± 0.02 0.75 ± 0.04

AUC 0.93 ± 0.01 0.92 ± 0.03 0.80 ± 0.04
DDI ACC 0.72 ± 0.07 0.69 ± 0.09 0.74 ± 0.07

AUC 0.73 ± 0.12 0.71 ± 0.11 0.79 ± 0.10

PAD-UFES-20 ACC 0.67 ± 0.02 0.67 ± 0.04 0.67 ± 0.04

AUC 0.70 ± 0.03 0.69 ± 0.08 0.69 ± 0.02
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bounding boxes provided, demonstrating that our proposed method can effectively focus on regions
relevant to radiologists’ assessments.

Figure 2. Visualization examples of CAMs on the Montgomery dataset. Column 1: given images; columns 2−4: CAMs regarding the
original features, the dimension-reduced features by SVD and by DA, respectively. In particular, the first two rows illustrate instances
where all the methods achieve correct classification prediction; the subsequent two rows display scenarios where only our method
achieves correct classification prediction; and the final row highlights an example where all the methods make incorrect classification
prediction.
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4.5. Discussion and limitation
We used pretrained deep neural networks in combination with DA for dimensionality reduction,
allowing us to extract highly discriminative features that we integrate with clinical variables. This
integration is designed to simulate the real diagnostic process by balancing image data with clinical
metadata, ensuring neither overwhelms the other. Our primary goal is not to push marginal improve-
ments in benchmark accuracy but to prioritize practical applicability in clinical diagnosis. While some
approaches that use more complex neural network models may report higher accuracy, they often
do so at the expense of lack of generalization, transparency and interpretability—trade-offs that are
critical in medical settings. Moreover, the datasets we use are limited in terms of the richness of clinical
variables, which constrains the full potential of our model. To address this, more clinically relevant
data could be incorporated in future work to further validate and enhance the model’s performance.
We remark that CAMs in our current approach do not directly visualize the influence of the clinical
data, in that the clinical data is not linked to the pre-trained deep neural networks; in other words, it
is not extracted by the pre-trained deep neural networks. The combination of image features (obtained
by pre-trained deep neural networks and DA) and clinical variables in our framework can enhance
decision-making and accuracy in a way that aligns with real-world diagnostic scenarios.

5. Conclusion
In this paper, we proposed a method for medical image classification by using the integration of
clinical information with pixel-wise images using machine/deep learning techniques, yielding great
performance in medical classification problems. Our empirical analysis mainly involved four medical
datasets crossing two different diseases and various clinical variables. Our main findings are: (i)
pertinent dimensionality reduction is crucial prior to combining clinical variables, demonstrated by

Figure 3. Visualization examples of CAMs on the ChestX-ray8 dataset with the inclusion of bounding box information regarding the
areas of interest. All the methods achieve correct classification prediction for the given images.

13
royalsocietypublishing.org/journal/rsos 

R. Soc. Open Sci. 12: 241222

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

17
 J

un
e 

20
25

 



the DA dimensionality reduction approach and our proposed feature fusion strategies for dimension-
reduced features and clinical variables; (ii) DA outperforms well-known techniques such as PCA by a
large margin owing to its ability of preserving more discriminatory information; (iii) the combination
of clinical variables with pixel-wise images reflects real-world clinical practice and is proved to be
beneficial for decision-making in the medical field; and (iv) the visualization through the developed
CAMs further validates that our proposed method indeed focuses on regions aligned with that of the
pathologist whereas other methods cannot. These findings contribute to the advancement of using
machine/deep learning schemes in healthcare applications.
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