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Abstract. The Wallcamera [I], developed at MIT CSAIL, has capti-
vated the public’s imagination. Here, we show that the key insight un-
derlying the Wallcamera is the same one that underpins the concept and
the prototype of differential imaging forensics (DIF), both of which were
validated and reported several years prior to the Wallcamera’s debut.
Rather than being the first to extract and amplify invisible signals—aka
latent evidence in the forensics context—ifrom wall reflections in a video,
or the first to propose activity recognition per se following that approach,
the Wallcamera’s actual innovation is achieving activity recognition at a
finer granularity than DIF demonstrated.

In addition to activity recognition, DIF as conceived has a number of
other applications in forensics, including 1) the recovery of a photogra-
pher’s personal identifiable information such as body width, height, and
even the color of their clothing, from a single photo, and 2) the detection
of image tampering and deepfake videos.

1 Introduction

It recently came to our attention that an interesting idea called the Wallcamera
(Sharma et al [I]) was proposed by a distinguished team at the Computer Science
and Artificial Intelligence Laboratory (CSAIL), MIT. Entitled ‘ What you can
learn by staring at a blank wall’ and published at a leading international venue
for computer vision, their work also captured the imagination of the public. For
example, it was featured by the Scientific American [2].

More than two years before the Wallcamera, we published a paper [3] entitled
‘ Differential Imaging Forensics’ (DIF) at arxiv.org across different technical
fields including Cryptography and Security (cs.CR); Computer Vision and Pat-
tern Recognition (cs.CV); and Multimedia (cs.MM).

The paper titles might suggest that these were entirely different research.
However, we were stunned by some major similarities between them. In this
article, we address a simple question: Is the Wallcamera a reinvention of DIF?
Our answer is both yes and no. On the one hand, the key ideas behind the
two papers were exactly the same, and the experimental settings were virtually
identical. On the other hand, it is fair to recognise that the Wallcamera achieved
a finer granularity of activity recognition than DIF did. However, unlike the
Wallcamera, DIF as conceived entails a lot more than activity recognition.
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2 Concepts and Results

2.1 DIF

The term differential imaging forensics (DIF) was first coined by Bourquard
and Yan [3] in 2019. Motivated by the simple question: ‘Given a single photo,
how can we determine who was behind the camera?’, this new area of research
had emerged even earlier, with preliminary but promising results [4] published
as early as 2017.

DIF entails groundbreaking forensic techniques to uncover evidence that is
readily available in an image or video footage but would otherwise remain faint
or invisible to a human observer. Specifically, it allows for the computational ex-
traction and amplification of visual evidence—such as dim reflections—created
by subtle interactions of light occurring inside a scene. This is achieved by con-
ducting a comparative analysis between an image of interest and an additional
reference baseline image, the latter being acquired under similar conditions, but
ensuring that potential individuals or objects whose evidence is to be uncovered
are absent from the scene. Bourquard and Yan [3] successfully demonstrated
the effectiveness of this differential-imaging paradigm through successful exper-
iments with both images and video footage.

The DIF methodology thus involves two stages. The first stage is the acqui-
sition of the reference baseline image, which complements the image of interest
from which visual evidence is to be retrieved. This acquisition stage is most
straightforward in video settings where all scene frames are acquired from the
same camera position and viewpoint. The second stage is differential image anal-
ysis, where the differences between the image (or video frame) of interest and the
corresponding reference baseline image (or frame) are extracted and amplified
computationally, thereby becoming perceptible to human observers.

Practical implementations of DIF are able to detect the presence or absence of
a person in a room, who is located outside the field of view (FoV) of the camera.
Figure [I] illustrates an experiment where DIF was applied to a video footage
acquired by a camera looking at a wall [3]. This experiment demonstrated that
DIF can provide specific information on an intruder, including biometrics such
as body height and width, and non-biometrics like the color of their clothing.
As far as the video camera and any bare human eyes were concerned, no details
from the intruder were perceived, just like what the Scientific American article
[2] vividly described years later. Moreover, this experiment clearly revealed when
the intruder was absent from the room, when he was present, and when he was
walking in the room. The experiment also provided information on the intruder’s
approximate locations throughout the relevant video frames.



Wallcamera: Reinventing the Wheel? 3

Camera
j__“::::::: ________ - Intruder
____________________ .

Fixed Tripod

Apartment

Fig. 1. The gist of DIF in a video-experiment setting similar to the Wallcamera’s,
reproduced here from Figure 3 in Bourquard and Yan [3] (published in 2019). (a)
Schematics of the scene setting with a camera pointed towards the wall. The space
between the wall and the camera is sufficient for the passage of an intruder in-between.
(b) Available scene frames (top row) and corresponding difference scene frames (bottom
row). From left to right: (1) the intruder stands outside the apartment with the door
closed, (2) the intruder has just entered the apartment, (3) the intruder approaches
a plastic white board, and (4) the intruder stands in front of the plastic-white-board
surface. All the video frames and contents thereof are best seen magnified in an e-copy.
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2.2 The Wallcamera

Sharma et al. [T] demonstrated that by filming a blank wall in a room as people
moved around inside, an observer outside the room, unable to see the people
directly, could determine the number of people present and their activities. The
proposed technique extracted weak signals created by the subtle impact of hu-
man bodies on the wall, which were imperceptible to the human eye, and then
amplified these signals. Neural networks trained with these signals could infer
whether zero, one, or two people were present and classify activities such as
walking, jumping, waving hands, crouching, or no activity (i.e., all human sub-
jects being static). This technique effectively turned a blank wall into a camera,
enabling the deduction of the number of people and their activities in the room
by observing the wall.

(a) Observed Image (b)-Mean subtracted
amplified image

frame 0 frame 5 frame 10 frame 15 frame 20
(¢) Sequence of frames from the amplified video

Fig. 2. The gist of the Wallcamera. Note: both this figure and the following caption are
reproduced from Figure 3 in Sharma et al [I] (published in 2021). (a) A representative
frame of the seemingly static input video. (b) A frame of the amplified residual video
after subtracting the mean frame reveals faint changes in illumination caused by motion
of the people. (¢) A sequence of frames shows the motion of these features.

The Wallcamera experiment shown in Figure [2] reproduced from Sharma
et al [I], illustrates the gist of their idea, explaining why it works. Figure 2(a)
shows the wall as appeared to a human observer. It would appear static to the
naked eye, due to the dominant contribution of ambient light to the light field
in the room. Similar to the bottom row of Figure 1(b), Figures 2(b) and 2(c)
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demonstrate the subtle impact created on the wall by the light bouncing off
those moving subjects in the room.

3 Comparisons and Discussions

In light of the results shown in Section [2] the DIF paper [3] was the first to
demonstrate the extraction and amplification of invisible signals—aka evidence
in its forensics context—from wall reflections in a video. The practical exper-
iment conducted in [3] also demonstrated the ability of DIF to perform some
activity recognition. In this section, we discuss some key similarities and differ-
ences between DIF and the Wallcamera.

3.1 Experiments: settings, configurations and cameras

We first look into the similarities and differences between the experiments in
DIF and the Wallcamera.

Several key aspects of the experiments conducted therein were similar. Am-
bient lighting was assumed in both DIF and Wallcamera experiments. Further-
more, the objects or humans of interest were always located outside of the FoV
of the camera, with no visible shadows thereof cast on the wall.

The techniques proposed in both papers required no prior knowledge of the
scene and no calibration. As described in Section the methods used to
extract and amplify the information of interest followed straightforward and
well-defined steps, making them generic and scene-independent. Although the
activity-recognition method developed for the Wallcamera was pre-trained on a
fixed set of scenes, it can be used on new scenes without any retraining.

Some differences were as follows. In terms of where the latent but tale-telling
signal (i.e., latent evidence in the forensic context) was found, the Wallcamera
considered walls only, at least in the experimental results reported thus far,
whereas DIF was applied to different types of physical surfaces [3]. Moreover,
the Wallcamera used a high-resolution camera (PointGrey Grasshopper 3, at
about US$1,200 as of 2024), whereas DIF experiments only involved an iPhone 6
camera as default configuration. According to the Scientific American piece [2], a
standard digital camera created too much background noise for the Wallcamera,
and the results based on smartphone cameras were even worse.

3.2 Non-line-of-sight (NLOS) aspect

In conventional image-acquisition settings, objects of interest are located in the
line of sight of the camera, so that the resulting image will contain them in its
FoV. By contrast, non-light-of-sight (NLOS) settings involve objects that are not
located in the direct line of sight of the camera. Instead, NLOS imaging exploits
indirect optical information on the objects, exploiting light that reaches the
camera via other paths through multiple scattering. Since the objects cannot be
imaged directly, the increased flexibility of NLOS settings comes at the cost of an
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additional numerical-reconstruction procedure, which also requires the scattered
light captured by the camera to contain enough relevant information on the
hidden scene.

NLOS imaging techniques have given rise to a growing body of literature,
and can be classified into active and passive methods. Active methods require
to interact with and probe the environment, for instance using lasers to illumi-
nate the hidden scene, thus allowing one to capture relevant information. By
contrast, passive NLOS methods do not probe the environment, and only use
camera sensors to capture the light information that is available in the default
scene configuration. The NLOS concept can be applied to non-visible electro-
magnetic wavelengths and also extends beyond optical wavelengths, including
other modalities such as WiFi or sound waves.

Observation plane

Camgera Hidden Scene

Fig. 3. Schematic setup of the Wallcamera, reproduced from Sharma et al [T] (i.e., its
Figure 2a).

As shown in Figure[3] the Wallcamera experiment considered a passive NLOS
setting, where the camera points towards an observation plane (i.e. the blank
wall) that is located behind an open door, the scene of interest being hidden
from the camera by a separating wall.

In contrast, the video experiment in DIF, as depicted schematically in Figure
1(a), did not involve a deliberately concealed scene and might not immediately
appear like a NLOS setting at first glance. However, during the entire DIF video
experiment, the human subject walked outside the camera’s FoV and thus re-
mained hidden from the camera’s perspective. This effectively makes the DIF
video setting a NLOS scenario as well.

Importantly, the light interaction between the human subject and the wall
was similar for both the Wallcamera and DIF experiments; so were the relative
geometrical arrangements of the human subject, the wall, and the camera. It
is worthwhile to emphasize that, while the aforementioned separating wall may
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affect the camera’s FoV, its location never interfered with the light interaction
between the blank wall and the human subject of interest, which thus remained
similar to the DIF setting in any case.

Furthermore, the Wallcamera work also involved experiments without the
separating wall (see Section 6.4 in Sharma et al [I]), in which case their setting
was the same as in our DIF experiment not only in essence, but also in actual
overall appearance, except that they sometimes involved more than one human
participants.

We note that this section provides an intriguing connection between DIF and
the NLOS research, and that this connection was not emphasised in Bourquard
and Yan [3]. However, a major reason for conducting our DIF video experiment
in this manner was simply to enable a controlled experiment that was both con-
venient and efficient. And all other application scenarios which we have conceived
for DIF do not have to involve NLOS imaging.

3.3 Signal extraction and amplification

The signal extraction and amplification method proposed in the Wallcamera [I],
while not exactly the same as the method used for DIF, shares several similarities
with it.

In both DIF [3] and the Wallcamera [I], an initial extraction step is carried
out to produce modified video frames whose content includes and isolates the
specific differential visual information related to the persons or objects of inter-
est to be recovered. In that regard, the Wallcamera [1] subtracts a unique frame,
which is obtained as the temporal average of the whole video, from every raw
frame of the video. When dealing with video data, the DIF paper involves a
similar subtraction operation using a reference frame, which is obtained as the
temporal average of several—though not all-—consecutive frames of the video
[3]. The DIF paper also contemplated the possibility to use refined versions of
that extraction step in further work, in which “temporal redundancy could be
better exploited, and difference-image information could also be extracted from
arbitrary (e.g., adjacent) frame pairs—as opposed to merely using the same ref-
erence image—to provide additional information”.

Following the extraction step described above, both DIF and the Wallcamera
involve what amounts to a final signal-amplification step. This step maximizes
the signal-to-noise ratio of the result, thus making it fit for visualization or fur-
ther analysis. In both works, the key operations that provide signal amplification
are signal averaging and contrast normalization.

In essence, the amplified images resulting from the above operations for the
Wallcamera are similar to the so-called difference images in the DIF context [3].
It is these difference images that contain the tale-telling signals. In both cases,
the key insight in extracting and amplifying invisible information from a video is
to subtract one same reference frame or an averaged reference frame from every
frame of interest to be analyzed, and then to use spatial filtering to amplify the
signal, thereby producing the difference images.



8 Bourquard & Yan

However, the specific implementation of these operations differ between both
works. In the Wallcamera [I], all images from the input video were first converted
to the logarithmic space of values prior to any processing. This logarithmic-
space conversion helped to equalize the magnitude of variations between light
and dark regions of the scene. Next, temporally constant intensity components
were removed by computing the temporal average of the video and subtracting
it from each frame. To minimize noise and maximize contrast, averaging was
then performed through spatial down-sampling in both horizontal and vertical
dimensions. The resulting values were re-scaled to the full range of RGB values
by multiplying them by a factor of 50 and adding a middle-gray base level to
make the negative values visible.

Next, an additional temporal correction, only used in the Wallcamera, was
applied to address periodic intensity sways. These fluctuations were attributed
by the authors to small discrepancies between the frame rate and the flickering
of lights at the AC frequency (60HZ). The corrections were made as follows.
First, the median light-intensity value was first computed for every video frame,
creating a global 1D curve that described the evolution of the average light
intensity as a function of time. Then, at each pixel position of the video, the local
temporal intensity variation across frames was projected onto the orthogonal
complement of this global curve, thus removing the effect of potential intensity
sways.

The final results obtained accordingly were fit for visualization, as shown in
Figs. [2(b) and 2(c).

In DIF [3], all operations were performed in the native linear space of values,
as opposed to what was done in the Wallcamera. The operations in DIF specific
for video data were as follows. First, a reference frame was created by averaging
all frames from a temporal sub-interval of the video during which no person or
object of interest was present in the scene. This differs from the full-video tem-
poral average that is generically used in the Wallcamera for subtraction. Next,
difference images were computed as the pixel-wise differences between every
video frame and the reference frame. Averaging of the resulting temporal images
was then performed through both spatial and temporal filtering. Specifically,
the difference video frames were spatially filtered with a 2D Gaussian filter, and
temporally filtered with a uniform temporal window. Following these filtering
operations, the contrast was normalized similarly as in the Wallcamera, except
that only the positive or negative values of the resulting difference frames were
retained before normalization. This was done to maximize contrast and achieve
optimal visualization of the extracted signals for DIF, as demonstrated by the
results in Figure [[[b).

3.4 Parameter estimation

Parameter estimation is a fundamental concept in inverse problems. It involves
deriving a physical model from a finite set of observations or measurements,
which may contain errors, and determining quantitative or categorical charac-
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teristics (i.e., parameters) that describe the objects of interest in the model,
based on the available data.

In terms of parameter estimation, the Wallcamera and DIF bear some similar-
ities in that 1) both achieved the retrieval of non-trivial scene-related parameters
via difference information, and 2) both relied on the same type of differential
information in nature. However, they used the differential information in distinct
ways, and they involved the estimation of distinct types of parameters.

The parameters of interest estimated in DIF were of the quantitative type:
essentially they were an intruder’s approximate locations over time. In effect,
these location estimates depicted his movement, his body information such as
height and width, and the color of his clothing. These parameters were directly
inferred visually from the difference images that DIF extracted. The joint spatio-
temporal filtering was a purpose-built design choice for this setting, delivering
high-quality results.

In the Wallcamera, the parameters of interest were mostly categorical: pa-
rameter estimation mostly focused on recognising different activity categories,
except for the determination of the number of people in a room.

The Wallcamera estimated the scene parameters via a post-processed version
of the extracted difference images, as opposed to directly exploiting them as such.
Specifically, the set of difference images (which were 3D data defined in two
spatial dimensions plus time) was projected into two 2D maps that summarize
the essential spatial dimensions of the motion in a separate manner: a horizontal
space-time plot and a vertical space-time plot.

While such space-time plots lack the direct visual interpretability that DIF
benefits from in terms of resolved spatial information, they offer some advan-
tages. First, they summarize spatio-temporal variations into a single 2D plot,
conveniently visualizing the presence of movement. Second, compared to a se-
ries of video frames, the dimensionally reduced information in these 2D plots
provides a compact and computationally efficient input for a learning model.

3.5 Machine learning

The methods used to estimate the parameters of interest from the extracted
difference-image data also differ. In the Wallcamera, two separate convolutional
neural networks (CNNs) were built for deducing the number of people, and for
activity recognition, respectively. These networks took the post-processed differ-
ence images, summarized into two 2D space-time plots as described above, as
input. These plots contained the amplified tale-telling signals in a dimensionally
reduced form.

In Bourquard and Yan [3], no neural networks were implemented to perform
activity recognition. However, they demonstrated that simple signal processing
could achieve similarly compelling results.

Finally, the difference images obtained as in DIF may also be used as input
to CNNs, with the potential to produce activity recognition results similar to
those in the Wallcamera. Bourquard and Yan [3] did envision the use of neural
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networks for boosting differential signal extraction and other capabilities, as
quoted in the following.

1. “more advanced algorithms could involve better noise-reduction techniques
and the use of machine learning, such as artificial neural networks, to iden-
tify specific evidence stemming from particular objects in a scene”

2. “Enhanced analysis capabilities would in turn allow to explore the applicabil-
ity of DIF to more complex scenarios and perhaps recover visual evidence in
cases where the objects of interest have less impact on the scene images”

4 Conclusions

Sharma et al [I] presented some interesting and innovative research. However,
their key insight was the same as that in our paper [3] published several years
earlier, which reported the invention of differential imaging forensics. Further-
more, there are other significant conceptual and methodological similarities be-
tween the two works. For example, both used a similar signal-extraction approach
to capture temporal differences between video frames, and a subsequent signal
amplification that applied spatial filtering to increase the signal-to-noise ratio.
Moreover, the experimental setups were nearly identical, both following a NLOS
setting where the camera was pointed towards a wall, and where the visual cues
of interest to be recovered were invisible to a human observer.

DIF was the first to propose and successfully demonstrate activity recognition
in such an experimental setup. The actual innovation of the Wallcamera was
activity recognition at a finer granularity than what DIF demonstrated. The
Wallcamera used convolutional neural networks. However, DIF only used simple
signal processing, without resorting to the power of deep learning.

Unfortunately, the Wallcamera [I] did not cite the prior art of Bourquard
and Yan [3], which was circulated via larxiv.org and shared with the same
community. The research on DIF was also presented in invited talks at some
high-profile institutions across the world, including Cambridge, TU Damsdat and
Aarhus, to name a few. On a positive note, the Wallcamera in a sense provided
an independent and valuable validation of the ideas and insights behind DIF,
although from a different perspective.

Deeply rooted in security and forensics, DIF entails more than a capability
for activity recognition. As detailed in our paper series documenting its invention
[3/15], DIF offers a range of additional forensic applications, e.g. the recovery of
a photographer’s personal identifiable information from a single photo, the de-
tection of image tampering, and the mitigation of deepfakes. Though compelling,
activity recognition merely constitutes a single use case which we initially en-
visaged and demonstrated. DIF deserves due credit and attention in computer
vision, security, forensics and beyond.
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Postscripts

During the finalization of this manuscript, we came across Medin et al [6], en-
titled ‘Can Shadows Reveal Biometric Information?’, a newer paper from the
Wallcamera team. We note some interesting parallels and differences between
DIF [3] and Medin et al [6] as follows.

The primary aim of DIF was to uncover both biometrics (such as body height
and width) and non-biometric characteristics (such as clothing color) based on
the subtle and invisible visual impacts created in the scene by human subjects
outside of the FoV. In a similar vein, a main contribution of Medin et al [6] was,
as quoted, “a timely biometric leakage question, which [they| formulate as a novel
NLOS imaging problem of extracting an individual’s identity from subtle, indirect
shadow phenomena". They defined biometric information as “any information
that might be used to reveal an individual’s identity, in whole or in part."

However, DIF is sufficiently generic to work with visual impacts beyond just
shadows. These impacts may originate from various types of light interactions
involving the scene and the object of interest, including absorption (as with
shadows), reflection, or other forms of light interaction, as long as enough infor-
mation is captured by the difference images that DIF recovers. Accordingly, in
the context of DIF, we define such a generic set of visual impacts as an impact
profile, which encompasses visual impacts created by any type of light interac-
tion or setup. The DIF video experiment constituted an explicit NLOS setting
where information from a human subject could be extracted successfully from
the impact profile.

There are two additional differences in origin and characteristics between the
impact profile considered in DIF [3] and the shadow in Medin et al. [6]. First,
the impact profile in DIF was cast directly by the human subject. By contrast,
Medin et al. [6] introduced an additional layer of indirection. Specifically, their
setup involved an added occluder in the scene, which sit between the wall and
the human subject that was outside of the FoV. The shadow of the occluder was
cast on the wall, created by the light reflecting from the human face. The shadow
considered in their setup was thus not cast directly by the human subject, but by
the occluder. Since the light creating the shadow was reflected from the human
subject, the shadow’s properties were subtly modulated by the human face.
Medin et al. aimed to recover facial information from this modulated shadow.

Second, in DIF studies, the impact profile was usually invisible to the human
eye, whereas the shadow examined by Medin et al. [6] was clearly visible. How-
ever, most of the biometric information detected by Medin et al. [6] was only
present in the penumbra regions of the shadow, while the umbra regions carried
little such information.

Overall, there are interesting and clear parallels between DIF and the work
of Medin et al [6] — they bear some similarities, and they also differ substantially.
Like Sharma et al [I], Medin et al [6] did not cite Bourquard and Yan [3].
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