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Efficient Deep Learning Inference at the Edge

by Sulaiman Sadiq

Deep Learning has found success in a variety of fields. At the same time, the number of

connected Internet of Things (IoT) devices is seeing exponential growth. This has lead

to the development of the field of TinyML which aims to perform deep learning infer-

ence locally on the resource constrained IoT devices. Realising this objective requires

optimisation across the inference stack with design of efficient algorithms and infer-

ence systems. In the work carried out in this thesis, we explore techniques for efficient

model design and deployment for various complexity constraints that are imposed by

the resource constraints of the devices or the application scenarios.

The first contribution of this work is a gradient based approach to derive models of

varying complexity using neural architecture search (NAS). This is achieved by com-

bining multi-objective optimisation with NAS where we optimise the complexity of

the model in addition to its quality. This method derives models of varying complexity

without the need for manual heuristics or expensive hit and trial.

The second contribution of our work studies how inference software can effectively

utilise device resources to enable design and deployment of efficient models. Whereas

prior works typically focus on performing inference within internal memory constraints,

we develop the TinyOps inference framework for MCUs which accelerates inference

from external memories. TinyOps significantly lifts the ceiling of accuracy achievable

with up to 1.4x-2.5x lower inference latency than previous approaches.

The final contribution of this work is an in-depth analysis of DNN deployment on

MCUs to derive heuristics for model design and how inference can be adapted at run-

time on MCUs for varying latency constraints. We study limitations of existing ap-

proaches and benchmark throughput of low-level operations on MCUs. Using our

heuristics, we derive models which achieve state-of-the-art TinyML ImageNet classifi-

cation when considering accuracy, latency and energy efficiency. The heuristics are also

utilised in a super-network based approach to derive multiple models for different la-

tency constraints. We show how an efficient accuracy-latency trade-off can be achieved

at run-time with the TinyOps inference framework.
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Chapter 1

Introduction

Deep Neural Networks (DNNs) are a class of machine learning models that have re-

cently found success in a variety of applications where there is an abundance of labelled

data. The first major example of this can be found with the convolutional neural net-

work (CNN), AlexNet (Krizhevsky et al., 2012), which achieved 10% higher accuracy

than the second best entry in the 2012 ImageNet Large Scale Visual Recognition Chal-

lenge (ILSVRC) (Russakovsky et al., 2015). In part, this success was due to the usage of

Graphical Processing Units, (GPUs), whose highly parallel architecture was well suited

for efficient implementation of the Neural Network (NN) workload, composed of large

linear algebraic operations (Chetlur et al., 2014; Jorda et al., 2019). The significant gains

in performance achieved in ILSVRC 2012 initiated tremendous research effort into de-

velopment of DNNs for a number of tasks. Since then, a significant amount of progress

has been made and a variety of architectures including CNNs (He et al., 2016), AutoEn-

coders (Bank et al., 2023), LSTMs (Greff et al., 2016), RNNs (Salehinejad et al., 2017) and

Transformers (Lin et al., 2022) have been proposed for a number of different tasks in-

cluding image classification (Deng et al., 2009), natural language understanding (Hin-

ton et al., 2012), machine translation (Vaswani et al., 2017), and gameplay (Silver et al.,

2016; Vinyals et al., 2019) amongst others.

A trend that can be observed over the years, is that to achieve better performance across

tasks these models have constantly been increasing in size and computational complex-

ity (Villalobos et al., 2022). To keep up with the computational demands of these work-

loads, increasingly powerful GPUs have been developed over the past decade which

offer an order of magnitude higher core count and memory size (Jeon et al., 2021; Dally

et al., 2021), in addition to the development of deep learning accelerators such as Tensor

Processing Units (TPUs) and Neural Processing Units (NPUs) (Silvano et al., 2023).

At the same time, with the proliferation of mobile phones, smart wearables and other

sensor devices, low power Internet of Things (IoT) devices have been increasingly per-

vading society with recent forecasts estimating that there will be 41.6 billion connected
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IoT devices by 2025 (Insights, 2022). Coupled with the success of DNNs there has been

tremendous interest, in application of DNNs in areas such as smart cities (Zanella et al.,

2014), health monitoring (Zazzaro et al., 2021; Gibbs et al., 2023) and industrial sens-

ing (Khalil et al., 2021). However, the resource constrained IoT devices (Lin et al., 2020;

Liberis et al., 2021; Banbury et al., 2021; Fedorov et al., 2022) have significantly different

architectures and characteristics compared to traditional GPUs which DNN workloads

are typically designed for. Whereas GPUs have GBs of memory, TBs or PBs of storage

and thousands of cores for parallel processing, IoT devices which typically host MCUs

have memory and storage in the MB range and a singular core for data processing (Lin

et al., 2020). Similarly, these devices are often battery powered and deployed in the

wild where they must adapt to the environment whilst adhering to real-time latency

and energy constraints (Hong et al., 2020; Gog et al., 2022).

These resource constraints make it challenging to run compute and memory intensive

DNN workloads onboard the edge device. Due to this, applications of DNNs in the

IoT typically rely on the cloud computing paradigm (Samie et al., 2019) which utilises

the low power IoT device itself for data collection and preprocessing with the major

number crunching and processing being performed on the cloud providing GPU ser-

vices. However, this is undesirable for a number of reasons including privacy, secu-

rity, latency and cost associated with cloud based solutions (Premsankar et al., 2018).

These limitations of cloud based solutions have lead to the development of the field of

TinyML which investigates how data can be processed locally within the resource con-

straints of the MCU based edge devices. TinyML encompasses a vast array of specialist

research looking to optimise the design and deployment of DNNs across a number of

dimensions to optimise the accuracy, latency and energy efficiency within the resource

constraints of the deployment platforms.

1.1 Research Justification

Manual

Model Design

Automated Structural

Model Optimisation

Quantisation Framework

Model Deployment

HardwareGradient

Model Training

Evolution

FIGURE 1.1: Inference Components for Deep Neural Networks (DNN)

The research conducted in the field of TinyML or more broadly efficient machine learn-

ing can be approximately categorised according to the inference components shown in

Figure 1.1. While each of these components can be individually optimised for efficient

inference, quite often these components are co-designed with each other. For exam-

ple, models are often trained with specialised pruning or quantisation-aware training

recipes which enables effective model optimisation strategies. In certain cases, such

as where there is limited support for low-precision data types or sparse computation,
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components can also be removed from the inference stack. We note that the compo-

nents in inference do not have to be applied in a linear fashion, quite often iterative

training methods are used where a feedback loop is established between the optimi-

sation strategy and the training algorithm. Similar loops are often also established be-

tween the model deployment and design components. One of the fundamental compo-

nents in inference is designing the model for a specific task, such as a CNN for an image

processing task. Within model design there are two major approaches adopted. The

traditional approach adopted for the default GPU platforms was to manually design

models by selecting the hyper-parameters of the network such as depth, layer types,

kernel sizes, filter sizes, etc to achieve high accuracy while meeting computational or

memory constraints (Krizhevsky et al., 2012; Iandola et al., 2017; Sandler et al., 2018;

Howard et al., 2017). These works rely on different heuristics for design of models and

explore the trade-off between different dimensions of the model such as accuracy, la-

tency, complexity and memory footprint. However, the applicability of these heuristics

can vary depending on the underlying platform which often make a model designed

for one platform unsuitable for deployment on another (Cai et al., 2020; Dudziak et al.,

2020). As edge devices have such different characteristics, there is a need for study of

the devices to derive efficient heuristics for the model design process.

A limitation of the manual approach to model design is that it is an involved, time

consuming and costly process due to hit and trial involved in developing and trying

different heuristics. Additionally, it requires expert human knowledge to apply these

heuristics in the design process which is not always available. To alleviate these lim-

itations, Neural Architecture Search (NAS) was proposed to automate the design of

DNNs without human intervention in the process. These works (Zoph and Le, 2017;

Liu et al., 2018; Real et al., 2019; Tan et al., 2019) utilise reinforcement learning, evo-

lutionary optimisation or gradient based search to derive architectures from a given

search space. However, these works focus on deriving the architectures with the high-

est performing accuracy from the search space. To meet complexity requirements, these

models use manual heuristics to simplify a model derived from the search space (Cai

et al., 2018; Tan et al., 2019) or simplify the entire search space (Wu et al., 2019). For bat-

tery powered edge devices, an accuracy-complexity trade-off is often required as these

devices must be able to adapt to changing latency, compute and energy constraints

(Xu et al., 2019; Hong et al., 2020; Navardi and Mohsenin, 2023). For such scenarios, it

would be desirable to have efficient methods that can explore the accuracy and com-

plexity trade-off in an automated manner. Such approaches would also benefit by using

heuristics used in manual model design to inform search space design.

The model deployment scenario is closely related to the model design as the actual per-

formance achieved by any given model depends on the characteristics of target hard-

ware platforms and the ability of the inference framework to leverage the compute

capability of the hardware. The field of TinyML typically considers platforms with less



4 Chapter 1. Introduction

than 1W power consumption due to the deployment scenarios where the battery op-

erated devices are energy constrained. DSPs and MCUs are good candidate platforms

in the field due to their energy efficiency and instruction sets which support multiply,

add or multiply accumulate operations frequently encountered in DNN workloads.

MLOps tools play a crucial role in development and deployment of large models in

TinyML. These tools enable efficient management of different stages of the machine

learning (ML) life-cycle including training, optimisation and inference in a collabo-

rative, scalable and compliant manner. During training, they handle data version-

ing, experiment tracking, distributed resource orchestration, and monitoring, allowing

teams to efficiently train massive models across multiple GPUs or nodes. For inference,

MLOps platforms enable seamless and optimised model deployment with efficient in-

ference frameworks, and monitor production models for drift or performance degrada-

tion. By integrating these capabilities into cohesive pipelines, MLOps reduces manual

overhead, minimizes errors, and accelerates the end-to-end machine learning lifecycle.

In the field of TinyML, the inference framework provides a light-weight run-time en-

vironment suitable for resource constrained edge devices that is typically responsible

for loading a model, memory management, interpreting the inference graph, and low-

level kernels which perform primitive operations (e.g. conv, matmul, add) by interfac-

ing with the hardware through the instruction set. As such, it is important to optimise

the performance of the inference framework to enable high throughput inference. Prior

work to optimise inference in deployment has focused on generating light-weight code

(Lin et al., 2020, 2021, 2022), developing efficient kernels (Lai et al., 2018; Rusci et al.,

2018, 2020a) and graph optimisations (Liberis and Lane, 2020, 2022) to lower the mem-

ory footprint and latency of deployment. These approaches allow a larger model to

be deployed within a smaller memory footprint to achieve higher accuracy and lower

latency. While these approaches have been successful to varying degrees, a limitation

of these works is that they assume a simplified architecture of the devices which con-

sists of a CPU Core coupled with internal storage and memory. This assumption limits

the size of the model design space and the achievable performance. On edge devices,

where resources are already limited, it would be beneficial to develop inference frame-

works that efficiently utilise the available resources such as external memory interfaces

to extract the maximum performance from the devices.

1.2 Research Questions

Following the research justifications, in the work carried out in this research we look at

how efficient inference across the accuracy complexity pareto frontier can be performed

on edge devices. To study this we look at optimisations across the inference stack

to enable efficient model design and deployment. The research addresses four main

research questions
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RQ1. How can we derive models of varying complexity using automated methods

according to varying requirements?

Several approaches have been proposed to derive models in an automated man-

ner using the framework of Neural Architecture Search (NAS). However, prior

works focused on deriving models with the highest accuracy and using manual

heuristics to modify the models to meet complexity requirements. This research

question aims to investigate how we can derive models across the accuracy-

complexity pareto frontier directly from the search space without any manual

intervention in the process. This question is addressed in Chapter 3 and Chap-

ter 5.

RQ2. How can inference software efficiently utilise external memories to enable de-

sign and deployment of efficient models? The majority of prior works have

focused on designing models within the constraints of internal storage and mem-

ory on the device which limits the achievable performance. In this question we

investigate how external memory interfaces available on the platform can be ef-

fectively utilised by inference frameworks to expand the design space of efficient

DNNs on MCUs and achieve better performance. This question is addressed in

Chapter 4.

RQ3. What model design heuristics can we draw from study and analysis of DNN

deployment on edge devices at the micro-architecture level to inform efficient

model and search space design? The design of models using manual or au-

tomated search involves using heuristics to design either the search space for

automated methods or the model definition itself for manual methods. While

prior works have studied the computational complexity of DNNs at a model

level granularity or for different hardware platforms, this research question fo-

cuses on performing an in-depth analysis of DNN deployment on MCUs at the

micro-architecture level. This is addressed in Chapter 5.

RQ4. How can we adapt inference at run-time to efficiently trade-off between ac-

curacy and latency on edge devices? Edge devices have to adhere to real-time

latency constraints in order to meet deadlines imposed by the application or en-

vironment. In the research question, we study how an application can efficiently

trade-off the accuracy of the model with latency at run-time to meet latency con-

straints varying in real-time. This research question is addressed in Chapter 5.

1.3 Research Contributions

In addressing the research questions the major contributions made in this thesis are

visualised in Figure 1.2. The contributions listed below make optimisations across the
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FIGURE 1.2: Overview of Research Contributions

inference stack including design of efficient models and inference software to achieve

high performance on the accuracy-latency pareto frontier.

C1. An efficient gradient based search algorithm to automatically derive models of

varying complexity.

While prior works utilised automated neural architecture search to derive archi-

tectures with high accuracy, we reframe the problem as a multi-objective opti-

misation problem to trade-off the accuracy and complexity. We formulated a

closed form differentiable expression for the computational complexity of can-

didate models in the search space and successfully navigate the search space via

gradient descent to derive models of varying complexity where the trade-off was

controlled by a single hyper-parameter. This work directly addresses RQ1 in

Chapter 3 and was published in the Neural Information Processing and Systems

(NeurIPS) Machine Learning for Systems workshop (Sadiq et al., 2020).

C2. The TinyOps inference framework that effectively utilises external memories

on MCUs to open a new efficient design space for MCUs and speed up infer-

ence of large models in external memory by up to 2.5x to set the state of the art

in TinyML ImageNet classification.

We study MCU architectures and analysed their capabilities in addition to how
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current inference frameworks deploy DNNs onto MCUs. We highlight the limita-

tions of using external memories with current inference frameworks and propose

a partitioning and DMA based overlaying framework for MCU devices that com-

bines advantages of external memory (size) and internal memory (speed) to open

a new design space for MCUs which achieves state of the art ImageNet classifica-

tion accuracy in TinyML. This work is reported in Chapter 4 and addresses RQ2.

Initial findings were published at the Computer Vision and Pattern Recognition

(CVPR), Efficient Computer Vision (ECV) workshop (Sadiq et al., 2022), and with

incremental improvements in the IEEE Internet of Things Journal (IoTJ) (Sadiq

et al., 2023). Additionally, this work was granted a US Patent (Sadiq et al., 2024)

filed in collaboration with the industrial partner for this project, ARM.

C3. We derive novel design heuristics which are utilised to design efficient CNNs

across the accuracy-latency pareto frontier on MCUs which achieve state-of-

the-art ImageNet performance.

We performed an in-depth analysis of DNN deployment on MCUs at the micro-

architecture level to derive heuristics and insights into model design for MCUs.

We show that the internal memory design space used by prior works yields sub-

optimal accuracy and latency. Further, we study the structure of state of the art

models and throughput of low-level candidate operations (Conv, DepConv) to

motivate model design for MCUs. Using insights from our latency analysis, we

use efficient operations to derive models across the accuracy-latency pareto fron-

tier to set the state-of-the-art in ImageNet classification. This work discussed in

Chapter 5, addresses RQ3 with contributions published in IEEE IoTJ (Sadiq et al.,

2023).

C4. We propose a supernetwork based neural architecture search method to derive

models of varying complexity and an efficient framework to deploy and switch

between the models based on latency constraints in real-time with zero switch-

ing overhead.

We propose a framework for how an accuracy-latency trade-off can be realised on

MCUs for applications with real-time and varying latency constraints. We pro-

pose a light-weight super-network based NAS architecture with the search space

motivated by our analysis in Chapter 5. We derive multiple models for a number

of latency constraints and show that accuracy-latency trade-off can be achieved

with zero-switching time at run-time using the TinyOps inference framework de-

veloped in Chapter 4. This work addresses RQ4 and is reported in Chapter 5.

1.4 Research Output

The research described in this thesis appears in the following publications
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• Sulaiman Sadiq, Partha Maji, Jonathan Hare, and Geoff Merrett. DEff-Arts: Dif-

ferentiable Efficient Architecture Search. In Neural Information Processing Systems

Workshop on Machine Learning for Systems, 2020

• Sulaiman Sadiq, Jonathon Hare, Partha Maji, Simon Craske, and Geoff Merrett.

Tinyops: Imagenet scale deep learning on microcontrollers. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition Workshop on Efficient

Deep Learning for Computer Vision, 2022

• Sulaiman Sadiq, Jonathon Hare, Simon Craske, Partha Maji, and Geoff Merrett.

Enabling ImageNet-scale deep learning on MCUs for accurate and efficient infer-

ence. In IEEE Internet of Things Journal, 2023

Part of the research performed in this thesis was also granted a US patent, which was

filed in collaboration with the industrial partner for this research, ARM Ltd.

• Sulaiman Sadiq, Jonathon Hare, Geoff Merrett, Partha Maji and Simon Craske.

Neural Network Memory Configuration. US Patent App. 17/813,396, 2024

1.5 Thesis Outline

An overview of the research carried out in this thesis is shown in Figure 1.3. As shown,

we make a number of contributions to the components of the inference stack involving

efficient model design and deployment. The diagram also indicates which inference

component each of the research questions (RQ1-4) and corresponding contributions

are related to. A mapping of the contributions to each of the chapters is also shown.

The remainder of this thesis is organised as follows

Chapter 2 begins by providing relevant background on design and deployment of

CNNs. This includes model design through manual and automated methods, model

optimisation techniques in addition to an overview of the hardware and inference

frameworks used in deployment of the models. The limitations of the approaches

adopted are also discussed.

Chapter 3 focused on efficient model design using automated methods and explores

how we can derive models of varying complexity using gradient based NAS. We desribe

DEff-ARTS, which utilises the machinery of DARTS (Liu et al., 2019) discussed in Sec-

tion 2.2.1.3, to derive architectures of varying complexity. We describe our formulation

of the problem as a multi-objective optimisation problem and how we combine the sub-

objectives to derive models in an automated manner. This is followed by experimental

evaluation of the proposed NAS algorithm.
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FIGURE 1.3: Overview of Thesis Structure with RQ1-4 representing research questions
and C1-4 representing contributions of the research

Chapter 4 presents the TinyOps framework developed to enable efficient model de-

ployment on MCU platforms. We discuss the limitations of prior inference frameworks

which do not effectively utilise the memory hierarchy and how this limits the perfor-

mance achievable on MCU platforms. We describe how TinyOps employs a partition-

ing and overlaying scheme to combine the advantages of size and speed of external

and internal memory. This is followed by experimental results to demonstrate how

TinyOps lifts the ceiling of performance achievable on MCU platforms.

Chapter 5 describes our in-depth analysis of DNN deployment on MCU platforms at

the micro-architecture level and derives heuristics to design efficient models for vary-

ing latency constraints. We show that operation agnostic approaches that focus on

designing models within size constraints of fast internal memory suffer from low ac-

curacy and high inference latency. We utilise the derived heuristics to propose a light-

weight NAS approach to derive models of varying complexity. We further show how

the inference can be adapted at run-time to meet varying real-time latency constraints.

Finally, we perform experimental results to demonstrate the performance gained by

using the design heuristics to derive models.
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Finally, Chapter 6 concludes the thesis by summarising the contributions made by the

work carried out in this thesis. Further, we discuss the open research challenges in the

field and future avenues of work that can be explored for further performance gains on

resource constrained devices.
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Chapter 2

Background and Related Work

This chapter provides background and a review of current literature relevant to the

work carried out in this thesis. In Section 2.1, we begin by discussing the Convolu-

tional Neural Network (CNN) architecture and its building blocks, used extensively

in deep learning for image processing and throughout this thesis. This is followed by

prior work into efficient model design including static and dynamic neural networks

derived through manual or automated methods in Section 5.1. In this section, we delve

into deeper detail of the DARTS (Liu et al., 2018) algorithm, as we utilise this approach

in Chapter 3. Next, in Section 2.3, we discuss approaches that are utilised in optimising

a given model for deployment including pruning and quantisation approaches. We

provide deeper detail for linear quantisation schemes as these are used on MCUs and

are utilised in Chapter 4 and Chapter 5. Finally, in Section 2.4, we discuss the character-

istics of the hardware considered in this thesis, in addition to the inference frameworks

and kernels used for the hardware platforms.

2.1 Convolutional Neural Networks

A number of different DNN architectures have been proposed for a variety of tasks. In

this thesis, we focus on CNN architectures which are widely used for image based tasks

including image classification, object detection and segmentation. A multi-layered

CNN model sequentially performs operations on an input to produce an output rep-

resentation. These operations are typically parametrised by some weights that can

be learned by training the neural network. The operations that are typically used in

constructing a neural network include operations such as convolutions, depthwise-

separable convolutions, fully connected layers and activation functions. In a multi-

layered model, these operations are also referred to as layers of the model.
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2.1.1 Convolutional Layers

One of the main building blocks of CNNs is the convolution layer. These layers are

applied to an input representation of size N × H × W × Cin, where N is the batch size,

and H, W and C are the height, width and number of channels of the representation. To

apply a convolution layer to an intermediate representation, a filter of size K × K with

Cin input channels is convolved with the input representation as shown in Figure 2.1

to produce one output channel of the output representation. To produce an output

representation with Cout channels, Cout filters are applied to the input representation.

The resulting output representations of convolving Cout filters with the input represen-

tation are then concatenated together to produce the complete output representation

with dimensions N × H × W × Cout.

H

W

Cin

Cin

K

K

H

W

Cout

x Cout

FIGURE 2.1: Convolution Layer

Convolutions are compute intensive operations where the computation can be calcu-

lated as below (K2)× Cin × Hout × Wout × Cout. Similarly, the parameters in a convolu-

tion layer can be noted as (K2)× Cin × Cout.

2.1.2 Depthwise Separable Convolutions

Depth-wise separable convolutions were proposed as a light-weight alternative to con-

volution operations. Depth-wise separable convolutions are applied in two stages

where the first stage is a grouped convolution and the second part is a pointwise con-

volution.

Grouped and Depthwise Convolution In a grouped convolution the channels of a

filter and input representation are separated into multiple groups where each group

is performed as a regular convolution with the outputs being concatenated together

in the channel dimension. A common approach employed is to have as many groups

as there are channels in the filter or input representation and set the channels in the

output equal to the number of groups. In this specific case, referred to as depthwise

convolutions, each of the Cin channels of the input representation is independently
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convolved with a K × K kernel with the resulting outputs being concatenated together

to produce an output with Cout = Cin channels as shown in Figure 2.2

The computation performed by a depthwise convolution can be computed as K2 ×

Hout × Wout × Cin with the parameters equal to K2 × Cin.

Pointwise Convolution A pointwise convolution is then applied to project the repre-

sentation to the number of output channels, Cout. This is performed as a regular convo-

lution with Cout filters which have unit kernel size. In this stage the computation and

number of parameters can be calculated as H × W × Cin × Cout and Cin × Cout respec-

tively. The application of a depth-wise separable convolution consisting of a grouped

convolution followed by a pointwise convolution is shown in Figure 2.2.

H
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Cin

K

K H

W

H

W

Cin

Concatenate

H

W

Cin

1

1

Grouped

(Depthwise)

Convolution

Pointwise

Convolution

FIGURE 2.2: Depthwise Separable Convolution. Adapted from Pandey (2024).

In total the computation for a depth-wise separable convolution comes out to be K2 ×

Hout × Wout × Cin + H × W × Cin × Cout with the parameters equal to K2 × Cin + Cin ×

Cout. Depthwise separable convolution are more parameter and compute efficient com-

pared to vanilla convolutions.

2.2 Model Design

A number of approaches have been adopted to design efficient CNNs. These ap-

proaches aim to optimise the quality and efficiency of a model. The quality of a model

would be indicated by the predictive performance of the model and measured with



14 Chapter 2. Background and Related Work

metrics such as the accuracy, precision, recall. The efficiency would include metrics

such as the parameter count, memory usage, computational complexity or latency. For

any application, a practitioner would want the quality to be as high as possible for the

best predictions. On the other hand, deployment on edge devices requires models to be

designed within certain constraints of the hardware or application such as the memory

or latency which requires increasing the efficiency of the model.

In practice, these two objectives to be optimised in CNN design are often conflicting

and optimising one usually results in degradation of the other. As such, the objective

of model design becomes to find a model that is pareto optimal when considering our

quality and efficiency metrics. For applications that need to meet varying complexity

constraints, the pareto frontier can be traversed using static or dynamic approaches.

2.2.1 Static Neural Networks

Static Neural Networks have a fixed structure and weights during inference and would

represent a single point on the pareto frontier. Meeting multiple latency constraints in

this manner requires designing multiple models according to requirements.

2.2.1.1 Manual Design

The traditional approach to developing efficient models relied on using manual heuris-

tics to reduce the size and computational complexity. Szegedy et al. (2015) modified the

number of filters, kernel sizes and depth via hit and trial to reduce the latency of infer-

ence while retaining accuracy. Iandola et al. (2017) developed CNNs which extensively

utilised 1 × 1 convolutions to reduce the parameter count of CNNs. Similarly, group-

wise convolutions and depth-wise separable convolutions have been utilised in the

design of CNNs to reduce the parameters and computational complexity (Zhang et al.,

2018; Sandler et al., 2018; Howard et al., 2019). Howard et al. (2017), further proposed

using two global hyper-parameters, a width and resolution multiplier to reduce the

input image size and channels in convolution layers for a reduction in model size and

complexity. Tan and Le (2019) added depth as an extra hyper-parameter and proposed

a compound scaling rule to uniformly scale width, resolution and depth according to

resource budgets. We note that these approaches often develop heuristics in a platform

agnostic manner, or for more popular platforms such as mobiles or GPUs which would

not necessarily carry over to MCUs. A limitation with manually designing models is

the requirement of human-expert knowledge in selecting the various hyper-parameters

of the model. Additionally, the hit and trial involved is a tedious process that requires

significant compute resources.
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2.2.1.2 Neural Architecture Search

Neural Architecture Search (NAS) has emerged as a promising direction to bypass the

challenges of manually designing models. NAS approaches remove the human out of

the loop and automate the hit and trial process of sampling, evaluating and deriving

architectures. A NAS algorithm is typically built from three main components which

are the search space, the objective to maximise and the search method. Combining

the three, models are derived by navigating the search space with a given method and

finding the model that maximises the objective.

Search Space: The search space is defined to contain all the candidate architectures

that could be evaluated during the search process. The size of the search space is de-

fined by the degrees of freedom that are available in the model structure being de-

rived. This would include the type of layer, hyper-parameters (e.g. channels, kernel

size, stride) and the connectivity between layers.

In an extreme case, the most flexible search space could be represented as an arbitrary

number of nodes in a graph which were freely assigned any layer type and connectivity.

However, this would yield an extremely large search space that would be difficult to

navigate.

As such, the majority of works constrain the search space using heuristics derived from

manual design of models. A common method adopted is for the search space to resem-

ble manually derived models (Cai et al., 2018, 2020; Banbury et al., 2021). In these

cases, the search space can be seen as mutations to the base model architecture, which

can modify the channel numbers, or kernel sizes but not the layer types. We note that

the heuristics utilised in designing the search space are typically derived in a platform

agnostic manner or for mobile or GPU platforms (Howard et al., 2019; Lin et al., 2020;

Banbury et al., 2021).

Another commonly adopted approach is to search for the architecture of smaller blocks

or cells (Shu et al., 2020; Ying et al., 2019; Mellor et al., 2021). This reduces the size of

the search space to make the process tractable. After a cell has been derived, it is then

stacked a number of times to produce a final model.

Search Method: The hit and trial approach of manually designing models can be

thought of as manually traversing the search space guided by heuristics applied from

human knowledge of CNNs. This process is automated in NAS algorithms as an opti-

misation problem where the architecture is derived from the search space by maximis-

ing an objective.
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Gradient based optimisation is a commonly used approach (Liu et al., 2018; Cai et al.,

2018; Xie et al., 2019; Xu et al., 2020) which employs a differentiable relaxation over

the categorical selection of candidate operations to jointly learn the architecture and its

weights.

Reinforcement Learning has also been used where a controller is trained to emit an

architecture configuration using the objective as a reward signal (Zoph and Le, 2017;

Zoph et al., 2018; Pham et al., 2018).

Similarly, evolutionary optimisation has been adopted where the architecture is repre-

sented as a genotype in a population (Real et al., 2017, 2019; Sun et al., 2019). During

the search, each candidate in the population is trained and evaluated against the fitness

criteria after which the next generation of candidates can be produced using a selection

strategy such as tournament selection (Blickle, 2000).

Objective: The earlier approaches in NAS typically only optimised the quality metric

of accuracy or the differentiable cross-entropy loss (Liu et al., 2018; Zoph et al., 2018;

Real et al., 2019) in the search. While these approaches, were able to derive architectures

with competitive accuracy, they typically suffered from high computational complexity

as the objective did not account for the efficiency of the architecture. Subsequent works

proposed to optimise the complexity of the architectures in addition to its predictive

quality to derive efficient models. These approaches achieve the same accuracy with

lower complexity as the objective is able to differentiate between models in the search

space with the same quality but different efficiency.

However, these approaches do not explore an accuracy latency trade-off in an auto-

mated manner. After deriving a performant base model, these approaches typically

scale the depth, width or input resolution of the model to meet varying efficiency re-

quirements of applications (Tan et al., 2019; Wu et al., 2019; Cai et al., 2018). Later works

dealt with this shortcoming by optimising the efficiency to search for models across the

pareto frontier (Cai et al., 2020; Banbury et al., 2021).

Specialist works in TinyML quite often include the memory usage and model size in

the objective to fit models within internal storage and memory constraints (Fedorov

et al., 2019; Lin et al., 2020, 2021; Banbury et al., 2021; Liberis et al., 2021; Fedorov et al.,

2022).

Approximations: The quality of the candidate model would ideally be measured as

the accuracy of the trained model on the validation data. However, training sampled

candidate models to completion in the search process becomes prohibitively expensive

with such approaches requiring up to 40,000 GPU hours (Real et al., 2017; Zoph et al.,
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2018; Cai et al., 2020). To alleviate this, search algorithms often take approximations to

reduce the computational cost.

A common approach adopted is to train the candidate architectures for a limited num-

ber of epochs with shared weights to reduce training time (Pham et al., 2018). Simi-

larly, the search is often carried out using lower input resolutions or on a smaller proxy

dataset, with the model then being transferred to larger datasets (Zoph et al., 2018; Real

et al., 2019; Lin et al., 2020). To avoid the computational cost of evaluating numerous

candidate models on the validation dataset which can also be quite large, accuracy

predictors are also utilised for evaluating models (Cai et al., 2020; Dudziak et al., 2020).

In a similar manner, the computational complexity is also often estimated using the

MACs or latency predictors (Cai et al., 2020; Dudziak et al., 2020) as measuring on-

device latency for all target platforms and large search spaces with upto 1.15 × 10152

candidate architectures (Liberis et al., 2021) can become infeasible.

Early works in NAS typically jointly trained and navigated the search space to derive a

model (Zoph et al., 2018; Cai et al., 2018; Real et al., 2019; Lin et al., 2020). This approach

had the limitation that a single search required training the entire search space and

deriving multiple models required training the search space from scratch.

To address this challenge, super-network based approaches have been used where the

training of the search space, i.e. the super-network, is decoupled from the search (Cai

et al., 2020; Wang et al., 2021a,b). In these approaches, a super-network is initialised

which contains all the candidate architectures. The super-network is first trained with

a specialised training strategy that trains candidate architectures. Once the training is

complete, the search can be carried out, according to some objective with a low cost,

as it only consists of sampling and evaluating models. Importantly, if the objective

changes, the search can be performed on the super-networks without the need for

any retraining in the search space. Such approaches often require specialised train-

ing recipes as training a large number of candidate architectures with shared weights

results in interference between between the models.

2.2.1.3 Differentiable Architecture Search (DARTS)

Differentiable Architecture Search utilises a gradient based approach to navigate the

search space of architectures. This is done by employing a differentiable relaxation of

the categorical selection of candidate architectures in the search space (Liu et al., 2018;

Cai et al., 2018; Shin et al., 2018; Xie et al., 2019). This can be achieved through a Soft-

max or Gumbel-Softmax distribution over some architecture parameters. The target

criterion, such as the validation loss can then be minimised with respect to the archi-

tecture parameters that parameterise the distribution over the architecture enabling the

automatic discovery of architectures.
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In the work carried out in this thesis, we build on the approach of DARTS (Liu et al.,

2018). One of the limitations of their work was that they derive architectures that

achieved the highest accuracy. In our work, we derive models of varying complex-

ity in an automated manner from the search space in Chapter 3 by jointly optimising

the predictive performance and complexity of the architectures. As we build on the

machinery of DARTS, we go through the details of the original work in this section.

Continuous Relaxation In DARTS, the authors replace the categorical selection of

an operation to a softmax distribution over all possible candidate operations. This

approach combines the candidate operations to form a mixed operation. For a set of

candidate operations ’F ’ (e.g depth-wise separable convolutions, max pooling, skip

connection), each candidate operation, j would be defined as a function of the form

f j(sa; wj), parameterised by weights, wj and applied to input sa. The candidate oper-

ations in F were then combined in a mixed operation, m0 to produce output, x(a,b) as

shown below

x(a,b) = m0

(

sa; w0,j, α0,j

)

, ∀j ∈ F (2.1)

= ∑
j∈F

σ

(

α0,j

)

× f j

(

sa; w0,j

)

(2.2)

x(a,b) = ∑
j∈F

exp
(

α0,j

)

∑j′∈F exp
(

α0,j′
) × f j

(

sa; w0,j

)

(2.3)

where α0,j, j ∈ F is the architecture weight for the jth candidate operation in the 0th

mixed operation and w0,j are the weights that parameterise the jth candidate operation

in the the 0th mixed operation. Note that if the mixed operation, m0 combined ’q’ op-

erations together, the architecture weights between representations sa and x(a,b) would

be a q-dimensional vector, α⃗0. The working of a mixed operation that applies the men-

tioned transformation from sa to x(a,b) is also shown visually in Figure 2.3. As can be

seen from Figure 2.3, x(a,b) would be a weighted average of the outputs of the candidate

operations due to the softmax operation on the architecture weights, α0,j, ∀j ∈ F .

It is important to note that every mixed operation on the input sa would have its own

architecture weight vector. For example, a second mixed operation, m1(sa; w1,j, α1,j), ∀j ∈

F performed on sa to produce representation x(a,c), would have its own distinct archi-

tecture weights, αi,j, ∀j ∈ F . In the DARTS algorithm, the magnitude of the architec-

ture weight is used as a proxy for a candidate operations importance since it would be

large for an operation that contributed more to the output representation, x(a,b). In the

coming sections we detail how the mixed operations are grouped together into ’cells’

which were stacked together to form more complex networks. We also show how the
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FIGURE 2.3: Structure of a Mixed Operation applied to a representation, sa to produce

an output x(a,b)

magnitude of the softmax of the weights is used to select the best candidate operation

and derive discrete cells.

Cell Structure The search space for more complex networks is created by combining

a number of mixed operations in a ’cell’. In the DARTS algorithm, the architecture

search process actually comprises of searching for cells. More complex networks are

created by stacking the discovered cells to a user specified depth which would depend

on the complexity of the target task for which the network was being derived. This

was done to keep the architecture search process tractable since the search space when

searching for an entire network would be too large.

s0

s1 s2

s3

soutm0

m1

m2

m3

m4

m6

m5

xn-1

xn-2

xn

FIGURE 2.4: Structure of a 2-step Cell composed of 5 Mixed Operations
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The structure of an N-step cell used in the DARTS approach is shown in Figure 2.4

where cell, Cn is a directed acyclic graph of an ordered sequence of N nodes discount-

ing the output and two input nodes. An N-step cell, Cn would have N nodes where

each node, sk in the nth cell represents an intermediate representation (e.g. a feature

map in a convolutional neural network). In the graph each node, sk is connected to

each of its predecessor nodes, si through an edge representing a mixed operation. The

representations, sk are then produced by carrying out mixed operations on each of the

predecessor representations, si which are all concatenated together to produce, sk. The

output of the cell is then computed by concatenating all the intermediate represen-

tations in the cell except for the input representations in the cell. The concatenation

operations are carried out in the channel dimension of the representations. The in-

termediate representations or output representation of an N-step cell are computed

according to Eq. 2.4 and 2.5 respectively where ∏ denotes the concatenation operation

and Pk denotes the set of predecessor representations for any representation, sk.

sk = ∏
i∈Pk

mi

(

si; wi,j, αi,j

)

, ∀j ∈ F (2.4)

sout =
N

∏
k=2

sk (2.5)

In the DARTS cell structure, the two input representations, s0 and s1 are passed in from

the output of cells, Cn−2 and Cn−1 respectively with some pre-processing performed on

them. One thing to note is that the numerous concatenation operations leads to the size

of feature maps blowing up in deeper parts of the network. As concatenation is carried

out in the channels dimension this results in larger filter sizes and more computational

overhead. We discuss how DARTS deals with this issue through pre-processing and

size reduction methods in the next section where we discuss how cells are stacked

together to form more complex networks.

To control the complexity and representational capacity of a cell, the DARTS algorithm

allows two degrees of freedom which are treated as hyper-parameters set according

to the complexity of the task for which the architecture was being searched. The first

hyper-parameter is the number of candidate operations used to produce a mixed oper-

ation. The second is the number of steps in the cell. As mentioned previously, the step

size determines the number of intermediate representations within the cell which are

connected by mixed operations in order to find the best operation during the architec-

ture search process. For a step size of N > 0 the number of mixed operations required

to connect each representation node to its predecessors could be simply calculated as

shown in Eq. 2.6.

p =
N+1

∑
i=2

(i) (2.6)
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If each of these p mixed operations had q =| F | candidate operations the architecture

weights for a cell would be contained in a p × q matrix. Throughout the rest of this

report we denote the architecture weight matrix as α. In the notation we use from here

on, αi,j can be understood to be the weight for the jth candidate operation in the ith

mixed operation of a cell.

In their implementation the authors included the following 7 candidate operations in

F : ’Skip Connection’, ’3 × 3 Average Pooling’, ’3 × 3 Max Pooling’, ’3 × 3 and 5 × 5

Separable Convolutions’ and ’3 × 3 and 5 × 5 Dilated Separable Convolutions’. The

authors used the Conv-BatchNorm-ReLU processing order for convolution operations

in order to stabilise the training process similar to Zoph and Le (2017) and Real et al.

(2017). Similarly, all 3 × 3 and 5 × 5 separable convolutions were applied twice and

dilated convolutions were always applied with a dilation of 2. To keep the spatial

resolution of output representations of candidate operations the same, padding was

carried out where necessary.

Network Structure A network is created by stacking together multiple cells to the

depth required. This is shown in Figure 2.5 where each cell, Cn has two inputs, which

are the output of cells, Cn−1 and Cn−2, except for the first cell where the input is simply

fed in twice. The depth of the network is treated as a hyper-parameter dictated by the

difficulty of the task to be learned.

Stem C1 C2 Cn/3

C2n/3 Cn

Average

Pooling
Linear

FIGURE 2.5: Structure of Network Composed by Stacking Together Multiple Cells

As mentioned previously, the output representation of a cell was obtained by con-

catenating all the intermediate representations in the cell (excluding the input feature

maps). With cells being consecutively stacked together the representations would be-

come very large due to the successive concatenation operations. To deal with this prob-

lem, reduction cells are deployed in the network. In the reduction cells, the operations

performed on the input representations are performed with a stride of two. Addition-

ally the pre-processing performed on the input representations of the cell is carried out

differently. For normal cells the pre-processing is carried out as a Conv-BatchNorm-

ReLU operation with stride 1, while for reduction cells it is applied with a stride of 2.
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This approach requires searching for two cells, a normal cell and a reduction cell. In

DARTS the cells, Cn/3 and C2n/3 at 1/3rd and 2/3rd of the depth of a network with n

cells were designated as reduction cells.

When searching for cells, the architecture weights for mixed operations between two

representations are shared between cells. However, the weights that parameterised

the candidate operations within the mixed operations in each cell are distinct. This is

true for both normal and reduction cells. So the process of architecture search requires

finding the best architecture weights, α
normal and α

reduce for normal and reduction cells

which was used to create a complex network.

Coming back to the network structure, the authors employ a stem processing block

which consists of a Conv-RELU operation which controls the number of channels that

are input to the first cell. At the end of the network an adaptive average pooling layer

is placed to reduce the size of the output representation of cell, Cn before it is fed to the

final linear layer.

Deriving Discrete Architectures By searching for architectures for a number of epochs

the architecture weights, α
normal and α

reduce could be obtained. We defer discussion of

the training process for architecture search to the next chapter where we discuss our

multi-objective formulation of the problem and show its compatibility with the train-

ing scheme of the DARTS work.

In order to discretize the architecture, the best candidate operation in a mixed opera-

tion between representations sa and sb is obtained by simply selecting the candidate

operation with the largest weight. Once all the mixed operations are discretised to the

best operations, the top-k strongest operations that produced a representation were re-

tained with the rest being dropped. In the DARTS algorithm k was chosen as 2, similar

to prior works. The structure of the cells derived by the DARTS algorithm is shown in

Figure 2.6.
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FIGURE 2.6: Cells Discovered by DARTS
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2.2.2 Dynamic Neural Networks

As opposed to static Neural Networks, Dynamic Neural Networks (DyNNs) are able to

adapt their structures and parameters during inference. This allows DyNNs to perform

inference more efficiently in addition to enabling the models to adaptively trade-off

accuracy and efficiency depending on resource constraints.

2.2.2.1 Dynamic Structure

A common approach to realising dynamicism in an NN is to adapt the structure at

run-time. According to requirements, a sub-network within the base network can be

activated which is used to perform inference. The task of designing the DyNN thus re-

quires designing a network which contains suitable sub-networks which share weights.

These approaches leverage the insight that an entire network is not needed to classify

all examples. The structure of the sub-networks is typically derived by trimming the

base network in three dimensions below

Width: A widely used method to increase the efficiency is to dynamically alter the

width of the neural network based on requirements. In the case of CNNs, the width

is controlled by the number of channels in a convolutional layer or block. At run-

time, the channels of a filter to be convolved with are selected based on the input.

This is typically done with a gating module that takes an input tensor and generates

a binary mask to select which filters are applied or equivalently which channels of the

input to process. The gating module is typically a neural network that is learned when

training the base network. A number of gating approaches have been proposed which

explore the granularity, the structure and complexity of the gating module along with

its training methods (Mullapudi et al., 2018; Gao et al., 2018; Chen et al., 2019; Bejnordi

et al., 2019; Herrmann et al., 2020).

These approaches are able to boost the average efficiency of a model over a number of

inferences. However, they do not guarantee a given efficiency for a sample apriori. To

meet real-time constraints, the width is altered in a non-input dependent manner with

hard-coded rules. A common approach is to globally trim the width with the resulting

sub-networks sharing weights (Yu et al., 2018; Yu and Huang, 2019). A limitation of

these works is that the sampling of selected channels leads to non-contiguous tensors

which are incompatible with kernels for MCU based devices (Lai et al., 2018).

Routing: Another approach adopted to achieve dynamicism is to perform dynamic

routing in the base-network and adapt the inference graph at run-time. One way this
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is achieved is by selectively executing one of several independent candidate modules

at each layer based on the input (Liu et al., 2018).

A special case in dynamic routing is, dynamic depth also referred to as early exiting. In

early-exiting approaches, a number of intermediate classifiers are appended to inter-

mediate layers in the network. In a budgeted classification setting, the average efficiency

over numerous inferences is optimised with early-exiting based on the confidence of

intermediate classifications. This approach executes a subset of layers for easier exam-

ples that do not require the full representational power of the model.

The any-time classification approach is better suited to meeting real-time latency con-

straints where an early-exit is made based on the compute constraints. There have

been several works which explore the selection of hyper-parameters involved in the

design of early-exiting DyNNs such as structure, location and exiting strategy in early-

exiting classifiers. These approaches typically utilise an existing model as a base model

or manually design the base model such that it is amenable to early-exiting (Teerapit-

tayanon et al., 2016; Huang et al., 2018; Dai et al., 2020).

Recent works have proposed using NAS to derive early exiting DyNNs which have

achieved good performance when considering accuracy and efficiency (Gambella and

Roveri, 2023; Bouzidi et al., 2023; Li et al., 2023).

2.3 Model Optimisation

For on-device deployment a model is often optimised for efficient inference perfor-

mance. In this section, we discuss pruning and quantisation which are two popular

optimisation techniques relevant to this thesis.

2.3.1 Pruning

Pruning approaches have been proposed to zero out or remove unimportant weights.

This can be used to reduce the memory footprint or computational complexity of per-

forming inference. Several different approaches have been adopted for pruning which

cater to different performance metrics and hardware as below.

Structured vs Unstructured: LeCun et al. (1990) initially proposed unstructured prun-

ing to remove unimportant weights and reduce the network complexity. Subsequent

works have produced impressive compression rates with minimal loss to accuracy

(Han et al., 2016; Frankle and Carbin, 2018). The resulting sparse matrices can be stored
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using specialised storage formats to reduce the memory footprint of the models (Nau-

mov et al., 2010). However, unstructured pruning approaches require specialised hard-

ware, kernels and very high compression ratios (Wang et al., 2021a; Nunez-Yanez and

Hosseinabady, 2021) to achieve latency comparable to dense matrix multiplications.

Structured pruning algorithms impose structure in the process such that the resulting

matrix operations can be accelerated with kernels optimised for Basic Linear Algebra

Subprograms (BLAS) (Lai et al., 2018; Fatica, 2008). In CNNs, such approaches usually

prune the channels or entire filters from the convolutional layers (Li et al., 2017; Roy

et al., 2020; Huang et al., 2018). This allows the usage of standard kernels optimised for

non-sparse convolutions (Jorda et al., 2019; Chetlur et al., 2014; Lai et al., 2018).

Criterion: An important consideration in pruning approaches is the criteria that is

used to determine the importance or saliency of a weight or block of weights. A com-

mon metric used is the L1/2 norm of the weight or group (channels in CNNs), which

utilises the insight that higher magnitude weights are more important than smaller

ones (Han et al., 2016; Roy et al., 2020). Older approaches (LeCun et al., 1990; Has-

sibi and Stork, 1992; Hassibi et al., 1993; Dong et al., 2017) have utilised second order

derivatives of the loss with respect to weights to measure their importance, however

these are often infeasible for larger networks due to the complexity of computing the

hessian matrix. Other approaches inspect the output feature maps to determine the

importance of weights producing output elements (Hu et al., 2016).

Regularisation: During training of networks, regularisation can be introduced in the

objective function to produce networks amenable to pruning. The regularisation can

be performed by applying L0, L1 or L2 norm penalties (Louizos et al., 2018; Wen et al.,

2016) or targeted dropout (Gomez et al., 2019) on weights or weight groups.

2.3.2 Quantisation

A common approach in compression adopted to lower the memory and computational

complexity of DNNs is quantisation. Quantisation makes use of the insight that the

distribution of weights and activation tensors during training and inference have a lim-

ited range and can be represented with a coarse granularity compared to the typically

used 16/32/64 floating point format. To meet memory or performance requirements,

quantisation has been proposed to lower the precision of a model during training and

inference. Quite often models will be trained in a high precision data format such as

32 or 64 bit floating point precision. Once a model has been trained, the model can

then be quantised to a lower precision during inference. This method of quantisation
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after training is formally called post-training quantisation. Quantisation approaches may

adopt scalar or vector approaches.

2.3.2.1 Vector Quantisation

In vector approaches, also known as product or block quantisation, a vector of elements

that could be either 1-D or 2-D are clustered into the closest vector that can accurately

represent the vectors where the clusters are typically learned through k-means cluster-

ing (Han et al., 2016; Fan et al., 2021). This limits the number of unique vectors that are

represented in the network which can be stored with some code words to produce a

very high compression rate which can massively reduce the size storage requirement

for model parameters.

However, such approaches have overheads of having to decode the weights using the

codeword and codebook. As such the effect on performance would need to be studied

further to discertain these approaches suitability for MCUs.

2.3.2.2 Scalar Quantisation

As mentioned, in the scalar approach to quantisation, each element is represented with

lower precision elements. There are typically a number of considerations to take into

account when utilising any quantisation scheme.

Precision: A model is usually trained in a high level framework in high precision

such as 32/64-bit floating point which occupies 4 or 8 bytes of memory per element.

The precision can be lowered to reduce the memory footprint and latency of operations.

Various precisions from 8 to 64 bits (Wang et al., 2018) are used with different floating

point formats (Kalamkar et al., 2019; Rouhani et al., 2020).

Integer quantisation is also used extensively to avoid expensive floating point arith-

metic. With integer quantisation, a number of precisions have been used for inference

which are able to preserve accuracy. Courbariaux et al. (2015) showed that the precision

using fixed point representations of the weights and activation could be lowered to 10

bits training and inference. In subsequent work, this has been reduced to 8-bits (Jacob

et al., 2018), and below (Banner et al., 2019; Zhu et al., 2017; Mellempudi et al., 2017)

with binary representations (Zhou et al., 2016; Courbariaux et al., 2015) in the extreme

case being used for weights and/or activations.

Lower precisions are able to reduce the latency by lowering costly data fetching op-

erations. The efficiency of low-precision arithmetic depends on the characteristics of

the underlying hardware such as the minimum addressable unit (MAU) and precision
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of operands in the instruction set (Wang et al., 2019). On devices such as MCUs, 8-bit

precision is preferred as this efficiently maps onto SIMD instructions (Lai et al., 2018) as

opposed to lower precisions that leads to higher latency (Capotondi et al., 2020; Rusci

et al., 2020a).

Granularity: Quantisation can be applied at different levels of granularity. In the ex-

treme, fine grained quantisation performed per element would yield the most accurate

model, however, this would have high overheads of determining the range of every el-

ement in a tensor. As such, more coarse granularities have been explored. Layer-wise

quantisation approaches examine the statistics (e.g. min, max) over all the parame-

ters or elements in a weight or activation tensor using it to determine the quantisation

parameters. This often results in sub-optimal accuracy as the distribution of different

filters can have different ranges (Krishnamoorthi, 2018).

Groupwise quantisation approaches group together a number of channels or parame-

ters inside a layer to calculate the clipping range used in quantisation (Shen et al., 2020).

Channel-wise quantisation can be viewed as a coarse case of groupwise quantisation

where one group is the number of channels (Zhang et al., 2018). Further granular-

ity can be achieved through sub-channel quantisation, however this adds considerable

overhead.

Channel-wise and per-tensor quantisation for weights and activation tensors respec-

tively has been used extensively with good accuracy and latency performance (Lin

et al., 2020, 2021; Banbury et al., 2021).

Symmetric and Asymmetric: Symmetric quantisation schemes have a range that is

equally spaced around the origin. Asymmetric quantisation, on the other hand, relaxes

this constraint which gives more flexibility to quantise imbalanced distributions, such

as the output of ReLU operation which is always non-negative. A benefit of symmetric

quantisation is that it requires fewer quantisation parameters which can reduce the

computational cost during inference (Wu et al., 2020; Jacob et al., 2018).

Uniform vs Non-Uniform: The process of scalar quantisation maps representations

from real values to a representation from set of discrete values (or quantisation levels). In

uniform quantisation, the quantisation levels are uniformly spaced (Jacob et al., 2018).

This approach can have high levels of quantisation noise as real values may not map

well to equally spaced quantisation levels.

Non-uniform scaling approaches have been proposed which allow the quantisation

levels to be non-uniformly spaced (Gong et al., 2015; Miyashita et al., 2016). Non-

uniform quantisation may achieve higher accuracy than the uniform approach as it
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may be able to model the distribution better and reduce quantisation noise. Such ap-

proaches can yield higher compression ratios, however, uniform approaches can be

more efficiently deployed on commodity hardware (e.g. MCUs, GPUs) which has lead

to their widespread adoption (Gholami et al., 2022).

Static vs Dynamic Quantisation: Static or dynamic quantisation dictates at what

point the quantisation parameters (e.g. min, max) are determined. As the weights

typically do not change during inference, these can be quantised and fixed during in-

ference. On the other hand, activation tensors can vary during inference depending

on the input to the model. Static approaches utilise a representative dataset to fix the

quantisation parameters during inference for every input (Jacob et al., 2018). Dynamic

quantisation, computes the quantisation parameters based on the input or batch of in-

put data (Liu et al., 2022). Typically, the dynamic approach is able to achieve better

accuracy, but introduces extra computational overhead.

2.3.2.3 Linear Quantisation on MCUs

In this thesis we utilise the linear quantisation proposed by Jacob et al. (2018) which

is widely used in research and has been adopted by popular inference frameworks. In

this section we review some details of the quantisation scheme including the integer

arithmetic and the quantisation parameters to serve as background knowledge for the

research contributions in Chapter 4.

The proposed scheme performs static, uniform quantisation to 8-bit precision to min-

imise the memory footprint and leverage native instructions of the MCU platforms.

The quantisation of real numbers, r is performed as an affine mapping parametrised

by a real valued scaling factor, S and integer valued zero point, Z as shown in Fig-

ure 2.7 which is mathematically expressed as below

r = S(q − Z) (2.7)

The proposed scheme uses a static approach to derive the quantisation parameters, S

and Z. The parameters are derived per tensor for activation tensors and per channel

for weights within the network. To compute the parameters a representative dataset

is utilised which typically consists of 500 data points from the training data. The rep-

resentative dataset is fed to the model to generate a histogram of the elements of the

activation tensors. The histogram is then utilised to determine the minimum and max-

imum value of the real valued elements, rmin and rmax in each activation tensor which

are mapped to the corresponding maximum and minimum integer value, qmin and qmax
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FIGURE 2.7: Linear Quantisation. Adapted from Han (2023).

representable with the quantised representation. For quantisation to 8-bits using an un-

signed integer representation, the values of qmax and qmin would be 255 and 0. The two

real values are expressed as below to generate two simultaneous equations.

rmax = S(qmax − Z) (2.8)

rmin = S(qmin − Z) (2.9)

By subtracting Equation 2.9 from Equation 2.8 we can determine the scale factor, S as

below

rmax − rmin = S(qmax − Z)− S(qmin − Z)

rmax − rmin = S · qmax − S · qmin − S · Z + S · Z

S =
rmax − rmin

qmax − qmin

(2.10)

where qmax and qmin are constants known beforehand. Similarly, rmax and rmin are

known beforehand for weight tensors, while they are determined through the repre-

sentative dataset for activation tensors. The quantisation scheme performs symmetric

quantisation for weight tensors due to which the zero-point of weight tensors is set

to 0. On the other hand, once the scaling factor, S is known, the zero-point, Z can be

straightforwardly determined from Equation 2.9 as below
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Z = round
(

qmin −
rmin

S

)

(2.11)

As mentioned previously, the quantisation is performed at a per tensor granularity for

activation tensors and per channel for weight tensors. Using the quantisation scheme

described, there is one pair of quantisation parameters, S and Z for an activation tensor

and C pairs for weight tensors, where C is the number of filters in the weight matrix.

Memory Usage The scale parameter, S in the quantisation scheme is a real valued-

number. To implement the quantisation scheme using integer-only arithmetic a num-

ber of approximations and optimisations are performed which involve pre-computing

and storing some quantisation parameters used in performing the arithmetic. This

pre-computing results in the scale and zero point being converted into multiplication

and shift parameters stored in 32-bit fixed point format which each have a memory

requirement of 4C bytes. The quantisation scheme also combines the bias tensor with

the quantisation parameters due to which the bias tensor is stored in 32-bit precision

and has a memory requirement of 4C bytes. Details of how the linear quantisation is

performed using only integer arithmetic is provided in Section A.1 in Appendix A.

2.4 Model Deployment

2.4.1 Hardware Characteristics

Hardware platforms suitable for TinyML applications are significantly different to the

tradition GPU platforms. In this section we analyse and contrast some relevant char-

acteristics of the tiny platforms with the traditional GPU platforms to highlight the

challenges associated with performing DNN inference on the resource constrained de-

vices.

The field of TinyML typically employs hardware with power consumption under 1 W

to support battery operated scenarios. As shown in Table 2.1, these platforms, such as

DSPs and MCUs, have significantly lower power consumption than GPU platforms.

However, the challenge of on-device DNN inference comes from the reduced compute

and memory capacity of the devices.

As can be observed, the number of cpu cores and clock speeds are three orders of

magnitude lower than GPUs with a comparable difference in the internal and external

memory available. Similarly, Tensor Processing Units (TPUs) are deep learning acceler-

ators that provide better energy efficiency than GPUs through specialised matrix mul-

tiplication units in the hardware, but the gap in resources remains significant. Other
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Device CPU
Internal External

Power (W)
RAM Storage RAM Storage

GPU: Nvidia A100 6912@1.4GHz 40GB - 64GB TBs 300W
TPU: Google TPUv4 8xMXUs@1050MHz 32GB - 64GB TBs 170W
Mobile: Adreno 730 8@2.8GHz 8GB 256GB Shared GBs 15W
EdgeTPU: Cortex A53+eTPU 4@1.3GHz+1xMXU@500MHz 8MB - 4GB GBs 10W
FPGA: Arty A7-100T 240xDSPs@100MHz 101,440 LUTs - 256MB 16MB <1W
DSP: TMS320DM6446 1@459MHz 180KB - 256MB 128MB <1W
MCU: STM32F469NI 1@180MHz 256KB 1024KB 256MB 256MB <1W

TABLE 2.1: Characteristics of compute platforms used for DNN workloads

deep learning accelerators have also been developed such as Graphcore Intelligence

Processing Units (IPU), Cerebras Wafer Scale Engines (WSE) or Tenstorrent Grayskull

devices which have varying memory hierarchies, interconnect technologies and paral-

lelism styles (Jia et al., 2019; Lie, 2022; Doerner, 2024). However, these accelerators also

have an order of magnitude more resources than MCUs or DSPs. With the recent in-

terest in performing inference on edge devices, GPU and TPU architectures have been

scaled down for lower power consumption in devices such as the Adreno 730 GPU, or

the Coral EdgeTPU. These devices retain the parallel processing compute paradigm of

cloud and server based GPUs but significantly scale down the compute resources avail-

able onboard which in turn reduces the power consumption. These edge GPUs and

TPUs operate in a multi-core fashion where they are coupled with a general purpose

processor, such as a Cortex A53, which is responsible for driving the GPUs and TPUs.

However, as shown in Table 2.1, these devices also have an order of magnitude higher

resources and power consumption compared to low-power MCUs or DSPs. Field Pro-

grammable Gate Arrays (FPGAs) provide an interesting avenue for deployment of

models in TinyML due to their low power consumption and high compute capabilities

achieved through specialised hardware. However, these devices suffer from a higher

developmental complexity compared to other software-based platforms. One further

drawback, is that FPGAs are typically an order of magnitude higher in cost compared

to MCUs or DSPs which leads to higher bill of materials. The difference in resources

and characteristics of the hardware leads to varying requirements from the inference

frameworks for different hardware platforms, and motivates the need for development

of specialised models and inference frameworks for MCUs and DSPs.

In the following sections we discuss some additional characteristics of the hardware

including the instruction set and available peripherals relevant to prior works and the

research carried out in this thesis.

2.4.1.1 Instruction Set

Primitive operations in a deep neural network are mapped to linear algebra opera-

tions. Layers such as fully-connected layers are implemented as matrix multiplication
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operations. Similarly, a convolution operation is also converted to a matrix multiplica-

tion operation through the im2col operation. The workhorse in matrix multiplication

operations and therefore a neural network is the multiply-and-accumulate (MAC) op-

eration.

Due to their native instruction set, DSPs and ARM Cortex MCUs supporting DSP in-

structions are a good fit for algorithms, such as CNNs, that heavily employ the MAC

operation. These devices further support SIMD instructions that allow processing mul-

tiple operands in a single instruction. An example of such an instruction in the ARM

Cortex MCUs is the SMLAD instruction that can multiply two sets of operand and

accumulate the results into two destinations. DSP and MCU devices typically only

support fixed point arithmetic operations which requires usage of fixed point methods

discussed previously.

2.4.1.2 Peripherals

In addition to the CPU core which is responsible for executing the instructions, the

DSPs and MCUs have a range of peripherals that can be configured and utilised as per

application requirements. These include serial ports, timers, data/programme cache,

direct memory access (DMA), and external memory interfaces. We provide a brief

description of peripherals relevant to this thesis below.

Direct Memory Access (DMA): The DMA is an internal peripheral utilised to per-

form memory transfers between a source and destination. The source and destina-

tion can be configured to be either an address in the memory space or some memory-

mapped peripheral e.g. serial port. The CPU is responsible for configuring the DMA

to perform data movement. Once configured, the start of the data transaction can be

asserted by the CPU or another peripheral. Once the transaction has been initiated, the

movement is performed independently by the DMA without any CPU action. After

completion of the transaction, the CPU is responsible for maintenance operations (e.g.

cache coherence, interrupt servicing).

External Memory Interfaces: The DSP and MCU chips have a limited amount of fast

internal memory and storage. This can be supplemented with external memory and

storage to extend the address space of the devices. On ARM Cortex MCUs, the Flexible

Memory Controller (FMC) and Quad Serial Port Interface (QSPI) are utilised to add

additional volatile (DRAM) and non-volatile (NAND Flash) memory for use by the ap-

plication. Additionally, an SDMMC interface is also available to interface with portable

microSD cards.
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2.4.2 Inference Frameworks

CPU, GPU and Accelerator based platforms have a number of popular frameworks for

model design, training and inference (Paszke et al., 2019; Burrello et al., 2021; Abadi

et al., 2016; Vanholder, 2016; Meta, 2024a; Google, 2024a) that are designed according

to the underlying hardware. These frameworks typically utilise optimised kernel li-

braries, e.g. cuDNN (Chetlur et al., 2014), to accelerate the primitive operations (conv,

matmul, add) found in DNNs.

The memory and compute resource constraints of edge devices compared to traditional

CPU or GPU platforms requires the usage of specialist inference frameworks. These

are designed to be light-weight with majority of overhead performed statically (e.g.

memory management and allocation) at either initialisation or compile-time, with only

the most essential operations performed in the run-time. With these objectives and

constraints, two main approaches have emerged in the development of deep learning

frameworks with the code-generation and interpreter based approach.

Application

Interpreter

Kernels

Operator APIs

(A) Interpreter Based

Application

Compiled Graph

Kernels

Operator APIs

(B) Compiler Based

FIGURE 2.8: Code-Generator vs Interpreter Runtime Execution Flow. Adapted from
David et al. (2021)

Interpreter: The interpreter based approach is designed to be flexible and enables

cross-platform interoperability. TensorFlowLite-Micro (TFLM) (David et al., 2021) is a

widely used framework that adopts this approach. TFLM uses an interpreter which

contains all the run-time information required to perform inference such as the infer-

ence graph, data structures for weight/activation tensors, primitive operations etc. As

shown in Figure 2.8, the interpreter loads a model that is serialised with a FlatBuffer

(Koparkar, 2023) representation. An operator resolver is used to include all relevant

primitive operations in the compiled binary. The interpreter uses a block of memory

and a memory planner to statically allocate memory for buffers (activation tensors,

im2col) needed to perform inference according to their lifetime and size. The inter-

preter can also be configured to utilise a given set of kernels that are optimised for

the underlying hardware. Inference can be invoked by the application on input data

through APIs provided by the interpreter. When inference is invoked, the interpreter

sequentially runs through operations in the inference graph and computes the opera-

tions by invoking primitive operations provided by the kernels through the operator
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APIs. The major benefit of the interpreter based approach lies in its flexibility and

portability. Additionally, as the framework code is decoupled from the model defini-

tion, models can easily be updated in the field.

Code-Generation: The code-generation based approach has been adopted by a num-

ber of inference frameworks including uTensor, TinyEngine, MicroTVM, and XCubeAI

(uTensor, 2024; Lin et al., 2020; MicroTVM, 2024; Microelectronics, 2019). These ap-

proaches are adopted to avoid the overheads of the interpreter based approach, albeit

at the cost of flexibility. The code generators parse a DNN definition of a model and

generate the minimal amount of code, parameters and primitive operations required

to perform inference with a model. Actions such as memory planning, operation re-

solving are performed at code generation time, with a single invoke API provided for

inference. These approaches result in a lower memory footprint for the inference frame-

work (Lin et al., 2020).

2.4.2.1 Compiler Sections

The inference frameworks used for MCUs are written in C/C++. A program written

in C/C++ contains components including code and different types of data. When the

program is compiled, the C/C++ compiler compiles the components into object files.

These object files contain the compiled components in a number of different compiler

sections. Some examples of sections commonly used by the compiler are given below

• .text: used to store executable code

• .data: contains all initialised data, including global variables and arrays

• .bss: used to reserve space for unitiliased data, including global variables and

arrays

The object files are then passed to a linker which combines the respective sections of

all the object files and places them in different memory segments as shown in Figure 2.9.

The memory segments are defined in a linker command file according to the memory

layout of the underlying hardware. As an example, an ARM Cortex MCU utilises a

flat memory model where different types of memory including SRAM, DRAM, Flash,

ExtFlash are mapped to different address ranges. The memory segments can be defined

in the linker command file with a base address and length which map to the different

memory types. The linker can then be configured to place the compiled sections into

the declared memory segments. For context, a sample linker command file is given in

Section A.2 in Appendix A.
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The placement algorithm is typically determined by suitability and requirements. For

example, initialised data is often placed in non-volatile memory, whereas frequently

accessed data can be placed in faster on-chip memories. We note that the compiler

toolchain typically allows the manual creation of sections and placement of variables

or functions in these sections through linker or compiler directives.

file1

(.bss)

file2

(.bss)

file1

(.text)

file2

(.text)

file1

(.data)

file2

(.data)

file1.c

file2.c
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(.data)
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(.bss)

file2

(.text)

file2
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Volatile (SRAM, SDRAM)

Non-Volatile (Flash)

Compiled Objects

Memory Map
Source Files

FIGURE 2.9: Compiler Sections to Memory Segments

To compile a model for deployment, the model is serialised into one or more constant

arrays and included in the source code which can be accessed by the kernels when

performing an operation. These typically contain weights or quantisation parameters

that do not change through inference.

The activation tensors or intermediate buffers are allocated by the inference frame-

works memory planner and are similarly declared as pointers that are offsets into a

statically allocated memory block.

2.4.2.2 Memory Usage

A limitation of current inference frameworks works is that they do not perform any

memory management at the program level or utilise the memory hierarchy when com-

piling the data into sections and memory segments. The majority of inference frame-

works utilise the default placement strategy of the C/C++ compiler where the ini-

tialised and uninitialized data are placed into their default sections.

With this approach all initialised constant arrays (weights) are compiled into the .data

section and uninitialized arrays (activation tensors) are compiled into the .bss section.

As such, this memory usage approach imposes the constraint of having the entirety of
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weights and tensors in their respective memory segments. Additionally, during infer-

ence, data is only ever read from or written to the memory segment it was placed in

during compilation.

Further, we noted that prior works typically only consider internal storage and mem-

ory in the memory layout due to energy efficiency and low access latency (Lin et al.,

2020, 2021, 2022; Banbury et al., 2021; Rusci et al., 2018, 2020a,b). As mentioned pre-

viously, different memory segments can be mapped to memory regions of the address

space which are connected to different types memories with unique characteristics.

These can be internal memory and storage (SRAM, Flash) which are limited in size

but offer low access latency and power consumption. On the other hand, external

memories (SDRAM, Flash, SD Cards) can be utilised through external memory inter-

faces which are larger but have higher latency and power consumption. We note that

exploring the memory hierarchy and an efficient memory management system at the

program level holds opportunities for performance gains on MCUs.

Alternative Approaches We note and discuss some exceptions to the memory us-

age approach discussed previously in this section. Wang et al. (2020) proposed a code

generation based approach which considers a memory hierarchy and attempts to store

weights as close as possible to the CPU. However, the memory hierarchy they consider

only consists of internal SRAM and Flash. As we show, in later sections, the amount

of internal memory significantly constrained the model size and therefore achievable

performance. Further, they considered smaller networks with only fully connected lay-

ers which have limited activation tensor sizes. In our work, we focus on CNNs, which

can have activation tensors larger than the size of internal memory. As such, this re-

quires a partitioning scheme to reduce the memory requirement that we introduce in

Section 4.2.5.

Svoboda et al. (2022) explored a memory hierarchy by utilising external SD Cards on

the SDMMC interface which are sufficient to hold the weights and tensors for state-

of-the-art CNNs. However, this interface is significantly slower compared to other

available external memory interfaces such as the Flexible Memory Controller (FMC)

and Quad Serial Port Interface (QSPI). As a result, they achieve an inference latency

two orders of magnitude slower (100x^) than internal memory as compared to using

the FMC and QSPI which is also slower (1.5-3.5x^) but on the same order of magnitude

as we demonstrate in Section 4.1. They also lack a method to mitigate the slow access

latency of external memory, such as one we propose in Chapter 4.
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2.4.3 Kernels

The kernels provide efficient implementations for primitive operations (e.g. conv, mat-

mul) that are used in DNNs. These kernels are hardware specific and are typically

developed to deliver high throughput through specific optimisations suitable for the

hardware. As such, the implementation of the kernels is usually abstracted away from

the inference framework to allow for portability of the inference framework across de-

vices as shown in Figure 2.8. This allows the kernels to be developed independently

and integrated with the inference framework to provide efficient inference functional-

ity to an application.

A variety of kernels have been developed for GPUs, CPUs, Mobile including cuDNN,

cuBLAS, Math Kernel Library (MKL), Eigen, XNNPack or QNNPack (Chetlur et al.,

2014; Nvidia, 2024; Basics, 2005; Guennebaud and Jacob, 2010; Google, 2024b; Meta,

2024b). Examples of kernels developed for MCU platforms include CMix-NN (Capo-

tondi et al., 2020), TinyEngine (Lin et al., 2020) and CMSIS-NN (Lai et al., 2018) which

support different quantisation schemes and apply a number of different optimisations.

In this thesis, we focus on the widely used and open-source CMSIS-NN kernels.

CMSIS-NN

The CMSIS-NN library (Lai et al., 2018) provides optimised implementations for prim-

itive operations on ARM Cortex MCUs that are quantised to 8-bit integers using the

scheme of (Jacob et al., 2018). The library utilises a number of techniques to acceler-

ate inference including SIMD programming to leverage the MCUs instruction set and

partial im2col to accelerate convolutions with optimised matmul kernels under inter-

nal memory size constraints. We briefly review the matrix multiplication kernel and

partial im2col approach to show the memory requirement and provide background

knowledge for research contributions in Chapter 4.

A11 A12 A13 A14

A21 A22 A23 A24

B11 B21

B12 B22

B13 B23

B14 B24

= Sum11 Sum12

Sum21 Sum22

16-bit
16-bit 32-bit

pA1

pA2

Sum11 = Bias1

Sum12 = Bias2

Sum21 = Bias2

Sum22 = Bias2

For I from 0 to column_count/2

A1 = *__SIMD32(pA1)++

A2 = *__SIMD32(pA2)++

B1 = *__SIMD32(pB1)++

B2 = *__SIMD32(pB2)++

Sum11 = __SMLAD(A1, B1, Sum11)

Sum12 = __SMLAD(A1, B2, Sum12)

Sum21 = __SMLAD(A2, B1, Sum21)

Sum22 = __SMLAD(A2, B2, Sum11)

FIGURE 2.10: General Matrix Multiplications. Adapted from Jacob et al. (2018)
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Matrix Multiplication The instruction set of the MCU includes DSP and SIMD in-

structions. These instructions are able to process multiple operands in a single instruc-

tion, which reduces memory overheads in addition to instruction cycles. Matrix mul-

tiplication kernels extensively utilise the SMLAD instruction which is able to multiply

and accumulate two sets of 16-bit operands. The CMSIS-NN kernels use the SIMD

instructions to perform matrix multiplications using 2 × 2 kernels. As shown in Fig-

ure 2.10, the kernel multiplies two rows and columns at a time. pAm and pBm are used

to load two 16-bit operands, into An and Bn which are 32-bit variables. These are then

processed using the SMLAD instruction which multiplies the corresponding upper half

words and the lower half words and accumulates the results in Summn. By loading and

processing two operands at a time, the load, branching and compute overhead is re-

duced by a factor of two.

We note an extra step omitted from the pseudo-code in Figure 2.10, which is required

to perform 8-bit integer arithmetic. This step involves reading 8-bit operands and sign

extending them to 16-bits which can be consumed by the SMLAD instruction.

Partial im2col A common approach to performing convolutions uses the im2col algo-

rithm which vectorises the convolution operation. This approach takes receptive fields

or patches that a kernel lies over and flattens each of them into vectors. These vectors

are then concatenated together to create a matrix. The kernels that the image is to be

convolved with are then arranged as a matrix. This allows the convolution to be per-

formed efficiently as a matrix multiplication using general matrix multiply (GEMM)

algorithms.

Feature Maps: H x W x CFeature Maps: H x W x C

Weights: K x K x C

Matrix Multiply1 x K
2
C

K
2
C x 2

1 x 2

FIGURE 2.11: Convolution with partial im2col



2.5. Discussion 39

A drawback of the im2col operation is that it has a high memory overhead as every

patch that the kernel lies over in the image must be flattened into a vector. For a repre-

sentation of size H ×W ×C, the memory requirement would be K2CN elements where

where K is the kernel size, C is the number of channels, and N is the number of patches

the kernel lies over during convolution.

Due to limited memory on MCUs, the CMSIS-NN library implements convolution op-

erations with a partial im2col algorithm. This partial approach vectorises only two

receptive fields of the image at a time into two columns of a matrix. This approach per-

forms the convolution in C
2 steps where each step consists of creating the partial im2col

buffer followed by a matrix multiplication. Using this method the size requirement for

the partial im2col buffer in the convolutions is

M = 2 × 2 × K2
× C (2.12)

where M is the required memory in bytes, K is the kernel size of the filter, C is the num-

ber of input channels. The constant factors of 2 come from vectorising two patches at a

time and from the SIMD instructions only supporting half-word (16-bit) operands due

to which the operands in the partial im2col buffer have to be cast up from 8-bits to 16-

bits. In the CMSIS-NN kernels, the partial im2col algorithm is used in both convolution

and grouped convolutions frequently encountered in CNNs.

2.5 Discussion

This chapter summarised the background and literature relevant to the work carried

out in efficient deep learning inference on MCUs. We discussed different stages in the

deep learning inference pipeline including model design, optimisation, and deploy-

ment.

In model design we discussed how the earlier approaches in NAS focused on deriving

efficient models with the highest accuracy. However, to meet varying complexity con-

straints it would be desirable to have automated methods to derive models across the

pareto frontier. This motivates RQ1 which this thesis addresses in Chapter 3 where we

explore how gradient based optimisation can be utilised to derive models across the

pareto frontier in an automated manner.

We also discussed model deployment approaches for MCU based platforms. We high-

lighted that the majority of prior works only considered internal storage and memory

and designed models within the respective size constraints. This motivates RQ2, ad-

dressed in Chapter 4 where we explore how unused but available peripherals on the
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MCUs including external memories can be utilised to enable efficient design and de-

ployment of models on MCUs.

In our review of efficient model design we discussed how the heuristics used to manu-

ally design the models or search space were developed in a platform agnostic manner

or for more popular GPU or mobile platforms. This motivates RQ3 addressed in Chap-

ter 5, where we perform an analysis of DNN deployment on MCU devices to derive

design heuristics for efficient model and search space design. Finally, edge based ap-

plications must often meet changing latency constraints that are determined by the

application or environment. In RQ4, studied in Chapter 5, we study how inference can

be adapted at run-time across the pareto frontier using dynamic and static NAS based

approaches within the constraints of the inference framework.
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Chapter 3

DEff-ARTS: Differentiable Efficient

ARchiTecture Search

In designing a CNN, a designer typically has multiple degrees of freedom to explore

the architecture of the model. These degrees of freedom, or hyper-parameters, include

different architectural elements of the model including, but not limited, to the number

of layers, the layer type and the configuration of the layer i.e. number of channels,

kernel size. When manually designing a model, the hit and trial nature of selecting

these operations often leads to a high search cost as evaluating the model requires

compute intensive training of the model. Further, the selection of these operations

requires expert human-knowledge to guide the manual navigation through the search

space.

Neural Architecture Search (NAS) has emerged as a promising approach to automating

the tedious process of designing CNN models. These approaches utilise gradient based

search, reinforcement learning or evolutionary optimisation to search for the optimal

architecture in the search space. However, these works focused on deriving the model

of the highest accuracy. On the other hand, edge devices, often need to cater to real-

time latency constraints that can vary according to environmental conditions. In such

a case, it would be desirable to have methods that are able to trade-off the quality and

efficiency of the model. In this chapter we seek to answer the question, RQ1: How can

we derive models of varying complexity using automated methods?.

We present, Differentiable Efficient Architecture Search, or DEff-ARTS (Sadiq et al.,

2020), a gradient based algorithm to derive architecture of varying complexity. DEff-

ARTS utilises the machinery of DARTS (Liu et al., 2019) discussed in Section 2.2.1.3,

as it was shown to have competitive performance with a low search cost. Liu et al.

(2019) relax the categorical selection of candidate operations in the inference graph to

a softmax distribution which is parameterised by learnable architecture weights. To

derive an architecture, they minimise the cross entropy loss and learn the architecture
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weights along with the operations weights. After training, an argmax operation is used

to derive the architecture that minimises the cross entropy loss.

To derive architectures of varying complexity, DEff-ARTS converts the problem into a

multi-objective optimisation problem. In addition to the cross-entropy loss, we opti-

mise the computional complexity of the network with the trade-off between the two

sub-objectives being controlled by a single hyper-paramter. We show that this ap-

proach can be used with the bi-level gradient based optimisation of DARTS to derive

architectures of varying complexity with no extra search cost. The work presented in

this chapter, makes the following contributions to answer research question, RQ1.

• Multi-Objective Optimisation We combine the two sub-objectives of computa-

tional cost and cross-entropy loss which have significantly different optimisation

landscapes so that the search problem can be treated as a multi-objective optimi-

sation problem where we can trade-off between the sub-objectives

• Experimental Evaluation We perform experiments on the CIFAR-10 dataset to

navigate the optimisation landscape via gradient descent and derive architectures

of varying complexity

3.1 Non-Linear Multi-Objective Bi-Level Optimisation Prob-

lem

In this section we explain the formulation of the learning problem as a multi-objective

bi-level optimisation problem. By treating the problem as a multi-objective optimisa-

tion problem we combined the search for an architecture with low cross-entropy loss,

Lce with searching for the most efficient architecture with a low compute cost, Lcom.

The objectives were combined into a measure we call the performance loss, Lper which

we explain in the coming sections.

3.1.1 Compute Cost

In order to incorporate efficient architecture search in the search process we minimised

the computational compexity of the cell in the continuous search space in addition to

minimising the cross entropy loss. We refer to this measure of computational complex-

ity as the compute cost. In order to back-propagate gradients from the loss function we

required the compute cost function to have a differentiable closed form. Our formula-

tion of the closed form of the compute cost, Lcom is shown in Eq. 3.1

Lcom = Σ
p
i=1Σ

q
j=1σ(αnormal

i,j )× Costj + Σ
p
i=1Σ

q
j=1σ(αreduce

i,j )× Costj (3.1)
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where αnormal
i,j and αreduce

i,j are the architecture weights shared between the normal and

reduction cells respectively, σ is the softmax function and Costj is the amount of CPU

cycles required to apply the jth candidate operation. One common way of measuring

the computational complexity of networks is to compute the multiply and accumulate

(MAC) operations required for one forward pass. However, this assumes that all oper-

ations take the same amount of CPU cycles to compute. In our approach, we calculated

the number of different CPU operations required by the candidate operations and com-

puted the required cycles according to the cost of the low-level CPU operations.

For simplicity, in our approach we considered the comparison, addition, multiplica-

tion and division operations when computing the cost of a candidate operation and

considered 32-bit operations. Memory read and write operations from and to external

or internal memory were ignored in our computation. We used the Texas Instruments

C64x+ DSP architecture (Texas-Instruments, 2019), commonly used in low power em-

bedded systems, as a reference for the number of cycles required for the different oper-

ations. These are shown in Table 3.1.

Operations (32 bit) Cost (CPU Cycles)

Comparison (GT, LT) 1

Addition 1

Multiplication 4

Division 4

TABLE 3.1: CPU Operation Costs, C64x+ (CPU Cycles)

We manually computed the number of different operations required by the candidate

operations as shown in Eqs. 3.2 - 3.6 where H, W and Cin are the height, width and

channels of the input representation, whereas k, S and Cout are the size of the square ker-

nel, stride size and number of output channels of the operations respectively. Note that

the separable convolution cost is multiplied by 2. This was done since in the DARTS

implementation depthwise-separable convolutions were always applied twice.

Costsep =

[

[ (

k × k × H × W × Cin ÷ S2
)

+ (Cin × H × W × Cout)
]

× Costmul

+
[ (

k × k × H × W × Cin ÷ S2
)

+ (Cin × H × W × Cout)
]

× Costadd

]

× 2

(3.2)

Costdil =
[ (

k × k × H × W × Cin ÷ S2
)

+ (Cin × H × W × Cout)
]

× Costmul

+
[ (

k × k × H × W × Cin ÷ S2
)

+ (Cin × H × W × Cout)
]

× Costadd

(3.3)

Costavg = (k × k × H × W × Cin)× Costadd + (H × W × Cin)× Costdiv (3.4)

Costmax = (k × k × H × W × Cin)× Costcomp (3.5)

Costskip = 0 (3.6)
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Candidate Operation Cost (CPU Cycles)

Max Pool 3x3 27,648

Avg Pool 3x3 30,720

Skip Connect 0

2*(Sep Conv 3x3) 368,340

2*(Sep Conv 5x5) 860,160

Dil Conv 3x3 184,320

Dil Conv 5x5 430,080

TABLE 3.2: Candidate Operation Costs

Looking at Eqs. 3.2 - 3.6 the natural question that arises is what values would be used

for the input representation size since the dimensionality of the representation would

constantly be changing throughout the depth of the network. For simplicity, we com-

puted the cost according to the input image size where H = 32, W = 32 Cin = 3 and

Cout = 3 and assumed a stride of 1. This is a significant assumption to make since it

ignores the representation size in deeper parts of the network and the different strides

in reduction cells. However it provided a reasonable heuristic to compare the cost of

different operations. In Section 3.2, we demonstrate that this implementation of the

compute cost discovered efficient architecturesca with a significantly reduced compu-

tational complexity. Using Eqs. 3.2 - 3.6, the cost calculated for the candidate opera-

tions is given in Table 3.2. We note that this approach would be easily applicable to

other target devices as well such as MCUs or other instruction set based architectures.

This would only require changing the CPU cycles for the low-level CPU operations in

Table 3.1 which would result in the candidate operations cost characterising some other

target device.

3.1.2 Performance Loss

3.1.2.1 Linear Combination

The initial approach we considered was to take a simple linear combination of the cross

entropy loss, Lce and the compute cost, Lcom as shown in Eq. 3.7.

Lper(w, α) = Lce(w, α) + Γ ×Lcom(α) (3.7)

where Γ was a user defined constant cost weightage parameter. This approach was not

pursued too far for two reasons. Firstly, there was a problem of the range and scale of

the two sub-objectives being minimised. Secondly, we observed that in its simple form,

the compute cost, Lcom penalised the computationally expensive operations like sepa-

rable convolutions too heavily as compared to simpler operations like max-pooling.
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To explain the first concern further, we observed that the cross entropy loss during

training was in the 10−1 to 10−2 range, while the compute cost range which can be

computed from Eq. 3.1 would range up to 106. It can also be noted that according to

the formulation of the compute cost, it would be monotonically increasing. Using a

simple linear combination of the sub-objectives, the problem arises that the landscape

of the compute cost would completely dominate the landscape of the cross entropy

loss. We explain this problem visually through artificially generated two-dimensional

loss landscapes. Figure 3.1 shows an intuitive sketch of the cross entropy landscape

with σ(α1) characterising the strength of a more expressive and expensive operation

such as a convolution operation and σ(α2) characterising a simpler operation such as a

max-pooling. Note that the minima of the landscape would lie in the region where the

more expressive convolution operation was stronger.

FIGURE 3.1: Sketch of Cross Entropy Loss Landscape, Lce

Similarly, Figure 3.2a shows the landscape for the compute cost with the horizontal

axis characterising the same operations. In this case, we can see that when the strength

of an expensive operation is high, the compute cost is high and conversely when the

strength of a cheap operation is high the compute cost is low. Figure 3.2b shows the

performance loss obtained by a linear combination of the sub-objectives. It can be seen

that due to the difference of scale between the two sub-objectives the minima of the

performance loss is totally determined by the compute cost and the landscape prop-

erties of the cross entropy loss are insignificant. In practice, the difference in scale

between the two landscapes was observed to be four orders of magnitude larger than

the difference shown in our synthetic landscape. Similarly, the difference in gradients

in different dimensions of the compute cost was also three orders of magnitude larger

than demonstrated in the example.



46 Chapter 3. DEff-ARTS: Differentiable Efficient ARchiTecture Search

(A) Compute Cost, Γ ×Lcom, Γ = 1 (B) Performance Loss, Lper

FIGURE 3.2: Compute Cost with Linear Scaling and Resulting Performance Loss

One trivial approach to dealing with this problem would be to scale down the cost

weightage parameter, Γ. However, scaling Γ would have an equal effect on all dimen-

sions. If we tried to scale down the landscape in an expensive dimension, the cheaper

dimension would become negligible. This would suggest the idea of applying non-

linear scaling which we discuss in the next section.

Another problem with taking a linear combination of the sub-objectives is that it as-

sumes that the two can be linearly traded off. However we empirically observed that

this was not the case. We trained a number of different architectures with varying cell

complexity and recorded their training loss at the end of training. A plot comparing

the two and how they varied with each other is shown in Figure 3.3.
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FIGURE 3.3: Compute Cost, Lcom vs. Cross Entropy Loss, Lce

It can be clearly seen there is no linear relationship between the compute cost and the

cross entropy loss. One way to deal with this issue might be to have a non-linear cost

weightage function to replace the constant Γ parameter. The approach we adopted was

to apply a non-linear transformation to one of the costs which would enforce a linear
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relationship between the sub-objectives. This enabled us to trade-off between the two

sub-objectives through the simple cost weightage parameter, Γ.

3.1.2.2 Non-Linear Transformation

In order to avoid the issues with linearly scaling the compute cost discussed in the

previous section, we applied a non-linear transformation to the compute cost and took

a linear combination of the cross entropy loss, Lce with the transformed compute cost,

L
β
com to obtain the performance loss, Lper. This is shown in Eq. 3.8.

Lper(w, α) = Lce(w, α) + Γ ×Lcom(α)
β (3.8)

By looking at the above equation the natural question that arises is what the value of

the modulation parameter, β should be. One empirical method of estimating this pa-

rameter to obtain pareto optimal solutions is to empirically measure how the cross en-

tropy loss changes with the compute cost (Tan et al., 2019). We note that estimating the

value of the modulation parameter would be different to a standard curve-fitting prob-

lem as the value of the performance loss would be unknown to us in addition to the

modulation parameter, β. As such we utilised the empirical approach mentioned pre-

viously for which we trained two different architectures with different compute costs

and recorded the cross entropy loss after training. The observed values are shown in

Table 3.3.

Compute Cost, Lcom Cross-Entropy Loss, Lce

322, 560 3.11 × 10−1

1, 244, 160 9.32 × 10−2

TABLE 3.3: Observed Change in Cross-Entropy Loss with Change in Compute Cost

These values were substituted into Eq. 3.7, along with a suitable value of Γ = 1. We

utilised a value of Γ = 1 since we wanted to assess how the sub-objectives changed

with respect to each other and a non-unit value would result in scaling of the compute

cost.

Lce,1 + L
β
com,1 = Lce,2 + L

β
com,2 (3.9)

9.32 × 10−2 + 1, 244, 160β = 3.11 × 10−1 + 322, 560β (3.10)

However, substituting the values gives us a transcendental equation where we cannot

obtain a closed-form solution for β. In that case, we can perform a simple manipulation
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to convert the problem into a root finding problem as shown below

1, 244, 160β
− 322, 560β

− 2.178 × 10−1 = 0 (3.11)

Solving for β using Newton’s method we obtained the value of β = 6.64 × 10−2 for

the modulation parameter. However, we were not able to produce consistent results

with this value, nevertheless this value proved to be a useful heuristic which guided

selection of a usable β value. In practice we used a value of β = 0.27 for the modulation

parameter which was acquired through a logarithmic grid search performed from a

starting value of β = 6.64× 10−2. The relationship between the cross-entropy loss after

training and the transformed compute cost is shown in Figure 3.4 for different values

of the modulation parameter.
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FIGURE 3.4: Non-Linearly Transformed Compute Cost, L
β
com vs. Cross Entropy Loss,

L
β
ce.

By comparing Figure 3.3 and Figure 3.4 we can see that by modulating the compute

cost, the relationship between the two sub-objectives is significantly more linear than

it was originally. However, it can be observed that it is still not perfectly linear. It

is possible that further improvements could be made by using other non-linear trans-

forms but we leave this as a future work since in practice, we were able to navigate the

multi-objective optimisation landscape with exponentiation as we show in Section 3.2.

We further demonstrate how exponentiating the compute cost brought the two sub-

objectives to a comparable scale and how the performance loss landscaped changed

as a result of the non-linear transform of the sub-objective. The effect of modulating

the compute cost on our synthetic landscape with β = 0.135 is shown in Figure 3.5a

with the same description of the axes as in Figure 3.2a. It can be observed that the

problem of the scale and gradients varying significantly between the dimensions of the

architecture weights has been alleviated. The resulting performance loss landscape is
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shown in Figure 3.5b demonstrating that the gradients or minima of the cross entropy

landscape are no longer dominated by the compute cost.

(A) Compute Cost, Γ ×L
β
com (B) Performance Loss, Lper

FIGURE 3.5: Compute Cost with Non-Linear Scaling and Resulting Performance Loss,
Γ = 1, β = 0.135

Having sufficiently linearised the relationship between the sub-objectives, the trade-

off between the two would now be controllable through the cost weightage parameter,

Γ. Equation 3.13 analytically shows how the cost weightage parameter controls the

strength of gradients back-propagated, and consequently updates to the final architec-

ture weights.

∂

∂αnormal
i,j

Lper(w, α) =
∂

∂αnormal
i,j

(

Lper(w, α) + ΓLcom(w, α)β
)

(3.12)

=
∂

∂αnormal
i,j

Lper(w, α) + Γ ×
∂

∂αnormal
i,j

Lcom(w, α)β (3.13)

As can be seen the cost weightage parameter simply scaled the gradients back-propagated

from the compute cost with higher values giving higher weightage to selecting an ef-

ficient architecture. For a value of Γ = 15 and β = 0.135, the compute cost is shown

in Figure 3.6a. The resulting performance loss is shown in Figure 3.6b. It can be noted

that the features such as local minima and maxima of the cross-entropy loss landscape

are preserved in the performance cost landscape. Further, it can be seen that the global

minima in the landscape has moved to a location where the cheaper operation associ-

ated with the weight, α2 is preferred in the architecture which is what we would want

the final outcome to be when applying a higher weightage to minimising the compute

cost.
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(A) Compute Cost, Γ ×L
β
com (B) Performance Loss, Lper

FIGURE 3.6: Compute Cost with Non-Linear Scaling and Resulting Performance Loss,
Γ = 15, β = 0.135

3.1.3 Multi-Objective Bi-Level Optimisation

Having formulated the problem as a multi-objective optimisation problem, in this sec-

tion we detail the training process used to find the architecture encoded by the weights,

α. We used the same scheme proposed by (Liu et al., 2018) which was compatible for

our multi-objective loss function as well.

Let Lper,train(w, α) and Lper,val(w, α) denote the performance loss on the training and

validation set respectively. The goal of architecture search could then be defined as

finding the architecture weights, α∗ that minimised Lper,val(w
∗, α∗) where w∗ are the

weights that minimise the training loss such that w∗ = argmin
w

Lper,train(w, α∗). The

problem then becomes a bi-level optimisation problem with α as the upper-level vari-

able and w as the lower-level variable as shown below

min
α

Lper,val(w
∗(w, α), α) (3.14)

s.t. w∗(w, α) = argmin
w

Lper,train(w, α) (3.15)

In this optimisation problem, the inner level problem requires minimising the perfor-

mance loss which is a combination of the cross-entropy and compute cost with respect

to the network parameters. In this formulation, the compute cost is simply a constant

in the inner level optimisation as it is only a function of the architecture parameters,

α, as shown in Equation 3.8, whereas the optimisation is with respect to the network

parameters, w. On the other hand, the cross-entropy loss landscape is non-convex and

difficult to optimise due to the multi-layer structure and complex mapping of neural

networks, which leads to local minima in addition to saddle points (Petrulionytė et al.,

2024). The difficulty of this problem is exacerbated due to the optimal weights, w∗

being a function of the architecture weights, α, which makes it sensitive to the outer
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level optimisation. In the outer level optimisation problem, the performance loss is

minimised in which the cross-entropy loss is again non-convex. Similarly, the compute

cost utilises the softmax operation on the architecture weights followed by a weighted

average on the softmax due to which the convexity of the compute cost would not

be guaranteed. As such, the non-convex nature of both the inner and outer objective,

makes this a difficult optimisation problem.

Another challenge, in the optimisation problem is that the inner level problem is com-

putationally expensive as it requires training the architecture encoded by α till conver-

gence for every update to the architecture weights. As such, computing the architecture

gradients would also be prohibitively expensive when using gradient based optimisa-

tion. To deal with this issue, the authors of DARTS proposed a simple approximation

scheme shown below

∇αLper,val(w
∗(w, α), α) (3.16)

≈∇αLper,val(w − ξ∇wLper,train(w, α), α) (3.17)

=∇αLper,val(w
′(w, α), α), w′ = w − ξ∇wLper,train(w, α) (3.18)

where w are the current network weights and ξ is the learning rate for the inner op-

timisation. The main idea in this approach is to approximate w∗(w, α) by the weights

w′(w, α) obtained after taking a single step in the inner optimisation. This reduced

the training time significantly, as every step in the architecture space did not require

training the candidate architecture till convergence. The authors further used an ap-

proximation scheme to derive the architecture gradients which was compatible with

our multi-objective metric. This approximation scheme is detailed in Section B.1 in

Appendix B.

We note that Liu et al. (2018) or subsequent works in differentiable architecture search

do not provide any convergence guarantees for the algorithm, however, in practice the

authors found that the algorithm was able to find a fixed point with a suitable choice of

ξ, the learning rate for a step of the inner optimisation shown in Equation 3.18. While,

there are some works which provide convergence guarantees for bi-level optimisation

problems, these assume the inner level objective to be convex which is not true in our

case where neural network parameters are optimised in the inner level (Liu et al., 2021).

In our experiments, we utilised the same value of the inner-optimisation learning rate

as proposed by Liu et al. (2018) and found that the algorithm converged with our multi-

ojective formulation.

The training algorithm used for architecture search is shown below in Algorithm 1

where the architecture weights, α and the network weights, w are alternately updated

till the search has converged to an architecture. After convergence, the network in the
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continuous search space was discretised as explained previously to obtain the discrete

architecture.

Algorithm 1 Differentiable Efficient Architecture Search Algorithm

Create mixed operations, mk parameterised by weights αi,j for cells in network
while not converged do

1. Update architecture weights, α by descending
∇αLper,val(w − ξ∇wLper,train(w, α), α)
2. Update network weights, w by descending ∇wLper,train(w, α)

end while

Derive final architecture based on the learned α

We note that in our analysis and experiments we utilised the performance loss com-

posed of the cross-entropy loss and the compute cost for training the architecture and

model weights, α and w respectively. The cross entropy loss was used as one of the

sub-objectives as it is the most common loss function utilised for CNNs on classifica-

tion tasks. The other sub-objective of the compute cost was used to characterise the

complexity of candidate architectures. Utilising a different loss function in our formu-

lation would also be possible with the only requirement being that the loss function be

differentiable. We note that for any differentiable loss function the analysis performed

previously in this section would hold including the multi-objective formulation and

the approximate architecture gradients derived in Appendix B. In practice, we would

likely find that some of the hyper-parameters would need to be changed for the search

to converge such as the modulation parameter, β and the outer and inner optimisa-

tion learning rates, λ and ξ. However, the same is true for any general gradient based

training recipe, and the hyper-parameters could be set with methods similar to those

discussed in the previous sections.

3.2 Results

In this section we detail the experimental setup and results obtained when searching

for and evaluating efficient CNN architectures on the CIFAR-10 classification task. To

make our results comparable to the original DARTS approach we use the same experi-

mental setup for search and evaluation, except for changing of the loss function to the

multi-objective performance loss, and the selection of the associated cost weightage

and modulation parameters, Γ and β.

3.2.1 Architecture Search

In the search process, the set of candidate operations, F was kept the same as the

original DARTS paper such that F : 3 × 3 and 5 × 5 separable and diluted separable
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convolutions, 3 × 3 max-pooling, 3 × 3 average-pooling and skip-connections. The

compute cost of the candidate operations was obtained as detailed in Section 3.1.1. We

searched for cells on the CIFAR-10 (Hinton, 2007) dataset with networks created by

stacking together 8 4-step cells. In the network, the 2nd and 5th cells were reductions

cells with the rest being normal cells. The modulation parameter, β was set to a value of

0.27 by a logarithmic grid search process guided by the reference value worked out as

demonstrated in Section 3.1.2.2. The architecture search was conducted for 50 epochs.

A complete list of hyper-parameters is shared in Section B.2 in Appendix B.

Figure 3.7 shows the training and validation cross-entropy loss for the architecture

search. For all values of the cost weightage, Γ, it can be observed that the training

loss continues to decrease as expected. On the other hand the validation loss stops de-

creasing towards the end. This would indicate that the chosen 50 epochs of training

was a reasonable amount of training without overfitting to the sub-objective.
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(A) Cross-Entropy Train Loss, Lce,train
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(B) Cross-Entropy Validation Loss, Lce,val

FIGURE 3.7: Cross-Entropy Training and Validation Loss

The compute cost through the training is shown in Figure 3.8. Similar to the cross-

entropy this can also be seen to be generally decreasing. By comparing Figure 3.7 and

Figure 3.8 both the sub-objectives are decreasing at the same time indicating that we

were able to strike a reasonable balance between the sub-objectives without any one

dominating the other. Further, it can be seen that when the cost weightage parameter,

Γ is very low at 0.01, towards the latter part of training, the compute cost actually starts

increasing. It should be noted that since by formulation the operation cost is a mono-

tonically increasing function, the only reason this would occur was if the gradients

back-propagated from the cross-entropy loss were greater than the gradients from the

compute cost which would again indicate a compatibility between the sub-objective

landscapes.

Figure 3.9 shows the performance validation and training loss across the search pro-

cess. Note that due to the different values of the cost weightage parameter used, the

landscapes are on a different scale so they are not directly comparable. However, we
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(A) Compute Training Cost, Lcom,train
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(B) Compute Validation Cost, Lcom,val

FIGURE 3.8: Compute Training and Validation Cost
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(A) Performance Training Loss, Lper,train

0 10 20 30 40 50
Epochs

2 × 100

3 × 100

4 × 100

Pe
rfo

rm
an

ce
 V

al
id

at
io

n 
Lo

ss
, 

pe
r,
va

l

= 0.04
= 0.02
= 0.01

(B) Performance Validation Loss, Lper,val

FIGURE 3.9: Operation Training and Validation Loss

make some interesting observations by comparing them to their corresponding cross-

entropy loss and compute cost plots. For Γ = 0.01, the training and validation perfor-

mance loss can be seen to have stabilised towards the end of training. However, if we

compare around epoch 40 of the performance loss and the sub-objectives for Γ = 0.01,

the training operation cost can be seen to be increasing while the training cross-entropy

loss continues to decrease. This would indicate that the optimisation process was able

to locate the pareto frontier and had begun running through all pareto efficient solu-

tions where the performance loss was minimised. In this scenario, pareto optimality

would be defined as the situation in which no sub-objective could be minimised further

without increasing the other sub-objective. This is precisely the phenomenon observed

during the latter part of the search process for Γ = 0.01. It can be seen for the rest of

the values for Γ that all three training losses are decreasing. This would indicate that

the training fell short of finding a pareto optimal outcome in these cases. However, it

is important to note that these solutions fell short of pareto efficiency in the continuous

search space. It would not necessarily hold true that a pareto inefficient outcome in the

continuous search space would produce a pareto inefficient outcome in the discretised

space and vice versa.
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We examine this further by looking at the compute cost of the final cells derived by the

discretisation step. This is shown in Figure 3.10 where the compute cost was calculated

by simply adding the cost of the selected candidate operations. For Γ = 0.01, when

the pareto frontier is found at around epoch 45 corresponding to the 350th step, it can

be seen that the discretised architecture remains the same. This would show that the

different continuous architectures had converged to a discrete architecture.
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FIGURE 3.10: Discretised Reduction and Normal Cell Costs

Another simple trend observed in Figure 3.10 is that higher values of the cost weigh-

tage parameters derived cells with lower computational complexity and vice versa.

This is what we would expect and would indicate that the compute cost correctly char-

acterised complexity of the cells such that gradient descent was able to navigate the

space and find efficient cells. An interesting observation to make is the difference be-

tween the cost of the reduction and normal cells where the latter is always higher. We

discuss this further in the next section where we show the derived cell architectures.

3.2.2 Derived Cells

The cells derived for the different values of the cost weightage after 50 epochs of search

are shown in Figures 3.13 to 3.11. As we observed in the previous section, the complex-

ity of the cells increases as we decrease the cost weightage parameter. It can be seen

that with a higher cost weightage of Γ = 0.04, the derived cells have only skip con-

nections. On the other hand, with Γ = 0.02 the cells grew in complexity with a 3 × 3

dilated convolution (cheapest of the available convolution operations) and pooling op-

erations. Further decreasing the cost weightage to Γ = 0.01 produced architectures

with expensive operations such as 3× 3 separable convolutions in addition to average,

max pooling operations.

The observation made in the previous section regarding the different operation costs

of the reduction cells and normal cells can also be explained by examining the internal
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FIGURE 3.11: DEff-ARTS Derived Cells, Γ = 0.01, Lcom = 1, 010, 688
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FIGURE 3.12: DEff-ARTS Derived Cells, Γ = 0.02, Lcom = 276, 480
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FIGURE 3.13: DEff-ARTS Derived Cells, Γ = 0.04, Lcom = 0

structure of the derived cells. A clear trend can be seen that the cheaper average and

max pooling operations only ever appear in reduction cells. We consider explainability

of derived architectures to be out of the scope of this work and do not attempt to explain

the derived architectures any further due the general problem of interpretability in the

field of differential programming and deep learning. However, in the next section we

comment on the possibility of the presence of some unintended bias by comparing the

derived cells with other approaches.

3.2.3 Architecture Evaluation

The derived architectures were evaluated on the CIFAR-10 dataset. For evaluation,

networks were created with a depth of 20 cells, where the 6th and 13th cells were re-

duction cells and the rest were normal cells. For a network composed of 20 4-step cells,

the network would have 120 layers of operations if we included the pre-processing

within a cell. This would lead to the vanishing gradient problem. To deal with this

issue, auxiliary towers (Ntziachristos, 2010) were used on the output of the 13th cell

with a weight of 0.4. Additionally, cut-out (DeVries and Taylor, 2017) was used in the
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Architecture
Test Error

(%)

Params

(M)

Search Cost

(GPU days)
#ops

Search

Method
GMACs

Compute

Cost

NASNet-A + cutout 2.83 3.1 2000 13 RL 0.624 5,861,376
AmoebaNet-A + cutout 3.12 3.1 3150 19 evolution 0.506 6,100,992

DARTS + cutout 2.76 ± 0.09 3.3 4 7 gradient-based 0.547 1,244,160

DEff-ARTS + cutout, Γ = 0.01 3.24 ± 0.26 2.3 4 7 gradient-based 0.376 642,048

DEff-ARTS + cutout, Γ = 0.02 4.42 ± 0.07 1.6 4 7 gradient-based 0.262 276,480

DEff-ARTS + cutout, Γ = 0.04 16.01 ± 0.41 1.45 4 7 gradient-based 0.242 0

TABLE 3.4: Comparison with state-of-the-art image classifiers on CIFAR-10. All values
other than DEff-ARTS are taken from Liu et al. (2019)

search process to produce better generalisation performance following Liu et al. (2018).

All networks were trained for 600 epochs. Training time varied between 11 to 21 hours

depending on the complexity of the cells composing the network. The complete set of

hyper-parameters used for training is provided in Section B.3 in Appendix B.

Table 3.4 compares the results obtained from networks derived by DEff-ARTS with

other approaches in the literature. Note that in addition to measuring the computa-

tional complexity through the compute cost, we compare the Multiply and Accumulate

(MAC) operations between different network architectures as well. This is because the

compute cost would only be indicative of the mixed operations in a cell and not the

hard-coded pre-processing blocks. While it would be better at characterising low-level

operation differences (e.g multiply, addition, comparison) between candidate opera-

tions, it would not give a complete picture of the networks performance.

It can be observed in Table 3.4 that for Γ = 0.01 and 0.02 the networks achieved results

comparable to the state-of-the-art architectures with model sizes 30 − 50% smaller and

a lower number of required Multiply-Accumulate (MAC) operations. It is also worth

pointing out that for Γ = 0.04, the network achieved an accuracy of 83.99% . This was

due to the Conv-BatchNorm-ReLU pre-processing blocks in every cell which would

contribute to the networks representational capacity.

Comparing the search cost between the different networks, we can see that the differ-

entiable approach of DARTS and DEff-ARTS was three orders of magnitude faster than

the reinforcement learning or evolutionary approaches of NASNet or AmoebaNet.
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The cells derived by AmoebaNet and NASNet are shown in Figure 3.14 and 3.15. Re-

garding the observation that the DARTS and DEff-ARTS derived cells only had average

or max pooling operations in the reduction cells, it can be observed that this was not

the case for the AmoebaNet or NASNet cells. For the DEff-ARTS approach, it is possi-

ble that the search balanced the accuracy and complexity by reducing the complexity of

the two reduction cells in the network and retaining more expressive operations in the

normal cells. However, the same behaviour was also observed in the baseline DARTS

architecture which had no explicit optimisation for the complexity of the cells. This

could point to some unintended bias in the differentiable search method, but we leave

further examination of this as a future work.

3.3 Discussion

Neural Architecture Search (NAS) has been shown to be a promising approach to de-

rive models in an automated manner without the need for human intervention in the

process. However, prior approaches utilised the framework of NAS to derive architec-

tures with the highest accuracy. To meet varying complexity constraints, the derived

model was typically simplified using manual heuristics.

We proposed Differentiable Efficient Architecture Search (DEff-ARTS), to derive archi-

tectures of varying complexity in an automated manner. We utilised the machinery

of efficient gradient based NAS and converted the problem to a multi-objective op-

timisation. The multi-objective optimisation metric, or performance loss, included a

differentiable metric for the complexity of the model, the compute cost, in addition to

the cross-entropy loss measuring the predictive quality of the model. The trade-off be-

tween the quality and efficiency of the derived model was controlled through a single

hyper-parameter configured by the user. We successfully navigated the optimisation

landscape to derive models directly from the search space. The models demonstrated

up to 1.4x-2.1x lower complexity and parameters without any addition to the search
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cost of deriving the architectures. We believe further increases in performance could be

achieved through better design of the search space. This could be carried out through

inclusion of further candidate operations and structural modifications to the search

space. The approach of multi-objective optimisation we adopted is now widely found

in recent NAS based works, although it is often performed with different optimised

search spaces. In the following chapters, we utilised insights from these approaches to

develop our experimental setup and improve upon the work of this chapter.
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Chapter 4

TinyOps: A New Model Design

Space for MCUs

The previous chapter explored how we could design models to explore the accuracy-

complexity trade-off. However, in deployment the inference framework is of equal

importance as it dictates the design space of models that can be deployed and the

achievable performance.

A number of inference frameworks have been designed for edge devices which fo-

cus on minimising the footprint of the code whilst offering portability and flexibility.

However, as we discussed in Section 2.2.1, the majority of prior works in TinyML do

not consider a memory hierarchy and consider only internal storage and memory in

the deployment scenario. This poses a challenge for model design as state-of-the-art

CNNs have a memory and storage requirement larger than the amount available on

low-power edge devices which is typically less than 512KB of memory and 2MB of

storage as can be observed in Table 2.1. Within the constraints of internal memory,

prior works have achieved incremental progress through graph optimisations (Liberis

and Lane, 2020), light-weight code-generation (Lin et al., 2020, 2021) or sub-byte quan-

tisation (Rusci et al., 2018, 2020a), but the constraint on model size has still left a sizeable

gap between the performance achievable on the low-power platforms. As an example,

the state-of-the-art MCUNetV2 model derived for deployment with 256KB of mem-

ory and 1MB of storage achieves 64.9% top-1 accuracy (Lin et al., 2021) compared to a

ProxylessNAS model derived for mobile devices with 74.6% top-1 accuracy (Cai et al.,

2018).

We explore how we can efficiently lift the ceiling of performance achievable on low-

power edge devices. While prior works have focused on internal memory, we inves-

tigate how we can utilise unused peripherals of the devices to achieve further perfor-

mance gains. As we discussed previously in Section 2.4.1, these devices have periph-

erals including DMA and external memory interfaces such as the FMC and QSPI on
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MCUs which can be used to supplement the limited internal memory and storage as

shown in Figure 4.1. In this chapter, we seek to answer the research question, RQ2: how

can inference software efficiently utilise external memories to enable design and deployment of

efficient models?

CPU

SRAM

(<512KB)

Flash

(<2MB)

DMA

FMC

(<64MB)

QSPI

(<64MB)

Internal Memory

External Memory

Interfaces

FIGURE 4.1: Microcontroller (MCU) Architecture Block Diagram

We answer this question by analysing how current inference frameworks can be inte-

grated with external memories. For this exploration, we utilised MCU platforms by

STMicroElectronics based on the ARM Cortex-M architectures as these devices had a

mature and open-source software stack that made investigation easier and also lead

to these to be used as a widely used platform for inference at < 1W (Lin et al., 2020;

Banbury et al., 2021; Liberis and Lane, 2020; Rusci et al., 2020a; Fedorov et al., 2019).

However, we note that the generic model of the target device we adopt in Figure 4.1

would be applicable to other low-power devices as well. In our study of current infer-

ence frameworks, which is detailed in Section 2.4.2.1, we showed that current inference

frameworks had a limitation where they placed all weight and activation tensors in the

same memory segment, which is mapped to either internal or external memory. We

show that this low resolution placement strategy is unable to achieve acceptable ac-

curacy or latency as it does not utilise the memory hierarchy. While internal storage

and memory is fast, its limited capacity imposes constraints on model size resulting in

models having low accuracy. We show that the size constraints can be alleviated, and

acceptable accuracy can be achieved by using external alternatives which have enough

capacity to hold state-of-the-art networks weights and activation tensors. However,

this approach to using external memories suffers from low latency due to the slower

access latency of external memories.

We propose the TinyOps inference frameworks to combine the advantages of speed and

size of internal and external memories. TinyOps uses external memories as main mem-

ory and overlays data for an operation in the inference graph in internal memory when

it is to be performed. To meet internal memory constraints we utilise a partitioning
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scheme which partitions operations in the inference graph into a number of indepen-

dent tiny operations which process smaller independent blocks of the input tensor. To

mitigate the access latency of external memories, the data copying is overlapped with

data processing. This is accomplished by offloading the data movement to the DMA

and employing a double buffering strategy which allows the DMA to copy data in

parallel with the CPU. This approach opens a new design space for deploying models

from the larger external memory design space with fast internal memory like inference

latency.

The work presented in this chapter addresses the research question to make the follow-

ing contributions

• TinyOps Inference Framework: We propose the TinyOps inference framework

that opens a new design space for MCUs. We adopt a holistic view of MCU ar-

chitectures applicable to a range of MCUs to show how external memories can be

effectively used in combination with the DMA to perform inference from external

memory with fast internal memory like latency.

• Experimental Evaluation: We perform experiments to evaluate the performance

of the TinyOps inference framework with state-of-the-art CNN models on the Im-

ageNet dataset (Deng et al., 2009) demonstrating that it is able to reduce inference

latency by up to 1.4-2.5x. Experiments are performed across three different MCU

platforms to demonstrate the portability of TinyOps.

• Open-Source Software: The TinyOps inference framework is ported to three

commercial off-the-shelf platforms and integrated with the low-level drivers of

the platform with code available at https://github.com/sulaimansadiq/TinyOps.

4.1 Internal vs External Memory

To analyse the performance of external memory and how it can be used in DNN in-

ference on MCUs we studied how external memories could be utilised with current

inference frameworks. As our baseline, we utilised the TensorflowLite-Micro (TFLM)

inference framework and CMSIS-NN kernels due to their open-source nature, flexibil-

ity and portability between devices.

As discussed in Section 2.4.2.1, a limitation of inference frameworks on MCUs, includ-

ing TFLM, was that they did not support the use of a memory hierarchy. Looking at

this from an implementation lens, this was due to the usage of default compiler sections

and memory placement strategies. This strategy was used to place objects required for

inference including the inference framework code, the constant weight tensors and the
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activation tensors. By default, these were compiled into the .text, .data and .bss com-

piler sections respectively.

Internal Memory Configuration With the default memory placement strategy, the

compiled sections were placed in volatile and non-volatile memory segments which

mapped to internal SRAM and NOR Flash as shown in Figure 4.2. This configuration

was utilised by the majority of prior works which we refer to this as the internal mem-

ory configuration for deployment.

With this flat memory hierarchy, the operations were executed as shown in Figure 4.3

with the procedure to perform inference shown in Algorithm 2. As can be observed

the procedure simply consists of sequentially performing the operations in the infer-

ence graph. The operations are performed by simply getting references to the input,

output, weight tensors (if applicable), quantisation parameters in addition to the low-

level kernel required to perform the operation. In the internal memory configuration,

all the weights reside in internal Flash with activation tensors allocated memory in in-

ternal SRAM. As can be observed in Figure 4.3, this approach materialises the entire

tensor in internal memory for processing.

We studied the storage and memory requirement of state-of-the-art CNN architectures

derived for MCU and mobile devices which are shown in Table 4.1. Statistics for the

MCUNet family of models are as reported by Lin et al. (2020, 2021), while the statistics

for the remaining models derived for mobiles were generated by deploying the mod-

els using TFLM. The models were trained on the ImageNet dataset. A complete set

of hyper-parameters is given in Section C.3 in Appendix C. As can be observed, the

MCUNet family of models derived for internal storage and memory have lower accu-

racy due to the constraint on the number of weights in the model and the size of the
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Algorithm 2 Vanilla Inference Pipeline

Inputs: NN_graph, the inference graph. input, the tensor input to the NN
Output: output, the tensor output from the NN

1: function INVOKEVANILLA(NN_graph, input)
2: for op in NN_Graph do

3: inputs = GETINPUTTENSORS(op)
4: weights = GETWEIGHTTENSORS(op)
5: quantParams = GETQUANTISATIONPARAMETERS(op)
6: KERNEL = GETKERNEL(inputs, weights, quantParams)
7: output = KERNEL(op)
8: end for

return output
9: end function

Model MACs RAM Flash Acc

MCUNetV1-F469 67M 242KB 878KB 60.3%
MCUNetV2-F469 119M 196KB 1010KB 64.9%
MCUNetV1-F746 82M 293KB 897KB 61.8%

MNASNet 314M 1118KB 4.79MB 75.2%
ProxylessNAS 320M 1095KB 4.47MB 74.6%
MobileNetV3 215M 1232KB 4.26MB 72.3%

TABLE 4.1: Memory and storage requirements for state of the art models developed
for microcontroller and mobile deployment scenarios

activation tensors. The mobile models on the other hand, have a much higher memory

and storage requirement.

Comparing with the amount of internal storage and memory available on MCU plat-

forms, we found that even high-end MCUs, such as the STM32H7 series by STMicro-

Electronics which host up to 512KB of SRAM and 2048KB of Flash, are unable to meet

the requirements of the state-of-the-art mobile models.
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TABLE 4.2: Cortex-M based off-the-shelf platforms used with varying specifications
and constraints.

Platform Architecture Core Clock (MHz)
Internal External

D-Cache (KB) SRAM (KB) Flash (KB) FMC (KB) O/QSPI (KB)

L552 ARMv8 M33 110 : 192 512 2048 8192
F469 ARMv7 M4 180 : 256 1024 8192 8192
F746 ARMv7 M7 216 4KB 320 1024 8192 8192

External Memory Configuration To alleviate the constraint on model size, we pro-

pose using external memories. As shown in Figure 4.1 and discussed previously in Sec-

tion 2.4.1, the MCUs, feature external memory interfaces, which can be used to extend

the limited internal storage and memory address space with sizeable external memory

and storage.

We utilised off-the-shelf MCU development kits by STMicroelectronics which supple-

mented the internal storage and memory as in Table 4.2. On the F469 and F746, the

internal memory and storage address space were extended with SDRAM and NOR

Flash on the FMC and QSPI interfaces respectively. On the L552 development kit, a

slightly different memory configuration was used due to limitations with available off-

the-shelf development kits. On this platform, the internal memory address space was

extended with SRAM and HyperRAM on the FMC and OSPI interface with storage

being supplemented with a 32GB SD Card.

To benchmark the performance of external memories with the existing TFLM frame-

work, we configured the inference framework to perform inference with an external

memory configuration as shown in Figure 4.2. This was accomplished by configuring

the low-level drivers for the FMC, O/QSPI and SDMMC interfaces on the MCU and

modifying the linker command file to place the .data and .bss objects containing the

weight and activation tensors into the external storage and memory segments. On the

L552, the external SD Card providing non-volatile storage for the model weights was

not memory mapped due to which the inference framework could not directly access

this space during inference. This issue was dealt with by using the SD Card as the

load address and copying the weights from the SD Card to memory mapped external

memory on the OSPI interface on device startup.

4.1.1 Performance Evaluation

We evaluated the performance of the external memory configuration by comparing it

to the internal memory configuration. To decouple the effect of the model on infer-

ence latency, we deployed the same model derived for internal memory using either

configuration on the platforms. The internal memory model was derived by using the

conventional approach of scaling.
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Model Width Resolution (pixels) Flash (KB) SRAM (KB)

ProxylessNAS

1.00 224 4579 1095
1.00 208 4579 987
0.90 224 3980 1072
0.90 208 3980 964

TABLE 4.3: Effect of Scaling Width and Resolution on Memory Requirement

We note that we moved from models designed from the cell based search space of

DARTS (Liu et al., 2018) to models derived from the mobile search space (Tan et al.,

2019; Howard et al., 2019; Cai et al., 2020) as these were shown to be superior in per-

formance to DARTS. Further we adopted the approach of searching for the width and

resolution of models as this provided better performance than searching for candidate

operations in the cell based search space. A performance comparison of the two ap-

proaches can be found in Section C.1 in Appendix C.

Scaling for Reduced Memory and Storage The scaling of the width and resolution is

frequently used to reduce the storage and memory requirement of deploying a model.

The width hyper-parameter is scaled by reducing the number of channels in the back-

bone model while the resolution is scaled by reducing the spatial pixels of the input

resolution. The memory requirement in deployment is a function of the width and

resolution, while the storage requirement is a function of the width only. As shown in

Table 4.3, reducing the input resolution from 224 to 208 has no effect on the non-volatile

memory requirement but reduces the required amount of volatile memory as the spa-

tial dimension of the intermediate representations decreases throughout the network.

On the other hand, scaling down the width from 1.00 to 0.90 reduces the required non-

volatile memory from 4579KB to 3980KB as the filters in the Conv and DepConv layer

have less channels which reduces the number of parameters in the model. Addition-

ally, it also reduces the volatile memory usage as it results in intermediate tensors with

a smaller channel dimension and therefore overall smaller tensor sizes.

Through the remainder of this thesis, we refer to a ProxylessNAS/MNASNet/Mo-

bileNetV3 base model scaled down to any width or resolution e.g. width of 0.35 and

resolution of 192 as ProxylessNAS/MNASNet/MobileNetV3-w0.35-r192.

Latency and Power Using the conventional approach of scaling, we derived scaled

variations of a ProxylessNAS model which achieved maximum accuracy according to

the diverse internal storage and memory constraints of the platforms in Table 4.2. These

models were derived to be Proxyless-w0.10-r192, Proxyless-w0.30-r144 and Proxyless-

w0.30-r176 for the L552, F469 and F746 respectively. The inference latency and power
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FIGURE 4.4: Performance Comparison of Internal and External Memory

consumption of deploying the models using either internal or external memory config-

uration on the platforms is shown in Figure 4.4. As can be observed, the inference

latency of the external memory configuration was 1.5-3.5x slower than the internal

memory configuration whilst the power consumption was 1.1x-2.2x higher.

The variation in the difference of the latency and power between the configurations

across the devices could be attributed to the presence of data cache on the F746, differ-

ent models being deployed across devices or the types of memory being utilised in the

hierarchy on the devices. In Chapter 5, we study the design of different models and

their impact on inference latency. However, we consider a study of the effect of using

different types of memory in the memory hierarchy on the inference latency outside

the scope of this thesis. In the next section, we discuss the design of TinyOps and how

we accelerate inference from external memory.

4.2 Design of TinyOps

In the previous section we compared the performance of performing inference from ex-

ternal or internal memory using the traditional computing paradigm. We highlighted

the limitations of the design spaces where the internal memory design space achieved

limited accuracy whilst the external memory design space suffered from high inference

latency when using the prior inference frameworks. Our analysis of the limitations of

both of these approaches leads to the question: how can we mitigate the high inference

latency of CNNs when using external memories?
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4.2.1 Insights

We propose the TinyOps framework that combines the advantage of external memory

(size) and internal memory (speed). We make a number of insights considering the

MCUs hardware and how the required computation is perfomed on MCUs to develop

TinyOps

• Microcontrollers have a range of external memory interfaces and peripherals

available across all platforms which are not utilised.

• External memories and storage are plentiful and sufficient to store state-of-the-art

architecture’s intermediate buffers and weights.

• The microcontrollers have a single CPU that, at any given time is processing only

a small part of the data.

• Computation on different parts of a tensor can be divided such that the sub-

computations are independent of each other.

• The DMA peripheral is able to operate in parallel with the CPU to enable data

transfer to take place in the background.

• Data that is less frequently read or written to, can be off-loaded to external mem-

ory with negligible performance loss.

Combining these insights, we propose the TinyOps framework which utilises a parti-

tioning and overlaying engine to accelerate inference from external memory. We de-

clare and initialise all model data in external memory and propose the usage of over-

laying techniques to move data into internal memory when it is required for process-

ing. However, intermediate tensors can get quite large and it would not be possible to

hold the entirety of the input and output tensor in internal memory. To meet the inter-

nal memory constraints, a partitioning strategy is utilised to divide the operations in

the inference graph into multiple tiny operations with reduced memory requirement

allowing their data to be held in internal memory. To effectively hide the latency of

fetching data from external memory, the overlaying scheme offloads the data move-

ment to the DMA and employs a double-buffering strategy to overlap the data move-

ment performed by the DMA with the processing performed by the CPU.

4.2.2 Seamless Integration

TinyOps integrates seamlessly into existing inference frameworks as shown in Fig-

ure 4.5. We utilised TensorflowLite-Micro as a baseline on which to build TinyOps

due to its open-source nature and widespread use. In the default mode of operation,
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the interpreter performs inference by sequentially running through operations in the

inference graph, and making calls to the low-level kernel associated with the opera-

tion through the APIs. TinyOps partitioning and overlaying engine sits between the

interpreter and the low-level kernels and drivers as shown in Figure 4.5. Whenever

the interpreter makes a call to the low-level kernel, TinyOps catches these calls and

executes the operation by interfacing with the low-level kernels and DMA drivers to

perform the data movement and processing on tiny tensors in a seamless manner.

4.2.3 Operation Categorisation

To accelerate the inference of an NN from external memory would require accelerating

each of the operations that compose the NN. For the purpose of developing the Tiny-

Ops partitioning engine we categorise the operations utilised in state-of-the-art CNNs

into three categories as below to analyse what data they require in performing an op-

eration and what parts of the network to focus on.

• One-Input Parameterised Operations In state-of-the-art CNNs, Pointwise Con-

volutions, Grouped Convolutions fall into this category where there is one input

activation tensor and a set of weight and bias tensors which are inputs to the

low-level convolution or matrix-multiply kernels to produce an output tensor.

Additionally, the quantisation scheme produces multiplier and shift parameters

which are used in the quantisation arithmetic to produce the output tensor. Con-

volution operations in this category also require a partial im2col buffer. We note

this as the most important category as > 80% of operations in state-of-the-art

CNNs fall into this category.

• Two-Input Non-Parameterised Operations Add operations generated by skip

connections in the network fall into this category. These operations have two



4.2. Design of TinyOps 71

input tensors which are fed to the low-level kernels to produce an output tensor.

They have scalar multiplier and shift quantisation parameters.

• One-Input Non-Parameterised Operations This category includes the Average

Pooling operation. In state-of-the-art CNNs, there is only one average pooling

operation at the end of the network.

We note that Batch Normalisation and Activation Function (ReLU6) layers extensively

utilised in state-of-the-art models also fall in the category of one-input non-parameterised

operations, however as these are fused with Convolution or Linear layers they did not

need to be treated separately. We note that Linear of Fully Connected layers were im-

plemented and treated as pointwise convolutions with unit spatial resolution.

4.2.4 Overlaying Strategy

The internal memory configuration adopted by inference frameworks held all the data

including tensors, quantisation parameters, data structures utilised by the run-time

in internal memory. The limitation in this case, however, is that internal memory is

not sufficient to hold all the data for an operation. In our approach we reduce the

memory requirement by utilising internal memory only for frequently accessed data.

This included input, weight and bias tensors, the partial im2col buffer in addition to

quantisation parameters.

Frequently Accessed Data We did not overlay output tensors, data structures used

to manage tensors or other meta-data in the inference graph. The decision to not over-

lay output tensors was based on the fact that the output tensors are accessed sparsely

compared to the input tensor in convolution operations which compose the bulk of the

CNN. We demonstrate this analytically by comparing the number of read and write

operations required to produce one output element in pointwise and grouped convo-

lutions.

For pointwise convolutions the number of read operations to produce a single output

element would be C or the number of input channels. The produced element would be

written to memory with a single write operation. We found that in modern CNNs (Ef-

ficientNet, MobileNetV3, MNASNet, ProxylessNAS), the number of channels through-

out the network was between 32 and 1152. Similarly, grouped convolutions would

require K2 read operations which would produce and write one output element, where

K is the kernel size often with a value of 3, 5, 7. This would imply that the read oper-

ations in convolution operations, would be atleast an order of magnitude higher than

the write overhead. However, as output tensors are typically similar in size to input

tensors, the memory requirement for overlaying would be similar in both cases. As
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such, we did not overlay output tensors as this would provide little performance gain

with a high memory cost.

This approach alone however, was not sufficient in reducing the memory requirement.

Specifically, we noted that input tensors in the network could grow quite large. For

example, in a MobileNetV3 model the output of the fifth pointwise convolution was

observed to be 112× 112× 64. This would require 802, 816 bytes which would be in-

feasible on the MCU platforms with limited memory. To reduce this memory require-

ment, we utilised a partitioning scheme discussed in the next section that decomposed

the input tensor into tiny tensors that could be accommodated in internal memory.

We note that the partitioning scheme was only applied to the input tensors. The mem-

ory requirement for bias tensors and quantisation parameters was found to be low at

4Cmax bytes, where Cmax was the maximum number of channels in the network and

the constant factor of 4 accounted for the 32 bit precision used for the parameters. As

mentioned previously, we found Cmax to be 1152 across state-of-the-art CNNs which

would lead to a peak memory requirement of 4, 608 bytes to overlay all of the bias and

quantisation parameters.

Similarly, we found the size of the filters to range from between 288 bytes to 221, 184

bytes. The smaller filter sizes were found towards the beginning of the network, where

the channel dimension of activation tensors is small whilst the spatial resolution is

large. The larger filters were found in the latter part of the network where the channel

dimension of activation tensors was large and spatial resolution was small. A large

spatial resolution would imply a larger number of receptive fields which would require

multiple reads of the filter weights, while a lower spatial resolution would require less

reads of the weights. Based on this observation we only overlayed filters that could be

accommodated in internal memory.

Another approach could be to partition the filters and break down the convolution into

multiple convolutions. However, this would require modifying the underlying kernels

which we opted to avoid, as kernel specific optimisations would limit portability of the

framework. As we demonstrate later in Section 4.3, overlaying a subset of filters for

larger models yielded satisfactory performance.

Data Fetching and Processing Overlapping We note that in performing inference

in an operation, the input tensors had the largest memory requirement. Sequentially

performing the data movement and processing of the input tensors would lead to high

data fetching overhead. As such, we double buffered the overlaying of the tiny tensors

which allowed overlapping of the data movement and processing using the DMA. The

remaining data including the weight and bias tensors in addition to the quantisation

parameters was not double buffered. This allowed for a network level pipeline to be

established between the DMA and the CPU that we detail in Section 4.2.7.
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Memory Requirement In total, our overlaying strategy required seven fast buffers

to be realised in internal memory. Four buffers were utilised to buffer the tiny input

tensors of two-input add operations, with three being utilised for the bias tensor and

multiplier and shift quantisation parameters. To overlay the filters we reused one of

the four tiny input tensors which would be otherwise unused in one-input parametric

operations. Similarly, the second of the otherwise unused buffers was used for the

im2col buffer. To overlay as many filters as possible, any leftover internal memory was

assigned to the buffer reused for filter overlaying.

Using this approach the buffer sizes were allocated as in Table 4.4 where Ht, Wt and Ct

are the height, width and number of channels of the largest tiny tensor in the network,

Imax is the size of the largest im2col buffer in the network, Cmax is the largest number

of channels in the network, M is the memory budget and R = M − (3× B0 + B3 +

B4+ B5+ B6) is the memory left in the budget after all buffers have been assigned. We

detail how the sizes of the tiny tensors were determined in the next section.

TABLE 4.4: Sizes of Fast Buffers Used in TinyOps Overlaying Strategy

Buffer # Usage Size (bytes)

B0/B1 Tiny Tensors Ht ×Wt × Ct

B2 Tiny Tensors, Filters Ht ×Wt × Ct + R
B3 Tiny Tensors, im2col max(Ht ×Wt × Ct, Imax)
B4 Bias Tensor 4× Cmax

B5 Quantisation Parameters 4× Cmax

B6 Quantisation Parameters 4× Cmax

As can be observed, the size of B0 and B1 are determined from the largest tiny tensor

in the network. Similarly, B4, B5 and B6 are allocated for the bias and quantisation

parameters according to the largest number of channels in the model. As B3 is used

for tiny tensors and the im2col buffer, its size is determined by the larger of the two

sizes. Finally, as B2 is used for tiny tensors and filter overlaying, its size is selected

to accomodate the largest tiny tensor in the worst case. However, in order to overlay

the largest number of filters we assigned any memory remaining in the budget to this

buffer.

4.2.5 Partitioning Scheme

To lower the memory requirement of operations in the inference graph, we partitioned

the operations into tiny operations that processed smaller independent blocks or tiny ten-

sors in the input tensor. We declared the input tensor in external memory and logically

partitioned the input tensor into a number of tiny tensors that could be accommodated

in fast internal memory buffers. In this section we detail the implementation of the

partitioning scheme.
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FIGURE 4.6: Partitioning of NHWC tensors along H dimension

4.2.5.1 NHWC Partitioning

We utilised TensorflowLite-Micro as a baseline which stored activation and weight ten-

sors in the NHWC layout. We logically partitioned tensors in the H dimension due to

the limitations of the on-board DMA which is only able to copy contiguous chunks of

data. Partitioning along the H dimension, corresponding to the rows, resulted in tiny

tensors that occupied contiguous and consecutive blocks of memory. This is demon-

strated in Figure 4.6, where the first tiny tensor occupies a contiguous block of memory.

This allowed tiny tensors to be copied in a single DMA transaction.

4.2.5.2 Partitioning an Operation

We introduced a partitioning factor, which controlled how many tiny tensors a tensor

was logically partitioned into. When partitioning any operation in the inference graph,

the tiny tensors were kept equal in size. In the case of the number of rows, H not being

a multiple of the partition factor, P, H%P rows were equally split between the first

H%P tiny tensors.

Using this approach, the two-input add operations used to perform element-wise ad-

dition of tensors were easily partitioned. On the other hand, convolution operations

required closer attention with the partitioning details depending on the kernel size and

padding. For convolution layers with a kernel size greater than 1, there would be a

number of receptive field that fell over two tiny tensors. This case was dealt with by
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copying in extra rows being included in a tiny tensor needed to create valid receptive

fields.

Another factor to consider in the logical partitioning was the application of padding.

Whereas an input tensor, would be padded on the outer edges, this would not always

be true for tiny tensors as a tiny tensor in the middle of the input tensor would only

have padding to the left and right edges but not the top and bottom. Similarly, tiny

tensors at the top or bottom of the input tensor would require padding on only three

sides as opposed to the input tensor having padding on all four sides. According to

the location of the tiny tensor within the input tensor, the padding details were stored

alongside the partitioning strategy.

The details of the partitioning strategy required to process the input tensor including

the partition factor or number of tiny tensors, their start and end, dimensions and op-

eration data such as padding were determined statically at initialisation and stored

in a data structure alongside the inference graph. For context, the details of the data

structure are shared in Listing C.1 in Appendix C.

4.2.5.3 Limitations

We note that a limitation of this 1-D partitioning approach would be that the mini-

mum size would be dictated by the kernel size of the filter in addition to the width

or channels of an intermediate representation. For example, the size of each of the

two 120× 120× 32 tensors input to add operation would be 460, 800 bytes assuming

8-bit quantisation. Using a 1-D partitioning approach in the H dimension these tensors

could, at maximum, be partitioned with a partition factor of 120. This would produce

120 tiny tensors of size 3, 840 bytes.

The minimum amount of required memory to overlay these tiny tensors with double

buffering would therefore by 4× 3, 840 = 15, 360 bytes. As such, the 1-D partitioning

approach would not be usable on devices with less than 15, 360 bytes of internal mem-

ory. Similarly if the 120× 120× 32 were to be convolved with a 3× 3× 32 kernel, the

smallest tiny tensor would be of size 3× 120× 32 = 11, 520 bytes with 4 tiny tensors

requiring a minimum of 46, 080 bytes. In practice however, we found that this parti-

tioning scheme used in conjunction with our overlaying approach was able to deploy

large models within internal memory constraints of a range of MCUs as we show in

the coming sections.

Another limitation of this approach is that it is not applicable to linear layers. In our

work, we implemented linear layers with pointwise convolutions where the input ten-

sor had unit spatial resolution. In this case, we could not partition the input tensor as
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there was only one row in the input tensor that would not be divisible further. How-

ever, we noted that state-of-the-art CNNs only utilised one linear layer at the final clas-

sification layer. Across the CNNs we examined, including EfficientNet, MobileNetV3,

MNASNet, ProxylessNAS, the input to the linear layer was observed to be less than

1280 bytes which did not require partitioning anyway.

4.2.6 Partitioning the Inference Graph

Having discussed our approach to how we logically partitioned an operation, we now

detail how we derived the parameters of the partitioning strategy of an inference graph

and allocate memory for the fast buffers required by our overlaying scheme.

The partitioning scheme used a simple greedy approach to determine the partitioning

strategy that is able to implement the overlaying criterion described in Section 4.2.4

under the available memory budget. The algorithm to derive the partitioning strategy

is listed in Algorithm 3.

The partitioning scheme first determines how much memory is utilised by the bias

tensors, quantisation parameters and im2col buffers as in Line 3 to 5. By sequentially

looping through all possible partition factors (Line 7), the algorithm then determines

the smallest possible partition factor, pmax through which all operations can be parti-

tioned to meet the memory constraint. The partition factor is incremented to reduce the

memory requirement till the total memory required for the seven buffers is lower than

the memory constraint (Line 14, 16). When a valid partitioning strategy is found, the

buffers are allocated according to the sizes calculated by the partitioning scheme. This

greedy approach determines the smallest partition factor, pmax that is able to partition

the operation with the largest memory requirement which dictates the peak memory

usage and allows us to allocate buffer sizes according to the worst case scenario.

However, there would be many operations in the inference graph that could utilise

a smaller partition factor than pmax and still be accommodated within the allocated

internal memory buffers. In such a case, having a higher partition factor would result

in unnecessary overheads including cache maintenance, DMA interrupt servicing and

redundant data copying. To reduce these overheads, we perform a second pass through

the inference graph to find the smallest partition factor for all operations that can be

accommodated in the allocated buffers as shown in Line 24 onwards.

4.2.7 Network Inference Pipeline

We used external memory as main memory and declared fast buffers in internal mem-

ory which were able to accommodate data for tiny operations derived through the pre-

viously described partitioning scheme. With this overlaying approach, inference is



4.2. Design of TinyOps 77

Algorithm 3 Pseudocode to determine the partitioning strategy for an NN
that meets a particular memory constraint. PARTITIONOP is used to parti-
tion an operation with a partition factor, p as described in Section 4.2.5.2.
The helper functions GETMAXRECEPTIVEFIELDSIZE, GETMAXBIASSIZE, GET-
MAXTINYTENSORSIZE are used to find the size of the largest receptive field,
bias and tiny tensors in the network.

Inputs: NN_graph, the inference graph. mconstraint, the memory constraint
Output: strategy{num_ops}, partitioning strategy for all operations in NN_graph

1: function PARTITIONNN(NN_graph, mconstraint)
2:

3: mim2col = GETMAXRECEPTIVEFIELDSIZE(nn_Graph)
4: mbias = GETMAXBIASSIZE(nn_Graph)
5: mquant = 2 ·mbias

6:

7: for p← 2, 224 do ▷ Loop over possible partition factors, p
8:

9: for op in NN_graph do ▷ Calculate strategy for each op in graph
10: strategy[op] = PARTITIONOP(op, p)
11: end for

12:

13: mtiny_tensor = GETMAXTINYTENSORSIZE(strategy)
14: mtotal = 3 ·mtiny_tensor+ MAX(mtiny_tensor, mim2col) +mbias + mquant

15:

16: if mtotal ≤ mconstraint then ▷ If memory constraint is met
17: ALLOCATEBUFFERS() ▷ Allocate seven fast buffer in internal memory
18: pmax = p ▷ pmax required to partition the largest operation
19: break
20: end if

21:

22: end for

23:

24: for op in NN_graph do

25:

26: for p← 2, pmax do ▷ Find smallest partition factor < pmax

27:

28: opStrategy = PARTITIONOP(op, p)
29:

30: if GETMAXTINYTENSORSIZE(opStrategy) ≤ mtiny_tensor then

31: strategy[op] = strategytemp ▷ Update ops partitioning strategy
32: break
33: end if

34:

35: end for

36:

37: end for

38: return strategy
39:

40: end function



78 Chapter 4. TinyOps: A New Model Design Space for MCUs

X2a => B1 X2b => B0

AvgPool2a

X2c => B1

AvgPool2b AvgPool2c

S3 S1 S2 S3

Last Part of 

Previous Operation
B1 B0 B1

Y2a => B0

First Part of Next 

Operation

Output, Y1

Y2a
Y2b
Y2cSDRAM Buffer

SRAM Buffer

DMA Copy, SRC => DST

SDRAM Buffer

SRAM Buffer

DMA Copy, SRC => DST

S1

Input, X2

X2a
X2b
X2c

Input, X2

X2a
X2b
X2c

FIGURE 4.7: TinyOps Operation Execution

performed by fetching data from external memory to internal memory on a need to

compute basis.

To hide the latency of fetching data from external memory to the internal memory

buffers, we offload the data movement from external memory to internal memory. As

the DMA is able to operate independently of the MCU core, we are able to establish

a pipeline between the MCU core and the DMA. In the pipeline, as the MCU core

is processing one tiny tensor of the input, the DMA copies in the next tiny tensor in

parallel. This effectively allows us to hide the latency to fetch data from the slower

external memory. The pipeline with the logical paritioning of tensors and DMA based

overlaying is illustrated in Figure 4.7 for an average pooling operation.

As can be observed the input and output tensors, X2 and Y1 are stored in external

SDRAM. These tensors are logically partitioned by a partition factor of 3 into 3 equally

sized tiny tensors X2a, X2b and X2c. The limited SRAM is used for declaration of fast

buffers, B0 and B1, which are allocated memory according to the size of the tiny tensors.

The pipeline begins with the DMA copying data for the tiny tensor X2a to the fast

buffer B1. After the data has been copied, the MCU core proceeds to apply the average

pooling operation, AvgPool2a to the tiny tensor and write the output to the logical tiny

tensor, Y2a which is located in SDRAM. While the MCU core is processing the tiny

tensor, X2a residing in buffer B1, the DMA is configured to copy the next tiny tensor to

the second buffer, B0. By the time the MCU core is done processing X2a in B1, the data

has been copied from X2b to B0, and the MCU core seamlessly moves to processing

the data in B0. The DMA then begins copying X2c to the newly freed buffer B1. This



4.2. Design of TinyOps 79

process continues until the entire operation has been executed as a sequence of tiny

operations. The inference algorithm for an entire NN using this pipelined approach is

shown in Algorithm 4.

Network Level Pipeline: To perform inference, TinyOps establishes a network level

pipeline between the CPU and DMA that is synchronised at the tiny operation level.

The prolog of the pipeline consists of copying in the data for the first tiny operation of

the first operation using the meta-data from the inference graph and the partitioning

strategy for the operation as shown in Line 3 to 5. The framework then sequentially

loops through the operations in the inference graph. For each operation, the framework

then sequentially computes the tiny operations that have been produced through the

partitioning algorithm (Line 9). Before getting references to the input data, the CPU

synchronsises with the DMA to make sure the data has been copied in as in Line 11.

Once the data has been copied, the DMA is configured to move the next tiny operations

data into internal memory using the previously described double buffering strategy. If

the current tiny operation is the last in the current operation, a DMA transaction is

initiated by the CPU to copy in data for the next operations first tiny operation (Line

14), otherwise the data for the current operations next tiny operation is copied in (Line

18). After the DMA transactions are initialised the CPU gets references to the data for

the current tiny operation and computes the current tiny operation in parallel with

the DMA as in Lines 21 to 25. The tiny operations and operations are sequentially

performed in this manner to perform inference with the NN.

DMA Configuration & Synchronisation: Communication between the DMA and

CPU was maintained via a light-weight circular queueing mechanism. Using this ap-

proach, the CPU is able to asynchronously make data movement requests that can be

performed by the DMA. The circular queue consisted of a number of buffers used to

store data structures holding configuration parameters for a data transaction (source,

destination address and copy size) along with a read and write pointer. The queue is

initialised with the read and write pointer set to the same value which represents the

queue empty condition. To make a request, the CPU writes the configuration to the

buffer pointed to by the write pointer followed by an increment of the write pointer.

After putting the request into the queue, the DMA state is checked. If the DMA is idle,

the DMA is triggered to start the transaction. In case the DMA is busy with a transac-

tion, the CPU simply puts the request in the queue without configuring the DMA as

only one transaction can be performed at a time. In this scenario, the DMA is config-

ured in the interrupt service routine (ISR) that is called on completion of a transaction.

When the ISR is entered, the read pointer is incremented to signal that the previous

data movement request was read and successfully completed. Following this, the read

and write pointers are checked. If the pointers are unequal, it implies that there is a
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pending transaction in which case the DMA is configured by the CPU in the ISR. The

case of equal pointers implies that the queue is empty and that there are no pending

transactions, in which case the ISR can be exited.

In the inference pipeline described in Algorithm 4, we maintained synchronisation be-

tween the DMA and CPU by polling the read and write pointers. As shown in Line 11,

the CPU waited until all data transactions were completed by polling the condition of

the read and write pointers being equal.

Algorithm 4 TinyOps Inference Pipeline

Inputs: NN_graph, the inference graph. strategy, the partitioning strategy. input,
the tensor input to the NN

Output: output, the tensor output from the NN

1: function INVOKETINYOPS(NN_graph, input)
2:

3: COPYINWEIGHTTENSOR(1) ▷ Initialise pipeline
4: COPYINQUANTISATIONPARAMTERS(1)
5: COPYINTINYTENSORS(strategy[1], 1)
6:

7: for op in NN_Graph do

8:

9: for i← 1, num_tinyops_in_op do ▷ Sequentially compute tiny ops in op
10:

11: SYNCHRONISEDMACPU() ▷ Wait till data has been copied
12:

13: if ISLASTTINYOP() then ▷ Copy in data for next ops first tiny op
14: COPYINWEIGHTTENSOR(op+1)
15: COPYINQUANTISATIONPARAMTERS(op+1)
16: COPYINTINYTENSORS(strategy[op+1], 1)
17: else ▷ Copy in data for current ops next tiny op
18: COPYINTINYTENSORS(strategy[op+1], i+1)
19: end if

20:

21: tiny_inputs = GETTINYINPUTTENSORS(op, i)
22: weights = GETWEIGHTTENSOR(op)
23: quant_params = GETQUANTISATIONPARAMETERS(op)
24:

25: tiny_output = KERNEL(tiny_inputs, weights, quant_params)
26:

27: end for

28:

29: end for

30: return GETOUTPUTTENSOR()
31:

32: end function
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4.2.8 Performance Analysis

Using the previously explained strategy of operation partitioning and overlaying from

external to internal memory, the TinyOps inference framework mitigates the overhead

of memory fetches from external to internal memory. This allows inference to be per-

formed with internal memory like latency. To achieve exactly the same latency as

performing inference from internal memory would not be possible due to extra over-

heads in the TinyOps inference scheme such as repetitive cache maintenance opera-

tions, DMA configurations and interrupt handling operations. In such a scenario, it

might be useful to look at theoretical bounds on performance that could be achieved

with such methods. However, it is difficult to make such theoretical estimates accu-

rately. This is due to the complexity of analytically modelling the inference execution

on the device which involves control and compute instructions, complex data move-

ment in the memory hierarchy, different data storage layouts and access patterns in

addition to constantly varying cache states. Prior works in performance modelling usu-

ally take assumptions to simplify the inference execution such as ignoring the cache,

limiting the considered instructions or in some cases ignoring compute latencies if the

workload is memory bound (Ofenbeck et al., 2014; Yuan et al., 2024) which can lead to

inaccurate latency estimates. As such, prior works developing inference frameworks

and kernels (Lai et al., 2018; Lin et al., 2020) rely on measuring on-device inference la-

tency for performance analysis. Due to the mentioned limitations, we adopt a similar

approach where we measure on-device inference latency and compare the performance

of TinyOps with the internal and external memory configuration for performance anal-

ysis which we detail in the next section.

4.3 Experiments and Results

In this section, we detail the experiments we carried out to evaluate our design deci-

sions in addition to comparing the performance of the internal and external memory

configuration with the TinyOps approach. In our evaluation we considered metrics in-

cluding the accuracy, latency, power and energy per inference which are vital for high

performance deployment on resource constrained edge devices. We used the commer-

cial off the shelf devices by STMicroElectronics specified in Table 4.2.

4.3.1 Overlaying Strategy

We analysed the effect of our strategy of overlaying different data used by operations

including the input tensors, filter weights, bias tensors and quantisation parameters.

We derived a scaled variation of a ProxylessNAS model for the constraints of the F469

device with internal memory and storage constraints of 256KB and 1MB respectively.
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Within these constraints, the proxyless-w0.30-r144 model was deployed which had a

memory and storage requirement of 230KB and 908MB. The latency reduced by over-

laying each of the parameters was measured on-device and compared with the latency

of deploying the model in the internal or external memory configuration. This is shown

in Figure 4.8.
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As can be observed, TinyOps was able to reduce the latency of the external memory

configuration by 2x_ using only 102KB of internal SRAM. Compared to the internal

memory configuration TinyOps had a slightly higher inference latency (95ms^) with

2.3x lower internal SRAM usage than the internal memory configuration which re-

quired 230KB for all of the models data.

Looking at how each of the parameters contributed to the reduction in latency, we

observe that the overlaying of the tiny tensors and the filters had the greatest effect as

multiple elements are read from the tensors when convolving the filter with a receptive

field. The tiny tensors had the largest memory usage as they required double buffer-

ing in our approach. We note that the filters only used a small amount of memory

(6KB) as they reused memory allocated for the tiny tensor buffer that would be unused

in two-input non-parameterised operations (e.g add). Overlaying the bias tensor and

quantisation parameters utilised in the operations were able to further reduce latency

at low memory cost.

4.3.2 Energy Consumption

We compared the energy efficiency of the TinyOps approach by measuring the on-

device power consumption when performing inference. We measured the power con-

sumption using the Qoitech Otii Arch. The power consumption in a deployment sce-

nario would depend on the read and write patterns of the particular model. For ex-

ample, one model might make more reads and/or write to external memory than an-

other. To decouple the effect of the model architecture on power consumption and

study the effect of the memory configuration on power consumption, we deployed the

same model under the three different memory configurations.
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TABLE 4.5: Power Consumption of TinyOps compared to Internal and External Mem-
ory Deployment

Platform
Power (mW) Latency (ms) Energy per Inference (mJ)

Int Ext TinyOps Int Ext TinyOps Int Ext TinyOps

L552 65 205 140 855 2963 977 56 607 137
F469 290 435 380 1089 2411 1131 316 1049 430
F746 645 770 798 685 1004 772 442 773 616

We derived models for the internal memory constraints of the three platforms de-

scribed in Table 4.2 and deployed the models with the internal, external and TinyOps

configuration. The models were derived from a ProxylessNAS baseline via scaling with

proxyless-w0.10-r192, proxyless-w0.30-r144 and proxyless-w0.30-r176 deployed to the

L552, F469 and F746 respectively. We measured the average power consumption of an

inference and used this metric to derive the energy per inference based on the latency of

inference. We did not observe any significant variation between multiple independent

inferences in latency or power consumption. For deployment with TinyOps, the mem-

ory budget to derive the partitioning strategy was set as the SRAM size of the device.

The power consumption, latency and energy per inference for the different scenarios is

shown in Table 4.5.

As expected, we observed that TinyOps and the external memory configuration had

higher power consumption than the internal memory configuration due to usage of

external memory. Comparing TinyOps with the external memory configuration, we

observed that on the L552 and F469, TinyOps had lower power consumption than ex-

ternal memory inference even though it used the additional DMA peripheral. This is

due to external memory inference requiring repetitive high energy reads of filters and

tensors from SDRAM for every stride of convolution in convolution operations in ex-

ternal memory operations. On the other hand, TinyOps overlays data from SDRAM

to SRAM, requiring only one read from SDRAM with subsequent reads made from

the low power SRAM. The power saved from reduced SDRAM reads outweighed the

overhead of the DMA resulting in an overall reduction for TinyOps.

However, the same behaviour was not observed on the F746 due to the presence of

cache which reduces SDRAM reads in external memory inference by providing repet-

itive low energy data access from itself. In this case, the additional DMA used by

TinyOps outweighs the reduced SDRAM reads in external memory inference for a

higher power consumption. Nevertheless, we observed that TinyOps lower latency

outweighed the 3.5% higher power consumption, for lower energy-per-inference. Com-

paring the latency of TinyOps to the different configurations on each device, we ob-

served that TinyOps accelerated inference by 1.3x-3x compared to the external memory

configuration, whilst only being 1.1x slower than the internal memory configuration.
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4.3.3 Adaptive Memory Usage

TinyOps derived the partitioning strategy for the NN according to the specified in-

ternal memory constraint. As shown in Figure 4.9, for a Proxyless-w0.50-r192 model

requiring 4.2MB of storage and 627KB of memory, a memory budget of 256KB or 320KB

for the F469 or F746 devices can be met while accelerating inference up to 2.1x.

F469

F746

2.1x

lower
1.4x

lower

3.5x

lower

3.5x

lower

O
O

M

O
O

M

FIGURE 4.9: The adaptive partitioning strategy allows us to meet diverse memory
budgets

4.3.4 Design Space Performance Comparison

We deployed large models with the TinyOps inference framework to demonstrate how

it is able to combine the advantages of low latency and high accuracy of the internal

and external memory configuration. We utilised scaled variations of an MNASNet and

ProxylessNAS model for deployment on each of the devices listed in Table 4.2. Where

the partitioning scheme was unable to sufficiently lower the internal memory usage to

the device constraint, we reduced the size of tensors in the model by reducing the chan-

nels or width of the network through a uniform multiplier. The width multiplier was

reduced in increments of 0.25 starting from 1.00 down to 0.50 to find the largest model

that could be partitioned to meet the specific devices internal memory constraints. The

results for the largest model that we were able to deploy with the TinyOps inference

framework and a latency comparison with naive approaches utilising external memory

is shown in Table 4.6.

As can be observed, TinyOps was able to accelerate the inference latency by up to 1.4x-

2.5x across the devices compared to the external memory configuration. We note that

our prior observation, of TinyOps being more effective in reducing latency when cache

was not present on the device held true for large models as well. On the L552 and
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TABLE 4.6: TinyOps lifts the accuracy acheivable on MCUs with low inference latency

Platform Model
MACs

(M)

Params

(M)

Acc (%) Design

Space

Latency

(ms)FP32 INT8

L552 MNASNet-w0.50-r224 88 1.47 65.25 63.64
External 20058
TinyOps 8134

F469

MCUNetV1-F469 67 0.73 60.8 59.47 Internal 2547
MCUNetV2-F469 119 <1 - 64.9 Internal -

MNASNet-w0.75-r224 191 2.75 70.94 70.37
External 13139
TinyOps 6220

Proxyless-w0.75-r224 193 2.59 71.23 70.67
External 14660
TinyOps 7008

F746

MCUNetV1-F746 82 0.75 62.5 61.47 Internal 1131
MCUNetV1-F746-int4 170 1.4 - 63.5 Internal -

MNASNet-w1.00-r224 314 4.38 73 72.67
External 5278
TinyOps 3890

Proxyless-w0.75-r224 193 2.59 71.23 70.67
External 4353
TinyOps 3123

F469 where cache was not present, the inference latency was accelerated by up to 2.1x-

2.5x. On the F746, the cache was able to mitigate the slower access latency of external

memory due to which the inference latency was reduced by only 1.4x.

We observed that as the amount of internal memory available decreased on the de-

vices, the size of the largest model that could be deployed, and therefore the accuracy

achieved in deployment reduced. For example, for the MNASNet model, the F746 with

320KB of SRAM was able to accomodate the entire model, whereas the width had to

be reduced to 0.75 and 0.50 to deploy a model on the F469 and L552 with 256KB and

192KB of SRAM respectively. This was due to the limitation of the H dimensional par-

titioning scheme utilised by TinyOps. As TinyOps only partitioned tensors across the

H dimension, the minimum size of a tiny tensor would be K ·W · C where K is the

kernel size, W is the width of the representation and C is the number of channels. For

larger networks, this scheme produced tiny tensors that could not be partitioned to

meet the internal memory constraint when either K, W or C were high. To reduce the

memory requirement, we reduced C or the number of channels corresponding to the

width. While this reduced the memory requirement, it also reduced the accuracy of the

model.

The ProxylessNAS model also demonstrates a case of a model that was not amenable

to deployment with TinyOps. As can be observed, the ProxylessNAS model had to

be scaled down to a width of 0.75 for deployment of the F746, whereas on the L552, a

partitioning scheme could not be found even with a width multiplier of 0.50. This was

due to the ProxylessNAS model having intermediate representations that could not be

overlayed with the TinyOps approach. In this case, the memory requirement for fast
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internal memory buffers utilised for overlaying the tiny tensors and the im2col buffer

had to be reduced by lowering the width.

Nevertheless, the MNASNet models deployed with TinyOps achieved up 6% and 8%

higher accuracy than the state-of-the-art MCUNet models derived within internal mem-

ory constraints for the F469 and F746 devices with up to 2.5x lower inference latency

compared to the external memory configuration.

4.4 Discussion

In deploying a model to a microcontroller platform, an efficient inference framework

is equally important to the design of an efficient model. In this chapter, we showed

how current inference frameworks limited the performance achievable on MCU plat-

forms. Prior inference frameworks did not effectively utilise the memory hierarchy,

due to which the weights and activations resided in either internal or external mem-

ory. We showed that this limited the achievable accuracy or inference latency due to

the size constraints of internal memory or access latency of slower external memory

respectively.

We proposed the TinyOps inference framework to combine the advantages of size and

speed of external and internal memory. TinyOps utilised external memory as main

memory and copied data into internal memory as required for processing via the DMA

peripheral. To meet internal memory constraints we proposed a partitioning strategy

that seamlessly integrated with the underlying kernels. We further overlapped the

data fetching with the processing performed by the DMA and CPU respectively to

effectively hide the latency of accessing slower external memory.

We adopted a generic model of the MCU platforms that allowed us to port the TinyOps

inference framework across the range of off-the-shelf MCU platforms. Compared to

prior approaches utilising external memory, we were able to reduce inference latency

by up to 1.4x-2.5x to lift the ceiling of performance achievable on MCU platforms. In

the next chapter, we study the performance of the different design spaces and how

efficient models can be derived across the pareto frontier.
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Chapter 5

Efficient Model Design for MCUs

Edge devices often have to cater to various resource constraints and deadlines posed

by varying environmental factors. This requires being able to trade-off accuracy and

latency in real-time to meet any application requirements. In the previous chapter,

we showed how the design space for model deployment was limited in either accu-

racy or latency by current inference frameworks which lead to a sub-optimal accuracy-

latency pareto frontier. To alleviate these limitations, we proposed, the TinyOps infer-

ence framework which opened a new design space that lifted the accuracy achievable

with low latency. In this chapter, we study the question: how can we achieve the optimal

accuracy-latency pareto frontier and trade-off the accuracy and latency at run-time on MCUs?.

Deriving the optimal accuracy-latency pareto frontier requires us to look at the design

of models from two aspects. We note that the accuracy-latency pareto frontier might

be composed of models from different design spaces as the internal memory design

space was limited in accuracy and the TinyOps design space had slower inference la-

tency compared to internal memory. As such, exploring the accuracy-latency trade-off

requires us to compare the internal memory design space with the TinyOps design

space to determine the boundary at which the internal memory design space becomes

sub-optimal. For this purpose, we analysed state-of-the-art models derived for internal

memory constraints and compared them with models derived from the TinyOps design

space. Our analysis of state-of-the-art models designed for internal memory revealed

them to be sub-optimal in accuracy, and suprisingly, latency and energy efficiency as

well.

The second aspect we look at is how to derive the most performant model from a design

space. Prior works typically derive models from search spaces that are designed for

efficiency on mobile platforms. In this chapter, we perform a latency analysis of DNN

deployment on MCUs at the micro-architecture level to derive heuristics for efficient

search space and model design on MCUs. Using these heuristics, we derive static and
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dynamic DNNs for deployment on MCUs which enable us to achieve state-of-the-art

trade-off between accuracy and latency at run-time.

The work carried out in this chapter addresses the research question with the following

contributions

• Evaluation of Internal Memory Design Space: We perform an in-depth analysis

of state-of-the-art CNNs derived for MCU platforms through NAS and manual

approaches. We show that the constraint on model size imposed by internal stor-

age results in sub-optimal accuracy and somewhat counter-intuitively, latency

and energy efficiency as well.

• Model Design Heuristics for MCU platforms Derived from a Novel Latency

Analysis at the Micro-Architecture Level: We benchmark the throughput of

low-level operations that compose state-of-the-art CNNs in addition to studying

the effect of hyper-parameters used in conventional scaling on inference latency

to derive novel model design heuristics for MCU platforms.

• Accuracy-Latency Tradeoff: We study static and dynamic approaches to achieve

run-time accuracy-latency trade-off on MCU platforms. Using novel model de-

sign heuristics, we derive models from an efficient search space using a light-

weight supernetwork based NAS approach that is able to meet a number of la-

tency constraints. The derived models outperform state-of-the-art internal mem-

ory models with up to 6.7% higher accuracy and 1.4x lower latency.

5.1 Analysis of Model Design on MCUs

5.1.1 The Mobile Search Space

We looked at the mobile search space and how this could be refined for microcon-

trollers. The building block of the mobile search space is the MobileInvertedConv mod-

ule shown in Figure 5.1. The MobileInvertedConv module consists of a 1x1 pointwise

convolution to expand to a higher number of channels, followed by a K× K depthwise

convolution followed by a last 1x1 pointwise convolution operation which projects

the channels to the output number of channels of a MobileInvertedConv block. The

search space is constructed by cascading together a number of these MobileInverted-

Conv blocks. The hyper-parameters that are searched for in the search space are as

below

• Kernel Size, K In the MobileInvertedConv block, this is the kernel size of the

depthwise convolution in the block. The kernel size chosen in the search space

includes, 3, 5, and 7.
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FIGURE 5.1: Mobile Inverted Conv Block Structure

• Channels, Cin and Cout The input and output channels of the MobileInverted-

Conv module. The hyper-parameter is included in the search space in a varying

capacity. A typical approach is to use the channel configuration of a baseline

model.

• Expansion Ratio, E The number of channels to which a 1x1 convolution projects

up, which is the input number of channels to the depthwise convolution. The

expansion ratio is chosen between 2 and 6.

• Depth The depth of the neural network, which is controlled as the number of

MobileInvertedConv modules cascaded together to form the network.

• Resolution, R The resolution of the image input to the CNN. For example Ima-

geNet under the mobile setting is resized to 224× 224. For MCUs lower resolu-

tions are often used e.g. 96, 128, 176.

• Width The starting point for the search space is often taken as an existing mobile

model, on which the preceding hyper-parameters can be mutated. The width

hyper-parameter applies a global multiplier to the input and output channels of

all operations in the base network.

An example ProxylessNAS architecture derived from the mobile search space is shown

in Figure 5.2. As can be observed, the derived architecture has a number of MobileIn-

vertedConv blocks cascaded together with varying kernel sizes and channels. MB6 3x3

refers to a MobileInvertedConv block with an expansion ratio of 6 with kernel size 3.

5.1.2 Studying the Pareto Frontier

We studied the pareto frontier by training scaled variations of a ProxylessNAS model.

Due to the high cost of training models on the ImageNet dataset, we approximated the
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FIGURE 5.2: ProxylessNAS model derived from Mobile Search Space

pareto frontier by limiting the width multipliers used and the input resolutions. To ap-

proximate the pareto frontier, we trained models with width multipliers of 0.30, 0.50,

and 0.75 while increasing the resolution from 64 in increments of 16. We note that us-

ing scaled variations of an existing mobile model would not necessarily deliver pareto

optimal architectures. Indeed, it might be possible to perform manual handcrafting of

models to derive the pareto optimal architecture for any latency or MAC constraint.

However, we show that through our study of an approximate pareto frontier we were

able to derive design heuristics that enabled us to significantly advance performance

on MCUs. The accuracy-macs and accuracy-latency pareto frontier for an F469 and

F746 MCU are shown in Figure 5.3.

As mentioned previously, for any width multiplier, the accuracy-macs or accuracy-

latency curve is drawn by incrementing the input resolution for the given model from

64 in increments of 16. As observed, as the resolution increases, the accuracy increases

for all models using any particular width multiplier. This would be expected as the

model would have more raw input features to extract information from. Additionally,

a higher dimensional space might also increase the chance of learning representations

with higher class separability (Howard et al., 2017). However, we interestingly note an

intersection point between the models with different width multipliers which we term

the point of diminishing returns. We note that for any width multiplier, increasing the

resolution past this point is sub-optimal as this returns a minor increase in accuracy at

the cost of significant computation or inference latency. For a width of 0.30, this point

is observed in Figure 5.3a, when the resolution is increased to 112 corresponding to

a computational complexity of 15M MACs. As shown, after the point of diminishing

returns, using an increased width multiplier of 0.50 would be beneficial, for exam-

ple, proxyless-w0.30-r176 is outperformed by the more efficient proxyless-w0.50-r112

model with 2% higher accuracy and 5M lower MACs. The same observation can be

made for a width multiplier of 0.50 where past the point of diminishing returns, which

is observed around the 50M MACs mark, it is beneficial to utilise a higher width multi-

plier of 0.75 We hypothesise this behaviour occurs due to the representational capacity

being limited by the number of parameters or width multiplier of the model.
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FIGURE 5.3: The Pareto Frontiers
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We observed the opposite phenomenon as well where lower resolutions for high width

multipliers yielded minor decreases in latency for a significant drop in accuracy. Such

a behaviour could be observed if we were simplifying the complexity of a base model

to achieve some complexity constraints e.g. MACs, latency. This likely occurs due to

the input features not being informative enough and not containing enough raw in-

formation to learn representations with good class separability even though the model

might have enough free parameters and representational capacity to learn such repre-

sentations.

Overall we noted that the pareto frontier was composed of models with varying widths

and resolutions from which we drew the design insight as below:

When simplifying a model for some complexity constraint e.g. MACs, latency achieving

the highest accuracy requires balancing the width and input resolution when deriving

models through the conventional approach of scaling

5.1.2.1 Design Limitations of Internal Memory

In our study we analysed models derived for internal storage and memory design con-

straints. Prior works, focused on the internal memory design space due to its speed

and low power consumption. As we discussed in the previous chapter, the internal

memory design space limited the accuracy achievable by a model deployed within the

size constraints of internal memory. However, somewhat counter-intuitively, we found

the models to be sub-optimal for deployment latency as well.

Conventional Scaling To achieve the highest latency within internal memory con-

straints, prior works utilise a backbone model with the highest width and input res-

olution that can be accommodated within internal memory constraints. We derived

models for the internal storage and memory constraints of a number of devices in-

cluding the L552 (512KB Flash/192KB SRAM), F469 (1MB/256KB), F746 (1MB/320KB)

and the H743 (2MB/512KB) by STMicroelectronics. The performance of these models

(proxyless-w0.10-r192, proxyless-w0.30-r144, proxyless-w0.30-r175, proxyless-w0.55-

r176) in relation to the accuracy-macs or accuracy-latency pareto frontier can be ob-

served in Figure 5.3.

As observed, the models lie well below the accuracy-macs pareto frontier with the

scaled variations lying well past the point of diminishing returns for the largest width

multiplier that can be accomodated in internal memory. In contrast, there exist more

balanced scalings on the pareto frontier with higher accuracy and lower complexity,

however, these cannot be deployed within internal storage and memory due to size

constraints.



5.1. Analysis of Model Design on MCUs 93

3x3 Conv MbInvConv MbInvConv 1x1 Conv

77% Params, 64M MACs 22% Params, 0.16M MACsMCUNetV1-F469-int8

46% Params, 19M MACs 53% Params, 0.38M MACsProxyless-w0.30-r144 (F469)

FIGURE 5.4: MCUNet vs ProxylessNAS Parameter and MACs distribution

Neural Architecture Search We also analysed the state of the art MCUNetV1/V2

family of models derived within internal memory contraints via neural architecture

search. In the search algorithm, the model is derived by maximising the MACs which

is used as a proxy for accuracy as the former is computationally inexpensive to mea-

sure.

We analysed the architectures derived through this method to find that the MACs

are maximised by reducing the parameters in the storage intensive final classification

layer and reusing the saved parameters in the compute intensive MobileInvertedConv

blocks. This is shown in Figure 5.4 where we compared the distribution of the pa-

rameters and MACs of the NAS derived MCUNet models with a ProxylessNAS model

scaled for the internal storage and memory constraints of an STM32F469 MCU.

As can be observed, the ProxylessNAS model contains 53% of its parameters in the fi-

nal dense layer with the rest utilised in the MobileInvertedConv layers. With 53% of

the parameters in the final dense layer, this model has 0.38M MACs in the final layer

with 19M MACs in the MobileInvertedConv layers. In contrast, the MCUNetV1 model

derived for the F469, has only 22% of the total parameters in the final dense layer and

77% of the parameters in the MobileInvertedConv layers which leads to 0.16M MACs

in the final layer and 64M MACs in the MobileInvertedConv blocks. As shown in Fig-

ure 5.3, this approach has 9% higher accuracy than the conventional scaling approach,

however, this is achieved at the cost of significant extra computation (3.2x^) due to

which they fell below the pareto frontier.

5.1.3 Micro-Architecture Latency Analysis

We took a latency driven approach to model design for MCU platforms. While prior

works, look at end-to-end latency of models derived from the mobile search space, we

performed the latency analysis at the micro-architecture level to derive heuristics for

model design. We benchmarked the throughput of operations used in state-of-the-art

CNNs to select an efficient set of candidate operations. Similarly, prior works utilise the

conventional approach of scaling to lower the memory requirement or computational
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FIGURE 5.5: Benchmarking of Throughput of Operations utilised in the Mobile Search
Space

complexity of models. We studied the effect of the conventional approach of scaling on

the inference latency when models are deployed on MCUs.

5.1.3.1 Operation Throughput Benchmarking

To derive heuristics for model design, we benchmarked the throughput of the low-

level operations that compose state-of-the-art CNNs. As mentioned in Section 5.1.1, the

mobile search space extensively utilises 1× 1 convolutions and depthwise convolutions

with varying hyper-parameters such as kernel, channel configurations and input sizes.

In order to benchmark the operation benchmarking, the question arises of what the

hyper-parameters should be. The sample of operations we benchmark would need to

be representative of operations that are used to compose performant models.

To generate a sample of operations to analysed, we sampled the operations used in

models derived via width and resolution scaling of state-of-the-art ProxylessNAS, Mo-

bileNetV3 and MNASNet models. We chose these architectures as they have been

shown to achieve state of the art performance and have been used by prior works as

well. We used width multipliers ranging from 0.10 to 1.00 with increments of 0.05 and

input resolutions ranging from 48 to 224 with increments of 16 which produced 228

base models. This process produced a total of 46, 056 operations for benchmarking.

To perform the benchmarking we built an automated test bench which read the mod-

els from SD Card and logged inference statistics including the layer configuration in-

cluding operation type, kernel size, input/output channels, input/output resolution,

MACs and inference latency. The test bench was built on the F746 MCU hosting an

ARM Cortxex M7 MCU. The benchmarking was performed in two scenarios in which

cache was enabled and disabled respectively. The cache disabled scenario was used to

gain insights of latency performance of MCUs where cache is not available such as the
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ARM Cortex M4 based F469. Ideally, the latency statistics would have been gathered by

benchmarking on the device itself. However, as we show in our experimental results

section, the insights were transferable and accurately applicable to actual on-device in-

ference which we perform in Section 5.2.2. The results of benchmarking the operations

is showed in Figure 5.5a and Figure 5.5b.

We note that when separating out the operations by the operation type and kernel

size of the operations, a clear trend emerged in both cases from which we drew the

following insights

Depthwise convolutions are faster than 1x1 convolutions with the same computational

complexity

3x3 depthwise convolutions are faster than 5x5 and 7x7 depthwise convolutions with the

same computational complexity

When cache is not present, 3x3 depthwise convolutions are only slightly faster, but not

slower, than 5x5 or 7x7 depthwise convolutions

From these observations we made the design insight that a model derived from the

mobile search space for any latency constraints would have the lowest latency when

constructed out of 1x1 convolutions and 3x3 depthwise convolutions.

As mentioned in our insights, we observed that 3x3 depthwise convolutions were only

slightly faster than 5x5 depthwise convolution when cache was not available. We hy-

pothesise that this is due to the data layout and the kind of data reuse it enables. The

NHWC data layout utilised by TinyOps and TfLite-Micro encourages weight reuse in

convolution filters. For the case where 4KB of data cache was available, the filters for

3x3 depthwise convolutions could be efficiently cached and reused.

Picking a Backbone A natural question that arises is how we could construct such

a model? Prior approaches use the conventional approach of manually scaling mod-

els or automate this by incorporating the width and resolution as hyper-parameters

into the search space. In our work, we explored different backbone models including

ProxylessNAS, MNASNet and MobileNetV3. We observed a key difference between

these models that the ProxylessNAS models utilised depthwise convolutions with ker-

nel size of 3, 5 and 7, MNASNet utilised kernel size of 3 and 5, whereas MobileNetV3

only used a kernel sizes of 3. To test whether our insights carried over to actual mod-

els, we compared the latency of scaled variations of all three models. Using the same

number of multipliers and input resolutions we derived a range of models by varying

the width between 0.10 to 1.00 in increments of 0.05 and resolution from 48 to 224 in

increments of 16.
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The latency of the derived models from the various backbones is shown in Figure 5.6a

when cache is enabled. As we can observe for any MAC budget, the MobileNetV3

model yielded the lowest latency due to having only efficient 3x3 depthwise convolu-

tions and 1x1 convolutions. The next best architecture was the MNASNet architecture

which contained only 3x3 and 5x5 depthwise convolutions followed by the Proxyless-

NAS model which was the least efficient and used all three kernel sizes.
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FIGURE 5.6: Throughput Comparison of Different Backbone Networks

Figure 5.6b shows the latency when cache was disabled. In this case, we still observed

the MobileNetV3 derived models to have the lowest latency although the reduction

was not as significant. This falls in line with our insights gained by benchmarking

the latency of low-level operations where we found that the difference between the

depthwise convolutions of varying kernel size was present but not as pronounced.

5.1.3.2 Effect of Hyper-parameter Scaling on Throughput

The hyper-parameters of width and resolution scaling are frequently used to reduce

the memory footprint and computational complexity of a model. Through our analysis

of an approximate pareto frontier, we showed that achieving a good accuracy-latency

trade-off required balancing the width and resolution. We further analysed the effect

of width and resolution scaling on the inference latency.

As greater than 98% of the computation is concentrated in the MobileInvertedConv

blocks, we studied how the conventional approach of uniformly scaling the width or

resolution affected the latency of the MobileInvertedConv block. We studied this by an-

alytically looking at how the computation was scaled in the MobileInvertedConv block

as shown in Figure 5.1 under a uniform scaling approach. We looked at how computa-

tion is scaled in operations within these blocks when the model is scaled down to meet

any constraint. For some width and resolution multipliers, α, β < 1 the computation
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FIGURE 5.7: Computation (MACs) and Latency Distribution of operations in models
of varying complexity derived by scaling down width or resolution.

can be calculated as below

MACsconv1 = α2 × β2 × R2EC2
in (5.1)

MACsdepconv = α× β2 × R2ECinK2 (5.2)

MACsconv2 = α2 × β2 × R2ECinCout (5.3)

where R is the input resolution, E is the expansion ratio and Cin and Cout are the input

and output channels respectively of the block.

Width It can be observed that lowering the width through a uniform width multi-

plier, α, quadratically decreases computation by α2 in Conv operations, while decreas-

ing only linearly by α in DepConv operations. This skews the distribution of compu-

tation with a higher percentage of computation performed in DepConvs as shown in

Figure 5.7 where progressively reducing the width of a ProxylessNAS model from 1.00

to 0.30 increases computation in DepConvs from 18% to 29%.

Resolution On the other hand, we observe in Equations 5.1-5.3 that meeting any par-

ticular MAC budget by lowering resolution by β results in a quadratic reduction in

computation by β2 in either Conv or DepConv operations. This preserves the distribu-

tion of computation across operations as shown in Figure 5.7 with a constant 13% in

DepConvs with the remaining 87% carried out in Conv operations.
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As discussed previously, we found that DepConv operations are less efficient than

Conv operations, with 3x3 DepConvs being the most efficient within DepConv oper-

ations of different filter sizes. Combined with the insight that reducing width focuses

computation in DepConvs, we found that lower width scalings have high inference

latency compared to higher width scalings under the same MAC budget, as shown

in Figure 5.7 (Right). As observed the proxyless-w1.00-r160 and proxyless-w0.65-r224

models have approximately the same amount of MACs at 160M. However, the lower

width proxyless-w0.65-r224 model has 18% computation focused in depthwise convo-

lutions compared to its counterpart which has 13% computation in depthwise convo-

lutions.

From this we derived the insight as below

For any number of architectures derived for a particular MAC budget through the con-

ventional approach of scaling, the scaling with the highest width would have the lowest

latency

5.1.4 Internal Memory vs TinyOps

Utilising insights gained from our analysis of operation throughput on MCUs and the

pareto frontier, we manually derived balanced scalings of the MobileNetV3 model from

the TinyOps design space to compare with models designed for internal memory.

TABLE 5.1: Accuracy, Latency and Energy per Inference comparison of models from
TinyOps and Internal Memory Design Space

Platform Model
Design

Space

MACs

(M)

Params

(M)

Acc (%) Latency

(ms)

Power

(mW)

Energy

(mJ)FP32 INT8

L552
Proxyless-w0.10-r192 Internal 8 0.19 28.84 27.01 855 65 55.6

MobileNetV3-w0.25-r080 TinyOps 3 0.50 31.96 30.00 230 145 33.4

F469

Proxyless-w0.30-r144 Internal 21 0.72 51.91 50.67 1089 290 316

MobileNetV3-w0.50-r112 TinyOps 16 1.33 54.91 52.37 674 410 276

MCUNetV1-F469 Internal 67 0.73 60.8 59.47 2547 335 853
MNASNet-w1.00-r080 TinyOps 48 4.38 61.21 60.83 2146 435 933

MobileNetV3-w0.75-r128 TinyOps 44 2.49 63.06 62.58 1442 395 570

MCUNetV1-F469-int4 Internal 135 1.4 - 62.00 - - -
MCUNetV2-F469 Internal 119 <1 - 64.90 - - -

MobileNetV3-w1.00-r160 TinyOps 111 3.96 68.84 68.19 3472 405 1406

F746

Proxyless-w0.30-r176 Internal 32 0.72 54.79 53.68 686 645 442
MobileNetV3-w0.55-r128 TinyOps 28 1.55 58.94 58.29 460 805 370

MCUNetV1-F746 Internal 82 0.74 62.5 61.47 1131 690 780
MCUNetV1-F746-int4 Internal 170 1.4 - 63.50 - - -

MobileNetV3-w1.00-r112 TinyOps 59 3.96 64.57 64.02 732 805 589

MNASNet-w1.00-r128 TinyOps 104 4.38 68.09 68.01 1367 775 1059
MobileNetV3-w1.00-r160 TinyOps 111 3.96 68.84 68.19 1307 795 1038

As shown in Table 5.1, the MobileNetV3 scalings outperformed optimal scalings of a

ProxylessNAS model derived for internal memory constraints of the L552, F469 and
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F746 in addition to the MCUNetV1/2 models derived via NAS on the F469 and F746.

On the F746, we outperformed MCUNetV1-F746-int8 with 2.5% higher accuracy and

1.5x lower latency with the MobileNetV3-w1.00-r112 model. On the F469, we ob-

served that the MobileNetV3-w0.75-r128 architecture outperformed MCUNetV1-F469-

int8 with 3% higher accuracy and 23M lower MACs to achieve 1.8x lower inference

latency.

As latency metrics for MCUNetV2 and 4-bit MCUNetV1 models were not published,

we compared with accuracy and MACs for these models. As can be observed, on the

F469 and F746, the MobileNetV3-w1.00-r160 scaling achieved 4.7% and 6.2% higher

accuracy with 24M and 49M lower MACs than MCUNetV1-F469-int4 and MCUNetV1-

F746-int4 respectively. Similarly, compared to MCUNetV2-F469-int8, the MobileNetV3-

w1.00-r160 yielded 4% higher accuracy with 8M lower MACs. We note that as the ap-

proach of MCUNetV2 uses a NAS algorithm similar to MCUNetV1 to derive models,

which maximises computation in an operation agnostic manner, our study suggests

MCUNetV2-F469-int8 would have significantly higher latency than the MobileNetV3-

w1.00-r160 model even under the same MAC budget due to the usage of inefficient 5x5

and 7x7 DepConv operations.

We note that the MCUNetV1 models were deployed with the TinyEngine (Lin et al.,

2020) inference framework which utilises optimised kernels up to 1.5x faster than the

CMSIS-NN kernels we utilised. It is likely that using the same set of kernels the mod-

els deployed with TinyOps would have even faster inference latency in comparison,

however, we leave this integration and experimentation as a future work.

5.1.5 Discussion

Through our analysis of model deployment at the micro-architecture level, we were

able to derive model design heuristics for MCU platforms. We additionally showed

the limitations of prior works that attempt to achieve the highest accuracy within the

constraints of the internal memory design space. We utilised the design heuristics to

manually derive models from the TinyOps design space which outperformed internal

memory models in accuracy, latency and energy efficiency.

Although, we were able to demonstrate the strength of the TinyOps design space, a

limitation of this manual approach was the high search cost due to the trial and error

involved. On average, 3 trials were required to derive each model where each trial

consisted of training and evaluating the candidate model. This approach resulted in a

high search cost of 120 GPU hours to derive each model. In the next section, we explore

the low-cost NAS to derive static and dynamic DNNs with a low search cost to meet

varying latency constraints.
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5.2 Accuracy-Latency Trade-Off through Dynamic and Static

Models

We demonstrated how models on the accuracy-latency pareto frontier could be derived

from the TinyOps design space with better performance compared to the internal or

external memory design space. However, these models were derived for fixed latency

constraints which yielded better energy efficiency than the internal memory models.

Additionally, the manual approach used to derive the models had a high search cost. In

this section, we explore how we can efficiently derive models across the pareto frontier

and trade-off the accuracy and latency at run-time on MCU platforms. To achieve this

we explored dynamic and static approaches to adapt the inference at run-time.

A static approach to meeting multiple latency constraints would involve deriving mul-

tiple independent models of varying complexity from the TinyOps design space. The

inference latency at run-time could then be adapted by selecting the model to perform

inference with. The overhead of this approach would be the storage required for the

independent models and interpreters in addition to the cost of training the models in-

dependently. We show that this static approach to meet varying latency constraints can

be implemented by using external memories, which are large enough to store a num-

ber of independent models. However, the cost of training the models independently

remains high with this approach.

On the other hand, a dynamic DNN is a single model that is able to adapt its complex-

ity at run-time. As such, a dynamic approach generally has a reduced training time

compared to training multiple individual models. As such, we explored an approach

to realise dynamic DNNs on MCU platforms.

5.2.1 Dynamic DNNs via Early-Exiting

Dynamicism in DNNs is achieved through either dynamically adapting the parameters

or structure of the model at run-time as we discussed in Section 2.2.2. The applicability

of dynamic parameter approaches is limited in the case of MCUs as the quantisation

schemes and kernels assume that the weights are fixed during inference. A common

approach is to dynamically select the number of channels or width. However, this

leads to filters occupying non-contiguous space in memory which is incompatible with

current kernels. Similarly, such approaches use multiple batch normalisation parame-

ters for different width configurations which would be not be applicable with compiler

optimisations such as operator fusion (Conv+BN+ReLU).

In our work, we explore how depth can be altered at run-time to meet varying latency

constraints using early-exiting neural networks (EENNs). EENNs append intermedi-

ate classifiers at different points in the network which can be used to make an early



5.2. Accuracy-Latency Trade-Off through Dynamic and Static Models 101

classification by running a subset of the layers of the network. In our work, we study

EENNs for anytime classification, where an exit is performed on the basis of a compute

or latency constraint.
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FIGURE 5.8: Structure of an Early-Exiting Neural Network (EENN)

An EENN that is able to meet three latency constraints is shown in Figure 5.8. As can

be observed, the backbone of the EENN contains three convolution operations. The

three classifiers in the model create three subnetworks in the EENN that can be exe-

cuted to meet three latency constraints. The highest latency is incurred when the entire

backbone is run and classification is performed with the final classifier, FC. In this

scenario, the early-exit classifiers (EECs), EEC1 and EEC2 are ignored. To meet more

stringent latency constraints, a fraction of the stem can be computed and inference can

be completed at an earlier stage by exiting at one of the EECs, EEC1 or EEC2.

5.2.1.1 Deployment of EENNs

The EENNs were compatible with existing kernels and the partitioning strategy of

TinyOps as they did not alter the data layout for any operations in the inference graph.

However, to realise the early-exiting required a reordering and partial execution of the

inference graph. The inference graph contains an ordering for the operations which is

utilised by the interpreter to perform the operations in a valid sequence. Additionally,

the memory planner of the inference framework uses the ordering to statically allocate

memory for intermediate activation tensors according to their lifetime.
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The ordering for a simplified three layer CNN with two intermediate classifiers can be

observed in Figure 5.8. Trivially, the first operation in the graph is the Conv1 opera-

tion which consumes the tensor, X1 to produce output, X2. However, after Conv1, as

there is an early-exit classifier (EEC) placed after the first operation, there is a branch

in the inference path with two operations in either branch that consume the tensor

X2. The memory planner adopts a greedy approach to operation scheduling to reduce

the memory usage, where it performs all operations that consume a tensor so that the

allocated memory can be freed as early as possible. As such, the Conv2 and EEC1 op-

erations are ordered as the second and third operations in the inference graph. This

allows the memory for the intermediate tensor, X2 to be freed as soon as Conv2 and

EEC1 are performed. A similar ordering is observed for the second EEC in the network

as well.

Partial Execution of Inference Graph In a normal operating scenario where all nodes

in the inference graph are executed, the interpreter sequentially performs the opera-

tions in the graph according to their ordering as we showed previously in Algorithm

2. However, ending the inference early by exiting at one of the classifiers requires ex-

ecuting a subset of the operations based on which exit we are taking which is dictated

by the latency constraint.

This partial execution was performed by extracting the node ids for all the subnetworks

and storing them in an ordered list alongside the inference graph. For the smallest

subnetwork in Figure 5.8, this ordered list would contain the elements, [1, 2, 4, 5].

Similar lists, were extracted from the EENN for the remaining subnetworks from the

inference graph. To perform inference with only a sub-network, the interpreter was

modified to only execute operations in the inference graph from the ordered list for a

sub-network as shown in Algorithm 5.

As can be observed, the invoke function takes in a list of ordered lists, op_lists that

define the operations in the subnetworks and the latency constraint, L as extra inputs.

The helper function, GetSubNN, is a function that simply returns the list of operations

corresponding to the largest subnetwork that meets the latency constraint. The infer-

ence with the subnetwork can then be simply performed by sequentially performing

the operations in the active ordered list.

We note that the GetSubNN function simply consists of returning a reference to the

subnetwork corresponding to a latency constraint, which would have negligible over-

head. As such, there would be zero overhead to switch between the subnetworks when

adapting inference to varying latency constraints.
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Algorithm 5 Partial Graph Inference Pipeline

Inputs: NN_graph, the inference graph. input, the tensor input to the NN. L, the
latency constraint. op_lists[num_subnets], a list of ordered lists containing operations
in each subnetwork.

Output: output, the tensor output from the NN

1: function INVOKEPARTIALINFERENCE(NN_graph, input, op_lists[num_subnets], L)
2: SubNN_Graph = GETSUBNN(op_lists, L)
3: for op in SubNN_Graph do

4: inputs = GETINPUTTENSORS(op)
5: weights = GETWEIGHTTENSORS(op)
6: quantParams = GETQUANTISATIONPARAMETERS(op)
7: KERNEL = GETKERNEL(op)
8: output = KERNEL(inputs, weights, quantParams)
9: end for

10: return output
11: end function

5.2.1.2 EENN Design

We demonstrated how a partial execution of the inference graph could be used to

achieve dynamicism on MCU platforms with EENNs. Designing an efficient EENN

required selecting an efficient backbone model, the number of early exits and deter-

mining their placement which we describe in this section. The design of the backbone

model would dictate the accuracy achieved at the final classifier and the early-exit clas-

sifiers. As we were looking to maximise the performance across the accuracy-latency

pareto frontier, we utilised a NAS based approach to derive the backbone model that

yielded the highest accuracy across all the classifiers in the model.

Backbone Model The backbone model in an EENN used for anytime classification

would correspond to the worst case latency constraint. The number of early-exits and

their placement would determine how many and what different constraints could be

met.

We utilised a supernetwork based NAS approach to select the backbone model. We

utilised the heuristics derived in Section 5.1 to inform the design of the search space.

The search space was created using the MobileNetV3 model with hyper-parameters of

width multipliers and input resolution used to create the candidate models. The candi-

date width multipliers ranged from 0.30 to 1.00 with steps of 0.05. The candidate input

resolutions ranged from 64 to 224 with increments of 16 in between. This produced a

search space of 165 candidate models.
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As we were looking to maximise the accuracy-latency frontier, we appended the early-

exit classifiers into the supernetwork. These were added after every MobileInverted-

Conv block. The structure of the early-exit classifier was adapted from the final block

of operations used after the last MobileInvertedConv block in the MobileNetV3 model

shown in Figure 5.9.
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FIGURE 5.9: Structure of Early-Exit Classifier

A limitation for using the structure for the EEC shown in Figure 5.9, was that it had

a very high computational complexity when placed after MobileInvertedConv blocks

early in the network. This was due to the first 1× 1 convolution operation applied in

the EEC. In models derived from the mobile search space, including the MobileNetV3

model, the input resolution is high in the early layers. This is eventually reduced

through the usage of strided convolutions. For EECs appended to earlier MobileIn-

vertedConv blocks in the MobileNetV3 model, we found that that the complexity of

the EEC was too high to yield a reduction in the latency. The MobileNetV3 model had

a total of 15 MobileInvertedConv blocks. We found that the inference latency could be

reduced by using the EEC structure from the 7th MobileInvertedConv block onwards.

Training the Supernetwork The supernetwork was trained by building on the ap-

proach of Yang et al. (2020) which explore dynamic widths and resolutions in a DNN.

However, these are explored in a mobile setting and consider a limited number of can-

didate width and resolution hyper-parameters which produce only 16 configurations.

Further they did not consider any early exiting in the search.

We build on their work to train the supernetwork in our NAS approach with backprop-

agation of gradients from the EECs appended to a MobileNetV3 backbone model. In

the training, we appended EECs after every MobileInvertedConv block. Further, we

utilised a larger number of width and resolution hyper-parameters which yield a total

of 165 configurations as described previously. The recipe for training is described in

Algorithm 6.

The training algorithm firstly performs a forward pass from the full baseline model, af-

ter which it backpropagates gradients from all the N classifiers which are accumulated

in Line 10. The next step involves sampling a candidate resolution and two candidate
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Algorithm 6 Training algorithm for EENN Supernetwork

1: for t← 1, Titers do

2:

3: grad = 0
4: x, y = GETDATAMINIBATCH()
5:

6: M′ = SETACTIVESUBNET(M, 1.0, 224)
7: Y′ = M′(x) ▷ Y, Matrix containing logits of all EECs
8:

9: loss = ∑
N
i=1 KL_DIVERGENCE(y′i, y) ▷ Sum losses of all N classifiers

10: grad += BACKPROPGRAD(loss) ▷ Backprop gradients from all classifiers
11:

12: width_list = [MIN(width_candidates)]
13: width_list += UNIFORMSAMPLE(width_candidate, 2) ▷ Add two more widths
14: res = UNIFORMSAMPLE(res_candidate, 1) ▷ Sample a candidate resolution
15:

16: for width in width_list do

17:

18: M′ = SETACTIVESUBNET(M, width, res)
19: Z′ = M′(x) ▷ Y, Matrix containing logits of all EECs
20:

21: loss = ∑
N
i=1 KL_DIVERGENCE(z′i, y′i) ▷ In-Place Distillation

22: grad += BACKPROPGRAD(loss)
23:

24: end for

25:

26: UPDATEWEIGHTS(M, grad) ▷ Update weights from accumulated gradients
27:

28: end for

widths in addition to the smallest width to sample three subnetworks in the super-

network. Yang et al. (2020) built on the approach of Yu and Huang (2019) who pro-

posed always sampling the minimum width to boost the lower bound of performance

of the supernetwork. The forward pass for each subnetwork is performed with the

the weights inherited from the supernetwork. The gradients are then backpropagated

from all classifiers in the EENN supernetwork as shown in Line 22. The gradients ac-

cumulated thus far are then finally used to update the weights as shown in Line 26 to

complete one step of training. In order to keep the training cost low, we trained the

supernetwork for 20 epochs to approximate the final network weights. A complete

list of hyper-parameters used to train the super-network is provided in Section D.1 in

Appendix D

We evaluated the training of the supernetwork with approximate weights to determine

whether it demonstrated behaviour similar to our observations made on the pareto

frontier. We evaluated the accuracies of the candidate architectures in the supernet-

work and plotted the pareto frontier for different EECs derived by varying the width
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FIGURE 5.10: Accuracy of EECs in the MobileNetV3 search space

and resolution.

We observed in Figure 5.10 that the pareto frontier across the different EECs was com-

posed of different width and resolution configurations. We also observed that the point

of diminishing returns, at which a particular width multiplier became sub-optimal var-

ied across the EECs. This would imply that the optimal backbone model derived by

the width and resolution would be different for each EEC.

5.2.1.3 Model Search and Training

We utilised a simple linear search algorithm to derive architectures for varying com-

plexity constraints. As the number of candidate models in the search space was small,

we were able to build a look-up table of the on-device inference latency and validation

accuracy of the candidate models in the search space. As we were looking to maximise

the accuracy-latency pareto frontier, we defined the quality objective to be the sum of

the accuracies across the EECs defined as below, where N is the number of classifiers

in the network. As mentioned previously, this was
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Acc =
NEECs

∑
i=1

Acci (5.4)

For a given latency constraint, the search algorithm performed a linear search that re-

turned the backbone model with the highest sum of accuracies across the EECs. In our

initial evaluation, we measured the latency statistics using the backbone model and the

early-exiting subnetworks using external memory. Once a model was derived it was

trained from scratch with EECs placed from the 7th MobileInvertedConv block on-

wards. This produced an EENN with 9 usable latency constraints as the MobileNetV3

model had a total of 15 MobileInvertedConv blocks. The EENN was trained in a joint

manner as described below

Loss =
N

∑
i=1

L
(

yi, y′
)

(5.5)

where N is the number of classifiers, yi is the output of the ith classifier in the EENN,

y is the target label and the cross-entropy loss was used as the loss function, L.

5.2.1.4 Evaluation

We ran the search for user defined latency constraints using the linear search algorithm.

For the initial evaluation, we compared with the manually derived models and scaled

variations of the ProxylessNAS model when deployed with an external memory con-

figuration instead of with TinyOps. We note that the optimal comparison would be to

deploy the EENNs with the TinyOps inference framework. However, this would re-

quire modifications to the inference pipeline of the TinyOps inference framework. The

models were deployed with the external memory configuration as an intermediate step

to compare the accuracy and latency of the early-exits in the EENN to the manually de-

rived scaled variations of the MobileNetV3 models with the assumption that the same

observations would hold when the models were deployed with TinyOps.

In this experimental setup, we derived the EENNs for a worst case latency constraint

of 1100ms and 1600ms on the F746. The derived EENNs were then trained from scratch

using the joint training recipe discussed previously. The performance of the derived

EENNs in comparison to the scaled variations of the ProxylessNAS and MobileNetV3

models is shown in 5.11.

As can be observed the EENNs derived the MobileNetV3 backbone had better per-

formance across a range of latency constraints compared to the ProxylessNAS pareto
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FIGURE 5.11: Performance of EENNs

frontier. However, they fell below the manually derived MobileNetV3 models in per-

formance. In part, this was due to the joint training scheme used for the EENNs pro-

ducing a reduction in accuracy. As can be observed the individually trained MbV3-

w1.00-r160 model had a validation accuracy of 68.19%. However, when this model

was converted to an EENN by appending the EECs in the backbone model, the vali-

dation accuracy at the final classifier dropped to 67.4%. Towards, the earlier classifiers

in the backbone, we note that the performance fell off quite sharply, even dropping be-

low the ProxylessNAS pareto frontier. We believe this was due to the search space not

being diverse enough to contain architectures that yielded high accuracy at the earlier

EECs. In future work, we believe the search space could be diversified by including

more hyper-parameters in the search space such as the number of channels and expan-

sion ratio. This might enable us to derive models that yield better accuracy at the EECs

whilst retaining the same accuracy at the final classifier.

While, the EENN approach did have the benefit that the joint training allowed train-

ing of only a single model, the limitations of performance lead us to explore a static

approach to achieve an accuracy-latency trade-off at run-time.

5.2.2 Static Models for Accuracy-Latency Trade-Off

In addition to the dynamic approach, we explored a static model based approach to

trading-off the accuracy and latency at run-time. This approach would be realised by

deriving multiple models for a number of latency constraints that would be trained and

deployed independently. The usage of external memories would allow the storage of

multiple independent models. These could be configured at initialisation with multiple

interpreters and paritioning schemes to enable fast inference with TinyOps.
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The MCU platforms we utilised, had an address space supporting up to 256MB of ad-

ditional SDRAM and Flash storage. We observed that the state-of-the-art CNN models

required up to 5MB of storage and 1.6MB of memory. Assuming that each model de-

rived for a latency constraint had a memory footprint of 5 + 1.6 = 6.6MB, this would

allow the support for 256/6.6 = 38 latency constraints. To switch between the mod-

els at run-time would require multiple interpreters to be declared and configured with

the corresponding models at run-time to perform inference. Similarly, the interpreters

would have independent partitioning strategies for the corresponding models which

would be determined at initialisation.

5.2.2.1 Search and Evaluation

To search for static models, we reused the EENN supernetwork trained for 20 epochs

used to search for EENNs. We attempted to train a supernetwork without the EECs,

however, we found that this trained slowly. On the other hand, a benefit of the EECs

in the EENN supernetwork was they also acted as auxiliary heads which injected gra-

dients into the network and sped up training. We opted to use this approach as the

weights after 20 epochs of training would yield a better approximation of the fully

trained network weights.

As we were searching for independent models the quality objective was changed to

simply measure the accuracy at the final classifier. The search algorithm simply con-

sisted of a linear search that took a latency constraint as input and returned the configu-

ration for the subnetwork in the supernetwork that had the highest validation accuracy.

Using this approach, we derived models for a number of latency constraints ranging

from 250ms to 2500ms. The models were derived for the F746 platform by gathering

the latency statistics of the models deployed with TinyOps. Performance of the mod-

els derived for the latency constraints are shown in Table 5.2. We also compared the

performance of the models with the previously manually derived MobileNetV3 and

ProxylessNAS scalings on the F469 and F746 device which is shown in Figure 5.12.

As can be observed, the NAS approach to deriving the models outperformed the Prox-

ylessNAS models on either device. The performance difference between the Proxyless-

NAS models was higher on the F469 and the F746. We note that although the models

were derived according to on-device inference latency of the F746, they transferred well

to the F469 device as well. However, it is likely that further gains could be made by de-

riving models for the inference latency of the F469. Compared to the manually derived

models, the NAS derived models had comparable performance. This would indicate

that the heuristics were utilised effectively to manually derive the balanced scalings of

the MobileNetV3 model.
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TABLE 5.2: Static Models Derived for a Range of Latency Constraints throught Light-
Weight NAS using MobileNetV3 search space. Models were derived for the inference

latency of the F746.

Width Res
Params

(M)

MACs

(M)

Accuracy (%) F746 F469

FP32 INT Latency (ms) Energy (mJ) Latency (ms) Energy (mJ)

0.45 112 1.15 15 52.55 51.66 261 210 623 249
0.65 128 1.99 35 61.29 60.58 520 421 1223 477
0.75 144 2.49 57 64.81 63.74 762 617 1924 798
0.90 144 3.35 82 67.01 66.43 993 799 2736 1163
1.00 160 3.96 111 68.84 68.19 1306 1038 3472 1406
0.95 176 3.65 132 69.51 68.74 1561 1272 3847 1539
1.00 192 3.96 159 70.19 69.35 1830 1482 4691 1853
1.00 208 3.96 192 71.32 70.67 2182 1767 5545 2218
1.00 224 3.96 216 71.16 70.37 2448 1983 5820 2270

(A) F469

(B) F746

FIGURE 5.12: Performance of Static Models Derived via Light-Weight NAS for Vary-
ing Latency Constraints
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Search Method
Search Cost Training

Cost
Total Cost

Training Search

Manual 40 · 3 · DN 0 0 120 · DN
EENN-NAS 50 1 40 · D 51 + 40 · D
Static-NAS 50 1 40 · DN 51 + 40 · DN

TABLE 5.3: Compute Cost of Different NAS Approaches

5.2.3 Deployment Cost

The major benefit of utilising the light-weight supernetwork based NAS approach,

comes from the reduced computional cost of deriving the models. This cost can be

broken down into the time for training the search space, searching for architectures

in the space, and training of the models for deployment onto the MCU devices. We

compare these costs for a number of different approaches in Table 5.3 where D is the

number of devices for which the models are to be derived, and N is the number of

latency constraints that are to be met.

As can be observed in Table 5.3, the cost of training the search space was the highest for

the manual approach. On average, the hit and trial nature of the manual approach to

deriving models for a particular device and latency constraints required training and

evaluating 3 models for a particular latency constraint, where the training required

40 GPU hours. As models were trained to convergence the search process yielded a

fully trained model, due to which there was no separate training cost incurred once the

model was derived. As such, the total cost for the manual approach to derive models

for D devices and N latency constraints was 120DN.

To derive EENNs, we adopted a supernetwork based approach where the training and

searching of the supernetwork was decoupled from the training of the derived model.

As mentioned previously in Section 5.2.1.2, the supernetwork approximated the fully

and independently trained weights of candidate architectures in the search space by

training weights shared between the candidate architectures for a limited number of

epochs to reduce the computational cost. Using this approach, the supernetwork only

needed to be trained once for any number of devices and latency constraints which

required 50 GPU hours. After the supernetwork was trained, the accuracy of all can-

didate architectures in the search space was evaluated. This required a total of 1 GPU

hour. The training and evaluation of the the supernetwork therefore had a one-time

total compute cost of 51 GPU hours. To derive a model, the search as described in

Section 5.2.1.3, consisted of a simple greedy search with a negligible search cost (< 10

CPU seconds). Once the model was derived it was then trained from scratch requiring

40 GPU hours. We note that the derived EENN was able to meet multiple latency con-

straints by design. As such, multiple models did not need to be derived for multiple

latency constraints. However, the optimal EENN would vary for each device which
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would require multiple models to be derived and trained for each device. For this de-

ployment scenario the total training cost would be 40D, for D devices with a constant

51 GPU hours to train and evaluate the supernetwork.

For the static approach which derived multiple independent models to meet multiple

latency constraints, the cost of training and search associated with the supernetwork

was the same as for the approach deriving EENNs. However, this approach derived

multiple models which had to be trained independently. As such this had a training

cost of 40DN for D devices and N latency constraints, as training one model required

40 GPU hours.

We note that the cost of training the derived models was higher for the static NAS ap-

proach compared to the EENN approach as it required training multiple independent

models. We showed that this approach yielded zero-switching time and high perfor-

mance and could be realised under the external memory size constraints of current

devices. However, to reduce the training time, it would still be desirable to train and

deploy a single model that could adapt its performance on the fly. The EENNs we

derived had this desirable quality, but did not achieve high predictive performance.

We believe the search space could be made more diverse to derive architectures that

might yield a better pareto frontier. This would likely have a higher cost of training the

supernetwork, but could be amortised through multiple deployment scenarios.

5.3 Discussion

In this chapter, we explored how we could achieve an efficient accuracy-latency trade-

off at run-time on MCUs. We studied the pareto frontier to show that prior approaches

that derive models for fast internal memory suffer not only from low accuracy, but

surprisingly, high inference latency as well. We showed that this was due to size con-

straints of internal memory and operation agnostic model design adopted by prior

approaches. We performed a latency analysis of CNN deployment to MCUs at the

micro-architecture level to derive heuristics for model design.

We proposed a framework for deriving models across the accuracy-latency pareto fron-

tier and also perform the trade-off at run-time with zero switching time. The frame-

work utilised a supernetwork based approach which utilised our model design heuris-

tics to design the search space with a low search cost. We derived multiple models

across the accuracy-latency pareto frontier for varying latency constraints which out-

performed models designed for internal memory with up to 3% higher accuracy and

1.8x lower latency.
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A limitation of our static approach to adapting inference was that it had a high train-

ing cost for the multiple independent models that were deployed. We explored a dy-

namic approach utilising EENNs, with a lower training cost, however, we found that

these were lacking in performance at the earlier exits. We believe that performance

gains could be achieved by utilising a larger search space which would include hyper-

parameters such as the number of channels and expansion ratio in the MobileInverted-

Conv blocks.
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Chapter 6

Conclusions

The proliferation of IoT devices in society has opened significant opportunities for ap-

plications involving smart cities, healthcare and agriculture amongst others. In this

area, the field of TinyML is a cost and energy efficient approach to address the limita-

tions of security, privacy, latency and connectivity of the cloud computing paradigm by

providing intelligence on the device with inference performed locally. However, DNN

inference workloads have traditionally been deployed on mobile or GPU platforms.

As such, the significantly different and constrained hardware characteristics of MCU

based platforms requires the design of a highly optimised inference system which is

able to extract the maximum performance from the devices.

6.1 Summary of Contributions

In this thesis, we studied how we could enable deep learning inference on the accuracy-

complexity pareto frontier on low power and resource constrained edge devices. A

number of approaches have been proposed at different layers of the inference stack to

optimise the deployment of DNNs. In this thesis, we performed optimisations across

the inference stack as shown in Figure 6.1.

Our work studied the design of efficient models and inference frameworks while con-

sidering the interplay between the different components of the inference stack includ-

ing model design and optimisation, the inference framework and the target hardware.

We achieved high performance across the accuracy-complexity frontier with the con-

tributions as below

• DEff-ARTS: We proposed a gradient based method to trade-off the accuracy and

complexity in an automated manner from a cell-based search space
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DEff-ARTs

EENNs NAS

SuperNetwork NAS

Model Design

TinyOps Inference Framework

Model Design Heuristics

Run-Time Switching

Model Deployment

FIGURE 6.1: Summary of Contributions in Model Design and Deployment to achieve
High Performance Across the Pareto Frontier

• TinyOps Inference Framework: We developed the TinyOps inference frame-

work to combine the advantages of internal memory (low inference latency) and

external memory (high accuracy). We deployed models derived from the mobile

search space with TinyOps to acheive record TinyML ImageNet performance

• MCU Deployment Analysis: We performed an in-depth study of model de-

ployment on MCUs at the micro-architecture level to derive novel model de-

sign heuristics and demonstrated that the internal memory design space is sub-

optimal for accuracy, latency and energy efficiency.

• SuperNetwork and EENN NAS: We utilised the derived heuristics to inform

search space design for a super-network based NAS approach to derive dynamic

and static models to enable run-time trade-off between accuracy and complexity.

Using this approach we acheived state-of-the-art TinyML ImageNet classification

performance across the accuracy-complexity pareto frontier.

Our work achieved multiple milestones in performing efficient deep learning infer-

ence on edge devices. The TinyOps inference framework introduced a novel approach

to inference on MCUs that significantly lifted the ceiling of performance on MCUs by

achieving 1.4x-2.5x lower inference latency than existing approaches. Similarly, Tiny-

Ops opened a new design space on MCUs from which we derived models using our

design heuritics that outperformed prior works with up to 3% higher accuracy and 1.8x

lower inference latency.
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6.2 Future Work

Moving forward, unlocking further performance on edge devices requires continuing

efforts across the inference stack. These are informed by current work that has been

performed in the field of TinyML as well as larger scale cloud based deep learning

from which design principles and insights can be transferred to edge devices.

6.2.1 Search Space for EENNs

We derived model design heuristics to inform the search space design which was used

to search for EENNs and static CNNs. In our search, we utilised two degrees of free-

dom to reduce the size of the search space. When deriving EENNs, we found that

the derived models, whilst being competitive in performance, ultimately fell short in

performance. We believe that including further hyper-parameters in the search space

could lead to better performance. Similarly, we showed that the static CNNs derived

from the search space achieved record performance. We believe expanding the size of

the search space could lead to better performance. However, the subsequent gains in

performance would likely come at an extra search cost incurred in training and navi-

gating the search space.

6.2.2 Moving Away From CNNs

The recent success of transformer based architectures has sparked a tremendous amount

of research effort in the area. Typically, these models have a very large number of pa-

rameters which make them unsuitable for deployment on MCUs with the conventional

approaches utilising internal memory (Li et al., 2022). We believe the TinyOps approach

to inference could be utilised to realise efficient transformer deployments on MCUs.

In the context of CNNs, we adopted a partitioning strategy along the H dimension of

the tensor to reduce the tensor sizes. This also allowed us to gather the output tensors

of the tiny output tensors with an in-place concatenation operation with minimal over-

head. The same methods can also be applied to linear layers which dominate recent

transformer based models. For matrix multiplication operations of the form X ×W,

the activation and weight tensors can be partitioned across the rows (H) and columns

(W) dimension respectively into tiny tensors. Due to the structure of matrix multipli-

cation operations, this would produce tiny output tensors which could be efficiently

reduced through concatenation to produce the final output and perform matrix mul-

tiplication operations with lower memory requirement. Such solutions would further

expand the design space for efficient inference on MCUs.
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6.2.3 Improving MLOps Tools

A significant part of this research involved studying how inference frameworks could

effectively utilise external memories and other peripherals to enable efficient inference.

We showed that the limitation of current inference frameworks which utilised internal

or external memory exclusively for the weights and activations lead to design and de-

ployment of models with sub-optimal accuracy and latency as well. To address this

limitation, we developed TinyOps which enabled deployment from an efficient design

space to achieve state-of-the-art inference performance. In industry, the current infer-

ence MLOps tools are structured such that the inference frameworks responsible for

interpreting the model and memory management, such as TfLite-Micro, STMXCubeAI

and TinyEngine, are decoupled from the kernels responsible for running low-level op-

erations on the hardware. While the inference framework is designed to be hardware

agnostic to enable portablility, the kernels are closely coupled with the hardware and

typically provided by the hardware vendors. To support variations in the character-

istics of a hardware family supplied by a vendor, the kernels are often written in a

generic manner and are reconfigurable in software through compiler directives.

We believe our work proposing the TinyOps inference framework could have a signifi-

cant impact in improving current MLOps tools and realising efficient DNN deployment

in TinyML. In our work, we developed TinyOps as an intermediary layer in the infer-

ence stack that interfaced with the kernels and the interpreter in the inference frame-

work, as shown in Figure 4.5. To improve current workflows, the TinyOps inference

framework, available at https://github.com/sulaimansadiq/TinyOps could be used

as a drop-in replacement for any pipelines utilising TfLite-Micro which is one of the

most widely used frameworks in TinyML. This would be possible since we built Tiny-

Ops into the baseline TfLite-Micro inference framework and retained all of the original

features by design. In our work, this design decision also allowed us to utilise indus-

try standard tools for model training and optimisation such as PyTorch and Tensor-

flowLite.

To support different inference frameworks used in MLOps, the TinyOps partitioning

engine could be integrated directly into other inference frameworks using an approach

similar to the one adopted in this research. Alternatively, the partitioning engine could

be integrated with the underlying kernels that are provided by hardware vendors. This

would require minor changes to the memory allocation procedures in the inference

frameworks and kernels. Currently, the inference frameworks are typically responsi-

ble for allocating memory requested by kernels for memory buffers such as the im2col

buffer or input and output tensors. To support the TinyOps approach, the kernels

would need to request additional memory for the overlaying buffers. In this case, the

partitioning strategy would also be managed by the kernels. These overlaying capa-

bilities could be kept configurable through compiler directives so that they could be
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modified according to varying user requirements and platform characteristics. This ap-

proach would be beneficial as it would allow a variety of inference frameworks to take

advantage of the overlaying scheme integrated in the kernels with minimal changes.

6.2.4 Next-Generation of Hardware

The design of higher layers in the inference stack including the model design, optimi-

sation and training are informed by the capabilities of the underlying hardware. Simi-

larly, the design of the hardware is often informed by the requirements of the particular

algorithm that is implemented on it. In this thesis, we focused on current generation

hardware and its constraints related to memory, instruction set and peripherals. We

believe the work carried out in this thesis and other parallel research provides insight

into useful avenues of the development of the next-generation of hardware.

Enhanced On-Chip DMA In Section 4.3.4, we discussed a limitation of the TinyOps

inference framework which was imposed by the limitations of the on-chip DMA. As the

DMA only supported transfer of contiguous blocks of memory between different mem-

ory regions, the TinyOps framework partitioned tensors along the H dimension which

corresponded to the tiny tensors occupying contiguous blocks of memory that could

be moved by the DMA. With this approach, the minimum size of the tensor would be

limited by K ·W ·C where K is the kernel size, W is the width of the representation and

C is the number of channels of the tensor. For larger networks, this scheme produced

tiny tensors that could not be partitioned to meet the internal memory constraint when

W or C were high. This resulted in a smaller model being deployed with reduced

accuracy as shown in Table 4.6. The size of the tiny tensor could further be reduced

by partitioning in an additional dimension, such as the width (W) of the tensor, how-

ever this would require interleaved copying which was not supported by the on-chip

DMA. While an attempt could be made to perform such data movement via software

based methods, this would have overheads such as multiple calls to the DMA, in addi-

tion to extra cache maintenance and interrupt servicing so this was avoided. Natively

supporting interleaved copying in next-generation MCUs at the hardware-level would

avoid overheads in software and allow for finer-grain partitioning of the tensors. This

would allow further reduction in the internal memory requirement for inference with

the TinyOps inference framework and enable inference with larger models to achieve

better performance on devices with smaller internal memories.

Reduced Internal Storage In the conventional approach to memory management, the

inference frameworks used the entirety of internal storage to store the model weights

and inference code which lead to a high internal storage requirement. On the other

hand, TinyOps utilised external storage to store the model weights and only used the
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internal storage to store the inference framework program code which accounted for

approximately < 10% of the storage footprint. This reduction in internal storage would

allow the usage of MCU variants with less internal flash which would lower the bill of

materials as internal storage can be expensive to manufacture. As an example, we com-

pared the bill of materials for the internal memory and TinyOps approach for an ARM®

Cortex® M4 deployment scenario to find that at the time of writing, the cost of using

an STM32F469NE by STMicroelectronics with 320KB of internal flash, supplemented

with 8MB of external SDRAM and NOR Flash was $18.87, and actually $0.52 lower

than using an STM32F469NI with 2048KB of internal flash. The internal storage could

be lowered even further from 320KB for an additional reduction in the bill of materials.

We could expect similar cost benefits on different platforms in the MCU family.

Native Support for Low-Precision Arithmetic In Section 2.4.3 we discussed details

of the implementation of the kernels that are responsible for carrying out the low-level

convolution operations by interfacing with the hardware through the instruction set.

As discussed previously, 8-bit precision is the industry standard adopted for quantisa-

tion of CNNs as this provides low accuracy drop whilst accelerating inference latency.

However, as the hardware only supported multiplication and accumulation with 16-bit

operands, an extra step was performed in the kernels where all operands were sign ex-

tended from 8-bit to 16-bit. This step involved overheads of extra memory accesses to

get data into the correct format for processing. Adding support for native 8-bit multi-

plication and accumulation would reduce compute and memory overheads associated

with formatting the data in the kernels whilst also giving a compute benefit as lower

precision operations can typically be performed at higher throughput. Further, while

the current standard for deployment on MCUs in 8-bit quantisation, recent research

into sub-byte quantisation (Rouhani et al., 2023) could also be utilised to further re-

duce the data access latency and yield better performance. This could be added into

hardware by supporting efficient sub-byte load and arithmetic operations such as mul-

tiply and accumulate.

6.2.5 Applications in Other Architectures

In this thesis, we focused on low-power devices such as DSPs or MCUs which have

single cores and limited internal storage and memory. However, we believe many of

the insights from this research would be applicable to other architectures as well such

as GPU or multi-core architectures. This would be possible since the model of the hard-

ware we assume in Figure 4.1 is transferable to other devices without much difficulty.

One major difference in the hardware model assumed in this work with other architec-

tures is that MCUs have single cores, while other architectures may have multiple cores
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for parallelisation of compute. However, as we discuss below, this difference does not

preclude application of this research to other hardware platforms.

There are instances of follow-up work which employs some of the principles used

in this research. A recent work on multi-core mobile devices accelerated inference

by moving in data on demand from external to internal memory to bypass internal

memory size constraints (Alizadeh et al., 2024). However, this work does not employ

data overlapping or partitioning of the tensors. As the mobile devices have a sim-

ilar hierarchy and also have DMA peripherals on-board, the method of partitioning

and overlaying proposed in this thesis would be directly applicable to such devices

to reduce internal memory usage and accelerate inference. The overlapping between

compute and memory access would serve as another level of parallelism performed in

tandem with compute parallelism achieved through multi-core processing. The multi-

core compute parallelism could be viewed as being similar to the compute parallelism

achieved on MCUs through SIMD operations where two operations are computed in

parallel on the same core as discussed in Section 2.4.1.1. We could expect differences

in the extent to which memory and compute could be overlapped as multi-core pro-

cessors would likely achieve higher compute parallelism. This could lead to a different

amount of inference acceleration achieved when utilising the partitioning approaches

on these platforms. For example, if the compute time is reduced enough through higher

parallelisation, we might move to a memory bound regime, whereas in this research

inference was in the compute bound regime. Nevertheless, the application of the parti-

tioning approaches to multi-core architectures would still be able to achieve inference

acceleration which makes this an interesting avenue of future work.

Partitioning methods similar to those used in this research have also been adopted in

follow-up work based on GPUs to minimise memory requirement of matrix multipli-

cation operations encountered in attention blocks in transformer models (Dao et al.,

2022). However, these approaches were adopted to allow training of large transformer

models. For GPU based deployments, other factors would come into play when ac-

celerating inference with such partitioning approaches such as the model serving re-

quirements and inference stage. Whereas in TinyML we consider a unit batch size and

look at inference latency, GPU based model serving has different characteristics and

requirements. For example, model serving on GPUs often utilises larger batch sizes to

maximise weight reuse in internal memory and optimises metrics such as throughput

per user in addition to inference latency. Similarly, inference in transformer models is

often divided into prefill and decode stages where each stage of inference has differ-

ent tensor sizes and performance bottlenecks. In such cases, partitioning approaches

could be applied by changing the partitioning dimension to other dimensions, such as

the batch dimension, in order to optimise for throughput or latency. Similarly, parti-

tioning strategies might vary over the prefill and decode stages to optimise for perfor-

mance metrics utilised in auto-regressive inference such as time-between-tokens (TBT)
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and time-to-first-token (TTFT). An interesting exploration in this space would be to

study the usage of multiple partitioning strategies in model deployment to cater to the

different inference requirements.

6.3 Research Impact

In this section we assess the impact of the research carried out in this report. The assess-

ment was done with reference to the AREA 4P Orbit framework and details considera-

tions taken into account to produce desirable and impactful outcomes of the research.

The research was focused on enabling high performance deep learning on low power

IoT devices. There was a focus on achieving this using automated methods that did

not require human-expert knowledge. While currently only large organisations with

access to human experts have been able to deploy state-of-the-art DNN solutions, the

research area that this work focuses on significantly simplifies the process of efficient

DNN design by obviating the need for human experts. With such a democratisation

of AI, smaller organisations would be enabled to develop and deploy smart solutions

in new domain areas such as security, crisis response, infrastructure and others. Sim-

ilarly, the high performance enabled by the work carried out in this thesis and other

research works will also attract further applications in the IoT space. With the IoT mar-

ket expected to grow to 1.6 billion U.S. dollars by 2025, this would yield tremendous

economic impact.

However, it is also necessary that with such a proliferation of smart AI systems, we

anticipate the potential negative impacts that might be perceived by the public and

different stakeholders in different applications so that they can be addressed and social

benefit can be maximised.

One of the potential issues with current AI solutions based on DNNs is of their inter-

pretability and explainability. As tasks continue to be automated, it is possible that

the public may not trust systems whose behavior cannot be causally explained. AI ar-

guably has a bit of a problem when it comes to its perception by the public. This could

possibly be attributed to its often bleak portrayal in popular media. It is important

to understand the concerns of the public so that these can be assuaged. Other con-

cerns might be raised in relation to the collection of data which is required for such

smart systems. As an example, security surveillance applications which aim to achieve

socially desirable outcomes such as better public safety, might be considered to be a

breach of privacy. It would be important to engage with and educate the public on

the applications of the technology and its implications on society which could alleviate

such concerns. This could be done through outreach activities such as demonstrations
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at science fairs or communication through creation of digital content circulated on on-

line media platforms. Surveys and questionnaires could also be used on events and

different platforms to better understand the public concern.

As new applications emerge, it would also be imperative for government to define rig-

orous standards for robustness in addition to creating legislation on how the systems

could be used and how they would interact with existing infrastructure. For exam-

ple, the National Surveillance Camera Strategy defines regulations for data collection,

storage and curation in addition to defining protocols for surveillance footage usage

in legal proceedings. With reference to these issues, the EPSRC has recently launched

a research project on Trustworthy Autonomous Systems (TAS) to explore ways to reli-

ably and safely deliver secure autonomous systems while considering ethical and legal

constraints.

Another concern is of job displacement produced by increasing automation. An ex-

ample would be the interest in IoT solutions for industrial predictive maintenance. In

many settings industrial machines are regularly monitored by maintenance staff. Pre-

dictive maintenance solutions may significantly reduce the amount of human moni-

toring, reducing the role to only maintenance. However, while certain jobs may cease

to exist in the future, new roles will be created. In this case, it is vital to carefully

monitor how the employment landscape develops and appropriately offer retraining

opportunities to the public. In this space, the government has already launched the Na-

tional retraining scheme which was recently alloted £100m to help the public explore

alternative occupations and training opportunities to develop new skills. A policy rec-

ommendation would be for the TAS hub to be added to the partner organisations of

the National Retraining scheme. This would enable knowledge transfer between the

two organisations with the TAS hubs knowledge of emerging AI applications guiding

the curriculum for the retraining programmes.

As one of the key stakeholders in the project, the interests of the industrial partner,

ARM, were considered from the start of the project. This was done by conducting

an initial study of their work in the area of Tiny Machine Learning through digital re-

sources available on their website and other online platforms. Following this, a meeting

with the supervisory team was held before the start of the project to ensure alignment

between the research project and the industrial sponsors. The research proposal was

also initially presented at the annual ARM-ECS review meeting. Following this, regular

meetings were carried out with the industrial supervisors who provided insight into

the industrial landscape and relevant research questions. This information exchange

guided the research in a direction that allowed for innovation that could be embedded

into innovative and marketable products.
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Appendix A

A.1 Linear Quantisation with Integer-Only Arithmetic

In Section 2.3.2.3, we described how the real-valued scaling factor, S and integer-valued

zero-point, Z can be determined in the quantisation scheme. In this section, we review

how the integer only arithmetic is performed with the given quantisation parameters.

Through our discussion of the arithmetic, we derive the memory requirement of using

the proposed quantisation scheme which is utilised in the research contributions in

Chapter 4.

We consider the case of matrix multiplication of two quantised matrices as this repre-

sents the main workload of CNN architectures where dense fully connected layers and

convolutional layers directly map to matrix multiplications through the partial im2col

algorithm discussed in Section 2.4.3.

The multiplication of two quantised matrices, W and X, represented with the affine

mapping r = S(q− Z) can be performed using the quantisation scheme as below

Y = WX + b

SY(qY − ZY) = SW(qW − ZW) · SX(qX − ZX) + Sb(qb − Zb)
(A.1)

As the quantisation is performed symmetrically for weight tensors, Zw and Zb is set to

zero. Another assumption the scheme takes is to assume Sb = SWSX which simplifies

the above to

SY(qY − ZY) = SWqW · SX(qX − ZX) + SWSXqb

qY =
SWSX

SY
(qWqX − qWZX + qb) + ZY

(A.2)
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In the above qWqX is a matrix multiplication of 8-bit integers that can be efficiently per-

formed on the MCU. The term qWZX consists of constants known beforehand so this is

precomputed. Similarly, the quantised representation of the bias, qb is also known apri-

ori so this can be combined with the previous term to precompute qbias = qWZX + qb

which effectively fuses the bias addition with the matrix multiplication. The qbias is a

32-bit number stored in memory to deal with overflow when multiplying and adding

the lower precision 8-bit operands.

In Equation A.2, M = SW SX
SY

is a non-integer term as the scaling factors are real-valued

numbers. To limit the arithmetic to only integer mathematics, the term is approximated

as M = 2−n Mo ≈
SW SX

SY
, where Mo is an integer value. This allows the multiplication by

the real-valued M to be approximated by an integer multiplication with Mo followed

by a shift by n. This also generates the multiplier and shift parameters for operations

in the inference graph. With the assumptions Equation A.2 simplifies to

qY = 2−n Mo(qWqX − qbias) + ZY (A.3)

The above assumes quantisation performed at per tensor granularity for the weight

matrix. For convolution layers however, the quantisation is performed at a per channel

granularity which is equivalent to performing matrix multiplication with a weight ma-

trix having a number of scaling factors, SW. With per channel quantisation, there are

as many scaling factors as there are bias elements. Subsequently, the derivation above

produces an array of multiplier parameters, Mo and shift parameters, n.

Memory Usage The quantisation scheme requires precomputing and storing qbias in

32-bit format which has a memory requirement of 4Cout bytes. Similarly, the multiplier

and shift parameters are stored in 32-bit which have a memory footprint of 4Cout bytes.

In the case of a dense layer, the single weight matrix has only one scaling factor due to

which Mo and n are scalar values each requiring 4 bytes.

A.2 Sample Linker Command File

Listing A.1 shows an example of a simplified linker command file. Two memory seg-

ments are defined for internal flash (FLASH) and ram (RAM), with two segments defin-

ing external ram (SDRAM) and flash (QSPI). After, the memory segments are defined,

the linker command file directs the compiler to place the .text, .data and .bss section in

internal flash and ram. As the .data section contains initialised data, it must be stored in

non-volatile flash storage. For faster access latency, it is typically accessed from RAM.
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The >RAM AT> FLASH, syntax is used to place the initialised data in non-volatile flash

and then load it to volatile ram at initialisation.

The linker command file also shows two sections, .sdram_data and .sdram_bss, that

were defined by the user and placed in external SDRAM. Variables in C/C++ code can

be placed in these section using compiler directives.

/* Entry Point */

ENTRY(Reset_Handler)

/* Highest address of the user mode stack */

_estack = ORIGIN(RAM) + LENGTH(RAM); /* end of "RAM" Ram type memory */

_Min_Heap_Size = 0x600 ; /* required amount of heap */

_Min_Stack_Size = 0xB00 ; /* required amount of stack */

MEMORY

{

FLASH (rx) : ORIGIN = 0x08000000 , LENGTH = 1024K

RAM (xrw) : ORIGIN = 0x20000000 , LENGTH = 320K

SDRAM (xrw) : ORIGIN = 0x60000000 , LENGTH = 8M

QSPI (xrw) : ORIGIN = 0x90000000 , LENGTH = 16M

}

/* Sections */

SECTIONS

{

/* The program code and other data into "FLASH" Rom type memory */

.text :

{

. = ALIGN (4);

*(. text) /* .text sections (code) */

*(. text*) /* .text* sections (code) */

*(. glue_7) /* glue arm to thumb code */

*(. glue_7t) /* glue thumb to arm code */

*(. eh_frame)

KEEP (*(. init))

KEEP (*(. fini))

. = ALIGN (4);

_etext = .; /* define a global symbols at end of code */

} >FLASH

/* Used by the startup to initialize data */

_sidata = LOADADDR (.data);

/* Initialized data sections into "RAM" Ram type memory */

.data :

{

. = ALIGN (4);

_sdata = .; /* create a global symbol at data start */

*(. data) /* .data sections */

*(. data*) /* .data* sections */

*(. RamFunc) /* .RamFunc sections */

*(. RamFunc *) /* .RamFunc* sections */
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. = ALIGN (4);

_edata = .; /* define a global symbol at data end */

} >RAM AT> FLASH

/* Used by the startup to initialize data */

_sisdram_data = LOADADDR (. sdram_data );

/* Initialized data sections into "RAM" Ram type memory */

.sdram_data :

{

. = ALIGN (4);

_ssdram_data = .; /* global symbol at data start */

*(. sdram_data) /* .data sections */

*(. sdram_data *) /* .data* sections */

*(. sdram_RamFunc) /* .RamFunc sections */

*(. sdram_RamFunc *) /* .RamFunc* sections */

. = ALIGN (4);

_esdram_data = .; /* define a global symbol at data end */

} >SDRAM AT> FLASH

/* Uninitialized data section into "RAM" Ram type memory */

. = ALIGN (4);

.bss :

{

/* Used by startup in order to initialize the .bss section */

_sbss = .; /* define a global symbol at bss start */

__bss_start__ = _sbss;

*(. bss)

*(. bss*)

*( COMMON)

. = ALIGN (4);

_ebss = .; /* define a global symbol at bss end */

__bss_end__ = _ebss;

} >RAM

/* Uninitialized sdram data section into "SDRAM" Ram type memory */

. = ALIGN (4);

.sdram_bss :

{

_ssdram_bss = .;

__bss_start__ = _ssdram_bss;

*(. sdram_bss)

*(. sdram_bss *)

. = ALIGN (4);

_esdram_bss = .;

__bss_end__ = _esdram_bss;

} >SDRAM

}

LISTING A.1: Sample Linker Command File
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Appendix B

B.1 Derivation of Approximate Architecture Gradients

In this section we demonstrate that the approximation scheme utilised by DARTS (Liu

et al., 2019) was compatible with our multi-objective architecture gradients. To derive

the architecture gradients using the approximation scheme, the multivariate chain rule

could be applied as shown below,

∇³Lper,val(w
′(w, ³), ³) = ∇³w′(w, ³)×∇w′Lper,val(w

′(w, ³), ³)

+∇³³×∇³Lper, val(w′(w, ³), ³)
(B.1)

= ∇³(w− ξ∇Lper,train(w, ³)×∇w′Lper,val(w
′(w, ³), ³)

+∇³Lper,val(w
′(w, ³), ³)

(B.2)

=
[

∇³w− ξ∇2
³,wLper,train(w, ³)

]

×∇w′Lper,val(w
′(w, ³), ³)

+∇³Lper,val(w
′(w, ³), ³)

(B.3)

= −ξ∇2
³,wLper,train(w, ³)∇w′Lper,val(w

′(w, ³), ³)

+∇³Lper,val(w
′(w, ³), ³)

(B.4)

In the first term in Eq. B.4, the first derivative term, ∇w′Lper,val(w
′(w, ³), ³) is a large

vector of derivatives with a number of dimensions equal to the free weight parameters,

w in the network. Similarly, the term involving the second derivative,∇2
³,wLper,train(w, ³)

is a large matrix of second derivatives with a dimensionality of the number of free

weight parameters by the number of architecture weights. Computing the vector-

matrix product of the two would be prohibitively expensive. To bypass this com-

plex operation, the central finite difference approximation was employed by Liu et al.

(2019) with respect to w to substantially reduce the complexity as shown below where

w± = w± ϵ∇w′Lper,val(w
′, ³).

∇2
³,wLper,train(w, ³) =

∇³Lper,train(w
+, ³)−∇³Lper,train(w

−, ³)

2ϵ∇w′Lper,val(w′, ³)
(B.5)
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After substituting the simplified expression in Eq. B.5 into Eq. B.4 we can obtain the

final required architecture gradient as shown below in Eq. B.8.

∇³Lper,val(w
′(w, ³), ³) = ∇³Lper,val(w

′(w, ³), ³)

− ξ∇2
³,wLper,train(w, ³)∇w′Lper,val(w

′(w, ³), ³)
(B.6)

= ∇³Lper,val(w
′(w, ³), ³)

− ξ
∇³Lper,train(w

+, ³)−∇³Lper,train(w
−, ³)

2ϵ∇w′Lper,val(w′, ³)

×∇w′Lper,val(w
′(w, ³), ³)

(B.7)

∇³Lper,val(w
′(w, ³), ³) = ∇³Lper,val(w

′(w, ³), ³)

− ξ
∇³Lper,train(w

+, ³)−∇³Lper,train(w
−, ³)

2ϵ

(B.8)

Computing the second term in Eq. B.8 would require only two forward and two back-

ward passes to obtain the gradients with respect to the the network weights, w± and

the architecture weights, ³. Further, the complexity was reduced from O(|³||w|) to

O(|³|+ |w|).

Note that in Eq. B.8, setting ξ to zero would result in∇³Lper,val(w
′(w, ³), ³) being equal

to ∇³Lper,val(w, ³). This case, referred to as the first-order approximation would corre-

spond to the simple heuristic of assuming the current set of weights, w as the optimal

weights, w∗ and would speed-up the search process. In practice, the Liu et al. (2018)

noted that the first-order approximation lead to empirically worse performance so in

our work we used the case of ξ > 0, referred to as the second-order approximation.

B.2 DEff-ARTS Architecture Search Hyper-Parameters

• Number of Cells: 8

• Cell Step Size: 4

• Epochs: 50

• Batch Size: 64

• Initial Stem Block Output Channels: 16

• Networks Weights Optimiser: SGD with momentum

– Learning Rate: 0.025 annealed through cosine schedule

– Momentum: 0.9

– Weight Decay: 3× 10−4
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– Gradient Norm Clipping: 5.0

• Architecture Weights Optimiser: Adam

– Learning Rate: 3× 10−4

– Momentum ´: (0.5, 0.999)

– Weight Decay: 10−3

• Train/Validation Split: 50 : 50

• Modulation Parameter, ´ = 0.27

• Cost Weightage Parameter, Γ = 0.01, 0.02, 0.04

• Costzero = 106 − 1, to apply selection pressure towards non-zero candidate oper-

ations considered in discretisation

B.3 DEff-ARTS Architecture Training Hyper-Parameters

Results reported were an average of 3 runs.

• Number of Cells: 20

• Epochs: 600

• Batch Size: 96

• Initial stem Block Output Channels: 36

• Optimiser: SGD with momentum

– Learning Rate: 0.025 annealed through cosine schedule

– Momentum: 0.9

– Weight Decay: 3× 10−4

– Gradient Norm Clipping: 5.0

• Auxiliary Tower Weight: 0.4

• Cutout Length: 16

• Path Dropout Probability: 0.2
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Appendix C

C.1 Cell Based Search Space vs Manual Width Scaling

We compared the performance of the DEff-ARTS models derived from the cell based

search space with the popular approach of scaling the width of models. To reduce the

compute time required for evaluation, the networks were constructed by stacking 5

cells. A comparison of the two approaches is shown in Table C.1. It can be observed

that the manual approach of scaling outperformed the cells derived via the automated

approach of DEff-ARTS.

TABLE C.1: Comparison of DEff-ARTS Architectures with Manual Width Scaling

Architecture
Test Error

(%)

Params

(K)

Search Cost

(GPU days)
#ops

Search

Method

MACs

(M)

DARTS, w = 0.8x 92.38 88.4 - - Manual 19.9
DEff-ARTS + cutout, Γ = 0.01 90.83 90.1 4 7 Gradient-Based 21.3

DARTS, w = 0.7x 91.5 65.3 - - Manual 15.0
DEff-ARTS + cutout, Γ = 0.02 84.56 63.6 4 7 Gradient-Based 16.7

C.2 Data Structure for Partitioning Strategy

The data structure used to store the partitioning strategy for the operations listed in

Section 4.2.3 is shown in Section C.1. The PARTITION_FACTOR macro was defined

to be 224 for the worst case in CNNs designed for ImageNet classification in the MCU

setting where the maximum resolution or H dimension is 224. We note that this could

be arbitrarily changed to any other constant.

typedef struct PartitionInfo {

TfLiteIntArray * dims;

// pointer to input tensors

const TfLiteEvalTensor * input1;

const TfLiteEvalTensor * input2;

// pointer to filter and bias tensors
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const TfLiteEvalTensor * filter;

// pointer to bias tensor

const TfLiteEvalTensor * bias;

// partition factor for the particular operation

uint8_t numParts;

// number of rows in the tiny tensor

uint8_t partSizes[PARTITION_FACTOR ];

// starting row of the partitions

uint8_t partitionStart[PARTITION_FACTOR ];

// ending rows of the partitions

uint8_t partitionEnd[PARTITION_FACTOR ];

// dimension of partitioned input tiny tensors

uint16_t inp_partitioned_dim[PARTITION_FACTOR ];

uint16_t out_partitioned_dim[PARTITION_FACTOR ];

// tiny tensor operation info , e.g. padding

uint8_t op_part_data[PARTITION_FACTOR ][ PARTITION_OP_DATA_SIZE ];

} PartitionInfo;

LISTING C.1: Operation Partitioning Strategy Data Structure

C.3 Architecture Training Hyper-Parameters

• Epochs: 150

• Batch Size: 256

• Networks Weights Optimiser: SGD with momentum

– Learning Rate: 0.025 annealed through cosine schedule

– Momentum: 0.9

– Weight Decay: 4× 10−5
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Appendix D

D.1 SuperNetwork Training Hyper-Parameters

• Epochs: 20

• Batch Size: 128

• Networks Weights Optimiser: SGD with momentum

– Learning Rate: 0.1 annealed through cosine schedule

– Momentum: 0.9

– Weight Decay: 1× 10−4

• Candidate Widths: 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75,

0.80, 0.85, 0.90, 0.95, 1.00

• Candidate Resolutions: 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224
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