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ABSTRACT

This paper presents a discrete-event simulation model of an entire hospital to investigate the impact of
urban flooding disasters, specifically focusing on physical damage to the hospital building and its
implications for patient care. A novel patient-centred health utility function is introduced to assess
patient outcomes and inform patient prioritisation decisions. The model is used to simulate a two-wave
disaster scenario: the initial wave represents physically injured patients due to the flooding, while the
second wave captures patients with flood-related infections. Additionally, this paper experiments with
strategies and policies to respond effectively to the disaster and enhance resilience. Preliminary results
demonstrate the model's ability to evaluate hospital resilience and balance the needs of disaster victims
and routine patients. This work is intended to lay the foundation for data-driven disaster preparedness
and response planning.
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1 INTRODUCTION

Urban flooding represents a serious and growing challenge, often resulting in widespread devastation,
economic damages, and the loss of human lives (Halecki and Mtynski, 2025). Among all natural
disasters globally, floods occur with the highest frequency (Xie et al., 2017) and are projected to
increase over the coming decades due to global climate change and rapid urbanisation (Azadgar et al.,
2025). Given this context, the importance of modelling and simulating urban flooding disasters cannot
be overstated, particularly in understanding their impacts on critical infrastructure such as healthcare
facilities.

When urban flooding occurs, it can severely disrupt healthcare infrastructure due to physical
damage. Urban flooding is a specific example of natural disasters that can cause such damage to
hospitals. Maintaining operational capability becomes a significant challenge for healthcare units,
which must continue their operations despite partial damage or destruction. Numerous studies have
examined the resilience of hospital systems; however, this research specifically focuses on hospital
resilience in the context of disasters that involve physical damage. Relevant studies on such disasters
(Shahverdi, Tariverdi and Miller-Hooks, 2020; Mahmoud et al., 2023; Carbonara, Pellegrino and De
Luca, 2024) outline how these events can impact healthcare units in critical areas. This includes
structural integrity, such as damage to the building framework; non-structural elements, such as damage
to interior finishes and fixtures; lifeline support systems, which encompass power or water outages; and



medical resources, including damage or failure of equipment and shortages of medical staff. In
conducting a review of hospital studies related to disasters involving physical damage, the following
gaps in the literature have been identified: notably, no individual study comprehensively covers all the
consequences of physical damage on healthcare facilities, and current literature addresses only a narrow
scope of damages and losses in their disruption scenarios. Additionally, while existing research has
estimated system resilience, there is a lack of studies that design and evaluate specific response policies
and improvement strategies beyond merely adding more resources.

The effects of urban flooding extend beyond immediate physical destruction; they also significantly
impact the health of affected populations, as well as hospital buildings and operations. Research by
Lane et al. (2013) and Paterson, Wright and Harris (2018) highlights various pathways through which
urban flooding can lead to adverse health outcomes. Initial exposure to flood-related hazards can result
in physical injuries and other health risks. Additionally, power outages can lead to severe conditions,
such as carbon monoxide poisoning and heat- or cold-related illnesses (Dharmarathne et al., 2024).
Following such disasters, secondary hazards also emerge, including waterborne illnesses and
respiratory infections due to prolonged exposure to contaminated environments (Mulder et al., 2019;
Jang et al., 2024). This multifaceted impact underscores the necessity of understanding how urban
flooding affects healthcare infrastructure and the populations it serves.

In addition to the physical and operational challenges posed by urban flooding, patient health
outcomes are a critical aspect that warrants attention. The disruption of healthcare services during
disaster events can compromise patient outcomes and overall health states. A review of the literature
on whole hospital simulation models (Basaglia et al., 2022; Miller-Hooks et al., 2022; Ordu et al., 2023)
shows that the performance metrics commonly used are primarily limited to process-based outcomes,
such as length of stay, waiting time, and resource utilisation, which focus mainly on the operational
efficiency of hospitals. Mortality rate is the only health outcome-related metric typically considered in
this literature. Incorporating a patient-centered Key Performance Indicator (KPI) that measures patients'
health utility emphasises quality of care, as this KPI also takes health outcomes into account. It
transcends conventional process-based KPIs, which are typically used to improve hospital operational
efficiency. Additionally, the literature lacks sufficient attention to capturing the competition between
routine and disaster patients over hospital resources during a disaster scenario. More importantly, in our
context, the patient-centered KPI provides a basis for balancing the needs of disaster victims and routine
patients.

Urban flooding disasters pose significant challenges for hospitals, causing physical damage to
infrastructure, straining resources, and compromising patient outcomes. However, existing studies often
overlook the multifaceted impact of disasters, including the absence of patient-centred KPI designed to
assess patient health outcomes, and the need to balance the competing demands of disaster victims and
routine patients. This research aims to address this gap by building a comprehensive Discrete-event
Simulation (DES) model of an entire hospital under urban flooding disaster conditions. The model
incorporates a novel patient-centred health utility function and simulates a realistic two-wave disaster
scenario. This paper also designs response policies that can be used to experiment with the hospital
simulation model during disaster scenarios and periods of hospital congestion. The ultimate goal is to
provide managerial insights at the hospital level to prioritize patients, balance the needs of existing and
disaster victims, and maintain quality of care during and after a major disaster.

The rest of this paper is organised as follows: Section 2 presents the simulation model of an entire
hospital, including the design and framework of experiments, and proposes the patient-centered
indicator. Section 3 presents the preliminary results. Finally, Section 4 concludes the study by
summarising how the developed simulation model captures hospital operations and the impact of
disasters, highlights the design of a health utility function, and discusses the next steps in completing
this ongoing work.

2 HOSPITAL SIMULATION MODEL

2.1 Simulation Model Overview

A DES model of a hospital was developed using AnyLogic software. This model captures patient flows
and resource dynamics across the entire hospital, including Accident & Emergency (A&E), outpatient,



and inpatient care services. Inpatient care is further divided into surgical and medical wards. Figure A-
1 illustrates a high-level flowchart of the patient flow process within the hospital. The hospital operates
24/7, every day of the week. Patients are assigned attributes such as Emergency Severity Index (ESI),
age, gender, entry point, and exit point. Patient arrivals in the A&E are time-dependent, influenced by
the specific hour of the day. Additionally, outpatient and inpatient arrivals vary according to the day of
the week, reflecting the absence of elective patients on weekends. The model run length is set to 9
months with 10 replications. Furthermore, a warm-up period of 50 days is determined using Welch’s
method (Welch, 1981). The model is validated using face validity and extreme condition tests.

2.2  Experimentation Design

Two categories of experiments have been designed. The disaster scenarios reflect the real-world effects
of urban flooding on the hospital and the population, while the response policies are strategies aimed at
enhancing hospital resilience. In this study, we conduct three experiments as follows:

Experiment 1 (Baseline). This scenario represents the normal arrival patterns in hospital operations
and usual rules policy under routine conditions, as explained earlier in 2.1.

Experiment 2 (Two-Wave Disaster Scenario and Usual Rules Policy). This scenario reflects the
impact of immediate and secondary health implications of the disaster on the affected population. This
scenario is designed based on insights from literature (Paterson, Wright and Harris, 2018), and real-
world case studies (Mulder et al., 2019; Musacchio et al., 2021; Ziliotto, Chies and Ellwanger, 2024).
The disaster strikes from day 150 and lasts for 10 days. The first wave of the disaster results in victims
who are physically injured as a result of direct exposure to the flood and require surgery. In the second
wave of the disaster, arriving patients have contracted respiratory infections and waterborne diseases
and are admitted to the medical ward for treatment. This scenario also takes into account the specific
demographic characteristics, such as the age profile of the disaster arrivals.

Experiment 3 (Two-Wave Disaster Scenario and Elective Cancellation Policy). One response policy
to enhance hospital resilience during a disaster or surge in demand is the temporary cancellation of
elective patient admissions (Nehme, Puchkova and Parlikad, 2022). This strategy involves suspending
the inflow of planned outpatient and inpatient treatment cases, allowing the hospital to redirect its
resources toward managing disaster arrivals and patients with emergency care needs. Implementing this
policy scenario is a promising approach for addressing patient demand in the Two-Wave Disaster
Scenario. By stopping elective admissions to both the inpatient and outpatient wards, the hospital can
free up resources to better handle the high demand generated by the two disaster waves presented in
this scenario. Therefore, reducing the influx of elective cases can help alleviate the expected congestion
in the inpatient and outpatient wards.

2.3 Health Utility Function

Typically, models in the literature focus on process-based outcomes, such as length of stay, waiting
times and resource utilisation, with mortality being the only health-related outcome considered. A major
contribution of this model is that it incorporates health outcomes for all patients. To assess the patient
outcomes, a health utility function is introduced in this paper, capable of evaluating patient health
utilities at the population level within a hospital setting. The function assigns a utility score on a
numerical scale from 0 to 1, where 1 represents perfect health and 0 indicates death, for each patient
throughout their hospital stay. Based on findings from the literature (Needleman et al., 2011; Kuntz and
Sulz, 2013; Brazier et al., 2017), several factors are considered in calculating health utility, including:

Base Utility. This reflects the patient's well-being upon arrival at the hospital and is dependent on
gender and age.

Reason for Admission. This accounts for the temporary condition that has led to the patient's ilIness.

Utility on Admission. This is derived from the two factors mentioned above. Utility on Admission
is calculated using the formula presented in Equation (1):

Utility on Admission = Base Utility * Reason for Admission (D)

Curability. This factor assesses whether the patient has an acute or chronic condition, or if they
have sustained an injury that results in permanent disability.



Effect of Delay. This reflects any delays the patient may experience in receiving treatment compared
to the standard timeframe.

Effect of Treatment Quality. It reflects the adequacy of available resources and is quantified by the
staff-to-patient ratio.

Final Utility. This measures the final health utility value for individual patients at discharge and is
compared with Base Utility and Utility on Admission. Equation (2) outlines the formula proposed to
calculate the health utility function:

Health Utility Function = Base Utility * Curability * Effect of Delay * Effect of Treatment Quality 2

The health utility function is incorporated into the hospital simulation care paths, spanning from
patient entry to discharge, and is used as an output KPI.

3 PRELIMINARY RESULTS

The simulation model was run for the three experiments outlined in 2.2. The patient-centred health
utility function was used to assess the impact on patient outcomes across different patient categories.

Table 1 presents the average final utility scores for routine patients, including emergency
admissions, direct referrals, and elective admissions. In Experiment 1, which represents the normal
operations of the hospital, the average final utility score of 0.77 exceeds the utility on admission, which
is 0.48. This indicates that most patients experienced an improvement in their health states compared
to when they were admitted. The final utility score is below the base utility of 0.81, suggesting that
while patients generally improved during their hospital stay, not every patient fully returns to their
original health state.

However, under Experiment 2, the final utility drops to 0.48, 0.60, and 0.64 for emergency, direct
referral, and elective patients, respectively. This decline in utility scores highlights the significant
impact of the disaster on routine patient outcomes.

Table 1 Average Final Utility for Routine Patient across Different Experiments

Emergency  Direct Elective
Referral

Final Utility ~ Final Utility  Final Utility

Base Utility on
Utility  Admission

Experiment 1 0.81 0.48 0.77 0.77 0.77
Experiment 2 0.81 0.48 0.48 0.60 0.64
Experiment 3 0.81 0.48 0.56 0.74 0.76

Experiment 3, designed to mitigate the impact of the disaster, shows improvements in final utility
scores compared to the disaster scenario. While the utility scores remain lower than the baseline for
emergency patients, the elective cancellation policy demonstrates its effectiveness in balancing the
utility score of different routine patient groups during the disaster. The current model does not consider
the impact of treatment delay due to the cancellation. This will be addressed in our future work.

Table 2 focuses on the disaster victims, categorised into first wave and second wave arrivals. Under
Experiment 2, the final utility values for first wave and second wave disaster victims are 0.43 and 0.41,
respectively. These low utility scores emphasise the severe impact of the disaster on the health outcomes
of disaster victims.

Experiment 3 shows a notable increase in final utility scores for both first wave and second-wave
disaster victims compared to Experiment 2. The final utility for both first wave and second-wave victims
increases to 0.77. This suggests that the elective cancellation policy not only helps balance utility values
among routine patient groups but also significantly improves outcomes for disaster victims by freeing
up resources to address their immediate medical needs.



Table 2 Average Final Utility for Disaster Victims across Different Experiments

First Wave Second Wave
Disaster Arrivals Disaster Arrivals
Base Utility on . - . .
Utility  Admission Final Utility Final Utility
Experiment 2 0.81 0.48 0.43 0.41
Experiment 3 0.81 0.48 0.77 0.77

4 DISCUSSION & CONCLUSION

This study developed an entire hospital simulation model that captures both hospital operations
during disasters and the presence of scheduled patients. It also examines the impact of two waves of
disaster, focusing on the initial and secondary health implications of urban flooding on the population.
A distinctive aspect of this research is the creation of a health utility function, which serves as a patient-
centric indicator for measuring health outcomes. This approach allows the system to be evaluated and
improved not only through traditional process-based indicators but also via this patient-centred indicator
that emphasises individual health utility. By integrating this health utility function into the simulation
model, the study enables the tracking of each patient's health outcomes throughout their entire treatment
journey within the hospital and enables the model to explore potential health-related trade-offs between
disaster and routine patients under different response policies.

The preliminary findings from this paper demonstrate the potential of using utility measures to
assess the impact of disasters and response policies on different patient groups. Although model
parameters are currently being refined using literature and publicly available datasets to obtain more
accurate values, the initial results show promising applications. The utility function enables hospital
managers to prioritise patient groups based on their health needs and to allocate resources effectively
to balance the utility across all patient categories. By comparing utility scores across scenarios,
decision-makers can identify the patient groups most severely affected by the disaster and tailor
response strategies accordingly.

The simulation model indicates capability for decision support in hospital disaster response. As this
research is ongoing, future work should focus on expanding the range of disaster scenarios and response
policies. Emphasis should be placed on scenario evaluation, specifically examining the impact of
delayed treatment due to the cancellation as well as the impact of flooding on hospital infrastructure in
addition to its effects on the population. Additionally, it is important to analyse results across diverse
patient groups, such as different age demographics or ESI levels. Future efforts will also aim to provide
insights regarding patient prioritisation plans for hospital managers.
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APPENDIX
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Figure A-1 High-level flowchart of the patient flow process within the hospital
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