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Self-organised Communication-aware Control Structures for Robot Swarms

by Thomas Graham Kelly

Robotic swarms are complex systems that rely on local communication between
individual members of the swarm to spread information about their state and the
environment. This information informs decisions and aids in tasks such as exploration
and mapping. When communications break down between members of a swarm, it
can become difficult to maintain accurate and up-to-date information about the state
of the swarm and the environment. This problem is pertinent when humans are
involved and may act as operators or teammates of the swarm. Here it is vital that the
swarm can coordinate to distil and disseminate the vast amounts of information
collected to the humans and throughout the swarm effectively, to maintain situational
awareness.

The collective decision-making of a swarm is one aspect that relies heavily on the
ability to share information and observations to reach a swarm-wide consensus. This
thesis investigates how communication constraints affect the swarm’s ability to reach
a consensus and implement a communication-aware coordination strategy to mitigate
these effects. We propose the communication-constrained collective decision-making
problem and compare the performance of several collective decision-making
strategies, enhanced with our coordination algorithm. We find that using such an
approach improves the speed of a swarm to reach a consensus.

Following on from this work, we examine a hybrid swarm system in a
communication-limited environment. While swarms are traditionally considered
decentralised systems, recent approaches have integrated decentralised and
centralised control into a swarm system. We study the trade-offs in performance and
communication in a hybrid system that can vary its control structure. We find that a
higher level of centralisation does not guarantee higher performance and study how
communication with a human operator is affected by the control structure. This work
is extended to assess the feasibility of enabling a swarm system to learn the optimal
control structure on the fly, according to mission requirements.

http://www.southampton.ac.uk
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Chapter 1

Introduction

In a system consisting of many entities that interact to achieve a common goal, finding
the best way to coordinate those entities is vital in ensuring the collective success of
the system. The field of Multi-agent systems, which is a sub-field of AI, has dedicated
itself to examine the mechanisms behind the behaviours and coordination of such
entities for several decades. It defines an agent as an entity with goals, actions, and
knowledge of its domain that is situated within an environment [3]. When these
agents are robots, the system is considered a Multi-robot system. For such systems,
two common control structures are used to coordinate agents and aim to provide the
system with feedback either from agents’ peers, known as a decentralised system, or
from a central operator, known as a centralised system. A fully centralised system
relies on a single computational entity that dictates the behaviour of the entire
population of agents. This entity may be external to the environment that the robots
are operating in or may be one of the robots that takes on the role of a leader [4, 5, 6, 7].
This entity is able to collect data from other robots via communication channels and
use this global information to arrange and coordinate the system of robots. This
inclusion of global data often allows such systems to perform complex tasks more
quickly and accurately than their decentralised counterparts at the expense of their
computationally expensive calculations, poor scalability and vulnerability to single
points of failure [8]. Decentralised systems, on the other hand, do not have a single
central controller and each agent/robot is left to autonomously accomplish it’s tasks.
Such systems typically rely on local interactions between agents to share information
that is collected relating to tasks and the environment. Without a single leader or
centralised control, these kinds of system are more flexible in their ability to adapt to
their environment and any changes that may occur. Each agent uses the local
information that they gather from the environment and from neighbours to act in the
best way in order to complete the task. While decentralised coordination is possible
[9, 10], it is often less optimal than centralised approaches, due to the difficulty in
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securing global information about the system, which often needs to be built up over
time by the robots.

Ultimately, the mission requirements set out by an operator are a major factor in
deciding whether a centralised or decentralised control structure is best for a given
task. A centralised system is typically the optimal architecture to use when efficiency
and speed are crucial [6]. However, this efficiency will come at a cost of the resilience
of the system and may put the system at a higher risk of failure, should the central
operator fail. Selecting a decentralised system, however, will likely sacrifice the speed
and accuracy of the solution [6]. The decision of which architecture is the most
optimal to use becomes even more difficult when the system is faced with unknown
and dynamic environments. The state of that environment may introduce a variety of
constraints on the system that is deployed, whether these are related to
communications or the operability of the system. In such environments, it would be
desirable to have a system that can adapt its control structure accordingly to suit the
current state of the environment. To do so, the system should be able to transition
back and forth between a decentralised and centralised system, to take advantage of
both of these approaches’ strengths while mitigating their weaknesses.

The notion of a system that can adapt its structure or organisation by itself is known as
Self-organisation. This adaptation and reorganisation is achieved using simple local
interactions without any external direction [11]. Such systems are common in nature
for example the flocking behaviour of birds, where individuals change their
movements to align with the positions and velocities of their neighbours [12].
Similarly, this phenomenon can also be observed in natural physical processes such as
in the formation of patterns in sand dunes, like ripples or waves, as a result of
interactions between wind and sand particles [13]. In the context of multi-robotic
systems, this refers to the ability of robots or robotic networks to autonomously
arrange their components or behaviours in a structured manner without external
control or pre-defined instructions [14]. This may be through the arrangement of
robots in order to form physical structures [14, 15] or through the formation of robotic
networks which may extend to hierarchies present in that network [7]. These
arrangements must be controlled by the swarm alone, without external intervention
[14]. Doing so, allows the swarm to adapt and change the formed structures according
to the state of the environment and the swarm itself. In the context of physical
structures, this may involve the relocation of robots in order to allow a physical link
between two points that were previously not connected. In a hierarchy, this may relate
to the dynamic selection of a leader that is best suited to make decisions on behalf of a
locally centralised structure of robots. Robots that follow a self-organised approach
adapt their actions and structures based on interactions with their environment and
with each other. This leads to the spontaneous emergence of organised behaviours,
patterns and solutions.
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It is possible to have a system benefit from both a centralised and decentralised
approach together by combining elements of both control structures in a
self-organised manner. Recently, a method inspired by the Mergeable nervous systems
(MNS) [4] was proposed, which enables a swarm system to overcome the drawbacks
faced by both centralised and decentralised systems. In this approach, a swarm is
controlled through a self-organised hierarchical structure consisting of a brain robot
which can be dynamically selected. This approach relied on physical connections
between robots linking each agent to the brain robot. A system using this approach
can vary the level of decentralisation or centralisation according to mission
requirements and for a given task. This MNS approach was extended to use wireless
communications instead of physical connections, by Zhu et al. [5]. In this approach,
the behaviours of a group of robots, both ground based and unmanned aerial vehicles
(UAVs) are managed by a dynamically selected UAV brain robot. The MNS approach
represents the only attempt to create a hybrid control system.

1.1 Robot Swarms

One example of a decentralised Multi-robot system is a robot swarm. This is defined
as a robotic system that exhibits “aggregation often combined with collective motion”.
While there are many definitions of a swarm, one of the overriding themes in these
definitions is that a swarm is a complex system that is made up of simple components,
which act to solve a task collectively. Each member of the swarm shares the same
objectives and aims to solve a complex task together which would be impossible to
solve if considered by only one individual. One such example, which embodies this
idea and can be observed in nature, is that of flocks of birds, with thousands of birds
forming a system of complex movements using simple, local rules [16]. An important
motivation for thinking about swarm systems is asking the question of how simple
and local actions of individuals combine to display predictable global patterns [16]?
Such a motivation is attractive from an engineering point of view. Being able to have
swarms of simpler and less expensive embodied individuals, robots, deployed into an
environment and have them solve a complex task collectively, as effectively as a more
expensive and powerful individual robot is a tantalising prospect [17]. A key
characteristic of swarm systems is their rapid adaptability to their environment. This
stems from their decentralised nature which is traditionally used as a definition of a
robot swarm [18]. Such a feature makes them well-suited for operation in unknown
environments. It is anticipated that robot swarms will see great advances in the next
decade, given that they have been shown to aid in a wide variety of problems facing
humans [17]. These include offering solutions to improve the efficiency of food
production, and reducing water consumption [19] and for responding to disasters [20].
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A key advantage of robot swarm systems is in their ability to recover from damage,
thanks to the large number of individuals which creates redundancy within the
system. This, along with their ability to cover a potentially large area, makes them an
excellent solution to problems in environments that may be difficult for humans to
navigate in. For example, in the wake of a disaster, where the infrastructure may be
damaged making it difficult or dangerous for humans to access. Here, a robot swarm
could be deployed to begin the search for survivors. Such scenarios do however
present their own challenges.

One such challenge considers how the swarm can communicate important
information to a human who wishes to use the data collected to inform decisions. In a
disaster response scenario, this information may be relayed to the operator when and
where it is best to allocate resources [21]. Not only must the swarm make decisions on
the information that has been collected quickly in time-sensitive situations, but must
also be able to communicate these decisions to humans in a reliable manner [22]. This
itself can become increasingly challenging when the intra-swarm communications and
the swarm-to-human communications become unreliable. This uncertainty over the
communications can be caused by a range of factors. Environmental factors may
include obstacles that prevent communications between certain parts of the
environment and may make the communications intermittent or even cut them out
altogether [23]. Another factor to consider is the topology of the swarm which can
rapidly change as the swarm performs its task. This will mean that the members who
are within communication range of each other will change rapidly. Finding ways that
the swarm can account for these uncertainties in the communication conditions could
allow robot swarm systems to cope with rapid changes affecting the swarm and
improve their decision-making under time constraints.

As such, the study of human swarm interaction (HSI) has become increasingly
important in recent years [16]. This field combines the studies of traditional
human-robot interaction with swarm systems. In these systems, feedback with the
operator is particularly important due to the seemingly chaotic interactions and
behaviours that individual agents can appear to exhibit. Swarm transparency, defined
as “the quality of an interface to support a human operator’s comprehension of an
intelligent agent’s intent, performance, future plans and reasoning process” [24], is an
important concept when considering how a swarm may present information to a
human. The situational awareness-based agent transparency (SAT) framework was
outlined in [24] and incorporates Endsley’s situational awareness framework [25], Rao
and Georgeff’s beliefs, desires and intentions (BDI) framework [26] and Lee’s 3Ps
model (purpose, process and performance) for human operator trust calibration [27].
It highlights important factors that improve the situational awareness of human-robot
teams through providing greater transparency. In [22], Roundtree at al. examined
criteria that designers of human-robot systems can consider to achieve greater
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transparency. Their analysis was based around the SAT framework, presented in [24].
These studies found that when communication conditions are limited, breakdown or
change, the swarm’s ability to relay information to a human operator or disseminate
the information throughout the swarm can be hindered. This breakdown can also
affect the human operator’s situational awareness of the environment [28, 22, 29, 30],
by hindering the swarm’s ability to communicate up-to-date and accurate information
regarding the swarm’s current states, future states and intentions. These changes to
the communication conditions can be caused by several factors. For example;
environmental factors such as in a forest environment, changes in the topology of the
swarm network or in contested environments where the swarm must reduce
communication to avoid detection. It is important that when these factors are present,
the swarm can continue to inform human operators and perform its task.

Swarm systems embody many of the key principles and features of a self-organised
system. They are resilient to single points of failure, scalable to different tasks and
environments and autonomous in their decision-making. Importantly, they are also
able to coordinate and collaborate to accomplish tasks through local interactions,
without centralised control, resulting in effective collective behaviours. This capability
enhances their flexibility and enables them to adapt their behaviours and actions
according to their environment, which may be dynamic or unpredictable. They do,
however, face significant challenges when effectively communicating up-to-date and
accurate information to human operators. Maintaining the situational awareness of an
operator and improving the swarm transparency are key issues that must be
considered in the development of swarm systems. While many aspects of HSI have
been studied, the impact on a human operator and on the performance of a swarm
itself has not been considered for a swarm using a dynamic self-organising system,
that may be able to vary its level of centralised and decentralised control.

1.2 Self-organised Hybrid Control Structures

A swarm system presents a unique opportunity to exploit a huge number of simple
agents and the redundancy that comes with it to complete tasks that would be
impossible to solve by a single agent. Decentralised approaches are proposed as
scalable and resilient methods for organising swarms but with low efficiency. In
contrast, centralised coordination can be efficient (e.g. in area coverage [31]) but is
often not scalable and they rely on central units to control the system which can be
points of system failure (i.e., low resilience). A combination of centralised and
decentralised control could provide a swarm control method that makes use of the
benefits of both approaches. Traditionally, swarms are defined as decentralised
systems with shared sets behaviours embedded into each member of the swarm and,
as such, no hierarchy, no centralisation and with no predetermined leader [18].
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However, recent efforts have endeavoured to incorporate elements of hierarchy and
centralised control into robots swarms in order to increase the adoption of robot
swarms into real-world applications [7]. The inclusion of centralised control
contradicts the definition that a swarm system should be decentralised in order to
benefit from the scalability, flexibility and fault tolerance that decentralised systems
exhibit. However, if hierarchy and centralised control are applied in a way such that
the centralised control is formed by the swarm itself and is not imposed from outside
the swarm then it is possible to design a system that incorporates swarm controlled
centralisation, while allowing the swarm to dynamically adapt this hierarchy in a
self-organised way [7]. This could be achieved by designing a system where agents
switch between acting as a centralised or decentralised system. The overall time spent
in each of these states by the system could dictate the level of centralisation or
decentralisation exhibited. This method is an important aspect of the future of robot
swarms [32]. Such a method would further enhance the ability of a swarm to adapt
quickly and effectively according to its environment, when it has been deployed in an
a priori unknown environment. The relative advantages of using such an approach
have been examined for varying groups of robot sizes in both homogeneous [4, 5] and
heterogeneous [33, 6] systems.

Work considering theoretical foundations of self-organised hierarchical control
frameworks has also been considered by Zhang et al. [34]. Hierarchical swarm
control, despite being a relatively new field within swarm robotics, represents a
promising area of research with important implications for the future of swarms [32].
The self-organised nervous system for swarms was proposed by Zhu et al. [7] as a
hierarchical control method for swarms, examining the scalability and stability of such
a system. Work in this area, so far has focused on the application of a mergeable
nervous system to distribute and coordinate a swarm based on a set of network
topologies. While the relative performance of a bio-inspired hierarchical control
structure has been studied, the performance of a more generic hybrid approach and its
effect on human operators have not yet been explored.

It has been found in previous works on a variety of platforms, that the level of human
input needed to achieve the highest performance is task-dependent [35, 36]. Higher
levels of automation reduce the time spent by a human operator performing actions
but can increase the cognitive load due to the vast amount of data that is being
collected and presented by the swarm [37, 28]. Cummings suggested that this can
affect the situational awareness of the human operator in the task [28]. This is because
large quantities of data make comprehending the current and future states of the
swarm very difficult. As such it is important to include the human at some level of
decision-making [28], however, too much involvement may reduce the overall system
performance [35, 36]. When operating a swarm, the volume and quality of
information exchanged with an operator and within the swarm is a key factor in
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maintaining situational awareness. Managing multiple tasks or interruptions at once
increases the effort required by an operator to restore their situational awareness [38].
To aid with the operation and the situational awareness, the focus has been placed on
developing novel interfaces for the visualisation and control of swarms [39, 40, 41].
Abioye et al. [42] studied the effect of cognitive workload on the overall
human-swarm performance and showed that a higher volume or quality of
information sent to the operator does not necessarily increase the number of
accurately completed tasks and instead slows down the operation.

While these issues have been studied extensively in the context of HSI for traditional
decentralised swarms, they have not been considered in the context of self-organised
hybrid control systems. It’s unclear how these aspects of HSI, such as the cognitive
load and situational awareness vary with different levels of decentralised or
centralised control that may be present in self-organised control structures. A swarm
system presents an often unpredictable system with emergent behaviours that can
appear chaotic to a human operator as a result of the local interactions that are
present. In a system that can change the control structure quickly and potentially
without warning, it is possible that the system could present additional mental
overhead for a human operator. If this is the case, it is important to understand the
mechanisms that cause the system to change its control structure. Comprehending
how these mechanisms affect communication with an operator could allow the
prediction of future changes in the swarm structure and reduce the mental load placed
on the operator.

1.3 Problem Definition

Communication limitations in unknown environments pose significant challenges for
human-swarm systems [37, 22, 30, 29, 23] and limit their deployment into real-world
applications [43]. A variety of factors may affect this, from environmental obstacles to
rapidly changing and dynamic swarm topologies. As a result, it is important that a
swarm can adapt and optimise its own parameters to these conditions and that it is
aware of its communication environment. The swarm must be able to maintain
up-to-date information, along with providing accurate information to any operators,
improving their situational awareness. Many of the approaches presented in literature
consider planning to reconnect in communication constrained environments
[44, 10, 45], maintaining connectivity throughout the swarm [46, 47] and collective
decision making [48, 49]. Each of these are important considerations when
implementing a system that can provide a human operator with situational
awareness. Maintaining connectivity can help mitigate some of the negative effects of
latency in the system by ensuring commands and feedback are exchanged between
the human operators and the swarm promptly. Re-connection protocols can reduce
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the risk of the swarm splitting into fragments unexpectedly, which may occur as a
result of the human operator issuing several commands in a short time [37]. Many of
the approaches, however, rely on a priori knowledge of either the possibility of two
individuals being able to communicate at any point in time or the environment that
the swarm is operating in [50, 23, 45, 44]. These approaches also aim to find an optimal
plan, by simulating and planning many timesteps into the future. Such plans may
require replanning in a changing environment, resulting in a waste of initial
computation. The resulting assumptions are difficult to fulfil in swarm systems where
the topology of the swarm and the communication landscape may change rapidly due
to human input or changing environmental conditions. Methods that avoid the need
for this information and can consider the uncertainties present in a large swarm
setting could mitigate this issue. Particularly where imperfect information may be
available to each agent relating to the locations of neighbours and where plans may
not be possible due to the reactive nature of the swarm. Alongside this, many of the
proposed methods for coordination and coverage aim to be optimal and plan
accordingly. However, in a dynamic environment, planning too far in advance may
result in wasted time, where plans become obsolete a few time steps in the future.
Constraining the planning process to consider changes in the swarm topology and the
environment may lead to more energy-efficient plans.

We address these issues in Chapter 3, by considering a collective decision-making
scenario with communication constraints that are an intrinsic feature of the
environment. These constraints prevent agents from being able to share information
completely. We examine how communication constraints affect the ability of a swarm
to reach a consensus and implement a communication-aware coordination approach
to mitigate and overcome these communication constraints. This approach considers
the uncertainty over the environment and the swarm to give individual agents the
best chance at being able to communicate with other members of the swarm.

We also consider work on hybrid swarm control systems. This represents an
important avenue of research for the future of swarm systems [32]. A system with a
hybrid control structure would enable a swarm to adapt to the conditions of an
unknown environment appropriately. This area of research is relatively young, with a
majority of the work focusing on implementing a hybrid control structure into
different robotic platforms and tasks, including a swarm of Kilobots [4], a collective
perception problem [33], a coverage control problem [6] and formation control [5].
There are however several gaps present in the literature relating to this kind of control
system. While a robust hybrid control approach has been proposed [4], and applied to
several problems [33, 5, 6], the level of centralisation and decentralisation present
within these systems remains the same for the duration of the experiment. No
problems have been explored where it may be beneficial to vary the level of
centralisation and decentralisation throughout the experiment. An example scenario
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could require the swarm to cover a dynamic area, with hot spots of concentrated
activity, where the swarm size is too small to do so optimally. As such, having a
swarm system that can fluidly transition between centralised and decentralised
control could reveal in more depth the relative trade-offs of each type of control
system, as has been studied in [6]. Such an approach may prove important in
unknown and dynamic environments where the swarm must be able to adapt to
changing states of the task, swarm, environment or communication capabilities. As
such, there are several trade-offs to be considered when deciding what type of systems
should be deployed for a given task. These ultimately hinge on what the priorities of
the mission are. Does the task need to be completed quickly and accurately or is it
more important that the operator is kept up to date and the task is completed safely?
Where is the optimal point where both of these conditions can be met satisfactorily for
the task and the operator? Enabling a swarm with this ability to dynamically change
its level of centralisation (or decentralisation) on the fly may have important impacts
on a human operator, receiving feedback on the environment and the swarm. It’s
unclear how aspects of HSI, such as the cognitive load and situational awareness are
affected by systems combining decentralised and centralised control. A system that
can change its control structure or topology quickly as in some of the works
mentioned [4, 5], may present additional challenges for a human operator. As such, it
is important to understand the mechanisms that cause the system to change control
and how this affects the communication with an operator. Doing so could open up
new directions for HSI research relating to hybrid and self-organising systems.

These issues are explored in Chapters 4 and 5, where we examine the trade-offs of
hybrid swarm control structures against hierarchical and decentralised methods. To
do this, a simple, generic hybrid control approach is proposed which allows for the
level of centralisation (or decentralisation) to be varied. In Chapter 4, this level is
varied across simulation runs, while in Chapter 5, it is varied on the fly during the
simulations. We examine the relationship between the performance and
communications of a swarm using this approach for different levels of centralisation.
We also examine the feasibility of enabling a swarm to learn the optimal level of
centralisation for a given task.

In this thesis, we aim to address the following research questions:

1. What are the effects of spatial communication constraints on a swarm’s ability
to make decisions?

As has been highlighted in the literature, a significant challenge for robot
swarms is in their ability to coordinate and effectively collaborate when
communications are limited. In a collective decision-making task, the swarm
relies heavily on the ability to share observations and beliefs to decide on the
best quality option present in the environment. Previous works have considered
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communication limitations [48] and communication noise [51] as constraints in a
collective decision-making task. However, currently, there is no literature
examining how spatial communication constraints affect a swarm’s ability to
reach this consensus.

2. How does making a swarm communication-aware affect its decision-making
capabilities?

Previous work has highlighted the need for collective decision-making strategies
to limit the spread of beliefs to avoid reaching a consensus based on incorrect
information [52, 53, 54]. Introducing a communication-aware approach based on
improving the ability of the swarm to connect with neighbours could introduce
issues that improve speed, but hinder the accuracy of the swarm. We examine
how introducing a communication-aware protocol to the swarm impacts its
ability to make decisions correctly.

3. How are the communications of a swarm affected by a hybrid swarm system
with a variable control structure?

Work by Jamshidpey et al. [6] has considered the relative advantages of a
decentralised, centralised and hybrid swarm system for a wide range of metrics.
However, the trade-offs of a hybrid system that can vary its control structure
according to the state of the environment or user-defined mission requirements
have not been considered. This is of particular importance in a
communication-constrained environment, where such a system may be well
suited to adapt to harsh communication limitations.

4. What mechanisms are required to smoothly transition between centralised
and decentralised control structures?

This builds on the previous question, considering a hybrid swarm control
structure that can vary on the fly. Such a system has not been considered and as
such it is unclear what underlying mechanisms are required to facilitate the
transition between different control structures.

1.4 Contributions of the Thesis

In this section, we present the main contributions of the thesis relating to multi-robot
and swarm systems.

1.4.1 Communication constrained collective-decision making

Here we study the performance of a swarm system in a collective perception problem
under communication constraints. We consider the time taken for the swarm to reach
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a consensus on the problem when a proportion of the environment does not allow the
swarm to exchange information. We propose a new benchmark scenario to study the
collective perception of a robot swarm in a communication-constrained environment.
In our scenario inter-robot communication may be completely denied in a priori
unknown areas for the duration of the experiment.

We also develop algorithms for the swarm to adapt to these communication
restrictions, achieving high-speed consensus on decisions of features of interest in the
environment. Using these algorithms, our results show that the performance is higher
than the state-of-the-art collective decision-making algorithms in
communication-constrained setups.

The details on this work can be found in Chapter 3.

1.4.2 Trade-offs of Hybrid Swarm Control

Here we examine the assumption that a centralised approach always achieves the best
performance in a task over a decentralised or hybrid solution. We propose a simple
generic hybrid approach which combines elements of decentralised and centralised
control systems. It is shown that the proposed hybrid system may achieve higher
performance in some tasks (e.g., in our environmental monitoring task) compared to a
centralised and decentralised approach. While this performance comes with trade-offs
in communications, both between a human operator and within the swarm, we show
that these trade-offs can be balanced with the performance of the overall system
according to end-user requirements while using our proposed hybrid approach.

The details on this work can be found in Chapter 4.

1.4.3 Adaptive Hybrid Control Structures

In this chapter we examine the possibility of being able to learn the optimal values,
dictating the level of (de)centralisation for the best performance of the swarm in a
given task. The swarm must learn and vary its parameters depending on whether
performance or communication to the operator is the preferred focus of the mission.
In doing so, we examine the mechanisms required to smoothly transition a swarm
system back and forth between a decentralised and centralised system. An extension
is proposed to the hybrid approach, that is introduced in Chapter 5. We find that by
using this approach, it is possible to optimise the parameters for a swarm to maximise
the performance and communication requirements in an environmental monitoring
problem.

This work is presented in Chapter 5.
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1.5 Organisation of the Thesis

The remaining structure of the thesis is as follows:

• In Chapter 3 an approach is proposed to improve a swarm’s ability to adapt to
communication constraints within the environment. This is applied in a
collective perception task. The performance of the approach is assessed by
evaluating the time taken for the swarm to reach a consensus. We examine the
performance under different communication constraints and varying
decision-making strategies. This work was accepted at IEEE / RSJ International
Conference on Intelligent Robots and Systems (IROS 2022) [1]. T. G. Kelly, M. D.
Soorati, K.-P. Zauner, S. D. Ramchurn, and D. Tarapore, “Collective decision
making in communication-constrained environments,” in 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE, 2022, pp.
7266–7271

• In Chapter 4 we examine the trade-offs in hybrid swarm control between
communications to an operator and the performance of the system. An
environmental monitoring task is utilised to compare a simple hybrid approach
against a hierarchical and a decentralised swarm control structure. We study
how performance and communications to an operator can be varied to adhere to
end-user requirements. This work has been accepted to The International
Symposium on Distributed Autonomous Robotic Systems (DARS 2024) [2]. T. G.
Kelly, M. D. Soorati, K.-P. Zauner, S. D. Ramchurn et al., “Trade-offs of dynamic
control structure in human-swarm systems,” arXiv preprint arXiv:2408.02605,
2024

• In Chapter 5, the hybrid system introduced in Chapter 4 is extended to examine
the mechanisms required by a swarm system to be able to transition from a
centralised system to a decentralised system and back again. An environmental
monitoring task is also utilised here with agents being required to vary and
optimise parameters related to the level of (de)centralisation according to the
state of the environment and preferences given by a human operator. This
chapter contains work that has been completed in preparation for submission to
Swarm Intelligence.

• In Chapter 5 we conclude this thesis with a summary of our results and provide
some directions for potential future research.
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1.6 Impact

This research project is aimed at addressing some of the issues faced by large-scale
swarms in gaining and maintaining situational awareness. A focus will be placed on
considering scenarios that see the swarms deployed into hostile, adversarial and
rapidly changing environments. While much of the project, particularly initially, will
likely focus on using simulations to test and develop algorithms, there is scope within
the project for the developed solutions to be deployed and tested on real robots.
Regardless of whether the project applies any algorithms to real robots, it is important
to consider the possible implications of the outcomes of the project on a wide variety
of stakeholders. This is particularly pertinent, given the defence and security
applications of the project.

In 2019, the Defence and Security Accelerator (DASA) injected £2.5m into developing
drone swarm technology. This came following £31m being allocated into new
mini-drones and a total of £160m being pledged for developing swarm squadrons [55].
Such projects are aimed at developing technologies that will give troops and pilots an
edge in hostile situations, as part of the Tempest future combat air system [56, 57].
This may come from providing greater awareness, or additional tactics involving the
swarms. Overall, it is hoped that military forces will have a greater ability to operate
in more dangerous and complex environments in future engagements [55].

Enabling the use of unmanned swarms of vehicles will provide multiple benefits in
such scenarios. Firstly, it will likely allow for lower operation costs, with swarms
accompanying pilots as ’wingmen’. This could result in having one fighter jet with
multiple drones, being able to perform the same task as several jets, but with a much
lower operation cost. This would also ensure that fewer people are put into dangerous
and complex situations, protecting pilots and troops.

It is clear to see that social desirability is at the forefront of a project such as this, in
improving the ability for defence and security forces to respond to threats in many
different environments. Given this, there are a vast number of possible defence and
security applications, including [58]:

• Improving the ability to gain and maintain situational awareness.

• The ability to provide medical assistance.

• The resupply of logistics.

• Identification, and disposal of explosive ordnance.

• The confusion, deception and neutralisation of threats.



14 Chapter 1. Introduction

As such, there is a wide range of possible applications for the research that aim to
provide benefits to not only personnel responsible for maintaining the security of
assets but also the people who will be protected by systems that make use of the
research. However, there is also the possibility that the research could be exploited to
counter such systems. With this in mind, it may be pertinent to consider withholding
some information from publications of the research, relating to specific applications of
such research. Instead, the focus should be on the general framework of the
approaches explored and proposed. Such research should also be extended or adapted
with time, to ensure that any exploits that may be developed to counter the techniques
proposed, can be responded to. It is hoped that such strategies will help to ensure
socially desirable outcomes.

With a project such as this, all possible stakeholders must be considered. This will
help to ensure trust and confidence in the systems that make use of the research
carried out in the project. This is particularly important considering that such systems
could be deployed alongside military forces in hostile engagements. These
stakeholders include the people who will be making decisions in such scenarios,
which may be high-ranking military officers or operators of the swarms. These kinds
of stakeholders will need to be trained to be able to anticipate the responses and
capabilities of the systems that use the research. This will enable them to understand
the limits of such systems, such as the time it takes for an input to be reflected in the
actions of the swarm. It is also vital that the people who such systems may be working
alongside the swarms in scenarios are involved, such as ground troops or pilots. By
considering both sets of stakeholders, it is hoped that the resulting systems that use
research and techniques developed in this project will be inherently trustworthy. This
will be aided by ensuring that focus within the project is placed on ensuring any
methods that are explored account for explainability.

Not only is the explainability of the systems important to consider from a trustworthy
point of view, but also from an accountability standpoint. As has been highlighted,
many applications place human lives in danger and under the protection of systems
that may use the outcomes of this project. As a result, it is important that any
decisions that are made by such systems, can be traced and examined to ensure that
the final decision that is made can be made with confidence that all the available
intelligence and data has been used effectively. This is something that must be
addressed given that some uses of the research could be controversial and placed in
the public eye, should it not perform to a high standard.

To keep the numerous stakeholders involved in the research and applications of the
project, most trials of the research will likely be conducted in test environments in
simulation, however, if the research were to be used beyond this, and applied to real
scenarios, multiple tests would be needed before deployment to build the level of
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trust and confidence in operating such a system that has previously been outlined for
each stakeholder.
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Chapter 2

Literature Review

One challenge that robot swarms face is in their ability to communicate mission
critical information not only between members of the swarm, but also with humans.
These humans may be acting as supervisors, operators, team-mates or a mixture of
these roles within the human-swarm system [37]. It is vital that the swarm is able to
distil the vast amounts of information that it is collecting to the humans in an effective
way. This information may include the current state of the swarm, environmental
estimations from sensors within the swarm, the predicted future state of the swarm or
advice on the next course of action that a human or the swarm should take. With
swarm systems typically consisting of a large number of members, sometimes up to
thousands of individual robots, presenting information from each, would easily
overwhelm the ability for a human to effectively monitor and control the swarm [59].
When operating in an unknown environment, a swarm must be able to coordinate,
even in the face of potentially limited and changing communication conditions. This
is important, not only to maintain and disseminate up to date information throughout
the swarm but also to relay appropriate information to human team-mates, whether
this is the current state of the swarm and the environment, the projected future state of
the swarm and the environment or the intent of the swarm, relating to what the swarm
anticipates will be its future actions. By doing this, while maximising the coverage of
the swarm in an area of interest, the swarm can improve the situational awareness of
humans that are using the swarm to accomplish tasks in a dynamic environment.
This literature review will focus on exploring the existing literature relating to a
swarm’s ability to maintain situational awareness, coordination and mapping in an
unknown environment and in maximising the coverage of a swarm.
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2.1 Swarm Coordination

The issue of co-ordination in communication constrained environments has been
extensively studied in the context of multi-robot teams. Multi-robot teams, while
similar to robot swarms, in that they consist of a number of individuals that carry out
a task, differ in that individuals are often capable of carrying out a complex task, such
as the exploration of an area regardless of how many individuals make up the system.
They may coordinate and communicate the same as a swarm but may still be able to
go about performing a task in their own complex way. Swarms on the other hand, rely
on emergent behaviours that come about as a result of simple rules and interactions
between members of the swarm, in order to achieve a task, that would be impossible
for a single member of the swarm to achieve.

In [44], Hollinger et al. presented a decentralised algorithm where agents planned
paths based on the time each individual would be disconnected from each other, in a
mapping task. Each agent planned to reconnect at some future time to share
information gathered about the environment and to replan. One of the main
drawbacks to this approach is that each agent requires prior knowledge of where
reconnections will take place and does not consider scenarios where individuals fail to
reconnect in the future. The idea of planning when, where and with whom to
communicate was also examined in [10]. Here, Best et al. developed an algorithm to
have agents plan a communication schedule, deciding who to communicate with at
future time steps. They incorporated assumptions about imperfect communication
conditions and made use of the Decentralised Monte Carlo Tree Search (Dec-MCTS)
algorithm for the path planning in an information foraging task. This approach
improved on the method presented in [44] in that imperfect communications were
incorporated into the design of the system, so that even if an individual could not
communicate with its target, it would plan to reconnect in the future. This new
approach however, aims to plan optimally and plans many steps ahead. In an
environment that is dynamic, this may result in time that is wasted planning for an
eventuality that is obsolete a few time steps down the line. It is also worth mentioning
that optimal planning can be computationally expensive and may not scale well to
relatively simple robotic platforms.

Vandermeulen et al. addressed the problem of having a set of robots reconnect
communication capabilities with other members of the swarm without making
explicit plans [45], extending and improving on the work done in [44]. Each member
of the swarm maintained beliefs over the locations of other individuals in the form of
a graph. This was used to find the optimal paths for reconnection. When team-mates
connected, they exchanged information on their beliefs and acted based on their
objective function which was defined as the probability that they would find their
targets for reconnection. While this approach did consider dynamic environments and
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swarm topologies, it again required each agent to plan several time steps ahead,
despite the fact that any plans made may become useless soon after.

In [46], Teacy et al. proposed an algorithm that used a radio propagation model to
influence swarm behaviours dependant on how an action would affect the quality of
service of the individual’s communication. Using this algorithm, connectivity was
maintained within the swarm and uncertainty about the model of the communication
environment was incorporated. This approach incorporated uncertainty information
related to the radio signals between members of the swarm, which makes this
approach potentially applicable to environments with dynamic communication
landscapes. However, once again, it does not consider scenarios where members of
the swarm become unable to exchange information with others and contingency plans
for when communication is not possible. Majcherczyk et al. also addressed the issue
of preserving connectivity within a swarm in [47]. Here, the authors made use of two
algorithms that were used to construct a long-range communication backbone
between two points by treating the swarm as a logical tree. Constraints were placed
on the tree to ensure a certain flow of data between the two points can be maintained.
This method provides an effective way of enforcing connectivity constraints on a
swarm network while being resilient to faults that may occur in the network due to
changing communication landscapes.

Ruetten et al. [60] proposed an algorithm to find optimal configurations of a network
of UAVs. This method made use of virtual spring forces between members of the
network, similar to early physics based swarm control methods [61, 62]. While other
approaches define these forces based on proximity to other members of the swarm
[61] or obstacles [62], here the forces were based on the radio signal strength between
two individuals. Members of the swarm exchange positioning information with
certain neighbours that they ’rely on’, and is determined at the beginning of the task,
however, this means that some members of the swarm do not exchange information
with individuals which may move to be in close proximity of one another during the
task. As a result, this method is not suitable for rapidly changing swarm topologies
and dynamic communications environments.

In [63], Wang et al. developed a decentralised algorithm that was tolerant to faults [63]
and was used to enable a swarm of self-organising robots to cover a pre defined area.
The swarm would generate gradients, according to their distance from a leader. Each
agent periodically queried the gradients of neighbours and moved to cover the area.
The approach itself required very little computational power making such an
approach ideal for low complexity systems. While this approach worked well in a
simple coverage problem with a number of grouped swarms, the deployment of
individuals is relatively slow and may not be suited to dynamic environments where
the area of interest that the swarm needs to monitor may be changing very quickly.
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In these approaches, the environment that the swarms are observing are static, with
the relative proportions of features remaining constant throughout the experiments
and do not consider scenarios where these proportions may be changing. It is also
apparent in these approaches that there is very little done by the swarm in the way of
actively improving their chances of converging towards a decision. In each of the
approaches given above, members of the swarm perform random walks throughout
the course of the task. A key benefit of this is that the swarm will not have any biases
towards certain areas of the environment where the the features may not be a good
representation for the environment as a whole. However, the overall performance of
these algorithms could be improved by making the swarm more proactive in
communicating information around the rest of the swarm. Taking inspiration from
other works explored in this section, relating to the idea of making agents in the
swarm aware of their communication environments, such as in [10, 46, 60], could
improve the collective decision making and allow for more reliable convergence
towards a decision in such scenarios.

The problem of coordinating a set agents to maximise coverage is one that has been
extensively addressed in the context of wireless sensor networks (WSNs), but has
recently also been applied to swarm systems. Many approaches consider maintaining
connectivity while maximising the coverage of the network by finding an optimal
deployment of sensors to cover the environment, given the size of the environment
and the number of sensors available [64]. Early work by Zou et al. in this area made
use of the virtual forces algorithm [65] originally proposed in [66]. This algorithm
aimed to maximise the coverage of the sensors, while minimising the collisions in the
network, by reducing the number of adjacent sensors. This method has been extended
by several works [67, 68] and is also a common approach for the control of robot
swarms [37, 16]. Other approaches to maximising swarm coverage include using
computational geometry via the construction of Voronoi diagrams based on sensor
locations [69] and Delaunay triangulation [70]. Each of these approaches aim to
minimise the number of sensors used to cover the area.

Work by Ruetten et al. [60] focused on the problem of optimising a network of UAVs
to maximise area coverage in a disaster scenario. Here the agents organised according
to virtual spring forces that were defined based on the radio signal strength between
two individuals. The UAVs maintained readings of radio signal strength for other
individuals that they ”rely on”, however, this is determined at the beginning of the
deployment and does not change during the task which results in sub optimal
configurations for larger numbers of individuals over time [60] resulting in a relatively
poor coverage of the environment. Wang et al. also considered the problem of
optimising the deployment a swarm of robots to maximise coverage and they
developed a decentralised algorithm that was tolerant to faults [63]. This algorithm
utilised a simple gradient based approach whereby agents generated a gradient
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within their group, according to their distance from a leader. While this provided a
low complexity algorithm, that was resilient to faults in swarm individuals, the
organisation of the swarm was relatively slow and may not hold up to environments
that change rapidly, or where the area of interest is not initially known.

In [71], Stranders et al. developed a greedy algorithm to determine the optimal subset
of sensors that should be activated in order to maximise coverage, while minimising
message conflicts that may occur over the network. Unlike many previous works, this
approach also considered a reconnection phase, that would be carried out when
sensors were lost due to their power being depleted. This contingency plan in the
event that sensors are lost is something that is vital in robot swarms whose topology
may change very rapidly, requiring constant refinements to the distribution of the
swarm to maximise coverage. This idea is not commonly addressed in the work
relating to WSNs. It is also proposed by Vandermeulen et al. in [45] that their
reconnection algorithm could be applied to a coverage task, but is not formally
evaluated.

Current approaches to optimising swarm coverage have addressed issues such as
maintaining quality of service [60, 72] and fault tolerance [63]. One area that has not
been addressed is that of the issue where contact is lost with members of groups of the
swarm, which may occur regularly in real robot swarms due to changing topology
and environmental factors such as moving into a forest environment. While
Vandermeulen et al. [45] present an algorithm that may be used in a coverage
problem, this approach requires optimal planning to re-establish connections. In high
risk situations, particularly those that involve human operators, it is vital that the
swarm attempts to regain connection with lost members quickly to reduce the loss of
situational awareness of an operator [28] and before any belief models become highly
uncertain. Approaches that use more reactive techniques such as that presented by
Ruetten et al. [60] may provide better options for quickly regaining a connection. The
short comings of such methods are that predicting future changes in the swarm is
difficult due to the reactive nature of the swarm.

2.2 Collective Decision Making

The collective decision making process itself is also a vital element of a swarm system
being able to function autonomously [16]. When the swarm is located in an
environment which imposes limitations on the swarm’s ability to communicate with
one another, which may be in the form of obstructions in the environment (e.g.
foliage, electric cables), this can hinder the decision making power of the swarm and
may lead to scenarios where a decision takes much longer to be made. In scenarios
that are time critical, it is important that decisions are made quickly and accurately by
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the swarm in order to improve the system’s situational awareness [22]. For example,
consider a swarm that has been tasked with assessing the best route of a finite number
of options, to take through a densely packed forest, following a disaster. It is unknown
how the existing routes have been affected by the disaster and may pose a risk to
humans entering the area. The speed of a swarm to reach a consensus may also vary
depending on the control structure of the swarm. The two main mechanisms being
centralised and decentralised control.

Coping with failure is a major challenge for designing adaptive robotic systems.
Swarm robotics aims to solve the issue of individual robot failures by using
redundancy in the system. A large group of simple robots locally interact with each
other and the environment yielding an emerging behaviour. While being
characterised as adaptable, scalable and robust, robot swarms face challenges in the
design of decentralised collective decision making processes. A collective
decision-making strategy has to define a process that solves the best-of-n problem
where the swarm is tasked to identify the best choice from a set of given options [73].

The collective perception problem was introduced by Valentini et al. [52] where robots
are tasked with feature detection. In the problem they posed, the agents are able to
locally observe features in their environment, these being black and white tiles, and
must estimate whether there are more white or black tiles present in the environment.
Agents maintain an estimate and a belief over which colour is most dominant and are
able to share this information with neighbouring agents. Over time, the agents collate
their estimates to form a consentaneous belief about which feature is more dominant
in the environment. The trade-off between speed and accuracy is examined for
different collective decision making strategies, each of which had been previously
proposed [54, 53]. These approaches focused on making use of positive feedback
mechanisms to improve the speed at which the swarm converges to a consensus. This
positive feedback mechanism was achieved by modulating the time agents spent
attempting to share their beliefs and estimates.

In [48], Ebert et al. propose a multi-feature collective decision making algorithm for a
swarm of robots, which is applied to a scenario where the swarm must collectively
estimate the proportion of a set of options within an environment. Members of the
swarm switched between two states, observation and dissemination. During the
observation phase, individuals would only observe options in the environment, and
would communicate this with other members, for an amount of time that is
proportional to the confidence of their prediction for the feature. The authors show
that their algorithm converges to the correct overall distribution in finite time. This
approach is similar to the one used by Bartashevich et al. in [49] in which the authors
also made use of an observation and dissemination phase, which was switched based
on the quality of each individual’s estimate, derived using evidence theory.
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A key element of the approaches that have been proposed in the literature is the
mechanisms that under-pin the collective decision-making of agents. These
mechanisms dictate how agents update their beliefs and estimates over the observed
options in the environment. An agent does this by incorporating observations of
option quality along with beliefs that are shared by neighbours through local
communication [74]. This social dissemination of information on option qualities
drives individual agents to make decisions over the options in the environment and
the system succeeds when a majority of agents choose the best-quality option. While
many mechanisms have been proposed, the most well-known ones are the voter
model and majority rule [16]. Agents using the voter model update their belief to the
belief of a random neighbour [75]. When using the majority rule, agents update their
belief based on the majority belief of their all their neighbours [52, 75]. Valentini et al.
[53] compared these two types of models to examine the trade-off of speed and
accuracy when using the models. They found that on average the majority rule
mechanism allowed for faster convergence to a consensus, at the cost of accuracy
compared to the voter model which was slower to reach consensus but did so more
reliably. Some notable mechanisms that have been proposed to improve the speed
without sacrificing accuracy are using distributed Bayesian hypothesis testing [76]
and the use of Social Impact Theory in the form of the Ising model [49]. Ebert at al.
[48] made use of the voter model and extended it to give agents a long term memory
of previously adopted beliefs to allow for smoother convergence to a consensus in a
multi-feature scenario. More recently, evolutionary robotics approaches have been
proposed to evolve decision-making mechanisms [77, 78, 79, 74, 8]. These approaches
typically focus on evolving artificial neural networks (ANNs) which dictate the
decision making behaviours and define the opinion selection of robots. The aim of this
kind of implementation targets improving the adaptability of the decision making
behaviours for dynamic environments and scenarios with a larger number of options
present in the environment [74].

Prasetyo et al. also proposed an extension of the best-of-n problem to dynamic
environments [80]. In this problem, option qualities can abruptly change over time.
This requires an adaptive system to allow individual members of a swarm to modify
their opinions over the best option even after a consensus has been reached. This is
something that a traditional voter model cannot achieve [81]. They proposed two
mechanisms which modify the voter model, enabling it to be adaptable. The first
mechanism relied on a small proportion of stubborn agents which do not change their
initial opinion and remain committed to this option throughout the experiment. The
second mechanism relied on spontaneous opinion switching where each agent may
probabilistically change their opinion, independently of the mechanism used to
decide on the best option.

Similarly, Soorati et al. considered a collective perception problem with a dynamic
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environment where option qualities change over time. Here, the collective perception
problem introduced by Valentini et al. [52] was adapted such that the environment
was split into two sides. The swarm was required to decide which side had the
highest proportion of white tiles. This proportion associated with each side was
varied over time, requiring the swarm to exhibit adaptability. Individuals in the
swarm relied on local, multi-hop communication to propagate information about their
beliefs throughout the swarm in order to create a global reference frame. The
proposed solution relied on preventing the swarm from being able to lock in its
decision. This was achieved by implementing a confidence score over the available
options which was incremented based on received opinions and periodically reduced
in order to avoid individuals accumulating large confidences which would stop them
from reacting to changes in the environment.

Against this background, our approach considers a scenario where agents’
communication is constrained by the environment. As such, agents must adapt their
behaviour based on their current communication conditions. Collective perception is
mainly considered in environments with homogeneous communication quality
distribution [54, 53, 52]. It has been shown that collective behaviour is possible even
without any communication but the emerging behaviour is limited to simple spatial
configurations (e.g., aggregation) [82, 83]. Limited range and spatially targeted
communications have also been proposed that are design decisions to improve the
collective behaviour rather than an externally-imposed constraint [84, 85, 86]. The
resilience of different control approaches to communication noise and temporal
constraints are considered [51, 87] but, to the best of our knowledge, literature lacks a
collective decision-making strategy that adapts to environments with inhomogeneous
communication quality distribution.

2.3 Hierarchical Swarm Control

A swarm system presents a unique opportunity to exploit a huge number of agents
and the redundancy that comes with it to complete tasks that would be impossible to
solve by a single agent. Often, a decentralised approach is proposed as a scalable and
resilient method for organising swarms. However, centralised approaches can provide
more efficient solutions in certain applications [6]. Finding an optimal level of
centralised control and decentralised control that can be adapted to changing mission
requirements could provide a swarm control method that could make use of the
benefits of both approaches. Such a method is an important aspect for the future of
robot swarms [32].

Zhu et al. proposed a method for having a swarm establish distributed control via a
self organised communication network [5]. To do this, the network was given a target
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topology which the swarm must form. Using the mergable nervous system (MNS)
approach, proposed by Mathews et al. [4], a set of robots would form a self organised
directed rooted tree that would be used as a communication network. The root of the
tree would act as the brain of the MNS. The swarm would also be given a target
topology for the network based on the scenario. This topology was made up of a
graph, G, and a set of attributes, A, which relate to links within G. These attributes
included information such as the orientation of a child target robot relative to its
parent robot and what type of robot the child should be (relating to a heterogeneous
swarm). If the robot is a brain then it has access to the full graph, G and set of
attributes, A, as its reference, otherwise a robot will receive a subgraph of G with its
associated subset of A. The authors examined the swarm’s ability to recreate the target
topologies and also examined the fault tolerance of their approach. They found that
using a MNS approach proved to be resilient to robot failures and also to
displacement of the swarm.

Jamshidpey et al. extended this work by using the idea of a MNS approach for
controlling a heterogeneous swarm of robots [33]. In this work, the authors considered
a swarm comprised of UAVs and ground robots in a coverage task. The aim was to
ensure an even coverage of the environment with robots spending an equal amount of
time exploring small areas of the environment. In their approach, UAV robots acted as
the brains in the MNS and would coordinate to control the ground robots to ensure
even coverage. Again, the swarm relied on a set of target topologies to do this. This
MNS approach was compared to a fully decentralised approach and a fully
centralised approach in which one UAV controlled all the ground robots. The
uniformity of the coverage was used to compare the performance of each approach.
The authors found that their MNS approach significantly outperformed the
decentralised approach but was slightly outperformed by the centralised approach.
However, MNS approach did prove to be robust to failures.

The relative advantages and disadvantages of centralised control and decentralised
control were studied by Jamshipdey et al. [6]. They compared a predetermined
approach, centralised approach, decentralised approach and a hybrid approach which
were modelled in the ARGoS simulator [88]. In the decentralised approach, agents
explore the environment, moving randomly without any supervisor or coordinating
agent. The centralised approach saw agents make use of a single supervisor agent that
was able to give motion commands to the other members of the swarm, which are
calculated dynamically based on the swarm’s exploration of the environment.
Similarly for the predetermined approach, the swarm made use of a centralised
member, however in this case, paths were calculated offline by the supervisor, based
on a priori knowledge, and then passed onto the members of the swarm. The hybrid
approach made use of the remote mergeable nervous system which was proposed by
Zhu et al. [5]. A coverage task was used to compare the various approaches. The
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authors found that, unsurprisingly, the predetermined approach performed the best,
achieving the most complete coverage in the quickest time. However, the centralised
and hybrid approaches performed similarly and resulted in a high coverage
completeness, while exhibiting a higher level of fault tolerance than the
predetermined approach. The hybrid approach was also resilient to a single point of
failure and a bottleneck in the communications, a property that the centralised and
predetermined approaches did not show.

Work considering theoretical foundations of self-organised hierarchical control
frameworks has also been considered by Zhang et al. [34]. Although this is a relatively
young area of swarm robotics, hierarchical swarm control is a promising area of
research that has important implications for the future of swarms [32]. Work in this
area, so far has focused on the application of a mergeable nervous system to distribute
and coordinate a swarm based on a set of network topologies. One interesting avenue
of research here may consider how a swarm might self organise to form its own
topologies, given a set of application and scenario requirements. Whether these
requirements are specified by a human operator or are implied by the environment
that the swarm is operating in, particularly when the swarm’s communication is
constrained. Another interesting area that could be investigated here is in the way that
leaders within the swarm (or brains in the case of the MNS) coordinate to allocate
their available child robots to accomplish a set of tasks in the environment.

Against this background, this thesis aims at understanding how a simple hybrid
control approach compares to either of the two (central or decentralised) in the overall
system performance, the volume of messages sent to the operator (associated to
cognitive workload) and the number of messages passed within the swarm. We study
the trade-offs in using various levels of centralised coordination in an environment
monitoring application where tasks appear randomly and the agents must move to
the task area as soon as possible. We consider the human-swarm interaction
implications intrinsically within the swarm behaviours. Previous literature has
examined the use of communication within a hybrid control approach but, to our
knowledge, never from the perspective of a human swarm system and how such
communications could potentially affect a human in the loop. We extend previous
work done using photomorphogenesis for robot self-assembly [89] by allowing the
formations to reconfigure themselves depending on the environment via the swarm
behaviour. A recent study confirms that the swarm control strategy can be modified to
reduce the cognitive workload [90]. We, therefore, apply a dynamic hierarchical
control approach and study the communication and the performance trade-offs that
exist in using such a hybrid centralised and decentralised approach.
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2.4 Mapping in Unknown Environments

Simultaneous localisation and mapping (SLAM) has been explored in the context of
multi-robot systems, with early work from Thrun et al. providing a framework for
mapping 3D environments with multiple robots [91], expanding on the literature from
Elfes and Elfes et al. which provided initial methods for single robot mapping and
navigation using sonar [92] and occupancy maps [93]. Other methods have included
the use of Extended Kalman filters [94] and particle filters [95]. It has only been
recently however, that swarm SLAM has been considered with many of the existing
methods for SLAM relying on centralised architecture [96]. In [97], Ramachandran et
al. presented a distributed algorithm for constructing occupancy maps using a swarm
of robots. Their method made use of Lévy walks, which are a variant of random
walks. Each member of the swarm, took laser range sensor readings and broadcast
these to their neighbours. The authors showed that the resulting map generated by
the swarm converged to the actual map. Kegeleirs et al. also performed a swarm
SLAM experiment in which they use the Multirobot map merge algorithm, presented
in [98] then compared the quality of the maps generated by five different variants of
random walks [99].

While the presented approaches focus on mapping unknown environments, they do
so in environments that are static and do not consider environments that may be
changing very rapidly. We address this problem by utilising a probabilistic model of
the swarm’s communication conditions in the form of a GP. Osborne et al. presented
an algorithm which was used to decide when and which sensor to acquire readings
from in a WSN [100]. It made use of a multi-output GP to predict missing sensor data,
which may have been caused by network outages. This estimation was made with an
uncertainty that was maintained to be below a specified threshold. O’Callaghan et al.
also made use of a GP to map dependencies between points in an environment to
estimate the occupancy for that area [101]. This makes use of the occupancy grid
mapping framework developed by Elfes et al. [93]. The model was able to account for
sparse and noisy readings taken in the environment. Such a method however can be
computationally expensive and may not scale well to simple robotic platforms,
particularly when updating the GP, however, some of the methods employed by
Osborne et al. may aid this for example, in their use of a windowing technique to
reduce the number of data samples.

In [102], Luo et al. utilised Gaussian processes (GPs) to estimate the distribution of
environmental phenomena in a multi robot sensor coverage task. The robots were
tasked with finding the optimal stationary configuration of robots in order to
maximise the sensor coverage. Each robot maintained a GP over it’s belief of the
distribution of the phenomena and used a mixture of GPs and active sampling to
estimate the global distribution in the environment. While GPs provide a powerful
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method for estimating information in a range of applications, they must be used with
care with robot swarms, given a swarm’s low individual computational complexity
and the potentially high computational demands of updating and maintaining a GP.
Such methods could however, be used to estimate projections of future states of a
swarm, along with uncertainties. As has been discussed in section 2, this kind of
information can help to reduce the impact of limited communications in terms of
latency [29] and may help to enhance the situational awareness of human operators
[24]. Such mapping techniques could be used to estimate the communication
conditions within an environment, accounting for uncertainty of the generated map
and push members of the swarm towards areas in their environment where they are
most likely to disseminate relevant information in an efficient way and to the most
members of the swarm. This could aid in maintaining more accurate and up to date
information pertaining to the state of the environment and facilitate quicker
convergence towards decisions, that the swarm needs to make.
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Chapter 3

Communication Constrained
Collective Decision-Making

3.1 Introduction

A key issue that is highlighted from the literature is a swarms ability to cope with
uncertain and rapidly changing communication conditions. Environmental factors
can impact a swarms ability to effectively communicate with one another. For
example, the presence of trees in a forest can cause intermittent communications, by
breaking the line of sight between robots. The rapidly changing topology of the
swarm can also affect the optimal location in the environment to communicate with
other members. To address this issue, we propose a method for mapping the
communication conditions of the environment in which the swarm is operating.
Previous approaches to improving the communications within a multi-robot team
have proposed planning methods to determine when and with whom to communicate
with [44, 10, 45]. As has been discussed, these approaches aim to find an optimal
solution, by simulating and planning many timesteps into the future. Such plans
could become obsolete quickly and may require replanning, resulting in a waste of
computation. These approaches cannot also quickly formulate contingency plans,
when communication is not possible.

In this chapter, the work advances the state of the art in the following ways: First, a
new benchmark scenario is proposed to study the collective perception of a robot
swarm in a communication-constrained environment. In this scenario, inter-robot
communication may be completely denied in a priori unknown areas for the duration
of the experiment. Second, a set of algorithms is developed for the swarm to adapt to
these communication restrictions. These algorithms help the swarm achieve
consensus at a high speed, on decisions over features of interest in the environment.
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Finally, the results show that our algorithms outperform the state-of-the-art collective
decision-making algorithms in communication-constrained setups.

3.2 Simulation

The experiments performed in this chapter were run on a simple simulator which was
designed to focus on the interaction between agents in the environment. The agent
class allowed for easy integration of different behaviours within the experiment.
Within this class, the agents’ communication, movement and decision-making
strategies were defined. The focus on the agent interaction and the simple nature of
the simulator also allowed for a large number of agents to be simulated before the
time taken to run each timestep made it infeasible, in the simulator’s current version,
to increase the number of agents present.

3.3 Environment

Agents move at a maximum speed of 1 m/s in a continuous bounded environment,
Q ⊆ R with their position given by (x, y) ∈ Q. The size of the environment is 64m ×
‘64m. Agents use one of two movement programmes during the experiments these
being the communication-aware path planning algorithm, described in 2.4.4, and a
random walk routine which is as follows. An agent moves in a straight line for a
random distance, d, with a mean distance of 5m that is sampled from an exponential
distribution, given by:

d = λe−λx (3.1)

where λ is the rate parameter, and for our experiments, λ = 0.2. After travelling this
distance, agents perform a turn. This turn has equal probability of being performed in
a clockwise or counter-clockwise direction. The agents turn for a period of time that is
uniformly distributed between 0 and 2 seconds. Then repeats these steps for the
duration of the experiment. We also implemented a collision avoidance algorithm
which is as follows. When agents detect one or more nearby obstacles, defined as
neighbouring agents within 2m or the bounds of the environment, agents reduce their
speed to 0.2 m/s and calculate the distance and bearing of each obstacle. The agent
then defines a new direction that is opposite to the direction of the obstacles and turns
clockwise or counter-clockwise to align its direction of motion to match the computed
direction. The agent then continues with its walk routine.
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3.3.1 Collective Perception Problem

We define a collective perception scenario with 2 features (| f | = 2). Agents are initially
placed randomly within the environment with their initial (x, y) values drawn
uniformly. Every point in the environment is assigned a binary value, representing the
value of the feature at that location, given by equation 3.2.

fi : Q −→ {0, 1}, i ∈ {1, 2} (3.2)

Where Q is the environment and i is the feature, corresponding to a value of either 0 or
1. The feature is locally defined at every point (x, y) in the environment. It is assumed
that agents have the ability to obtain and observe the features in their environment at
their current location. In our experiments we do not consider noise present in the
sensing ability of agents. The task of the agents is to decide which feature is dominant
in the environment. For our experiments, the feature of 1 is always the dominant
feature and, as such, the swarm’s task is to reach a consensus for 1. The ratio of points
which correspond to a feature of 1 in the environment is given by r f in equation 3.3.

r f =
1
|Q|

∫︂∫︂
Q

f (x, y)dA (3.3)

An example of the feature environment can be seen in figure 3.1 which shows an
environment with a fill ratio of r f = 0.65. In the figure, the white area corresponds to
points in the environment with a feature value of 1, while the black areas correspond
to points with a feature value of 0. The feature distribution is characterised by a grid
consisting of 4m × 4m cells. Algorithm 1 was used to generate the feature distribution.
The ratio of features after generation, rg, is checked and the distribution is accepted if
the ratio is within 1% of the expected ratio, until |r f − rg| ≤ 0.01. Otherwise, cells are
inverted to either increase of decrease the ratio towards the accepted threshold.

3.3.2 Communication-Constrained Environment

The environment is also characterised by a communication quality, qc, defined for
each point, qc ∈ [0, 1]. This quality relates to the probability that a message broadcast
by an agent is successfully received by neighbouring agents in communication range.
Communication quality varies across the environment. Moreover, the agents are
denied communication when in some regions of the environment (qc = 0). The ratio of
communication denied cells in the environment is given by rc. Agents are able to
perceive the value of the feature at their current location in the environment but must
estimate the communication link quality themselves. When an agent is at a location



32 Chapter 3. Communication Constrained Collective Decision-Making

Algorithm 1 Feature Generation

1: for each Cell ∈ Q do
2: if A ∼ U (0, 1) < r f then
3: Cell ← 1
4: else
5: Cell ← 0
6: end if
7: end for
8: rg ← ∑i=0 Celli
9: while |r f − rg| ≥ 0.01 do

10: i ∼ U (0, 1)
11: if r f − rg > 0.01 then
12: Celli ← 0
13: else
14: Celli ← 1
15: end if
16: end while
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FIGURE 3.1: Example of an environment with binary features, indicated by black (fea-
ture = 0) and white (feature = 1) squares, and with r f = 0.65. This means 65± 1% is

white with a feature value of 1.

where qc = 0, that agent is unable to transmit messages to neighbours, but they are
able to receive messages from neighbours within communication range.

To generate the communication denied areas, we use a method that takes inspiration
from the method proposed in [103] for generating surfaces of objects in computer
graphics. First, several centroids are uniformly generated in the environment, each of
which has an assigned radius which is also uniformly generated. This allows us to
define a force-field function, given by equation 3.4.

F(p) =
k

∑
n=1

cn

|mn − p|g > β (3.4)
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FIGURE 3.2: Examples of a distributed communication denied (B), and a continuous
communication denied (B) environment. In both environments, agents are denied
communication in half the environment (rc = 0.5), indicated in black. Areas shaded

lighter allow communication with a higher probability.

Where the force, F, acting on a point in the environment, p = (x, y) is given by the
summation over all k generated centroids, cn. mn is the location of centroid n while g
defines a parameter which dictates how the overall shapes are generated. In our
experiments, we consider two types of communication constrained environments;
distributed and continuous communication constrained environments. Examples of
these can be found in figure 3.2. The distributed communication denied environment
is characterised by a number of small regions in the environment where agents are
unable to communicate with one another, while the continuous communication
denied environment has one large area where agents cannot communicate.

These two different environments are generated by varying the centroids used to
generate the field, characterised by equation 3.4. For the distributed communication
denied environment 18 centroids were drawn uniformly, which resulted in an
environment shown in figure 3.2(B) with more merged comms denied areas. For the
continuous communication denied environment, 2 centroids were drawn uniformly
resulting in an environment shown in figure 3.2(A) with more separation between the
communication denied areas. β defines the threshold that decides whether point p is
communication denied. Each point in the environment is evaluated against this
function, with F(p) ∈ [0, 1]. The ratio of communication denied points in the
environment is compared to the desired rc value for the experiment. The threshold, β

is then iteratively incremented or decremented until |β− rc| ≤ 0.01.
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FIGURE 3.3: Diagram showing the proposed communication constrained collective
decision-making problem. Agents operate in an environment with features (black and
white tiles) and an underlying communication quality. Agents make estimates over
the communication quality at points in the environment and use this data to construct
a GP. The outputs from the GP are the estimated communication quality over the en-

vironment and the confidence over that estimation.

3.4 Method

Our communication-aware approach consists of three elements. These are the
collective decision-making strategies on the dominant feature in the environment,
augmented with communication-aware path planning, and coordination algorithms
for the swarm. This is outlined in figure 3.3. To evaluate our communication-aware
algorithms, we consider two types of communication environments: 1) Distributed:
With many, small communication denied areas which are spread throughout the
environment, for example, see Figure 3.2a. 2) Continuous: With one large
communication denied area, for example, see Figure 3.2b. For our experiments, we
consider an environment of size 64m× 64m with 36 agents in the swarm. Agents have
a maximum communication range, CR, of 5m.

3.4.1 Agent Behaviour

Algorithm 2 outlines the main loop executed by agents at each timestep of our
simulation up to tmax timesteps. Agents spend their time in one of two states, these
being the Dissemination state (D), and the Exploration state (E).

Agents can communicate with neighbours that are within communication range. In
our experiments, this range is set to a distance of 5 body lengths of agents. This
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Algorithm 2 Agent Behaviour

1: while t < tmax do
2: BroadcastHeartbeat()
3: ReceiveHeartbeats()
4: BroadcastAcknowledgements()
5: obsc ← ObserveCommunicationQuality(x, y)
6: ObservationsUpdate(obsc)
7: if State == E then
8: obs f ← ObserveFeatures(x, y)
9: EstimateUpdate(obs f )

10: if t%60 == 0 then
11: State = D, t = 0, g = UpdateModulation()
12: end if
13: else if State == D then
14: UpdateStoredBeliefs()
15: if t%120g == 0 then
16: State = D, t = 0
17: end if
18: end if
19: Planning(State)
20: Movement(State)
21: t = t + 1
22: end while

FIGURE 3.4: Diagram showing the operation of agents during the dissemination and
observation states. Here the blue agent is the one acting in the dissemination and ob-
servation state respectively. In both states, it receives broadcasts from the red agent. In
the dissemination state, the blue agent can also broadcast and update its own beliefs.
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constraint on direct communication of agents is similar to the communication model
used in [48]. As a result, agents can only rely on local interactions, instead of sharing
information globally, to all agents, as is done in [52]. This constraint further
complicates the problem faced by the swarm in this communication-constrained
collective decision-making task. Not only does the swarm need to ensure they are
attempting to communicate in an area that is not constrained by the environment, but
also that the area has other agents to receive that information. As such, the swarm
must be aware of the communication environment to the extent that they can select
suitable locations to disseminate information effectively. This approach to modelling
communications assumes that agents are reliably able to communicate within a short
distance of each other. This could be practically achieved by using low-power,
short-range wireless communication technologies such as Bluetooth or Zigbee.

In the D state, agents broadcast their beliefs over the dominant feature in the
environment to neighbouring agents within the communication range. In this state,
agents cannot observe the features in the environment. The time spent in the D state is
determined via a parameter, g, which is defined for each of the decision-making
strategies and may last for a maximum of 120 timesteps. Agents in the E state, observe
the features in the environment, but cannot disseminate their beliefs to neighbouring
agents. The time spent in the E state is fixed at 60 timesteps. When the agent has spent
enough time in its current state, it switches to the other state (from D to E or vice
versa) and resets its timestep counter, t. An example of this is shown in figure 3.4.

At each timestep, agents estimate the communication link quality at their current
location and use this to update their communication quality map, which is modelled
using a Gaussian Process (GP). To estimate this value, agents make use of heartbeat
messages that are broadcast at every timestep. These messages include the
transmitting agent’s beliefs over the features in the environment and their current
state. While agents always transmit their beliefs, it will only be considered by a
receiving agent if the sender’s state is set as D. When an agent receives a heartbeat
message, they immediately send an acknowledgement message. Agents keep a record
of the IDs of neighbours (assigned randomly at the start of the experiment), which
they have received acknowledgements and heartbeats from for the current timestep.
This process is shown in figure 3.5. Such an exchange allows the agent to estimate the
probability that a message is successfully received from the agent’s current location by
using equation 3.5.

obsc =
|Acknowledgements|

|Acknowledgements ∪ Heartbeats| (3.5)

This can be seen in lines 4 and 5 of Algorithm 2. Agents also perform path planning,
based on their communication quality map, in both D and E states and use the result
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FIGURE 3.5: Diagram showing the exchange of heartbeat messages between three
neighbouring agents at two timesteps. In the first timestep, at time t, the blue agent
exchanges heartbeat messages with two neighbours. These neighbours successfully
receive these messages, but the blue agent only receives one heartbeat message in re-
turn. At t + 1, the agents acknowledge the receipt of the heartbeat messages. Using
these acknowledgements and heartbeats, agents are able to estimate the communica-

tion quality at their location.

of this planning to move to a favourable location, depending on their state, seen in
lines 18 and 19 of Algorithm 2.

3.4.2 Decision Making Strategies

We apply three collective decision-making strategies to test our communication-aware
algorithm, which are taken from previous literature, detailed in Section 1.3.2. These
are Direct Comparison of Option Quality (DC) [52], Direct Modulation of Majority-based
Decisions (DMMD) [52, 75] and the multi-feature decision-making algorithm proposed
by Ebert et al., which will henceforth be labeled as MFDM [48]. These mechanisms
were chosen because they each have unique properties related to how an individual
agent’s beliefs are updated and how the population is able to reach a consensus. DC
allows agents to directly modify their beliefs based on quality estimates of their
neighbours, while DMMD and MFDM both consider an aggregation of received
beliefs from neighbours. Another property which DMMD and MFDM share is in their
modulation of the time spent by agents in each phase of the agent’s behaviour, while
DC sets fixed time periods for each phase. MFDM differs from DMMD in that the
agents maintain a concentration value that is used as a long-term memory of the
agents’ perceived beliefs. This concentration is also used to lock in agents’ decision on
the dominant feature, something that the DC and DMMD approaches do not do. As
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such, the effect of communication limitations on these properties will be examined.
The full strategy algorithms are as follows.

In DC, agents share their beliefs, bi ∈ {0, 1}, about which feature in the environment is
dominant and also their current estimate of the ratio for the dominant feature, ρi,
during the D state. This information is broadcast to other agents that are within
communication range of agent i. When i receives a broadcast from another agent, j,
containing bj and ρj, agent i stores this information in a vector, B, where it is held until
agent i enters the E state. In DC, the parameter g shown in line 15 of Algorithm 2 is
equal to 1, meaning the D state lasts for a fixed period of 120 timesteps in our
simulation. When leaving the D state, agents compare their current estimate of the
dominant feature with an estimate, ρj, selected at random from B, shared by a
neighbouring agent of the swarm with belief bj ∈ 0, 1. If the estimate, ρj, is greater
than the agent’s own estimate ρi, then the agent alters its belief to bj. This
belief-update process is outlined in Algorithm 3. During the E state, which lasts for a
fixed period of 60 timesteps in our simulation, agents cannot broadcast their own
beliefs or estimates of which feature is dominant in the environment, but can receive
them from other agents and are limited to moving and sensing in the environment,
while building their current estimate, ready for the next D period.

Algorithm 3 DC Belief Update

Require: ρi Agent’s current estimate, B Beliefs and estimates of dominant feature re-
ceived from neighbouring agents

1: ρj, bj ← Random ρ, b ∈ B
2: if ρj > ρi then
3: bi ← bj
4: end if

In DMMD, agents are limited to sharing their beliefs during the D state. Agents
maintain an estimate of the ratio for their current belief which is used to modulate the
time spent in the D state. This is done by setting g = ρi. Thus, a higher estimate results
in a longer D state and a greater chance of influencing the belief of other members of
the swarm. At the end of the D state, agents sum the number of each belief, bj,
received during that D state, including their own, and alter their belief to reflect the
most frequent belief. Agents then enter the E state for a fixed period of 60 timesteps.
This belief update is detailed in Algorithm 4.

MFDM also modulates the time spent in the D period. In this strategy, g is assigned as
the maximum of an agent’s estimates for both possible beliefs, g = max{ρ1, ρ0} where
ρ1 and ρ0 correspond to the estimates of the ratio of feature 1 and feature 0
respectively. This is labelled as the confidence of the agent. Agents with estimates
close to 0 or 1 will have a high confidence that their belief is correct, while agents with
estimates close to 0.5 will have a lower confidence and as such will spend less time
disseminating. During the D state, agents share their estimates with neighbouring
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Algorithm 4 DMMD Belief Update

Require: bi Agent’s current belief, B Beliefs of all agents encountered including bi
1: n1 ← SUM(bj) if bj = 1 ∀bj ∈ B
2: n0 ← SUM(bj) if bj = 0 ∀bj ∈ B
3: if n0 > n1 then
4: bi ← 0
5: else
6: bi ← 1
7: end if

agents, and at the end of this state, agents take the most frequent estimate that they
have received in that period as their belief, similar to DMMD, detailed in Algorithm 4.
Agents also maintain a concentration value that is updated when an agent receives a
belief from another agent that it has not been in contact with for 180 timesteps. This
concentration term is defined as C∗ = 0.9C + 0.1b where C is the current concentration
and b is the received belief. This acts as a long term memory of the agent’s perceived
belief of the swarm over time and makes this approach more robust to changes in the
environment. When the concentration remains at 0.1 or 0.9 for 30 timesteps, in our
simulation, the agent locks in its decision which is equal to the agent’s current belief.

3.4.3 Communication Mapping Algorithm

We adopt a generic framework for considering the quality of service (QoS) of the
communication links between agents. Since QoS metrics are application-dependent
and may be affected by environmental factors or the type of data being shared, we
consider an approach that is independent of any specific application requirements.
Our approach also allows for the model to take into account changes that may be
observed, differing from the theoretical values.

In our problem, agents have no a priori information relating to the location or severity
of the communication limitations in the environment and they need to build up a
decentralised representation of the communication environment. To do this, we
implement a Gaussian Process (GP) model [104].

A GP is specified by its mean function, µ(x), and covariance function, k(x, x′) of a real
process, f (x), given by

µ(x) = E[ f (x)] (3.6)

k(x, x′) = E[( f (x)− µ(x))( f (x′)− µ(x′))] (3.7)

f (x) ∼ GP(µ(x), k(x, x′)). (3.8)

A GP aims to estimate the function, f (x). Formally, let Pi = [pi
1, ..., pi

N ] be the vector of
Ni points in the environment with corresponding communication quality
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observations, Qi = [qi
c1, ..., qi

cN ], made by agent i. Then given that q = fi(p), for a set of
test locations, P∗i ⊆ P, we can model the joint distribution of the training outputs, fi

and the test outputs, f ∗i as the following which assumes a mean of 0 and noise-free
observations:

[︃
fi

f ∗i

]︃
∼ N

(︃
0,
[︃

K(Pi, Pi)

K(P∗i , Pi)

K(Pi, P∗i )
K(P∗i , P∗i )

]︃)︃
(3.9)

The covariance function specifies the joint variability between pairs of cells in the
environment p and p′, and for our approach we use the Matérn kernel as the
covariance function, defined as the following where ν is a smoothness parameter and
ℓ is the length scale:

k(p, p′) =
21−ν

Γ(ν)

(︄
√

2ν
||p− p′||

ℓ

)︄ν

Kν

(︄
√

2ν
||p− p′||

ℓ

)︄
(3.10)

Each agent, i, maintains a GP model which is learned using estimations of the
communication link quality, which are gathered from the environment, {Pi, Qi, Ti}
where Ti is the time when the estimation was made. As has been highlighted in the
literature, GPs present a powerful method for estimating spatial distributions with
uncertainty [102, 101, 100]. However, they come with significant costs in constructing
the GP from observations. Exact inference on a data set of size n has complexity O(n3)

and storage demands of O(n2). With alternative low rank approximation methods a
complexity of O(nm2) and storage demands of O(nm) are possible, where m is user
selected parameter defining the number of inducing variables [105]. Considering a GP
that stores communication data for each point in a discretized environment, as is done
in our approach, would result in an implementation that would scale poorly for larger
environments. To mitigate the computational costs of constructing a GP on what may
be a low-complexity device, we use a sampling method to reduce the number of data
points stored. In our implementation, 100 estimations are kept. This results in data
that represents 2.44% of the environment in our experiments.

The sampling method is implemented as follows. When an estimate of the
communication link quality is made by agent i, Algorithm 5 is performed to
determine whether or not the estimate should be stored in Ps, to be used for the
generation of the communication quality map. Agent i calculates the minimum
distances from all stored estimations, ps ∈ Ps to any other one of its stored estimations,
ps′ ∈ Ps s.t. ps′ ̸= ps. These distances are stored in Di

min. Agent i then calculates the
minimum distance between the current estimation, pe and each of its stored
estimations, ps ∈ Ps. This process is shown in lines 2-6 of Algorithm 5. If the minimum
distance for the current estimation, pe is greater than the smallest minimum distances
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in Di
min, then one of the observations with this minimum distance is randomly

selected to be replaced by ps. This can be seen in lines 7-10 of Algorithm 5.

Algorithm 5 Observation sampling

Require: Pe Communication estimate, Ps Stored estimations, Di
min Minimum distances

for agent i
1: min distance← ∞
2: for ps ∈ Ps do
3: if ||pe − ps|| < min distance s.t. ps ̸= pe then
4: min distance← ||ps − pe||
5: end if
6: end for
7: if min distance > min(Di

min) then
8: Ps[index of(min(Di

min))]← pe
9: Update Di

min
10: end if

Agents also share communication link quality estimations in their heartbeat messages,
alongside their feature beliefs. This was another important consideration in the
implementation. While members of the swarm could exchange the communication
quality maps that are generated by the GP, the communication costs of such an
approach would place great strain on the communication capabilities of the swarm. A
large volume of data would be need to be transmitted by each agent whenever they
broadcast their heartbeat messages. This approach would also exhibit poor scalability
for larger environments and swarm sizes, due to the greater number of data points
contained within the maps. Instead, in our implementation, a constant number of
communication quality estimations are sampled uniformly from an agent’s set of
stored observations. In our experiments, this value was set to 10. These are then
broadcast to neighbouring agents that are in communication range.

Following this algorithm, agents aim to maximise the coverage of the estimations that
are stored in their GP model and as such build up a representation of the
communication environment, given a small number of data points. If the agent’s
stored estimations set is not at capacity (100 estimates), then the agent adds its most
recent estimation of the communication environment. This allows for the wide area
map to be initiated at the beginning of the task.

3.4.4 Path Planning Algorithm

Using the GP model, each agent, i is able to assign an estimated communication
quality, q̂i

x,y, and uncertainty over the modelled communication quality environment,
σ̂i

x,y for each point, (x, y) in the environment.
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During the D state, agents consider a square portion of their communication quality
map, A, with the agent positioned at the centre. A has sides of length l, in our
simulation this is set to l = 10. Agents then split this region into n equally sized areas,
ai

n ∈ A, each with lengths of size l√
n , in our simulation n = 9. The potential rewards

for moving to each area in the D state, RD(ai
n), is given by the sum of the estimated

communication quality at each point in that area.

RD(ai
n) = ∑

x,y∈ai
n

q̂i
x,y (3.11)

A similar approach is used in the E state, however instead of using a portion of the
estimated communication quality map, agents use a portion of the uncertainty map.
Hence, the potential rewards for moving to each area in the E state, RO(ai

n) is given by
the following equation:

RO(ai
n) = ∑

x,y∈ai
n

1− σ̂i
x,y (3.12)

Once an agent has determined which area holds the highest potential rewards, it
moves in a straight line towards the centroid of that area. When the agent reaches the
centroid the path planning algorithm is performed again and the agent moves from
area to area based on the expected rewards. This is the planning algorithm without
any coordination between agents, abbreviated to CA-G in our study.

3.4.5 Agent Coordination

We now introduce our swarm coordination algorithm which is implemented to reduce
the possibility of agents moving to the same area, possible when agents only employ
the CA-G algorithm. The intuition behind our coordination algorithm, CA-Co, is for
agents to maximise their possibility of successfully communicating during the D state
and to maximise coverage to reduce uncertainty over the environment in the E state.
Consider a single agent, i, in the D state. When entering the planning state, agent i
uses the path planning algorithm to determine the potential rewards, RD(ai

n) for
moving to each of the n areas, ai

n ∈ A within their considered portion of the
communication quality map, A. Instead of moving to the centroid of the best area, as
in the path planning algorithm, agent i assigns a score to each of the areas, si

n, which
reflects the contribution of each area, to the total reward of all considered areas, for
agent i. This is given by si

n = RD(ai
n)

∑ai
m∈A RD(ai

m)
. Agents then choose a random area to move

to using the calculated scores as weights. As such, areas with higher scores, and thus
expected rewards, are more likely to be visited.
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FIGURE 3.6: Time to convergence for each decision making strategy (DMMD, DC and
MFDM), with rc = 0.5 and r f = 0.65 in continuous communication denied region

(blue) and distributed communication denied region (red).

3.5 Results

We compare our proposed communication aware algorithms, CA-Co and CA-G, with
the DC, DMMD and MFDM decision making strategies. Results are compared with
Random Baseline (RB), the original implementations of these decision making
strategies, wherein agents move completely at random to explore and disseminate
their beliefs. All experiment were replicated 20 times.

Figure 3.6 shows the time taken by the swarm to achieve consensus on the dominant
feature in the environment, when agents of the swarm were denied communication in
half the environment, rc = 0.5. Any replicates where the swarm failed to reach a
consensus within 9000 steps, or reached an incorrect consensus are disregarded in the
figures. The feature fill ratio for this experiment is r f = 0.65. The results show that the
CA approaches, regardless of the coordination (CA-G and CA-Co), greatly improve
the speed at which the swarm converges to a consensus, i.e. every member of the
swarm holds the same belief at a given timestep, with our proposed CA approaches
achieving consensus over 300% faster across all decision-making strategies.

The results suggest that the algorithm without coordination, CA-G has the best
performance, particularly under the DMMD strategy, however, for the continuous
communication-denied environment, the CA-G approach reached the incorrect
consensus in 9 of the 20 replicates, compared to the CA-Co approach which was
incorrect in 5 of the 20 replicates, as shown in figure 3.7(B). All other runs for these
approaches with the DMMD strategy were successful. The BR approach failed to reach
a consensus in 5 of the replicates using the DMMD mechanism. Another interesting
observation here is that the CA-G approach failed to reach any consensus at all in all
but 2 of the replicates that used the DC mechanism over both communication-denied
environments. This was caused by the agents forming clusters of agents throughout
the task that would very rarely mix. If all of the agents in one cluster disseminated
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FIGURE 3.7: Number of experimental replicates that reached the correct consensus
(shown in blue), incorrect consensus (shown in red) and that reached no consensus
at all (shown in yellow) in an environment where rc = 0.5 and r f = 0.65 for (A)
continuous communication denied environment and (B) distributed communication

denied environment.

incorrect beliefs, the swarm would not reach a consensus. This clustering issue was
mitigated by the CA-Co approach which successfully reached the correct consensus on
all 20 replicates in both communication-denied environments for the DC mechanism.

While we have demonstrated that the speed of the decision is greatly increased by the
communication-aware approaches, another important factor is the accuracy of the
decision that has been made. Figure 3.8 shows the estimates of the ratio of the
dominant feature for the DC strategy with rc = 0.5 and r f = 0.65. It can be seen that
the estimates for BR, CA-G and CA-Co are close to the ground truth, confirming that
the swarm is on average estimating the ratio of the dominant feature in the
environment, with a median error of no more than 13%. Interestingly, while the
CA-Co approach does not improve the time taken for the swarm to reach a consensus
over the CA-G approach (Figure 3.6), it does improve the median estimate in the
distributed communication denied environment (Figure 3.8(B).

We also tested the time taken for the swarm to reach a consensus for a feature ratio of
r f = 0.65 and communication environment with rc = 0, meaning there are no
communication denied areas in the environment and at any point in the environment,
an agent is certain that any messages sent will be received by any agents in
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FIGURE 3.8: Estimates for DC decision-making strategy in a (A) continuous environ-
ment and (B) distributed environment, with rc = 0.5 and r f = 0.65. The black dotted

line indicates the ground truth.

communication range. This mimics the task proposed by Ebert et al. [48]. Figure
3.9(A)) gives the results for this experiment. They show that the fully coordinated
approach continues to outperform the RB strategy. Not only is the median time to
convergence considerably faster, the spread of the time taken is greatly reduced,
making the CA-Co approach far more predictable and reliable for a collective
decision-making scenario. This is due to the agents exhibiting some level of
aggregation when in the dissemination state with agents moving towards the same
regions as some of their neighbours. This allows for a faster mixing of agents’ beliefs
and thus reaching a consensus more quickly. In the BR approach, this aggregation is
not present and as such, the beliefs are spread around the swarm more slowly.
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FIGURE 3.9: Time to convergence for each decision-making strategy, (DC, DMMD
and MFDM) with (A) no communication denied regions present and (B) rc = 0.5 and
r f = 0.53 in continuous communication denied region (blue) and distributed commu-

nication denied region (red).

Finally, we increased the difficulty of the task by using environments with a ratio of
the dominant feature, r f , closer to 0.5, in this case 0.53. This presents a more
challenging task since it is harder for individual members of the swarm to individually
distinguish which feature is the most dominant at any point. Figure 3.9(B)) shows that
the CA-Co approach improves the median time taken to converge to a decision over
the BR approach. The CA-Co and CA-G approaches also improve the reliability for
the swarm to converge towards a consensus in under continuous communication
constraints while using the DMMD and DC strategies. When using the MFDM
strategy for decision-making, none of the BR replicates reached any consensus at all.
In contrast, the CA-Co approach reached the correct consensus in 13 of the 20
replicates for the continuous communication denied environment, failing to reach a
consensus in the other 7 replicates. The CA-G approach also reached the correct
decision in 9 of the 20 replicates for the distributed communication environment,
failing to reach any consensus at all in the other 11 replicates.
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FIGURE 3.10: Number of experimental replicates that reached the correct consensus
(shown in blue), incorrect consensus (shown in red) and that reached no consensus
at all (shown in yellow) in an environment where rc = 0.5 and r f = 0.53 for (A)
distributed communication denied environment and (B) continuous communication

denied environment.

3.6 Conclusion

In this chapter, we presented a communication-aware algorithm for a swarm to
perform collective decision-making in harsh communication-limited environments.
Our approach has demonstrated to improve the ability of a swarm to reach a
consensus on the feature of interest in the environment, not only in
communication-limited environments but also in environments where the
communication conditions are homogeneous across the environment. This improved
on random movement which is a common method for determining how agents may
move in collective decision-making problems. Not only does our
communication-aware approach reduce the time it takes the swarm to reach a
consensus, but this is achieved while retaining the accuracy of the decision. We have
not performed an extensive search for parameter selection and this is left for future
work. We further plan to investigate the effect of dynamic communication-denied
areas that change in number and size during the experiments.

One challenge that was encountered during this work, was the problem of improving
the efficiency and performance of the coordination algorithm. The decentralised
method quickly plans a few timesteps ahead at any point. This results in little waste in
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computation when plans are required to change. A drawback of this approach is that
agents plan with incomplete information. The aggregation of information with a more
centralised controller would likely improve the performance and capability of the
coordination. As has been discussed, a drawback of such a system is its vulnerability
to single points of failure.

In the next chapter, we therefore consider a hybrid swarm system which is a relatively
new line of research for robot swarms. We examine whether it is possible that such a
system can maintain communications while performing at a high level in a given task.
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Chapter 4

Hybrid Swarm Control

4.1 Introduction

In Chapter 2, we examined how a swarm’s decision-making capabilities were affected
when operating in a communication-constrained environment and proposed an
approach to help restore a swarm’s ability to share information in such a situation. It
was found that making the swarm communication aware could overcome the
challenges that are imposed by communication constraints in the environment and
could even improve the decision-making performance of the swarm in those
conditions.

The swarm was equipped with a communication environment mapping capability.
This guided agents to areas of high communication potential when they were
attempting to disseminate information. When collecting information about the
environment, this capability pushed agents to areas of uncertainty. The swarm was
also able to make use of a simple coordination algorithm which also aided in
improving the performance of the swarm in a collective decision-making task and
allowed the swarm to reach a consensus more quickly. This coordination algorithm
was run in a decentralised manner, meaning that each agent performed planning
locally, while assuming neighbouring agents were sharing the same beliefs of the state
of the environment.

As has been highlighted in the literature, such a decentralised approach has
advantages in the form of resilience to single points of failure, meaning that the
coordination of the swarm can continue even when individual agents fail. The
drawback of such systems is in their relatively slow speed and low long-term accuracy
when faced with tasks that require exploration and coverage of an environment [6].
Hybrid approaches have been proposed as a way to provide a control structure that
finds the middle ground between a fully centralised and a fully decentralised
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approach. Recent studies have shown that the introduction of a centralised control
unit to facilitate coordination and distribute information around the swarm improves
the performance of the swarm over decentralised, hybrid and self-organised control
structures [6, 106]. As such, the coordination of the swarm that was seen in Chapter 2,
could be improved further by considering a centralised approach at the expense of
developing a system that is more vulnerable to failure.

Hybrid approaches have become a promising area of research for swarm systems with
the introduction of the MNS with studies that have applied it to robot swarms to
enable self-configurable formation control [34, 6]. While the relative performance of
hybrid systems has been examined in the context of robot swarms, the relationship
and trade-offs that a hybrid system may have with communication, both within the
swarm and to a human operator, have not been explored. Further to this, an important
aspect of hybrid systems is the swarm’s ability to transition fluidly between a
centralised and decentralised system [32], which, to our knowledge, has not been
studied. A hybrid system that is equipped with this capability may be able to find the
optimal level of centralised and decentralised control that is required for a given task.
It may also be able to adapt to changing mission requirements relating to
communications and performance.

In this chapter, we examine the assumption that a centralised approach always
achieves the best performance in a task over a decentralised or hybrid solution. We
also consider how a flexible hybrid control system may affect inter-swarm
communication and human-swarm communication. To do this, we propose a simple
generic hybrid approach which combines elements of decentralised and centralised
control systems. Due to its simple nature, it may be used for similar studies that wish
to build on top of our work to further examine the costs and benefits of hybrid
systems. We show that a hybrid system may achieve higher performance in some
tasks (e.g., in our environmental monitoring task) compared to a highly centralised
and decentralised approach. Hybrid approaches come with trade-offs in
communications, both between a human operator and within the swarm. We show
that these trade-offs can be balanced with the performance of the system according to
end-user requirements while using our proposed hybrid approach.

4.2 Hierarchical coordination

A simple environmental monitoring task is used to assess each approach. Here, agents
are tasked with observing and completing tasks in the environment. To complete an
event, agents must observe the events for a set period, in our experiments this is 200s.
In our proposed hierarchical coordination algorithm, agents of the swarm dynamically
form a forest of trees. The tree structure provides the end-user with a centralised
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FIGURE 4.1: Examples the decentralised approach and early tree formations of the
highly centralised (Hybrid, δ = 1) and hybrid (Hybrid, δ = 3) approaches during the
task. The different coloured agents represent members of a tree at different depths,
with root nodes being coloured blue. The small black circles represent existing incom-

plete events and the underlying event density distribution is shown.

control architecture for the swarm. Moreover, the trees are continually reshaped in
response to changes in the operating environment and to configure the agents to
observe multiple events at once. Both the task and the coordination we propose are
simple in order to ensure that our approach is easy to follow and reproducible. We use
the idea of tree formations as a basis for a highly centralised hybrid approach.

For our algorithm, we define a set of n agents in the environment as R, with
individual agents given as ri ∈ R. Each agent, ri, in a tree keeps track of its parent, its
current level in the tree, ti, and also a list of its followers, Fi, which is the set of
descendants of agent ri. An agent ri, is said to be in a tree if it is a follower of some
other node or a root, ∃j ∈ {1, ..., |R|} ∧ j ̸= i s.t. ri ∈ Fj ∨ ri ∈ L where L is the set of
roots in the environment which is initially L = ∅. An agent becomes a root when that
agent forms a new tree. When this happens, that agent is not part of any other tree and
initially will have no followers. Agents share their lists of followers when they are
within communication range of each other, and parents will aggregate these lists to
create a list of all of their descendants, Fj → Fj ∪ Fi where rj is the parent of ri.

When an agent, ri, initially joins a tree, Fi = ∅. Each agent also maintains a set of
scores, for each of its descendants, Si = {sj∀rj ∈ Fi}, which could relate to how well an
agent is equipped to complete tasks that are occurring or present at its current location
or to know how well the agent is positioned to maximise the swarm coverage.

During a mission, when an event occurs at a location (x, y), e(x,y)
n where

n ∈ {1, ..., |E|}, the event will be added to the set of events currently in the
environment that have not been completed by the swarm, E. Each agent stores a set of
events that have been observed or communicated to them, Ei ⊆ E. This information is
shared between agents when they are in communication range of each other. An agent
also defines the set of all events that occur within the sensing range of a location, (x, y)
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as E(x,y)
i ⊆ Ei. Agents can observe multiple events simultaneously, provided that they

are within the sensing range of both events.

When an event occurs in the environment and is observed by an agent in a tree, this
information is passed up the tree to the root. This root aggregates all the information
about events that are currently being observed by agents in the tree and
communicates this as a message to an operator.

Our hierarchical coordination algorithm consists of four elements and aims to form a
forest of trees of agents that can act as teams in areas of high activity and importance
within the environment:

• Root Formation: This defines where a tree should be centred and aims to decide
where a tree would be beneficial for the mission.

• Tree Growth: Adding resources to the tree in the form of other agents, to
improve the coverage and detect events in that area.

• Active Recruitment: Reallocating the resources to the most needed areas and
directing the growth of the tree to the most appropriate areas of the environment.

• Dissolution: The pruning of unnecessary branches of the tree, so the resources
can be put back into the environment for better use.

Each of the four components of our coordination algorithm works as follows:

Root Formation: An agent, ri forms a root node when the density of events currently
occurring within the sensing range of the agent at its current location, (x, y), exceeds
an event density threshold, |E(x,y)

i | ≥ ρ. When this condition is satisfied, the agent
stops moving, and declares itself the root node for a new tree at its current location,
such that ri ∈ L. Initially, the set of followers for ri is empty, Fi = ∅. When
communication is lost with a parent node for 20s, which may be due to faults or
dissolution of the parent node, which is described below, the immediate children of
that former parent become root nodes, maintaining the sub-tree below that agent. If
two different root nodes are within communication range of each other, which may be
the case when contact is lost with an agent acting as a parent to the two newly formed
root nodes, then the trees are merged, taking the agent with largest sub-tree as the
root. In the event that the tree size is tied for the two root nodes, one of the agents is
uniformly chosen at random as the root node. Figure 4.2 shows an example of this
process where the root node is given by the agent with the star, which is positioned in
a high event density area. This agent acts as a centralised leader to all agents that
connect to the tree that it forms. This approach takes inspiration from previous works
where some agents position themselves in the environment acting as beacons
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FIGURE 4.2: Example of the root formation process. Here an agent, that is located in
an area that has a high density of events present, forms a root node. In this figure, the

root node is denoted by the agent with the star symbol.

FIGURE 4.3: Example of the tree growth process. Here, two agents that are within
communication range of the root node, denoted by the star, join the tree formed by
the root node. Agents observing events, whether they are part of a tree or not, send

information to a human operator on the events that are being observed.

[107, 108], which has been proven to be an effective and in the case of [107], a very
scalable approach achieving a high level of coverage completeness in the task (99.8%).

Tree Growth: Free agents, ri, are members of the swarm that are not currently part of
any tree, such that ri /∈ Fj ∀j ∈ {1, ..., |R|} ∧ j ̸= i. They move around the environment
by performing a custom random walk where agents move in a straight line for a
uniformly distributed amount of time before turning onto a new randomly chosen
heading. This method of movement was chosen to give agents towards the periphery
of the environment a better chance of moving towards the area of interest where
events were occurring. When a free agent moves within communication range of
another member of the swarm, rj, that is in a tree, such that |−→rirj| ≥ dmin so the two
agents are at least dmin meters apart, then ri joins the tree, with rj as its parent and
ri ∈ Fj. This process is shown in figure 4.3 where two nearby agents join the tree
formed by the root node.
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FIGURE 4.4: Example of the active recruitment process. Here, one agent, which is not
observing any events, is moved to a new area with an event present.

Active Recruitment: Periodically, in our experiment once every minute, root nodes
perform active recruitment to improve the performance of the tree. This is done to
relocate any agents that are currently part of the tree at locations where events are not
as frequent as in other areas of the environment. It also gives the tree a chance to
expand into areas that the root feels are more important to detect a greater number of
events than other areas of the environment. The root, rj first determines the agent that
will be moved to improve the number of events or expected number of events
monitored by the tree. This is done by selecting a leaf node, ri, of the tree which is
contributing the least, in terms of events monitored, to the tree, such that
min
si∈Sj
{si|Fi = ∅}. This is exemplified by figure 4.4, where an agent is moved from an

area with no events to observe an area with an event present.

The root considers all possible locations, (x, y), that agent ri can move to while
remaining within the communication range of at least one of the other members of the
tree, rk, and also satisfying the condition for the tree growth, |−→rirk| ≥ dmin. The root
assigns a score to each location, a(x,y) = |E

(x,y)
j |. The agent ri then moves to (x, y),

changing its parent as appropriate, once the new location is reached.

Since only leaf nodes are considered for active recruitment, there is never an issue of
breaking apart an existing branch of the tree, disrupting the overall tree. The active
recruitment aims to promote the growth of the tree into areas that have many events
occurring.

Dissolution: Agents that are in a tree maintain a dissolution parameter, T, that is set
to the maximum value, Tmax when an event, e(x,y)

i , is observed by the agent at their
current location, which acts as a stimulus. This parameter is decreases linearlly at each
timestep. The rate at which T decreases for a given agent is proportional to the
number of parents above that agent in the tree, ti, given by T = T− ti. When T = 0 for
an agent, ri, the agent disconnects itself from the tree and becomes a free agent again.
As such, agents that are closer to the periphery of the tree will dissolve quicker than
those closer to the root. This allows the tree to remain more dynamic, reducing the
potential for having agents remain in unnecessary locations where few events are
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FIGURE 4.5: Example showing the dissolution process. Here, the two agents with red
arrows are dissolving from the tree since they have not observed an event for some

time proportional to the number of parents above them in the tree.

occurring, while allowing a tree with a well placed agents within the environment to
persist. When an agent disconnects itself from the tree, that information is propagated
to the rest of the tree by ri’s root so each agent in the tree can update their beliefs of the
tree, Fj \ ri∀j ∈ {1, ..., |R|}. Figure 4.5 shows this process where two agents that are no
longer observing events, and have not been for some time, leave the tree. They now
act as decentralised agents that freely explore the environment.

This parameter is used not only to limit the size of trees but also to ensure that trees
are forming in locations where events are occurring with a higher likelihood. If a tree
does not detect any events for a long period, it is not necessary to maintain a large tree
in that area. The algorithm would dissolve the tree and allow new trees to form in
different areas.

Baseline coordination algorithm: We compare our hybrid coordination algorithm
against a standard decentralised approach. In the decentralised approach, agents
explore the environment via a random walk and exchange information regarding the
location and status of events that have been observed, as in the hierarchical
coordination algorithm. When an agent observes an event, the agent corrects its
heading to move directly towards the event. Once the agent reaches the location of the
event, it stops moving and observes the event until it is completed, when the agent
continues moving randomly in the environment. The event is considered completed
when it has been observed for 200 seconds, at which point that event is removed from
the environment. If another event occurs within the agent’s sensing range while it is
attending to an event, then the agent will immediately move to the new event, once
the original event that the agent was observing is complete.

If a randomly moving agent, which is not observing an event, moves within
communication range of an agent that is observing an event then the randomly
moving agent will, again, alter its heading to move towards the event and assist in the
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observation of the event. Agents also communicate information about events that they
are observing to an operator.

Hybrid coordination: The hybrid approach makes use of the hierarchical coordination
algorithm coupled with the decentralised behaviours. This is achieved by having
agents switch between acting as a decentralised system or a centralised system, in
response to the conditions in the environment. In our experiments, the level of
centralisation or decentralisation is controlled by the parameter δ. This value
corresponds to the number of events that an agent must be monitoring in order to
initiate a switch from a decentralised to a centralised system. When acting as a
decentralised system, agents make use of the baseline coordination algorithm
described above. Here agents do not perform complex coordination and instead rely
on local interactions to help direct agents towards events, thus making the system a
decentralised control system. When agents are acting as a centralised system, they
make use of the hierarchical coordination algorithm described in this section. The
formation of centralised tree structures allows for greater control of a larger set of
agents by the root node, that acts as the central controller. There are two main
elements that define the hybrid system. The first is in the ability for sub-trees present
within a formed tree structure to recover from disconnections by taking the decision to
form a new tree at the disconnection. This allows the swarm to flexibly recover and
continue in the operation of sections of a tree structure that would other wise be
unable to function without a connection to the parent and root node. This behaviour
combines elements of centralised and decentralised systems. The second element
comes from an individual agent’s ability to switch between operating as a centralised
system or a decentralised system in the following way. A hybrid system with a low δ

value, close to δ = 1 has root nodes form frequently in the environment with a high
chance of roaming, decentralised swarm members encountering and joining a tree. As
such, these kinds of systems present a highly centralised system, where agents spend
a large proportion of the time in the experiment acting as a centralised system within a
tree structure. Conversely hybrid systems with high δ values, such as those with a
value of δ = 8, do not form root nodes as frequently in the environment, if at all. This
reduces the time agents spend in a centralised system and instead they spend most of
their time as a decentralised system. Hybrid systems with δ values in between these
two values (1 < δ < 8) varies the level of centralisation smoothly with the time spent
by agents during the experiment proportional to the δ value.

When an agent, ri observes an event, at (x, y), the robot will perform one of two
actions. If the density of events currently occurring within the sensing range of the
agent at its current location exceeds the event density threshold, |E(x,y)

i | ≥ δ, then the
agent will act as a centralised system and form a root node. If this condition is not
met, |E(x,y)

i | < δ, then the agent will behave as a decentralised system and will not
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form a root node but will change its heading to move towards the event and it will
proceed to observe the event.

4.3 Experimental Setup

Agents move at a maximum speed of 1 m/s in a bounded environment, Q ⊆ R which
is discretized into a set of points, (x, y) ∈ Q. For our experiments, we fix the density of
agents in the environment to 0.0025 agents per m2. So for the experiments with 25
agents, the environment is 100m × 100m with 20 replicates of 9000 seconds. We
assume that there exists an unknown density function ϕ(x, y) : Q→ R+ which defines
the probability that an event, e(x,y)

i occurs at location (x, y) at time, t. During the
experiment, an event have a probability of occurring somewhere in the environment
once every second with pr = 0.1. The location of the event is then determined by
sampling ϕ(x, y) : Q. For our experiment, in the base scenario, the underlying
distribution takes the form of a Gaussian distribution, with mean at (50, 50) and
covariance of

(︁
50 0
0 50

)︁
. Events are persistent in the environment until they have been

observed by agents a set number of times, when they are completed and removed
from the environment. Each distinct agent that observes an event contributes towards
the event’s completion, reducing the number of times an event needs to be observed
before it is completed by 1. As such, having multiple agents observe an event will
result in the event being completed more quickly and this increase in speed is linear to
the number of agents observing the event. Agents can also observe multiple events at
the same time, provided they are within the sensing range of 5m. For our experiments,
we do not consider collision avoidance.

The δ value was varied during some of the experiments to examine the effects of
different levels of centralisation on a number of metrics including the performance
and the communications present in the swarm. Another important parameter is the
tree dissolution parameter, Tmax which dictates how long an agent that is in a tree,
should remain part of that tree, while not observing any events. For our experiments,
this was set to Tmax = 200s. This parameter also plays a role in the level of
centralisation present in the swarm. A shorter dissolution time will cause agents to
leave their respective tree more frequently, resulting in a lower level of centralisation
present within the swarm. A greater value will result in agents remaining in their tree
for longer, thus increasing the overall level of centralisation of the swarm. For the
work presented here, the main focus was on examining how the communication
requirements and the performance of the swarm vary with a flexible hybrid control
system. The key aspect of our proposed hybrid system that distinguishes it from a
purely decentralised system is in the tree growth and active recruitment. If the value
of Tmax is too small, neither the active recruitment or the tree growth have time to
make a difference on the operation of the system. As such, we decided to fix this
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parameter for these experiments and only change the level of decentralisation by
varying the δ parameter.

Agents use a random walk routine to move within the environment, similar to one
implemented in chapter 3. Using this kind of random walk, with a low probability of
performing a long walk, gave agents a chance to ”escape” the influence of the tree
structures when they dissolved from their tree structures. It was found that when
shorter walks were used for agents’ movements, the agents would aggregate close to
tree structures and would have little to no opportunity of exploring the rest of the
environment when they dissolved from the tree structure. The routine is as follows.
An agent moves in a straight line for a random distance, d, with a mean distance of 5m
that is sampled from an exponential distribution, given by:

d = λe−λx (4.1)

Where λ is the rate parameter, and for our experiments, λ = 0.2. After travelling this
distance, agents perform a turn. This turn has equal probability of being performed in
a clockwise or counter-clockwise direction. The agents turn for a period of time that is
uniformly distributed between 0 and 2 seconds. Then repeats these steps for the
duration of the experiment. For these experiments, we did implement a collision
avoidance algorithm. This decision was made in light of the fact that agents could
easily become trapped within sections of the tree structures formed by the swarm,
leaving them unable to move if considering collisions. As such we do not consider
collisions within this work and assume that agents are able to alter their height in
order to avoid neighbouring agents. This limits the findings of this chapter to swarms
that are composed mainly of aerial robots. A more substantial path planning or
relocation algorithm would be required to allow agents to successfully navigate
through some parts of the tree structures that are formed.

The simulation environment used in Chapter 3 was adapted for this environment
monitoring task. As such, agents share the same communication model, where agents
can communicate with any other agents that are within communication range. In
these experiments, the range is set to 5m. The environment monitoring task that we
adopt is similar to the task studied in several robot coverage problems
[109, 110, 111, 112, 113]. In these approaches, an underlying density function is present
in the environment. The swarm is responsible for maximising the coverage of this
environment to optimally spread over the region with a density that reflects the
density function. The underlying density function defines the frequency of events that
occur at any location in the environment. As a result, this function cannot be sensed
directly by agents and instead relies on the observation of events to build a belief over
the underlying density function. This scenario has a range of applications including
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natural disaster prediction and monitoring, search and rescue in disaster regions,
enemy intrusion detection and target tracking [114, 115].

We evaluate the proposed swarm coordination approaches using the following
metrics: i. Waiting time for events before being observed by a member of the swarm;
this metric shows how responsive the swarm is to changes in the environment and
how well the swarm can cover areas where events are occurring with a high
probability; and ii. Number of messages received by a human operator at each
timestep from distinct agents; this gives a measurement for the cognitive load that an
operator may experience while controlling the swarm. Messages are received when an
agent is observing an event if it is operating as a decentralised agent and from the root
of a tree where multiple agents may be monitoring events within the tree.

4.4 Results

4.4.1 Performance and cognitive load in swarm coordination

Figure 4.6 shows the mean waiting times taken for events to be observed by members
of a swarm of 25 agents coordinated with a highly centralised system, shown by
Hybrid δ = 1, the decentralised system and a Hybrid system between the two, given
by Hybrid δ = 3. Data is aggregated over 10 separate replicates. The highly
centralised (Hybrid δ = 1) approach has a median±IQR waiting time of 34.0±12.0
seconds. The approach improves on the performance in monitoring environmental
events over the decentralised approach with a median±IQR waiting time of 42.1±4.7
seconds. This shows a 19.2% reduction in the waiting time. The hybrid approach
(Hybrid δ = 3) also outperforms both the Hybrid δ = 1 and Decentralised approaches
with median±IQR waiting time of 26.4±8.8 seconds, a 37% reduction in waiting time
over the decentralised approach and a 22% reduction over the Hybrid δ = 1 approach.

The hybrid approach can improve the performance of the swarm for this task, over
that of the highly centralised and decentralised approaches due to its flexibility in
switching between acting as a centralised and decentralised system. Furthermore, the
value of δ dictates how much time an individual should spend as each of the
approaches. As such, at the beginning of the experiment, agents with a higher δ value
will remain flexible, being more likely to act as a decentralised system and not commit
to forming trees until there is more certainty over the distribution of events.
Alternatively, agents with lower δ values will form trees more quickly but may form
them in sub-optimal locations which will take longer to adjust with the active
recruitment. This can be seen in figure 4.1(B) and (C) where the highly centralised
(Hybrid, δ = 1) approach has initially formed trees away from the centre of the event
density function, while the hybrid approach has trees that have formed closer to the
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FIGURE 4.6: Box plot of waiting times for environmental events to be observed by
a swarm of 25 agents coordinated with a Highly centralised (Hybrid, δ = 1), a De-
centralised and a Hybrid (Hybrid, δ = 3) approach. Event waiting time data was

averaged across each replicate, and aggregated across 20 replicates.

centre. However, agents that have δ values that are too high and act as a decentralised
system for a large proportion of time will not gain the benefits of the coordination.

When we consider the cognitive load (see Figure 4.7), which shows the mean number
of messages sent by different agents of the swarm to a human operator at each
timestep, we see that the hybrid (Hybrid, δ = 3) and highly centralised (Hybrid,
δ = 1) approaches, with median±IQR of 3.7±0.30 and 4.6±0.54, reduce the number of
messages sent to the operator by over 50% compared to the decentralised approach,
with median±IQR of 10.0±0.61. The lower load on the operator overseeing the highly
centralised and hybrid swarms is consequent to the information sent from the
relatively few dynamically formed leaders of the trees has been aggregated; the
multiple environmental events spanning the area covered by a tree do not require the
communication of multiple messages as in the decentralised approach.

It is likely that these reductions in the waiting time and the number of messages sent
to an operator for the Hybrid approach over the highly centralised and decentralised
approaches are a factor of the level of centralisation within the hybrid approach,
controlled by the value δ (see Section 4.2, Hybrid coordination).

4.4.2 Scalability of coordination algorithms

We examine the scalability of the proposed Hybrid approach within swarms of 25,
100, and 500 agents. Figure 4.8 shows the mean waiting times for events in the
environment by each of the approaches. As in the base case of 25 agents, we see that
the hybrid approach provides reductions in the mean waiting time of events over the
decentralised approach of 26% and 14% for swarms of 100 and 500 agents,
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FIGURE 4.7: Box plot of mean number of messages sent by different agents in a swarm
of size 25 to a human operator at each timestep with the highly centralised (Hybrid,
δ = 1), decentralised and hybrid (Hybrid, δ = 3) approaches. Communication data

was aggregated across 20 replicates.
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FIGURE 4.8: Box plot of mean waiting time for events to be observed by swarms of
sizes 25, 100 and 500 agents coordinated with the highly centralised (Hybrid, δ = 1),
decentralised and hybrid (Hybrid, δ = 3) approaches. Data was aggregated across 20

replicates.
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FIGURE 4.9: Box plot of mean number of messages sent by different agents of the
swarm to a human operator at each timestep, with the highly centralised (Hybrid,
δ = 1, decentralised and hybrid (Hybrid, δ = 3) approaches for swarms of 25, 100 and

500 agents. Communication data was aggregated across 20 replicates.

respectively. These reductions come despite a drop in the performance of the hybrid
system as the number of agents in the swarm increases. For this experiment, we kept
the density of agents within the environment constant, along with the area over which
events were likely to occur as a fraction of the entire environment. This meant that as
the number of agents increased, so did the size of the environment and the area where
events occurred. For the 25 agents case, the size of the environment was set to 100m ×
100m with a Gaussian distribution with the mean at (50, 50) and covariance of

(︁
50 0
0 50

)︁
meaning events occurred with 99.7% probability within an area that was 14.1% of the
total area of the environment. As such the density of agents present was 0.0025
agents/m2. In the case of the 100 agents experiments, the environment was then
scaled up to 200m × 200m, keeping the density of agents at 0.0025 agents/m2. The
underlying Gaussian distribution was also scaled to have the mean at (100, 100) and
covariance of

(︁
199.5 0

0 199.5

)︁
, thus keeping the area where events occurred with 99.7%

probability at 14.1% of the total area of the environment. This scaling was also done
for the experiments with 500 agents. This was done to examine how the number of
messages received by an operator would change, given a larger swarm with a greater
number of events to monitor.

For the number of messages to an operator, the results from swarms of 25, 100 and 500
agents (see Figure 4.9), we see that the hybrid and highly centralised approaches
reduce the number of messages sent to a human operator at each timestep throughout
the mission. The hybrid approach reduces the mean number of messages sent to an
operator by over 50% for all swarms of size 25, 100 and 500 agents. There is an
increase in the number of messages sent to an operator in the decentralised approach
of approximately 24 messages per second as the swarm size scales from 100 to 500



4.4. Results 63

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Timesteps

5

10

15

20

25

30

35

40
M

ea
n 

Ag
en

ts
 in

 T
ea

m
s

Team Size = 25
Team Size = 100

FIGURE 4.10: Mean number of agents that are part of trees by swarms of sizes 25 and
100 agents coordinated with the hybrid approach with δ = 3. Data was aggregated

across 20 replicates.

agents. This is over two times the increase in messages per second to the operator that
is observed for both the hybrid system, with an increase of 10 messages per second,
and the highly centralised system, with an increase of 11 messages per second. In the
case of the hybrid approach, this is because the decentralised aspect of the approach
draws more members of the swarm towards areas where events are occurring and
incentivises them to remain close to that area for longer, as such the density of the
swarm increases in these areas for the hybrid approach, with δ = 3 more than it does
for the highly centralised approach, with δ = 1. As such, events are more likely to be
initially registered by a member of the swarm more quickly.

We also consider the number of agents present in trees throughout the experiments.
This is shown in Figure 4.10 for swarm sizes of 25 and 100 agents. In these
experiments, the environment was scaled proportionally to the increase in the size of
the swarm sizes to keep the density of agents present in the environment equal. The
event density function and frequency of events were also scaled to account for the
increase in the size of the environment and the swarm size. The swarm of size 25
quickly converges to having 12 agents present in teams at any time within the first
1000 timesteps, while the swarm size of 100 converges to 33 agents in teams at any
point in time after 6000 timesteps. This difference in convergence time is likely due to
the increase in the size of the environment and the event density function, while the
sensing of the range of agents remains the same. As a result, agents spend more time
behaving as a decentralised system initially. This is due to events having a greater
chance of occurring over a larger area. This means that initially, the density of events
in the environment do not exceed the swarm’s δ threshold value. As such, trees do not
begin to form for some time.
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FIGURE 4.11: Ablation analysis of mean waiting times for events to be observed by a
swarm of 25 hybrid coordinated agents following the removal of the active recruitment

(AR), and the dissolution elements.

This shows the hybrid coordination algorithm remains stable and predictable for
swarms with different sizes and for larger environments. This is validated further by
considering the coverage of the two swarm sizes. The upper limit of the possible
coverage by teams of size 12 and 33 agents, assuming a sensing range of 5m and no
overlap, is 942m2 and 2591m2 respectively. The actual coverage of the swarms is less
than these totals, with a mean coverage of 672m2 and 1521m2 for a swarm with a team
of 12 agents and 33 agents respectively. These totals exceed the area of the
environment where 95% of the events occur. This portion of the event density function
for a swarm of size 25 and 100 is a circular area of 628m2 and 1256m2 centred at the
midpoint of the environment. As such, both swarm sizes can converge to teams that
can cover 95% of the events that occur in the environment.

4.4.3 Ablation study

Figure 4.11 compares the performance of the hybrid approach, with δ = 3 against the
approach when there is no active recruitment and when there is no dissolution of the
trees. The median±IQR waiting time for the hybrid approach is 26.4±8.8 seconds and
we see a 73% increase in the waiting time when the active recruitment is removed to
45.9±8.8 seconds. Even though active recruitment only occurs periodically, it has an
important effect on performance. We also observe a 5% increase in the waiting time
when the dissolution of the trees is removed with a median±IQR time of 27.6±10.8
seconds. This suggests that both the dissolution and the active recruitment help to
keep the trees flexible, even when the other is not present, with the active recruitment
affecting the performance more than the dissolution element which occurs more
frequently.
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It is clear that the coordination provided by the active recruitment for the highly
centralised and hybrid approaches is an important factor in improving the
performance over that of the decentralised approach. When there is no active
recruitment present, the performance of the highly centralised approach, with a
median±IQR waiting time of 45.9±8.8 seconds, is close to that of the decentralised
approach, with 42.7±5.2 seconds.

4.4.4 δ Sensitivity analysis

Figure 4.12 shows the mean number of messages sent to an operator per second
against the number of inter-swarm messages (between members) per second over the
course of 20 runs for a swarm of 25 agents. Here, we vary the levels of centralisation,
these being decentralised, highly centralised (with δ = 1) and hybrid with δ values
ranging from 2 (more centralised) to 10 (more decentralised). The points for each of
the replicates are shown with ellipses that represent the mean and one standard
deviation from the mean for each of the approaches. We can see that a Hybrid
approach with a low δ value acts close to that of a more centralised system and as the
delta increases that hybrid system behaves closer to that of a decentralised system.
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FIGURE 4.12: Mean number of messages sent by different agents in a swarm of size
25 to a human operator against the mean number of messages sent at each timestep

within the swarm.

When we consider the cognitive load, we see that the hybrid δ = 3 and highly
centralised δ = 1 approaches, with median±IQR of 3.9±0.50 and 4.5±0.42 messages
to an operator per second, reduce the number of messages sent to the operator by over
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50% compared to the decentralised approach, with median±IQR of 9.9±0.38
messages to an operator per second. The lower load on the operator overseeing the
highly centralised (Hybrid, δ = 1) and hybrid (Hybrid, δ = 3) swarms is consequent
to the information sent from the relatively few dynamically formed leaders of the trees
has been aggregated; the multiple environmental events spanning the area covered by
a tree do not require the communication of multiple messages as in the decentralised
approach.

We see the best performance of the system for this scenario for δ = 3 and δ = 4. When
a member of a Hybrid system senses events in the environment, it must check
whether the density of events exceeds δ before deciding to behave as a decentralised
system or centralised system by forming a root. Smaller values of delta increase the
chance of an agent forming a root node since a lower density of events is required.
This results in multiple trees being formed in sub-optimal locations within the
environment where the density of events is lower than the maximum density present
in the environment. This leads to more leaders being present in the environment and
as a result more messages being sent to the operator. Larger δ values reduce the
probability of a root forming since the required density of events is much greater. This
means fewer trees form and more agents continue to operate as a decentralised
system. If an appropriate delta value is chosen to reflect the maximum density of
events present in the environment, then we see a minimal number of trees with roots
focused near the points in the environment with the maximum density, allowing for
fewer leaders and therefore fewer messages sent to the operator, along with a well
placed tree to cover the area of interest.

This shows that more centralised control does not always provide the best
performance for a task. It suggests that a system which is too sensitive to stimuli that
cause it to centralise can get trapped in local minima. To overcome this issue, a more
flexible solution is required that refrains from centralisation too quickly. This would
allow time to assess the scenario and adapt accordingly. While this sacrifices
performance in the short term, it guarantees a better performance over time.

4.5 Conclusions and future work

In this chapter, we proposed a control structure that gives flexibility over the level of
centralisation or decentralisation for a robot swarm system. The performance of such
a system and the effects the system could have on communication with a human
operator in an environmental monitoring task have been evaluated. The results
suggest that having a swarm system centralise too quickly can be detrimental to the
swarm’s performance and results in the system becoming stuck in local minima.
Finding a balance between centralised and decentralised control can improve this, but
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comes at a cost of performance in the short term. Future work will consider how an
aspect of learning could be added for the hybrid approach that will allow the swarm
to adapt the delta value in response to the task and the environment. This would give
the swarm control over its own level of centralisation as needed.

The highly centralised (Hybrid, δ = 1) and the hybrid (Hybrid, δ = 3) approaches
have both been shown to outperform the decentralised approach in an environmental
monitoring task. These approaches reduce the number of messages sent to a human
operator, reducing the noise the operator receives. One drawback to these approaches
is that they come with inter-swarm communication and message size overheads.
However, we have shown that by varying δ for the hybrid approach, different levels of
centralisation can be achieved to find an optimal level of inter-swarm and
swarm-to-operator communication for a given mission. These communication
overheads pose another interesting question for future work in how these approaches
might be affected by communication limitations in the environment. Whether this
would affect the overall performance of the highly centralised and hybrid approaches
could also be explored. Another direction for future work is to allow the swarm to
select its δ value during runtime to adapt to the changing environment.

One key limitation of this chapter is that only one kind of task was considered.
Considering a scenario where the task clearly favours either a more centralised system
or a more decentralised system could highlight new relationships between the
performance and communication metrics of the swarm. As such, the results of this
chapter are limited, in that the conclusions drawn may not generalise well to new
problems. However, we have shown that in this task, that the best level of system
control may be one that lies between a highly centralised system and a decentralised
one. Another limitation of this work is in the lack of a truly centralised system to
benchmark the hybrid systems against. While we consider a highly centralised hybrid
system, the inclusion of a control structure that is fully centralised with a single leader
for the entire swarm and global communications could shed light on how close the
highly centralised system is to full centralisation. Doing so would allow the full
spectrum of centralised / decentralised control to be compared for this task.
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Chapter 5

Optimised Hybrid Swarm Control
Structures

5.1 Introduction

In Chapter 3, we found that hybrid approaches can outperform centralised or
decentralised approaches in certain tasks. For our experiments, we studied an
environmental monitoring task where agents were tasked with observing events that
occurred according to an underlying density function. Agents acted as one of three
different types of systems; decentralised, centralised or hybrid.

We also found that different levels of centralisation or decentralisation within a hybrid
system can lead to trade-offs in performance and communications to an operator. We
were able to do this by varying the δ value for the swarm which dictated the threshold
number of events that an agent needed to be observing at any one point in the
environment to form a root node. Colloquially, the δ value relates to how easy it is for
the swarm to form trees. In these experiments, the δ value was fixed at the beginning
of the simulation and kept constant for the duration of that simulation.

However in reality this becomes impractical because it may not be possible to
determine a suitable δ value before the swarm enters an unknown environment.
Instead, the swarm needs to be able to learn the δ value depending on the
environment and according to the mission requirements set by the operator. Doing
this would allow the swarm to optimise the level of centralisation it exhibits on the fly,
according to the current state and dynamics of the environment it is operating in.

This idea of exploring the mechanisms and the transition that allow a decentralised,
self-organised system to become a hierarchical system, and vice-versa, is an important
challenge that so far has not been addressed [18]. Much of the work in hybrid systems
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focuses on the development of the robotic infrastructure to allow such a system [4]
and examining the feasibility of such an approach in a swarm setting [5, 33].

In this chapter, we examine the possibility of the swarm being able to learn the
optimal δ values and vary this depending on whether performance or communication
to the operator is an important factor for the mission. In doing so, we examine the
mechanisms required to smoothly transition a swarm system from a decentralised
system to a hierarchical system and back again. We propose an extension to the hybrid
approach, which was studied in Chapter 3, that gives a swarm the ability to vary its
level of (de)centralisation depending on feedback from an operator and the current
state of the environment. We find that by using this approach, the swarm can find the
optimal parameters to maximise the performance and communication requirements in
an environmental monitoring problem.

5.2 Method

As in Chapter 3, we use a simple environmental monitoring task to examine a hybrid
system and the mechanisms that affect and enable it to move along the spectrum from
a decentralised to a hierarchical system and back again. Events occur within the
environment according to an underlying density function which is unknown to the
swarm. Events are present until they have been observed for a total of 200 seconds at
which point they are deemed completed and disappear from the environment.

We extend the hierarchical approach that was used in the Chapter 4 to enable it with
the capability of varying the δ value during the simulation. To do this we use Particle
Swarm Optimisation (PSO). The aim of this algorithm is to optimise both the δ values
and the dissolution times iteratively, (δ, td). These values are initially assigned a
random value between a specified range. During this experiment, these ranges were
0 ≤ δ ≤ 10 and 0 ≤ td ≤ 300. These initialised values make up a population of
candidate solutions with each particle knowing the global best solution and the
particle’s own best solution that it has found so far during the simulation.

In our approach, each member of the swarm is considered a particle, similar to
approaches that have previously been proposed to extend PSO for robot swarms in
tasks such as control [116, 117], motion planning [118] and target search
[119, 120, 121]. Within multi-robot and swarm systems, PSO is used to optimise and
tune parameters, often using only local interactions. It is well suited for finding the
best solution in a complex space that may have multiple local minima in unsupervised
learning problems since it uses fitness functions to evaluate particles that can be
updated based on observations, without the need for external input. It also does not
require significant computation, is simple to implement and requires only three
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controlling parameters [122, 123]. It is for these reasons that we decided to use PSO for
this problem.

The algorithm for the implemented PSO is as follows. For our experiments, each agent
is acts as one particle in the PSO algorithm. Agents share information with neighbours
and update their own parameters accordingly at set intervals of 30s. This reduces the
speed at which the algorithm converges and gives agents time to evaluate their
learned parameters. At each interval, the velocity and position are updated with the
particle and the swarm’s collective knowledge over the problem space, according to
the following equation:

Vi
t+1 = Vi

t + φ1R1i
t
(pi

t − xi
t) + φ2R2i

t
(gi

t − xi
t) (5.1)

Where each particle, i, at iteration, t, has velocity, V. φ1 and φ2 are the acceleration
coefficients which dictate how much an individual particle’s velocity should be
influenced by the global and individual best value, which are given by gi

t and pi
t for

particle i, at time t, respectively.

To evaluate the solutions of each particle, we define a fitness function that is
maintained by each agent in the swarm. This considers the performance of the
individual and the communications to an operator. The fitness function is defined as
the following:

ft = upPt + (1− up)Ct (5.2)

The performance of an individual agent, Pt, is defined as the number of events
monitored by that agent in a set time frame prior to time t. The motivation for this
aspect of the fitness function is to ensure that agents are aiming to situate themselves
in areas of the environment with a high level of activity. The communications aspect
of the fitness function, Ct, is defined as the reduction in the number of messages that
needs to be sent to an operator in a set time frame, prior to time t. This is found by
calculating the difference in the total number of events observed by an agent’s
sub-tree and the number of messages that the agent would need to send to an operator
to inform them of those events. In this case, it is found by taking the number of events
observed by the sub-tree and subtracting 1 (for the single message that would relay
information about these events to the operator). The coefficient up dictates whether
the focus for the swarm is placed on enhancing performance or reducing
communication to an operator, where 0 ≤ up ≤ 1.

P-best =

⎧⎨⎩[δt, Tt] if ft > fPbest

[δPbest, TPbest] otherwise
(5.3)
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G-best =

⎧⎨⎩[δt, Tt] if ft > fGbest

[δGbest, TGbest] otherwise
(5.4)

At each time step, agents compute their own fitness score using equation 5.2. This
individual score is compared to the fitness score corresponding to the personal best set
of parameters found by an agent, P-best = [δPbest, TPbest], and the global best set of
parameters that the agent has saved, G-best = [δGbest, TGbest]. G-best is shared by
agents and represents the best set of parameters found by the swarm for the
experiment. If ft > fPbest then the agent updates P-best with its current set of
parameters, [δt, Tt]. Otherwise, P-best remains unchanged. The agent also compares
the current fitness score, ft, to the global best, fGbest. If ft > fGbest, then G-best is also
updated accordingly. Otherwise, G-best remains the same. This is described in
equations 5.3 and 5.4.

G-best =

⎧⎨⎩[δ
j
Gbest, T j

Gbest] if f j
Gbest > f i

Gbest

[δi
Gbest, Ti

Gbest] otherwise
(5.5)

G-best is also updated by each agent when they exchange information with another
agent which has found a G-best with a higher fitness score, described in equation 5.5.
Agents share information on G-best with neighbours when they are in communication
range with each other. When agent i communicates with agent j, they compare the
best global fitness score that they have found, given by f i

Gbest and f j
Gbest respectively.

Each agents’ G-best parameters are then updated to the values with the highest
corresponding fitness score.

We also examine the importance of a second parameter in the optimisation process.
This is the dissolution time, T, measured in seconds. The significance of this
parameter is that it works as the opposite of the δ value. The δ value dictates how
quickly or easily an individual agent switches states from a decentralised to a
centralised strategy. The dissolution time dictates the reverse, how quickly or easily an
agent switches states from a centralised to a decentralised agent. Both values
constantly adjust the behaviour of agents in the swarm, allowing them to transition
between a centralised system, a fully decentralised system and a set of fluid
intermediate states between the two as required. The optimal amount of time spent in
any of these states is dictated by the interaction between both parameters, δ and T.
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5.3 Results

In figure 5.1 it is possible to see the relationship between T, the time agents wait after
observing an event, and δ, the threshold number of events an agent must be observing
in order to form a root node. Systems that have a low δ value will form trees more
easily during the task and as such, agents will spend more time acting as a centralised
system, while the converse it true for systems with a higher δ value, which will spend
more time as a decentralised system. When it comes to T values, systems that have a
higher value will wait for longer in a tree after they have finished observing all their
events within sensing range. This means they will spend more time as a centralised
system and are more likely to observe new events at their current location or to be
relocated within the tree by the root node. On the other hand, systems with low T
values will wait for less time before leaving the tree, if they do not observe any new
events at their location. As such, these systems will spend more time as decentralised
systems.

Figure 5.1(A) shows the mean wait time of events for swarms using the varying T and
δ values. Although the landscape is complex and rugged, the optimal value here
occurs with T = 20, δ = 4 with a wait time of 26.87s, however there are 13 other high
performing configurations in the region of 10s ≤ T ≤ 150s, 2 ≤ δ ≤ 4, with wait times
very close to the optimal value (within 5% of the optimal wait time). This shows that
for this problem, a system with a high level of flexibility is best suited for minimising
the wait time of events in the environment. Systems that have a low δ and T value will
very quickly form tree structures in the environment, and will not wait long after
events have finished being observed. This overall strategy means that the swarm will
potentially form many tree structures but only those that are located in strong
positions, with a high density of events will remain. The others will dissolve or merge
when events have been observed.

Figure 5.1(B) on the other hand shows the mean messages sent to an operator per
second by the swarm for varying T and δ values. In this landscape, which is much
smoother than the one shown in figure 5.1(B), the optimal value occurs with a system
that has the values of T = 270, δ = 7. This result shows that in order to minimise the
number of messages sent to an operator, the system should be strict in its
requirements to form a tree (given by a high δ value) but once, a tree has been formed,
agents should remain a part of that tree for a longer time. As such, this reduces the
number of trees formed during the experiment, but allows time for that tree to grow in
size and improve its coverage over the environment.

The difference in optimal configurations for T and δ highlighted in figure 5.1 suggests
that both the δ and T values affect the performance of the system and that considering
both the transition from centralised to decentralised, controlled by T is just as
important as the reverse, controlled by δ. To fully optimise the system, we need to
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FIGURE 5.1: Heat map showing the (A) mean waiting time of events and (B) mean
messages to an operator per second for different T and δ values. T values were varied

at intervals of 10s. Results were aggregated over 10 replicates

consider both values. This points to the idea that having a hybrid swarm system has a
constant push and pull between a decentralised structure and a more centralised
structure can improve the performance of that swarm in certain tasks, which will
come with trade-offs to other aspects of the swarm system such as the number of
messages sent to an operator. Here the mechanisms we use to determine the switch
between both states, δ and T, are event-based and time based respectively. These two
parameters both rely on the current state of the environment in that δ depends directly
on the number of events present at an agent’s location while that agent is in a
decentralised state. T on the other hand depends indirectly on whether any events are
present at an agent’s location since this parameter dictates the time an agent remains
at a location in a centralised state after observing all events at that location. If any new
events occur at that location again, this timer is reset. The fact that these parameters
are both reactive to the environment allows the system to remain flexible to changing
conditions which in this task is new events appearing at new locations.

Figure 5.2 shows the distribution of mean messages to an operator per second against
the mean waiting time of events for the 252 different configurations of T and δ. Each
point represents the mean of 10 replicates, with some replicates being positioned
ahead of the Pareto front. The Pareto front is shown by the red points, joined with a
red line. This represents the configurations of T and δ that are not dominated, in terms
of the wait time of events or the number of messages sent to an operator per second,
by any other configuration. It shows the trade-offs that must be considered when
trying to optimise the two objectives, in this case minimising the mean messages sent
to an operator per second and also minimising the mean waiting time of events in the
environment. This will be an important measure for the quality of solutions and
configurations that our PSO approach will be able to find. In this problem, where
there are clear trade-offs between the mean waiting time and the mean messages sent
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FIGURE 5.2: Plot showing the distribution of mean messages to an operator per second
against the mean waiting time of events for different T and δ values. δ values are in
the range 2 ≤ δ ≤ 8 with intervals of 1, while T values are in the range 10s ≤ T ≤ 360s
with intervals of 10s. Results were aggregated over 10 replicates. The Pareto front is

shown in red.
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FIGURE 5.3: Plot showing (A) how the mean global best δ value of the swarm varies
over time. The red area shows the area where the optimal δ value was found in the
Chapter 4 and (B) how the mean global best T (s) value of the swarm varies over time.
In both figures, the two values, δ and T were optimised simultaneously. Both results

were aggregated over 20 replicates.

to an operator, the resulting configuration from the optimisation process should be
close to or exceed the Pareto front. The solution may lie ahead of the Pareto front due
to the changes in values of T and δ during the optimisation process.

Figure 5.3 shows how the global best of the two values, δ and T, change throughout
the simulations. We can see that the δ value is not optimised to the optimal value that
was found in the Chapter 4, δ = 3, and the T value is found to be lower than the value
used in Chapter 4 too, which was set at T = 200s. However, figure 5.1 suggests that
the values found in Chapter 4 is not the global optimum and as such. Since the T
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FIGURE 5.4: Plot showing how the mean global best δ value of the swarm varies over
time, when (A) the T (s) value is kept constant, using the value of T that was used in
Chapter 4 of T = 200 and (B) the δ value is kept constant, using the value that was

found in Chapter 4 of δ = 3. Results were aggregated over 20 replicates.

value was fixed to find the result in Chapter 4, allowing the swarm to optimise and
vary this value itself, may mean that the resulting T value is also linked to a different
optimal δ value. This may explain the difference in the values to those found in
Chapter 4. It’s important to note here that any δ value in the range 3 ≤ δ < 4 would
act the same as δ = 3, the optimal value found in Chapter 4. This is highlighted by the
red region in figure 5.3. Instead, here, the mean value of δ = 2.57, was found after
1600s, while T = 178s was found after 2000s over the course of 20 replicates.

Figure 5.4 shows the mean δ and T values that are optimised separately and we see
this time that the δ value does sit within the range of the optimal value that was found
in Chapter 4. This value reaches δ = 3.6 after 5000s, however δ lies within the range of
3 ≤ δ < 4 after 900s. The value of T = 146s is found at 3500s although the variance of
this value is relatively small throughout the experiment with a range of just 10.4s. The
motivation for this was to examine how well the swarm is able to optimise a single
parameter when the other is set, rather than both simultaneously. This could be a
useful tool when some information about the environment is known a priori.

Now if we look at figure 5.5 we see the performance of the swarm in terms of the
mean waiting time of events for the simulations. Even fixing one value results in a
better median performance than decentralised or when both are optimised together.
When we combine the results of the optimised values, we find a marginal
performance improvement, with the combined optimal values with a median
performance time of 29.0s compared to the Fixed T median performance time of 29.8s,
the Fixed δ median performance time of 30.0s and when T and δ are optimised
together with a median performance of 32.1s. One important point here, however, is
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FIGURE 5.5: Box plot of mean waiting time for events to be observed by swarms of
sizes 25 agents coordinated with the Decentralised (Decent) and Hybrid approaches
with both δ and T being optimised together (T and δ Opt), a fixed T with δ being
optimised (Fixed T), a fixed δ value with T being optimised (Fixed δ) and the result of
using the found optimised values of δ and T which are fixed at the beginning of the

simulation. Data was aggregated across 20 replicates.
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FIGURE 5.6: Plot showing the distribution of mean messages to an operator per second
against the mean waiting time of events for 20 replicates of the Hybrid approach with
both δ and T being optimised together. The Pareto front, shown in figure 5.2, is also

shown here in red and the mean of the 20 replicates is shown by a black cross.

that the distribution of the performance is much more compact for the combined
optimal values with an IQR of just 3.2s compared to the Fixed T IQR of 7.9s. Using the
optimised values, the swarm has shown a more consistent performance acting to keep
the waiting time of events at a lower level more frequently. Even when using the T
and δ simultaneously optimised values, does the performance of the swarm improve
on a decentralised approach.

Figure 5.6 shows the distribution of mean messages to an operator per second against
the mean waiting time of events for 20 replicates of the Hybrid approach in which
both the T and δ values were optimised simultaneously. The red line shown here
represents the same Pareto front shown in figure 5.2. The mean of the 20 replicates is
also shown here by a black cross. Here, 15 of the 20 replicates are ahead of or on the
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Pareto front that is shown. The mean is also positioned very closely to the Pareto
front, with a value of (32.17s, 4.36). This value has an L2 distance of 0.09 from
(32.09s, 4.32) which corresponds to the point that represents the results of a system
with T = 150s, δ = 7 which is also on the Pareto front. As such, we can see that when
trying to optimise both the T and δ parameters together, the resulting configuration
and performance of the system while optimising is, on average, as good as possible
without increasing the waiting time of events or the mean messages to and operator.

5.4 Discussion

The results presented in this chapter provide evidence that there are two main
mechanisms involved in allowing a hybrid system to fluidly transition between a
centralised and fully decentralised system; The first is the transition from centralised
control to decentralised control which is governed here by parameter T. The second is
the transition from decentralised control to centralised control, governed here by the
parameter, δ. Each parameter is important in determining an agent’s level of
centralisation or decentralisation within the swarm. An important indicator of this can
be seen in fig 5.1 where varying the T and δ values influences the mean waiting time
of events and the mean messages to an operator. While we have seen previously, in
Chapter 3, that the δ value played a crucial role in optimising the performance of the
hybrid system and its communications with an operator, the T value was not
explored. In this chapter, we did consider the T value as an additional parameter and
aimed to optimise this alongside the δ value for this task.

We implemented a PSO algorithm to allow the swarm to learn and optimise the values
of δ and T, individually or simultaneously. Two separate experiments were run where
one parameter was kept constant, while the other was optimised by the swarm. This
gave converged values for each parameter separately. These values are shown in
figure 5.4, of T = 146s and δ = 3.7 (which performs the same as δ = 3 in our
implementation). When given these values as constants, the resulting simulation gave
the best performance of the swarm compared to all other methods that were tested.
This can be seen in figure 5.5.

While optimising both values of T and δ, there were a number of issues that impacted
the effectiveness of the PSO approach in being able to reach a solution quickly. The
first issue stems from the interaction each parameter has on one another; Firstly, the
swarm begins in a decentralised state with randomised δ and T values. Over time,
agents begin to form trees and initially, the root nodes are composed of agents with
lower δ values. This is a result of a low density of events present in the environment at
the beginning of the simulation. The agents’ fitness function will begin to increase
when they start to observe events. This in turn stimulates the optimisation of both the
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δ and T values. Due to the nature of the fitness function, the formation of trees and
recruitment of sub tree members greatly increases the agents’ fitness score. Agents
that form root nodes have the highest fitness scores compared to other members of the
swarm. As a result, the fitness scores from these root nodes, are shared around the
swarm as the global best score. In doing so, the δ value is initially optimised to lower
values. As each member of the swarm optimises towards these lower δ values, the
range of possible δ values decreases. This results in the swarm becoming stuck in a
local optima. This is supported by figure 5.3(A) where the δ value optimises early to a
value below the optimum range (highlighted in red).

The second issue is related to the optimisation of the T value. In its current
implementation, the T value does not exert enough influence on the fitness score of an
agent to make a significant difference to the overall score. Further more, the δ value
initially dictates what value of T provides a strong fitness function. This is because
when a member of the swarm forms a root, it begins to increase it’s fitness score
greatly as the tree builds. With a greater number of agents in the sub-tree, there is a
greater reduction in the number of messages sent to the operator. As has been
established, at the beginning of the simulation, the swarm will optimise towards
lower δ values. At this time, the T value is also being optimised, despite not affecting
the fitness score. The speed at which the δ value optimises dominates its effect on the
fitness function and thus dictates the value towards which T is optimised. Despite
having had a minimal effect on the fitness score, the T value is optimised towards the
random initialised value of a root node agent. This value of T is also shared with the
rest of the swarm as the global best. As such we have the same problem that we have
already outlined for the δ value, which is also occurring for the T value. In it’s current
form, it seems the fitness function is dominated by the communication element of the
function. One way this could be addressed would be to study the Pareto front of P
and C to determine values of the u coefficient which does not result in the function
being dominated by the C term.

These issues are exacerbated by the fact that, in a swarm of 25 agents, there is
relatively little diversity in the initial values of δ and T. This comes despite using Latin
Hypercube sampling to increase the coverage of chosen values in the parameter space.
As such, the outcome of the optimisation is heavily dependent on whether or not an
agent forming an early tree is initially given δ and T values close to that of the optimal
values. Despite this limitation, placing bounds on the maximum and minimum
possible values for δ and T may provide a viable approach. Setting appropriate
bounds on the δ and T values limits the parameter space while keeping it broad
enough to provide diversity in the initial values. PSO may be suitable for this task
once the changes that have been suggested are taken into account. These changes
being alterations to the fitness function to avoid domination of one term and the
bounding of possible values for δ and T. However, the results in this chapter have
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given us an outlook that it is possible to learn optimal values of δ and T for a given
task.

Another limitation of this work is in the lack of real robotic experiments. While the
MNS has been proposed as an implementation of a hybrid control system [4], a hybrid
control system that can change its level of centralisation on the fly has not been
considered. As such, there are several practical challenges that such systems face
which have not been explored. A key practical challenge facing such a system is the
presence of sensor noise. In our approach agents can detect events present in the
environment. In a real-world scenario, these events may correspond to a variety of
phenomena, such as the outbreak of a fire, or the emergence of a human from a shelter
in a search and rescue mission. The sensors used to detect such phenomena will be
vulnerable to several noise sources, causing the observed values to deviate from the
true value present in the environment. Sensors that measure physical quantities in the
environment can be affected by factors such as temperature and polling rate which
may be unable to detect small fluctuations in the true value of the observed
phenomena [124]. In cases where techniques such as object detection and classification
are used, the system will be affected by the accuracy of the implemented detection
model and the quality of the images used. In our approach, both mechanisms that
dictate the transition between control structures for a single individual, rely on the
detection of events via a sensor. Introducing noise into this system may affect how
accurately the swarm perceives the environment and how individuals switch between
a centralised and decentralised state. Noise present in the positioning system of the
swarm could also affect the swarm’s ability to successfully maintain coordination in
our proposed hybrid system. Agents rely heavily on being able to accurately track
their own position in the environment. This enables them to ensure they remain
within the communication range of their leader and local sub-tree members when
operating as a centralised system. Noise in this system could result in disconnections
of the branches in sub-trees, affecting the overall performance of the swarm.

Another hardware challenge that a hybrid control system may face, revolves around
the communication technology used. This is a particular concern for the hybrid
control swarm’s ability to share information on the events that have been detected and
the coordination within the centralised structures that have formed. Here, there
would be two possible limitations. The first is in the bandwidth capabilities of the
wireless channel being used [23] which affects how much information can be relayed
efficiently, with high bandwidth channels being reserved for transmitting information
to the human operator. The second is the latency that the swarm may experience in
receiving messages from neighbours as a result of the duty-cycle that is imposed on
the communication channel [23]. In the proposed hybrid control system, this may
impact the swarm’s ability to react to changes in the density of events present in the
environment and reduce the performance of the system as a whole. To address and
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further understand the challenges highlighted here, future work must focus on the
implementation of hybrid control systems into real robotic platforms.

5.5 Conclusion

In this chapter, we have explored some of the important factors affecting a hybrid
swarm’s ability to switch states from a centralised to a decentralised system and back
again. In our experiments, these two transitions were controlled using two
parameters, δ, which is an environmental observation value and T which is a
time-based value. We have shown that both transitions are vital to the operation of a
hybrid system and affect the performance of that system in its task.

We have also shown that these parameters can be learned for a specific task. In our
experiments we used PSO. The δ and T values were learned simultaneously and
separately in our experiment. When learned simultaneously, the approach
outperformed a purely decentralised or hierarchical system and showed that in
unknown environments, that such a system can be applied to give the swarm a
method of optimising its level of centralisation according to its environment and the
requirements of an operator. The optimised approach performed in a way, close to
approaches that made up the Pareto front for this task, with an L2 distance from the
Pareto front of 0.9. When learned separately, the system using the converged δ and T
values performed the best compared to all other approaches that were used. This
showed that in certain tasks, the optimal system can lie somewhere between a fully
centralised and fully decentralised system. Alterations to the fitness function and the
use of other reinforcement learning techniques such as Deep Q-Networks (DQNs) may
improve the ability of the swarm to optimise these values simultaneously. The fitness
function could also be studied to find the Pareto front which would enable coefficients
to be optimised, avoiding the outcome where the function is dominated by one term.

One key limitation of this work is that only one kind of task was considered.
Exploring how the swarm is able to optimise its level of centralised and decentralised
control for other tasks needs to be considered in order to examine how the underlying
mechanisms are affected in such tasks. Scenarios that benefit specifically a centralised
or decentralised approach more, or a task that requires adaptation to changes in the
environment would present a more complex challenge for the swarm and the
optimisation process. As such, the results of this chapter are limited, in that the
proposed approach may not generalise well to new problems. However, we have
shown that in this task, that it is possible to optimise the level of centralisation
according to operator requirements and find a strong solution to the configuration of a
system that can manage the trade-offs between performance and communication to an
operator in this task.
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Chapter 6

Conclusions and future work

In this chapter, we present a summary of our conclusions, future work and research
directions that may come from the work in this thesis.

In Chapter 3, we examined how the decision making performance of the swarm is
affected in communication-constrained environments. To do this, the performance of
a swarm system in a collective perception problem under communication constraints
was considered. We extended the collective perception problem proposed in [52], to
include a communication environment that defined where agents could successfully
communicate. This performance was tied to the time taken for the swarm to reach a
consensus when communications were denied in a proportion of the environment.
The resulting communication quality distribution differs from most of the studies that
are present in the literature which consider homogeneous communication
environments [54, 53, 52, 48, 33]. This resulted in the proposal of a new benchmark
scenario to study the collective perception of a robot swarm in a
communication-constrained environment. The results showed that the performance is
higher than the state-of-the-art collective decision-making algorithms in
communication-constrained setups. This was thanks to the communication-aware
approach that was used by the swarm along with a simple coordination algorithm.
This coordination algorithm made use of decentralised planning and considered the
uncertainty of the environment. Agents did not make explicit plans with other
members of the swarm which may require replanning in the future. This addresses
gaps in the literature of multi-robot coordination where a priori knowledge was
required for agents to reconnect in the future [50, 45, 44]. Instead, agents plan a few
time steps in advance based on their own information. This forms a map over the
communication environment and the associated uncertainty, which is supported by
beliefs they have received from neighbours. If the information held by an agent
changes in the future, the agent can adapt appropriately, without having to consider
previously arranged plans. Here, agents assume that neighbours have similar beliefs
to them over the communication environment.
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Future work in this area may focus on examining the scalability of the
communication-aware approach. Considerations were made with regards to reducing
the complexity of the GP and the communication overheads required for sharing data
relating to it. However, it is important to see if these techniques can scale to larger
environments and swarm sizes. Another case that was not considered was when the
features present in the environment correlated with the communication-denied
environment. A study of the proposed communication-aware algorithm in such an
environment would provide insight into the robustness of the algorithm in more
challenging environments.

In Chapter 4 we also considered how varying a swarm’s control structure affects the
performance, the inter-swarm communications and swarm-human communications.
We explored the assumption that a centralised approach always achieves the best
performance in a task over a decentralised or hybrid solution. While previous work
has compared the performance of centralised, decentralised and hybrid approaches
[6, 125], this is the first time that the level of centralisation (or decentralisation) has
been varied. Previous approaches have considered hybrid systems based on the MNS
[4], which makes use of centralised and decentralised aspects to form self-organised
formations [4, 33, 6]. In contrast, our approach allows the swarm to flexibly vary the
swarm-wide level of centralisation (or decentralisation) according to the state of the
environment. It is also the first study to consider factors of hybrid swarm control
systems that may affect human operator cognitive load. Here, the number of messages
sent to an operator was used to represent the information being shared with a human.
It has been shown that the volume of messages sent to an operator can affect the
performance of a human-swarm system [42]. To do this, a simple generic hybrid
approach which combines elements of decentralised and centralised control systems
was proposed. It was shown that the proposed hybrid system could achieve higher
performance in an environmental monitoring task compared to a simple centralised
and decentralised approach. The centralised approach used here was not the most
sophisticated and could be improved upon. However, it presents a case which
suggests that the optimal performance of a system, in terms of mission requirements,
and communications may depend on the control structure present in that system. It
was also shown that this performance increase comes with trade-offs in inter-swarm
and human-swarm communications. We showed that these trade-offs can be balanced
with the performance of the system according to end-user requirements while using
our proposed hybrid approach. This gives a system the ability to answer the question;
what is the optimal point of performance and communication where both of these
conditions can be met satisfactorily for the task and the operator requirements?

The final area of work examined in Chapter 5 was the possibility of being able to learn
the optimal values of parameters that dictated the level of (de)centralisation for the
best performance of the swarm in a given task. This extended the work carried out in
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Chapter 4. Here, the swarm learned and optimised a set of parameters that were
crucial in defining its behaviour and control structure. This allowed the mechanisms
required for a swarm to transition between a centralised and decentralised control
architecture during a mission. Such a technique has not been explored in previous
work considering hybrid control systems [4, 5, 33, 6]. This is an important factor in
understanding how such systems operate and how they can adapt to their
environment [32]. By using this approach, it is possible to optimise the parameters for
a swarm to maximise the performance and communication requirements in an
environmental monitoring problem. It was found that it is possible to learn the
optimal parameters in our simple proposed hybrid system when considering the two
parameters separately. However, the method for doing so was unable to find the
optimal values simultaneously during the experiments. The limitations with this
approach for optimising the values were discussed.

Future directions for this work may focus on improving the approach seen in Chapter
5 for optimising the parameters used by the swarm for varying the level of
(de)centralisation. While the technique used in this thesis was unable to optimise the
values simultaneously, this may be achieved by studying and honing further the
fitness function of the swarm. Analysis of the Pareto front of the function could allow
for a more refined selection of coefficients, reducing the dominance of the
communication (C) term over the performance (P) term. Other techniques could be
explored for more effective optimisation of the parameters, such as deep learning
approaches like DQNs. Another interesting direction of future work would look at the
robustness of the hybrid system to failure. Our implementation gave agents the
capability to continue to function and adapt when a parent node or leader loses
contact with the sub-tree. However, the robustness was not studied here, with a
greater focus placed on the examination of the trade-offs when the level of
centralisation (or decentralisation) is varied. These are key limitations related to the
work done in these chapters.

A particularly important future direction for this work is to implement the algorithms
proposed in Chapters 3, 4 and 5 into a real robotic platform. Doing so would allow the
assessment of the feasibility of having the algorithms proposed in those chapters
implemented into a real system and address a key limitation of this work. For
example, having the swarm suffer from sensor and communication noise would
provide insight into whether the uses of the approaches proposed could be integrated
into real-world scenarios. Another factor that would be highlighted in a real-world
platform implementation would be the robustness of the proposed approaches to the
failure of individual robots. In Chapter 3, a real-world implementation would be
particularly important to examine the feasibility of using a Gaussian Process to map
the communication environment. We integrated several techniques to reduce the
complexity of the GP computation and communication overhead of sharing data
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related to the GP generation. Implementing these approaches in a real swarm
platform would allow the examination of the true communication, energy and
computational complexity costs when using such an approach. It would also give
insight into the communication overheads that may be present in a swarm using the
communication-aware approach. Having a large number of agents communicate
within a relatively small area could result in communication collisions, which is not
considered in our simulations. In Chapters 4 and 5, a real swarm platform could allow
similar considerations. One example would be the study and integration of energy
trade-offs into the optimisation of the swarm system. Doing so may allow further fine
tuning of the system according to mission requirements that may be defined by a
human operator.

One final limitation of this work that may be addressed in future works is the lack of
different scenarios for the work done in chapters 4 and 5. As such the results and
conclusions drawn from these chapters are limited to the task considered. Examining
how these approaches and claims extend to more general problems and cases will be
important in addressing the implementation of hybrid control systems for swarms
into real applications. Understanding better the relationship and trade-offs between
the communication of the swarm and its performance in a task is important in
enabling a swarm to improve the situational awareness of a human operator. As such,
it is important that this limitation is discussed.

Other avenues of work could focus on providing insight into the effects that hybrid
systems, and particularly adaptive hybrid systems, have on human operators. While
fully centralised and decentralised systems have a wealth of knowledge in the field of
Human-Swarm interaction, newer hybrid systems do not. Our work focused on the
performance and the number of messages sent to an assumed human operator.
However, user studies examining the real-world effects of a swarm that changes its
control structure on the fly may provide important insights into the true challenges
faced by humans operating these systems which will become an important area of
future swarm research. Ensuring a swarm system can effectively work and interface
with human operators is a vital capability for such systems. This is due to the current
necessity to include a human in-the-loop during the operation of swarms.
Considering these kinds of challenges will aid in the deployment of robot swarms into
a broader number of real-world applications.
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