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Abstract

This paper proposes a novel investment strategy based on deep reinforcement learning
(DRL) for long-term portfolio allocation in the presence of transaction costs and risk aversion.
We design an advanced portfolio policy framework to model the price dynamic patterns using
convolutional neural networks (CNN), capture group-wise asset dependence using WaveNet,
and solve the optimal asset allocation problem using DRL. These methods are embedded within
a multi-period Bellman equation framework. An additional appealing feature of our investment
strategy is its ability to optimize dynamically over a large set of potentially correlated risky
assets. The performance of this portfolio is tested empirically over different holding periods,
risk aversion levels, transaction cost rates, and financial indices. The results demonstrate the
effectiveness and superiority of the proposed long-term portfolio allocation strategy compared
to several competitors based on machine learning methods and traditional optimization

techniques.
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1. Introduction

Portfolio management supports investors in making decisions on how to allocate resources
and funds across a set of assets and over time. Traditional portfolio selection methods typically
consider single-period returns. Markowitz (1952) pioneered the mean-variance optimization
model, which remains foundational in portfolio theory. This framework seeks to maximize the
expected return for a given level of risk by considering the variance of asset returns. Despite its
simplicity and wide application, Markowitz’s paradigm has limitations, particularly in
addressing long-term investment horizons and dynamic market conditions.

Long-term portfolio allocation focuses on how investors can optimally allocate investment
assets over extended periods of time to maximize returns while managing risks (Lucey &
Muckley, 2011; Escobar et al., 2016; Fan et al., 2024). One of the first contributions in this area
was Merton (1969, 1971), who extended the portfolio selection framework to a continuous-
time setting, incorporating intertemporal choice and dynamic strategies for long-term investors.
His work introduced the concept of dynamic asset allocation, emphasizing the importance of
adjusting portfolio weights over time in response to changes in market conditions and investor
preferences. It is widely understood, at least since the work of this author, as seen by Samuelson
(1969), that the solution to a multi-period portfolio choice problem can be very different from
the solution to a static portfolio choice problem. Unfortunately, intertemporal asset allocation
models are hard to solve in closed form unless strong assumptions on the investor’s objective
function or the statistical distribution of asset returns are imposed.

Traditionally, the extension from single-period to multi-period portfolio optimization has
been addressed using stochastic dynamic programming. Samuelson (1969) and Bellman (1957)
developed methods for solving dynamic optimization problems, allowing the consideration of
future states and decisions in portfolio management. Nevertheless, the lack of closed-form
solutions for optimal portfolios in multi-period settings has limited the applicability of Merton’s
model and has not displaced Markowitz’s paradigm. This situation began to change due to
several developments in numerical methods and continuous time finance models. More
specifically, some authors such as Barberis (2000) and Brennan et al. (1997, 1999), among a
few others, provide discrete-state numerical algorithms to approximate the solution of the
portfolio problem over infinite horizons. Other articles obtain closed-form solutions to the
Merton model in a continuous time framework with a constant risk-free interest rate and a single

risky asset if long-lived investors have power utility defined over terminal wealth (Kim &



Omberg, 1996) or if investors have power utility defined over consumption (Watcher, 2002),
or if the investor has Epstein and Zin (1989, 1991) utility with intertemporal elasticity of
substitution equal to one (Campbell & Viceira, 1999; Schroder & Skiadas, 1999). Approximate
analytical solutions to the Merton model have been developed by Campbell et al. (2003) and
Campbell and Viceira (1999, 2001, 2002) for models exhibiting an intertemporal elasticity of
substitution not too far from one.

An alternative to solve the investor’s optimal portfolio choice problem is proposed by Ait-
Sahalia and Brandt (2001), Brandt (1999), and Brandt and Clara (2006). These authors show
how to select and combine variables to best predict the optimal portfolio weights, both in single-
period and multi-period contexts. Moreover, Laborda and Olmo (2017) focus directly on the
dependence of the portfolio weights on the predictor variables through a linear parametric
portfolio policy rule. This characterization allows them to apply the generalized method of
moments to sample analogues of the multi-period Euler equations that characterize the optimal
portfolio choice.

Standard methods based on solving Bellman equations struggle with large datasets.
Hambly et al. (2023) noted that portfolio optimization often involves high dimensionality,
complex non-linear relationships, and constraints, making it difficult for traditional algorithms
to adapt to changing market environments and large-scale data. These limitations lead to
suboptimal portfolio strategies in dynamic situations. Recent advances in machine learning and
artificial intelligence have significantly impacted portfolio management. Deep reinforcement
learning (DRL), as explored by Jiang et al. (2017), Wang and Zhou (2020), and Cong et al.
(2022), offers robust frameworks for developing adaptive and dynamic portfolio strategies.
These methods leverage vast amounts of data and sophisticated algorithms to optimize asset
allocation in real time. Compared to standard portfolio allocation methods such as Markowitz’s
paradigm, DRL aims to search for optimal sequences of actions and then obtain a multi-step
task, where the objective is to achieve the maximum cumulative reward (Sutton & Barto, 2018).
This allows DRL to adapt to complex, high-dimensional, and dynamic environments, making
it an attractive method for improving traditional portfolio allocation.

The literature applying these techniques for multi-period portfolio allocation is rapidly
growing. Aboussalah et al. (2021) applied the DRL approach based on convolutional neural
networks (CNN) to construct optimal portfolios in a multi-period investment scenario. Corsaro
et al. (2022) investigated the application of L1-regularization with machine learning and neural

networks-based automatic selection to perform multi-period portfolio selection. Wei et al.



(2021) and Chen and Ge (2021) showed the benefits of stochastic neural network algorithms to
incorporate asymmetric investor sentiment and construct an investment portfolio that balances
the return and risk over multiple holding periods. In a recent study, Cui et al. (2024) applied
DRL to multi-period portfolio selection considering different risk aversion levels.

Other challenges to constructing optimal investment strategies over multi-period
investment horizons are the presence of transaction costs and other market frictions. Research
by Constantinides (1986) and Liu and Loewenstein (2002) incorporated these factors into
dynamic models to obtain more realistic strategies that account for the costs associated with
rebalancing portfolios. Building on this, Eom and Park (2017) investigated the impact of
common factors by implementing a comparative correlation matrix on stocks. They emphasized
that portfolios constructed by considering market factors significantly outperform other
approaches in terms of diversification. However, with the increasing availability of high-
dimensional and high-frequency financial data, more sophisticated models need to be
developed. The works by Bernardi and Catania (2018) and Zhao et al. (2023) utilized copula
models and Monte Carlo methods to capture dependencies and optimize portfolios in high-
dimensional settings. Recent studies use the DRL framework to extract cross-asset dependence
features in financial investments (Zhang et al., 2022; Xu et al., 2020). Notably, Marzban et al.
(2023) introduced a WaveNet structure in a DRL framework for capturing cross-asset
dependence and improve long-term portfolio optimization.

In this paper, we design an advanced portfolio policy framework to construct a multi-
period portfolio selection model. To do this, we model the dynamics of asset prices and their
cross-sectional dependence using machine learning methods (dynamic patterns of asset prices
are obtained using convolutional neural networks, and group-wise asset dependence is
modelled via WaveNet). The optimal long-term portfolio allocation is obtained by solving a
multi-period Bellman equation combined with DRL methods. More specifically, we integrate
the multi-period Bellman equation with DRL into a Markov Decision Process (MDP)
framework. This approach accommodates different levels of risk aversion and is developed
under a set of portfolio constraints. Empirical results demonstrate the effectiveness and
superiority of our proposed portfolio strategy in various real-world settings. To show this, we
conduct an in-depth comparative analysis under various investment holding periods, revealing
the impact of the investment horizon, level of risk aversion, and portfolio constraints on

portfolio management.



The rest of the paper is organized as follows: Section 2 presents the multi-period portfolio
selection model and portfolio constraints. In Section 3, we propose an advanced portfolio policy
framework based on DRL. The empirical results and analysis are provided in Section 4 and

Section 5 concludes.

2. Multi-period portfolio optimization

This section introduces the theoretical framework for constructing multi-period optimal
investment portfolios. According to Barberis (2000), one widely adopted strategy is the buy-
and-hold approach, where investors choose a set of assets and hold onto them for an extended
period before adjusting portfolio allocation. In contrast, the re-balancing strategy consists of
periodically adjusting the portfolio to adapt to market fluctuations. In this paper we focus on
the latter approach. Thus, we consider a dynamic multi-period portfolio optimization problem
with a rebalancing strategy which optimizes the allocation of capital among financial assets
over time.

We allocate funds into an investment portfolio at the beginning of each period over a
planning horizon that extends /4 periods: ¢, t+1, t+2, ..., t+h. We assume that a financial market
has N risky assets, and the closing prices of these assets comprise a price vector x, € RY at
time period ¢, where x; = (x1,*+, Xy ) With x;, being the price of asset i. A portfolio is
managed with a vector of these asset weights w; = (wq¢, a)N_t)T € RN, where Wi
denotes the proportion of portfolio value invested on the i-th asset. At the end of each period,
investors could actively adjust the value of their portfolios in accordance with the realized
returns and the most recent data available from financial markets. The vector of asset returns is

expressed as:

T
X1t~ X1t-1 X2t~ X2t-1 | xN,t_xN,t—l) (1)

T
T = (T T~ e T ) —_ (
t (1’t’ 2t Nt X1,t-1 ’ X2,t—1 b XN,t—1

where 7;, represents the i-th asset return at time ¢. The portfolio value at period # is denoted
by p; and given, under the assumption that the change in portfolio weighs is small compared

to the portfolio value, by the following expression:
pe = pe1(1+ wi_i1e) = peot (1 + T wiem17ie). (2)

The logarithmic rate of portfolio return at time ¢ is defined as:

e = ln( P ) =in(1+wlr)=m(1+I w0 17). (3)
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Sales and purchases of assets typically incur transaction costs, such as exchange fees and
execution fees. Thus, it is necessary to consider the transaction cost in our portfolio trading
selection. Here, let ¢ denote the proportional cost level of each trading, and we set transaction
cost rates for purchases and sales equal to &; at time 7. Furthermore, let 1, € [0,1] denote the

total transaction cost, which is defined as:

Y =& Zﬁv=1|wi,t - wi,t—1|- 4)
The updated logarithmic rate of return at the end of period ¢ is given by:

A & _ (A-Ype\ _ _ T

7 =In (p;_l) =In (—p;_l )= (1 - p) (1 + 0f_y1)). (5)

Therefore, after considering transaction costs, the terminal portfolio value at time ¢+4 is

expressed as: (Zhang et al., 2022; Moody et al., 1998)

Pran = Pe((1 = Yer1) A+ 0f 1)) (1 = Yea2) L+ @F14T¢1)) - ((1 —Pern)(1+
w;r+h—1rt+h)) = pe [Th=1 ((1 — ) (1 + w?+k—17't+k))- (6)

According to Eq. (6), the total portfolio log return over a planning horizon of 4 holding

periods is expressed as:

n n
Ry = Z Tevk = 2 In ((1 —Per)(1+ w;rr+k—1rt+k))
=1 =1

= D=1 (1 = Yepr) + Tem (1 + @ ppem1Tesr)- (7
We consider the mean-variance function to model the one-period utility function

representing investor’s short-term preferences:
= 7, — Ao} 8
U =T¢ Ot (3)

where A is a risk-aversion parameter that balances the quantity placed on the maximization of
portfolio return rate 7, and the minimization of portfolio risk 2. The long-term portfolio
allocation problem is characterized by the maximization of the investor’s multi-period utility
function computed over 4 periods and denoted by Uy ;. Investor’s impatience is modelled by
introducing a time preference parameter y that discounts future returns (Jaisson, 2022;

Olschewski et al., 2021) such that the multi-period objective utility over 4 periods is defined as:
Uph = Upr + ¥V 0erp + +Y" M = Bica v MU, v € [0,1], )

when y = 0, the investor's focus is solely on immediate return. For 0 <y < 1, the reward

sequence converges given that the individual reward is finite.



Investors aim to construct a strategy that maximizes its expected long-term utility
U j, over the h-period investment horizon. The optimal portfolio is characterized by a weight
matrix @ = (W¢yq1, Wein, 7, Wep) obtained over 4 periods and can be achieved by solving a
multi-period optimization problem that incorporates a set of portfolio constraints, namely, a
budget constraint, a turnover constraint, and a box constraint. The budget constraint is given by

the following condition:

Z?I=1 w;s =1, Vt. (10)

Similarly, the turnover constraint reduces the effect of the transaction costs on portfolio
returns. Most studies use the average turnover when evaluating the influence of transaction
costs, as it estimates the portfolio weight updates. The portfolio turnover (70) constraint at time

t can be expressed as:

TOi,t = |a)i,t - a)i,t—ll S TOZnaX ) VI,, Vt; (11)

where TO™** is the maximum turnover rate of each asset at time 7, 0 < TO*** < 1. Finally,
we also include a box constraint that avoids extreme investment positions and fosters the
presence of diversification. To do this, we set an upper and lower bound for the maximum and

minimum weights in the portfolio. Thus, the box constraint is defined as:

0 < w;¢ < W', Vi, Vt. (12)

For simplicity, we only allow for long positions on the assets, and the objective function
characterizing the optimal multi-period portfolio is expressed as:
maxE[Upp| = max Y-y v* " Eues]
w w

(13)

= mgx(E[f'tH — A0q] + Ay T E[Fn — A0fip)).

Traditional optimization techniques (Kamali et al., 2019; Bertsimas & Sim, 2004) face
difficulties in achieving a solution to the above optimal investment strategy of Eq. (13). For
instance, convex optimization and Lagrange optimization methods may not fully leverage
historical data and converge, instead, to a local rather than global optimal solution for the long-
term portfolio strategy. Fortunately, DRL is a model-free dynamic programming strategy that
can be adopted to tackle the above decision-making problem by learning the optimal policy in
dynamic markets (Jaisson, 2022; Olschewski et al., 2021). Thus, the following section proposes
a DRL-based portfolio approach to address an optimization problem in the same spirit of Eq.
(13) but also including the above constraints as the components of the optimization function in

the learning process.



3. Investor’s long-term optimization problem

As mentioned above, the multi-period optimization problem defined in Section 2 will be
addressed by proposing a portfolio framework based on DRL with CNN and WaveNet, as

shown in Fig. 1.
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Fig. 1. Portfolio framework based on DRL with CNN and WaveNet.

The designed portfolio policy framework mainly includes three components. To begin
with, the sequential information based on CNN is adopted to capture the dynamic patterns in
each asset price. Secondly, the cross-dependence between the assets in the portfolio is modelled
using WaveNet. This is particularly important in high-dimensional environments. Finally, the
decision-making module is used to perform optimal portfolio allocation across assets. The

following three subsections provide an in-depth exploration of each part.
3.1. Extraction of dynamic price sequence information based on CNN

Gu et al. (2018) stated that CNN can combine features and achieve a higher precision
accuracy on large-scale datasets than other deep learning methods. In this case, we develop a
sequential information module based on CNN to extract the changes in each asset price. This
module aims to estimate the dynamic characteristics of high-dimensional vectors of asset prices
and effectively model time series data. Moreover, by applying CNN models to analyse
historical price data, we can predict the conditional volatility of asset returns in future periods.

As illustrated in Fig. 1, CNN extracts the nonlinear dynamic features of each asset
separately on its multidimensional input data, thereby greatly improving the accuracy of the
price mapping features. Additionally, the structure of CNN for price dynamic sequential

information extraction comprises not only input and output layers but also convolutional layers,



pooling layers, fully connected layers, and so on. The analysis focuses on the following key
layers:

Input layer: This layer pre-processes the original asset returns, including normalizing the
amplitude into the same range [0, 1], which reduces the interference caused by differences in
the value range of data in various dimensions.

Convolutional layer: The convolutional kernels are used as effective methods for price
feature extraction, and the result obtained from price data after convolution is called a Feature

Map. The specific process can be expressed as:
Vin = 6(b + ZZZ=0 Z%:o wl,mx]f+l,n+m)' (14)

where & represents the activation function, b is the shared bias parameter, Z and M are the length
and width of the local receptive field, respectively, and @;,, denotes the shared weight
parameters between neurons, xj-/+l_n+m is the data corresponding to the input matrix received
by the convolutional layer. Widely used activation functions include the sigmoid, tanh, and
ReLU functions, among a few others. The first two specifications are usually observed in fully
connected layers, while the latter ReLU function applied commonly in convolutional layers is
given by:

8(x) = ReLU(x") = {’5 ﬁ i g. (15)

The fully connected layer is prone to overfitting due to its large number of parameters and
the relationship between all elements of the output and input. Therefore, ReLU functions are
added between each layer in the model as non-linear activation units to prevent overfitting and

increase non-linear expression ability.

Pooling layer: The main objective of this layer is to remove unimportant samples from
the Feature Map and thus reduce the number of parameters. Max pooling preserves the
maximum value within each small block, which is equivalent to preserving the best matching
result for that block.

Fully connected layer: Each node of the fully connected layer is connected to all the
nodes of the previous layer and is used to synthesize the features extracted from the previous
side. All neurons between the two layers are connected with weights, and the fully connected

layer is usually at the tail of the convolutional neural network.



Softmax layer: This layer provides non-linear modeling capability by mapping the output
results of the convolutional layer into nonlinear maps, which can effectively capture the asset

price dynamics.

3.2. Cross-asset dependence information extraction based on WaveNet

WaveNet can effectively capture the cross-asset dependence information in portfolio
management (Marzban et al., 2023). In this subsection, we apply the WaveNet framework to
estimate the time-varying dependence across assets in the portfolio, denoted as Q;,where the
dependence dynamics between two assets i and j, denoted as q; ; ¢, is adjusted over time based
on a neural network function ¢. More specifically, we use the WaveCorr layer from Marzban
et al. (2023) as our convolution layer for capturing asset dependence in the WaveNet. This is

associated with the following correlation layer (Corr-layer) function set:

Q={q;t €RacR} (16)
where the vector of asset dependence q; (1) = [qi1¢) Gi2e " Qine] between asset i and the

remaining assets depends on a neural network function ¢, expressed as:

qi,t(rt) = (‘P(Ti,t) © (1“’3) + Z?]ﬂ ‘P(Tj,t) © (1“’}‘))1 +aq, (17)

where a is the bias for accelerating neural network fitting. A general model operating directly
on the assets returns is provided, where the joint probability of an input stream 7, = [ry,
,Tn¢] 1s modeled as the product of the probabilities conditional on the realization of past returns

(Van Den Oord et al., 2016; Marzban et al., 2023), i.e.,

n(ry) = Hliv=177(7'i,t|7'1,t—1f'" TN,t—1)- (13)

Each sample r; . of the i-th asset is conditioned on the samples at all previous time steps. The
causal convolution operation extracts the price dynamics, but it may need large kernel sizes and
layers. Thus, apart from adopting causal convolution, the dilated operation is also applied to
meet the exponentially large receptive fields with only a few layers while maintaining the
network and computational efficiency. In the WaveNet structure, a softmax distribution is
adopted to model the conditional distribution 77(7;), even if the asset returns are implicitly
continuous. In addition, residual and parameterized skip connections are adopted to enhance
the training convergence. With the help of WaveNet, the dependence information between

assets can be constructed in a multi-block framework as illustrated in Fig. 1.
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3.3. Multi-period portfolio decision-making based on DRL

The dynamic asset price features and dependence information obtained from CNN and
WaveNet are combined in ‘C’, as shown in Fig. 1, as the input of the deterministic policy

gradient (DPG) model for portfolio decision-making.

3.3.1. MDP with multi-period Bellman equation

DRL typically combines the MDP framework to address the challenges posed by the
multi-period Bellman equation. MDP provides a mathematical foundation for describing the
interaction between an agent and an environment, incorporating elements such as states,
actions, rewards, and state transitions.

The portfolio management problem (Eq. 13) is defined as a MDP with a tuple
(S, A, P,u). Specifically, the learning agent (i.e., an investor) observes one state s; € S (i.e.
assets’ daily prices, latest asset returns, cross dependencies) from the market and then chooses
an action a; € A (i.e., portfolio weight vector w;). Afterwards, the agent will achieve an
instantaneous reward u; and observe the next state s;, ;. Here, let m(a;, s;) denote a portfolio
policy, mapping from observed states with a Markovian transition probability P (s¢41|s; =
s,a; = a) over available actions that the agent selects. Note that the objective function at the
t-th period u; in Eq. (8) is the immediate reward function, and the multi-period utility Uj, over
h periods in Eq. (9) is the long-term reward function.

According to the discussions of the multi-period optimization constraints and objective
function in Section 2, the investor aims to trade off risk and return in the portfolio under several
constraints. In applying the DRL framework to optimization problems, similar to the studies of
Zhang et al. (2022) and Marzban et al. (2023), we also incorporate the turnover and box
constraints in Eq. (11) and Eq. (12) as penalties within the objective function. This approach
enables the model to incorporate penalty functions on the utility function to penalise portfolio
weights not satisfying the constraints. In this context, the risk-averse and constraint-awareness

reward function at the #-th single period is designed as follows:
up = f, — Ao — ¢; X)L max(0, TO; —TO{™™) — ¢, YL, max(0, Wi — 0" ),

(19)

where c; and c, are the parameters for the unsatisfied maximum turnover constraint (Eq. 11)
and maximum weight constraint (Eq. 12). The period reward function above is penalized if the
max

turnover T'0; ; or portfolio weight w; ; goes beyond TO{***and w;"**, respectively. Note that

the portfolio weight of each asset i is non-negative and the sum of portfolio weights over all

11



asset is equal to 1. The parameters c¢; and c, are set by balancing the trade-off between the
portfolio return 7; and the two punishment values and need to be carefully selected. If
parameters are too large, the reward function will sacrifice most of the portfolio return and risk
performance in order to meet the turnover and box constraints. In contrast, the impact of the
parameters on the reward function is limited if ¢; and c, are too small. We calibrate the
selection of ¢; and c, and choose values given by ¢; = ¢, = 0.5. These values are selected
using the empirical insights obtained in Zhang et al (2022) and Van Den Oord et al. (2016).

The state-value function for policy in MDP over a planning horizon of # holding periods

can be described as follows:
Ve(s) = En(Ut,hlst = S) = En(2£=1 yk—lqu Is¢ = S)' (20)

where V;;(s) is the expected reward under the policy  and the state s. The expectation is
computed based on the agent's policy mapping 7t. Similarly, we define the action-value function

for the policy m by using @, as follows:
Qr(s,a) = En(Ut,h|St =S50 = a) = En:(2£=1 Vk_lut+k |s; =s,a; = a), (21)
where Q;(s, @) denotes the expected reward function at state s when performing action a and
following policy 7. For simplicity, the transition probability is denoted by Psx, = P(S¢41lSt =
s,a; = a). Additionally, the expected reward for transitioning from the current state s to the
next state s in the next period (S;41) by taking action a is denoted by ugs/ = E(u¢sq|se =
S, = ,S5¢41 =S ).

The self-consistency of the value function indicates that certain recursive relationships are

required to be met. The multi-period Bellman equation V;(s) can be expressed as:
Vi(s) = En:(Ut,hlst = 5)

= En(ut+1 + YUpyz + V2 Ups +o Y Muggnlse = S)

h
— k-1 —
= En | Ut +ZV Upsk |Se =
k=2
h
— a a k—1 — !
= Zn(s, a) ZiPSS, Ugr +VER 2 Y Uk |See1 = S
a s’

k=2

_ Z (s, a) 2 P (ugs, + VVTE(S’))

= Z (s, a) Q (s, a).

a
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(22)
The solution to the Bellman equation is the value function.

3.3.2 Multi-period portfolio based on DRL

The learning agent (investor) aims to achieve the multi-period portfolio reward Uy over A
periods. Here, we adopt a DRL-based deterministic policy gradient to obtain the optimal
portfolio policy. As shown in Fig. 2, the multi-period investment has / state-action pairs i.e.,
(St41, A 41)>(Sta2, Qe g2) (St am Ar 1), and the agent aims to maximize both the state-value
function V;(s) and the action-value Q, (s, a). This is achieved by selecting the optimal action

vector a@ = (Apy1, Qrq2," Aeyn) OvVer h horizons based on the observed state vector s =

(St+1>St+2:""" St4h)-

. : P : r -y

i A+l III]D ] E[II]D"'i ) Ay
iSrrl——— U1 7S ————>Upin | §Sprh ———> U |

A J

v
hhorizon periods: V, (5),0,(s,a)
Fig. 2. The multi-period portfolio trajectory based on DRL.

Deep learning with a set of neural network parameters 0 is used to specify the policy in
the DRL framework, i.e.,g (s, a). The objective of DRL is to maximize U;; over the time

interval [t + 1,t 4+ k] generated by mg(s,a) as expressed:
mglx](ng) = Eqpsa) (Ut,h (U1 (@p41), Upg2 (@pg2), ut+h(wt+h)))- (23)

DPG learning methods enable the agents to learn portfolio strategies through real-time
interaction with financial markets. The agent continuously observes market information and
learns adaptive strategies during their interaction. This method is usually applicable to real-
time decision-making for financial markets based on the current observed state of the
environment. We use the state distribution p™(s) such that the objective function in Eq. (23)

is given by:
J(o) = f P (s) f 76(5,@) Qn (s, @)dads
S A

= IIE':s~p",a~7r9 [Qr(s, )], (24)
and the gradient of the objective function (see Sutton et al., 2018) is expressed as:
7ol (o) = [ 7(5) [ Vomo(s,0) Qs a)dads
S A

= ]Es~p”,a~ng [Vologme (s, a)Qr (s, a)]. (25)
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Note that the the action-value function Q,(s,a) in Eq. (24) and Eq. (25) is computed or
updated by Eq. (21) using a neural network (value network). DPG adjusts the parameters 8 of
the strategy towards the gradient direction of the objective function to maximize the objective

function. The mathematical expression for parameter update is as follows:

0 — 0+ aVy)(myp), (26)

where a denotes the learning rate and V(-)is the first order partial derivative. It is necessary to
sample the state and actions under the corresponding distribution function.

The decision-making process is to evaluate the potential growth of assets in the near future
and consider the portfolio weight vector of the investment based on the previous action a; to
obtain a new portfolio weight w,. In this case, the investor can achieve the multi-period
portfolio weight matrix @ = (W¢41, Weyp *++, Wpyp) OVer A investment periods; w captures the
investment behavior of optimizing agents, ultimately guiding the asset portfolio selection

actiona = (Azy1, Apap)-

4. Empirical application

This section illustrates the performance of the proposed portfolio approach under different
scenarios and datasets. We operate in a high-dimensional setting, interpreted as a portfolio with
more than 50 assets (Ding et al., 2021) except when analysing the Dow Jones financial index

that is comprised by 30 assets.

4.1 Datasets and competing portfolio construction methods

We consider three important financial indices reflecting the performance of stock markets
and the overall economy for the US and Canada. For the US, we consider the S&P100 index
and the DJIA. These indices capture similar dynamics of the US stock market, however,
whereas the S&P100 index is market-weighted the DJIA is value-weighted and comprised by
a much smaller number of stocks. The Canadian stock market is represented by the S&P/TSX
Composite Index, Our data span from 04/01/2010 until 12/07/2023 and are divided into a
training set and a test set, with the training period spanning from 04/01/2010 to 31/12/2018 and
the testing period from 02/01/2019 to 12/07/2023 used for out-of-sample evaluation of the
different models and methods.

The main purpose of our empirical study is to see the performance of our proposed

approach for portfolio allocation under different choices of the investment horizon. To assess
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the robustness of the results and the influence of important factors such as risk aversion,
constraints on the portfolio weights, or the presence of transaction costs, we carry out the
analysis for different values of these parameters. As a second empirical contribution, we
compare the performance of our proposed long-term investment strategy with existing methods
in the literature that act as benchmarks. Most of these investment strategies used for model
comparison are state-of-the-art techniques taking advantage of machine learning methods but
we also consider the equally-weighted portfolio to capture a more traditional and naive portfolio
allocation strategy.

More formally, we consider the following methods to construct optimal investment
portfolios: 1) Our proposed advanced multi-period DRL-based portfolio method combined with
the WaveNet-enabled dependence information and CNN-enabled sequential information. This
method is denoted as MP-Adv-DRL-Cor; 2) The multi-period cost-sensitive portfolio selection
method using CNN to extract the dynamic asset return features, temporal correlational
convolution block (TCCB) to perform asset correlation and portfolio policy network (PPN) to
obtain the portfolio selection, respectively. This method is denoted as MP-CS-PPN-Cor (Zhang
et al., 2022); 3) The multi-period DPG-based portfolio method with Ensemble of Identical
Independent Evaluators (EIIE) algorithm (Jiang et al., 2017), denoted by MP-DPG; 4) The
equally-weight portfolio method, denoted by EW, 5) The single-period DRL-based portfolio
method combined with WaveNet and CNN, denoted by SP-Adv-DRL-Cor. Note that the MP-
Adv-DRL-Cor, MP-CS-PPN-Cor, and MP-DPG methods optimize the objective reward
function provided in Eq. (19) that includes transaction costs in the optimal portfolio problem.
The inclusion of Strategy 5 is to assess the differences in portfolio performance of our proposed

methodology between long- and short-term investment horizons.

All of the strategies except the EW portfolio require some prior definition of a set of
hyperparameters. In order to improve the learning efficiency of machine learning-based
portfolio algorithms, it is crucial to choose appropriate hyperparameters. The values
characterizing the architecture of the neural network models, DRL method, and portfolio
constraints are shown in Table 1. These values are standard in the related literature and adopted
by Sutton & Barto (2018), Zhang et al. (2022), Marzban et al. (2023), and Hambly et al. (2023),
among others. For example, we choose a moderate learning rate of 0.0002 as in Sutton and
Barto (2018) to ensure a balance between convergence speed and model stability. Instead, if
the learning rate is very small (e.g., a = 0.00001), the convergence speed is slow and the training
time increases significantly. In contrast, if the learning rate is very large (e.g., a =0.01), it may

lead to dramatic fluctuations and an unstable training process. The number of hidden layers and
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their size are also taken from the related literature. If too many hidden layers are set the model
may become overly complex, leading to excessive computational complexity. Conversely, an
insufficient number of hidden layers may limit the model’s learning ability, which in turn
affects model performance. It is also worth discussing the choice of portfolio constraints and
the discount rate. Following the work of Marzban et al. (2023), the maximum weight is set to
be 0.7 to avoid excessive leverage on specific assets, and the discount rate is set to 0.98,
following the suggestions in Sutton and Barto (2018), Zhang et al. (2022), and Hambly et al.
(2023).

Table 1. Hyperparameter values.

Hyperparameter Value Hyperparameter Value
Learning rate a 2x10* Decay rate 0.9999
Optimizer y Adam Planning horizon 4 36
Discount factor 0.98 Look back window size 36
Mini-batch size 32 Number of epochs 1000
Hidden layers of CNN 2 Parameter ci, c2 0.5
Hidden layers of WaveNet 7 Maximum weight w]*%* 0.7
Hidden layer size 256 Maximum turnover TO["*** 0.5

4.2. Performance measures

All of the following empirical results are evaluated using out-of-sample data (“test data”).
Different metrics are adopted to measure portfolio performance. Firstly, as an indicator of the
return on investment, the accumulated portfolio value (APV) is used to evaluate the increase in
portfolio value over time. This performance measure considers the effect of transaction costs

and is expressed as:

APV = p, {:1((1 — Y1+ w?+k—1rt+k))v (27)

where py is the initial value of the portfolio and 1, represents the percentage of transaction
costs. APV typically focuses on total value without considering the underlying risk in the
portfolio. To control for the underlying risk, we follow the investment literature and employ

the Sharpe ratio (SR) as a second indicator of performance:

SR = Et(ft+1_rt,f), (28)

Ot
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where 7; is the rate of return as defined in Eq. (5) at time # and 7y ¢ is the risk-free rate. The
Sharpe ratio uses the standard deviation as a measure of risk without differentiating between
upward and downward volatility, which means it may overly focus on short-term adverse
fluctuations and overlook positive ones. Consequently, to better identify and evaluate a
portfolio's downside risk, we turn to the Maximum drawdown (MDD). MDD measures actual
losses and reflects the maximum potential loss a portfolio may face. It is defined as:

MDD=max(pt—_,pj)

tj>t P (29)

where j>t; p; is the total value of the portfolio at time t as expressed in Eq. (2), and p; is
the aggregate value of the portfolio at time j. In general, a lower value of the MDD metric

reflects a more stable and lower-risk investment.

4.3. Effects of investment horizon on portfolio performance

We evaluate empirically the influence of the holding period /4 on our proposed MP-Adv-
DRL-Cor method. This investment strategy corresponds to Method 1 in the above description
of the portfolio strategies. For comparison purposes, we consider as a separate investment
strategy, called Method 5, the myopic version of Method 1 that is constructed for an investment
horizon of A=1. The baseline parameters considered for this exercise are &=0.01% for the
transaction costs and A=0.01 for the risk aversion coefficient. These parameters represent very
low levels of transaction costs and risk aversion, respectively. The purpose of using these values
is to fully capture the potential of our investment strategy over a multi-period horizon by
minimizing the effect of risk aversion and transaction cost penalties on the objective function.
The results of this exercise for the three financial indices under investigation are shown in Fig.

3 and Table 2.
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(c) 50 assets of the S&P/TSX dataset

Fig. 3. APV for MP-Adv-DRL-Cor under different investment horizons % for the three
financial indices over the out-of-sample evaluation period 02/01/2019 to 12/07/2023.

&=0.01% for transaction costs and A=0.01 for the risk aversion coefficient.
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Table 2. Portfolio performance metrics under different holding periods % on three

datasets.
Annual Annual Maximum
Holding B Sharpe
period return volatility atio drawdown Turnover
(%) (%) (%)
S&P 100 Index

h=1 12.48 24.57 0.508 39.80 0.007

h=5 25.72 28.89 0.890 39.19 0.087
h=22 22.37 37.08 0.603 44.13 0.099
h=36 29.21 36.14 0.808 32.09 0.170
h=66 27.51 39.43 0.698 66.10 0.107

DIJIA Index

h=1 8.808 21.43 0.411 35.34 0.007

h=5 19.79 33.51 0.590 51.72 0.080
h=22 19.23 32.49 0.592 52.63 0.103
h=36 28.88 34.32 0.841 44.24 0.109
h=66 17.40 31.32 0.555 36.22 0.092

S&P/TSX Composite Index

h=1 13.58 25.35 0.536 48.01 0.008

h=5 17.91 21.58 0.830 37.94 0.009
h=22 18.42 22.10 0.833 38.65 0.020
h=36 21.38 27.08 0.790 40.83 0.074
h=66 15.50 37.11 0.418 55.38 0.197

The results from Fig. 3 and Table 2 show that extending the holding period (4=1, 5, 22,
36) generally leads to increased portfolio gains under the proposed MP-Adv-DRL-Cor method
but also results in higher annual realized volatilities. This is because when considering extended
investment periods, investors can maximize the total utility over the long term, which typically
avoids making myopic short-term investment decisions. The trade-off between mean return and
volatility is captured by the Sharpe ratio. The performance of this indicator is not monotonic
over the investment horizon. The results for the S&P100 and DJIA financial indices show an
increase in Sharpe ratio up to #=36 trading days and then a drop in value due to a decrease in
portfolio return accompanied by an increase in volatility. The results for the Canadian index
are similar in the sense that the performance metrics report an optimal investment horizon
beyond which portfolio performance decreases. However, in contrast to the US stock indices,

portfolio performance measured by the Sharpe ratio reaches a peak at /=22 days and then drops.
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The reason for this drop in profitability adjusted for risk is a substantial increase in volatility
not followed by a similar rise in mean return. In fact, the mean return falls from 4=36 to 66
investment horizon. Therefore, continually extending the investment horizon does not always
yield better portfolio performance. Thus, the horizon period /4 needs to be carefully selected.
These results are broadly consistent with the literature on long-term portfolio allocation. The
profitability of the portfolio increases with the investment horizon, while the annual volatility

is also expected to rise.
4.4. Portfolio performance under different risk aversion levels

The next exercise shows the effect of the risk aversion coefficient A for different holding
periods. We consider #=5 and =36 for which Fig. 3 shows that the relationship between
portfolio performance and investment horizon is monotonically increasing for small values of
risk aversion. The aim of this exercise is to increase the level of risk aversion and see the effect
on portfolio performance for each investment horizon. For space considerations, we fix the
transaction cost rate at £&=0.01% and consider only the S&P100 index.

Fig. 4 shows that the cumulative portfolio value tends to decrease as A increases, and its
trajectories also become less volatile. Table 3 provides further clarity on the rationale for these
dynamics. Both annual return and volatility decline as the level of risk aversion increases,
however, the drop is more acute in mean return than in volatility. This downward trend is
especially noticeable when A rises from 0.1 to 1. An increase in A implies that investors are
more inclined to select conservative strategies to mitigate portfolio risks. This preference leads
to a decline in trading frequency and investment activity, as shown in the Turnover column of
Table 3. Specifically, when the risk aversion coefficient is very high, i.e. A=1, portfolio
volatility is significantly reduced. Consequently, the potential for substantial annual returns and
a high Sharpe ratio is limited. For instance, under #=36, the annual return is only 9.54% with
A=1 compared to 29.21% when A=0.01. The figures in Table 3 also provide some insights into
the fruitfulness of considering higher investment horizons for a given level of risk aversion.
Thus, the comparison of rows with same levels of risk aversion across panels suggests that both
the annual return and the volatility are higher as 4 increases. However, the ratio between both
quantities given by the Sharpe ratio is slightly more favourable to the longer investment horizon
reinforcing the idea that longer investment horizons may be more profitable for a given degree

of risk aversion.
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A related question is how to choose realistic values of the risk aversion coefficient for the
reward functions introduced above. Zhang et al. (2022), in a similar context, explored different
values of this coefficient and found a better balance between risk and return when A is around
0.01. Similar results are obtained in our empirical exercise when the risk aversion coefficient
rises from 0.001 to 0.1 for A=5, however, it is worth noting the excellent performance of the

method for very low levels of risk aversion under longer investment horizons.
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(a) Portfolio performance under different risk aversion levels A when 4 =5
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(b) Portfolio performance under different risk aversion levels A when 4 =36
Fig. 4. APV for MP-Adv-DRL-Cor under different risk aversion levels for the S&P100

index over the out-of-sample evaluation period 02/01/2019 to 12/07/2023. &=0.01% for
transaction costs and /4 =5 (top panel) and % =36 (bottom panel).
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Table 3. Portfolio performance metrics under different risk aversion coefficients A.

Annual Annual Maximum
A return volatility Shame drawdown Turnover
(%) o M (%)
h=5
A=0.001 26.11 29.96 0.872 39.55 0.082
A=0.01 25.71 28.89 0.890 39.19 0.087
A=0.1 21.25 23.55 0.902 31.17 0.021
A=l 9.037 19.70 0.459 36.08 0.017
h=36
A=0.001 39.99 38.44 1.014 44.66 0.333
A=0.01 29.21 36.14 0.808 32.09 0.170
A=0.1 27.91 25.99 1.074 31.64 0.064
=1 9.539 19.22 0.496 36.05 0.032

4.5 Portfolio performance under different transaction costs

This subsection evaluates the role of transaction costs on the performance of multi-period
investment portfolios. As in the previous exercises, the optimal portfolios are constructed using
the MP-Adv-DRL-Cor method. Risk aversion is fixed at A=0.01 and transaction costs vary
between a low value given by £&=0.05% and a high value given by 0.5%. For comparison
purposes, we only consider optimal portfolios comprised by the assets in the S&P100 index.
Fig. 5 and Table 4 show that the annual returns are higher when the transaction cost rate & is
low at 0.05%, compared to the annual returns for the higher rate of 0.5%. This result holds
across investment horizons. In contrast, the annual volatility of the portfolios is hardly affected
by the presence of transaction costs, entailing a decrease in Sharpe ratios as £ increases across
values of /.

The presence of transaction costs mainly affects the profitability of the portfolios and does
not increase risk. It also has a major impact on the turnover of the portfolios. Under the presence
of transaction costs, investors have fewer incentives to rebalance their portfolios under changes
in investment opportunities over time. The effect of turnover is particularly visible for longer
investment horizons where we observe a decrease of an order of magnitude in the performance

measure for high values of the transaction costs. Importantly, the results for &=0.05% are very
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similar to the results reported in Table 2 for &=0.01% and suggest that portfolios’ risk-adjusted
profitability is monotonically increasing on the investment horizon. In contrast, for high
transaction costs, portfolios’ profitability is reduced but not the underlying volatility implying
that optimal portfolios constructed for intermediate investment horizons report higher Sharpe

ratios.
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(b) Portfolio performance under different holding periods # when £&=0.5%

Fig. 5. APV for MP-Adv-DRL-Cor under different investment horizons /4 for the S&P100
index over the out-of-sample evaluation period 02/01/2019 to 12/07/2023 for &=0.05% (top
panel) and &=0.5% (bottom panel).

The results in Fig. 5 and Table 4 are qualitatively similar to the analysis of risk aversion.
Transaction costs reduce the profitability of portfolios. Interestingly, this result is stronger as

the investment horizon rises entailing sharper declines for #=66.
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Table 4. Portfolio performance metrics for different periods # when ¢=0.05% and 0.5%.

Annual Annual Sharpe Maximum
Holding period return volatility ratio drawdown Turnover
(%) (%) (%)

Transaction cost rate £&=0.05%
h=1 12.32 24.57 0.502 39.82 0.007
h=5 21.20 27.45 0.772 40.35 0.019
h=22 23.63 28.52 0.829 39.32 0.033
h=36 24.38 24.83 0.982 35.54 0.030
h=66 38.21 33.02 1.157 42.34 0.063

Transaction cost rate £&=0.5%
h=1 10.56 24.56 0.430 40.00 0.007
h=5 11.48 24.58 0.467 39.97 0.006
h=22 21.56 30.38 0.710 45.73 0.005
h=36 18.14 23.19 0.782 33.25 0.006
h=66 11.64 24.52 0.475 39.80 0.006

4.6 Portfolio performance comparisons

The previous subsections have shown the ability of our proposed procedure to construct
optimal portfolios for different investment horizons and under different choices of transaction
costs and risk aversion. This subsection complements this analysis by comparing the
performance of our procedure against existing competitors, most of them drawn from the
machine learning literatures on portfolio allocation. The aim of this exercise is to show that the
MP-Adv-DRL-Cor procedure outperforms these methods under most scenarios given by
different levels of risk aversion and transaction costs. Figures 6, 7 and 8 present empirical
results for the S&P100 index, DJIA, and the S&P/TSX index for investment horizons A=1, 22,
66 with &=0.05% and 2=0.1. Additional results for other combinations of transaction costs and
risk aversion (6=0.5% and A=0.1, £=0.05% and A=1) are available from the authors upon
request.

The APV associated to the EW method is the same across investment horizons and serves
as a helpful benchmark for comparing the performance of the remaining competitors. For 4=1,
the APVs are surprisingly similar across investment strategies suggesting that for &=0.05% and
2=0.1, the use of the proposed techniques based on machine learning methods are not
necessarily superior to naive investment methods such as the EW portfolio. Sophisticated
techniques are superior in settings characterized by investment over multiple periods. The MP-
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Adv-DRL-Cor method exhibits superior performance than the other four approaches for
investment horizons greater than one period. It is also worth noting the good performance of
MP-CS-PPN-Cor, however, there are cases such as #=22 for the DJIA index in which the
method reports very poor results. Table 5 formalizes the results in Fig. 6 for the S&P100 index.
For h=1, we observe similar results for the five performance measures under investigation
across methods. The results for #=22 in the middle panel reveal the strong performance of MP-
Adv-DRL-Cor in terms of annual return and Sharpe ratio and the poor performance of MP-

DPG.

Table 5. Portfolio performance metrics for five portfolios when 4 =1, 22, and 66 under
S&P100 index.

Annual Annual Maximum
Sharpe
Method return volatility ratio drawdown Turnover
(%) (%) (%)

h=1
MP-Adv-DRL-Cor 12.32 24.57 0.502 39.82 0.007
MP-CS-PPN-Cor 10.05 23.75 0.423 36.62 0.006
MP-DPG 12.19 24.69 0.494 40.10 0.011
SP-Adv-DRL-Cor 12.32 24.57 0.502 39.82 0.007
EW 13.03 24.59 0.530 39.80 0.006

h =22
MP-Adv-DRL-Cor 29.80 31.65 0.942 34.53 0.192
MP-CS-PPN-Cor 19.32 21.74 0.888 28.84 0.005
MP-DPG 2.110 49.05 0.043 57.62 0.730
SP-Adv-DRL-Cor 12.32 24.57 0.502 39.82 0.007
EW 13.03 24.59 0.530 39.80 0.006

h =66
MP-Adv-DRL-Cor 15.11 35.99 0.420 57.15 0.116
MP-CS-PPN-Cor 21.52 23.33 0.922 32.56 0.006
MP-DPG -22.20 53.24 -0.417 82.54 0.809
SP-Adv-DRL-Cor 12.32 24.57 0.502 39.82 0.007
EW 13.03 24.59 0.530 39.80 0.006
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The MP-Adv-DRL-Cor and MP-CS-PPN-Cor investment strategies are the best
performers for the three data sets. Both methods adopt correlation networks, however, MP-CS-
PPN-Cor adopts the TCCB framework. This method is not invariant to the ordering of the assets
in the portfolio implying that portfolio performance can greatly vary when the ordering of the
assets changes. Unlike TCCB, the WaveNet approach contains a simpler permutation invariant
structure that can efficiently capture asset correlation, thus achieving higher portfolio
performance under different choices of transaction costs and risk aversion. This result is
because the multi-period strategic investment employs a dynamic asset allocation strategy to
adapt the portfolio weights under time-varying financial conditions. Also, the multi-period
strategy is more effective in managing portfolio's overall risk by considering long-term risk and
return. In contrast, a single-period (tactical investing) focuses more on short-term market
volatility and takes advantage of market opportunities to maximize wealth in the short term

while ignoring long-term investment opportunities.

4.7. Dimensionality effects on portfolio performance

An interesting feature of our proposed procedure is the ability to work with high-
dimensional portfolios given by a large number of investment assets. This is illustrated in the
following empirical exercise in which we also compare the performance of MP-Adv-DRL-Cor
against the four competitors discussed above. To do this, we consider the universe of assets in
the S&P500 index and take random subsets of 50, 75, 100 and 200 assets. The results are
provided in Fig. 9 and Table 6. Each panel of Fig. 9 represents the APV of the five competing
portfolios for different number of assets. The empirical results provide overwhelming evidence
on the outperformance of our proposed approach across different choices of the number of
assets. The differences in APV are more important as the number of assets comprising the
portfolios increase. Interestingly, the dynamics and magnitudes of the cumulative portfolio
returns do not vary much with the number of assets, suggesting that the weight allocated to each
asset is quite small. Increasing the number of assets does not contribute massively to improve
annual return but helps to mitigate risk through improved diversification of the portfolio. This
is achieved for all methods but our MP-Adv-DRL-Cor approach shows superior performance

for larger portfolios.
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(c) Performance comparisons with 100 assets
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(d) Performance comparisons with 200 assets

Fig. 9. APV across investment portfolios for random subsets of the S&P500 Index over the
period 02/01/2019 to 12/07/2023 for different numbers of assets.

30



Table 6. Portfolio performance metrics for five investment strategies constructed from
different numbers of stocks from the S&P500 index.

Annual Annual Sharpe Maximum
Method return volatility ratio drawdown Turnover
(%) (%) (%)

50 assets
MP-Adv-DRL-Cor 22.86 23.24 0.984 32.72 0.018
MP-CS-PPN-Cor 17.00 21.22 0.801 31.14 0.005
MP-DPG 12.13 25.62 0.473 41.18 0.092
SP-Adv-DRL-Cor 13.29 25.09 0.530 39.55 0.007
EW 13.93 25.10 0.555 39.54 0.006

75 assets
MP-Adv-DRL-Cor 24.01 23.04 1.042 29.23 0.045
MP-CS-PPN-Cor 19.29 31.43 0.614 43.53 0.401
MP-DPG 13.67 25.63 0.533 41.32 0.033
SP-Adv-DRL-Cor 13.87 24.85 0.558 39.83 0.007
EW 14.59 24.86 0.587 39.82 0.006

100 assets
MP-Adv-DRL-Cor 24.38 24.83 0.952 35.54 0.030
MP-CS-PPN-Cor 15.40 23.78 0.680 3741 0.009
MP-DPG 12.28 25.78 0.477 41.40 0.034
SP-Adv-DRL-Cor 12.32 24.57 0.502 39.82 0.007
EW 13.02 24.59 0.530 39.80 0.006

200 assets
MP-Adv-DRL-Cor 22.34 23.47 0.952 30.17 0.027
MP-CS-PPN-Cor 13.48 23.18 0.581 37.41 0.013
MP-DPG 12.51 27.28 0.458 46.83 0.080
SP-Adv-DRL-Cor 13.43 23.64 0.568 39.01 0.007
EwW 14.03 23.66 0.593 39.01 0.006

Table 6 confirms these results and provides further insights obtained from alternative
performance measures considering risk exposure along with portfolio annual return. Increasing
the number of assets in the portfolio rises annual return keeping portfolio variance mostly

constant. In particular, the results show that the MP-Adv-DRL-Cor strategy is superior to the

31



MP-CS-PPN-Cor approach, and the performance gap widens as the number of assets increases.
Such superiority is mainly attributed to the ability of the WaveNet approach to model asset
mutual dependence. In conclusion, the above results confirm the superiority of the two-stream
learning frameworks and the importance of applying suitable machine learning models for
modelling asset dependencies. The results also confirm the learning ability of our method in

addressing high-dimensional portfolio problems.

5. Conclusion

This paper proposes an advanced multi-period portfolio selection method that employs
DRL for decision-making, convolutional neural networks to extract the dynamics of asset prices
and WaveNet to identify cross-dependencies among the set of investment assets. The proposed
approach is capable of solving multi-period investment portfolio problems in high-dimensional
settings characterized by an investment pool of many stocks. An extensive empirical
application to different datasets, levels of risk aversion and transaction costs, shows the good
performance of the proposed portfolio allocation procedure for different investment horizons.
We find a monotonic relationship between risk-adjusted profitability and the investment
horizon for low levels of risk aversion and transaction costs. Increasing levels of risk aversion
affect the performance of long-term investment portfolios by reducing incentives to invest over
longer horizons. The presence of transaction costs also affects the performance of long-term
portfolios by reducing the net annual return above and beyond the reduction observed for short-
term portfolios while keeping portfolio volatility roughly constant. Our results also show the
outperformance of our proposed procedure against competing methods for constructing optimal
portfolios drawn from the machine learning literature in asset allocation. These results are
robust to different factors such as the number of assets, risk aversion levels, and the presence

of transaction costs.
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