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Abstract 

This paper proposes a novel investment strategy based on deep reinforcement learning 
(DRL) for long-term portfolio allocation in the presence of transaction costs and risk aversion. 
We design an advanced portfolio policy framework to model the price dynamic patterns using 
convolutional neural networks (CNN), capture group-wise asset dependence using WaveNet, 
and solve the optimal asset allocation problem using DRL. These methods are embedded within 
a multi-period Bellman equation framework. An additional appealing feature of our investment 
strategy is its ability to optimize dynamically over a large set of potentially correlated risky 
assets. The performance of this portfolio is tested empirically over different holding periods, 
risk aversion levels, transaction cost rates, and financial indices. The results demonstrate the 
effectiveness and superiority of the proposed long-term portfolio allocation strategy compared 
to several competitors based on machine learning methods and traditional optimization 
techniques.  
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1. Introduction 

Portfolio management supports investors in making decisions on how to allocate resources 

and funds across a set of assets and over time. Traditional portfolio selection methods typically 

consider single-period returns. Markowitz (1952) pioneered the mean-variance optimization 

model, which remains foundational in portfolio theory. This framework seeks to maximize the 

expected return for a given level of risk by considering the variance of asset returns. Despite its 

simplicity and wide application, Markowitz’s paradigm has limitations, particularly in 

addressing long-term investment horizons and dynamic market conditions.  

Long-term portfolio allocation focuses on how investors can optimally allocate investment 

assets over extended periods of time to maximize returns while managing risks (Lucey & 

Muckley, 2011; Escobar et al., 2016; Fan et al., 2024). One of the first contributions in this area 

was Merton (1969, 1971), who extended the portfolio selection framework to a continuous-

time setting, incorporating intertemporal choice and dynamic strategies for long-term investors. 

His work introduced the concept of dynamic asset allocation, emphasizing the importance of 

adjusting portfolio weights over time in response to changes in market conditions and investor 

preferences. It is widely understood, at least since the work of this author, as seen by Samuelson 

(1969), that the solution to a multi-period portfolio choice problem can be very different from 

the solution to a static portfolio choice problem. Unfortunately, intertemporal asset allocation 

models are hard to solve in closed form unless strong assumptions on the investor’s objective 

function or the statistical distribution of asset returns are imposed.  

Traditionally, the extension from single-period to multi-period portfolio optimization has 

been addressed using stochastic dynamic programming. Samuelson (1969) and Bellman (1957) 

developed methods for solving dynamic optimization problems, allowing the consideration of 

future states and decisions in portfolio management. Nevertheless, the lack of closed-form 

solutions for optimal portfolios in multi-period settings has limited the applicability of Merton’s 

model and has not displaced Markowitz’s paradigm. This situation began to change due to 

several developments in numerical methods and continuous time finance models. More 

specifically, some authors such as Barberis (2000) and Brennan et al. (1997, 1999), among a 

few others, provide discrete-state numerical algorithms to approximate the solution of the 

portfolio problem over infinite horizons. Other articles obtain closed-form solutions to the 

Merton model in a continuous time framework with a constant risk-free interest rate and a single 

risky asset if long-lived investors have power utility defined over terminal wealth (Kim & 
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Omberg, 1996) or if investors have power utility defined over consumption (Watcher, 2002), 

or if the investor has Epstein and Zin (1989, 1991) utility with intertemporal elasticity of 

substitution equal to one (Campbell & Viceira, 1999; Schroder & Skiadas, 1999). Approximate 

analytical solutions to the Merton model have been developed by Campbell et al. (2003) and 

Campbell and Viceira (1999, 2001, 2002) for models exhibiting an intertemporal elasticity of 

substitution not too far from one.  

An alternative to solve the investor’s optimal portfolio choice problem is proposed by Ait-

Sahalia and Brandt (2001), Brandt (1999), and Brandt and Clara (2006). These authors show 

how to select and combine variables to best predict the optimal portfolio weights, both in single-

period and multi-period contexts. Moreover, Laborda and Olmo (2017) focus directly on the 

dependence of the portfolio weights on the predictor variables through a linear parametric 

portfolio policy rule. This characterization allows them to apply the generalized method of 

moments to sample analogues of the multi-period Euler equations that characterize the optimal 

portfolio choice. 

Standard methods based on solving Bellman equations struggle with large datasets. 

Hambly et al. (2023) noted that portfolio optimization often involves high dimensionality, 

complex non-linear relationships, and constraints, making it difficult for traditional algorithms 

to adapt to changing market environments and large-scale data. These limitations lead to 

suboptimal portfolio strategies in dynamic situations. Recent advances in machine learning and 

artificial intelligence have significantly impacted portfolio management. Deep reinforcement 

learning (DRL), as explored by Jiang et al. (2017), Wang and Zhou (2020), and Cong et al. 

(2022), offers robust frameworks for developing adaptive and dynamic portfolio strategies. 

These methods leverage vast amounts of data and sophisticated algorithms to optimize asset 

allocation in real time. Compared to standard portfolio allocation methods such as Markowitz’s 

paradigm, DRL aims to search for optimal sequences of actions and then obtain a multi-step 

task, where the objective is to achieve the maximum cumulative reward (Sutton & Barto, 2018). 

This allows DRL to adapt to complex, high-dimensional, and dynamic environments, making 

it an attractive method for improving traditional portfolio allocation.   

The literature applying these techniques for multi-period portfolio allocation is rapidly 

growing. Aboussalah et al. (2021) applied the DRL approach based on convolutional neural 

networks (CNN) to construct optimal portfolios in a multi-period investment scenario. Corsaro 

et al. (2022) investigated the application of L1-regularization with machine learning and neural 

networks-based automatic selection to perform multi-period portfolio selection. Wei et al. 



   4 

(2021) and Chen and Ge (2021) showed the benefits of stochastic neural network algorithms to 

incorporate asymmetric investor sentiment and construct an investment portfolio that balances 

the return and risk over multiple holding periods. In a recent study, Cui et al. (2024) applied 

DRL to multi-period portfolio selection considering different risk aversion levels.  

Other challenges to constructing optimal investment strategies over multi-period 

investment horizons are the presence of transaction costs and other market frictions. Research 

by Constantinides (1986) and Liu and Loewenstein (2002) incorporated these factors into 

dynamic models to obtain more realistic strategies that account for the costs associated with 

rebalancing portfolios. Building on this, Eom and Park (2017) investigated the impact of 

common factors by implementing a comparative correlation matrix on stocks. They emphasized 

that portfolios constructed by considering market factors significantly outperform other 

approaches in terms of diversification. However, with the increasing availability of high-

dimensional and high-frequency financial data, more sophisticated models need to be 

developed. The works by Bernardi and Catania (2018) and Zhao et al. (2023) utilized copula 

models and Monte Carlo methods to capture dependencies and optimize portfolios in high-

dimensional settings. Recent studies use the DRL framework to extract cross-asset dependence 

features in financial investments (Zhang et al., 2022; Xu et al., 2020). Notably, Marzban et al. 

(2023) introduced a WaveNet structure in a DRL framework for capturing cross-asset 

dependence and improve long-term portfolio optimization.  

In this paper, we design an advanced portfolio policy framework to construct a multi-

period portfolio selection model. To do this, we model the dynamics of asset prices and their 

cross-sectional dependence using machine learning methods (dynamic patterns of asset prices 

are obtained using convolutional neural networks, and group-wise asset dependence is 

modelled via WaveNet). The optimal long-term portfolio allocation is obtained by solving a 

multi-period Bellman equation combined with DRL methods. More specifically, we integrate 

the multi-period Bellman equation with DRL into a Markov Decision Process (MDP) 

framework. This approach accommodates different levels of risk aversion and is developed 

under a set of portfolio constraints. Empirical results demonstrate the effectiveness and 

superiority of our proposed portfolio strategy in various real-world settings. To show this, we 

conduct an in-depth comparative analysis under various investment holding periods, revealing 

the impact of the investment horizon, level of risk aversion, and portfolio constraints on 

portfolio management.  
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The rest of the paper is organized as follows: Section 2 presents the multi-period portfolio 

selection model and portfolio constraints. In Section 3, we propose an advanced portfolio policy 

framework based on DRL. The empirical results and analysis are provided in Section 4 and 

Section 5 concludes.  

   

2. Multi-period portfolio optimization 

This section introduces the theoretical framework for constructing multi-period optimal 

investment portfolios. According to Barberis (2000), one widely adopted strategy is the buy-

and-hold approach, where investors choose a set of assets and hold onto them for an extended 

period before adjusting portfolio allocation. In contrast, the re-balancing strategy consists of 

periodically adjusting the portfolio to adapt to market fluctuations. In this paper we focus on 

the latter approach. Thus, we consider a dynamic multi-period portfolio optimization problem 

with a rebalancing strategy which optimizes the allocation of capital among financial assets 

over time.  

We allocate funds into an investment portfolio at the beginning of each period over a 

planning horizon that extends h periods: t, t+1, t+2, ..., t+h. We assume that a financial market 

has N risky assets, and the closing prices of these assets comprise a price vector 𝒙𝒙𝑡𝑡 ∈ ℝ+
𝑁𝑁 at 

time period t, where 𝒙𝒙𝑡𝑡 = (𝑥𝑥1,𝑡𝑡,⋅⋅⋅,𝑥𝑥𝑁𝑁,𝑡𝑡) with 𝑥𝑥𝑖𝑖,𝑡𝑡  being the price of asset i. A portfolio is 

managed with a vector of these asset weights 𝝎𝝎𝑡𝑡 = (𝜔𝜔1,𝑡𝑡,⋅⋅⋅,𝜔𝜔𝑁𝑁,𝑡𝑡)T ∈ ℝ𝑁𝑁 , where 𝜔𝜔𝑖𝑖,𝑡𝑡 

denotes the proportion of portfolio value invested on the i-th asset. At the end of each period, 

investors could actively adjust the value of their portfolios in accordance with the realized 

returns and the most recent data available from financial markets. The vector of asset returns is 

expressed as:  

𝒓𝒓𝑡𝑡 = �𝑟𝑟1,𝑡𝑡, 𝑟𝑟2,𝑡𝑡,⋅⋅⋅, 𝑟𝑟𝑁𝑁,𝑡𝑡�
T = �𝑥𝑥1,𝑡𝑡−𝑥𝑥1,𝑡𝑡−1

𝑥𝑥1,𝑡𝑡−1
, 𝑥𝑥2,𝑡𝑡−𝑥𝑥2,𝑡𝑡−1

𝑥𝑥2,𝑡𝑡−1
,⋅⋅⋅, 𝑥𝑥𝑁𝑁,𝑡𝑡−𝑥𝑥𝑁𝑁,𝑡𝑡−1

𝑥𝑥𝑁𝑁,𝑡𝑡−1
�
T

,                      (1) 

where 𝑟𝑟𝑖𝑖,𝑡𝑡  represents the i-th asset return at time t. The portfolio value at period t is denoted 
by 𝑝𝑝𝑡𝑡 and given, under the assumption that the change in portfolio weighs is small compared 
to the portfolio value, by the following expression: 

𝑝𝑝𝑡𝑡 = 𝑝𝑝𝑡𝑡−1�1 + 𝝎𝝎𝑡𝑡−1
T 𝒓𝒓𝑡𝑡� = 𝑝𝑝𝑡𝑡−1�1 +∑ 𝜔𝜔𝑖𝑖,𝑡𝑡−1𝑟𝑟𝑖𝑖,𝑡𝑡𝑁𝑁

𝑖𝑖=1 �.                               (2) 

The logarithmic rate of portfolio return at time t is defined as:   

𝑟̑𝑟𝑡𝑡 = 𝑙𝑙𝑙𝑙 � 𝑝𝑝𝑡𝑡
𝑝𝑝𝑡𝑡−1

� = 𝑙𝑙𝑙𝑙�1 + 𝝎𝝎𝑡𝑡−1
T 𝒓𝒓𝑡𝑡� = 𝑙𝑙𝑙𝑙�1 + ∑ 𝜔𝜔𝑖𝑖,𝑡𝑡−1𝑟𝑟𝑖𝑖,𝑡𝑡𝑁𝑁

𝑖𝑖=1 �.                         (3)  
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Sales and purchases of assets typically incur transaction costs, such as exchange fees and 

execution fees. Thus, it is necessary to consider the transaction cost in our portfolio trading 

selection. Here, let 𝜉𝜉 denote the proportional cost level of each trading, and we set transaction 

cost rates for purchases and sales equal to 𝜉𝜉𝑡𝑡 at time t. Furthermore, let 𝜓𝜓𝑡𝑡 ∈ [0,1] denote the 

total transaction cost, which is defined as:         

𝜓𝜓𝑡𝑡 = 𝜉𝜉𝑡𝑡 ∑ �𝜔𝜔𝑖𝑖,𝑡𝑡 − 𝜔𝜔𝑖𝑖,𝑡𝑡−1�𝑁𝑁
𝑖𝑖=1 .                                                   (4) 

The updated logarithmic rate of return at the end of period t is given by: 

𝑟̑𝑟𝑡𝑡 = 𝑙𝑙𝑙𝑙 � 𝑝𝑝𝑡𝑡′

𝑝𝑝𝑡𝑡−1′ � = 𝑙𝑙𝑙𝑙 �(1−𝜓𝜓𝑡𝑡)𝑝𝑝𝑡𝑡
𝑝𝑝𝑡𝑡−1′ � = 𝑙𝑙𝑙𝑙�(1 − 𝜓𝜓𝑡𝑡)(1 + 𝝎𝝎𝑡𝑡−1

T 𝒓𝒓𝑡𝑡)�.                       (5) 

   Therefore, after considering transaction costs, the terminal portfolio value at time t+h is 

expressed as: (Zhang et al., 2022; Moody et al., 1998) 

𝑝𝑝𝑡𝑡+ℎ′ = 𝑝𝑝𝑡𝑡�(1 − 𝜓𝜓𝑡𝑡+1)(1 + 𝝎𝝎𝑡𝑡
T𝒓𝒓𝑡𝑡+1)��(1− 𝜓𝜓𝑡𝑡+2)(1 + 𝝎𝝎𝑡𝑡+1

T 𝒓𝒓𝑡𝑡+2)� ⋅⋅⋅ �(1 − 𝜓𝜓𝑡𝑡+ℎ)�1 +

𝝎𝝎𝑡𝑡+ℎ−1
T 𝒓𝒓𝑡𝑡+ℎ�� = 𝑝𝑝𝑡𝑡 ∏ �(1 − 𝜓𝜓𝑡𝑡+𝑘𝑘)�1 + 𝝎𝝎𝑡𝑡+𝑘𝑘−1

T 𝒓𝒓𝑡𝑡+𝑘𝑘��ℎ
𝑘𝑘=1 .                         (6) 

According to Eq. (6), the total portfolio log return over a planning horizon of h holding 

periods is expressed as:  

𝑅𝑅ℎ = �𝑟̑𝑟𝑡𝑡+𝑘𝑘

ℎ

𝑘𝑘=1

= �𝑙𝑙𝑙𝑙 �(1 − 𝜓𝜓𝑡𝑡+𝑘𝑘)�1 + 𝝎𝝎𝑡𝑡+𝑘𝑘−1
T 𝒓𝒓𝑡𝑡+𝑘𝑘��

ℎ

𝑘𝑘=1

 

      = ∑ 𝑙𝑙𝑙𝑙( 1 − 𝜓𝜓𝑡𝑡+𝑘𝑘) +ℎ
𝑘𝑘=1 ∑ 𝑙𝑙𝑙𝑙( 1 +𝝎𝝎𝑡𝑡+𝑘𝑘−1

T 𝒓𝒓𝑡𝑡+𝑘𝑘)ℎ
𝑘𝑘=1 .                           (7) 

We consider the mean-variance function to model the one-period utility function 

representing investor’s short-term preferences:  

𝑢𝑢𝑡𝑡 = 𝑟̑𝑟𝑡𝑡 − 𝜆𝜆𝜎𝜎𝑡𝑡2,                                                            (8) 

where 𝜆𝜆 is a risk-aversion parameter that balances the quantity placed on the maximization of 

portfolio return rate 𝑟̑𝑟𝑡𝑡  and the minimization of portfolio risk 𝜎𝜎𝑡𝑡2 . The long-term portfolio 

allocation problem is characterized by the maximization of the investor’s multi-period utility 

function computed over h periods and denoted by 𝑈𝑈𝑡𝑡,ℎ. Investor’s impatience is modelled by 

introducing a time preference parameter  𝛾𝛾 that discounts future returns (Jaisson, 2022; 

Olschewski et al., 2021) such that the multi-period objective utility over h periods is defined as: 

𝑈𝑈𝑡𝑡,ℎ = 𝑢𝑢𝑡𝑡+1 + 𝛾𝛾1𝑢𝑢𝑡𝑡+2 +⋅⋅⋅+𝛾𝛾ℎ−1𝑢𝑢𝑡𝑡+ℎ = ∑ 𝛾𝛾𝑘𝑘−1𝑢𝑢𝑡𝑡+𝑘𝑘ℎ
𝑘𝑘=1 , 𝛾𝛾 ∈ [0,1],                 (9) 

when 𝛾𝛾 = 0, the investor's focus is solely on immediate return. For 0 < 𝛾𝛾 < 1,  the reward 

sequence converges given that the individual reward is finite. 
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Investors aim to construct a strategy that maximizes its expected long-term utility 

𝑈𝑈𝑡𝑡,ℎ over the h-period investment horizon. The optimal portfolio is characterized by a weight 

matrix 𝝎𝝎 = (𝝎𝝎𝑡𝑡+1,𝝎𝝎𝑡𝑡+2,⋅⋅⋅,𝝎𝝎𝑡𝑡+ℎ) obtained over h periods and can be achieved by solving a 

multi-period optimization problem that incorporates a set of portfolio constraints, namely, a 

budget constraint, a turnover constraint, and a box constraint. The budget constraint is given by 

the following condition:  

∑ 𝜔𝜔𝑖𝑖,𝑡𝑡
𝑁𝑁
𝑖𝑖=1 = 1,  ∀𝑡𝑡.                                                         (10) 

Similarly, the turnover constraint reduces the effect of the transaction costs on portfolio 

returns. Most studies use the average turnover when evaluating the influence of transaction 

costs, as it estimates the portfolio weight updates. The portfolio turnover (TO) constraint at time 

t can be expressed as: 

𝑇𝑇𝑂𝑂𝑖𝑖,𝑡𝑡 = �𝜔𝜔𝑖𝑖,𝑡𝑡 − 𝜔𝜔𝑖𝑖,𝑡𝑡−1� ≤ 𝑇𝑇𝑂𝑂𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚  , ∀𝑖𝑖, ∀𝑡𝑡,                                      (11) 

where 𝑇𝑇𝑂𝑂𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum turnover rate of each asset at time t, 0 ≤ 𝑇𝑇𝑂𝑂𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 1. Finally, 

we also include a box constraint that avoids extreme investment positions and fosters the 

presence of diversification. To do this, we set an upper and lower bound for the maximum and 

minimum weights in the portfolio. Thus, the box constraint is defined as: 

0 ≤ 𝜔𝜔𝑖𝑖,𝑡𝑡 ≤ 𝜔𝜔𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚, ∀𝑖𝑖,∀𝑡𝑡.                                                   (12) 

For simplicity, we only allow for long positions on the assets, and the objective function 

characterizing the optimal multi-period portfolio is expressed as: 

�
𝑚𝑚𝑚𝑚𝑚𝑚
𝝎𝝎

𝐸𝐸�𝑈𝑈𝑡𝑡,ℎ� = 𝑚𝑚𝑚𝑚𝑚𝑚
𝝎𝝎

∑ 𝛾𝛾𝑘𝑘−1𝐸𝐸[𝑢𝑢𝑡𝑡+𝑘𝑘]ℎ
𝑘𝑘=1                                                                                

 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝝎𝝎

�𝐸𝐸[𝑟̑𝑟𝑡𝑡+1 − 𝜆𝜆𝜎𝜎𝑡𝑡+12 ] +⋅⋅⋅+𝛾𝛾ℎ−1𝐸𝐸�𝑟̑𝑟𝑡𝑡+ℎ − 𝜆𝜆𝜎𝜎𝑡𝑡+ℎ2 ��.        
(13) 

Traditional optimization techniques (Kamali et al., 2019; Bertsimas & Sim, 2004) face 

difficulties in achieving a solution to the above optimal investment strategy of Eq. (13). For 

instance, convex optimization and Lagrange optimization methods may not fully leverage 

historical data and converge, instead, to a local rather than global optimal solution for the long-

term portfolio strategy. Fortunately, DRL is a model-free dynamic programming strategy that 

can be adopted to tackle the above decision-making problem by learning the optimal policy in 

dynamic markets (Jaisson, 2022; Olschewski et al., 2021). Thus, the following section proposes 

a DRL-based portfolio approach to address an optimization problem in the same spirit of Eq. 

(13) but also including the above constraints as the components of the optimization function in 

the learning process. 
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3. Investor’s long-term optimization problem 

As mentioned above, the multi-period optimization problem defined in Section 2 will be 

addressed by proposing a portfolio framework based on DRL with CNN and WaveNet, as 

shown in Fig. 1. 

 

Fig. 1. Portfolio framework based on DRL with CNN and WaveNet. 

The designed portfolio policy framework mainly includes three components. To begin 

with, the sequential information based on CNN is adopted to capture the dynamic patterns in 

each asset price. Secondly, the cross-dependence between the assets in the portfolio is modelled 

using WaveNet. This is particularly important in high-dimensional environments. Finally, the 

decision-making module is used to perform optimal portfolio allocation across assets. The 

following three subsections provide an in-depth exploration of each part.  

3.1. Extraction of dynamic price sequence information based on CNN 

Gu et al. (2018) stated that CNN can combine features and achieve a higher precision 

accuracy on large-scale datasets than other deep learning methods. In this case, we develop a 

sequential information module based on CNN to extract the changes in each asset price. This 

module aims to estimate the dynamic characteristics of high-dimensional vectors of asset prices 

and effectively model time series data. Moreover, by applying CNN models to analyse 

historical price data, we can predict the conditional volatility of asset returns in future periods.  

As illustrated in Fig. 1, CNN extracts the nonlinear dynamic features of each asset 

separately on its multidimensional input data, thereby greatly improving the accuracy of the 

price mapping features. Additionally, the structure of CNN for price dynamic sequential 

information extraction comprises not only input and output layers but also convolutional layers, 
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pooling layers, fully connected layers, and so on. The analysis focuses on the following key 

layers: 

Input layer: This layer pre-processes the original asset returns, including normalizing the 

amplitude into the same range [0, 1], which reduces the interference caused by differences in 

the value range of data in various dimensions. 

Convolutional layer: The convolutional kernels are used as effective methods for price 

feature extraction, and the result obtained from price data after convolution is called a Feature 

Map. The specific process can be expressed as: 

𝑦𝑦𝑗𝑗,𝑛𝑛 = 𝛿𝛿�𝑏𝑏 + ∑ ∑ 𝜛𝜛𝑙𝑙,𝑚𝑚𝑥𝑥𝑗𝑗+𝑙𝑙,𝑛𝑛+𝑚𝑚′𝑀𝑀
𝑚𝑚=0

𝑍𝑍
𝑙𝑙=0 �,                                       (14) 

where 𝛿𝛿 represents the activation function, b is the shared bias parameter, Z and M are the length 

and width of the local receptive field, respectively, and  𝜛𝜛𝑙𝑙,𝑚𝑚 denotes the shared weight 

parameters between neurons, 𝑥𝑥𝑗𝑗+𝑙𝑙,𝑛𝑛+𝑚𝑚′  is the data corresponding to the input matrix received 

by the convolutional layer. Widely used activation functions include the sigmoid, tanh, and 

ReLU functions, among a few others. The first two specifications are usually observed in fully 

connected layers, while the latter ReLU function applied commonly in convolutional layers is 

given by: 

𝛿𝛿�𝑥𝑥 ′� = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑥𝑥 ′� = �𝑥𝑥
′,  𝑥𝑥 ′ ≥ 0

0,   𝑥𝑥 ′ < 0
.                                            (15) 

The fully connected layer is prone to overfitting due to its large number of parameters and 

the relationship between all elements of the output and input. Therefore, ReLU functions are 

added between each layer in the model as non-linear activation units to prevent overfitting and 

increase non-linear expression ability. 

Pooling layer: The main objective of this layer is to remove unimportant samples from 

the Feature Map and thus reduce the number of parameters. Max pooling preserves the 

maximum value within each small block, which is equivalent to preserving the best matching 

result for that block. 

Fully connected layer: Each node of the fully connected layer is connected to all the 

nodes of the previous layer and is used to synthesize the features extracted from the previous 

side. All neurons between the two layers are connected with weights, and the fully connected 

layer is usually at the tail of the convolutional neural network. 
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Softmax layer: This layer provides non-linear modeling capability by mapping the output 

results of the convolutional layer into nonlinear maps, which can effectively capture the asset 

price dynamics. 

3.2. Cross-asset dependence information extraction based on WaveNet 

WaveNet can effectively capture the cross-asset dependence information in portfolio 

management (Marzban et al., 2023). In this subsection, we apply the WaveNet framework to 

estimate the time-varying dependence across assets in the portfolio, denoted as 𝑸𝑸𝑡𝑡 ,where the 

dependence dynamics between two assets i and j, denoted as 𝑞𝑞𝑖𝑖,𝑗𝑗,𝑡𝑡, is adjusted over time based 

on a neural network function 𝜑𝜑. More specifically, we use the WaveCorr layer from Marzban 

et al. (2023) as our convolution layer for capturing asset dependence in the WaveNet. This is 

associated with the following correlation layer (Corr-layer) function set: 

𝑄𝑄 = �𝑞𝑞𝑖𝑖,𝑗𝑗,𝑡𝑡 ∈ ℝ,𝑎𝑎 ∈ ℝ�,                                                    (16) 

where the vector of asset dependence 𝑞𝑞𝑖𝑖,𝑡𝑡(𝑟𝑟𝑡𝑡) = [𝑞𝑞𝑖𝑖,1,𝑡𝑡,𝑞𝑞𝑖𝑖,2,𝑡𝑡,⋅⋅⋅,𝑞𝑞𝑖𝑖,𝑁𝑁,𝑡𝑡] between asset i and the 

remaining assets depends on a neural network function 𝜑𝜑, expressed as: 

𝒒𝒒𝑖𝑖,𝑡𝑡(𝒓𝒓𝑡𝑡) = �𝜑𝜑�𝑟𝑟𝑖𝑖,𝑡𝑡�⊙ �𝟏𝟏𝝎𝝎0
T� + ∑ 𝜑𝜑�𝑟𝑟𝑗𝑗,𝑡𝑡� ⊙ �𝟏𝟏𝝎𝝎𝑗𝑗T�𝑁𝑁

𝑗𝑗=1 �𝟏𝟏+ 𝑎𝑎,                     (17) 

where 𝑎𝑎 is the bias for accelerating neural network fitting. A general model operating directly 

on the assets returns is provided, where the joint probability of an input stream 𝑟𝑟𝑡𝑡 = [𝑟𝑟1,𝑡𝑡,⋅⋅⋅

, 𝑟𝑟𝑁𝑁,𝑡𝑡] is modeled as the product of the probabilities conditional on the realization of past returns 

(Van Den Oord et al., 2016; Marzban et al., 2023), i.e., 

𝜂𝜂(𝑟𝑟𝑡𝑡) = ∏ 𝜂𝜂�𝑟𝑟𝑖𝑖,𝑡𝑡|𝑟𝑟1,𝑡𝑡−1,⋅⋅⋅, 𝑟𝑟𝑁𝑁,𝑡𝑡−1�.𝑁𝑁
𝑖𝑖=1                                           (18) 

Each sample 𝑟𝑟𝑖𝑖,𝑡𝑡 of the i-th asset is conditioned on the samples at all previous time steps. The 

causal convolution operation extracts the price dynamics, but it may need large kernel sizes and 

layers. Thus, apart from adopting causal convolution, the dilated operation is also applied to 

meet the exponentially large receptive fields with only a few layers while maintaining the 

network and computational efficiency. In the WaveNet structure, a softmax distribution is 

adopted to model the conditional distribution 𝜂𝜂(𝑟𝑟𝑡𝑡), even if the asset returns are implicitly 

continuous. In addition, residual and parameterized skip connections are adopted to enhance 

the training convergence. With the help of WaveNet, the dependence information between 

assets can be constructed in a multi-block framework as illustrated in Fig. 1. 
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3.3. Multi-period portfolio decision-making based on DRL  

The dynamic asset price features and dependence information obtained from CNN and 

WaveNet are combined in ‘C’, as shown in Fig. 1, as the input of the deterministic policy 

gradient (DPG) model for portfolio decision-making.  

3.3.1. MDP with multi-period Bellman equation 

DRL typically combines the MDP framework to address the challenges posed by the 

multi-period Bellman equation. MDP provides a mathematical foundation for describing the 

interaction between an agent and an environment, incorporating elements such as states, 

actions, rewards, and state transitions. 

The portfolio management problem (Eq. 13) is defined as a MDP with a tuple 

(𝒮𝒮,𝒜𝒜,𝒫𝒫,𝑢𝑢). Specifically, the learning agent (i.e., an investor) observes one state 𝑠𝑠𝑡𝑡 ∈ 𝒮𝒮 (i.e.  

assets’ daily prices, latest asset returns, cross dependencies) from the market and then chooses 

an action 𝑎𝑎𝑡𝑡 ∈ 𝒜𝒜 (i.e., portfolio weight vector 𝝎𝝎𝑡𝑡). Afterwards, the agent will achieve an 

instantaneous reward 𝑢𝑢𝑡𝑡 and observe the next state 𝑠𝑠𝑡𝑡+1. Here, let 𝜋𝜋(𝑎𝑎𝑡𝑡 , 𝑠𝑠𝑡𝑡) denote a portfolio 

policy, mapping from observed states with a Markovian transition probability 𝒫𝒫(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡 =

𝑠𝑠,𝑎𝑎𝑡𝑡 = 𝑎𝑎) over available actions that the agent selects. Note that the objective function at the 

t-th period 𝑢𝑢𝑡𝑡 in Eq. (8) is the immediate reward function, and the multi-period utility 𝑈𝑈ℎ over 

h periods in Eq. (9) is the long-term reward function. 

According to the discussions of the multi-period optimization constraints and objective 

function in Section 2, the investor aims to trade off risk and return in the portfolio under several 

constraints. In applying the DRL framework to optimization problems, similar to the studies of 

Zhang et al. (2022) and Marzban et al. (2023), we also incorporate the turnover and box 

constraints in Eq. (11) and Eq. (12) as penalties within the objective function. This approach 

enables the model to incorporate penalty functions on the utility function to penalise portfolio 

weights not satisfying the constraints. In this context, the risk-averse and constraint-awareness 

reward function at the t-th single period is designed as follows: 

𝑢𝑢𝑡𝑡 = 𝑟̑𝑟𝑡𝑡 − 𝜆𝜆𝜎𝜎𝑡𝑡2 − 𝑐𝑐1 ∑ 𝑚𝑚𝑚𝑚𝑚𝑚(0 ,𝑇𝑇𝑂𝑂𝑖𝑖,𝑡𝑡 − 𝑇𝑇𝑂𝑂𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚)𝑁𝑁
𝑖𝑖=1 − 𝑐𝑐2 ∑ 𝑚𝑚𝑚𝑚𝑚𝑚(0 ,𝜔𝜔𝑖𝑖,𝑡𝑡 − 𝜔𝜔𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚)𝑁𝑁
𝑖𝑖=1 ,     

(19) 

where 𝑐𝑐1 and 𝑐𝑐2 are the parameters for the unsatisfied maximum turnover constraint (Eq. 11) 

and maximum weight constraint (Eq. 12). The period reward function above is penalized if the 

turnover 𝑇𝑇𝑂𝑂𝑖𝑖,𝑡𝑡  or portfolio weight 𝜔𝜔𝑖𝑖,𝑡𝑡 goes beyond 𝑇𝑇𝑂𝑂𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚and 𝜔𝜔𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚, respectively. Note that 

the portfolio weight of each asset i is non-negative and the sum of portfolio weights over all 
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asset is equal to 1. The parameters 𝑐𝑐1 and 𝑐𝑐2 are set by balancing the trade-off between the 

portfolio return 𝑟̑𝑟𝑡𝑡  and the two punishment values and need to be carefully selected. If 

parameters are too large, the reward function will sacrifice most of the portfolio return and risk 

performance in order to meet the turnover and box constraints. In contrast, the impact of the 

parameters on the reward function is limited if 𝑐𝑐1  and 𝑐𝑐2 are too small. We calibrate the 

selection of 𝑐𝑐1 and 𝑐𝑐2 and choose values given by 𝑐𝑐1 = 𝑐𝑐2 = 0.5. These values are selected 

using the empirical insights obtained in Zhang et al (2022) and Van Den Oord et al. (2016). 

The state-value function for policy in MDP over a planning horizon of h holding periods 

can be described as follows: 

𝑉𝑉𝜋𝜋(𝑠𝑠) = 𝐸𝐸𝜋𝜋�𝑈𝑈𝑡𝑡,ℎ�𝑠𝑠𝑡𝑡 = 𝑠𝑠� = 𝐸𝐸𝜋𝜋�∑ 𝛾𝛾𝑘𝑘−1𝑢𝑢𝑡𝑡+𝑘𝑘ℎ
𝑘𝑘=1 |𝑠𝑠𝑡𝑡 = 𝑠𝑠�,                          (20) 

where 𝑉𝑉𝜋𝜋(𝑠𝑠) is the expected reward under the policy 𝜋𝜋 and the state 𝑠𝑠. The expectation is 

computed based on the agent's policy mapping 𝜋𝜋. Similarly, we define the action-value function 

for the policy 𝜋𝜋 by using 𝑄𝑄𝜋𝜋 as follows: 

𝑄𝑄𝜋𝜋(𝑠𝑠,𝑎𝑎) = 𝐸𝐸𝜋𝜋�𝑈𝑈𝑡𝑡,ℎ�𝑠𝑠𝑡𝑡 = 𝑠𝑠,𝑎𝑎𝑡𝑡 = 𝑎𝑎� = 𝐸𝐸𝜋𝜋�∑ 𝛾𝛾𝑘𝑘−1𝑢𝑢𝑡𝑡+𝑘𝑘ℎ
𝑘𝑘=1 |𝑠𝑠𝑡𝑡 = 𝑠𝑠,𝑎𝑎𝑡𝑡 = 𝑎𝑎�,           (21) 

where 𝑄𝑄𝜋𝜋(𝑠𝑠,𝑎𝑎) denotes the expected reward function at state 𝑠𝑠 when performing action 𝑎𝑎 and 

following policy 𝜋𝜋. For simplicity, the transition probability is denoted by 𝒫𝒫𝑠𝑠𝑠𝑠′𝑎𝑎 = 𝒫𝒫(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡 =

𝑠𝑠,𝑎𝑎𝑡𝑡 = 𝑎𝑎). Additionally, the expected reward for transitioning from the current state 𝑠𝑠 to the 

next state 𝑠𝑠′ in the next period (𝑠𝑠𝑡𝑡+1) by taking action 𝑎𝑎 is denoted by 𝑢𝑢𝑠𝑠𝑠𝑠′
𝑎𝑎 = 𝐸𝐸(𝑢𝑢𝑡𝑡+1|𝑠𝑠𝑡𝑡 =

𝑠𝑠,𝑎𝑎𝑡𝑡 = 𝑎𝑎, 𝑠𝑠𝑡𝑡+1 = 𝑠𝑠′). 

The self-consistency of the value function indicates that certain recursive relationships are 

required to be met. The multi-period Bellman equation 𝑉𝑉𝜋𝜋(𝑠𝑠) can be expressed as: 

 𝑉𝑉𝜋𝜋(𝑠𝑠) = 𝐸𝐸𝜋𝜋�𝑈𝑈𝑡𝑡,ℎ�𝑠𝑠𝑡𝑡 = 𝑠𝑠� 

             = 𝐸𝐸𝜋𝜋�𝑢𝑢𝑡𝑡+1 + 𝛾𝛾𝑢𝑢𝑡𝑡+2 + 𝛾𝛾2𝑢𝑢𝑡𝑡+3 +⋅⋅⋅ 𝛾𝛾ℎ−1𝑢𝑢𝑡𝑡+ℎ|𝑠𝑠𝑡𝑡 = 𝑠𝑠� 

             = 𝐸𝐸𝜋𝜋 �𝑢𝑢𝑡𝑡+1 + �𝛾𝛾𝑘𝑘−1𝑢𝑢𝑡𝑡+𝑘𝑘

ℎ

𝑘𝑘=2

|𝑠𝑠𝑡𝑡 = 𝑠𝑠� 

              = �𝜋𝜋(𝑠𝑠,𝑎𝑎)
𝑎𝑎

�𝒫𝒫𝑠𝑠𝑠𝑠′
𝑎𝑎

𝑠𝑠′
�𝑢𝑢𝑠𝑠𝑠𝑠′

𝑎𝑎 + 𝛾𝛾𝐸𝐸𝜋𝜋 ��𝛾𝛾𝑘𝑘−1𝑢𝑢𝑡𝑡+𝑘𝑘|𝑠𝑠𝑡𝑡+1 = 𝑠𝑠′
ℎ

𝑘𝑘=2

�� 

             = �𝜋𝜋(𝑠𝑠,𝑎𝑎)
𝑎𝑎

�𝒫𝒫𝑠𝑠𝑠𝑠′
𝑎𝑎 �𝑢𝑢𝑠𝑠𝑠𝑠′

𝑎𝑎 + 𝛾𝛾𝑉𝑉𝜋𝜋(𝑠𝑠′)�
𝑠𝑠′

 

             = �𝜋𝜋(𝑠𝑠,𝑎𝑎)
𝑎𝑎

𝑄𝑄𝜋𝜋(𝑠𝑠,𝑎𝑎). 
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The solution to the Bellman equation is the value function. 

3.3.2 Multi-period portfolio based on DRL 

The learning agent (investor) aims to achieve the multi-period portfolio reward 𝑈𝑈ℎ  over h 

periods. Here, we adopt a DRL-based deterministic policy gradient to obtain the optimal 

portfolio policy. As shown in Fig. 2, the multi-period investment has h state-action pairs i.e., 

(𝑠𝑠𝑡𝑡+1,𝑎𝑎𝑡𝑡+1),(𝑠𝑠𝑡𝑡+2,𝑎𝑎𝑡𝑡+2),...,(𝑠𝑠𝑡𝑡+ℎ,𝑎𝑎𝑡𝑡+ℎ), and the agent aims to maximize both the state-value 

function 𝑉𝑉𝜋𝜋(𝑠𝑠) and the action-value 𝑄𝑄𝜋𝜋(𝑠𝑠,𝑎𝑎). This is achieved by selecting the optimal action 

vector 𝑎𝑎 = (𝑎𝑎𝑡𝑡+1,𝑎𝑎𝑡𝑡+2,⋅⋅⋅,𝑎𝑎𝑡𝑡+ℎ) over h horizons based on the observed state vector 𝑠𝑠 =

(𝑠𝑠𝑡𝑡+1, 𝑠𝑠𝑡𝑡+2,⋅⋅⋅, 𝑠𝑠𝑡𝑡+ℎ).  

 

Fig. 2. The multi-period portfolio trajectory based on DRL. 

Deep learning with a set of neural network parameters 𝜽𝜽 is used to specify the policy in 

the DRL framework, i.e.,𝜋𝜋𝜽𝜽(𝑠𝑠,𝑎𝑎). The objective of DRL is to maximize 𝑈𝑈𝑡𝑡,ℎ over the time 

interval [𝑡𝑡 + 1, 𝑡𝑡 + ℎ] generated by 𝜋𝜋𝜽𝜽(𝑠𝑠,𝑎𝑎) as expressed:  

𝑚𝑚𝑚𝑚𝑚𝑚
𝜽𝜽
𝐽𝐽(𝜋𝜋𝜃𝜃) = 𝔼𝔼𝜋𝜋𝜽𝜽(𝑠𝑠,𝑎𝑎) �𝑈𝑈𝑡𝑡,ℎ(𝑢𝑢𝑡𝑡+1(𝝎𝝎𝑡𝑡+1),𝑢𝑢𝑡𝑡+2(𝝎𝝎𝑡𝑡+2),⋅⋅⋅,𝑢𝑢𝑡𝑡+ℎ(𝝎𝝎𝑡𝑡+ℎ))�.              (23) 

DPG learning methods enable the agents to learn portfolio strategies through real-time 

interaction with financial markets. The agent continuously observes market information and 

learns adaptive strategies during their interaction. This method is usually applicable to real-

time decision-making for financial markets based on the current observed state of the 

environment. We use the state distribution 𝜌𝜌𝜋𝜋(𝑠𝑠) such that the objective function in Eq. (23) 

is given by: 

𝐽𝐽(𝜋𝜋𝜽𝜽) = � 𝜌𝜌𝜋𝜋(𝑠𝑠)� 𝜋𝜋𝜽𝜽(𝑠𝑠,𝑎𝑎)
𝒜𝒜

𝑄𝑄𝜋𝜋(𝑠𝑠, 𝑎𝑎)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝒮𝒮

 

= 𝔼𝔼𝑠𝑠∼𝜌𝜌𝜋𝜋,𝑎𝑎∼𝜋𝜋𝜽𝜽[𝑄𝑄𝜋𝜋(𝑠𝑠,𝑎𝑎)],                                                (24) 

and the gradient of the objective function (see Sutton et al., 2018) is expressed as: 

𝛻𝛻𝜽𝜽𝐽𝐽(𝜋𝜋𝜽𝜽) = � 𝜌𝜌𝜋𝜋(𝑠𝑠)� 𝛻𝛻𝜽𝜽𝜋𝜋𝜽𝜽(𝑠𝑠, 𝑎𝑎)
𝒜𝒜

𝑄𝑄𝜋𝜋(𝑠𝑠,𝑎𝑎)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝒮𝒮

 

= 𝔼𝔼𝑠𝑠∼𝜌𝜌𝜋𝜋,𝑎𝑎∼𝜋𝜋𝜽𝜽[𝛻𝛻𝜽𝜽𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝜽𝜽(𝑠𝑠,𝑎𝑎)𝑄𝑄𝜋𝜋(𝑠𝑠, 𝑎𝑎)].                                       (25)        

(22) 
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Note that the the action-value function 𝑄𝑄𝜋𝜋(𝑠𝑠, 𝑎𝑎) in Eq. (24) and Eq. (25) is computed or 

updated by Eq. (21) using a neural network (value network). DPG adjusts the parameters 𝜽𝜽 of 

the strategy towards the gradient direction of the objective function to maximize the objective 

function. The mathematical expression for parameter update is as follows: 

𝜽𝜽′ ← 𝜽𝜽 + 𝛼𝛼𝛻𝛻𝜽𝜽𝐽𝐽(𝜋𝜋𝜽𝜽),                                                       (26) 

where 𝛼𝛼 denotes the learning rate and 𝛻𝛻(⋅)is the first order partial derivative. It is necessary to 

sample the state and actions under the corresponding distribution function. 

The decision-making process is to evaluate the potential growth of assets in the near future 

and consider the portfolio weight vector of the investment based on the previous action 𝑎𝑎𝑡𝑡  to 

obtain a new portfolio weight  𝝎𝝎𝑡𝑡 . In this case, the investor can achieve the multi-period 

portfolio weight matrix 𝝎𝝎 = (𝝎𝝎𝑡𝑡+1,𝝎𝝎𝑡𝑡+2 ⋅⋅⋅,𝝎𝝎𝑡𝑡+ℎ) over h investment periods; 𝝎𝝎 captures the 

investment behavior of optimizing agents, ultimately guiding the asset portfolio selection 

action 𝒂𝒂 = (𝑎𝑎𝑡𝑡+1,⋅⋅⋅,𝑎𝑎𝑡𝑡+ℎ). 

 

4. Empirical application  

This section illustrates the performance of the proposed portfolio approach under different 

scenarios and datasets. We operate in a high-dimensional setting, interpreted as a portfolio with 

more than 50 assets (Ding et al., 2021) except when analysing the Dow Jones financial index 

that is comprised by 30 assets.  

4.1 Datasets and competing portfolio construction methods 

We consider three important financial indices reflecting the performance of stock markets 

and the overall economy for the US and Canada. For the US, we consider the S&P100 index 

and the DJIA. These indices capture similar dynamics of the US stock market, however, 

whereas the S&P100 index is market-weighted the DJIA is value-weighted and comprised by 

a much smaller number of stocks. The Canadian stock market is represented by the S&P/TSX 

Composite Index, Our data span from 04/01/2010 until 12/07/2023 and are divided into a 

training set and a test set, with the training period spanning from 04/01/2010 to 31/12/2018 and 

the testing period from 02/01/2019 to 12/07/2023 used for out-of-sample evaluation of the 

different models and methods. 

The main purpose of our empirical study is to see the performance of our proposed 

approach for portfolio allocation under different choices of the investment horizon. To assess 
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the robustness of the results and the influence of important factors such as risk aversion, 

constraints on the portfolio weights, or the presence of transaction costs, we carry out the 

analysis for different values of these parameters. As a second empirical contribution, we 

compare the performance of our proposed long-term investment strategy with existing methods 

in the literature that act as benchmarks. Most of these investment strategies used for model 

comparison are state-of-the-art techniques taking advantage of machine learning methods but 

we also consider the equally-weighted portfolio to capture a more traditional and naïve portfolio 

allocation strategy.  

More formally, we consider the following methods to construct optimal investment 

portfolios: 1) Our proposed advanced multi-period DRL-based portfolio method combined with 

the WaveNet-enabled dependence information and CNN-enabled sequential information. This 

method is denoted as MP-Adv-DRL-Cor; 2) The multi-period cost-sensitive portfolio selection 

method using CNN to extract the dynamic asset return features, temporal correlational 

convolution block (TCCB) to perform asset correlation and portfolio policy network (PPN) to 

obtain the portfolio selection, respectively. This method is denoted as MP-CS-PPN-Cor (Zhang 

et al., 2022); 3) The multi-period DPG-based portfolio method with Ensemble of Identical 

Independent Evaluators (EIIE) algorithm (Jiang et al., 2017), denoted by MP-DPG; 4) The 

equally-weight portfolio method, denoted by EW, 5) The single-period DRL-based portfolio 

method combined with WaveNet and CNN, denoted by SP-Adv-DRL-Cor. Note that the MP-

Adv-DRL-Cor, MP-CS-PPN-Cor, and MP-DPG methods optimize the objective reward 

function provided in Eq. (19) that includes transaction costs in the optimal portfolio problem.  

The inclusion of Strategy 5 is to assess the differences in portfolio performance of our proposed 

methodology between long- and short-term investment horizons.  

All of the strategies except the EW portfolio require some prior definition of a set of 
hyperparameters. In order to improve the learning efficiency of machine learning-based 
portfolio algorithms, it is crucial to choose appropriate hyperparameters. The values 
characterizing the architecture of the neural network models, DRL method, and portfolio 
constraints are shown in Table 1. These values are standard in the related literature and adopted 
by Sutton & Barto (2018), Zhang et al. (2022), Marzban et al. (2023), and Hambly et al. (2023), 
among others. For example, we choose a moderate learning rate of 0.0002 as in Sutton and 
Barto (2018) to ensure a balance between convergence speed and model stability. Instead, if 
the learning rate is very small (e.g., a = 0.00001), the convergence speed is slow and the training 
time increases significantly. In contrast, if the learning rate is very large (e.g., a = 0.01), it may 
lead to dramatic fluctuations and an unstable training process. The number of hidden layers and 
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their size are also taken from the related literature. If too many hidden layers are set the model 
may become overly complex, leading to excessive computational complexity. Conversely, an 
insufficient number of hidden layers may limit the model’s learning ability, which in turn 
affects model performance. It is also worth discussing the choice of portfolio constraints and 
the discount rate. Following the work of Marzban et al. (2023), the maximum weight is set to 
be 0.7 to avoid excessive leverage on specific assets, and the discount rate is set to 0.98, 
following the suggestions in Sutton and Barto (2018), Zhang et al. (2022), and Hambly et al. 
(2023).  

 

4.2. Performance measures 

All of the following empirical results are evaluated using out-of-sample data (“test data”). 

Different metrics are adopted to measure portfolio performance. Firstly, as an indicator of the 

return on investment, the accumulated portfolio value (APV) is used to evaluate the increase in 

portfolio value over time. This performance measure considers the effect of transaction costs 

and is expressed as: 

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑝𝑝0 ∏ �(1 − 𝜓𝜓𝑡𝑡+𝑘𝑘)(1 + 𝝎𝝎𝑡𝑡+𝑘𝑘−1
𝑇𝑇 𝒓𝒓𝑡𝑡+𝑘𝑘)�𝑇𝑇

𝑡𝑡=1 ,                                (27) 

where 𝑝𝑝0 is the initial value of the portfolio and 𝜓𝜓𝑡𝑡  represents the percentage of transaction  

costs. APV typically focuses on total value without considering the underlying risk in the  

portfolio. To control for the underlying risk, we follow the investment literature and employ  

the Sharpe ratio (SR) as a second indicator of performance: 

𝑆𝑆𝑆𝑆 = 𝐸𝐸𝑡𝑡(𝑟̑𝑟𝑡𝑡+1−𝑟𝑟𝑡𝑡,𝑓𝑓)
𝜎𝜎𝑡𝑡

,                                                         (28) 

Table 1. Hyperparameter values. 

Hyperparameter Value  Hyperparameter Value 

Learning rate a 2×10-4  Decay rate 0.9999 

Optimizer 𝛾𝛾 Adam  Planning horizon h 36 

Discount factor  0.98  Look back window size 36 

Mini-batch size 32  Number of epochs 1000 

Hidden layers of CNN 2  Parameter c1, c2 0.5 

Hidden layers of WaveNet 7  Maximum weight 𝜔𝜔𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 0.7 

Hidden layer size 256  Maximum turnover 𝑇𝑇𝑂𝑂𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚  0.5 
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where 𝑟̑𝑟𝑡𝑡 is the rate of return as defined in Eq. (5) at time t and 𝑟𝑟𝑡𝑡,𝑓𝑓 is the risk-free rate. The 

Sharpe ratio uses the standard deviation as a measure of risk without differentiating between 

upward and downward volatility, which means it may overly focus on short-term adverse 

fluctuations and overlook positive ones. Consequently, to better identify and evaluate a 

portfolio's downside risk, we turn to the Maximum drawdown (MDD). MDD measures actual 

losses and reflects the maximum potential loss a portfolio may face. It is defined as: 

MDD=max
𝑡𝑡:𝑗𝑗>𝑡𝑡

(𝑝𝑝𝑡𝑡′−𝑝𝑝𝑗𝑗
′ )

𝑝𝑝𝑡𝑡′
,                                                        (29) 

where 𝑗𝑗＞𝑡𝑡; 𝑝𝑝𝑡𝑡  is the total value of the portfolio at time t as expressed in Eq. (2), and 𝑝𝑝𝑗𝑗 is 

the aggregate value of the portfolio at time 𝑗𝑗. In general, a lower value of the MDD metric 

reflects a more stable and lower-risk investment. 

4.3. Effects of investment horizon on portfolio performance 

We evaluate empirically the influence of the holding period h on our proposed MP-Adv-

DRL-Cor method. This investment strategy corresponds to Method 1 in the above description 

of the portfolio strategies. For comparison purposes, we consider as a separate investment 

strategy, called Method 5, the myopic version of Method 1 that is constructed for an investment 

horizon of h=1. The baseline parameters considered for this exercise are ξ=0.01% for the 

transaction costs and λ=0.01 for the risk aversion coefficient. These parameters represent very 

low levels of transaction costs and risk aversion, respectively. The purpose of using these values 

is to fully capture the potential of our investment strategy over a multi-period horizon by 

minimizing the effect of risk aversion and transaction cost penalties on the objective function. 

The results of this exercise for the three financial indices under investigation are shown in Fig. 

3 and Table 2. 
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 (a) 100 assets of the S&P dataset 

 
(b) 30 assets of the DJIA dataset 

 

(c) 50 assets of the S&P/TSX dataset 
 

Fig. 3. APV for MP-Adv-DRL-Cor under different investment horizons h for the three 

financial indices over the out-of-sample evaluation period 02/01/2019 to 12/07/2023. 

ξ=0.01% for transaction costs and λ=0.01 for the risk aversion coefficient. 
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The results from Fig. 3 and Table 2 show that extending the holding period (h=1, 5, 22, 

36) generally leads to increased portfolio gains under the proposed MP-Adv-DRL-Cor method 

but also results in higher annual realized volatilities. This is because when considering extended 

investment periods, investors can maximize the total utility over the long term, which typically 

avoids making myopic short-term investment decisions. The trade-off between mean return and 

volatility is captured by the Sharpe ratio. The performance of this indicator is not monotonic 

over the investment horizon. The results for the S&P100 and DJIA financial indices show an 

increase in Sharpe ratio up to h=36 trading days and then a drop in value due to a decrease in 

portfolio return accompanied by an increase in volatility. The results for the Canadian index 

are similar in the sense that the performance metrics report an optimal investment horizon 

beyond which portfolio performance decreases. However, in contrast to the US stock indices, 

portfolio performance measured by the Sharpe ratio reaches a peak at h=22 days and then drops. 

Table 2. Portfolio performance metrics under different holding periods h on three 
datasets. 

Holding 
period          

Annual      
return 
 (%) 

Annual 
volatility       

(%) 

Sharpe 
Ratio 

Maximum 
drawdown 

(%) 
Turnover 

S&P 100 Index 
h=1 12.48 24.57 0.508 39.80 0.007 
h=5 25.72 28.89 0.890 39.19 0.087 
h=22 22.37 37.08 0.603 44.13 0.099 
h=36 29.21 36.14 0.808 32.09 0.170 
h=66 27.51 39.43 0.698 66.10 0.107 

DJIA Index 
h=1 8.808 21.43 0.411 35.34 0.007 

h=5 19.79 33.51 0.590 51.72 0.080 
h=22 19.23 32.49 0.592 52.63 0.103 
h=36 28.88 34.32 0.841 44.24 0.109 

h=66 17.40 31.32 0.555 36.22 0.092 
S&P/TSX Composite Index 

h=1 13.58 25.35 0.536 48.01 0.008 
h=5 17.91 21.58 0.830 37.94 0.009 
h=22 18.42 22.10 0.833 38.65 0.020 

h=36 21.38 27.08 0.790 40.83 0.074 
h=66 15.50 37.11 0.418 55.38 0.197 
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The reason for this drop in profitability adjusted for risk is a substantial increase in volatility 

not followed by a similar rise in mean return. In fact, the mean return falls from h=36 to 66 

investment horizon. Therefore, continually extending the investment horizon does not always 

yield better portfolio performance. Thus, the horizon period h needs to be carefully selected. 

These results are broadly consistent with the literature on long-term portfolio allocation. The 

profitability of the portfolio increases with the investment horizon, while the annual volatility 

is also expected to rise.  

4.4. Portfolio performance under different risk aversion levels 

The next exercise shows the effect of the risk aversion coefficient λ for different holding 

periods. We consider h=5 and h=36 for which Fig. 3 shows that the relationship between 

portfolio performance and investment horizon is monotonically increasing for small values of 

risk aversion. The aim of this exercise is to increase the level of risk aversion and see the effect 

on portfolio performance for each investment horizon. For space considerations, we fix the 

transaction cost rate at ξ=0.01% and consider only the S&P100 index.  

Fig. 4 shows that the cumulative portfolio value tends to decrease as λ increases, and its 

trajectories also become less volatile. Table 3 provides further clarity on the rationale for these 

dynamics. Both annual return and volatility decline as the level of risk aversion increases, 

however, the drop is more acute in mean return than in volatility. This downward trend is 

especially noticeable when λ rises from 0.1 to 1. An increase in λ implies that investors are 

more inclined to select conservative strategies to mitigate portfolio risks. This preference leads 

to a decline in trading frequency and investment activity, as shown in the Turnover column of 

Table 3. Specifically, when the risk aversion coefficient is very high, i.e. λ=1, portfolio 

volatility is significantly reduced. Consequently, the potential for substantial annual returns and 

a high Sharpe ratio is limited. For instance, under h=36, the annual return is only 9.54% with 

λ=1 compared to 29.21% when λ=0.01. The figures in Table 3 also provide some insights into 

the fruitfulness of considering higher investment horizons for a given level of risk aversion. 

Thus, the comparison of rows with same levels of risk aversion across panels suggests that both 

the annual return and the volatility are higher as h increases. However, the ratio between both 

quantities given by the Sharpe ratio is slightly more favourable to the longer investment horizon 

reinforcing the idea that longer investment horizons may be more profitable for a given degree 

of risk aversion.  
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A related question is how to choose realistic values of the risk aversion coefficient for the 

reward functions introduced above. Zhang et al. (2022), in a similar context, explored different 

values of this coefficient and found a better balance between risk and return when λ is around 

0.01. Similar results are obtained in our empirical exercise when the risk aversion coefficient 

rises from 0.001 to 0.1 for h=5, however, it is worth noting the excellent performance of the 

method for very low levels of risk aversion under longer investment horizons. 

 

 

 
(a) Portfolio performance under different risk aversion levels λ when h =5 

 
(b) Portfolio performance under different risk aversion levels λ when h =36 

 
Fig. 4. APV for MP-Adv-DRL-Cor under different risk aversion levels for the S&P100 
index over the out-of-sample evaluation period 02/01/2019 to 12/07/2023. ξ=0.01% for 
transaction costs and h =5 (top panel) and h =36 (bottom panel). 
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4.5 Portfolio performance under different transaction costs 

This subsection evaluates the role of transaction costs on the performance of multi-period 

investment portfolios. As in the previous exercises, the optimal portfolios are constructed using 

the MP-Adv-DRL-Cor method. Risk aversion is fixed at λ=0.01 and transaction costs vary 

between a low value given by ξ=0.05% and a high value given by 0.5%. For comparison 

purposes, we only consider optimal portfolios comprised by the assets in the S&P100 index. 

Fig. 5 and Table 4 show that the annual returns are higher when the transaction cost rate ξ is 

low at 0.05%, compared to the annual returns for the higher rate of 0.5%. This result holds 

across investment horizons. In contrast, the annual volatility of the portfolios is hardly affected 

by the presence of transaction costs, entailing a decrease in Sharpe ratios as ξ increases across 

values of h.  

The presence of transaction costs mainly affects the profitability of the portfolios and does 

not increase risk. It also has a major impact on the turnover of the portfolios. Under the presence 

of transaction costs, investors have fewer incentives to rebalance their portfolios under changes 

in investment opportunities over time. The effect of turnover is particularly visible for longer 

investment horizons where we observe a decrease of an order of magnitude in the performance 

measure for high values of the transaction costs. Importantly, the results for ξ=0.05% are very 

Table 3. Portfolio performance metrics under different risk aversion coefficients λ. 

λ 
Annual 
return 
(%) 

Annual 
volatility 

(%) 

Sharpe 
ratio 

Maximum 
drawdown 

(%) 
Turnover 

h=5 
λ=0.001 26.11 29.96 0.872 39.55 0.082 
λ=0.01 25.71 28.89 0.890 39.19 0.087 
λ=0.1 21.25 23.55 0.902 31.17 0.021 
λ=1 9.037 19.70 0.459 36.08 0.017 

h=36 
λ=0.001 39.99 38.44 1.014 44.66 0.333 

λ=0.01 29.21 36.14 0.808 32.09 0.170 
λ=0.1 27.91 25.99 1.074 31.64 0.064 
λ=1 9.539 19.22 0.496 36.05 0.032 
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similar to the results reported in Table 2 for ξ=0.01% and suggest that portfolios’ risk-adjusted 

profitability is monotonically increasing on the investment horizon. In contrast, for high 

transaction costs, portfolios’ profitability is reduced but not the underlying volatility implying 

that optimal portfolios constructed for intermediate investment horizons report higher Sharpe 

ratios.  

 

 
(a) Portfolio performance under different holding periods h when ξ=0.05% 

 

 
(b) Portfolio performance under different holding periods h when ξ=0.5% 

 
Fig. 5. APV for MP-Adv-DRL-Cor under different investment horizons h for the S&P100 
index over the out-of-sample evaluation period 02/01/2019 to 12/07/2023 for ξ=0.05% (top 
panel) and ξ=0.5% (bottom panel). 

 
 

The results in Fig. 5 and Table 4 are qualitatively similar to the analysis of risk aversion. 

Transaction costs reduce the profitability of portfolios. Interestingly, this result is stronger as 

the investment horizon rises entailing sharper declines for h=66.  
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4.6 Portfolio performance comparisons 

The previous subsections have shown the ability of our proposed procedure to construct 

optimal portfolios for different investment horizons and under different choices of transaction 

costs and risk aversion. This subsection complements this analysis by comparing the 

performance of our procedure against existing competitors, most of them drawn from the 

machine learning literatures on portfolio allocation. The aim of this exercise is to show that the 

MP-Adv-DRL-Cor procedure outperforms these methods under most scenarios given by 

different levels of risk aversion and transaction costs. Figures 6, 7 and 8 present empirical 

results for the S&P100 index, DJIA, and the S&P/TSX index for investment horizons h=1, 22, 

66 with ξ=0.05% and λ=0.1. Additional results for other combinations of transaction costs and 

risk aversion (ξ=0.5% and λ=0.1, ξ=0.05% and λ=1) are available from the authors upon 

request.  

The APV associated to the EW method is the same across investment horizons and serves 

as a helpful benchmark for comparing the performance of the remaining competitors. For h=1, 

the APVs are surprisingly similar across investment strategies suggesting that for ξ=0.05% and 

λ=0.1, the use of the proposed techniques based on machine learning methods are not 

necessarily superior to naïve investment methods such as the EW portfolio. Sophisticated 

techniques are superior in settings characterized by investment over multiple periods. The MP-

Table 4. Portfolio performance metrics for different periods h when ξ=0.05% and 0.5%. 

Holding period 
Annual 
return 
(%) 

Annual 
volatility 

(%) 

Sharpe 
ratio 

Maximum 
drawdown 

(%) 
Turnover 

Transaction cost rate ξ=0.05% 
h=1 12.32 24.57 0.502 39.82 0.007 

h=5 21.20 27.45 0.772 40.35 0.019 
h=22 23.63 28.52 0.829 39.32 0.033 
h=36 24.38 24.83 0.982 35.54 0.030 
h=66 38.21 33.02 1.157 42.34 0.063 

Transaction cost rate ξ=0.5% 
h=1 10.56 24.56 0.430 40.00 0.007 

h=5 11.48 24.58 0.467 39.97 0.006 
h=22 21.56 30.38 0.710 45.73 0.005 
h=36 18.14 23.19 0.782 33.25 0.006 
h=66 11.64 24.52 0.475 39.80 0.006 
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Adv-DRL-Cor method exhibits superior performance than the other four approaches for 

investment horizons greater than one period. It is also worth noting the good performance of 

MP-CS-PPN-Cor, however, there are cases such as h=22 for the DJIA index in which the 

method reports very poor results. Table 5 formalizes the results in Fig. 6 for the S&P100 index. 

For h=1, we observe similar results for the five performance measures under investigation 

across methods. The results for h=22 in the middle panel reveal the strong performance of MP-

Adv-DRL-Cor in terms of annual return and Sharpe ratio and the poor performance of MP-

DPG.  

 
Table 5. Portfolio performance metrics for five portfolios when h =1, 22, and 66 under 
S&P100 index. 

Method 
Annual 
return 
(%) 

Annual 
volatility 

(%) 

Sharpe 
ratio 

Maximum 
drawdown 

(%) 
Turnover 

h =1 
MP-Adv-DRL-Cor 12.32 24.57 0.502 39.82 0.007 
MP-CS-PPN-Cor 10.05 23.75 0.423 36.62 0.006 

MP-DPG 12.19 24.69 0.494 40.10 0.011 
SP-Adv-DRL-Cor 12.32 24.57 0.502 39.82 0.007 

EW 13.03 24.59 0.530 39.80 0.006 
h =22 

MP-Adv-DRL-Cor 29.80 31.65 0.942 34.53 0.192 
MP-CS-PPN-Cor 19.32 21.74 0.888 28.84 0.005 

MP-DPG 2.110 49.05 0.043 57.62 0.730 

SP-Adv-DRL-Cor 12.32 24.57 0.502 39.82 0.007 

EW 13.03 24.59 0.530 39.80 0.006 
h =66 

MP-Adv-DRL-Cor 15.11 35.99 0.420 57.15 0.116 

MP-CS-PPN-Cor 21.52 23.33 0.922 32.56 0.006 

MP-DPG -22.20 53.24 -0.417 82.54 0.809 

SP-Adv-DRL-Cor 12.32 24.57 0.502 39.82 0.007 

EW 13.03 24.59 0.530 39.80 0.006 
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Fig. 6. APV for the five investment portfolios evaluated for S&P100 Index data over the 
period 02/01/2019 to 12/07/2023 for h =1 (top panel), h=22 (middle panel) and h=66 
(bottom panel) when ξ=0.05% and λ=0.1. 
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Fig. 7. APV for the five investment portfolios evaluated for DJIA Index data over the period 
02/01/2019 to 12/07/2023 for h =1 (top panel), h=22 (middle panel) and h=66 (bottom panel) 
whenξ=0.05% and λ=0.1.  
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Fig. 8. APV for the five investment portfolios evaluated for S&P/TSX Index data over the 
period 02/01/2019 to 12/07/2023 for h =1 (top panel), h=22 (middle panel) and h=66 (bottom 
panel) when ξ=0.05% and λ=0.1.  
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The MP-Adv-DRL-Cor and MP-CS-PPN-Cor investment strategies are the best 

performers for the three data sets. Both methods adopt correlation networks, however, MP-CS-

PPN-Cor adopts the TCCB framework. This method is not invariant to the ordering of the assets 

in the portfolio implying that portfolio performance can greatly vary when the ordering of the 

assets changes. Unlike TCCB, the WaveNet approach contains a simpler permutation invariant 

structure that can efficiently capture asset correlation, thus achieving higher portfolio 

performance under different choices of transaction costs and risk aversion. This result is 

because the multi-period strategic investment employs a dynamic asset allocation strategy to 

adapt the portfolio weights under time-varying financial conditions. Also, the multi-period 

strategy is more effective in managing portfolio's overall risk by considering long-term risk and 

return. In contrast, a single-period (tactical investing) focuses more on short-term market 

volatility and takes advantage of market opportunities to maximize wealth in the short term 

while ignoring long-term investment opportunities. 

4.7. Dimensionality effects on portfolio performance 

An interesting feature of our proposed procedure is the ability to work with high-

dimensional portfolios given by a large number of investment assets. This is illustrated in the 

following empirical exercise in which we also compare the performance of MP-Adv-DRL-Cor 

against the four competitors discussed above. To do this, we consider the universe of assets in 

the S&P500 index and take random subsets of 50, 75, 100 and 200 assets. The results are 

provided in Fig. 9 and Table 6. Each panel of Fig. 9 represents the APV of the five competing 

portfolios for different number of assets. The empirical results provide overwhelming evidence 

on the outperformance of our proposed approach across different choices of the number of 

assets. The differences in APV are more important as the number of assets comprising the 

portfolios increase. Interestingly, the dynamics and magnitudes of the cumulative portfolio 

returns do not vary much with the number of assets, suggesting that the weight allocated to each 

asset is quite small. Increasing the number of assets does not contribute massively to improve 

annual return but helps to mitigate risk through improved diversification of the portfolio. This 

is achieved for all methods but our MP-Adv-DRL-Cor approach shows superior performance 

for larger portfolios.  
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(a) Performance comparisons with 50 assets 

 
(b) Performance comparisons with 75 assets 

 
(c) Performance comparisons with 100 assets 

 
(d) Performance comparisons with 200 assets 

 
Fig. 9. APV across investment portfolios for random subsets of the S&P500 Index over the 
period 02/01/2019 to 12/07/2023 for different numbers of assets. 
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Table 6 confirms these results and provides further insights obtained from alternative 

performance measures considering risk exposure along with portfolio annual return. Increasing 

the number of assets in the portfolio rises annual return keeping portfolio variance mostly 

constant. In particular, the results show that the MP-Adv-DRL-Cor strategy is superior to the 

Table 6. Portfolio performance metrics for five investment strategies constructed from 
different numbers of stocks from the S&P500 index. 
 

Method 
Annual 
return 
(%) 

Annual 
volatility 

(%) 

Sharpe 
ratio 

Maximum 
drawdown 

(%) 
Turnover 

50 assets 
MP-Adv-DRL-Cor 22.86 23.24 0.984 32.72 0.018 
MP-CS-PPN-Cor 17.00 21.22 0.801 31.14 0.005 

MP-DPG 12.13 25.62 0.473 41.18 0.092 

SP-Adv-DRL-Cor 13.29 25.09 0.530 39.55 0.007 

EW 13.93 25.10 0.555 39.54 0.006 
75 assets 

MP-Adv-DRL-Cor 24.01 23.04 1.042 29.23 0.045 

MP-CS-PPN-Cor 19.29 31.43 0.614 43.53 0.401 

MP-DPG 13.67 25.63 0.533 41.32 0.033 

SP-Adv-DRL-Cor 13.87 24.85 0.558 39.83 0.007 
EW 14.59 24.86 0.587 39.82 0.006 

100 assets 
MP-Adv-DRL-Cor 24.38 24.83 0.952 35.54 0.030 

MP-CS-PPN-Cor 15.40 23.78 0.680 37.41 0.009 

MP-DPG 12.28 25.78 0.477 41.40 0.034 

SP-Adv-DRL-Cor 12.32 24.57 0.502 39.82 0.007 
EW 13.02 24.59 0.530 39.80 0.006 

200 assets 
MP-Adv-DRL-Cor 22.34 23.47 0.952 30.17 0.027 

MP-CS-PPN-Cor 13.48 23.18 0.581 37.41 0.013 

MP-DPG 12.51 27.28 0.458 46.83 0.080 

SP-Adv-DRL-Cor 13.43 23.64 0.568 39.01 0.007 
EW 14.03 23.66 0.593 39.01 0.006 
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MP-CS-PPN-Cor approach, and the performance gap widens as the number of assets increases. 

Such superiority is mainly attributed to the ability of the WaveNet approach to model asset 

mutual dependence. In conclusion, the above results confirm the superiority of the two-stream 

learning frameworks and the importance of applying suitable machine learning models for 

modelling asset dependencies. The results also confirm the learning ability of our method in 

addressing high-dimensional portfolio problems. 

 

5. Conclusion 

This paper proposes an advanced multi-period portfolio selection method that employs 

DRL for decision-making, convolutional neural networks to extract the dynamics of asset prices 

and WaveNet to identify cross-dependencies among the set of investment assets. The proposed 

approach is capable of solving multi-period investment portfolio problems in high-dimensional 

settings characterized by an investment pool of many stocks. An extensive empirical 

application to different datasets, levels of risk aversion and transaction costs, shows the good 

performance of the proposed portfolio allocation procedure for different investment horizons. 

We find a monotonic relationship between risk-adjusted profitability and the investment 

horizon for low levels of risk aversion and transaction costs. Increasing levels of risk aversion 

affect the performance of long-term investment portfolios by reducing incentives to invest over 

longer horizons. The presence of transaction costs also affects the performance of long-term 

portfolios by reducing the net annual return above and beyond the reduction observed for short-

term portfolios while keeping portfolio volatility roughly constant. Our results also show the 

outperformance of our proposed procedure against competing methods for constructing optimal 

portfolios drawn from the machine learning literature in asset allocation. These results are 

robust to different factors such as the number of assets, risk aversion levels, and the presence 

of transaction costs.   

 

 

 

 

 

 

 



   33 

References 

Aboussalah, A. M., Xu, Z., & Lee, C. G. (2021). What is the value of the cross-sectional 

approach to deep reinforcement learning? Quantitative Finance, 22(6),1091-1111.  

Ait-Sahalia, Y., & Brandt, M. (2001). Variable selection for portfolio choice. The Journal 

of Finance, 56, 1297-1351. 

Barberis, N. (2000). Investing for the long run when returns are predictable. The Journal 

of Finance, 55, 225–264. 

Bellman, R. (1957). A Markovian decision process. Journal of mathematics and 

mechanics, 679-684. 

Bernardi, M., & Catania, L. (2018). Portfolio optimisation under flexible dynamic 

dependence modelling. Journal of Empirical Finance, 48, 1-18. 

Bertsimas, D., & Sim, M. (2004). The price of robustness. Operations Research, 52(1), 

35-53. 

Brandt, M. (1999). Estimating portfolio and consumption choice: A conditional Euer 

equations approach. The Journal of Finance, 54, 1609-1646. 

Brandt, M., & Clara, P. S. (2006). Dynamic portfolio selection by augmenting the asset 

space. The Journal of Finance, 61, 2187-2217. 

Brennan, M. J., Schwartz, E. S., & Lagnado, R. (1997). Strategic asset allocation. Journal 

of Economic dynamics and Control, 21(8-9), 1377-1403. 

Brennan, M. J., Schwartz, E. S., & Lagnado, R. (1999). The use of treasury bill futures in 

strategic asset allocation programs. In W. T. Ziemba, & J. Mulvey (Eds.), World wide asset and 

liability modeling. Cambridge University Press. 

Campbell, J., Chan, Y., & Viceira, L. (2003). A multivariate model of strategic asset 

allocation. Journal of Financial Economics. 67 (1), 41-80. 

Campbell, J., & Viceira, L. (1999). Consumption and portfolio decisions when expected 

returns are time varying. Quarterly Journal of Economics. 114 (2), 433-495. 

Campbell, J., & Viceira, L. (2001). Who should buy long-term bonds?. American 

Economic Review, 91, 99-127. 

Campbell, J., & Viceira, L. (2002). Strategic asset allocation: Portfolio choice for long-

term investors. New York, NY: Oxford University Press. 

Chen, S., & Ge, L. (2021). A learning-based strategy for portfolio selection. International 
Review of Economics & Finance, 71, 936-942. 

Constantinides, G. M. (1986). Capital market equilibrium with transaction costs. Journal 

of Political Economy, 94(4), 842-862. 

Cong, L. W., Tang, K., Wang, J., & Zhang, Y. (2022). AlphaPortfolio: Direct construction 

through deep reinforcement learning and interpretable AI. Available at SSRN 3554486. 



   34 

Corsaro, S., De Simone, V., Marino, Z., & Scognamiglio, S. (2022). l1-Regularization in 

Portfolio Selection with Machine Learning. Mathematics, 10(4), 540.  

Cui, T. X., Du, N. J., Yang, X. Y., & Ding, S. S. (2024). Multi-period portfolio 

optimization using a deep reinforcement learning hyper-heuristic approach. Technological 

Forecasting and Social Change,198,122944.  

Ding, Y., Li, Y., & Zheng, X. (2021). High dimensional minimum variance portfolio 
estimation under statistical factor models. Journal of Econometrics, 222(1), 502-515. 

Eom, C., & Park, J. W. (2017). Effects of common factors on stock correlation networks 

and portfolio diversification. International Review of Financial Analysis, 49, 1-11. 

Epstein, L., & Zin, S. (1989). Substitution, risk aversion, and the temporal behavior of 

consumption and asset returns: a theoretical framework. Econometrica, 57, 937-969. 

Epstein, L., & Zin, S. (1991). Substitution, risk aversion, and the temporal behavior of 

consumption and asset returns: an empirical investigation. Journal of Political Economy, 99, 

263-286. 

Escobar, M., Ferrando, S., & Rubtsov, A. (2016). Portfolio choice with stochastic interest 

rates and learning about stock return predictability. International Review of Economics & 

Finance, 41, 347-370. 

Fan, Q., Wu, R., Yang, Y., & Zhong, W. (2024). Time-varying minimum variance 

portfolio. Journal of Econometrics, 239(2), 105339. 

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang X., Wang G., 

Cai J., & Chen, T. (2018). Recent advances in convolutional neural networks. Pattern 

recognition, 77, 354-377. 

Hambly, B., Xu, R., & Yang, H. (2023). Recent advances in reinforcement learning in 

finance. Mathematical Finance, 33(3), 437-503. 

Jaisson, T. (2022). Deep differentiable reinforcement learning and optimal trading. 

Quantitative Finance, 22(8),1429-1443. 

Jiang, Y., Olmo, J., & Atwi, M. (2024). Deep reinforcement learning for portfolio 

selection. Global Finance Journal, 62, 101016. 

Jiang, Z. Y., Xu, D. X., & Liang, J. J. (2017). A deep reinforcement learning framework 

for the financial portfolio management problem. arXiv preprint arXiv:1706.10059. 

Kamali, R., Mahmoodi, S., & Jahandideh, M.T. (2019). Optimization of multi-period 

portfolio model after fitting best distribution. Finance Research Letters, 30, 44-50. 

Kim, T. S., & Omberg, E. (1996). Dynamic nonmyopic portfolio behavior. Review of 

Financial Studies, 9, 141-161. 

Laborda, R., & Olmo, J. (2017). Optimal asset allocation for strategic investors. 

International Journal of Forecasting, 33(4), 970-987. 



   35 

Lintner, J. (1965). Security prices, risk, and maximal gains from diversification. The 

Journal of Finance, 20(4), 587-615. 

Liu, H., & Loewenstein, M. (2002). Optimal portfolio selection with transaction costs and 

finite horizons. The Review of Financial Studies, 15(3), 805-835. 

Lucey, B. M., & Muckley, C. (2011). Robust global stock market 

interdependencies. International Review of Financial Analysis, 20(4), 215-224. 

Markowitz, H. M. (1952). Portfolio selection. The Journal of Finance, 7(1),77. 

Marzban, S., Delage, E., Li, J. Y. M., Desgagne-Bouchard, J., & Dussault, C. (2023). 

WaveCorr: Deep reinforcement learning with permutation invariant convolutional policy 

networks for portfolio management. Operations Research Letters, 51(6), 680-686. 

Merton, R. (1969). Lifetime portfolio selection under uncertainty: the continuous time 

case. Review of Economics and Statistics, 51, 247-257. 

Merton, R. (1971). Optimum consumption and portfolio rules in a continuous time model. 

Journal of Economic Theory, 3, 373-413. 

Moody, J., Wu, L., Liao, Y., & Saffell, M. (1998). Performance functions and 

reinforcement learning for trading systems and portfolios. Journal of Forecasting, 17(5‐6), 441-

470. 

Olschewski, S., Diao, L., & Rieskamp, J. (2021). Reinforcement learning about asset 

variability and correlation in repeated portfolio decisions. Journal of Behavioral and 

Experimental Finance. 32, 100559. 

Samuelson, P. (1969). Lifetime portfolio selection by dynamic stochastic programming. 

Review of Economics and Statistics, 51, 239-246. 

Schroder, M., & Skiadas, C. (1999). Optimal consumption and portfolio selection with 

stochastic differential utility. Journal of Economic Theory, 21, 68- 126. 

Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under 

conditions of risk. Journal of Finance, 19(3), 425-442. 

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press. 

ISBN 9780262039246. http://www.scholarpedia.org/article/Reinforcement_learning. 

Van Den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., 

Kalchbrenner, N., Senior, A., & Kavukcuoglu, K. (2016). WaveNet: A generative model for 

raw audio. arXiv preprint arXiv:1609.03499, 12. 

Wang, H., & Zhou, X. Y. (2020). Continuous Time Mean-Variance Portfolio Selection: A 

Reinforcement Learning Framework. Mathematical Finance, 30(4), 1273-1308. 

Watcher, J. (2002). Portfolio and consumption decisions under mean-reverting returns: an 

exact solution for complete markets. Journal of Financial and Quantitative Analysis, 37, 63-

91. 



   36 

Wei, J., Yang, Y. X., Jiang, M., & Liu, J.G. (2021). Dynamic multi-period sparse portfolio 

selection model with asymmetric investors' sentiments. Expert Systems with Applications, 

177,114945.  

Xu, K., Zhang, Y. F., Ye, D. H., Zhao, P. L., & Tan, M. K. (2020). Relation-aware 

transformer for portfolio policy learning. International Joint Conference on Artificial 

Intelligence, https://doi.org/10.24963/ijcai.2020/641 

Zhang, Y., Zhao, P., Wu, Q., Li, B., Huang, J., & Tan, M. (2022). Cost-sensitive portfolio 

selection via deep reinforcement learning. IEEE Transactions on Knowledge and Data 

Engineering, 34(1), 236-248. 

Zhao, T., Ma, X., Li, X., & Zhang, C. (2023). Asset correlation based deep reinforcement 

learning for the portfolio selection. Expert Systems with Application, 221, 119707. 


	1. Introduction
	2. Multi-period portfolio optimization
	3. Investor’s long-term optimization problem
	3.1. Extraction of dynamic price sequence information based on CNN
	3.2. Cross-asset dependence information extraction based on WaveNet
	3.3. Multi-period portfolio decision-making based on DRL
	3.3.1. MDP with multi-period Bellman equation
	3.3.2 Multi-period portfolio based on DRL


	4. Empirical application
	4.1 Datasets and competing portfolio construction methods
	4.2. Performance measures
	4.3. Effects of investment horizon on portfolio performance
	4.4. Portfolio performance under different risk aversion levels
	4.5 Portfolio performance under different transaction costs
	4.6 Portfolio performance comparisons
	4.7. Dimensionality effects on portfolio performance

	5. Conclusion

