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A B S T R A C T

This paper proposes a novel investment strategy based on deep reinforcement learning (DRL) for 
long-term portfolio allocation in the presence of transaction costs and risk aversion. We design an 
advanced portfolio policy framework to model the price dynamic patterns using convolutional 
neural networks (CNN), capture group-wise asset dependence using WaveNet, and solve the 
optimal asset allocation problem using DRL. These methods are embedded within a multi-period 
Bellman equation framework. An additional appealing feature of our investment strategy is its 
ability to optimize dynamically over a large set of potentially correlated risky assets. The per
formance of this portfolio is tested empirically over different holding periods, risk aversion levels, 
transaction cost rates, and financial indices. The results demonstrate the effectiveness and su
periority of the proposed long-term portfolio allocation strategy compared to several competitors 
based on machine learning methods and traditional optimization techniques.

1. Introduction

Portfolio management supports investors in making decisions on how to allocate resources and funds across a set of assets and over 
time. Traditional portfolio selection methods typically consider single-period returns. Markowitz (1952) pioneered the mean-variance 
optimization model, which remains foundational in portfolio theory. This framework seeks to maximize the expected return for a given 
level of risk by considering the variance of asset returns. Despite its simplicity and wide application, Markowitz’s paradigm has 
limitations, particularly in addressing long-term investment horizons and dynamic market conditions.

Long-term portfolio allocation focuses on how investors can optimally allocate investment assets over extended periods of time to 
maximize returns while managing risks (Escobar et al., 2016; Fan et al., 2024; Lucey & Muckley, 2011). One of the first contributions in 
this area was Merton (1969, 1971), who extended the portfolio selection framework to a continuous-time setting, incorporating 
intertemporal choice and dynamic strategies for long-term investors. His work introduced the concept of dynamic asset allocation, 
emphasizing the importance of adjusting portfolio weights over time in response to changes in market conditions and investor pref
erences. It is widely understood, at least since the work of this author, as seen by Samuelson (1969), that the solution to a multi-period 
portfolio choice problem can be very different from the solution to a static portfolio choice problem. Unfortunately, intertemporal asset 
allocation models are hard to solve in closed form unless strong assumptions on the investor’s objective function or the statistical 
distribution of asset returns are imposed.

* Corresponding author. Department of Economic Analysis, University of Zaragoza, Gran Via 2, 50005, Zaragoza, Spain.
E-mail addresses: 849201@unizar.es (Y. Jiang), joseolmo@unizar.es (J. Olmo), matwi@unizar.es (M. Atwi). 

Contents lists available at ScienceDirect

International Review of Economics and Finance

journal homepage: www.elsevier.com/locate/iref

https://doi.org/10.1016/j.iref.2025.103996
Received 2 October 2024; Received in revised form 25 February 2025; Accepted 26 February 2025  

International Review of Economics and Finance 98 (2025) 103996 

Available online 27 February 2025 
1059-0560/© 2025 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
( http://creativecommons.org/licenses/by/4.0/ ). 

mailto:849201@unizar.es
mailto:joseolmo@unizar.es
mailto:matwi@unizar.es
www.sciencedirect.com/science/journal/10590560
https://www.elsevier.com/locate/iref
https://doi.org/10.1016/j.iref.2025.103996
https://doi.org/10.1016/j.iref.2025.103996
http://crossmark.crossref.org/dialog/?doi=10.1016/j.iref.2025.103996&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Traditionally, the extension from single-period to multi-period portfolio optimization has been addressed using stochastic dynamic 
programming. Samuelson (1969) and Bellman (1957) developed methods for solving dynamic optimization problems, allowing the 
consideration of future states and decisions in portfolio management. Nevertheless, the lack of closed-form solutions for optimal 
portfolios in multi-period settings has limited the applicability of Merton’s model and has not displaced Markowitz’s paradigm. This 
situation began to change due to several developments in numerical methods and continuous time finance models. More specifically, 
some authors such as Barberis (2000) and Brennan et al. (1997, 1999), among a few others, provide discrete-state numerical algo
rithms to approximate the solution of the portfolio problem over infinite horizons. Other articles obtain closed-form solutions to the 
Merton model in a continuous time framework with a constant risk-free interest rate and a single risky asset if long-lived investors have 
power utility defined over terminal wealth (Kim & Omberg, 1996) or if investors have power utility defined over consumption 
(Watcher, 2002), or if the investor has Epstein and Zin (1989, 1991) utility with intertemporal elasticity of substitution equal to one 
(Campbell & Viceira, 1999; Schroder & Skiadas, 1999). Approximate analytical solutions to the Merton model have been developed by 
Campbell et al. (2003) and Campbell and Viceira (1999, 2001, 2002) for models exhibiting an intertemporal elasticity of substitution 
not too far from one.

An alternative to solve the investor’s optimal portfolio choice problem is proposed by Ait-Sahalia and Brandt (1999, 2001), and 
Brandt and Clara (2006). These authors show how to select and combine variables to best predict the optimal portfolio weights, both in 
single-period and multi-period contexts. Moreover, Laborda and Olmo (2017) focus directly on the dependence of the portfolio weights 
on the predictor variables through a linear parametric portfolio policy rule. This characterization allows them to apply the generalized 
method of moments to sample analogues of the multi-period Euler equations that characterize the optimal portfolio choice.

Standard methods based on solving Bellman equations struggle with large datasets. Hambly et al. (2023) noted that portfolio 
optimization often involves high dimensionality, complex non-linear relationships, and constraints, making it difficult for traditional 
algorithms to adapt to changing market environments and large-scale data. These limitations lead to suboptimal portfolio strategies in 
dynamic situations. Recent advances in machine learning and artificial intelligence have significantly impacted portfolio management. 
Deep reinforcement learning (DRL), as explored by Jiang et al. (2017), Wang and Zhou (2020), and Cong et al. (2022), offers robust 
frameworks for developing adaptive and dynamic portfolio strategies. These methods leverage vast amounts of data and sophisticated 
algorithms to optimize asset allocation in real time. Compared to standard portfolio allocation methods such as Markowitz’s paradigm, 
DRL aims to search for optimal sequences of actions and then obtain a multi-step task, where the objective is to achieve the maximum 
cumulative reward (Sutton & Barto, 2018). This allows DRL to adapt to complex, high-dimensional, and dynamic environments, 
making it an attractive method for improving traditional portfolio allocation.

The literature applying these techniques for multi-period portfolio allocation is rapidly growing. Aboussalah et al. (2021) applied 
the DRL approach based on convolutional neural networks (CNN) to construct optimal portfolios in a multi-period investment sce
nario. Corsaro et al. (2022) investigated the application of L1-regularization with machine learning and neural networks-based 
automatic selection to perform multi-period portfolio selection. Wei et al. (2021) and Chen and Ge (2021) showed the benefits of 
stochastic neural network algorithms to incorporate asymmetric investor sentiment and construct an investment portfolio that bal
ances the return and risk over multiple holding periods. In a recent study, Cui et al. (2024) applied DRL to multi-period portfolio 
selection considering different risk aversion levels.

Other challenges to constructing optimal investment strategies over multi-period investment horizons are the presence of trans
action costs and other market frictions. Research by Constantinides (1986) and Liu and Loewenstein (2002) incorporated these factors 
into dynamic models to obtain more realistic strategies that account for the costs associated with rebalancing portfolios. Building on 
this, Eom and Park (2017) investigated the impact of common factors by implementing a comparative correlation matrix on stocks. 
They emphasized that portfolios constructed by considering market factors significantly outperform other approaches in terms of 
diversification. However, with the increasing availability of high-dimensional and high-frequency financial data, more sophisticated 
models need to be developed. The works by Bernardi and Catania (2018) and Zhao et al. (2023) utilized copula models and Monte 
Carlo methods to capture dependencies and optimize portfolios in high-dimensional settings. Recent studies use the DRL framework to 
extract cross-asset dependence features in financial investments (Xu et al., 2020; Zhang et al., 2022). Notably, Marzban et al. (2023)
introduced a WaveNet structure in a DRL framework for capturing cross-asset dependence and improve long-term portfolio 
optimization.

In this paper, we design an advanced portfolio policy framework to construct a multi-period portfolio selection model. To do this, 
we model the dynamics of asset prices and their cross-sectional dependence using machine learning methods (dynamic patterns of 
asset prices are obtained using convolutional neural networks, and group-wise asset dependence is modelled via WaveNet). The 
optimal long-term portfolio allocation is obtained by solving a multi-period Bellman equation combined with DRL methods. More 
specifically, we integrate the multi-period Bellman equation with DRL into a Markov Decision Process (MDP) framework. This 
approach accommodates different levels of risk aversion and is developed under a set of portfolio constraints. Empirical results 
demonstrate the effectiveness and superiority of our proposed portfolio strategy in various real-world settings. To show this, we 
conduct an in-depth comparative analysis under various investment holding periods, revealing the impact of the investment horizon, 
level of risk aversion, and portfolio constraints on portfolio management.

The rest of the paper is organized as follows: Section 2 presents the multi-period portfolio selection model and portfolio constraints. 
In Section 3, we propose an advanced portfolio policy framework based on DRL. The empirical results and analysis are provided in 
Section 4 and Section 5 concludes.
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2. Multi-period portfolio optimization

This section introduces the theoretical framework for constructing multi-period optimal investment portfolios. According to 
Barberis (2000), one widely adopted strategy is the buy-and-hold approach, where investors choose a set of assets and hold onto them 
for an extended period before adjusting portfolio allocation. In contrast, the re-balancing strategy consists of periodically adjusting the 
portfolio to adapt to market fluctuations. In this paper we focus on the latter approach. Thus, we consider a dynamic multi-period 
portfolio optimization problem with a rebalancing strategy which optimizes the allocation of capital among financial assets over time.

We allocate funds into an investment portfolio at the beginning of each period over a planning horizon that extends h periods: t, 
t+1, t+2, …, t + h. We assume that a financial market has N risky assets, and the closing prices of these assets comprise a price vector 
xt ∈ RN

+ at time period t, where xt =
(
x1,t , · · ·, xN,t

)
with xi,t being the price of asset i. A portfolio is managed with a vector of these asset 

weights ωt =
(
ω1,t , · · ·,ωN,t

)T
∈ RN, where ωi,t denotes the proportion of portfolio value invested on the i-th asset. At the end of each 

period, investors could actively adjust the value of their portfolios in accordance with the realized returns and the most recent data 
available from financial markets. The vector of asset returns is expressed as: 

rt =
(
r1,t , r2,t , · · ·, rN,t

)T
=

(
x1,t − x1,t− 1

x1,t− 1
,
x2,t − x2,t− 1

x2,t− 1
, · · ·,

xN,t − xN,t− 1

xN,t− 1

)T

, (1) 

where ri,t represents the i-th asset return at time t. The portfolio value at period t is denoted by pt and given, under the assumption that 
the change in portfolio weighs is small compared to the portfolio value, by the following expression: 

pt = pt− 1
(
1+ωT

t− 1rt
)
= pt− 1

(

1+
∑N

i=1
ωi,t− 1ri,t

)

. (2) 

The logarithmic rate of portfolio return at time t is defined as: 

r
⁀

t = ln
(

pt

pt− 1

)

= ln
(
1+ωT

t− 1rt
)
= ln

(

1+
∑N

i=1
ωi,t− 1ri,t

)

. (3) 

Sales and purchases of assets typically incur transaction costs, such as exchange fees and execution fees. Thus, it is necessary to 
consider the transaction cost in our portfolio trading selection. Here, let ξ denote the proportional cost level of each trading, and we set 
transaction cost rates for purchases and sales equal to ξt at time t. Furthermore, let ψ t ∈ [0,1] denote the total transaction cost, which is 
defined as: 

ψ t = ξt

∑N

i=1

⃒
⃒ωi,t − ωi,t− 1

⃒
⃒. (4) 

The updated logarithmic rate of return at the end of period t is given by: 

r
⁀

t = ln
(

ṕt
pʹ

t− 1

)

= ln
(
(1 − ψ t)pt

pʹ
t− 1

)

= ln
(
(1 − ψ t)

(
1+ωT

t− 1rt
))
. (5) 

Therefore, after considering transaction costs, the terminal portfolio value at time t + h is expressed as (Moody et al., 1998; Zhang 
et al., 2022): 

pʹ
t+h = pt

(
(1 − ψ t+1)

(
1+ωT

t rt+1
))(

(1 − ψ t+2)
(
1+ωT

t+1rt+2
))

· · ·
(
(1 − ψ t+h)

(
1+ωT

t+h− 1rt+h
))

= pt

∏h

k=1

(
(1 − ψ t+k)

(
1+ωT

t+k− 1rt+k
))
.

(6) 

According to Eq. (6), the total portfolio log return over a planning horizon of h holding periods is expressed as: 

Rh =
∑h

k=1

r
⁀

t+k =
∑h

k=1

ln
(
(1 − ψ t+k)

(
1+ωT

t+k− 1rt+k
))

=
∑h

k=1
ln(1 − ψ t+k) +

∑h

k=1
ln
(
1+ωT

t+k− 1rt+k
)
. (7) 

We consider the mean-variance function to model the one-period utility function representing investor’s short-term preferences: 

ut = r
⁀

t − λσ2
t , (8) 

where λ is a risk-aversion parameter that balances the quantity placed on the maximization of portfolio return rate ⁀ rt and the 
minimization of portfolio risk σ2

t . The long-term portfolio allocation problem is characterized by the maximization of the investor’s 
multi-period utility function computed over h periods and denoted by Ut,h. Investor’s impatience is modelled by introducing a time 
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preference parameter γ that discounts future returns (Jaisson, 2022; Olschewski et al., 2021) such that the multi-period objective 
utility over h periods is defined as: 

Ut,h = ut+1 + γ1ut+2 + · · ·+γh− 1ut+h =
∑h

k=1
γk− 1ut+k, γ ∈ [0,1], (9) 

when γ = 0, the investor’s focus is solely on immediate return. For 0 < γ < 1, the reward sequence converges given that the individual 
reward is finite.

Investors aim to construct a strategy that maximizes its expected long-term utility Ut,h over the h-period investment horizon. The 
optimal portfolio is characterized by a weight matrix ω = (ωt+1,ωt+2, · · ·,ωt+h) obtained over h periods and can be achieved by solving 
a multi-period optimization problem that incorporates a set of portfolio constraints, namely, a budget constraint, a turnover constraint, 
and a box constraint. The budget constraint is given by the following condition: 

∑N

i=1
ωi,t =1, ∀t. (10) 

Similarly, the turnover constraint reduces the effect of the transaction costs on portfolio returns. Most studies use the average 
turnover when evaluating the influence of transaction costs, as it estimates the portfolio weight updates. The portfolio turnover (TO) 
constraint at time t can be expressed as: 

TOi,t =
⃒
⃒ωi,t − ωi,t− 1

⃒
⃒ ≤ TOmax

t ,∀i,∀t, (11) 

where TOmax
t is the maximum turnover rate of each asset at time t, 0 ≤ TOmax

t ≤ 1. Finally, we also include a box constraint that avoids 
extreme investment positions and fosters the presence of diversification. To do this, we set an upper and lower bound for the maximum 
and minimum weights in the portfolio. Thus, the box constraint is defined as: 

0≤ωi,t ≤ ωmax
i , ∀i,∀t. (12) 

For simplicity, we only allow for long positions on the assets, and the objective function characterizing the optimal multi-period 
portfolio is expressed as: 

⎧
⎪⎪⎨

⎪⎪⎩

max
ω

E
[
Ut,h
]
= max

ω

∑h

k=1

γk− 1E[ut+k]

= max
ω

(

E
[

r
⁀

t+1 − λσ2
t+1

]

+ · · ·+γh− 1E
[

r
⁀

t+h − λσ2
t+h

])

.

(13) 

Traditional optimization techniques (Bertsimas & Sim, 2004; Kamali et al., 2019) face difficulties in achieving a solution to the 
above optimal investment strategy of Eq. (13). For instance, convex optimization and Lagrange optimization methods may not fully 
leverage historical data and converge, instead, to a local rather than global optimal solution for the long-term portfolio strategy. 
Fortunately, DRL is a model-free dynamic programming strategy that can be adopted to tackle the above decision-making problem by 
learning the optimal policy in dynamic markets (Jaisson, 2022; Olschewski et al., 2021). Thus, the following section proposes a 
DRL-based portfolio approach to address an optimization problem in the same spirit of Eq. (13) but also including the above constraints 
as the components of the optimization function in the learning process.

Fig. 1. Portfolio framework based on DRL with CNN and WaveNet.
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3. Investor’s long-term optimization problem

As mentioned above, the multi-period optimization problem defined in Section 2 will be addressed by proposing a portfolio 
framework based on DRL with CNN and WaveNet, as shown in Fig. 1.

The designed portfolio policy framework mainly includes three components. To begin with, the sequential information based on 
CNN is adopted to capture the dynamic patterns in each asset price. Secondly, the cross-dependence between the assets in the portfolio 
is modelled using WaveNet. This is particularly important in high-dimensional environments. Finally, the decision-making module is 
used to perform optimal portfolio allocation across assets. The following three subsections provide an in-depth exploration of each 
part.

3.1. Extraction of dynamic price sequence information based on CNN

Gu et al. (2018) stated that CNN can combine features and achieve a higher precision accuracy on large-scale datasets than other 
deep learning methods. In this case, we develop a sequential information module based on CNN to extract the changes in each asset 
price. This module aims to estimate the dynamic characteristics of high-dimensional vectors of asset prices and effectively model time 
series data. Moreover, by applying CNN models to analyse historical price data, we can predict the conditional volatility of asset 
returns in future periods.

As illustrated in Fig. 1, CNN extracts the nonlinear dynamic features of each asset separately on its multidimensional input data, 
thereby greatly improving the accuracy of the price mapping features. Additionally, the structure of CNN for price dynamic sequential 
information extraction comprises not only input and output layers but also convolutional layers, pooling layers, fully connected layers, 
and so on. The analysis focuses on the following key layers:

Input layer: This layer pre-processes the original asset returns, including normalizing the amplitude into the same range [0, 1], 
which reduces the interference caused by differences in the value range of data in various dimensions.

Convolutional layer: The convolutional kernels are used as effective methods for price feature extraction, and the result obtained 
from price data after convolution is called a Feature Map. The specific process can be expressed as: 

yj,n = δ

(

b+
∑Z

l=0

∑M

m=0
ϖl,mxʹ

j+l,n+m

)

, (14) 

where δ represents the activation function, b is the shared bias parameter, Z and M are the length and width of the local receptive field, 
respectively, and ϖl,m denotes the shared weight parameters between neurons, x́j+l,n+m is the data corresponding to the input matrix 
received by the convolutional layer. Widely used activation functions include the sigmoid, tanh, and ReLU functions, among a few 
others. The first two specifications are usually observed in fully connected layers, while the latter ReLU function applied commonly in 
convolutional layers is given by: 

δ(xʹ)=ReLU(xʹ)=
{

xʹ, xʹ ≥ 0
0, xʹ〈0 . (15) 

The fully connected layer is prone to overfitting due to its large number of parameters and the relationship between all elements of 
the output and input. Therefore, ReLU functions are added between each layer in the model as non-linear activation units to prevent 
overfitting and increase non-linear expression ability.

Pooling layer: The main objective of this layer is to remove unimportant samples from the Feature Map and thus reduce the 
number of parameters. Max pooling preserves the maximum value within each small block, which is equivalent to preserving the best 
matching result for that block.

Fully connected layer: Each node of the fully connected layer is connected to all the nodes of the previous layer and is used to 
synthesize the features extracted from the previous side. All neurons between the two layers are connected with weights, and the fully 
connected layer is usually at the tail of the convolutional neural network.

Softmax layer: This layer provides non-linear modeling capability by mapping the output results of the convolutional layer into 
nonlinear maps, which can effectively capture the asset price dynamics.

3.2. Cross-asset dependence information extraction based on WaveNet

WaveNet can effectively capture the cross-asset dependence information in portfolio management (Marzban et al., 2023). In this 
subsection, we apply the WaveNet framework to estimate the time-varying dependence across assets in the portfolio, denoted as Qt ,

where the dependence dynamics between two assets i and j, denoted as qi,j,t, is adjusted over time based on a neural network function φ. 
More specifically, we use the WaveCorr layer from Marzban et al. (2023) as our convolution layer for capturing asset dependence in the 
WaveNet. This is associated with the following correlation layer (Corr-layer) function set:

Q =
{

qi,j,t ∈ R, a∈ R
}
, (16) where the vector of asset dependence qi,t(rt) =

[
qi,1,t , qi,2,t , · · ·, qi,N,t

]
between asset i and the remaining 

assets depends on a neural network function φ, expressed as: 
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qi,t(rt)=

(

φ
(
ri,t
)
⊙
(
1ωT

0
)
+
∑N

j=1
φ
(
rj,t
)
⊙
(

1ωT
j

)
)

1 + a, (17) 

where a is the bias for accelerating neural network fitting. A general model operating directly on the assets returns is provided, where 
the joint probability of an input stream rt =

[
r1,t , · · ·, rN,t

]
is modelled as the product of the probabilities conditional on the realization 

of past returns (Marzban et al., 2023; Van Den Oord et al., 2016), i.e., 

η(rt)=
∏N

i=1
η
(
ri,t
⃒
⃒r1,t− 1, · · · , rN,t− 1

)
. (18) 

Each sample ri,t of the i-th asset is conditioned on the samples at all previous time steps. The causal convolution operation extracts 
the price dynamics, but it may need large kernel sizes and layers. Thus, apart from adopting causal convolution, the dilated operation is 
also applied to meet the exponentially large receptive fields with only a few layers while maintaining the network and computational 
efficiency. In the WaveNet structure, a softmax distribution is adopted to model the conditional distribution η(rt), even if the asset 
returns are implicitly continuous. In addition, residual and parameterized skip connections are adopted to enhance the training 
convergence. With the help of WaveNet, the dependence information between assets can be constructed in a multi-block framework as 
illustrated in Fig. 1.

3.3. Multi-period portfolio decision-making based on DRL

The dynamic asset price features and dependence information obtained from CNN and WaveNet are combined in ‘C’, as shown in 
Fig. 1, as the input of the deterministic policy gradient (DPG) model for portfolio decision-making.

3.3.1. MDP with multi-period Bellman equation
DRL typically combines the MDP framework to address the challenges posed by the multi-period Bellman equation. MDP provides a 

mathematical foundation for describing the interaction between an agent and an environment, incorporating elements such as states, 
actions, rewards, and state transitions.

The portfolio management problem (Eq. (13)) is defined as a MDP with a tuple (S ,A ,P ,u). Specifically, the learning agent (i.e., an 
investor) observes one state st ∈ S (i.e. assets’ daily prices, latest asset returns, cross dependencies) from the market and then chooses 
an action at ∈ A (i.e., portfolio weight vector ωt). Afterwards, the agent will achieve an instantaneous reward ut and observe the next 
state st+1. Here, let π(at , st) denote a portfolio policy, mapping from observed states with a Markovian transition probability 
P (st+1|st = s, at = a) over available actions that the agent selects. Note that the objective function at the t-th period ut in Eq. (8) is the 
immediate reward function, and the multi-period utility Uh over h periods in Eq. (9) is the long-term reward function.

According to the discussions of the multi-period optimization constraints and objective function in Section 2, the investor aims to 
trade off risk and return in the portfolio under several constraints. In applying the DRL framework to optimization problems, similar to 
the studies of Zhang et al. (2022) and Marzban et al. (2023), we also incorporate the turnover and box constraints in Eq. (11) and Eq. 
(12) as penalties within the objective function. This approach enables the model to incorporate penalty functions on the utility function 
to penalise portfolio weights not satisfying the constraints. In this context, the risk-averse and constraint-awareness reward function at 
the t-th single period is designed as follows: 

ut = r
⁀

t − λσ2
t − c1

∑N

i=1
max

(
0,TOi,t − TOmax

t
)
− c2

∑N

i=1
max

(
0,ωi,t − ωmax

i
)
, (19) 

where c1 and c2 are the parameters for the unsatisfied maximum turnover constraint (Eq. (11)) and maximum weight constraint (Eq. 
(12)). The period reward function above is penalized if the turnover TOi,t or portfolio weight ωi,t goes beyond TOmax

t and ωmax
i , 

respectively. Note that the portfolio weight of each asset i is non-negative and the sum of portfolio weights over all asset is equal to 1. 

The parameters c1 and c2 are set by balancing the trade-off between the portfolio return r
⁀

t and the two punishment values and need to 
be carefully selected. If parameters are too large, the reward function will sacrifice most of the portfolio return and risk performance in 
order to meet the turnover and box constraints. In contrast, the impact of the parameters on the reward function is limited if c1 and c2 
are too small. We calibrate the selection of c1 and c2 and choose values given by c1 = c2 = 0.5. These values are selected using the 
empirical insights obtained in Zhang et al. (2022) and Van Den Oord et al. (2016).

The state-value function for policy in MDP over a planning horizon of h holding periods can be described as follows: 

Vπ(s)= Eπ
(
Ut,h
⃒
⃒st = s

)
= Eπ

(
∑h

k=1

γk− 1ut+k

⃒
⃒
⃒
⃒
⃒
st = s

)

, (20) 

where Vπ(s) is the expected reward under the policy π and the state s. The expectation is computed based on the agent’s policy mapping 
π. Similarly, we define the action-value function for the policy π by using Qπ as follows: 
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Qπ(s, a)= Eπ
(
Ut,h
⃒
⃒st = s, at = a

)
= Eπ

(
∑h

k=1
γk− 1ut+k

⃒
⃒
⃒
⃒
⃒
st = s, at = a

)

, (21) 

where Qπ(s, a) denotes the expected reward function at state s when performing action a and following policy π. For simplicity, the 
transition probability is denoted by P a

sś = P (st+1|st = s,at = a). Additionally, the expected reward for transitioning from the current 
state s to the next state ś  in the next period (st+1) by taking action a is denoted by ua

sś = E(ut+1|st = s,at = a, st+1 = ś ).
The self-consistency of the value function indicates that certain recursive relationships are required to be met. The multi-period 

Bellman equation Vπ(s) can be expressed as: 

Vπ(s)= Eπ
(
Ut,h
⃒
⃒st = s

)

= Eπ
(
ut+1 + γut+2 + γ2ut+3 + · · · γh− 1ut+h

⃒
⃒st = s

)

= Eπ

(

ut+1 +
∑h

k=2

γk− 1ut+k

⃒
⃒
⃒
⃒
⃒
st = s

)

=
∑

a
π(s, a)

∑

ś

P
a
sś

(

ua
sś + γEπ

(
∑h

k=2
γk− 1ut+k

⃒
⃒
⃒
⃒
⃒
st+1 = ś

))

=
∑

a
π(s, a)

∑

ś

P
a
sś
(
ua

sś + γVπ(ś )
)

=
∑

a
π(s, a)Qπ(s, a). (22) 

The solution to the Bellman equation is the value function.

3.3.2. Multi-period portfolio based on DRL
The learning agent (investor) aims to achieve the multi-period portfolio reward Uh over h periods. Here, we adopt a DRL-based 

deterministic policy gradient to obtain the optimal portfolio policy. As shown in Fig. 2, the multi-period investment has h state- 
action pairs i.e., (st+1, at+1), (st+2, at+2), …, (st+h, at+h), and the agent aims to maximize both the state-value function Vπ(s) and the 
action-value Qπ(s, a). This is achieved by selecting the optimal action vector a = (at+1, at+2, · · ·, at+h) over h horizons based on the 
observed state vector s = (st+1, st+2, · · ·, st+h).

Deep learning with a set of neural network parameters θ is used to specify the policy in the DRL framework, i.e., πθ(s, a). The 
objective of DRL is to maximize Ut,h over the time interval [t+1, t+h] generated by πθ(s, a) as expressed: 

max
θ

J(πθ)= Eπθ(s,a)
(
Ut,h(ut+1(ωt+1), ut+2(ωt+2), · · · , ut+h(ωt+h))

)
. (23) 

DPG learning methods enable the agents to learn portfolio strategies through real-time interaction with financial markets. The 
agent continuously observes market information and learns adaptive strategies during their interaction. This method is usually 
applicable to real-time decision-making for financial markets based on the current observed state of the environment. We use the state 
distribution ρπ(s) such that the objective function in Eq. (23) is given by: 

J(πθ)=

∫

S

ρπ(s)
∫

A

πθ(s, a)Qπ(s, a)dads 

= Es∼ρπ ,a∼πθ [Qπ(s, a)], (24) 

and the gradient of the objective function (see Sutton and Barto, 2018) is expressed as: 

∇θJ(πθ)=

∫

S

ρπ(s)
∫

A

∇θπθ(s, a)Qπ(s, a)dads 

= Es∼ρπ ,a∼πθ [∇θ log πθ(s, a)Qπ(s, a)]. (25) 

Fig. 2. The multi-period portfolio trajectory based on DRL.
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Note that the action-value function Qπ(s, a) in Eq. (24) and Eq. (25) is computed or updated by Eq. (21) using a neural network 
(value network). DPG adjusts the parameters θ of the strategy towards the gradient direction of the objective function to maximize the 
objective function. The mathematical expression for parameter update is as follows: 

θʹ ← θ + α∇θJ(πθ), (26) 

where α denotes the learning rate and ∇( · ) is the first order partial derivative. It is necessary to sample the state and actions under the 
corresponding distribution function.

The decision-making process is to evaluate the potential growth of assets in the near future and consider the portfolio weight vector 
of the investment based on the previous action at to obtain a new portfolio weight ωt. In this case, the investor can achieve the multi- 
period portfolio weight matrix ω = (ωt+1,ωt+2 · · ·,ωt+h) over h investment periods; ω captures the investment behavior of optimizing 
agents, ultimately guiding the asset portfolio selection action a = (at+1, · · ·,at+h).

4. Empirical application

This section illustrates the performance of the proposed portfolio approach under different scenarios and datasets. We operate in a 
high-dimensional setting, interpreted as a portfolio with more than 50 assets (Ding et al., 2021) except when analysing the Dow Jones 
financial index that is comprised by 30 assets.

4.1. Datasets and competing portfolio construction methods

We consider three important financial indices reflecting the performance of stock markets and the overall economy for the US and 
Canada. For the US, we consider the S&P100 index and the DJIA. These indices capture similar dynamics of the US stock market, 
however, whereas the S&P100 index is value-weighted the DJIA is price-weighted and comprised by a much smaller number of stocks. 
The Canadian stock market is represented by the S&P/TSX Composite Index. Our data span from 04/01/2010 until 12/07/2023 and 
are divided into a training set and a test set, with the training period spanning from 04/01/2010 to 31/12/2018 and the testing period 
from 02/01/2019 to 12/07/2023 used for out-of-sample evaluation of the different models and methods.

The main purpose of our empirical study is to see the performance of our proposed approach for portfolio allocation under different 
choices of the investment horizon. To assess the robustness of the results and the influence of important factors such as risk aversion, 
constraints on the portfolio weights, or the presence of transaction costs, we carry out the analysis for different values of these pa
rameters. As a second empirical contribution, we compare the performance of our proposed long-term investment strategy with 
existing methods in the literature that act as benchmarks. Most of these investment strategies used for model comparison are state-of- 
the-art techniques taking advantage of machine learning methods but we also consider the equally-weighted (EW) portfolio to capture 
a more traditional and naïve portfolio allocation strategy.

More formally, we consider the following methods to construct optimal investment portfolios: 1) Our proposed advanced multi- 
period DRL-based portfolio method combined with the WaveNet-enabled dependence information and CNN-enabled sequential in
formation. This method is denoted as MP-Adv-DRL-Cor; 2) The multi-period cost-sensitive portfolio selection method using CNN to 
extract the dynamic asset return features, temporal correlational convolution block (TCCB) to perform asset correlation and portfolio 
policy network (PPN) to obtain the portfolio selection, respectively. This method is denoted as MP-CS-PPN-Cor (Zhang et al., 2022); 3) 
The multi-period DPG-based portfolio method with Ensemble of Identical Independent Evaluators (EIIE) algorithm (Jiang et al., 2017), 
denoted by MP-DPG; 4) The equally-weighted portfolio method, denoted by EW, 5) The single-period DRL-based portfolio method 
combined with WaveNet and CNN, denoted by SP-Adv-DRL-Cor. Note that the MP-Adv-DRL-Cor, MP-CS-PPN-Cor, and MP-DPG 
methods optimize the objective reward function provided in Eq. (19) that includes transaction costs in the optimal portfolio prob
lem. The inclusion of Strategy 5 is to assess the differences in portfolio performance of our proposed methodology between long- and 
short-term investment horizons.

All of the strategies except the EW portfolio require some prior definition of a set of hyperparameters. In order to improve the 
learning efficiency of machine learning-based portfolio algorithms, it is crucial to choose appropriate hyperparameters. The values 
characterizing the architecture of the neural network models, DRL method, and portfolio constraints are shown in Table 1. These 
values are standard in the related literature and adopted by Sutton and Barto (2018), Zhang et al. (2022), Marzban et al. (2023), and 
Hambly et al. (2023), among others. For example, we choose a moderate learning rate of 0.0002 as in Sutton and Barto (2018) to 

Table 1 
Hyperparameter values.

Hyperparameter Value Hyperparameter Value

Learning rate a 2 × 10− 4 Decay rate 0.9999
Optimizer γ Adam Planning horizon h 36
Discount factor 0.98 Look back window size 36
Mini-batch size 32 Number of epochs 1000
Hidden layers of CNN 2 Parameter c1, c2 0.5
Hidden layers of WaveNet 7 Maximum weight ωmax

i 0.7
Hidden layer size 256 Maximum turnover TOmax

t 0.5
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ensure a balance between convergence speed and model stability. Instead, if the learning rate is very small (e.g., a = 0.00001), the 
convergence speed is slow and the training time increases significantly. In contrast, if the learning rate is very large (e.g., a = 0.01), it 
may lead to dramatic fluctuations and an unstable training process. The number of hidden layers and their size are also taken from the 
related literature. If too many hidden layers are set the model may become overly complex, leading to excessive computational 
complexity. Conversely, an insufficient number of hidden layers may limit the model’s learning ability, which in turn affects model 
performance. It is also worth discussing the choice of portfolio constraints and the discount rate. Following the work of Marzban et al. 
(2023), the maximum weight is set to be 0.7 to avoid excessive leverage on specific assets, and the discount rate is set to 0.98, following 
the suggestions in Sutton and Barto (2018), Zhang et al. (2022), and Hambly et al. (2023).

4.2. Performance measures

All of the following empirical results are evaluated using out-of-sample data (“test data”). Different metrics are adopted to measure 
portfolio performance. Firstly, as an indicator of the return on investment, the accumulated portfolio value (APV) is used to evaluate 
the increase in portfolio value over time. This performance measure considers the effect of transaction costs and is expressed as: 

APV = p0

∏T

t=1

(
(1 − ψ t+k)

(
1+ωT

t+k− 1rt+k
))
, (27) 

where p0 is the initial value of the portfolio and ψ t represents the percentage of transaction
Costs. APV typically focuses on total value without considering the underlying risk in the
Portfolio. To control for the underlying risk, we follow the investment literature and employ
The Sharpe ratio (SR) as a second indicator of performance: 

SR=

Et

(

r
⁀

t+1 − rt,f

)

σt
, (28) 

Fig. 3. APV for MP-Adv-DRL-Cor under different investment horizons h for the three financial indices over the out-of-sample evaluation period 02/ 
01/2019 to 12/07/2023. ξ = 0.01% for transaction costs and λ = 0.01 for the risk aversion coefficient.
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where r
⁀

t is the rate of return as defined in Eq. (5) at time t and rt,f is the risk-free rate. The Sharpe ratio uses the standard deviation as a 
measure of risk without differentiating between upward and downward volatility, which means it may overly focus on short-term 
adverse fluctuations and overlook positive ones. Consequently, to better identify and evaluate a portfolio’s downside risk, we turn 
to the Maximum drawdown (MDD). MDD measures actual losses and reflects the maximum potential loss a portfolio may face. It is 
defined as: 

MDD=max
t:j>t

(
pʹ

t − pʹ
j

)

pt́
, (29) 

where j > t; pt is the total value of the portfolio at time t as expressed in Eq. (2), and pj is the aggregate value of the portfolio at time j. In 
general, a lower value of the MDD metric reflects a more stable and lower-risk investment.

4.3. Effects of investment horizon on portfolio performance

We evaluate empirically the influence of the holding period h on our proposed MP-Adv-DRL-Cor method. This investment strategy 
corresponds to Method 1 in the above description of the portfolio strategies. For comparison purposes, we consider as a separate 
investment strategy, called Method 5, the myopic version of Method 1 that is constructed for an investment horizon of h = 1. The 
baseline parameters considered for this exercise are ξ = 0.01% for the transaction costs and λ = 0.01 for the risk aversion coefficient. 
These parameters represent very low levels of transaction costs and risk aversion, respectively. The purpose of using these values is to 
fully capture the potential of our investment strategy over a multi-period horizon by minimizing the effect of risk aversion and 
transaction cost penalties on the objective function. The results of this exercise for the three financial indices under investigation are 
shown in Fig. 3 and Table 2.

The results from Fig. 3 and Table 2 show that extending the holding period (h = 1, 5, 22, 36) generally leads to increased portfolio 
gains under the proposed MP-Adv-DRL-Cor method but also results in higher annual realized volatilities. This is because when 
considering extended investment periods, investors can maximize the total utility over the long term, which typically avoids making 
myopic short-term investment decisions. The trade-off between mean return and volatility is captured by the Sharpe ratio. The per
formance of this indicator is not monotonic over the investment horizon. The results for the S&P100 and DJIA financial indices show 
an increase in Sharpe ratio up to h = 36 trading days and then a drop in value due to a decrease in portfolio return accompanied by an 
increase in volatility. The results for the Canadian index are similar in the sense that the performance metrics report an optimal in
vestment horizon beyond which portfolio performance decreases. However, in contrast to the US stock indices, portfolio performance 
measured by the Sharpe ratio reaches a peak at h = 22 days and then drops. The reason for this drop in profitability adjusted for risk is a 
substantial increase in volatility not followed by a similar rise in mean return. In fact, the mean return falls from h = 36 to 66 in
vestment horizon. Therefore, continually extending the investment horizon does not always yield better portfolio performance. Thus, 
the horizon period h needs to be carefully selected. These results are broadly consistent with the literature on long-term portfolio 
allocation. The profitability of the portfolio increases with the investment horizon, while the annual volatility is also expected to rise.

Table 2 
Portfolio performance metrics under different holding periods h on three datasets.

Holding period Annual return (%) Annual volatility (%) Sharpe 
Ratio

Maximum drawdown (%) Turnover

S&P 100 Index
h = 1 12.48 24.57 0.508 39.80 0.007
h = 5 25.72 28.89 0.890 39.19 0.087
h = 22 22.37 37.08 0.603 44.13 0.099
h = 36 29.21 36.14 0.808 32.09 0.170
h = 66 27.51 39.43 0.698 66.10 0.107

DJIA Index
h = 1 8.808 21.43 0.411 35.34 0.007
h = 5 19.79 33.51 0.590 51.72 0.080
h = 22 19.23 32.49 0.592 52.63 0.103
h = 36 28.88 34.32 0.841 44.24 0.109
h = 66 17.40 31.32 0.555 36.22 0.092

S&P/TSX Composite Index
h = 1 13.58 25.35 0.536 48.01 0.008
h = 5 17.91 21.58 0.830 37.94 0.009
h = 22 18.42 22.10 0.833 38.65 0.020
h = 36 21.38 27.08 0.790 40.83 0.074
h = 66 15.50 37.11 0.418 55.38 0.197
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4.4. Portfolio performance under different risk aversion levels

The next exercise shows the effect of the risk aversion coefficient λ for different holding periods. We consider h = 5 and h = 36 for 
which Fig. 3 shows that the relationship between portfolio performance and investment horizon is monotonically increasing for small 
values of risk aversion. The aim of this exercise is to increase the level of risk aversion and see the effect on portfolio performance for 
each investment horizon. For space considerations, we fix the transaction cost rate at ξ = 0.01% and consider only the S&P100 index.

Fig. 4 shows that the cumulative portfolio value tends to decrease as λ increases, and its trajectories also become less volatile. 
Table 3 provides further clarity on the rationale for these dynamics. Both annual return and volatility decline as the level of risk 
aversion increases, however, the drop is more acute in mean return than in volatility. This downward trend is especially noticeable 
when λ rises from 0.1 to 1. An increase in λ implies that investors are more inclined to select conservative strategies to mitigate 
portfolio risks. This preference leads to a decline in trading frequency and investment activity, as shown in the Turnover column of 
Table 3. Specifically, when the risk aversion coefficient is very high, i.e. λ = 1, portfolio volatility is significantly reduced. Conse
quently, the potential for substantial annual returns and a high Sharpe ratio is limited. For instance, under h = 36, the annual return is 
only 9.54% with λ = 1 compared to 29.21% when λ = 0.01. The figures in Table 3 also provide some insights into the fruitfulness of 
considering higher investment horizons for a given level of risk aversion. Thus, the comparison of rows with same levels of risk 
aversion across panels suggests that both the annual return and the volatility are higher as h increases. However, the ratio between 
both quantities given by the Sharpe ratio is slightly more favourable to the longer investment horizon reinforcing the idea that longer 
investment horizons may be more profitable for a given degree of risk aversion.

A related question is how to choose realistic values of the risk aversion coefficient for the reward functions introduced above. Zhang 
et al. (2022), in a similar context, explored different values of this coefficient and found a better balance between risk and return when 
λ is around 0.01. Similar results are obtained in our empirical exercise when the risk aversion coefficient rises from 0.001 to 0.1 for h =
5, however, it is worth noting the excellent performance of the method for very low levels of risk aversion under longer investment 
horizons.

4.5. Portfolio performance under different transaction costs

This subsection evaluates the role of transaction costs on the performance of multi-period investment portfolios. As in the previous 
exercises, the optimal portfolios are constructed using the MP-Adv-DRL-Cor method. Risk aversion is fixed at λ = 0.01 and transaction 
costs vary between a low value given by ξ = 0.05% and a high value given by 0.5%. For comparison purposes, we only consider optimal 
portfolios comprised by the assets in the S&P100 index. Fig. 5 and Table 4 show that the annual returns are higher when the transaction 
cost rate ξ is low at 0.05%, compared to the annual returns for the higher rate of 0.5%. This result holds across investment horizons. In 
contrast, portfolio annual volatility is hardly affected by the presence of transaction costs, entailing a decrease in Sharpe ratios as ξ 
increases across values of h.

The presence of transaction costs mainly affects the profitability of the portfolios and does not increase risk. It also has a major 

Fig. 4. APV for MP-Adv-DRL-Cor under different risk aversion levels for the S&P100 index over the out-of-sample evaluation period 02/01/2019 to 
12/07/2023. ξ = 0.01% for transaction costs and h = 5 (top panel) and h = 36 (bottom panel).
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impact on the turnover of the portfolios. Under the presence of transaction costs, investors have fewer incentives to rebalance their 
portfolios under changes in investment opportunities over time. The effect on portfolio turnover is particularly visible for longer 
investment horizons, we observe a decrease of an order of magnitude in the performance measure for high values of the transaction 

Table 3 
Portfolio performance metrics under different risk aversion coefficients λ.

λ Annual return (%) Annual volatility (%) Sharpe ratio Maximum drawdown (%) Turnover

h = 5
λ = 0.001 26.11 29.96 0.872 39.55 0.082
λ = 0.01 25.71 28.89 0.890 39.19 0.087
λ = 0.1 21.25 23.55 0.902 31.17 0.021
λ = 1 9.037 19.70 0.459 36.08 0.017

h = 36
λ = 0.001 39.99 38.44 1.014 44.66 0.333
λ = 0.01 29.21 36.14 0.808 32.09 0.170
λ = 0.1 27.91 25.99 1.074 31.64 0.064
λ = 1 9.539 19.22 0.496 36.05 0.032

Fig. 5. APV for MP-Adv-DRL-Cor under different investment horizons h for the S&P100 index over the out-of-sample evaluation period 02/01/2019 
to 12/07/2023 for ξ = 0.05% (top panel) and ξ = 0.5% (bottom panel).

Table 4 
Portfolio performance metrics for different periods h when ξ = 0.05% and 0.5%.

Holding period Annual return (%) Annual volatility (%) Sharpe ratio Maximum drawdown (%) Turnover

Transaction cost rate ξ = 0.05%
h = 1 12.32 24.57 0.502 39.82 0.007
h = 5 21.20 27.45 0.772 40.35 0.019
h = 22 23.63 28.52 0.829 39.32 0.033
h = 36 24.38 24.83 0.982 35.54 0.030
h = 66 38.21 33.02 1.157 42.34 0.063

Transaction cost rate ξ = 0.5%
h = 1 10.56 24.56 0.430 40.00 0.007
h = 5 11.48 24.58 0.467 39.97 0.006
h = 22 21.56 30.38 0.710 45.73 0.005
h = 36 18.14 23.19 0.782 33.25 0.006
h = 66 11.64 24.52 0.475 39.80 0.006
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costs. Importantly, the results for ξ = 0.05% are very similar to the results reported in Table 2 for ξ = 0.01% and suggest that portfolios’ 
risk-adjusted profitability is monotonically increasing on the investment horizon. In contrast, for high transaction costs, portfolio 
profitability is reduced but not the underlying volatility, implying that optimal portfolios constructed for intermediate investment 
horizons report higher Sharpe ratios.

The results in Fig. 5 and Table 4 are qualitatively similar to the analysis of risk aversion. Transaction costs reduce portfolio 
profitability. Interestingly, this result is stronger as the investment horizon rises entailing sharper declines for h = 66.

4.6. Portfolio performance comparisons

The previous subsections have shown the ability of our proposed procedure to construct optimal portfolios for different investment 
horizons and under different choices of transaction costs and risk aversion. This subsection complements this analysis by comparing 
the performance of our procedure against existing competitors, most of them drawn from the machine learning literature on portfolio 
allocation. The aim of this exercise is to show that the MP-Adv-DRL-Cor procedure outperforms these methods under most scenarios 
given by different levels of risk aversion and transaction costs. Figs. 6–8 present empirical results for the S&P100 index, DJIA, and the 
S&P/TSX index for investment horizons h = 1, 22, 66 with ξ = 0.05% and λ = 0.1. Additional results for other combinations of 
transaction costs and risk aversion (ξ = 0.5% and λ = 0.1, ξ = 0.05% and λ = 1) are available from the authors upon request.

The APV associated to the EW method is the same across investment horizons and serves as a helpful benchmark for comparing the 
performance of the remaining competitors. For h = 1, the APVs are surprisingly similar across investment strategies suggesting that for 
ξ = 0.05% and λ = 0.1, the use of the proposed techniques based on machine learning methods are not necessarily superior to naïve 
investment methods such as the EW portfolio. Sophisticated techniques are superior in settings characterized by investment over 
multiple periods. The MP-Adv-DRL-Cor method exhibits superior performance than the other four approaches for investment horizons 
greater than one period. It is also worth noting the good performance of MP-CS-PPN-Cor, however, there are cases such as h = 22 for 

Fig. 6. APV for the five investment portfolios evaluated for S&P100 Index data over the period 02/01/2019 to 12/07/2023 for h = 1 (top panel), h 
= 22 (middle panel) and h = 66 (bottom panel) when ξ = 0.05% and λ = 0.1.

Y. Jiang et al.                                                                                                                                                                                                           International Review of Economics and Finance 98 (2025) 103996 

13 



the DJIA index in which the method reports very poor results. Table 5 formalizes the results in Fig. 6 for the S&P100 index. For h = 1, 
we observe similar results for the five performance measures under investigation across methods. The results for h = 22 in the middle 
panel reveal the strong performance of MP-Adv-DRL-Cor in terms of annual return and Sharpe ratio and the poor performance of MP- 
DPG.

The MP-Adv-DRL-Cor and MP-CS-PPN-Cor investment strategies are the best performers for the three data sets. Both methods adopt 
correlation networks, however, MP-CS-PPN-Cor adopts the TCCB framework. This method is not invariant to the ordering of the assets 
in the portfolio implying that portfolio performance can greatly vary when the ordering of the assets changes. Unlike TCCB, the 
WaveNet approach contains a simpler permutation invariant structure that can efficiently capture asset correlation, thus achieving 
higher portfolio performance under different choices of transaction costs and risk aversion. This result is because the multi-period 
strategic investment employs a dynamic asset allocation strategy to adapt the portfolio weights under time-varying financial condi
tions. Also, the multi-period strategy is more effective in managing portfolio’s overall risk by considering long-term risk and return. In 
contrast, a single-period (tactical investing) focuses more on short-term market volatility and takes advantage of market opportunities 
to maximize wealth in the short term while ignoring long-term investment opportunities.

4.7. Dimensionality effects on portfolio performance

An interesting feature of our proposed procedure is the ability to work with high-dimensional portfolios given by a large number of 
investment assets. This is illustrated in the following empirical exercise in which we also compare the performance of MP-Adv-DRL-Cor 
against the four competitors discussed above. To do this, we consider the universe of assets in the S&P500 index and take random 
subsets of 50, 75, 100 and 200 assets. The results are provided in Fig. 9 and Table 6. Each panel of Fig. 9 represents the APV of the five 
competing portfolios for different number of assets. The empirical results provide overwhelming evidence on the outperformance of 
our proposed approach across different choices of the number of assets. The differences in APV are more important as the number of 
assets comprising the portfolios increases. Interestingly, the dynamics and magnitudes of the cumulative portfolio returns do not vary 

Fig. 7. APV for the five investment portfolios evaluated for DJIA Index data over the period 02/01/2019 to 12/07/2023 for h = 1 (top panel), h =
22 (middle panel) and h = 66 (bottom panel) whenξ = 0.05% and λ = 0.1.
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Fig. 8. APV for the five investment portfolios evaluated for S&P/TSX Index data over the period 02/01/2019 to 12/07/2023 for h = 1 (top panel), 
h = 22 (middle panel) and h = 66 (bottom panel) when ξ = 0.05% and λ = 0.1.

Table 5 
Portfolio performance metrics for five portfolios when h = 1, 22, and 66 under S&P100 index.

Method Annual return (%) Annual volatility (%) Sharpe ratio Maximum drawdown (%) Turnover

h = 1
MP-Adv-DRL-Cor 12.32 24.57 0.502 39.82 0.007
MP-CS-PPN-Cor 10.05 23.75 0.423 36.62 0.006
MP-DPG 12.19 24.69 0.494 40.10 0.011
SP-Adv-DRL-Cor 12.32 24.57 0.502 39.82 0.007
EW 13.03 24.59 0.530 39.80 0.006

h = 22
MP-Adv-DRL-Cor 29.80 31.65 0.942 34.53 0.192
MP-CS-PPN-Cor 19.32 21.74 0.888 28.84 0.005
MP-DPG 2.110 49.05 0.043 57.62 0.730
SP-Adv-DRL-Cor 12.32 24.57 0.502 39.82 0.007
EW 13.03 24.59 0.530 39.80 0.006

h = 66
MP-Adv-DRL-Cor 15.11 35.99 0.420 57.15 0.116
MP-CS-PPN-Cor 21.52 23.33 0.922 32.56 0.006
MP-DPG − 22.20 53.24 − 0.417 82.54 0.809
SP-Adv-DRL-Cor 12.32 24.57 0.502 39.82 0.007
EW 13.03 24.59 0.530 39.80 0.006
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much with the number of assets, suggesting that the weight allocated to each asset is quite small. Increasing the number of assets does 
not contribute massively to improve annual return but helps to mitigate risk through improved diversification of the portfolio. This is 
achieved for all methods but our MP-Adv-DRL-Cor approach shows superior performance for larger portfolios.

Table 6 confirms these results and provides further insights obtained from alternative performance measures considering risk 
exposure along with portfolio annual return. Increasing the number of assets in the portfolio rises annual return keeping portfolio 
variance mostly constant. In particular, the results show that the MP-Adv-DRL-Cor strategy is superior to the MP-CS-PPN-Cor 
approach, and the performance gap widens as the number of assets increases. Such superiority is mainly attributed to the ability of 
the WaveNet approach to model asset mutual dependence. In conclusion, the above results confirm the superiority of the two-stream 
learning frameworks and the importance of applying suitable machine learning models for modeling asset dependencies. The results 
also confirm the learning ability of our method in addressing high-dimensional portfolio problems.

5. Conclusion

This paper proposes an advanced multi-period portfolio selection method that employs DRL for decision-making, convolutional 
neural networks to extract the dynamics of asset prices and WaveNet to identify cross-dependencies among the set of investment assets. 
The proposed approach is capable of solving multi-period investment portfolio problems in high-dimensional settings characterized by 
an investment pool of many stocks. An extensive empirical application to different datasets, levels of risk aversion and transaction costs 
shows the good performance of the proposed portfolio allocation procedure for different investment horizons. We find a monotonic 

Fig. 9. APV across investment portfolios for random subsets of the S&P500 Index over the period 02/01/2019 to 12/07/2023 for different numbers 
of assets.
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relationship between risk-adjusted profitability and the investment horizon for low levels of risk aversion and transaction costs. 
Increasing levels of risk aversion affect the performance of long-term investment portfolios by reducing incentives to invest over longer 
horizons. The presence of transaction costs also affects the performance of long-term portfolios by reducing the net annual return 
above and beyond the reduction observed for short-term portfolios while keeping portfolio volatility roughly constant. Our results also 
show the outperformance of our proposed procedure against competing methods for constructing optimal portfolios drawn from the 
machine learning literature in asset allocation. These results are robust to different factors such as the number of assets, risk aversion 
levels, and the presence of transaction costs.
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