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Abstract: Power system state estimation (PSSE) is critical for accurately monitoring and
managing electrical networks, especially with the increasing integration of renewable en-
ergy sources (RESs). This review aims to explicitly evaluate and compare state estimation
techniques specifically adapted to handle RES-related uncertainties, providing both the-
oretical insights and clear practical guidance. It categorizes and analytically compares
physical-model-based, forecasting-aided, and neural network-based approaches, summariz-
ing their strengths, limitations, and ideal application scenarios. The paper concludes with
recommendations for method selection under different practical conditions, highlighting
opportunities for future research.
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1. Introduction

The climate change issue draws the attention of governments all over the world to
make proposals to reduce carbon emissions. One such proposal is the decarbonization
of power systems by introducing large-scale integration of renewable generation, such as
wind turblnecgeneﬁrﬁtors (WTGs) and photovoltaic (PV) systems. It is becoming increasingly
difficult to MOMIor the system and ensure the quality of the power supply due to these
new elefti ity EitpE g?&’t&’ﬁ‘“ﬁnd power system operators must respond to changes in
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the network cOnSIsten %fy and correctly. Introduced in the 1970s, the power system state

estimatiBiePESEY 5" 30l to monitor the state of the system based on the available
Revise:

measuremen dlri{?%s%g&gture to help power system operators make energy management
ccepte

decisiong [Z.? 2], ka%welghted least square (WLS) algorithm was the first proposed
PSSE algtorlthm WthhSIS still Keffectlve as the most widely used method of PSSE. However,

itation: mg

the inflyence ofrenew lsglenergy resources (RESs) on the accuracy of PSSE cannot be

eview on Dutio:

addresseg.galelyeyiWlks: dhgdisgussion of addressing this challenge has intensified as the
installedreapabitpnagREGgeneration has increased globally significantly and consistently.

To s9ppéritbothitned donieresearch and real-world operations in coping with these chal-
lenges, dVAH68 B8 mmercial and open-source tools have been developed for PSSE and
networkanpdysiso Arneng:thexeommercial offerings, Siemens PSS®E and GE Grid Solutions’
Power SystsenMPRaPysisSTeetbok (PSAT) are widely adopted by utilities for their robust,
scalable ﬁﬁtagt%:é}ihz’éi’{’ciﬂ:ﬁﬁf‘f ¥itingency analysis capabilities [? ? ]. DIgSILENT PowerFac-
VIS({I uted unader the.terms an

tory provides a com%re chsive suite of state estimation and dynamic simulation modules,
conditions of the'Creative Commons

partlcula}glytgg&)g&r%rgss European transmission and distribution networks [? ? ]. On the

ense

open-soykge. andrsearshsides MATPOWER (developed at Cornell University) serves as a
flexible MAsklAB-based platform for algorithm development and benchmarking, while
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OpenDSS (supported by EPRI) focuses on detailed distribution system modeling with
built-in state estimation functions [? ? ]. More recently, platforms such as GridLAB-D
have emerged to simulate complex smart grid environments, integrating advanced state
estimation with demand response and distributed energy resource models [? ? ].

The approaches to addressing this issue can be divided into three categories: (1) by
integrating models to describe the renewable generation process into PSSE problem formu-
lations (physical-model-aided approach), (2) by using forecasting algorithms to generate
more accurate pseudo-measurements (forecasting-aided state estimation (FASE) approach),
and (3) by using a neural network to perform PSSE (neural network (NN)-based PSSE
approach). Some review articles are available in the literature that discuss recent develop-
ments and trends in PSSE [? ? ], or provide an overview of PSSE problem formulations and

particular, such as Section 7 of [? ], Section 5.2 of [? ], and Section 2.C of [? ]. However, these
papers do not provide a detailed description and comparison of the algorithms specifically
designed for tackling the challenges introduced by RESs; rather, these papers provide an
overview of the entire field of PSSE.

In contrast to the existing review papers on PSSE, this paper places RESs at the
core of the review, assessing and comparing all PSSE technologies that are tailored for
renewable-rich grids. The differences between models, and the merits and demerits of
different methods are discussed, along with providing suggestions for future research.
Hence, the primary goal of this review is to provide a clear comparative evaluation of
state estimation methodologies adapted for renewable-rich grids. It seeks to offer explicit
practical recommendations, addressing not only theoretical aspects but also practical
challenges faced by system operators and researchers in selecting appropriate algorithms.

The following sections of this paper are organized as follows: Section ?? briefly in-
troduces the formulation of the PSSE problem. Table ?? and Figure ?? provide a ‘big
picture’ of the various RES-based DSSE methods from the three aforementioned categories
of "physical-model-based’, ‘forecasting-aided’, and "'NN-based” methods, while a detailed
description and explanation of the methods belonging to the three categories are provided
in Sections ??, ??, and ??, respectively. Section ?? provides discussions of the findings of
different papers and provides suggestions for future research. Section ?? concludes this pa-

per.
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Figure 1. Flowchart of Algorithmic Approaches.
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Table 1. Classification of algorithms in this paper.

Category

Subcategory Method

Physical-model-aided approach

Complete model

Direct integrating generation models - —
Simplified model

Fitted functions

Integrating fitted function and NNs
Neural network

Alternative forms

Forecasting-aided approach

Original form

C i d
FASE based on Kalman filter (KF) ohvergence rmprove

Forecasting improved

Robustness improved

NN-based algorithms by generating pseudo-measurements

Other approach

NN-performed DSSE

ANN
Bayesian neural network (BNN)

Physics-informed neural network (PINN)
Others

2. Problem Formulation

The PSSE problem aims to estimate the voltage magnitudes and angles, called state
variables, of all the buses (or nodes) in the power network. The objective of PSSE is to
provide reasonably accurate estimates for these state variables based on a limited number
of measurements. The error of these measurements is usually assumed to follow Gaussian
distribution with mean values, y;, and standard deviations, 0;. The loss function of the
measurement errors (that is, the difference between the measurements and their actual
values) is formed based on the assumption of independence of measurements, thatis [? ],

fu(2) = f(21)f(22) - f(2m) @

where f,(z) is the likelihood function of the m-dimensional measurement vector, z,
and f(z;) is the normal probability density function of the ith measurement, z;. f(z;)
is defined as f(z;) = (1/+v/2mr0;)exp{—(z; — ;) /20;}. By taking the natural logarithm of
the above function, the log-likelihood function is identified as follows:

L = log(ful2)) = ilog(f(z») @

Maximizing (??) is equivalent to minimizing;:

m

Y (zi — i) /oi)? 3)

i=1

where the mean, y;, is the expected value, E(z;), of z;, and 0; is the standard deviation of
the error of the ith measurement. Considering a nonlinear function, #;(x), which relates
the ith state variable, x;, to the ith measurement, z;, the residual between z; and h;(x) is
defined as follows:

rij =z; — pi = z; — E(z;) = z; — hi(x) )
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The loss function in (??) can be rewritten in matrix format as follows:
J(x) = [z = h(x)] 'R [z = h(x)] 5)

where R is the residual matrix, which is the covariance matrix of the measurement error, ri,
and x, z, and h(x) are column vectors of x;, z;, and h;(x), respectively.
There are many approaches for solving the loss function in PSSE, among which WLS
is the most widely used algorithm and is described as follows.
Applying first-order optimality condition to Equation (??), Equation (??) is derived
as follows:
9 (x)/9x = g(x) = —H" (x)R™"[z — h(x)] =0 (6)

Applying Taylor’s expansion to (??), and ignoring terms that have an order higher
than one, the above equation is rewritten as follows:

8(x) = g(x") + G(x") (x — ") =0 )

where G(x*) = 9g(x)/0x = HT (x*)R"TH(x*) and H(x) = [0h(x)/0x]. Reformulating
the above equation gives
A=k -G g () ®)

By solving the equation below iteratively, accurate estimations of state vector can
be provided:

L = ¥k L AxKHL = HT(xF)R71[z — h(2)][G(xF)] ! ©9)

41 is the difference between x*+1 and x*. Although several PSSE algorithms have

been proposed since the 1970s, WLS is still widely applied to solve PSSE problems.

where Ax’

2.1. Pseudo-Measurement

Pseudo-measurement is a concept proposed to help solve PSSE if a required measure-
ment is not available. As mentioned previously, a limited number of measurements are
usually available in a power system, and we can have a scenario in which the available
measurements are not sufficient to solve PSSE. In this case, pseudo-measurements are
added to the set of measurements in lieu of the required but unavailable measurements.

The problem of having sufficient measurements is mathematically described using
observability. If the state vectors of a bus in the system can be estimated using available
measurements, then the bus is called observable. It is desirable that all buses are observable
so that the power system operators can obtain a complete picture of the status of the
system. For a system with one or more unobservable buses, such pseudo-measurements are
added to the set of measurements such that all the buses in the system become observable.
Additionally, for an already observable system, adding pseudo-measurements can improve
the redundancy of measurements, making PSSE more robust to bad data. Hence, when
bad data pollute multiple measurements, it is still possible to ensure accurate estimation
because of redundant measurements.

Pseudo-measurements are usually derived from the historical load or generation
profile at a bus, which gives typical values for generation or load throughout the year for
that bus. Pseudo-measurements should be applied with a carefully selected weight, ri;1 or
w;. Since the weight normalizes the residual between actual measured and estimated values,
applying a large weight to an inaccurate measurement will result in a large estimation
error in the final estimation results. Hence, the weight assigned to pseudo-measurements
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is usually small and depends on the variance of this pseudo-measurement. The higher the
variance, the smaller the weight will be.

2.2. Virtual Measurement

Virtual measurements refer to measurements not obtained from physical sensors,
but instead derived from known network conditions, topology, or operational constraints.
Typical examples include zero-injection buses (nodes without local load or generation),
open switches with zero power flow, closed switches having negligible voltage drops,
and fixed reference bus angles assigned for computational purposes. Virtual measurements
are integrated into state estimation algorithms either as pseudo-measurements with very
high confidence (low variance) or explicitly as equality constraints via methods such as
Lagrange multipliers, thus enhancing observability, redundancy, and overall numerical
stability of estimation solutions. Their role is particularly critical in distribution systems
with high renewable energy penetration, where the accuracy of pseudo-measurements
derived from forecasts can be adversely impacted by generation variability. By enforcing
known network conditions, virtual measurements significantly improve state estimation
reliability under these challenging conditions.

3. Physical-Model-Based Algorithms

In the DSSE problem, measurement redundancy and observability are essential factors
that make state estimation robust and accurate. However, only a limited number of
variables measured at the grid level are usually included, such as power injections and
voltage magnitudes. If the measured variables are extended outside the networks of
transmission and distribution, the observability can be changed. This is the essential idea
of the physical-model-aided approach, the first category of DSSE algorithms in Table ??.
The term ‘physical-model-aided” indicates that new states are included based on RESs’
physical model and the corresponding extended measurements. As shown in Figure ??,
the physical-model-based approach introduces new measurements and also integrates new
elements from physical models in state estimators. In other words, the physical-model-
based algorithm changes observability by taking additional measurements and states from
RES-installed buses to obtain accurate and robust state estimates of the whole system.

3.1. Direct Integration of Physical Models into PSSE

The most straightforward approach that introduces equations related to RESs is by
introducing these directly into the Jacobian matrix. The RX model, which is the simplified
model of asynchronous generators, is used in [? ] to include WTGs that are based on
asynchronous machines in PSSE problems. Similar approaches can also be applied using
further simplifications of the RX model, asin [? ? ]. In [? ] (in contrast to [? ]), different
types of WTGs are included using detailed models, which are more advanced than the
RX model. This kind of direct approach could also be applied to PV as well; for instance,
the five-parameter model of PV is used to build an extended estimator in [? ]. Other types
of distributed generators (DGs) used in PSSE are discussed in [? ], which are not limited to
renewable generators but extend to fuel cells and gas turbines.

Although the direct approach is considered to be the most straightforward way to
extend the state space of the state estimators, some undesirable issues could be introduced
in this approach [? ]. The new measurement redundancy and observability at and outside
the network level must be evaluated to make sure that they are improved; otherwise,
convergence issues can arise. Furthermore, new parameters and variables are required to
form the measurement functions (measurements expressed as functions of states) but may
not be available, possibly making these algorithms impractical for real-world applications.
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The complexity of the Jacobian matrix is another concerning factor, which will increase with
the application of new measurements. The difficulties of implementing these algorithms
due to the higher complexity of the Jacobian matrix can also be an obstacle.

3.2. Integrating Fitted Functions of Generation Models into PSSE

Considering the challenges of direct integration of the physical model, another ap-
proach has been proposed in the literature, which addresses the three issues mentioned
earlier. Rather than introducing the complete and detailed physical models, the physical model
is fitted using several functions or neural networks before model integration (See Figure ??).
The fitted function replacing the five-parameter PV model is expressed as follows [? ]:

Vipos :k'ln({l-lpys-Fb-G-i-C'T+p-G-T+d—|—1’~Ip-,,S

(10)
+5'1pvs'G+ﬂ1'G+n'T+t)

where a,b,c,d,k,p,r,s,m,n, and t are parameters fitted based on historical data; G and T
represent the solar irradiance and temperature, respectively, and V),»s and Iy represent the
output voltage and current of PV power arrays, respectively. The fitted function requires
only two extra accessible variables, temperature and irradiance, to relate voltage and
current. However, the fitted functions have been applied only to some parts of the PV
system; for example, they are not applied to power converters, implying a partial solution
as the converter model is still required. Another example is [? ], where neural networks
and fitted functions are used for WTGs without a detailed model used in the algorithm.
The selected neural network in [? ] is referred to as the back-propagation neural network
(BPNN). The differentiability of this neural network is supported by the back-propagation
algorithm, which calculates the gradient of the loss function concerning the weights and
biases of the network layer by layer based on chain rules. This helps in directly obtaining
the Jacobian matrix elements required for PSSE.

Using fitted functions and neural networks requires fewer measurements than detailed
models, which partially solves the issue of unavailable measurements. The concern about
the difficulty of performing differentiation for obtaining the elements of the Jacobian
matrix is also addressed. The BPNN and fitted function gradients could be obtained in
a straightforward and accurate manner without requiring detailed system models. It is
also easier to derive the gradient of the fitted function than deriving it using the detailed
model because the complexity of the fitted function is reduced. However, a large amount
of data is required to derive the fitted functions and neural networks, which is the primary
challenge of this approach. Additionally, these data are generator- and site-specific and
cannot be easily applied to other locations.

3.3. DSSE Problem in Alternative Forms

The DSSE problem can be reformulated into various forms beyond the standard
equations presented in Section ?? (??), although it still falls within the physical-model-
based category depicted in Figure ??. For example, Chapter 6 of [? ] discusses the optimization
approach, where the objective is to minimize the difference between the estimated value /()
and the measurement z to find the optimal state variable x. Reformulating the DSSE problem
as an optimization problem is advantageous because physical models can be incorporated
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as constraints. This approach is demonstrated in [? ], where the loss function is defined
as follows:

2

Neg
F(x) = f(x) + Kk (Z(Ij(X))> +

j=1

Nueg
kz(z (max|o, g,-(X)])) (11)

j=1
Ji(X)=0,j=1,2,3....Neg
gi(X) >0,j=1,2,3...Nygg

where f(x) is the objective function of DSSE, J;(X) and g;(X) are the equality and inequality
constraints from generation units of RESs and other units of the system, respectively. k;
and k; are the penalty coefficients. Ny and Ny, are the numbers of equality and inequality
constraints, respectively. F(x) is the new loss function of the optimization problems
formulated from the original DSSE problem. The optimization problem is solved using
the combination of particle swarm optimization and Nelder-Mead simplex search, which
is called PSO-NM in [? ]. Similarly, in [? ? ], the estimation problem is framed as
an optimization problem and solved using the modified firefly algorithm and mutated
two-loop particle swarm optimization algorithm, respectively, with DG models included
as constraints.

Additionally, DSSE can be formulated in other ways. Interval state estimation (ISE)
is one such form, where the goal is to determine the interval of state variables rather
than their exact values, as in conventional DSSE. ISE employs the Krawczyk operator
and its variants (modified Krawczyk operator (MKO)), which are numerical algorithms
used to find guaranteed enclosures or approximations of solutions to systems of equations.
For instance, ref. [? | proposes a modified Krawczyk operator to handle the ISE problem
while considering DGs. This approach is similar to the algorithms discussed in Section
III.A, which introduce an extended estimator directly using physical models.

Both approaches reformulate the DSSE problem into alternative forms other than the
one given in Section ??2. When the DSSE problem is cast in an optimization form, incorpo-
rating a detailed physical model as constraint may introduce measurement and parametric
issues. Additionally, these optimization forms typically encounter fewer convergence prob-
lems because most optimization algorithms are inherently convergent. Moreover, these
algorithms are versatile and can be applied to various types of RESs.

3.4. Comparative Analysis and Summary of Physical-Model-Based Categories

The physical-model-based DSSE approaches from Section ?? can be grouped into three
categories: direct integration of RES models, surrogate modeling via fitted functions/NNs,
and alternative optimization/interval formulations. Table ?? compares these categories.
Category-Level Recommendations:

e Use direct integration when detailed RES dynamic models and parameters are avail-
able and maximum observability is required.

*  Choose surrogate modeling if historical RES data are abundant but detailed physical
parameters are unavailable.

*  Apply alternative formulations when robust convergence under constraints is critical,
accepting higher computational cost.
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Table 2. Category-level summary of physical-model-based DSSE methods.

Category Collective Strengths Collective Weaknesses Ideal Application Context
. . . Full representation of High parameter and model Pilot implementations or
Direct mi‘%?etign of RES generator dynamics; maximal complexity; large Jacobian research testbeds with
observability gain and convergence risk complete RES data
Surrogate modeling (fitted Reduced modeling effort; Requires extensive historical Utilities with rich RES
fuic tions and l\%Ns) automatic differentiation for data; site-specific measurement archives seeking
Jacobian training/tuning mid-complexity models
Alternative Flexible constraint handling;  Heavy computational burden; Networks demanding
optimization/interval inherent robustness and metaheuristic parameter rigorous physical constraints
formulations convergence guarantees tuning and robust estimation
3.5. Summary

The physical-model-based approach aims to extend estimation to the observable
internal parts of the generators rather than limit it to the transmission and distribution
networks. This extends the DSSE problem to include measurements other than conventional
network measurements and provides algorithms capable of handling issues related to RESs.

4. Forecasting-Aided Approach

As introduced in Section II.A, DSSE usually applies pseudo-measurements generated
from historical data. However, forecasted generation or load could be used for generat-
ing pseudo-measurements, instead of using historial data. The second category of the
DSSE algorithms utilises forecasting techniques to provide appropriate values of pseudo-
measurements to aid the state estimation process rather than changing the model of the
estimators, as shown in Figure ??. This kind of approach of DSSE is usually identified as
FASE[??].

4.1. Kalman-Filter-Based Algorithms

The Kalman filter is a mathematical algorithm used to estimate and predict the state
of a dynamic system by integrating measurements or observations with predictions based
on the system’s mathematical model. Thanks to its predictive capabilities, the Kalman filter
and its variants have been extensively applied in various fields, including DSSE, as depicted
in Figure ??. In the Kalman-filter-based DSSE algorithm, the prediction step generates
pseudo-measurements for DSSE, while the update steps incorporate these measurements
to perform the DSSE. It has been demonstrated that Kalman-filter-based forecasting-aided
DSSE outperforms WLS in [? ]. Numerous Kalman filter variants have been proposed in
the power system literature to address the diverse characteristics of DSSE problems and
power systems.

Real system Xi41

Zhs1
X1

h X |:> Predicti [:> . |:> Updat i
rediction 1 pdate
: P - Pl

Zet1

Xk+1 = @(Xk) + Wi

Zr+1 = h(xgp1) +viesr

Figure 2. Kalman filter scheme [? ].
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Convergence issues are a primary concern in both DSSE and Kalman filtering, prompt-
ing the development of modified Kalman filter algorithms. For instance, the photovoltaic-
assisted interleaved extended Kalman filter (PV-IEKF) addresses potential ill-conditioning
problems of the Kalman innovation matrix due to zero injection, as highlighted in [? ].
These zero injections may result from low solar irradiance affecting PV generation and
zero-injection buses. A novel block-wise inverse computation algorithm based on the Schur
complement is proposed for PV-IEKF to tackle this ill-conditioning issue.

The performance of KF-based FASE algorithms relies heavily on the accuracy of
Kalman filter predictions. In [? ], a data-driven unscented Kalman filter (UKF) is introduced
to address low forecasting accuracy due to decoupling between bus transitions. A non-
diagonal matrix derived from historical data replaces the diagonal transition matrix in the
prediction step, enhancing forecasting accuracy. Similarly, a past-aware state estimation
(PASE) using an ensemble Kalman filter (EnKF) is applied in [? ], incorporating the latest
state into the EnKF ensemble to account for past states.

Rather than addressing internal Kalman filter issues, the robust ensemble Kalman filter
(REnKF) in [? ] considers system noise and bad data. The projection statistics (PS) technique,
used to detect bad data in DSSE in [? ], is applied to the innovation matrix in REnKF, creating
anew measurement error covariance for bad data and enhancing the algorithm’s robustness.
The system process noise is also accounted for by updating its Gaussian variance, which
benefits state tracking and forecasting performance. The PS technique’s ability to manage
bad data and update system noise contributes to the robustness of the Kalman filter in
REnKE. Robustness is also a focus in [? ? ], which use modified EKF and EnKEF, respectively.

Different Kalman filter algorithms have unique strengths and weaknesses and can be
integrated to achieve superior performance. For example, the UKF and EKF are combined
to form a hybrid algorithm known as the adaptive extended Kalman filter (AEKF) in [? ],
which surpasses both UKF and EKF in convergence speed and estimation accuracy.

Using the Kalman filter steps to generate pseudo-measurements and perform DSSE
is logical because the prediction and update steps provide pseudo-measurements, which
are then used in DSSE. Additionally, Kalman filtering is grounded in mature theory and
robust mathematical foundations, offering numerous variants that can inspire novel DSSE
algorithms. Consequently, it may be more reliable than neural network approaches, which
are often seen as black boxes. However, deriving the Kalman filter parameters requires data,
similar to neural network approaches. Furthermore, additional steps to address specific
problems, such as the ill-conditioning issue in [? ], can increase computational costs and
slow down the process.

4.2. Neural Network-Based Algorithms for Generating Pseudo-Measurements

NNs are widely utilized in various engineering domains due to their capability to
handle nonlinear problems, such as forecasting power generation [? ? ? |. These fore-
casted values can directly serve as pseudo-measurements in conventional DSSE algorithms,
as illustrated in Figure ??. In [? ? ], it is demonstrated that a basic two-layer feedforward
artificial neural network (ANN), without additional mechanisms, generates more accurate
pseudo-measurements compared to those derived from load profiles.

Similar to KF-based FASE, enhancing forecasting performance is a key strategy for
improving FASE accuracy. A sophisticated approach proposed in [? ] leverages the extreme
learning machine (ELM), which is a single-layer feedforward neural network where hidden
layer node weights are randomly initialized and only output weights are adjusted during
training. In [? ], ELM is utilized for forecasting to provide enhanced pseudo-measurements
for DSSE. To optimize ELM performance, two additional steps are introduced: selecting
training data using Grey relation analysis, which assesses similarity between sequences
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based on weather conditions to prevent overfitting, and tuning hyperparameters using
genetic algorithms. In another innovative approach, WaveNet and long short-term memory
(LSTM) architectures are combined to create WaveNet-LSTM in [? ]. This hybrid model
effectively captures complex patterns in power injections, including those from RESs.

The benefits of employing NNs directly for generating pseudo-measurements include
straightforward implementation, high accuracy, and rapid computation speed post-training.
However, different from the Kalman filter, NNs suffer from low explainability regarding
their internal operations. Moreover, like the Kalman filter’s reliance on data, NNs also
necessitate extensive datasets for training and validation. This data-intensive requirement
poses a significant challenge for practical applications in power systems, where obtaining
sufficient and timely data can be constrained by measurement infrastructure limitations [?

1.

4.3. Other Approaches

There are also other approaches to produce pseudo-measurements to aid the DSSE
process, which are not generated using KF and NNs. In [? ], pseudo-measurements of
demand-response-enabled load (DREL), including load-aggregating PVs, are generated
using discrete-time linear models, which characterize and track the dynamics of DREL
online based on sampling. An optimization model has been introduced in [? ] to simulate
the self-adjust behavior of DREL considering the time of use price and physical constraints.

4.4. Comparative Analysis and Summary of Forecasting-Aided Categories

To provide a clearer comparison among the forecasting-aided approaches presented
in Sections ??-??, Table ?? summarizes their main strengths, weaknesses, and ideal applica-
tion contexts.

Category-Level Recommendations:

e  KF-based methods when measurement noise characteristics are known and moderate
computational resources are available.

¢ NN-based methods if rich historical datasets exist and sub-second estimation
is required.

*  Other approaches for quick, low-complexity implementations in data-scarce scenarios.

Table 3. Comparative summary of forecasting-aided DSSE methods.

Approach Main Strengths Main Weaknesses Ideal Application Context
KF-based methods (EKF, Strong theoretical High computational ne‘izsg;ﬁ;sglilt?isltii%le
UKEF, EnKF, REnKF, foundation; robustness to demand; sensitive to measurements and
AEKEF, etc.) uncertainties model/parameter errors

forecasts

NN-based methods (ANN,
ELM, WaveNet-LSTM, etc.)

Excellent forecasting
accuracy; fast online
inference once trained

Low interpretability;
require large, high-quality
datasets

Systems with rich historical
data; medium-to-high RES
penetration

Other approaches
(Discrete-time linear
models, etc.)

Simple structure; minimal
data requirements

Limited ability to capture
complex dynamics;
moderate accuracy

Environments with scarce
data or preliminary
analysis needs

4.5. Summary

Forecasting-aided algorithms strive to generate precise pseudo-measurements to assist
in the estimation process. One category includes KF-based algorithms, where the KF
is employed for both forecasting and estimation. Therefore, KF-based algorithms can
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concentrate on directly enhancing forecasting and estimation accuracy. In contrast, NN-
based algorithms do not utilize NNs for estimation but improve estimation performance
solely through input measurements. Additionally, there are alternative FASE approaches
that do not rely on KF or NNs for forecasting and generating pseudo-measurements
for DSSE.

5. NN-Performed DSSE

A single NN can potentially replace conventional DSSE algorithms like WLS for com-
puting state vectors from measurements. Such algorithms defy easy classification since they
neither introduce extended estimators through physical models and additional states (as
discussed in Section ??) nor rely on forecasted or predicted values (as discussed in Section ??).
Consequently, they can be categorized separately (see Figure ??). For instance, a basic ap-
proach involves using a feedforward ANN for state estimation, demonstrated in [? ]. Similarly,
ref. [? | proposes an algorithm involving dataset pre-processing, focusing on measurements,
states, and topology, utilizing the K-nearest neighbor (KNN) method. NNs can also emulate
DSSE solvers, such as the prox-linear net presented in [? ]. Additionally, ref. [? ] introduces
the unobservable state estimation neural network (USENN) to handle estimation challenges
in distribution systems with low observability.

Bayesian neural networks (BNNs) represent another NN category widely applied for
addressing the DSSE problem due to their well-founded Bayesian theory, which enhances
explainability. In the conventional approach, for instance, [? | employs an exact modeling
estimator to handle non-Gaussian measurement uncertainties. However, this approach
does not yield deterministic improvements and typically incurs higher computational costs.
In [? ? ], BNNs are utilized to address non-Gaussian measurements and observability
issues in distribution systems with sparse measurement setups.

Traditional DSSE algorithms are tightly bound by the power system’s physical mod-
els, a constraint absent in NN results, which can lead to discrepancies with power-flow
models or system element characteristics. For instance, DSSE outcomes might show power
generation values exceeding generators’ rated outputs.

A novel category of NNs, discussed in [? ], integrates physical principles into NNs,
termed physics-informed neural networks (PINNs) or physics-guided neural networks
(PGNNSs). PINNs are recognized as promising tools for solving diverse problems, including
flow dynamics, optics, and electromagnetic problems, as highlighted in [? ]. One approach
involves incorporating physical equations into the loss function, preserving model sim-
plicity and accuracy [? ? ]. Another variant modifies network architecture, such as the
graph neural network (GNN), introduced for DSSE in [? ? ? ]. GNN integrates physical
equations into connections between and within neurons, mimicking power system topol-
ogy. Each neuron represents a power system bus, and connections symbolize transmission
lines between buses, resulting in a physically guided structure offering enhanced accuracy
compared to traditional PINNs. However, implementing and interpreting GNNSs can be
complex due to their intricate structure, though they can be partitioned into subsystems to
enhance computational efficiency, as detailed in [? ? ].

The advantages of NN-performed DSSE include user-friendliness, high accuracy,
and rapid computation post-training. However, they often suffer from greater interpretabil-
ity challenges than NN-based FASE algorithms, as they may discard physical equations
and constraints in favor of a black-box modeling approach. While NN-based FASE algo-
rithms utilize NN-generated pseudo-measurements, the DSSE results are still derived using
traditional DSSE methods, thereby remaining subject to power system physical models and
constraints—unlike NN-performed DSSE, which may disregard such constraints. PINNs
mitigate some of these physical constraint issues by embedding physical laws within NNs,
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yet they also require substantial data for training, reflecting the inherent data dependency

of NINs.

Comparative Analysis and Summary of NN-Performed DSSE Categories

The NN-performed DSSE methods of Section ?? fall into four categories: standard
ANNSs, Bayesian NNs, physics-informed NNs, and other hybrid architectures. Table ??
provides a category-level comparison.

Table 4. Category-level summary of NN-performed DSSE methods.

Category Collective Strengths Collective Weaknesses Ideal Application Context
Fast inference; simple Black-box nature; no isai’ici‘li?le asﬁlpilsceit(l)(r)lrés
Standard ANNs o °¢ Stmp built-in uncertainty °d &¢
training pipelines e estimates with moderate
quantification
accuracy
Principled uncertainty com utalglo%g?; trainin Critical systems
Bayesian NNs estimates; handles P & demanding reliability and

non-Gaussian noise

cost; complex
hyperparameter tuning

probabilistic outputs

Physics-informed NNs
(PINNs/GNNs)

Embeds physical laws;
improved generalization
and consistency

Implementation
complexity; potential
scalability challenges

Networks where adherence
to power-flow constraints
is mandatory

Other hybrid architectures
(e.g., prox-linear, USENN)

Tailored to
low-observability or
specific robustness

Limited generalizability;
often problem-specific
design

Research scenarios with
specialized DSSE
challenges

requirements

Category-Level Recommendations:

e Employ standard ANNSs for very fast, large-scale deployments when uncertainty
quantification is not critical.

* Use Bayesian NNs in applications where robust uncertainty estimates and non-
Gaussian handling are required.

*  Opt for physics-informed NNs to enforce power-flow and equipment constraints
within the learning process.

*  Consider hybrid architectures for scenarios with low observability or bespoke
robustness needs.

6. Discussion and Suggestions for Future Work

In the preceding sections, three categories of DSSE algorithms incorporating RES were
discussed. This section explores potential future research directions in this field.

In DSSE, observability and measurement uncertainties are critical factors influencing
the solvability of DSSE problems. Integrating RES physical models into the estimation
process can enhance observability and align estimation results more closely with these
models, contingent upon the availability of accurate physical model data. Future research in
the first category of algorithms may focus on leveraging advanced optimization techniques
to tackle robustness challenges, as exemplified in [? ? ? ]. Established optimization theories
offer numerous avenues for robust estimation solutions, such as the Osprey optimization
algorithm [? ] and the Coati optimization algorithm [? ].

The second category can enhance DSSE’s measurement matrix by introducing addi-
tional pseudo-measurements to restore observability, improve measurement redundancy,
and address missing data. However, the feasibility of applying these FASE algorithms
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heavily relies on the availability of comprehensive datasets. Modifications to the estima-
tion step of KF-based FASE algorithms can also enhance performance in specific contexts,
as demonstrated in [? ? ? ]. Additionally, KF-based algorithms can draw insights from
other established algorithms to tackle specific DSSE challenges; for example, the Schur
complement to handle ill-conditioning issues in [? ].

NNs have demonstrated efficacy in RES generation forecasting [? ], paving the way
for NN-based FASE implementations. Advanced RES generation forecasting techniques,
such as machine learning and statistical hybrid models [? ] and recurrent neural network
models like dynamic fitness Al-Biruni earth radius [? ], can potentially enhance NN-based
FASE. However, the practical implementation of these approaches necessitates careful
consideration of data availability and the trade-offs between cost and efficiency.

The application of NNs for DSSE represents a growing area that warrants further
exploration. Following the introduction of PINNSs to address DSSE challenges, the issue
of interpretability has been mitigated by constraining outputs to align with power flow
and other relevant models. The evolving landscape of NNs offers promising avenues for
performing DSSE, exemplified by innovations such as the Kolmogorov—Arnold network [?
] and Lagrangian neural networks [? ]. Moreover, the Bayesian physics-informed neural
network (BPINN) proposed in [? ] presents a compelling approach for DSSE, leveraging the
robustness and safety features of Bayesian and physics-informed techniques. The future
application of BPINN to perform DSSE seems a promising approach.

Finally, unbalanced network conditions—common in low-voltage distribution feeders
due to uneven single-phase loads, asymmetrical line impedances, and nonuniform DER
integration—significantly increase the SE problem dimension, intensify phase coupling,
and exacerbate observability challenges under sparse instrumentation, leading to reduced
accuracy, slower or failed convergence, and heightened sensitivity to initialization [? ? ].
To mitigate these effects, current research has extended classical WLS to robust three-phase
formulations that explicitly model asymmetry [? ], employ dynamic Kalman filter variants
to leverage temporal correlations and fill in data gaps [? ], and adopt physics-informed
machine learning models embedding power-flow constraints for rapid, reliable estimation
despite limited sensing [? ]. Future work should focus on hybrid SE frameworks that
seamlessly combine physical models with data-driven learning for greater adaptability,
on strategic sensor placement and multi-source data fusion to bolster observability, and on
advanced uncertainty quantification—such as probabilistic, interval, and forecast-aided
estimation—to robustly manage DER variability and dynamic load conditions [? ].

7. Conclusions

Starting from the viewpoint of algorithms, this paper has reviewed articles on DSSE
problems considering RESs’ uncertainties in three categories: generation-model-aided,
forecasting-aided, and neural network-based approaches. The main difference between
categories one and two is the introduction of an extended state estimator based on models
other than the standard power-flow models, while NNs are directly used to perform
DSSE in the third category. This paper provides insight into the practical application of
DSSE algorithms. For instance, if a researcher needs to address the DSSE problem in
an RES-penetrated network and has access to a large volume of historical data of RESs,
the researcher may refer to the fitted function and NN approach in Section ?? and the
algorithms in Sections ?? and ?? and develop their own approach for target scenario.
Directions for future research have also been identified, which can be helpful to researchers
who would like to have insights into this field. A summary of the mentioned PSSE
algorithms has been tabulated in Table ??2.
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Table 5. Summary table for Sections 2?-?2.
Category TargetedISCS(l)::ponent/ Model/NN/Algorithm Introduced PSSE Algorithm Test Systems
RX model [? ] IEEE 14-bus system
WTG Simplified RX model [? ] IEEE 14-bus system
o . . Simplified RX model and automatic differentiation IEEE 14-bus system
Direct integrating generation models WLS
WTG and PV Simplified RX and 5-parameter [? ] 40-bus distribution system [? ? ]
DG Simplified model [? ] IEEE 13-bus, 322-bus system [? ]
WTG types Simplified WTGs models [? ] IEEE 118-bus system
PVs Fitted 5-parameter model [? ] WLS IEEE 33-bus system
Integrating fitted functions and NNs
WTG Fitted functions and NNs [? ] WLS Sotavento wind park [? ]
PSO and NM [? ] PSO-NM IEEE 70-bus feeder
RES Modified firefly algorithm [? ] Modified firefly IEEE 34-bus test system system
Alternative forms ix-basi i
DLM-PSO[? | DLM-PSO Six-basin network and IEEE 34-bus
system
DG ISE [? ] MKO IEEE 13-bus and 123-bus system [? ]
Ill-conditioning and PV PV-IEKEF [? ] PV-IEKF IEEE 37, rural 85-bus [? ? ]
IEEE 13-bus, 34-bus and 123-bus
. . ” ,
Coupling and forecasting UKEF [? ] UKF systems, China network
. Past awareness EnKF [? ] EnKF 33-bus feeder [? ]
FASE based on Kalman filter
Robustness REnKEF [? ] REnKF Real MV, IEEE 123-bus system
Robustness and uncertainties Adaptive Hoo EKF [? ] EKF IEEE 14-bus, 30-bus, 57-bus and
118-bus systems
Smart meter data AEKEF [? ] AEKF IEEE 37-bus system
Overfitting GA-ELM [? ] WLS Modified IEEE 33-bus system
FASE based on NN Pseudo-measurement ANN[??] WLS UKGDS 95-bus, IEEE 37-bus system
DER and MV Demand WaveNet-LSTM [? ] WLS IEEE 123-bus system
Other DREL Discrete-time linear model Optimization IEEE 123-bus system
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Table 5. Cont.

Category TargetedISCs(::ponent/ Model/NN/Algorithm Introduced PSSE Algorithm Test Systems
ANN-based PSSE ANN [? ] ANN 33-bus system
Robustness Robust KNN [? ] KNN IEEE 300-bus system
Observability USENN [? ] USENN IEEE 118-bus system, Jiangsu system
NN-performed PSSE
Physical constraints PINN [??] PINN IEEE 4-bus and 14-bus
Non-Gaussian BNN [? ] BNN 20-kV MV network
Low observability BNN [? ] BNN 3120-bus mesh network




Energies 2025, 18, 2524

16 of 2?

Author Contributions: Conceptualization, H.Q.; investigation, H.Q.; writing—original draft prepa-
ration, H.Q.; writing—review and editing, A.K.S. and E.B.; supervision, A.K.S. and E.B. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

WTG Wind Turbine Generator

PV Photovoltaics

PSSE Power System State Estimation

WLS Weighted Least Square

RESs Renewable Energy Resources

PSAT Power System Analysis Toolbox
DSSE Distribution System State Estimation
FASE Forecasting-Aided State Estimation
NNs Neural Networks

BPNN Back-Propagation Neural Network
ANN Artificial Neural Network

ISE Interval State Estimation

MKO Modified Krawczyk Operator

KF Kalman Filter

PV-IEKF Photovoltaic-Assisted Interleaved Extended Kalman Filter
UKF Unscented Kalman Filter

EnKF Ensemble Kalman Filter

REnKF Robust Ensemble Kalman Filter
AEKF Adaptive Extended Kalman Filter
ELM Extreme Learning Machine

GA Genetic Algorithm

LSTM Long Short-Term Memory

DREL Demand-Response-Enabled Load
KNN K-Nearest Neighbor

USENN Unobservable State Estimation Neural Network
BNN Bayesian Neural Network

PINN Physics-Informed Neural Network
GNN Graph Neural Network

MV Medium Voltage

NM Nelder-Mead (Simplex Search)

PSO Particle Swarm Optimization
DLM-PSO Mutated Two-Loop Particle Swarm Optimization
PASE Past-Aware State Estimation

PS Projection Statistics

PGNN Physics-Guided Neural Network

ML Machine Learning
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