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Resolvent-Based Models for Nonlinear Solutions of Wall-Bounded Flows and
Statistical Estimation of Chaotic Systems

by Thomas Burton

This thesis explores turbulence from a dynamical systems perspective, focusing on the
development of resolvent-based models for both nonlinear solutions and the statistical
estimation of chaotic systems. By leveraging the concept of Exact Coherent Structures
(ECSs), postulated to serve as invariant skeletons within turbulent flows, the work
aims to systematically reduce the complexity of turbulence representation while
retaining essential dynamical features. Resolvent analysis, a modal decomposition
technique, is employed to construct low-dimensional subspaces that capture the
dominant dynamics of wall-bounded turbulent flows, such as rotating Couette flow.

The thesis introduces a novel variational optimisation methodology that operates
within these resolvent subspaces to compute invariant solutions of the Navier-Stokes
equations in wall-bounded domains. This approach is shown to retain the robustness
of the underlying optimisation algorithm while improving computational
performance through dimensionality reduction of the resolvent-based subspace. The
method is demonstrated for equilibrium and periodic solutions on the rotating
Couette flow. Furthermore, the work extends these models to construct large period
state-space loops, termed quasi-trajectories, which approximate the statistics of
solutions on chaotic attractors without requiring exact solutions to the governing
equations. This concept is validated using the Lorenz system.

Key results include the discovery of equilibrium and periodic solutions for rotating
Couette flow, the application of resolvent modes for low-dimensional modelling, and
the statistical validation of quasi-trajectories against direct numerical simulations.
These findings represent a step towards “closing the loop” in resolvent analysis,
bridging the gap between kinematic modes and practical turbulence modelling. This
work opens new avenues for efficient computation and control of turbulent flows and
provides a foundation for further exploration of chaotic systems using dynamical
systems theory.
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Chapter 1

Introduction

For over 100 years, fluid dynamics research has been dominated by the pursuit of
understanding turbulence and the chaotic motion of deterministic systems in general.
The importance of turbulence in nature cannot be overstated. It is prominent in
engineering applications where quick and accurate estimations of useful observables
are required. These observables, such as drag for aerodynamic objects, skin friction
coefficients for internal flows such as transport pipes for the energy industry, and
mixing properties for combustion engines, are primarily determined by the turbulent
properties of the given flow. Turbulence is the dominant feature of astrophysical flows
where scales are exceedingly large, ranging from the weather patterns of planets’
atmospheres to the formation and stability of stars and galaxies. Physically speaking,
turbulence is generally a result of fluid instability being magnified over time or along
certain flow directions, leading to nonlinear interactions that cannot be neglected in
the flow analysis. Instabilities are generally amplified in the presence of shear flows,
primarily flows near walls or in jets (free shear flows).

For turbulent fluids, the ultimate theoretical goal is a model applicable to the general
prediction of the effects of turbulent fluctuations on the mean state of the flow. The
majority of advancements in this realm have had a foundation in the concept of eddy
viscosity: the idea that the main effect of turbulence is to enhance the mean
dissipation of the fluid. Expressed through the Boussinesq hypothesis, introduced in
Boussinesq (1877), this relates the Reynolds stresses of the fluid to the mean shear
through the eddy viscosity variable νT which is generally inhomogeneous and needs
to be determined throughout the flow field. Providing a value, or transport equation
for the eddy viscosity then constituted a closure to the mean governing equations. The
prominent examples of this include the simple mixing layer model proposed by
Ludwig Prandtl (Prandtl, 1925), the Spalart-Allmaras model (Spalart and Allmaras,
1992) which provides a single transport equation for νT, and the two-equation k-ϵ
model of Jones and Launder (1972). All of these have been successfully employed in
practice, with each model performing best for particular flows for which they were
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developed/tuned. The fundamental problem with the eddy viscosity model, however,
is its motivation as an analogy with the kinetic theory of gases. The simple mechanical
assumptions that can be made about particles are not remotely valid for turbulent
eddies, which interact in a complex nonlinear fashion, resisting the attempts to reduce
the fluctuating flow into a few turbulent properties such as kinetic energy, dissipation,
eddy viscosity, etc. Thus, there is good reason to look elsewhere for a more physically
consistent, and mathematically rigorous, model for turbulent flow.

Fluid turbulence is a specific example of the more general phenomenon of
deterministic chaos. Chaotic dynamics, although not formalised at the time, was first
appreciated by Henri Poincaré in his work on the three-body problem. The study of
chaos developed gradually over the next 100 years, with the advent of large scale
computation and the seminal work of Edward Lorenz (Lorenz, 1963) who
demonstrated deterministic chaos in a simple, low-dimensional system.
Characterising turbulence is intricately linked to advances in the understanding of
chaos theory and nonlinear dynamics in general. A detailed picture of the dynamical
processes and structures that give rise to chaotic dynamics provide a necessary a
foundation to build a comprehensive theory of turbulence.

Chaos for low-dimensional dissipative dynamical systems is generally understood to
occur on a complex (usually fractal) structure called the strange attractor. This
attractor, if it exists, is generally sufficient to completely define the long-time
properties of the systems. The fractal structure of the attractor is key to the complex
motion of the state within a finite space without ever having to repeat itself. The
Navier-Stokes equations define the evolution of an infinite-dimensional state, existing
as an element of some well-defined function space. In Ruelle and Takens (1971) the
view of turbulence in terms of this state-space picture is established, with an
underlying strange attractor that governs the turbulence of the fluid. It was
conjectured that the complexity of this structure was completely defined by a
parameter of the flow, which is understood to be (in most cases) the Reynolds number.
For low Reynolds numbers the state-space is rather simple, with only an attracting
fixed point, represented physically by a stable laminar solution. As the Reynolds
number increases, this fixed point bifurcates into unstable equilibrium, travelling
wave, relative periodic, and periodic (or quasi-periodic as proposed in Landau and
Lifshitz (1987)) solutions, with the trend being an increase in topological complexity.
This is a supercritical route to turbulence, whereby each solution becomes linearly
unstable prompting the flow to move to a new point in state-space. There is also a
subcritical route to chaos, whereby the flow transitions away from a linearly stable
non-turbulent solution due to a finite amplitude perturbation. The state is pushed
outside of the basin of attraction for that particular solution and into the region of
space attracted to a new and more complex solution, or a turbulent attractor. For flows
governed by this type of subcritical transition, the likelihood of such an event
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occurring still increases with the Reynolds number, due to a generally shrinking basin
attraction for the particular non-turbulent solution being studied which means less
energetic inputs are required to transition the fluid to a different region of the
state-space. The main point is that at some sufficiently large Reynolds number the
attractor of the fluid can be understood to be complex enough to contain
chaotic/turbulent solutions within itself, according to the analysis of Ruelle and
Takens (1971). There has been exploratory research into the existence and nature of
these attractors that contain turbulence, such as in Keefe et al. (1992); Takens (1981),
although no rigorous proof of the existence of a general turbulent attractor for various
flow configurations currently exists. This idea remains useful however in its ability in
drawing parallels between the study of low-dimensional chaotic systems and
high-dimensional chaotic systems. It provides insight into the dynamics of turbulence
and new routes for a unified theory of turbulence, built upon the invariant measures
of an abstract dynamical state-space rather than the statistical averaging approach
represented by eddy viscosity and the Boussinesq hypothesis. The goal being models
derived from representative dynamics of the system and its structure in state-space
rather than nonphysical and empirically tuned macroscopic representations of
turbulent flows. This is the stage upon which this project is presented, using the
dynamical systems perspective of turbulence to motivate the application of
low-dimensional chaos theories in determining the character of chaotic and turbulent
flows.

1.1 Invariant Skeletons of Chaotic Motion

Models of turbulence are difficult to formulate, as fluid dynamics contains many
complicated nonlinear interactions at many different scales, resisting the standard
reductive attempts of physicists to formulate a universal theory. Here, instead the
theory for low-dimensional chaotic systems can lend a hand in providing a route to
finding new models for turbulence. It has been shown for low-dimensional systems
by Predrag Cvitanović (Auerbach et al., 1987) that a strange attractor can be analysed
in terms of the set of Unstable Periodic Orbits (UPOs). These UPOs are densely
embedded within the strange attractor and provide a “skeleton” for the dynamics.
The fact that these orbits are dense within the attractor means that any chaotic
trajectory gets arbitrarily close to an orbit, at which point it shadows it for a finite
amount of time. Due to the instability of the orbit, the chaotic trajectory is eventually
repelled along its unstable manifold leading to the trajectory then shadowing a new
orbit for a finite amount of time. The result is a continuous and never-ending set of
shadowing events that define the evolution of the chaotic trajectory. Figure 1.1 shows
how a set of invariant solutions, specifically fixed points and periodic orbits, can be
used to partition the state-space and consequently approximate the smooth dynamics



4 Chapter 1. Introduction

FIGURE 1.1: Approximation of a smooth state-space with the linearised dynamics
around a set of invariant (periodic) solutions, obtained from Artuso et al. (1990).

with the linearised behaviour in the neighbourhood of the invariant solution. Thus, if
enough of these UPOs can be found then the statistical behaviour of the chaotic
trajectory can be defined. This naturally leads to the method of cycle expansions,
developed in Cvitanović (1988, 1995), where ergodic properties of the chaotic
dynamics are expressed in terms of a weighted sum over the set of UPOs for the given
system. This method was shown to possess exponential convergence in Artuso et al.
(1990) with the length of the orbit used.

The picture of chaotic dynamics as built up in terms of a set of invariant solutions can
be directly extended to fluid dynamics cases. In fact, Eberhard Hopf did so in Hopf
(1942, 1948), conjecturing turbulence to be a random walk between unstable invariant
solutions that are embedded within a relatively low-dimensional structure (attractor)
in the infinite-dimensional state-space. These invariant flow solutions can include
from equilibria (dynamical fixed points), to travelling wave solutions, periodic flows,
and even quasi-periodic flows. These ideas were given little attention for much time
after their original publication, however, more recently numerical methods have been
increasingly employed to explore the possibility of these invariant structures existing
for the Navier-Stokes equations as well as the role they play in turbulence.
Specifically, the work of Stephen Kline and collaborators (Kline et al., 1967; Kline and
Robinson, 1990) extensively studied the structure of wall-bounded flows, with
different coherent structures being identified as playing important roles in the
dynamics. Much work has been done to find examples of similar structures such as in
Waleffe (1998, 2001); Wedin and Kerswell (2004); Robinson (1991); Faisst and Eckhardt
(2003); Kawahara and Kida (2001); Fazendeiro et al. (2010) in various flows. These
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FIGURE 1.2: State-space cartoon denoting evolution of wall-bounded turbulent flow
along with ECSs that characterise the local topology, obtained from Graham and Flo-

ryan (2021)

unstable structures are typically labelled Exact Coherent Structures (ECSs) due to their
qualitative resemblance to observed coherent structures in experimental and DNS
studies. This resemblance hints at turbulent flows shadowing closely to ECSs over the
duration of their evolution, with evidence for this provided in Suri et al. (2020);
Krygier et al. (2021); Crowley et al. (2022). Figure 1.2 depicts a rough picture of how
various ECSs are embedded in the state-space of the turbulent flow. In general, certain
ECS solutions characterise different parts of the state-space topology, partitioning it
along the unstable manifolds of each solution. For instance the so called “lower
branch” solutions usually represent the boundary of the basin of attraction of the
laminar attractor. The lower branch solutions are saddle points of the dynamics, with
its stable manifold defining the edge between the attracting sets of the laminar and
turbulent dynamics. The lower branch solutions are distinct from both the laminar
and fully turbulent solutions (Wang et al., 2007; Viswanath, 2008; Nagata, 1997). The
“upper branch” solutions typically represent structures observed in fully developed
turbulent flows, possibly including rarer extreme events/intermittence (Park and
Graham, 2015; Kushwaha et al., 2017; Whalley et al., 2019). A more comprehensive
review of the significance of invariant solutions for turbulent flows can be found in
Kawahara et al. (2012). An example of a turbulent solution shadowing an ECS
(relative periodic orbit) in Taylor-Couette flow is given in Figure 1.3.

Linking back to the idea of cycle expansions in low-dimensional chaotic systems, it
has been shown that this is in principle possible for turbulent flows in Chandler and
Kerswell (2013); Page et al. (2024b). The culmination of this is a relatively new
framework upon which models for turbulent flow can be based. Instead of having to
somehow directly reduce the complex self-interactions of turbulence to a simple
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FIGURE 1.3: Turbulent snapshot (left) and relative periodic orbit (right) for Taylor-
Couette flow at an instant where they are close to each other, followed by a finite time
shadowing. The velocity fields of each flow are visualised using two isosurfaces of
the azimuthal velocity, one being a positive value (red) and the other being a negative

value (blue). Obtained from Krygier et al. (2021).

relation with the mean flow via the proxy variable of eddy viscosity that does not
have a strong physical foundation, ECSs can be used to determine the statistical
properties directly. Determining a sufficiently large set, or particularly dynamically
significant set of ECSs could provide a complete deterministic picture of the dynamics.

1.1.1 Approximating Chaos With Large Orbits

The work of Chandler and Kerswell (2013) and Page et al. (2024b) are useful
demonstrations of the principle of using cycles as the basis for modelling turbulent
flow, but the practical applications of the methodology remains difficult. The details of
the difficulties associated with turbulent flows are further discussed in Chapter 2,
where the methods used to determine invariant solutions to dynamical systems are
described. Fundamentally, the state-space of fluid turbulence is very high, increasing
rapidly with Reynolds number, making the methods used for finding ECSs more
expensive and less robust to initial guesses. In addition ECSs typically bifurcate,
becoming more unstable, which can lead to an additional degradation in performance
of certain methods due to potentially shrinking basins of attraction. The evolution of
the basin attraction of solutions with the Reynolds number is, however, very complex
and highly dependent on the method being used to find the solution. It is desirable,
therefore, to find a more accessible alternative, perhaps sacrificing some of the
favourable convergence properties and rigorous backing of cycle expansions for a
slightly more heuristic approach that can yield useful predictions for a smaller cost.

An alternative heuristic approach is proposed in Lasagna (2020), whereby a single
large period periodic solution can be used instead of a complete hierarchy of invariant
solutions contributing through a weighted sum. Such an observation was motivated
for the Lorenz system, where it was observed by Saiki and Yamada (2009) that a small
number of solutions provides a good approximation to the mean statistics of the
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FIGURE 1.4: A sample of four UPOs for the Lorenz system of varying length, showing
the repeated patterns in the longer UPOs observed in the shorter UPOs. Obtained

from Dong (2018)

chaotic solutions. Longer periodic solutions of the Lorenz system are very similar to
the shorter ones, potentially obtained by reflecting and gluing a shorter UPO to itself
such as through the procedure performed in Dong (2018), of which a small sample of
UPOs is seen in Figure 1.4.

Ultimately, the usefulness of long UPOs is expected from the ergodic properties of the
strange attractor in which they are embedded. Ergodicity guarantees that in the limit
of a long enough time horizon a solution on the strange attractor will explore the
entire subset of the state-space that defines the attractor. The result can be observed in
Figure 1.5, where a particularly long UPO of the Lorenz system is shown to be
distributed over the z-component of the state in a very similar way as a standard
chaotic solution obtained from a time-stepping method. It can be seen that the
solution spans a large fraction of the attractor, and is qualitatively indistinguishable
from a chaotic trajectory.

Although this has been motivated here only using the Lorenz system, there is reason
to believe that this principle will hold for more complex high-dimensional chaotic
system. The theory of cycle expansions was originally developed for hyperbolic
dynamical systems, and although the Navier-Stokes is not a strictly hyperbolic
system, the high-dimensionality of the attractor implies a high level of structural
stability, minimising the hyperbolic violation of the system (Albers and Sprott, 2006),
the so-called “chaotic hypothesis” as described in Gallavotti and Cohen (1995). In fact,
the Lorenz system is an example of chaotic system that is not strictly hyperbolic due to
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FIGURE 1.5: Panel (a): A long UPO for the Lorenz system projected onto the x-z plane.
Panel (b): time series of the z-component of the state. Panel (c): probability distribution
of the z-component of the state compared to the distribution obtained from a time-

stepping simulation of the equations. Obtained from Lasagna (2018).

the presence of fixed points with complex stability exponents, as well as associated
large changes in UPO characteristics for small perturbations of control parameters.
The quasi-hyperbolic nature of the Lorenz system (Viana, 2000) does not, in practice,
mean that the cycle expansion theory developed for hyperbolic systems does not
apply. Instead such mild violations of hyperbolicity would generally have effects on
the convergence rates of ergodic properties. Thus, it is not necessary that fluid
turbulence be an example of strict hyperbolic dynamics for the same theory to apply.
Physically, fluid turbulence is ultimately governed by a similar set of dissipative
dynamics with quadratic non-linearities. The benefit of this approach would be a
relief from the technical burden of determining the required cycle expansion
coefficients to form the correct weights sum for the statistics as observed in Chandler
and Kerswell (2013); Lucas and Kerswell (2015); Van Veen et al. (2019). In addition,
owing to the temporal periodicity of UPOs, adjoint methods for time periodic systems
(Hwang and Choi, 2008; Giannetti et al., 2010; Sierra et al., 2021) may be used despite
the instability, to obtain sensitivities of the statistical properties of the dynamics as
shown in Lasagna (2018). This gradient information can be leveraged to design flow
control strategies such as in Meliga et al. (2016) and Giannetti et al. (2019). The
primary problem with this approach is that periodic solutions for chaotic systems
become progressively harder to compute the longer they get. It would be beneficial if
there was a less computationally expensive method to estimate statistics using long
orbits without having to exactly locate solutions to the governing equations.

1.2 Modal Projections of ECSs

There remains the problem, however, of actually computing these long periodic
solutions. For simple systems such as the Lorenz system, knowing the basic features
of the shorter orbits can inform on how to search for the longer orbits. For more
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FIGURE 1.6: Summary of a POD analysis on a cylinder. Panel (a): snapshot of the anal-
ysed flow field. Panel (b): sample of the first eight modes obtained from the analysis.
Panel (c): relative proportion of the kinetic energy (ratio of eigenvalues) of each mode.

Obtained from Taira et al. (2020).

complex systems this approach are less fruitful as the dimensions of the attractor
would generally be larger and possess more varied dynamics. This problem is
compounded by the numerical difficulties that naturally arise when the dimension of
the problem is increased, coupled with the high sensitivities of chaotic systems, which
leads to extreme difficulty in finding exact solutions to the governing equations as the
length of desired solution increases.

A possible remedy to this problem is provided through the use of modal analysis
techniques. These techniques, applied to flow problems, provide a set of underlying
structures that in some way optimally represent some aspect of the dynamics. From a
mathematical point of view, these modes represent basis vectors in the state-space
which can be used instead of the standard basis obtained from evaluation at certain
points in the flow domain. The right choice of these bases can therefore greatly reduce
the dimension of the problem by providing the smallest set of vectors that form a
subspace containing the turbulent attractor governing the flow. However, this is a
highly non-trivial problem. Some methods require large sets of spatiotemporally
resolved data sets to educe any coherence in the flow through analysis of the velocity
cross-correlations such as done in Spectral Proper Orthogonal Decomposition (SPOD).
Other methods obtain their basis using the governing equations directly, typically via
some form of stability analysis with respect to a base flow prescribed a-priori. A
canonical example of such low-dimensionality that can be achieved through modal
analysis is given in Figure 1.6 which depicts the dominant modes obtained through
Proper Orthogonal Decomposition (POD), the space only variant of SPOD, for a
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cylinder experiencing von Kármán shedding along with the relative kinetic energy
capture from each (pair) of modes. Modes like the ones obtained from SPOD are well
suited to finding periodic solutions for fluid problems since they are inherently
periodic themselves, being constructed relative a set of Fourier modes in time.

Another example of a commonly used modal analysis technique is Dynamic Mode
Decomposition (DMD), first introduced in Schmid (2010). DMD aims to generate a set
of spatially coherent modes along with an associated eigenvalue that encodes both the
frequency and growth/decay rates of each mode. Like POD, DMD relies on
time-resolved experimental or simulation data to derive its modes. DMD, being built
upon a purely linear algebra approach to dynamical systems, can be applied readily to
many varied fields. Turbulent flows are the origin of the method and its most common
application (Rowley et al., 2009; Mezić, 2013; Tu et al., 2014), and other fields where
DMD have been applied include (but are not limited to) finance (Mann and Kutz,
2016), robotics (Berger et al., 2015), and neuroscience (Brunton et al., 2016). It should
be noted that the method fundamentally relies on the approximating the highly
nonlinear dynamics characteristic of fluid turbulence with a linear relation, and as
such can provide unreliable results, as outlined in Williams et al. (2015). Before
moving on, it is also worth briefly mentioning the use of machine learning/neural
networks to try to determine coherent structures. This is primarily done through the
use of autoencoders that attempt to compress large sets of flow data into a
low-dimensional latent subspace that represents the given data set in as few
dimensions as possible by minimising some sort of loss function. Examples of this
method are given in Fukami et al. (2020); Agostini (2020); Eivazi et al. (2022);
Solera-Rico et al. (2024); Zhang (2023); Page et al. (2024b,a). This approach is relatively
new but has promise due to the recent advances in neural network architecture.
Unfortunately it does not provide any additional physical insights, unlike many of the
other methods available.

Turbulent flows when simulated using Direct Numerical Simulation (DNS) can have
many degrees-of-freedoms well into the millions required to resolve all the small scale
motions. However, the limited attempts to quantify the dimensionality of the
underlying attractor of turbulent Poiseuille flow in Keefe et al. (1992) have given
estimates in the hundreds, implying orders of magnitudes of computational energy
could be conserved through the correct choice of basis. The modes provided by SPOD
by design come associated with a set of weights that contains the relative dynamical
importance of each mode. Other techniques such as resolvent analysis, which is
discussed in more depth in Section 2.2.3, do not come with a set of dynamical weights
which makes their direct application to modelling flows less obvious. In Barthel et al.
(2021) these dynamical weights are determined through an optimisation approach,
which converts the purely kinematic representation provided by resolvent modes to a
more useful dynamically weighted basis set.
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1.3 Variational Optimisation for Fluid Dynamics

This brief section outlines the role of variational methods in fluid dynamics and
provides some wider context to the details discussed in Section 2.1.2. Variational
methods in physics are a large class of tools that are concerned with the study of
physical systems via the stationary points of various dynamical quantities. Many
physical systems can be reformulated in terms of an optimal solution to some
functional that defines the global action of some quantity over the domain of the
problem being considered, and many problems of optimal control and design are
naturally formulated in terms of an optimisation problem over sets of possible
functions. In the field of fluid dynamics research typically the objectives of variational
optimisation problems are parameterised by a high dimensional object, as well as
coming coupled with equality constraints, usually the Navier-Stokes equations
themselves. Thus, and adjoint formulation is typically employed which makes the
computation of the constrained objective gradient independent of the dimension of
the problem.

Searching for minimal seeds for turbulent transition is a problem that is naturally
formulated as an optimisation problem: find the flow field with a given initial kinetic
energy that has the largest growth in kinetic energy. This problem is tackled for pipe
flow in Pringle and Kerswell (2010); Pringle et al. (2012), boundary layer flow in
Cherubini et al. (2011, 2010), and Couette flow Rabin et al. (2012); Monokrousos et al.
(2011), which collectively showed the existence of certain minimal energy flows that
exist on the “edge” of the laminar basin which when evolved lead to turbulent
solutions. Kerswell et al. (2014) also used a similar formulation to study the nonlinear
stability of particular fluid states, trying to find the least energetic input that is
maximally amplified when evolved. Ayala and Protas (2011) studied a similar
problem, focusing on the enstrophy of the Burgers equation (as simpler toy-model for
the inviscid Euler equations), solving an adjoint optimisation problem in the process.

Classical methods of control rely on linear methods and are solved in a closed form
fashion. Variational methods allow a formulation of nonlinear control schemes that
can be generally solved using numerical methods. These methods properly account
for the nonlinear interactions of the flow, unlike the linear methods, and thus lead to
much more effective control schemes. This literature of this field is vast, as it has many
applications, such as perturbation control in boundary layers (Cherubini et al., 2013;
Passaggia and Ehrenstein, 2013), thermal control of buoyancy driven flows in urban
environments (Nabi et al., 2019), and velocity state control using large-eddy
simulations (Haçat et al., 2025).

The primary theme in all of these applications is the ability to properly incorporate the
nonlinear effects that strongly effect the stability and sensitivity characteristics of
flows, as opposed to the majority of classical methods which only take into account
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the linear effects of the dynamics. In this thesis, a closely related method is utilised
which was originally developed in Farazmand (2016), coupled with an added
projection step onto a set of well-chosen modes, to allow nonlinear models of fluid
flows to be constructed solely out of the building blocks of spatially and temporally
coherent modes.

1.4 Quasi-Trajectories and Statistical Estimates

The previous discussions in Section 1.2 have established the possibility of using modal
analysis techniques to construct low-order models of the dynamics and reduce the
cost of finding ECSs, especially those with large periods. There is another possible
application of the low-order models constructed using the projection of the dynamics
onto a small set of well-chosen modes. Any simulation of a chaotic system using a
standard time-stepping method necessarily does not represent the “true” chaotic
solution for the given initial condition. This is a natural result of the exponential
divergence of nearby trajectories in chaotic systems along with inevitable errors
resulting from the chosen numerical algorithms and floating point arithmetic. The
shadowing lemma described in Hammel et al. (1988) ensures (except for special cases
as discussed in Chandramoorthy and Wang (2021)) that such orbits in fact shadow a
theoretical true chaotic trajectory, and are therefore useful in determining the statistics
of the true chaotic solution. Figure 1.7 depicts this idea of the shadowing lemma, with
the left showing a true chaotic trajectory and a numerical trajectory (obtained through
a time-stepping scheme) diverging after a finite amount of time due to the
accumulation of simulation errors. The right shows a different nearby chaotic
trajectory that actually shadows the numerical trajectory, guaranteed to exist
according to the shadowing lemma. A given ECS shadows a chaotic trajectory for a
finite amount of time, primarily depending on its stability characteristics. When
solving the Navier-Stokes equations numerically using a standard time-stepping
scheme, the result is a trajectory that will continually shadow a set of ECSs, which is
one of the reasons that these structures could be used to derive the statistics of the
flow. Solving the Navier-Stokes equation this time using a numerical method
specifically designed to find ECSs, the goal effectively is to solve for (or minimise) the
shadowing distance of the flow to a desired ECS.

Building on the implications of the shadowing lemma, a low-order model of the flow
is constructed using a small set of modes which are then optimised, using an
variational optimisation method as described in Section 1.3, to optimally satisfy the
governing equation. The minima in such an optimisation would represent the best
possible approximation to an ECS that the modes can achieve in their reduced space, a
sort of least-squares approximation. If the model is aggressive enough, i.e. if a very
small set of modes are used relative to the number of points in the flow required to
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Chaotic Trajectory

Numerical Trajectory

∆t ∆t

Shadowing Trajectory

FIGURE 1.7: Left: true chaotic trajectory and a trajectory obtained through a numerical
(time-stepping) algorithm, showing they initially shadow each other before diverging
due to accumulation of numerical and computation errors. Right: the numerical tra-

jectory being shadowed for all time by a nearby chaotic trajectory.

fully resolve it, then no solution actually exists and the optimiser will not be able to
reach a global minimum. In spite of this, due to the density of possible periodic
solutions embedded within a strange attractor, the optimisation is expected to very
quickly seek out the attractor as it provides the quickest way to satisfy the governing
equations. The result is a model for the chaotic dynamics based on a small set of
modes that exist on the attractor (as much as is possible in the modal subspace)
without exactly satisfying the governing equations. Conceptually this is very similar
to a direct numerical solution of the system which shadows a true solution, and under
some more accurate numerical scheme would not truly satisfy the dynamics.
Referencing Figure 1.7, the numerical trajectory does not satisfy the governing
equations as it diverges from the true chaotic trajectory, but it still has accurate
statistics due to the guaranteed shadowing by a different nearby chaotic trajectory.
This new type of trajectory, constructed from the low-order modal based model which
doesn’t satisfy the governing equations are called quasi-trajectories in this work. A
quasi-trajectory with a sufficiently large period would presumably possess the same
predictive power for the ergodic properties of the system as a long UPO/ECS would,
without requiring as large an overhead as required to find such long recurring flows
in an exact manner. Depending on the number of modes used and the resulting
accuracy of the captured strange attractor in the lower dimensional state-space, using
a quasi-trajectory could be more computationally efficient than a direct simulation of
the governing equations. This would be partly as a result of the of the dimensionality
reduction afforded by the low-order model, as well as the global temporal resolution
that can reduce the required length of the orbit to optimally capture the desired
statistics. It is one of primary aims of this thesis to show that these structures provide
useful statistical approximations to the chaotic dynamics in a similar way as
time-stepping methods, with the added benefit of control over the fidelity of the
resulting model, ideally at the lower bound required to completely represent the
studied strange attractor. This concept of quasi-trajectories would provide a much
lower overhead to finding long orbits that could be used to estimate chaotic statistics
as discussed in Section 1.1.1.
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1.5 Thesis Aims and Objectives

With the preceding context, the main aim of the thesis can now be stated. In this thesis
the resolvent analysis formalism as described in McKeon and Sharma (2010), a modal
analysis technique related to SPOD, is used to generate low-order nonlinear models
for the dynamics of wall-bounded fluid flow and chaotic dynamical systems. These
nonlinear models will be constructed using a variational optimisation methodology
that aims to satisfy the Navier-Stokes equations as best as possible within the
subspace defined by the resolvent modes. The methodology developed here is applied
to a variation of planar Couette flow set on a rotating reference frame, defined and
discussed in detail in chapter 4. This approach inspired from the work in Barthel et al.
(2021), with the novel framework presented here providing a more general
methodology to constructing the dynamical weights for each mode. The specific
novelty of the methodologies and their applications are given next in the discussion of
the primary objectives of this thesis.

1. Assess Resolvent Model Efficacy

The first objective is to investigate how well resolvent modes generated for the
rotating planar Couette flow do at capturing the dominant energetic structures of the
flow. The goal is to motivate their use for constructing the low-order models that will
be done in the succeeding chapter. This is done by comparing not only directly with
DNS data obtained from a custom solver, but comparing the resolvent modes to the
dominant modes obtained from SPOD analysis for the same sets of DNS data.

2. Finding Exact Invariant Solutions

The next objective is to actually construct the nonlinear models for the rotating planar
Couette flow using the resolvent-subspace variational optimisation methodology that
is developed in this thesis, with the goal of finding exact invariant solutions to the
Navier-Stokes equations, primarily equilibrium and periodic flows. It is shown that
using by a standard Galerkin projection of the velocity field the noted difficulties in
the literature with the boundary conditions and pressure terms in the governing
equations are resolved. This is natural consequence of the fact that resolvent modes
are divergence-free and obey any no-slip boundary conditions when they are
computed, leading to an optimisation that is restricted to the linear subspace defined
by these kinematic constraints on the dynamics, as discussed in detail in Chapter 3.
The methodology developed in the thesis is shown to be able to generate exact
solutions for various initial conditions that do not closely resemble the final solution,
demonstrating that the Galerkin projection of the methodology does not impact the
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observed robustness of the variational optimisation to the initial conditions, i.e. a large
radius of convergence.

3. Demonstrate Convergence Speed-Up Via Model Truncation

Truncating the number of modes utilised in the Galerkin projection of the dynamics
reduces the dimensionality of the space on which the dynamics are constrained. It is
shown in this thesis that not only can you in achieve a speed-up in computation time
from the dimensionality reduction, but in addition the truncation acts to improve the
conditioning of the optimisation problem leading to improved convergence rates. The
slow convergence rate of the variational optimisation methodology for solving the
Navier-Stokes equations is a notorious problem in the literature, and this
truncation-based speed-up makes the method more powerful in its use as a hybrid
solver (coupled with an accurate Newton iteration), or as a type of multigrid method
that gradually builds up solution complexity as the optimal solution is approached by
successively adding back modes to the dynamics.

4. Quasi-Trajectory Statistics

The final objective is to demonstrate the heuristic framework for estimating chaotic
statistics as described in Section 1.4. This is demonstrated on the Lorenz system of
Lorenz (1963) as a computationally accessible proof of concept on a well understood
chaotic system with an ergodic attractor. Due to the low-dimensionality of the
problem, only a modest low-order model is possible, achieved through an exact
reduction via an algebraic manipulation of the nonlinearities of the system when
deriving the resolvent modes. A remaining significant goal is the demonstration of
this framework on a turbulent flow, or a generally high-dimensional system, where
the reduction in dimensionality of the low-order models is more pronounced.
Additionally such a reduction would not be exact, as will be done for the Lorenz
system, which is a special instance of the general case where the low-order models
neglect some dynamical information.

1.6 Chapter Structure

The thesis is structured with a total of seven chapters. Chapter 2 analyses the details of
the surrounding literature. The discussion focuses primarily on two aspects of the
literature. The first is about the available numerical methods for finding UPOs of
chaotic systems, outlining their respective strengths and weaknesses especially in the
context of high-dimensional systems and turbulence applications. This is where the
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optimisation methodology that will be utilised is introduced as an alternative to the
other available solvers for the chaotic systems, one that is particularly robust to the
initial guess. The second part of the chapter focuses on modal analysis techniques,
with most attention being paid to SPOD and resolvent analysis as the primary
methods utilised in this work. The effectiveness of the modes generated from
resolvent analysis are justified through their various applications in the literature,
making clear their particular ability to efficiently represent ECSs for certain
wall-bounded flows.

Chapter 3 provides the mathematical details of the resolvent-based optimisation
methodology that will be utilised later in the thesis to generate the majority of the
results. To this end, the solver methodology based on a variational optimisation
framework for wall-bounded flows is explained. A novel technique utilising the
aforementioned resolvent modes in a Galerkin projection is then introduced to
properly satisfy the boundary conditions and incompressibility conditions which form
a set coupled nonlinear evolution equations.

Chapter 4 constitutes the first set of results presented in the thesis, and tackles the first
objective listed in Section 1.5. First, the rotating planar Couette flow is introduced as
the primary flow of study, then describing how resolvent modes are generated for this
flow. The chapter then moves to a general characterisation of the flow, analysing the
velocity statistics, behaviour of the system as it transitions to chaos, velocity spectra,
and characterising the dominant coherent structures using SPOD. Finally the
resolvent modes of the flow are analysed at select Reynolds numbers, inspecting their
ability to represent the given flow in a low-dimensional manner.

Chapter 5 departs from the discussion of RPCF to apply the variational optimisation
methodology to a simple low-dimensional case study on the chaotic Lorenz system
(Lorenz, 1963). The chapter begins by specialising the mathematics outlined in
Chapter 3 to ordinary differential equation systems. Additionally, a specialisation of
resolvent analysis is also formulated for the Lorenz system, demonstrating a novel
projection of the dynamics from the standard 3-dimensional space down to a
2-dimensional space, where all the presented optimisations are performed, without
any loss of information in the nonlinear dynamics. The optimisation methodology is
then briefly demonstrated by finding a handful of known UPOs for the system,
validating the implementation. The chapter then concludes by tackling the final
objective listed in Section 1.5. It is demonstrated that large period quasi-trajectories
that do not satisfy the governing equations accurately reproduce the chaotic statistics.
This is primarily expressed through the statistics of certain observables of the system,
observing how they vary with the number of iterations performed in the optimisation
and period of quasi-trajectory.
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Chapter 6 then focuses back on RPCF, tackling the second objective listed in
Section 1.5, generating exact solutions to the Navier-Stokes equations for
wall-bounded flows using the resolvent-subspace optimisation methodology that is
detailed in Chapter 3. The methodology is demonstrated on the rotating Couette flow
analysed in the previous chapter. A set of equilibrium and periodic solutions are
presented, showing that the basis provided by resolvent analysis is sufficient in
properly describing the flow, even when some of the modes are removed. In the same
chapter, objective three in Section 1.5 is focused on, truncating the number of modes
used to represent one of the equilibrium flows found earlier in the chapter and
observing the effect this change has on the convergence rate and accuracy of the
resulting solution. This ultimately demonstrates the power of the resolvent-based
optimisation to accelerate the convergence of the optimisation at only a small cost to
the accuracy of the resulting solution.

The thesis is then concluded with Chapter 7 which reiterates the main aims of the
thesis and the degree to which the results presented have satisfied them. The
prospects of the further work that can be performed utilising the described
frameworks are outlined to finish.
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Chapter 2

Numerical Methods for Finding
ECSs and Modal Analysis

The importance of ECSs as a basis to derive new models for turbulence based on the
deterministic dynamics is promising, however, there is the obvious problem of how
these solutions should be found. Since the time of Henri Poincaré who established the
importance of recurrent solutions for chaotic systems on his work with the three-body
problem, summarised in Poincaré (2017), work has been done to formulate methods to
determine invariant solutions to chaotic dynamical systems. Concretely, an invariant
solution refers to a solution of the governing equations that is somehow invariant to
the action of the dynamics, with most dynamical systems work focusing on fixed
points and periodic orbits. This work is summarised in Section 2.1, providing the
necessary background to understand the various issues that still remain in the
literature. After summarising the numerical methods used to determine invariant
solutions to chaotic systems, the review moves onto a discussion of modal analysis
techniques in Section 2.2. In particular resolvent analysis is introduced as the primary
method used here for constructing efficient low-order models for the fluid flow. The
chapter then concludes in Section 2.3 where the main points of the literature review
are summarised along with the main gaps that this thesis intends to fill.

2.1 Numerical Method for Finding Invariant Solutions

To be able to find exact periodic solutions to dynamical system special numerical
methods have to be devised to somehow restrict the initial conditions of the system
such that the trajectory closes in upon itself in a finite amount of time. This required a
global picture of the dynamics, having to modify earlier parts of the orbit according to
the state at a later time.
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FIGURE 2.1: First, second, and third iterates of the logistic map, defined by the func-
tion xn+1 = f (xn) = rxn (1 − xn), with a parameter value of r = 4 which is known
to chaotic. Fixed points are defined by the intersection of the resulting curve with the
straight line. The number of intersections grows exponentially with the period of the

possible orbits.

Poincaré sections allow the conversion of a continuous dynamical system into a
lower-dimensional iterative map. For iterative maps, fixed points

xn+k = f k (xn) = f ◦ f ◦ . . . f ◦⏞ ⏟⏟ ⏞
k times

(xn) , (2.1)

where n is the index of the current state and k is the number of iterations of the map
that have been applied, are equivalent to periodic trajectories in continuous dynamical
systems, with a period determined by the number of iterations before the state is
mapped back onto itself. Figure 2.1 displays a number of iteratives of the logistic map,
an iterative map popularised through the work of Lorenz (1964) and May (1976),
defined as xn+1 = rxn (1 − xn). The parameter r determines the complexity of the
system, with values of r ≳ 3.57 leading to chaotic dynamics, achieved through a set of
period doubling bifurcations as first noted in Feigenbaum (1979). The intersection of
the curve f k and the line xn+k = xn (the diagonal dashed line in Figure 2.1) defines a
particular fixed point of the map f k, corresponding to a periodic orbit of the base map
f with a period of k. It can be seen that the number of fixed points grows
exponentially, with 2k fixed points for orbits of period k. This is a notable trend for
many chaotic systems, where the number of (unstable) periodic solutions that exists
with a period at or below a certain value grows exponentially with the period. This
concept is known as topological entropy, first introduced in Adler et al. (1965), and
when applied to chaotic systems by Smale (1967); Sinai (1972) was shown to be
generally positive. This is shown for the Lorenz system in Figure 2.2, where the
number of detected UPOs for the chaotic system increases exponentially with the
length of the orbits. Note that the defined of the orbits in Figure 2.2 are defined by the
number of loops they take around each lobe of the attractor rather than the exact
period of each orbit.

A simple method to determine unstable fixed points of the logistic map is the inverse
map (a specific example of the more general fixed-point iteration), which inverts the
update function for the map. Fixed points in the original map that were unstable are
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FIGURE 2.2: Number of detected UPOs of specific cycle length (defined relative to a
given Poincaré section) for the Lorenz system, obtained from Saiki and Yamada (2009)

now stable under the inverse map Cvitanović et al. (2020). This is demonstrated in
Figure 2.3 which shows both the inverse evolution (reversed time) of the logistic map
with r = 4 showing an unstable cycle on the left, and the forward evolution of the
inverse dynamics towards the same cycle which is stable under the new dynamics.
This method is difficult to generalise and slow to converge so is not used in practice
for any higher-dimensional problems, however it does demonstrate one of the key
aspects of methods for determining unstable solutions. Typically the dynamics are
modified such as in Lucas and Yasuda (2022) adding a time-delay term which
stabilises certain solutions or a whole new set of dynamics are derived. Under the new
dynamics the solution that was unstable now becomes an attracting fixed point. These
new dynamics can then be evolved to converge towards these fixed points that
represents an unstable invariant solution.

When discussing methods used in practice to determine invariant solutions to
dynamical systems, it is possible to loosely classify the methods used in research into
two broad classes: local, and global. Local methods modify an instantaneous state,

FIGURE 2.3: Panel (a): inverse time evolution of the logistic map with r = 4 approach-
ing a period-2 cycle. Panel (b): forward evolution of the inverse logistic map converg-

ing to the same cycle as in panel (a). Obtained from Cvitanović et al. (2020).
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generally an initial condition, of the trajectory. The change to the state is then
propagated by evolving the trajectory according to the given dynamics with the
ultimate aim closing the resulting trajectory. These methods are typically called
shooting methods. Global methods instead take a complete trajectory that is not
prescribed by the dynamics, but instead already satisfies the desired invariance (is
already periodic) and is modified over its whole length simultaneously until it
satisfies the governing equations. Put another way, the difference between local and
global methods is that the first tries to close a trajectory onto itself under the constraint
of the dynamics of the governing equations of the prescribed system, and global
methods try to find trajectories that obey the governing equations under the constraint
that they are periodic. Broadly speaking, local methods are simpler to implement,
with practitioners typically able to use standard time-stepping simulators for the
propagation step of the solver which is then coupled with a root-finder of minimiser
to modify the initial condition. This simplicity comes at the cost of poor robustness to
initial guesses, i.e. a small radius of convergence, as a result of the chaotic sensitivities.
Global methods largely solve the issue of high sensitivity to initial conditions since
they not advance the trajectory under the standard chaotic dynamics, however this
comes with a trade-off on the memory and time complexity of the algorithm, due to
the requirement of having to store and solve the entire trajectory at each iteration.
There is also the added technical burden required to implement global methods, as
they will typically require their own unique implementation to solve the derived
“loop dynamics”. More of the strengths and weaknesses of these respective
approaches will now be discussed in the following subsections.

2.1.1 Shooting Methods

The shooting method begins with an initial condition which is then evolved under the
prescribed dynamics for a prescribed time, after which the distance of the tail of the
trajectory from its base is used to modify the initial condition in such a way as to
decrease the distance for the next evolution. This method is employed successfully for
low-dimensional chaotic systems such as in Viswanath (2003) but has only been
utilised in a more limited capacity for high-dimensional systems. Examples for fluid
turbulence include Kawahara and Kida (2001) where the shooting method is
employed to find periodic solutions for plane Couette flow, and Tomoaki and
Sadayoshi (2001) where travelling wave solutions are found for channel flow. The
difficulties associated with the method can be seen in Chandler and Kerswell (2013)
and Van Veen et al. (2019) for 2D Kolmogorov flow and box turbulence, respectively.

Typically shooting methods are initialised using a close-recurrence, shown in
Figure 2.4. If the evolution of a state x for a time of t is given by the flow map f t (x),
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ẋ (t)

p

fT (x0) ≈ x0

FIGURE 2.4: A chaotic trajectory, ẋ (t), shadowing an unstable periodic orbit, p, re-
sulting in a close recurrence of the trajectory before being repelled along the unstable

manifold of the orbit.

then a close recurrence can be expressed as

G (x0, T) = f T (x0)− x0 < ϵ (2.2)

for a period T and recurrence bound ϵ decided a priori. The trajectory comes
sufficiently close to itself at some later time as a result of temporarily shadowing a
particular UPO. A shooting method will then modify x0 and T in an attempt to find a
zero of the function G. The iteration of the seed x0 and period T is typically done with
a Newton-Raphson approach

J ·
(︄

δx0

δT

)︄
= −G (x0, T) , (2.3)

where J is the Jacobian matrix of the objective function G, and δx0 and δT represent
the resulting changes to the seed and period, respectively. It should be noted that in
practice there is an extra constraint to account for the system degeneracy as a result of
the system symmetry when perturbed along the trajectory prescribed by the dynamics
f t. Finding a closed-form expression for J is not possible for chaotic systems due to
the governing nonlinear dynamics, and even if it were the high-dimensionality of
fluid problems would make it prohibitively expensive to store in memory. Thus, to
practically solve the Newton-Raphson iteration problem in Equation 2.3 a matrix-free
approach has to be employed. Typically this is provided with the Generalised
Minimum RESidual (GMRES) method, a subtype of general Krylov subspace solvers,
first introduced in Saad and Schultz (1986). This method forms an iterative scheme
that solves Equation 2.3 to within a given tolerance in as small a space as possible,
without having to explicitly form J. In addition, a hookstep is typically added to this
method, first done in Viswanath (2007), which adds a trust-region to the
Newton-Raphson step leading to improved robustness to the initial guesses further
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away from a solution. This forms the well-known Newton-GMRES-Hookstep method,
the current gold standard method to solve for invariant solutions in high-dimensional
systems.

The data used to initialise the search, the close recurrences, is obtained from external
sources: experiment, and DNS simulations typically. This adds an extra overhead for
the practitioner when utilising this method. This is usually necessary since the
shooting method is a very difficult method to converge, even with the added
hookstep, as a consequence of its sensitivity to initial conditions characteristic of
chaotic systems. This high sensitivity can result in a very small radius of convergence,
especially for high-dimensional systems. Extreme events are common in turbulent
flows (Batchelor et al., 1949; Sreenivasan and Antonia, 1997) which poses a further
complication, since they are not often visited by data sets obtained in practice. As
such, it is difficult to obtain an initial condition for the method that is close to a
periodic solution that represents the extreme event in question (Krygier et al., 2021).
Recently in Redfern et al. (2024) a modified recurrent flow analysis method with
triadic interaction weighting is used to preferentially extract more extreme orbits with
larger dissipation rates.

Taking all of this together, the shooting method, and local methods in general, suffer
greatly from the sensitive dependence on initial conditions of chaotic systems. This
makes them difficult to use in practice, especially for high-dimensional systems. The
method as a result leads to a non-systematic approach to obtaining solutions since it
has to rely on practical data sets obtained from external sources, biasing the method
towards solutions that are more commonly observed in practice. Although this could
be useful in practice since the more common solutions are more likely to describe the
ergodic dynamics better, it also precludes the possibility of studying more atypical
and intermittent processes that are known to play an important role of fluid
turbulence. The more unstable the periodic orbit the less likely it is to be shadowed for
an extended length of time by the chaotic trajectory and the more difficult it is to
extract a useful initial condition that will converge towards it. A generalisation, called
the multi-point shooting method, provides a slightly more robust alternative, utilised
in Christiansen et al. (1997); Sánchez et al. (2004); Budanur et al. (2017). Instead of
attempting to close the trajectory over the total length of the period, the trajectory is
sliced into multiple segments and a set of coupled shooting problems are solved
simultaneously which reduces the effect of exponential divergence of nearby
trajectories and enlarges the radius of convergence. Taking this concept to the limit of
a shooting method for each infinitesimal point along an orbit leads the idea utilised in
global (or variational) methods that will now be discussed.



2.1. Numerical Method for Finding Invariant Solutions 25

2.1.2 Global Methods

In an effort to provide alternatives to shooting methods that can converge for a larger
set of initial guesses, various global methods have been developed. These methods
partially solve the issue of high sensitivities of the chaotic system to its initial
condition by treating the problem of finding invariant solutions as a problem to be
solved over the whole domain and time window simultaneously. The most prevalent
approach, proposed in Lan and Cvitanović (2004), formulates the problem of finding
periodic orbits as a continuous deformation of a state-space loop that decreases the
violation of the governing equations. Figure 2.5 is a schematic for such a process,
whereby a state-space loop is gradually deformed to agree with the governing
equations of the dynamical system. The loop in Figure 2.5 is being deformed
continuously, red denoting a large residual and green denoting a zero residual, such
that at the end of the process the governing equations are satisfied. The general
procedure of these global methods is to construct a new set of dynamics in a fictitious
time τ as follows

∂x
∂τ

= M (x) . (2.4)

Given a residual for a flow solution defined as r = ẋ − F (x), the operator M is
specifically designed such that ∥r∥ → 0 as τ → ∞. In other words, every attracting
fixed point of the newly constructed dynamics corresponds to an invariant solution of
the original dynamics. The evolution of the norm of the residual can be expressed in

p

¬p

τ

FIGURE 2.5: Abstract schematic showing the global modification of a state-space loop
performed by the global method, gradually increasing the agreement with the govern-

ing equations until it reaches a periodic solution p.
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terms of the current state and prescribed evolution due to M

∂

∂τ
∥r∥2 = 2 ⟨D (x, M (x)) , r⟩ , (2.5)

where D (x, M (x)) is the Gateaux derivative, a sort of functional directional
derivative evaluated with the state-space loop x in the direction M (x). Clearly, a
decrease in the residual norm is achieved by enforcing that

D (x, M (x)) = −r. (2.6)

This condition fully determines the action of the operator for any given loop x,
however it is implicit, requiring the solution of a linear system at each step to advance
τ. Once M has been obtained by solving Equation 2.6 then the loop x can be advanced
forward in τ using some form of integration scheme, such as simple first order Euler
method

xi+1 = xi + ∆τM (x) . (2.7)

Important to note that Equation 2.6 is an analogue to the standard linear system
formed when solving a system using the Newton-Raphson technique, and by setting
∆τ = 1 in Equation 2.7 the standard Newton-Raphson step is recovered. Thus any
∆τ < 1 can be viewed as a damped Newton iteration. These details are further
discussed in Section 3.2. The linear system in Equation 2.6 can, in contrast to the linear
system that needs be solved in the shooting method, can in fact be derived in a
closed-form expression and solved directly. However, as noted in Fazendeiro et al.
(2010) for the same reasons as as for the shooting method, the memory requirements
of forming and solving this linear system for high-dimensional problems such as
those tackled in fluid dynamics research is prohibitively large. Thus, as before this
linear system is solved using the Newton-GMRES-Hookstep method mentioned in the
previous section. As such, the cost of each iteration of the Newton solver step in the

t t

FIGURE 2.6: Chaotic Hènon-Heiles system solved using the Newton flow method de-
scribed in Lan and Cvitanović (2004). Panel(a): initial loop guess. Panel (b): converged
unstable periodic orbit. Panel (c): decrease in the residual against the fictitious varia-

tional time τ.
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algorithm in terms of memory and CPU time scales linearly with the
degrees-of-freedom of the dynamical system, including the spatial and temporal
variation of the loop. This does, however, come at the cost of having an inexact
method for solving the linear system at each iteration, which means that the cost of
each advancement in τ also depends on the dimension of the Krylov subspace used to
approximately solve the linear system resulting from the Newton iteration. There are
still, however, issues remaining, particularly that the radius of convergence for the
Newton-GMRES methods is still rather modest as noted in Ashtari and Schneider
(2023), which is a pertinent problem for fluid dynamics where close recurrences or
continuation methods are still utilised to provide initial guesses that can be reasonably
expected to converge as done in van Veen et al. (2006); Cvitanović and Gibson (2010).
The closeness of recurrences is less likely the longer the period of the solution being
sought, making the Newton flow method less practical as the size of the orbit grows.
This issue stems largely from the Newton-Raphson method itself, and the known
issues it has with convergence when initial conditions and/or the objective function
are not well behaved Skowronek and Gora (2007). A practical example of the Newton
flow method described in Lan and Cvitanović (2004) is shown in Figure 2.6, which
shows an initial loop in panel (a) being iterated to an unstable periodic solution of the
Hènon-Heiles system in panel (b), with panel (c) notably displaying the exponential
rate of convergence of the loop to the periodic solution with the fictitious variational
time τ, which demonstrates the very favourable convergence behaviour of the method
when close to a solution.

An alternative to using the Newton-Raphson method, first proposed in Farazmand
(2016), is to instead use a set of adjoint operators to construct a new set of “variational
dynamics” that decreases the total violation of the governing equations along the
direction of steepest descent. In Farazmand (2016) this was formulated via a the
corresponding set of adjoint dynamics of Equation 2.5. Specifically, denoting the
adjoint of an operator with as (·)†, Equation 2.5 is rearranged

∂

∂τ
∥r∥2 = 2

⟨︂
M (x) , D† (x, r)

⟩︂
. (2.8)

To guarantee a decrease in the residual norm now, we can set the variational dynamics
as follows

M (x) = −D† (x, r) . (2.9)

This different definition of the new dynamics M is mathematically equivalent to the
minimisation of the norm of the residual, as is explicitly shown in Section 3.2. The
(multiple) global minima of such a problem is represented by a zero residual r = 0.
When discretised in τ, similar to in Equation 2.7 using the Euler method, a gradient
descent formulation is obtained. Using this method, or some other optimisation
algorithm ensures a decrease in the residual norm at each iteration, irrespective of the
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FIGURE 2.7: Convergence of the error norm when finding unstable equilibrium for 2D
Kolmogorov flow using the adjoint solver method, from Farazmand (2016).

current state of the loop. This is reflected in the much larger radius of convergence of
the adjoint formulation compared to the Newton flow method of Lan and Cvitanović
(2004). The improved robustness to the initial guess, however, does come at a sharp
cost to the impressive convergence rate of the Newton flow algorithm. As noted in
Figure 2.6 the Newton flow method can achieve exponential convergence rates in τ

once sufficiently close to a solution, whereas the adjoint dynamics does not guarantee
such favourable performance. The method was applied to finding equilibrium and
travelling wave solutions to 2D Kolmogorov flow in Farazmand (2016), and with
notable solutions found that represent the intermittent character of the flow,
represented by short periods of high kinetic energy and dissipation growth rates. The
reduced convergence rate of the derived adjoint dynamics is displayed in Figure 2.7
with the convergence of an equilibrium solution of the 2D Kolmogorov flow.
Additionally, in Parker and Schneider (2022) the methodology were utilised for
several different formulations of the governing equations of 2D Kolmogorov flow to
compare their relative performances. The method was also developed further to find
periodic solutions of the Kuramoto-Sivashinsky equations in Azimi et al. (2022),
focusing primarily on the performance of the method compared to shooting methods
and Newton-based global methods. In Ashtari and Schneider (2023) the methodology
was extended to be able to find equilibria for wall-bounded flows, using the Influence
Matrix (IM) method (Kleiser and Schumann, 1980; Canuto et al., 1988) to allow the
addition of no-slip boundary conditions to the problem, which applied to the plane
Couette flow. While Ashtari and Schneider (2023) primarily focuses on the
development and performance of the variational optimisation methodology with the
added boundary constraints due to the wall, there is also presented a method used to
improve the convergence of the method once it is close to a solution. This novel
approach is based on DMD, and effectively attempts to linearly extrapolate the
solution along the direction the optimiser is moving in one large step, displaying
impressive improvements in convergence rate. The IM method allows the velocity
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and pressure terms to be solved simultaneously, avoiding the boundary errors that are
a result of the lack of an explicit boundary condition for the pressure when solving the
Pressure Poisson Equation (PPE). Convergence of the variational optimisation is
initially rapid but slows down considerably as the desired minimum is approached.
In the original paper Farazmand (2016) proposed the optimisation as a supplementary
tool that could be used in conjunction with the Newton-based approaches. This entails
converging a loop that is not particularly close to a given solution until the more
rapidly converging methods can take over, which was successfully employed to
universally converge a set of solutions for 2D Kolmogorov flow. To this end, if the
variational optimisation methodology can be used as a tool to accelerate the
systematic search for new ECSs in turbulent flow regimes, then it would be desirable
if the method can be accelerated further in its initial convergence towards a solution.
This could come at the cost of some accuracy of the resulting solution since the result
can then be used as input to a Newton-GMRES-Hookstep solver which converges
quickly to an accurate result.

In Farazmand (2016); Azimi et al. (2022) and Ashtari and Schneider (2023), the main
works utilising the variational optimisation methodology, the continuous dynamics
are discretised using a simple first order Euler scheme,. This is motivated primarily by
its simplicity, as the accuracy of the intermediate dynamics is not important, only the
accuracy of the final solution is sought, which is not affected by the order of accuracy
for the method used. This allows larger steps to be taken. However, as already noted
when viewed from the optimisation point of view, the first order Euler scheme is
equivalent to the gradient descent algorithm with a fixed step size (shown in
Section 3.2), which is known to have very poor convergence properties when
approaching a minimum (Nocedal and Wright, 2006). If an objective function has a
poorly conditioned Hessian matrix, i.e. if the largest and smallest eigenvalues of the
Hessian have very different scales, then fixed step gradient descent tends to bounce
back and forth to either side of the minimum, requiring small step sizes to ensure a

FIGURE 2.8: Gradient descent with fixed step size near a minimum of a quadratic
well, with the different vertical and horizontal scales (semi-major and -minor axis sizes
of each level ellipse) due to different value eigenvalues of the Hessian matrix at the

minimum. Obtained from Nocedal and Wright (2006)



30 Chapter 2. Numerical Methods for Finding ECSs and Modal Analysis

decrease at every iteration. This situation is depicted in Figure 2.8, with the different
scales of Hessian eigenvalues creating an elliptical well near the minimum. As
gradient descent attempts to move towards the minimum it bounces along each side
of the well slowing the overall convergence rate. Poor convergence due to the Hessian
also reduces convergence rates of algorithms that don’t suffer from the “zig zagging”
problem of gradient descent. Fluid dynamics problems are commonly poorly
conditioned primarily due to the spectrum of the Laplace operator governing the
diffusion, which has unbounded eigenvalues. This naturally leads to the observed
poor convergence when discretised, with convergence rates further deteriorating as
the discretisation is further refined. As shown in this work, a better choice is the
quasi-Newton optimisation algorithms, which do not require any extra information
about the objective function and have far better convergence rates near the minimum
as a result of approximately accounting for the curvature around the minimum.

What is clear from the above discussions of the available numerical methods for
finding invariant solutions to dynamical systems is that they all have downsides when
applied to chaotic systems, especially when the system is high-dimensional. Shooting
methods are conceptually simple but require very accurate initial guesses to
successfully converge which adds a large overhead. The global Newton methods,
especially those of Lan and Cvitanović (2004) are somewhat more robust to the initial
guess than shooting methods but are inherently more costly since the whole evolution
of the trajectory has to be stored every iteration. Convergence is rather good, but in
practice a good initial guess is still required. Variational optimisation from Farazmand
(2016); Azimi et al. (2022) possesses the largest radius of convergence of the methods
discussed here by far, converging to something reasonable from much more arbitrary
initial conditions. However, this comes at the significant cost of convergence rate,
which can be prohibitively slow for high-dimensional systems. The variational
optimisation method also requires some special treatment when no-slip boundary
conditions are present.

Many of the problems listed here become more severe as the dimensionality of the
problem increases, however, it is known that many of the attractors that govern the
flows are in fact relatively low-dimensional objects compared to the state-space they
exist within. Thus, a systematic method to extract the most dynamically significant
dimensions of the flow is highly desirable, as it would alleviate one of the main issues
associated with finding ECSs. The next section introduces the methods used in fluid
dynamics research that are designed to answer the question of ‘what basis is best?’
when trying to model turbulent flows.
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2.2 Modal Analysis Techniques

The presence of coherent structures has been noted for essentially as long as
turbulence research has been conducted. Their importance in certain physical
mechanisms have been noted in a number of prominent cases. Famous example being
hairpin vortices in turbulent boundary layers (Kline et al., 1967; Head and
Bandyopadhyay, 1981), von Kármán shedding in turbulent wakes (von Kármán,
1911), and Tollmien-Schlichting waves in boundary layer transitions (Tollmien, 1928;
Schlichting, 1933) which were first observed in Schubauer and Skramstad (1947). As
discussed, observations of coherent structures in real flows can be understood in
terms of shadowing of unstable invariant solutions to the Navier-Stokes equations for
a finite amount of time. Motivated by the desire to educe these structures from flows,
modal analysis techniques have been developed. The main goal of these methods
have been to dissect data sets or the governing equations to find particular solutions
that have more statistical or dynamical importance compared to the rest of the flow.
The resulting structures are then applicable to modelling, prediction, and data
compressions. What follows is an overview of the main techniques currently
employed in the literature, then moving onto a more in-depth discussion of the two
methods that are of most importance to the current work: SPOD, and resolvent
analysis.

2.2.1 Data-Based vs. Operator-Based Methods

Modal analysis techniques can be split into two broad groups: data-based methods,
and operator-based methods. Data-based methods were the first developed due to the
desire to try to isolate the structures observed in experimental studies. As the name
suggests, data-based methods process large sets of spatially and temporally resolved
flow fields. Operator-based methods instead try to obtain similar results directly from
the Navier-Stokes, possibly using some form of limited data input, such as a base flow.
Overviews of each of the methods mentioned in this subsection, including application
examples, can be found in Taira et al. (2017, 2020); Rowley and Dawson (2017).

The seminal work of John L. Lumley (Lumley, 1967, 1970) introduced SPOD, which
remains one of the most widely used methods available. SPOD is a data-based method
which produces structures from a set of temporally resolved flow data in terms of
optimal energy capture, leading the modes that provide the most efficient basis for the
dynamics of the flow. A note should be made that due to limitations in computational
resources SPOD has typically been implemented in a space only fashion, introduced
in Sirovich (1987); Aubry et al. (1988). The original method as proposed by Lumley
takes into account the full spatiotemporal correlations of the data. In this work we
utilise the nomenclature of Towne et al. (2018) whereby space-only SPOD is called
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POD, and the full space-time version is called SPOD. Despite the prevalence of POD
in the literature, here the main focus is on SPOD as it provides a more rigorous
decomposition of the dynamics as will be discussed in Section 2.2.2.

Operator-based methods do not require a data-heavy input, instead requiring only the
important dynamical operators of the governing equations, typically linearised about
some base flow that has some physical significance. A classical example is linear
stability analysis, which provides the growth/decay characteristics of a base flow. The
analysis is typically performed relative to the laminar or equilibrium solutions of the
flow and using Floquet analysis the same principles can be extended to treat periodic
solutions. The result is a set of modes and their associated stability exponents, which
can be used to understand the long-term behaviour of the linearised dynamics.
Another example is resolvent analysis, which is the primary method used in this
work. Resolvent analysis reformulates the governing equations into an input-output
form for the nonlinear interactions and any external forcing, with the linearised
operator being the mediator between the two. When decomposed it provides a
ranking of the most linearly receptive and amplified modes of the governing
equations, useful for stability analysis, control, and modelling of fluids. The more
in-depth discussion of the method and its application is postponed until Section 2.2.3.

2.2.2 SPOD

As mentioned previously, SPOD extends the space-only POD method to properly
account for spatiotemporal coherence. Formally, SPOD can be expressed in terms of
the following optimisation problem

max
ϕ(x, t)

E

(︃⃓⃓
⃓⟨q (x, t) , ϕ (x, t)⟩x,t

⃓⃓
⃓
2
)︃

⟨ϕ (x, t) , ϕ (x, t)⟩x,t
, (2.10)

where q (x, t) is the flow state of a realisation which is time-dependent, ϕ (x, t) is the
proposed spatio-temporal mode, the operator E (·) is the expectation over all
realisations of the flow available in the data, and the inner-product is defined over the
spatial and temporal domain of the flow

⟨u, v⟩x,t =
∫︂ ∞

−∞

∫︂

Ω
v∗ (x, t) u (x, t)dx dt . (2.11)

In words, Equation 2.10 aims to find a single mode ϕ that maximises the correlation
between all the available realisation of the a finite set of temporally varying flow data.
The purpose of the denominator in the quotient of Equation 2.10 is to impose the
additional constraint that the norm (kinetic energy) of the mode ϕ is fixed at unity.
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This problem can be reformulated as an eigenvalue problem as follows

∫︂ ∞

−∞

∫︂

Ω
C
(︁
x, x′, τ

)︁
ϕ (x, t)dx′ dt = λϕ (x, t) , (2.12)

with the tensor C (x, x′, τ) representing the cross-correlation of the flow at two
different points x, and x′ at a temporal offset τ. The eigenvalue λ is the maximum
output of Equation 2.10 and tells us how much of the total flow energy the mode ϕ

captures of the original flow data. This problem is then Fourier transformed in time to
get ∫︂

Ω
S
(︁
x, x′, f

)︁
ψ
(︁
x′, f

)︁
dx′ = λ ( f )ψ (x, f ) , (2.13)

where S (x, x′, f ) is called the cross-spectral density tensor, which is simply the
Fourier transform of the cross-correlation tensor in time. The cross-spectral density
tensor encodes the repeated cross-correlations of different points in the flow with a
frequency of f . The mode ψei2π f τ is a solution of the original eigenvalue problem in
Equation 2.12. The result is a set of modes spatial modes ψ, along with the relative
importance λ at each frequency f . The original (Fourier transformed) flow field can
then be expressed as a sum of the resulting modes

q̂ (x, f ) =
∞

∑
j

aj ( f )ψ (x, f ) (2.14)

with q̂ is the Fourier transform of q in time. As shown in Towne et al. (2018) the
modes produced from space-only POD can be expressed as the combination of the
modes produced by SPOD over all frequencies. The method used to compute the
SPOD modes and associated energies can also be found in Towne et al. (2018), with a
summary given here in Section 4.2.4.1. A notable example where POD is able to
produce well defined structures is for the wake behind bodies that exhibit a strong

FIGURE 2.9: Space-only POD analysis of incompressible flow over a NACA0012 aero-
foil at Re = 23000 and α = 9◦, showing a snapshot of turbulent flow, the mean field
subtracted for the analysis, and the first four dominant modes. Obtained from Taira

et al. (2017).
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FIGURE 2.10: Relative strength of the POD (left) and SPOD (right) eigenvalues for
a compressible turbulent jet (Re = 106, Ma = 0.4). The SPOD eigenvalues are only
shown for a Strouhal number of St = 0.6 at which the lowest rank behaviour occurs.

Obtained from Towne et al. (2018).

von Kàrmàn shedding, as shown in Figure 2.9, where roughly 19% of the fluctuation
energy is captured by the first four modes (Taira et al., 2017). The success is a result of
the vortex shedding being largely monochromatic, dominated by the shedding
frequency of the vortices.

If a particular flow contains more than one frequency that is important in the
fluctuations, the POD will produce far more muddled modes, containing information
from all the frequencies that are important making it more difficult to parse the
important features of the flow. To illustrate this, Towne et al. (2018) performed both a
POD and SPOD analysis on a compressible turbulent jet flow. The resulting relative
strength of the eigenvalues are shown in Figure 2.10, with the left being the
eigenvalues for POD and the right being the eigenvalues for SPOD at a particular
frequency (corresponding a Strouhal number of St = 0.6) that displays a large
separation. The result is pronounced, with POD unable to produce the same
separation between the largest eigenvalues and the remaining spectrum as SPOD,
since the latter is considering individual frequencies in its decomposition. Figure 2.11
further emphasises this point, with the dominant POD (left) displaying very little local
coherence and thus providing very little insight into the dynamics of the flow,
whereas the dominant SPOD modes at St = 0.6 (right) displaying well defined
wavepacket structures with only local support which can be linked to specific
instabilities in the flow. As a general note, if a flow has particular structures that
clearly arise at regular intervals, such as von Kàrmàn shedding, then it can be
predicted ahead of time what frequency the dominant SPOD modes will be present
allowing the analysis to be performed with this in mind to minimise the total cost. In
other words, the analysis can be performed at a slightly lower cost if some patterns of
the flow are known a priori. For these fundamental reasons, in this work SPOD is
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FIGURE 2.11: Dominant POD mode (left) and SPOD mode at St = 0.6 (right) for the
same compressible turbulent jet as in Figure 2.10. Obtained from Towne et al. (2018).

used to modally analyse the data sets obtained from DNS, as we can be confident that
the resulting modes are not a complex mix of multiple spectral components.

SPOD has been applied to many common flows, such as pipe flows (Hellström and
Smits, 2014), boundary layers (Tutkun and George, 2017), wakes (Araya et al., 2017;
Tutkun et al., 2008), and aerofoil flows (Abreu et al., 2017). Either experimental or
simulation (DNS or LES typically) have been shown to be effective as inputs in Sinha
et al. (2014); Semeraro et al. (2016); Towne et al. (2015); Schmidt et al. (2018). The main
downsides of SPOD relate to its reliance on data. For example, a typical
two-dimensional turbulent flow past an aerofoil can have of the order of 10000 spatial
points. To determine the first M modes, using the methodology described in Towne
et al. (2018) which avoids explicitly forming the cross-correlation tensors, the flow
field needs to be split into M blocks of data each of which being large enough to
capture the temporal coherence of the data. As M grows larger the required set of
temporal data required to determine the trailing modes can become prohibitive,
requiring the order of GB or TB of memory. This is not a significant problem when
there are clearly dominant modes, but in cases where flows have a more broadband
spectral structure the cost of SPOD can become prohibitively expensive. This problem
generally becomes worse as the Reynolds number increases due to the additional
small structures that require larger spatial and temporal resolution to properly
capture. The method described in Towne et al. (2018) for computing SPOD modes, is
similar to the snapshot method commonly used to compute POD modes (Sirovich,
1987), reducing the cost of computing the modes and eigenvalues at the expense of the
spectral resolution analogous to Welch’s method. There is also a burden on the
researcher to obtain high quality sets of data from experiment or simulation which can
be rather difficult and time consuming on its own. To restate the main goals of this
thesis, we aim to be able to construct exact solutions as well as statistical
approximations to turbulent flows using some form of coherent structure as the basis.
SPOD, although providing a physically significant basis requires large sets of data to
obtain. Ideally, a set of modes that provide an efficient basis can be obtained without
requiring a complete simulation of the flow that is being studied. Resolvent analysis,
discussed next, is better suited to this task. Resolvent analysis is an operator-based
method that only requires a base flow to output a set of spatially and temporally
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coherent modes, and as discussed in Towne et al. (2018) these resolvent modes have
are closely linked to SPOD modes under certain circumstances.

2.2.3 Resolvent Analysis

Resolvent analysis is an operator-based modal analysis technique that focuses on the
pseudo-spectra of the linearised Navier-Stokes equations, providing insight to the
linear growth mechanisms of the system subject to harmonic forcing Trefethen et al.
(1993); Schmid and Henningson (2001); Jovanović and Bamieh (2005). Consider the
linear dynamical system with an added forcing term at a particular frequency

dq
dt

= Aq + f̂ eiωt, (2.15)

where f̂ is the magnitude of the forcing, and ω is the frequency of the forcing. The
response to such a forcing (the particular integral of the differential equation) will
have same frequency, q = q̂eiωt. Substituting this in and factoring out the common
exponential from each term we get the following system

q̂ = (iωI − A)−1 f̂ = Hω f̂ , (2.16)

which shows that the magnitude of the response is determined by the magnitude of
the forcing and any additional amplification obtained from the operator
Hω = (iωI − A)−1, which is defined to be the resolvent operator. Assuming the linear
dynamical operator of the system has a well-defined eigendecomposition, i.e.
A = VΛV−1 exists, then we can obtain the following bounds

∥iωI − Λ∥−1 ≤ ∥Hω∥ ≤
⃦⃦
⃦V
⃦⃦
⃦
⃦⃦
⃦V−1

⃦⃦
⃦

⏞ ⏟⏟ ⏞
κ(V)

⃦⃦
⃦iωI − Λ

⃦⃦
⃦
−1

. (2.17)

This bound on the resolvent shows that the resolvent can amplify the forcing of the
system not only through linear instability of a particular mode (system resonance), but
also through the condition number of the eigenvector matrix κ (V), called
pseudo-resonance. If A is normal (A∗A = AA∗) then it follows that the eigenvectors
form an orthonormal basis, thus giving V a unitary condition number. If, however, A
is non-normal, then κ (V) > 1 leading to pseudo-resonance of the solution. This linear
amplification due to pseudo-resonance is observed in practice as an initial transient in
the system response. This non-normal amplification of can be rather large, especially
as the non-normality of A increases, leading to very large growth simply due to linear
mechanisms.
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When applied to nonlinear systems, following the formalism of McKeon and Sharma
(2010), the interpretation is slightly different. First consider the nonlinear dynamical
system

dq
dt

= N (q) . (2.18)

Taking a certain base state qb and linearising about it, without removing any of the
higher-order terms from the nonlinearity, leads to the general result

dq′

dt
= Nb + Lq′ + f ′, (2.19)

where q′ is the state fluctuation about qb, Nb = N (qb), and f ′ = f (q′). Fourier
transforming in time we have the following

q̂′ = (iωI − L)−1 f̂
′
= Hω f̂

′
(2.20)

which is precisely the same expression obtained for the linear system, except now
instead of having an external monochromatic forcing, the forcing obtained from the
nonlinear interactions of the flow. This forcing term f̂

′
will in general have a very

broadband content, and so Equation 2.20 shows that the state of a nonlinear system is
a result of the nonlinear interactions of the system over all the total spectrum,
moderated by the resolvent operator Hω. This reciprocatory relationship over the
whole spectrum is summarised in Figure 2.12. Under this framework, the resolvent
provides framework to interpret turbulence as the complicated nonlinear triadic
interactions at multiple frequencies amplified by the resolvent. The broadband
content of the state means that the resolvent has to be analysed at all frequencies ω to
provide insight into these interactions. However, simply by inspection it is clear that
non-normality would play a key role in amplifying certain frequencies of the system.
In the case of fluid dynamics, shear stresses have the effect of increasing the
non-normality of the linearised Navier-Stokes equations L, discussed in detail in
Symon et al. (2018). The resulting large non-normal amplifications can trigger
subcritical transitions to turbulence.

The resolvent modes are obtained via a Singular Value Decomposition (SVD) of the
operator as Hω = ΨωΣωΦω. The left singular matrix Ψω contains the response modes,
and the right singular matrix Φω contains the forcing modes. These modes are ordered
in a decreasing fashion, such that the maximal response of the system at the frequency
ω and the associated forcing that produces it can be obtained from the first response
and forcing modes in Ψ and Φ respectively. The magnitude of this response is given
by the associated singular value in Σω. This decomposition then provides the basis
and relative strength describing the receptive directions of the linear dynamics as well
as the forcing that will produce them. If there is a large separation of scale between the
singular values, i.e. if the first few singular values are much larger than the successive
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Hω1

Hω2

Hωn

FIGURE 2.12: Block diagram representation of the relationship between the flow state,
u and nonlinear forcing, f that maintains turbulent flow. Obtained from Sharma

(2019).

singular values, then the resolvent is said to be low rank and can be accurately
approximated with only the modes associated with the largest singular values.

In McKeon et al. (2013), where this framework for modelling fluids using resolvent
analysis was introduced, a model is constructed for pipe flow, using the low-rank
nature of the resolvent, which is used to analyse the critical layer framework for the
dominant structures in the turbulent flow. There are many examples of the resolvent
being used for many different types of flow, possessing a very broad literature. Some
examples include modelling cavity flow (Gómez et al., 2016) and wall turbulence
(Gayme and Minnick, 2019), reconstructing flow data (Beneddine et al., 2017),
controlling cylinder wakes (Jin et al., 2022) and Couette flow (Gayme, 2010), and to
determine optimal forcings of jets (Garnaud et al., 2013).

Within the framework of McKeon and Sharma (2010), coherent structures can be
interpreted as solutions in the frequency domain constituted of multiple resolvent
modes and their relative motions. McKeon et al. (2013) introduced the idea of “closing
the loop” for resolvent analysis, where not only the linear responses of the flow were
modelled, but the full nonlinear problem is included as part of the analysis. The idea
of using resolvent analysis for the purpose of solving the complete nonlinear problem
was pursued in Barthel et al. (2021), where the resolvent modes were used as a basis to
reconstruct Taylor vortices in a Taylor-Couette flow. By retaining a relatively small
number of resolvent modes (22 and 10 modes below and beyond a spectral cut-off for
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FIGURE 2.13: Resolvent-based solution for a Taylor-Couette flow at Re = 400, showing
the mean velocity derived from the Reynolds stresses of the model solution (a), and
the first four Fourier modes obtained from the model solution (b), (c), and (d), all
compared to the DNS solution shown at the dots. Obtained from Barthel et al. (2021)

the axial wavenumber) the dominant Fourier modes could be reconstructed by solving
an optimisation problem as shown in Figure 2.13. This idea is central to this work, as
we perform the same fundamental steps to allow the construction of exact solutions to
the Navier-Stokes equations in terms of resolvent modes, in addition to using the
modes as a low-order basis to approximate the statistics of chaotic/turbulent systems.

With the idea of using resolvent modes as a basis to produce solutions to the
Navier-Stokes equations, closing the loop, Sharma et al. (2016b) provided evidence
that the response modes of resolvent analysis provide a particularly efficient basis to
express ECSs for pipe and channel flows. Figure 2.14 displays an illustrative, albeit
optimistic, result from Sharma et al. (2016b) displaying a particular ECSs (left) studied
in Sharma et al. (2016b), along with its projection onto five (centre) and a single (right)
resolvent modes for each Fourier mode in the homogeneous flow directions, capturing
98% and 95% of the fluctuation energy, respectively. This represents a very large
dimensionality reduction while retaining the qualitative, and most of the quantitative
features of the solution. The link between resolvent analysis, DMD/Koopman
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FIGURE 2.14: ECSs solution for a pipe flow (left), the projection onto the five dom-
inant resolvent response modes (centre) for each Fourier mode in the homogeneous
directions, and the projection onto a single dominant resolvent response mode (right),
capturing 95% and 98% of the fluctuation energy, respectively. Obtained from Sharma

et al. (2016b).

analysis, and ECSs is discussed in Sharma et al. (2016a), providing an analytical
reason for resolvent modes providing an efficient basis for ECSs.

Figure 2.15 displays the percentage of energy capture for the projection of a channel
flow solution in Sharma et al. (2016b) onto a truncated set of resolvent modes for all
the velocity components (u, v, and v), as well as the dominant Reynolds stress (uv)
and the total nonlinear convection (u · ∇u). The projection clearly captures the
streamwise velocity very accurately using only a small number of modes, while the
other velocity components, requiring a larger set of modes to be faithfully recovered.
This projection is still able to capture 92% of the fluctuation energy with five resolvent
modes, implying that the majority of the energy is stored in the streamwise
components anyway. It is argued in Sharma et al. (2016b) that the fact that the
nonlinear interactions are not completely captured by the truncation is a feature of
resolvent analysis filtering out the nonlinear terms that are not important to the
Navier-Stokes equations.

With all of this in mind, there is good reason to believe that using resolvent modes
provide a very efficient basis for expressing ECSs without having to rely on the large
sets of data that limits applications of SPOD. These basis functions are especially
suited to model time-periodic exact solutions, as a hierarchy of modes is obtained at
each temporal frequency (and spatial wavenumber for problems with statistically
homogeneous spatial directions), so that temporal periodicity is built in explicitly in
the modal expansion. As a final point, a method proposed by Ahmed and Sharma
(2020) utilises resolvent modes as a basis to search for new equilibrium and periodic
solutions to Couette flow using a “project-then-search” methodology. In this method
known solutions or close recurrences are projected onto the resolvent subspace which
is used as the new initial condition for the search of new solutions, providing
examples of solutions that had not yet been observed in the literature. The current
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FIGURE 2.15: Percentage energy capture of a channel flow ECS for each velocity com-
ponent, dominant Reynolds stress, and nonlinear convection term. Obtained from

Sharma et al. (2016b)

literature indicates that resolvent modes can be particularly useful in modelling ECSs
for certain wall-bounded flows without requiring the large data overhead of SPOD.

2.3 Summary of the Gaps in the Literature

The gaps in the literature are two-fold. The first, from the Section 2.1 relates the
practicality of the available methods to find invariant solutions of high-dimensional
chaotic systems. Currently the methods available suffer from issues related to
robustness to initial guesses and/or convergence rates, problems that are built into the
dynamics of the chaotic systems, especially as the dimensions increase. The second
gap relates to resolvent analysis. As discussed, Barthel et al. (2021) aimed to construct
a model for Taylor-Couette flow based solely on resolvent modes. This “closes the
loop” of resolvent analysis, providing dynamical information related to the modes for
particular flow, rather than the kinematic information from the singular values which
do not necessarily represent the flow in question. Currently there has not been any
other attempt to extend this for more general flows.

Combining the variational optimisation of Farazmand (2016); Azimi et al. (2022) with
a projection onto a resolvent basis provides a method to compute dynamical weights
for the resolvent modes, constructing a model for the flow based solely on resolvent
modes. This would be a more complete version of what is done in Barthel et al. (2021).
The work in this thesis describes a general framework upon which this can be
achieved for any wall-bounded (internal or external) flow. It is shown that this can not
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only provide the desired dynamical information associated with each resolvent mode,
but additionally improve the performance of the variational optimisation.
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Chapter 3

Variational Optimiser

This chapter is devoted to the derivation of the governing equations for the
gradient-based variational optimisation of wall-bounded incompressible fluid flows.
This method facilitates the construction of the resolvent-based models, finding the
best possible combination of modes that satisfy the Navier-Stokes equations. The
mathematics is presented for a non-specific flow domain with a mix of no-slip and
periodic boundary conditions, to emphasise the general applicability of the method,
and how the issues that arise are directly related to the presence of the walls in the
domain. The chapter then moves to the Galerkin projection of the optimisation onto a
subspace defined by a set of incompressible modes that obey the boundary conditions.
This projection constitutes a general solution for the issues that are encountered with
applying the variational optimiser to wall-bounded incompressible flows.

3.1 Optimisation Problem for the Navier-Stokes Equations

In this section the general process of setting up the optimisation problem for which
minima represent solutions to the Navier-Stokes equations is described. The
procedure is described for a simple flow domain that contains a mix of periodic and
no-slip boundary conditions for any number of spatial dimensions, with an
application to channel flow in Chapter 6.

Assume u is a three-dimensional vector field defined on a simply connected and
compact domain Ω ⊆ Rn where n ∈ N is the number of dimensions of the underlying
space (typically n = 2 or 3). Also denote the boundary of the domain Ω with ∂Ω.
Thus, the interior of the domain can be expressed as Ω̃ = Ω \ ∂Ω. Interest is only
given to solutions of finite time, thus define the interval [0, T], where T ∈ R>0, to be
the length of the time interval over which solutions to the Navier-Stokes equations are
considered. Time periodic solutions to the Navier-Stokes equations will be sought. A
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combination of the spatial domain and time horizon of the solutions is defined as
Ωt = Ω × [0, T]. The pressure field, p, is a scalar field defined over the same domain
as u. Typically the domain Ω is defined by some Cartesian or curvilinear coordinate
system, with orthogonal directions, with some of those directions being statistically
homogeneous and the other being inhomogeneous. Periodic boundary conditions are
imposed on the homogeneous directions, and some form of no-slip boundary
condition is assumed for the inhomogeneous directions. This motivates a partitioning
of the domain boundary according to the different boundary conditions. This
partition is summarised as ∂Ω = ∂Ωns ∪ ∂Ωpi ∪ ∂Ωpo, where ∂Ωns is the portion of ∂Ω
for which a no-slip boundary condition is imposed, and ∂Ωpi and ∂Ωpo are the inflow
and outflow periodic boundaries. The corresponding no-slip and periodic boundary
conditions are thus denoted as u|∂Ωns

= C and u|∂Ωpi
= u|∂Ωpo

, respectively. The
function C is a mapping C : ∂Ωns → R that prescribes the value of the velocity at the
no-slip boundary, which here is assumed to be constant in time.

The Navier-Stokes equations can be expressed as

∂u
∂t

= − (u ·∇) u +
1

Re
∆u −∇p, (3.1a)

∇ · u = 0. (3.1b)

We define an inner product on the total spatiotemporal domain Ωt is defined as such

⟨u, v⟩Ωt
:=
∫︂ T

0

∫︂

Ω
u · v dV dt , (3.2)

which induces the norm
∥u∥2

Ωt
:= ⟨u, u⟩Ωt

, (3.3)

for which any velocity field with finite kinetic energy u is a member of some Hilbert
space, denoted here by χ. Although the inner product of Equation 3.2 is only strictly
defined for two vector fields, it can be extended to scalar fields by simply replacing the
dot product inside the integral with a scalar product. This is not the only norm used in
this thesis. Typically any norm denoted without the subscript Ωt refers to the standard
Euclidean norm for the vector spaces of Rn or Cn. The exception to this is in chapter 5,
where a specific norm is defined for dynamical systems that are not spatially extended.

The variational optimisation methodology seeks a solution to Equation 3.1a, given the
incompressibility constraint Equation 3.1b, by modifying the velocity field u to
minimise an objective functional that is zero only if the governing equations are
satisfied. To properly express this optimisation problem, it is necessary to define both
the space over which the given optimisation variables be varied as well as the
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− (u · ∇)u+
1

Re
∆u−∇p

r

∂u

∂t

t

u (t) ∈PT

FIGURE 3.1: Schematic of an arbitrary loop in state-space that does not satisfy the
governing equation as its tangent vector ∂u/∂t is not aligned with right hand side of

the momentum equations (u · ∇) u + (1/Re)∆u −∇p.

objective that should be minimised. First, the optimisation space is defined as follows

PT :=
{︂

u ∈ χ : ∇ · u = 0, u|t=0 = u|t=T , u|∂Ωns
= C, u|∂Ωpi

= u|∂Ωpo

}︂
. (3.4)

In words, the space PT ⊂ χ is the space of all incompressible flows of period T with
finite kinetic energy, which are periodic in time and obey the no-slip and periodic
boundary conditions on ∂Ωns, ∂Ωpi, and ∂Ωpo, respectively. There is a subset of P

that also satisfies Equation 3.1a in the domain Ω. To find elements of this subspace a
mapping can be introduced, R : P → R≥0, for which u ∈ P ↦→ R [u] = 0 if and only
if u ∈ P and u also satisfies Equation 3.1a for all x ∈ Ω. This is equivalent to saying
that the global minima of R correspond to periodic solutions to the Navier-Stokes
equations in Ω. A more physical interpretation of R is that of a measure for the
violation of the momentum equation provided by a trial flow field u ∈ P , which
should be minimised to solve the governing equations. The expression for such a
mapping is obtained by first defining the violation of Equation 3.1a at each space-time
location in the field, called the local residual as such

r :=
∂u
∂t

+ (u ·∇) u − 1
Re

∆u +∇p. (3.5)

The geometric representation of the local residual is shown in Figure 3.1. A given
periodic velocity field u that doesn’t satisfy Equation 3.1a can be represented by a loop
in some strictly infinite-dimensional state-space. At each point along the loop, there is
some forcing imposed by the right-hand side of the Navier-Stokes equations that
prescribes how a solution should evolve, and the local residual is the vector between
this and actual evolution of the loop in time.
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Taking the norm of the local residual leads to a mapping for each element of PT to a
non-negative number as follows

R [u] :=
1
2
∥r∥2

Ωt
, (3.6)

which here is called the global residual. It should be noted that if u ∈ PT, for a given
period T, then generally r /∈ PT due to the momentum equation not being satisfied at
the boundary. This fact has important implications for finding solutions to the
optimisation problem, which is discussed in depth in Section 3.3.1. The global residual
as defined in Equation 3.6 possesses the desired properties of the mapping discussed
earlier, as R [u] = 0 if and only if r = 0 for all points in the spatiotemporal domain Ωt

which is in turn true if and only if u ∈ PT is a solution to the Navier-Stokes equations,
otherwise R is positive. Given that u is assumed to be smooth, R must also be a
smooth non-negative scalar field defined over PT that possesses absolute minima at
the best possible solution of Equation 3.1a for any given constraints on u.

Geometrically, minimising R is equivalent to continuously deforming a loop in the
infinite-dimensional state-space of the flow field, constrained to the linear subspaces
that represent the boundary conditions and incompressibility conditions. This process
terminates when the rate of change of the state vector and nonlinear operator (N ) are
as closely aligned as possible, as shown in Figure 3.2. An alternative perspective is to
view the scalar field R as a potential field, where the modification of the flow field u
to try to reduce R can be seen as an evolution of a new dynamical system for P itself.
In this view, the minimisers (global and local) of R are fixed-point attractors. This
perspective is further discussed in Section 3.2 where the equivalence of adjoint solver
of Farazmand (2016); Azimi et al. (2022); Ashtari and Schneider (2023) and residual
optimisation is shown.

Finally, the solution of Equation 3.1 can be expressed in terms of the following
optimisation problem

min
u∈PT , T

R [u] . (3.7)

This simple expression contains all the constraints on u (boundary conditions,
periodicity, and incompressibility) within the constrained optimisation space PT. The
mathematical consequences of these constraints on u become important for the
derivation of the gradient of R. The optimisation problem Equation 3.7 is a nonlinear
non-convex optimisation problem, and therefore possesses many possible solutions.
Since global minima are equivalent to periodic solutions to the Navier-Stokes
equations, it is not known exactly how many global minima should exist. However,
optimisation theory guarantees there will at least be multiple local minima. It has been
suggested in Zheng et al. (2024) that local minima can represent “ghosts” of solutions
that exist at different parameter values. These ghosts still influence the dynamics
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R 6= 0

R = 0

FIGURE 3.2: Evolution of a state-space loop, starting with the red inner loop that does
not obey the Navier-Stokes equations eventually being modified under some optimi-

sation law to the green loop that does obey the Navier-Stokes equations.

despite not being strictly present. Regardless of the interpretation, it is guaranteed
that Equation 3.7 will converge to some minima.

3.2 Equivalence of Adjoint Dynamics and Gradient-Based
Optimisation

In the literature there are two main variational approaches that have been utilised to
find invariant solutions to the Navier-Stokes equations: first the direct approach
pioneered in Lan and Cvitanović (2004), and the adjoint solver developed in
Farazmand (2016); Azimi et al. (2022). In this subsection it will be shown that the
adjoint solver is mathematically equivalent to the variational optimisation approach
developed here in the special case of the gradient descent algorithm being used to
solve Equation 3.7. The methods described here are not on their own new, but to the
best of the authors knowledge the explicit mathematical link between the adjoint
dynamics of Farazmand (2016) and the variational optimisation methodology of
Azimi et al. (2022); Ashtari and Schneider (2023) has never been shown.

Using the residual definitions from Equation 3.5 and Equation 3.6, the goal of the
adjoint method is to construct a new set of dynamics for u ∈ PT in some “fictitious”
variational time τ as follows

∂u
∂τ

= G (u) , (3.8)

such that
∂R
∂τ

≤ 0. (3.9)
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Using the definition of the global residual, an expression for the evolution of R with
respect to τ is given as

∂R
∂τ

=
1
2

∂

∂τ
∥r∥2

Ωt
=

⟨︃
∂r
∂τ

, r
⟩︃

Ωt

.

Using the definition of the derivative for ordinary functions gives

∂r
∂τ

= lim
∆τ→0

r (u + ∆u)− r (u)
∆τ

= lim
∆τ→0

r (u + ∆τG (u))− r (u)
∆τ

, (3.10)

where ∆u is the change of the velocity due to a temporal perturbation τ + ∆τ

prescribed by the operator G. The last expression in Equation 3.10 is equal to the
Gateaux derivative of r at u with respect to the direction G, denoted here as

∂r
∂τ

= Lr (u, G) , (3.11)

which when substituted back into Equation 3.2 gives the general expression for the
evolution of the global residual under the variational dynamics

∂R
∂τ

= ⟨Lr (u, G) , r⟩Ωt
. (3.12)

The method of Lan and Cvitanović (2004) sets the variational dynamics G such that
Lr (u, G) = −r, which implies

∂R
∂τ

= −∥r∥2
Ωt

= −2R. (3.13)

This leads to an exponential convergence of R to zero. The Gateaux derivative is
defined by

Lr (u, G) = lim
ϵ→0

r (u + ϵG)− r (u)
ϵ

. (3.14)

Taking a Taylor expansion of the local residual gives

r (u + ϵG) = r (u) + ϵJr (u) G +O
(︁
ϵ2)︁ , (3.15)

where Jr denotes the linearisation of the residual expression in Equation 3.5,
equivalent to the Jacobian matrix in a finite-dimensional context. Ignoring all the
higher order ϵ terms in Equation 3.15, and substituting it into Equation 3.14 implies
the system that needs to be solved at each step of the method of Lan and Cvitanović
(2004) is

Lr (u, G) = Jr (u) G = −r, (3.16)

which is precisely the linear system solved at each iteration of the Newton-Raphson
method, solving for the residual r over the whole trajectory u.
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The continuous dynamics in τ in principle ensures that the Newton flow method
converged globally, however, as noted in Farazmand (2016) when discretised using a
first order Euler scheme for τ, a damped Newton-Raphson method is recovered as
such

uk+1 = uk + ∆τJ−1
r r (3.17)

thus losing the guaranteed global convergence but retaining the rapid convergence
rates typical for Newton-Raphson iterations when close to the solution.

The alternative approach taken in Farazmand (2016) and Azimi et al. (2022) is to take
the adjoint of the Gateaux derivative in Equation 3.12 (denoted with the superscript †)
as follows

∂R
∂τ

=
⟨︂
G, L†

r (u, r)
⟩︂

Ωt
. (3.18)

where (·)† denotes the adjoint of a given operator. The variational evolution operator
G is then set to G = −L†

r (u, r), which ensures a monotonic decrease in R. This
provides a simpler closed-form expression for G, as opposed to the Newton evolution
case above where a linear system has to be solved at each iteration to find G. However,
the gain in computational simplicity comes at the cost of the exponential convergence.

Some small evolution of u under the dynamics of G produces a small change in the
global residual, denoted as δR. Using Equation 3.18 the following expression for this
variation in the global residual can be expressed as

δR =
⟨︂
L†

r (u, r) , ∆τG
⟩︂

Ωt
. (3.19)

Variational calculus provides the following identity

δR =

⟨︃
δR
δu

, ∆u
⟩︃

Ωt

=

⟨︃
δR
δu

, ∆τG
⟩︃

Ωt

, (3.20)

which relates the infinitesimal change in the field u to the resulting change in the
residual δR via the functional gradient δR/δu. This is effectively an infinite
dimensional chain rule, where the inner-product sums all first-order contributions of
the perturbation in u to the variation in the residual. When compared to
Equation 3.19, this leads to the following relationship between the adjoint Gateaux
derivative of the local residual and the gradient of the global residual

δR
δu

= L†
r (u, r) . (3.21)

This means that the adjoint solver methodology has the variational dynamics given by
G = δR/δu , or in other words, the adjoint solver is equivalent to a gradient-based
optimisation where the velocity field is modified in the steepest descent direction of
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the global residual. When discretised in τ with the Euler method the adjoint solver
corresponds to a gradient descent algorithm

∆u = ∆τG = −∆τL†
r (u, r) = −∆τ

dR
du

. (3.22)

Given the poor convergence properties of the gradient descent algorithm, for fixed ∆τ,
it is obvious why the adjoint solvers are slow to converge to invariant solutions once
the minimum is approached. In practice, therefore, a gradient descent algorithm for
minimising R is not a very good choice. Instead of using gradient descent, the
majority of this work utilises quasi-Newton optimisation algorithms which provide
more useful search directions. The quasi-Newton method for the optimisation
replaces δR/δu with a different descent direction that although is not the greatest
descent direction, allows for larger steps that more quickly approach the desired
minimum. Effectively, the adjoint dynamics are replaced with a slightly more optimal
choice of search direction which takes into account some local curvature information
to better minimise the residual. When solving a nonlinear optimisation problem, the
quasi-Newton algorithms above provide the search direction information, but not
how large the step size should be. A naı̈ve approach is to fix the step size to some
sufficiently small value as to ensure the residual will decrease each iteration. This
however is generally not optimal, as larger step sizes might be possible at different
points during the optimisation, and required trial and error approaches to find the
right step size to ensure the problem converges. To solve this problem, a line search
method is coupled with the rest of the quasi-Newton algorithm. An exact line search
method would, given a search direction prescribed by the optimisation algorithm, find
the step size that produces that largest possible decrease in the residual. This
sub-problem of the total optimisation problem is naturally difficult to solve exactly,
and so there are many algorithms that aim to approximate the exact solution at a
much lower cost. These inexact line search methods are generally constructed to find
the largest step size possible while ensuring the Wolfe conditions are satisfied Wolfe
(1969, 1971). The Wolfe conditions effectively provide an upper and lower bound on
the step length that ensures the residual, and its gradient reduce a sufficient amount.
Details of quasi-Newton optimisation algorithms and general line search methods are
given in Nocedal and Wright (2006)

3.3 Residual Gradient Derivation

With the equivalence of the adjoint and optimisation approaches to finding invariant
solutions to the Navier-Stokes equations established, this subsection focuses on the
derivation of the explicit expression for δR/δu. This derivation is equivalent to the
derivations found in Farazmand (2016); Azimi et al. (2022); Ashtari and Schneider
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(2023), with a few key differences. The first, primarily superficial, difference is that
this problem is explicitly framed as a gradient-based optimisation problem, whereas
the previously mentioned works frame the problem through the adjoint dynamics
discussed in Section 3.2. The second more substantial difference is the generality of
the following derivation. In the literature the derivation of the required dynamics for
the adjoint problem have been for the specific flows studied in each case. However,
here a more general formulation is adopted, proving the identities for any
incompressible flow field in a connected compact domain with a mix of both periodic
and no-slip boundary conditions. As stated, this derivation is only for incompressible
flow fields, with the linear divergence constraint on the velocity field. Compressible
flows replace this constraint with a separate dynamical equation for the evolution of
the fluid density, along with energy equations and some equation of thermodynamic
state (such as the ideal gas law). Mathematically speaking, the formulation is simpler
when the fluid is compressible, as will be seen later, since the incompressibility
constraint and required no-slip boundary conditions require special treatment to
properly compute the residual gradient. Since this is not in the scope of the current
study it is not discussed any further.

To start, it is first best to define a new objective that includes the incompressible
constraint on the velocity field in the form of a Lagrange multiplier. First, define the
new search space that only includes the periodicity and boundary conditions

PBC
T :=

{︂
u ∈ χ : u|t=0 = u|t=T , u|∂Ωns

= C, u|∂Ωpi
= u|∂Ωpo

}︂
. (3.23)

The constant value C is the velocity of the wall at the no-slip boundary. For Couette
flow, the primary focus of application in this thesis, this velocity is set to ±1 at the top
and bottom walls respectively. Then, define a modified optimisation problem as
follows

min
u∈PBC

T , T
L [u, q] = R+ ⟨q, ∇ · u⟩Ωt

. (3.24)

The Lagrange multiplier q is a scalar field, of the same type as the pressure p, and
could be referred to as an “adjoint pressure” due to its role in enforcing the
incompressibility of the velocity field under evolution in the variational dynamics. To
solve this modified optimisation problem, Equation 3.24, it is necessary for both
δR/δu = 0 and δR/δq = 0. It is relatively simple to show that δR/δq = ∇ · u, and so
the second condition is a restatement of the incompressibility constraint ∇ · u = 0. The
first derivative is equal to

δL

δu
=

δR
δu

+
δ

δu
⟨q, ∇ · u⟩Ωt

. (3.25)
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The standard approach in variational calculus to derive the equation for the functional
derivative is to perturb the velocity by some small amount and observe the resulting
linearised response in the functional R. Let δu denote the form of the perturbation,
satisfying the constraints ∇ · δu = 0, δu|∂Ωns

= 0, δu|∂Ωpi
= δu|∂Ωpo

, and δu is
periodic in time, or in other words let δu ∈ PT with C = 0. The perturbation is then
denoted as u → u + ϵδu, where ϵ > 0 is a real number sufficiently small so that ϵ2 ≈ 0
allowing the higher-order terms to be neglected in the following derivation. We also
perturb the pressure p → p + ϵδp. The pressure variation, δp, does not have similar
constraints imposed on it as δu. It is seen later in the derivation that by imposing the
proper constraint on r the pressure variation is removed from the resulting
expressions. Calculus of variations then provides the following identity

d
dϵ

L [u + ϵδu]
⃓⃓
⃓⃓
ϵ=0

=

⟨︃
δL

δu
, δu

⟩︃
. (3.26)

for which it is guaranteed that δL /δu ∈ PT by the Riesz representation theorem
(Bachman and Narici, 2000). To compute the explicit expression for δR/δu it is
necessary to propagate the perturbation in the velocity field through all the variables
that depend on it. Starting with the local residual we have

r (u + ϵδu) = r + δr =
∂u
∂t

−N (u) +∇p +

(︃
ϵ

∂

∂t
δu − δN + ϵ∇δp

)︃
, (3.27)

where N = − (u ·∇) u + 1
Re ∆u. An expression for the perturbation of the

Navier-Stokes operator δN can be derived as follows

N (u + ϵδu) = N + δN

= − (u · ∇) u +
1

Re
∆u

+ ϵ

(︃
− (u · ∇) δu − (δu · ∇) u +

1
Re

∆δu
)︃
+ ϵ2 (δu · ∇) δu.

Substituting this into Equation 3.27 and rearranging for the the perturbation δr gives

δr = ϵ

(︃
∂

∂t
δu − (u · ∇) δu − (δu · ∇) u +

1
Re

∆δu +∇δp
)︃
− ϵ2 (δu · ∇) δu. (3.28)

Now, propagating the perturbation to the Lagrangian L we get

L [u + ϵδu] =
1
2
∥r + δr∥2

Ωt
+ ⟨q, ∇ · u + ϵδu⟩Ωt

=
1
2
∥r∥2

Ωt
+ ⟨r, δr⟩Ωt

+
1
2
⟨δr, δr⟩Ωt

+ ⟨q, ∇ · u⟩Ωt
+ ϵ ⟨q, ∇ · δu⟩Ωt

,
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and then substituting in Equation 3.28 to get

L [u + ϵδu] =
1
2
∥r∥2

Ωt
+ ⟨q, ∇ · u⟩Ωt

+

ϵ

(︄⟨︃
r,

∂

∂t
δu − (u ·∇) δu − (δu ·∇) u +

1
Re

∆δu +∇δp
⟩︃

Ωt

+ ⟨q, ∇ · δu⟩Ωt

)︄

+O
(︁
ϵ2)︁ .

(3.29)

where all the higher order terms in ϵ have been grouped into the term O
(︁
ϵ2)︁.

Substituting Equation 3.29 into the left-hand side of Equation 3.26 gives

⟨︃
δL

δu
, δu

⟩︃
=

⟨︃
r,

∂

∂t
δu + (u · ∇) δu + (δu · ∇) u − 1

Re
∆δu +∇δp

⟩︃

Ωt

+ ⟨q, ∇ · δu⟩Ωt
.

(3.30)

The objective is now to convert the right-hand side of Equation 3.30 to resemble its
left-hand side. This is done by computing the adjoints of the derivative operators
using integration by-parts. To achieve this without resorting to defining the exact
geometry to be able to compute the integration by-parts, a few vector calculus
identities will be useful. Specifically the product rule for divergence

∇ · (uv) = u∇ · v + v · ∇u, (3.31)

and the divergence theorem over the spatial domain

∫︂

Ω
∇ · (uv)dV =

∫︂

∂Ω
uv · n̂ dS , (3.32)

where n̂ is the outward pointing unit normal vector at the boundary of the flow
domain ∂Ω. Taking each term inside the inner products of Equation 3.30 we start with
the time derivative
⟨︃

r,
∂

∂t
δu
⟩︃

Ωt

=
∫︂

Ω

∫︂ T

0
r · ∂

∂t
δu dt dV =

∫︂

Ω

(︃[︂
r · δu

]︂T

0
−
∫︂ T

0

∂r
∂t

· δu dt
)︃

dV , (3.33)

where integration by parts on the time integral has been used for the second equality.
Noting that both u and r are periodic in time, the boundary terms vanishes, leaving

⟨︃
r,

∂

∂t
δu
⟩︃

Ωt

= −
∫︂

Ω

∫︂ T

0

∂r
∂t

· δu dt dV =

⟨︃
−∂r

∂t
, δu

⟩︃

Ωt

, (3.34)
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Next, taking the first convective term we get

⟨r, (δu · ∇) u⟩Ωt
=
∫︂ T

0

∫︂

Ω
r · (δu · ∇) u dV dt ,

=
∫︂ T

0

∫︂

Ω
r · [(∇u) δu]dV dt ,

=
∫︂ T

0

∫︂

Ω

[︂
(∇u)⊤ r

]︂
δu dV dt =

⟨︂
(∇u)⊤ r, δu

⟩︂
Ωt

,

(3.35)

The second convective term has to be handled by exchanging the derivatives using the
vector calculus identities Equation 3.31 and Equation 3.32 as follows

⟨r, (u · ∇) δu⟩Ωt
=
∫︂ T

0

∫︂

Ω
r · ((u · ∇) δu)dV dt

=
∫︂ T

0

(︃∫︂

∂Ω
(r · δu) u · n̂ dS −

∫︂

Ω
((u · ∇) r) · δu dV

)︃
dt .

(3.36)

Due to the no-slip boundary condition for u and periodic boundary conditions for
both u and r on ∂Ω, the boundary integral term in Equation 3.36 vanishes leaving

⟨r, (u · ∇) δu⟩Ωt
= −

∫︂ T

0

∫︂

Ω
((u · ∇) r) · δu dV dt = ⟨− (u · ∇) r, δu⟩Ωt

. (3.37)

Using the product rule and divergence theorem twice, the diffusion term in
Equation 3.30 can be rearranged to

⟨r, ∆δu⟩Ωt
=
∫︂ T

0

∫︂

Ω
r · (∆δu)dV dt ,

=
∫︂ T

0

(︃∫︂

∂Ω
(r · ∇δu − (∆r) · δu) · n̂ dS +

∫︂

Ω
(∆r) · δu dV

)︃
dt ,

(3.38)

which is equivalent to integrating by parts twice, leaving derivative terms in both r
and δu at the boundaries. The second boundary integral term vanishes at the
boundaries due to the constraints on δu to satisfy the no-slip and periodicity
boundary conditions. The second boundary term, however, does not vanish with the
current boundary conditions imposed for the problem. In fact, it is necessary to
introduce extra boundary conditions, called natural/adjoint boundary conditions, for
the local residual such that this boundary integral vanishes. Specifically, we require
that r|∂Ωns

= 0 and r|∂Ωpi
= r|∂Ωpo

. In other words, the local residual field must obey
the same periodic boundary conditions as the velocity field (which is trivially true
given a periodic r), as well as homogeneous no-slip boundary conditions at the same
locations as u. The second of these constraints is far more difficult to enforce, as it
requires that the Navier-Stokes equations be exactly solved at the no-slip boundaries.
When solving the incompressible Navier-Stokes equations using some form of
standard time-stepping scheme, the pressure is typically determined via some
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solution of the associated Poisson problem with boundary conditions derived from
evaluating the Navier-Stokes equations at the no-slip boundaries, which enforces this
boundary condition. With the new boundary conditions on r both of the boundary
integral terms in Equation 3.38 vanish giving

⟨r, ∆δu⟩Ωt
=
∫︂ T

0

∫︂

Ω
(∆r) · δu dV dt = ⟨∆r, δu⟩Ωt

. (3.39)

The pressure term in Equation 3.30 is again handled via integration by-parts, utilising
the natural boundary conditions for r such that the resulting boundary integral
vanishes, giving

⟨r, ∇δp⟩Ωt
=
∫︂ T

0
r · ∇δp dV dt = −

∫︂

Ω
δp (∇ · r)dV dt = ⟨−∇ · r, δp⟩Ωt

. (3.40)

Utilising the commutativity of the inner product, the fact that the adjoint of the
gradient is the negative divergence leads directly to adjoint of the divergence being
the negative gradient. Using this, the adjoint of the final term in Equation 3.30 for the
Lagrange multiplier can be determined

⟨q, ∇ · δu⟩Ωt
= ⟨−∇q, δu⟩Ωt

. (3.41)

Taking all of the adjoint operators derived above and applying them to Equation 3.30
gives

⟨︃
δL

δu
, δu

⟩︃
=

⟨︃
−∂r

∂t
− (u · ∇) r + (∇u)⊤ r − 1

Re
∆r −∇q, δu

⟩︃

Ωt

− ⟨∇ · r, δp⟩Ωt
.

(3.42)

In its current form, Equation 3.42 does not provide the desired closed-form expression
for δL /δu . This is due to the presence of the pressure perturbation term. The only
way to remove this term from the expression is to set ∇ · r = 0. This is equivalent to
enforcing Equation 3.1a to obey the pressure Poisson equation throughout the
domain. This incompressibility constraint for r along with the natural boundary
condition r|∂Ωns

= 0 ensures that any evolution of the velocity field in variational
space is completely divergence free and obeys the no-slip boundary conditions.
Applying this added body constraint on the local residual gives the final expression
for the functional derivative

δL

δu
= −∂r

∂t
− (u · ∇) r + (∇u)⊤ r − 1

Re
∆r −∇q. (3.43)
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This expression includes the added incompressibility constraint and boundary
conditions on r. Taken together, these constraints imply that r ∈ PT with C = 0 is
required for the gradient in Equation 3.43 to be a valid expression. It is also clear from
Equation 3.43 that the Lagrange multiplier term q acts as a pressure term, ensuring
that the evolution of u under the variational dynamics is incompressible. Using the
incompressibility constraint of r, an adjoint pressure Poisson problem could be
derived and solved in a similar way as done for the primitive variables when solving
the Navier-Stokes equations using a traditional time-stepping scheme, in line with
what was done in Ashtari and Schneider (2023) where the same problem was
encountered. In the rest of this text the expression in Equation 3.43 will be denoted as
δR/δu as opposed to a gradient of the Lagrangian. This is done to make it clear that
we are optimising the global residual. The expression given, along with the boundary
and incompressibility constraints, ensure that the optimisation of R stays within the
space PT.

3.3.1 Residual Constraint Implications

Now that the derivations of all the relevant quantities to perform a basic optimisation
of R have been derived, it is worth discussing the implications of the extra constraints
imposed on r and their effect on the solution method that will be used. The
homogeneous no-slip boundary condition r|∂Ωns

= 0 and the incompressibility
constraint ∇ · r = 0 mirror the constraints imposed on the velocity field, and together
ensure that the evolution of the solution in variational space towards some periodic
flow is incompressible and obeys the no-slip boundary conditions.

Natural boundary conditions is a term used in finite element analysis and more
generally calculus of variations. These boundary conditions are automatically
satisfied by any dynamical solution to the governing equations. In this case this is
trivial since any solution to the Navier-Stokes equations (and thus minimises R)
would necessarily have r = 0 everywhere, including any no-slip boundaries.
However, this condition is important in this case because without it a valid
closed-form expression for residual gradient cannot be obtained. If r|∂Ωns

̸= 0 then
Equation 3.43 is not a descent direction for the functional R.

The question of how to best impose these conditions remains. One might first attempt
this by constructing a velocity field u ∈ PT for a given period T, and solve the
pressure Poisson equation at each instant. This would be done by taking the
divergence of Equation 3.1a and using the incompressibility of the velocity field at all
instants in time to get

∆p = ∇ ·N (u) , (3.44)
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along with a set of Neumann boundary conditions, obtained by evaluating
Equation 3.1a at the no-slip boundaries

∇p · n̂ = N (u) · n̂, on ∂Ωns. (3.45)

Typically, the right-hand side of Equation 3.44 consists of the divergence convection
terms of the Navier-Stokes equations, and the right-hand side of Equation 3.45 is the
diffusion term evaluated normal to the no-slip boundary. By solving this Poisson
problem an expression for the pressure is determined (up to an additive constant),
which can then be used in Equation 3.5 to compute the local residual. This would
produce a local residual field that is divergence free throughout Ωt, however, the
required constraint on r at the no-slip boundary is not automatically satisfied. In fact,
the boundary condition of Equation 3.45 is just equivalent to enforcing r · n̂|∂Ωns

= 0.
As a consequence, the tangential components of the local residual at the no-slip
boundaries are in general non-zero. This is only a problem due to the fact that the
whole temporal evolution of the velocity field is prescribed before the pressure is
solved for. If instead, the evolution of the velocity field was determined by solving the
Navier-Stokes equations via some time-stepping scheme, solving for the pressure at
each time step using Equation 3.44 and Equation 3.45, then the tangential components
of the local residual at the no-slip boundaries would in fact be zero. This is discussed
in detail in Gresho and Sani (1987); Gresho (1991) and Chen and Jiang (1996), where
the equivalence between the Neumann and Dirichlet style boundary conditions for
solving Equation 3.44 is shown. In other words, even if you start with a velocity field
such that u ∈ PT and solve the pressure Poisson equation with either Neumann of
Dirichlet boundary conditions derived by evaluating the Navier-Stokes equations at
the no-slip boundaries, it is not true that r ∈ PT. Specifically, the local residual at the
no-slip boundaries will be non-zero, invalidating the expression Equation 3.43 making
a gradient-based optimisation impossible.

The conclusion that some variation of a decoupled solver that computes pressure and
velocity separately is not viable. The pressure in Equation 3.1a acts to ensure the
velocity evolves in a very certain way, and simply prescribing a velocity field
satisfying u ∈ PT is not sufficient to satisfy this constraint. As mentioned a few time
previously, Ashtari and Schneider (2023) encountered the same problem when
formulating the three-dimensional variational problem for channel flow. They
overcame this problem using the Influence Matrix (IM) method to compute an update
to the velocity field that ensures both ∇ · r = 0 and r|∂Ωns

= 0 are satisfied at the next
iteration. In general, if the solution is to be solved in form of primitive variables, then
a coupled solver for both velocity and pressure is required to ensure compatible
spatiotemporal fields. In the next section a unified description of the problem will be
presented, describing two approaches to solve the problem with the application and
analysis of these methods detailed.
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3.3.2 Period Gradient

To complete the gradient-based optimisation of Equation 3.7 an expression for the
gradient with respect to the solution period, ∂R

/︁
∂T is required. This is obtained in

Azimi et al. (2022) using the adjoint dynamics framing, whereas here the optimisation
framing is used for the derivation. This gradient is simpler to obtain, as basic methods
of differentiation can be used directly since the period T is just a scalar value rather
than an object existing in some infinite-dimensional function space.

To this end, the global residual, Equation 3.6, is expressed as follows

R =
ω2

2

⃦⃦
⃦⃦ ∂u

∂t∗

⃦⃦
⃦⃦

2

Ωt

− ω

⟨︃
∂u
∂t∗

, N (u)−∇p
⟩︃

Ωt

+
1
2
∥N (u)−∇p∥2

Ωt
, (3.46)

where ω = 2π/T is the fundamental frequency of the flow or the smallest frequency
oscillation that can be permitted in the finite window permitted by the period T. This
variable has been extracted from the time derivative by defining t∗ = ωt, which is a
scaled time direction such that t∗ ∈ [0, 2π). Using the chain rule we obtain
∂
/︁

∂t = ω ∂
/︁

∂t∗ . It should be noted that Equation 3.46 is a quadratic function with
respect to ω, with the shape of the given velocity field u (x, t∗) determining the
coefficients. Taking the derivative of Equation 3.46 with respect to ω gives

∂R
∂ω

= ω

⃦⃦
⃦⃦ ∂u

∂t∗

⃦⃦
⃦⃦

2

Ωt

−
⟨︃

∂u
∂t∗

, N (u)−∇p
⟩︃

Ωt

. (3.47)

The pressure gradient in Equation 3.46 can be eliminated. This is due to the flow field
being incompressible at all times, so ∇ ·

(︁
∂u
/︁

∂t∗
)︁
= 0, which when combined with

the adjoint of the gradient being the negative divergence gives

⟨︃
∂u
∂t∗

, ∇p
⟩︃

Ωt

=

⟨︃
−∇ · ∂u

∂t∗
, p
⟩︃

Ωt

= 0. (3.48)

It is possible to set ∂R
/︁

∂ω = 0 in Equation 3.47 to determine the optimal frequency
ω∗ (and thus period) for a given flow u, which could be used as the determined period
at each iteration. This optimal frequency is given as

ω∗ =

⟨︃
∂u
∂t∗

, N (u)
⟩︃

Ωt⃦⃦
⃦⃦ ∂u

∂t∗

⃦⃦
⃦⃦

2

Ωt

(3.49)

This expression has not been shown in the literature, although it is very easy to obtain
so has likely been considered before in earlier examples of this type of work. This is
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likely due to a practical implementation of the optimisation problem using this
optimal frequency at each iteration instead of including the frequency gradient as part
of the total gradient leads to very unstable iterations that typically diverge very
quickly, unless the flow u is already very close to particular minimum. This is
primarily a result of the abstract vectors ∂u/∂t∗ and N (u) being highly misaligned
unless a velocity field is already very close to a solution, which produces a frequency
ω that gets arbitrarily close to zero and thus a period T that will get arbitrarily large.
In practice, then, the gradient Equation 3.47 is used directly in the optimisation.
Rearranging Equation 3.47, grouping the like terms in the inner-product and
substituting the definition of the local residual Equation 3.5, the following expression
can be obtained

∂R
∂ω

=
1
ω

⟨︃
∂u
∂t

, r
⟩︃

Ωt

. (3.50)

The gradient with respect to the period can be obtained using the definition of the
fundamental frequency, ω = 2π/T, and the chain rule to get

ω
∂R
∂ω

= T
∂R
∂T

. (3.51)

3.4 DAE Formulation of Gradient-Based Variational
Optimisation

Combining the previous results on the residual gradient derivation with the definition
of the local residual given in Equation 3.5 and the incompressibility and boundary
conditions on the velocity field u yields the following Differential Algebraic Equations
(DAEs) for the evolution in the variational time τ defined in Section 3.2

∂u
∂τ

= −∂r
∂t

− (u · ∇) r + (∇u)⊤ r − 1
Re

∆r −∇q, (3.52a)

0 =
∂u
∂t

+ (u · ∇) u − 1
Re

∆u +∇p − r, (3.52b)

0 = ∇ · u, (3.52c)

0 = ∇ · r, (3.52d)

0 = u|∂Ωns
− C = u|∂Ωpi

− u|∂Ωpo
, (3.52e)

0 = r|∂Ωns
= r|∂Ωpi

− r|∂Ωpo
. (3.52f)

Equation 3.52 is a summary of the variational dynamics induced by gradient-based
optimisation of Equation 3.7. The period gradient has been excluded since it does not
require any special treatment once a set of compatible u and r fields have been
computed. The dynamics can be evolved forward in the direction of greatest descent,
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∂u/∂τ, to monotonically decrease R. In the literature, a first order forward Euler
scheme has typically been used to evolve the spatiotemporal field u forward in τ, as
discussed in Section 3.2. Viewed like this, it becomes clear the difficulty in solving the
variational problem in the presence of no-slip boundaries. It is necessary to solve for
two scalar pressure fields, p and q, such that incompressibility constraints
∇ · u = ∇ · r = 0 are satisfied, while at the same time ensuring that the no-slip
boundary conditions u|∂Ωns

= r|∂Ωns
= 0 are enforced. Complications arise from the

standard method used to solve the pressure Poisson equation due to the non-physical
Neumann boundary conditions. So far, the only method in the literature that
addresses these problems is given in Ashtari and Schneider (2023). Using the IM
method to update u and r to obey the incompressibility constraint and no-slip
boundary conditions without having to explicitly compute the pressure fields.

In principle Equation 3.52 could be solved directly using standard methods for DAEs.
A simple example would be to discretise the gradient ∂u

/︁
∂τ using a backwards Euler

scheme. Applied to Equation 3.52, for a given step in the variational time denoted
with ∆τ and the current state of the flow variables denoted with qi, we get an implicit
algebraic equation for an update to the flow variables

0 = ui−1 − ui − ∆τ

(︃
∂ri

∂t
−
(︂

ui · ∇
)︂

ri +
(︂
∇ui

)︂⊤
ri − 1

Re
∆ri −∇qi

)︃
, (3.53a)

0 =
∂ui

∂t
+
(︂

ui · ∇
)︂

ui − 1
Re

∆ui +∇pi − ri, (3.53b)

0 = ∇ · ui, (3.53c)

0 = ∇ · ri, (3.53d)

0 = ui
⃓⃓
⃓
∂Ωns

− C = ui
⃓⃓
⃓
∂Ωpi

− ui
⃓⃓
⃓
∂Ωpo

, (3.53e)

0 = ri
⃓⃓
⃓
∂Ωns

= ri
⃓⃓
⃓
∂Ωpi

− ri
⃓⃓
⃓
∂Ωpo

. (3.53f)

If it is assumed that the flow variables of the previous iteration (i − 1) are known, then
solving Equation 3.53 leads to the desired update the velocity, as well as the rest of the
flow variables, that minimises the global residual by stepping in the direction of
steepest descent that obeys all the constraints of Equation 3.53c to Equation 3.53f. In
practice, if one was planning to implement such a method, it would be a bad idea to
use a standard Newton-Raphson method to compute the roots of Equation 3.53. This
is result of requiring the Jacobian matrix which, besides the difficulty in deriving and
implementing, is very memory inefficient. For a typical spatial and temporal
discretisation of a turbulent flow there could be millions of degrees of freedom for
each scalar flow field, with eight individual scalar fields, leading to a massive Jacobian
matrix. If this matrix is not sparse it would be extremely hard to solve and would
require some method to invert it at each iteration, since it would change as the
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optimisation evolves. For these reasons the only viable method would be to use the
Newton-GMRES method, a matrix-free alternative to the standard Newton-Raphson
method, making the solution tractable.

However viable as this approach may be in principle, it is not particularly efficient. It
enforces the use of some time-stepping scheme, the example given above still being
equivalent to gradient descent of the global residual. Higher-order time-stepping
schemes may allow for more accuracy and larger step sizes, but it still has to solve
Equation 3.52 to within machine precision each time. In this case the goal is the
solution as τ → ∞, not on the intermediate states of the variational dynamics.
Therefore it makes most sense to use an optimisation algorithm that does not have to
move in the exact direction as δR/δu . Given this, it is best to derive a methodology
that can compute δR/δu without having to resort to implicit coupled solver based on
a specific numerical scheme. The method given in Ashtari and Schneider (2023) solves
some of the problems given, but still relies on the time-stepping approach for evolving
the loop in state-space and cannot take advantage of the improved efficiency that
could be gained from using a quasi-Newton optimisation algorithm. The solution we
propose to this problem in the next section allows for easy application of various
optimisation algorithms for improved convergence rates.

3.5 Galerkin Projection

The set of equations governing the gradient-based optimisation of the global residual
for wall-bounded flows are difficult to solve, due to the coupled constraints of
incompressibility and no-slip boundary conditions. In this section a Galerkin
projection is proposed as a novel way to solve this problem. If the fields u and r are
expressed as a linear sum of a set of basis functions that are divergence-free, as well as
obeying the required boundary conditions then it can be shown that the complex DAE
presented in Equation 3.52 is reduced to a simpler set of equations that can be solved
explicitly. Using a Galerkin projection to enforce boundary conditions and the
incompressibility constraints is not a new concept, the novelty here being the
application of the method to the variational methodology.

First assume that the flow domain can be split into mutually orthogonal homogeneous
and inhomogeneous directions, denoting the set of coordinates for each of those
directions as x and y, respectively. To provide a concrete example, consider the fully
developed turbulent flow through a pipe. The streamwise and azimuthal directions
are statistically homogeneous, so the coordinate vector x will have two components
for each of these directions. The wall-normal direction is statistically inhomogeneous,
and so the coordinate vector y will have a single component corresponding to the
wall-normal direction. Denote the number of dimensions for the homogeneous spatial
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directions with N, which implies the x ∈ RN . The statistically homogeneous spatial
directions are modelled with a finite domain with periodic boundary conditions
permitting the use of Fourier series to represent the flow in these directions. The
inhomogeneous directions have a no-slip boundary condition. The standard choice of
basis function for the periodic spatial directions are Fourier modes, which
automatically satisfy the periodicity boundary conditions. As the current work is
concerned with periodic solutions to the Navier-Stokes equations, the temporal
direction is Fourier transformed as well. First, an expansion of the velocity field is
defined

u = ub +
M

∑
i=1

∑
k∈ZN+1

akiψkieik·ξ , (3.54)

with Fourier modes in the homogeneous directions and time, and an inhomogeneous
set of modes ψki (y), and i being the corresponding mode number summed over M.
The coefficients aki ∈ C are the weighting of each resolvent mode at each frequency.
The number of inhomogeneous modes, M, can either be defined as an integer value or
as infinity in the limit of continuity. Note that the inhomogeneous modes are defined
for every frequency k. ub is a base flow, and the vector ξ is composed of N
homogeneous coordinates x plus time t normalised with the domain size and period
in each direction such that they range from 0 to 2π. The frequencies k are summed
over the homogeneous spatial wavenumbers plus the temporal frequency. The mode
ψki are defined to be divergence-free and obey the no-slip boundary conditions, i.e.

∇k · ψki = 0 ψki|∂Ωns
= 0, (3.55)

in addition to being orthonormal

(︁
ψki, ψkj

)︁
= δij. (3.56)

with the inner product (·, ·) defined as an integral over the inhomogeneous spatial
directions. If M as a finite number, the sum in Equation 3.54 represents a Reduced
Order Model (ROM) of the flow restricted to the linear subspace defined by the finite
basis set

{︁
ψki : k ∈ ZN+1}︁M

i=1. In the limit of infinitely many modes (M → ∞), a full
basis set is produced for the required function space and any field in PT can be
expressed in terms of them. When discretised, the number of modes required to
produce a full basis is only equal to the number of points used in the discretisation of
the physical space. The inclusion of the frequency vector k in the mode is to allow for
a different set of modes for each frequency considered for a given solution. In
principle this is not a requirement but it is used here to better allow the integration of
resolvent analysis in the later chapters. The main role of the base flow is to ensure that
the inhomogeneous component of the no-slip boundary condition for the velocity is
properly enforced, and so it is required that ub|∂Ωns

= C. Thus, any set of coefficients
aki, for a given base flow, defines a unique velocity field that is both incompressible
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∇ · u = 0
u|∂Ωns

= C

FIGURE 3.3: Schematic for a Galerkin projection of a 3-dimensional state-space trajec-
tory and its dynamics (not shown) onto a 2-dimensional linear subspace.

and obeys all the required boundary conditions.

In the language of linear algebra, the basis ψki forms a linear subspace within the full
state-space of all possible periodic flows. This subspace is defined as the space of all
incompressible flows u that are periodic in time and obey the periodic and no-slip
boundary conditions. In addition, the projection operation is a least-squares
(orthogonal) projection onto this linear subspace. Figure 3.3 shows a schematic for a
Galerkin projection of a simple 3-dimensional state-space with a trajectory embedded
within it. The fact that this is a least-squares projection ensures that the gradient
∂R
/︁

∂u is still guaranteed to be a descent direction for the global residual, and the
gradient-based optimisation dynamics are preserved.

The optimisation problem of Equation 3.7 can now be expressed in terms of the new
coefficients aki as follows

min
aki , T

R (aki) , ∀i ∈ {1..M} , ∀k ∈ ZN+1 (3.57)

which has automatically restricted the optimisation problem to the space of all
incompressible flows that obey the required periodic and no-slip boundary
conditions, PT.

A similar coefficient expansion for the local residual is defined as

r =
M

∑
i=1

∑
k∈ZN+1

skiψkieik·ξ . (3.58)



64 Chapter 3. Variational Optimiser

with ski being the corresponding weighting similar to aki for contribution of each
resolvent mode to the local residual. Note that there is no base flow for the local
residual included in Equation 3.58 as is done for Equation 3.54, since the no-slip
boundary condition for the local residual has no inhomogeneous component. The
value of the velocity coefficients aki and residual coefficients ski can be computed by
exploiting the orthogonality of the basis functions

aki =
1

|Ω|T
⟨︂

u − ub, e−ik·ξψki

⟩︂
Ωt

=
1

|Ω|T
∫︂ T

0

∫︂

Ω
(u − ub) e−ik·ξ · ψki dV dt , (3.59)

ski =
1

|Ω|T
⟨︂

r, e−ik·ξψki

⟩︂
Ωt

=
1

|Ω|T
∫︂ T

0

∫︂

Ω
re−ik·ξ · ψki dV dt , (3.60)

where |Ω| is the volume of the spatial domain. The identities of Equation 3.59 and
Equation 3.60 can be used directly on Equation 3.52 to project the gradient-based
optimisation dynamics onto the subspace defined by the set of basis functions. This
leads to a set of evolution equations in terms of the modal coefficients aki. Note that if
the expansions of Equation 3.54 and Equation 3.58 are substituted into
Equations 3.52(c-f) then the constraints are automatically satisfied as desired. To prove
that such a projection results in a set of optimisation dynamics restricted to the basis
functions, the functional derivative of the global residual using the chain rule can be
expanded into

δR
δu

=
∂R
∂aki

δaki

δu

∗
, (3.61)

where (·)∗ denotes the complex conjugate. The functional derivative of aki with
respect to the velocity field u can be derived from Equation 3.59 using the same
perturbation method used in Section 3.3 to derive the gradient of the global residual

δaki

δu
= e−ik·ξψki. (3.62)

Substituting Equation 3.62 into Equation 3.61 and applying the projection operation of
Equation 3.59 gives

1
|Ω|T

⟨︃
δR
δu

, e−ik·ξψki

⟩︃

Ωt

=
1

|Ω|T

⟨︃
∂R
∂anj

, e−i(k−n)·ξψ†
nj · ψki

⟩︃

Ωt

, (3.63)

which, when the mutual orthonormality of the basis functions is utilised simply gives

∂R
∂aki

=
1

|Ω|T

⟨︃
δR
δu

, e−ik·ξψki

⟩︃

Ωt

(3.64)
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Therefore, substituting the expansions into Equation 3.52a and Equation 3.52b and
applying the projection gives

∂R
∂aki

= −iktωski +

⟨︃
− (u · ∇) r + (∇u)⊤ r − 1

Re
∆r, e−ik·ξψki

⟩︃

Ωt

, (3.65a)

ski = iktωaki −
⟨︃
(u · ∇) u − 1

Re
∆u, e−ik·ξψki

⟩︃

Ωt

. (3.65b)

where kt is the integer frequency for time specifically (a single component of the
vector k), and ω = 2π/T is the fundamental frequency of the flow. ω represents the
frequency of the slowest possible wave that can fit in the finite window defined by the
period T.

Note that the pressure terms in both expressions have vanished, which is the primary
result of using a divergence-free basis, i.e.

⟨︂
∇ · q, e−ik·ξψki

⟩︂
Ωt

=
⟨︂

q, e−ik·ξ∇k · ψki

⟩︂
Ωt

= 0, (3.66)

and similarly for ∇p. As mentioned briefly earlier in this section, the set of modes ψki

are not required to be a complete basis for the velocity field u and r for every
frequency k. The sums in Equation 3.54 and Equation 3.58 can be truncated for a finite
M, leading to a finite-dimensional linear subspace onto which the fields, and
dynamics, are projected. A reference to Figure 3.3 reinforces this concept. With a
suitable choice of the basis ψki it is possible that the dimensionality of the problem
could be greatly reduced, reducing the difficulties of the variational optimisation has
with convergence rates as the minimum is approached.

The final result is that Equation 3.65 is a far easier set of equations compared to
Equation 3.52 to use for the evolution of u to decrease R. Instead of having to enforce
a set of linear and nonlinear constraints throughout the domain and its boundary
through some coupled implicit scheme to be able to find the residual gradient, it is
possible to, given aki, compute ski. These coefficients can then finally be used to
compute ∂R

/︁
∂aki .

It is now possible to state the complete procedure used to find periodic solutions to
the Navier-Stokes equations. Figure 3.4 is a flow diagram for the order of computation
in a single loop of the optimisation. Beginning with the velocity coefficients aki the
local residual coefficients ski can be computed using Equation 3.65b. This is practically
done by expanding the coefficients aki back into the full velocity field u, which is then
used to compute the terms inside the inner product of Equation 3.65b, after which the
result is projected back onto the modal subspace. Then, using both the velocity and
local residual coefficients, the global residual and its gradient with respect to the
velocity coefficients can be computed using Equation 3.65a, using the same
expansion-projection method used to compute ski. The global residual could be
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FIGURE 3.4: Flow diagram of the optimisation procedure used to compute the residual
and its gradient starting from a velocity field defined by the velocity coefficients.

computed by first expanding out the local residual coefficients into the local residual
using Equation 3.58, but a simpler expression can be obtained by expanding
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Equation 3.6 using Equation 3.58 to get

R =
1
2

M

∑
i=1

∑
k∈ZN+1

|ski|2, (3.67)

which is an instance of Parseval’s theorem. The method used to terminate the
optimisation is determined by the user, typically being some small global residual
threshold. If this condition has not been met then an update to the velocity coefficients
aki is computed using some optimisation algorithm and the loop returns to the
beginning.

3.6 Summary

The methodology used in this thesis to generate periodic solutions to the
Navier-Stokes equations has been described in this chapter. It is possible to extend the
methodology to treat relative periodic orbits by applying the appropriate symmetry
transformations, and including the required spatial shifts as part of the optimisation
problem. This has not been considered here since it is not of fundamental importance
the method or results that are being presented. The basis is the variational
optimisation which was derived here for a general wall-bounded flow with some
periodic directions. The resulting set of equations governing the update to the velocity
field u are shown to be difficult to solve due to the interplay between the
incompressibility constant and no-slip boundary conditions. This issue relates to the
lack of proper boundary conditions for the pressure, which leads to some induced slip
at the boundary. A novel solution to this problem is proposed using a Galerkin
projection onto a set of divergence-free modes that satisfy the no-slip boundary
conditions, and it is shown that this approach decouples the velocity and pressure
problems from each other leading to a simpler set of equations for the update to u.
The methodology presented represents an alternative approach to that in Ashtari and
Schneider (2023) on how to properly handle the incompressibility and no-slip
constraints together. The techniques used in this chapter are not on their own
revolutionary, with the novelty coming from the unique combination. An additional
layer of novelty comes from the ability to construct low-order models via a truncation
of the number of modes used in the Galerkin projection. This restricts the velocity to a
finite-dimensional subspace which can contain the most important dynamical
information, depending on the choice of the modes. As will be seen in chapter 6, this
approach to low-order modelling of the flow can achieve a significant improvement in
convergence rates.
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The implementation of this methodology is in the Julia programming language, with
the code available freely on GitHub under the organisation The-ReSolver, specifically
the residual calculations being performed in the Fields.jl.

https://github.com/The-ReSolver
https://github.com/The-ReSolver/Fields.jl
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Chapter 4

Rotating Couette Flow and
Resolvent Analysis

Rotating Plane Couette Flow (RPCF) is chosen as the main flow of study in this thesis.
RPCF is a type of channel flow, possessing only a single statistically inhomogeneous
direction due to the walls at the top and bottom of the domain. Couette flow is an
extensively studied and well understood flow, in terms of the characterisation of the
turbulent structures that occur within it, as well as the types of instabilities that lead to
said turbulence. Before the projected optimisation methodology described in
Chapter 3 is applied to RPCF to find equilibrium and periodic solution, this chapter
characterises the flow at a few different regimes in Section 4.2, ranging from stable
steady, to quasi-periodic and turbulent. The low-dimensionality of the flow is
quantified utilising SPOD modes. The section then moves to resolvent analysis of the
flow, outlines the procedure used to generate the resolvent modes in Section 4.3.1 used
here and in Chapter 6, following the framework used in McKeon and Sharma (2010).
Then the ability for the resolvent modes to capture the low-dimensionality of RPCF is
assessed in Section 4.3.2.

4.1 Rotating Plane Couette Flow

The flow can be derived as a small gap limit of the general Taylor-Couette flow with
two counter-rotating cylinders with equal (and opposite) rotation rates. The result is
that curvature of the system has a negligible effect on the flow, and the system
resembles a Couette flow between two parallel walls moving in opposite directions,
with the addition of a Coriolis acceleration term. This type of flow can serve as a very
simple model for atmospheric flow (Dubrulle et al., 2005; Vanneste and Yavneh, 2007),
and has an analogy with general convective flows as discussed in Section 4.1.2. RPCF
is noted to be more difficult to study experimentally, however it has certain theoretical
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FIGURE 4.1: An experimental (stereoscopic) PIV setup for RPCF from an isometric
view in panel (a), and top view in panel (b), where the turntable induces a Coriolis
and centrifugal force, the latter being absorbed into the pressure since it is isotropic.

Obtained from Kawata and Alfredsson (2016)

and numerical benefits due to it permitting Cartesian geometry (Daly et al., 2014).
This term promotes instabilities in the flow and enhances transfer of momentum
between the streamwise and wall-normal directions. The plane Couette flow is
linearly stable for all Reynolds numbers, however the rotation of RPCF makes it
unstable at a finite (and relatively small) Reynolds number. This leads to a series of
bifurcations eventually resulting in full spatiotemporal turbulence. This rotation
number can be recreated in experiment by adding a total system rotation as shown in
the experimental setup in Figure 4.1, used by Kawata and Alfredsson (2016) to
investigate the effect of rolling structures on the momentum transport of the flow. The
Coriolis acceleration can also be interpreted as a by-product of a rotating (non-inertial)
reference frame.

The first to systematically study the flow was Johnston et al. (1972), with the linear
stability of the system for various rotation rates established in Lezius and Johnston
(1976). Further study on the stability characteristics is available in Hiwatashi et al.
(2007) and the resulting structures observed at each bifurcation is discussed in Nagata
(2013); Nagata et al. (2021). An in depth experimental study of the parameter space for
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RPCF can be found in Tsukahara et al. (2010), with a corresponding DNS study
replicating many of the same features in Tsukahara (2011).

4.1.1 Flow Geometry and Governing Equations

Consider the incompressible flow between two infinitely long and broad flat parallel
plates moving at velocities of ±Uw (upper and lower plates, respectively), with an
additional imposed body rotation in the spanwise direction. The schematic for such a
flow is shown in Figure 4.2, with Ωz denoting the spanwise system rotation, not to be
confused with Ω in Chapter 3 that denoted the flows general spatial domain. There
are two cases for the general behaviour of the fluid based on the direction of the
system rotation: “cyclonic” and “anticyclonic”. The first is for a rotation vector
pointing in the same direction as the mean vorticity field; into the page in Figure 4.2.
The second is for a rotation vector pointing in the opposite direction as the mean
vorticity field; out of the page in Figure 4.2. The Coriolis effect in the anticyclonic case
is known to promote instabilities (Tsukahara et al., 2010), and is the only case
considered in the current work.

The origin of the coordinate system is defined to be at the midpoint of the plates, and
the x-, y-, and z-axes are taken to be the streamwise, wall-normal, and spanwise
directions, respectively. In addition, the unit vectors for the respective axes are defined
as ı̂, ȷ̂, and k̂. Therefore, the rotating vector for the system can be expressed as Ωzk̂.
Normalising all dimensions using the wall velocity Uw, the half-wall height h, and
fluid density ρ the governing equations can be expressed as

∂u
∂t

+ (u · ∇) u = −∇p +
1

Re
∆u − Ro

(︂
k̂ × u

)︂
, (4.1a)

∇ · u = 0, (4.1b)

where Re = Uwh/ν and Ro = 2Ωzh/Uw are the Reynolds and rotation numbers,
respectively, where ν is the kinematic viscosity. Reynolds number and Rotation

2h

Uw

−Uw

x

y

z

Ωz

FIGURE 4.2: Schematic of the geometry for RPCF with spanwise (anticyclonic) rota-
tion, with the spanwise direction perpendicular to the page.
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number are the only non-dimensional parameters governing this flow, measuring the
mutual strength of the inertial, viscous, and rotational forces present in the system. At
the walls the no-slip boundary condition is imposed, which in normalised units is

u|y=±1 = ±1ı̂. (4.2)

The flow geometry is defined to be infinite in the streamwise and spanwise directions
and is therefore statistically homogeneous, resulting in periodic boundary conditions
for the prescribed domain size, expressed as

u|z=0 = u|z=Lz
, (4.3)

u|x=0 = u|x=Lx
, (4.4)

where Lx and Lz are the length of the channel in streamwise and spanwise directions,
respectively.

4.1.2 Streamwise Independence and the Rayleigh-Bénard Analogy

In this work, there is an additional assumption that the flow is streamwise
independent, i.e. ∂

/︁
∂x = 0, which has the primary consequence of reducing the size

of the domain, alleviating some of the computational burden in finding solutions. This
results in a 2-Dimensional 3-Component (2D3C) flow, where all three Cartesian
components of the vector fields are retained, but they are restricted to only vary over
two spatial dimensions: the spanwise and wall-normal directions.

It is known that 2D turbulence has a distinctly different flavour to the more complete
3D turbulence observed in nature, but despite limiting the RPCF to two spatial
dimensions there is extensive evidence that the key features of turbulence are
retained, as long as the three components of the velocity are retained in the
simulation. There has been a known link between the dynamics of rotating shear
flows and convective thermal flows for decades, as described in Chandrasekhar
(1961); Yih (1965), with the link between Taylor-Couette flow and Rayleigh-Bénard
convection being discussed in Eckhardt et al. (2007). The specific flow configuration of
streamwise independent RPCF has been shown to be directly analogous to
Rayleigh-Bénard convection in Eckhardt et al. (2020). This means that the restricted
flow, despite losing a whole dimension of degrees-of-freedom, still undergoes a
transition to turbulence akin to the full 3-dimensional case. It has also been shown
independently in Gayme (2010) and Farrell et al. (2012) that streamwise independent
flows can accurately capture the mean statistics of the fully 3-dimensional flow, as
well as display turbulent behaviour analogous to the 3-dimensional case. The exact
route to chaos taken by the streamwise independent flow is naturally different to that
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taken for full 3-dimensional case, not allowing for bifurcations into stable flows that
display some waviness in the streamwise direction, typically called the Wavy Vortex
Flow (WVF). This has little consequence, however, on the ability of the flow to obtain
turbulence once the critical Reynolds number has been surpassed. Thus 2D3C RPCF is
a valid model for turbulent flow, albeit with some altered instability mechanisms.

4.1.3 Bifurcations and Transitions of RPCF

The transition to turbulence of RPCF is through a series of linear bifurcations to more
spatially and temporally complex stable solutions until what could be considered a
turbulent state is reached. Turbulence is heuristically defined here as a generally
broadband structure to the spectrum of the flow in both time and space. The flow
starts as with a stable laminar solution that is identical that of plane Couette flow.
Linear stability analysis shows the boundary of stability for the laminar flow has the
following relationship

Re =

√︄
107

Ro (1 − Ro)
, (4.5)

given in Lezius and Johnston (1976). This shows that the laminar flow is most
unstable for Ro = 0.5, which is the rotation number of choice for this work. At
Re ≈ 20.7 a bifurcation occurs, the laminar solution becomes unstable, and a new
stable equilibrium solution is found. This equilibrium solution has the characteristic
streamwise rolls that are present throughout the total set of regimes accessible by
varying Re, as shall be seen later in this chapter. As the Reynolds number is further
increased above the laminar bifurcation the streamwise rolls grow in strength until the
flow undergoes a type of Hopf bifurcation yielding a stable periodic orbit. It should be
noted that. From experience, as the Reynolds number is increased beyond this point
the spatial structures of the flow do not vary much, however the overall complexity of
the flow increases. More precisely the spectral content of the flow becomes more
broadband as the Reynolds number increases, until a threshold has been reached in
which the flow is deemed sufficiently complex to be turbulent.

4.2 Characteristics of 2D3C RPCF

This section presents the analysis of DNS simulations of RPCF at various Reynolds
numbers. The goal is to characterise the behaviour of the flow in different regimes as it
transitions from stable laminar flow to fully turbulent flow. This is achieved by
analysing the velocity statistics and spectra of the flow as well as a SPOD analysis to
elucidate the dominant coherent structures of the flow. As mentioned, all of the
analysis here is performed at Ro = 0.5, since it maximally destabilises the laminar flow.
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4.2.1 Computational Grid

To facilitate the analysis of RPCF, a custom DNS solver was utilised, originally
developed for Lasagna et al. (2016). To account for the incompressibility the solver
uses a vorticity-streamfunction formulation of the governing equations. The resulting
formulation requires the solution to a couple of Helmholtz problems for the velocity,
streamfunction, and vorticity. The bulk of the computational time is naturally spent
solving these problems.

Periodic boundary conditions are imposed in the spanwise direction by expanding the
flow variables into a Fourier series, and the wall-normal direction is discretised
uniformly with collocation points, with derivatives in the wall-normal direction being
computed using a central differencing scheme. An implicit-explicit splitting scheme is
used for each time step. The result of the discretisation is a set of Helmholtz problems
for the three flow variables. These Helmholtz problems are where the majority of the
computational time is spent. The overall time taken to generate the sets of data are
listed in Table 4.1. The code used is available on GitHub.

There are various Reynolds numbers considered in the following sections. The spatial
discretisation used for each of these Reynolds number, as well as the time step used
and the total time span of the simulation, are summarised in Table 4.1. The reason for
the longer time spans in the lower Reynolds number cases is to ensure that any
transients have decayed such that the desired stable solution can be completely
accurately identified. All the cases are simulated with a spanwise length of Lz = 8.
Some limited cases were examined to investigate the effect of varying this parameter
on the resulting solution, where it was found that the exact size of the resulting
structures did vary their overall character is invariant to variations in Lz. This can be
justified by linking this flow back to the Taylor-Couette flow from which it can be
derived. The spanwise direction corresponds there to the axial direction along the
length of the co-rotating cylinders. Lengthening or shortening this distance in the
computational domain would not produce any changes to the overall character of the
dynamics, just the size of the resulting vortices that form, as they have to fit in some
integer division within the finite domain size.

Re Ny Nz dt T Wall-time (hh:mm:ss)
25 64 32 0.01 500 00:01:08
50 64 32 0.01 2000 00:01:43
450 128 64 0.01 5000 00:08:56
1000 256 128 0.005 6000 00:59:09
5000 1024 512 0.0002 1500 76:16:16

TABLE 4.1: Summary of the computational grids used for the DNS simulations at the
Reynolds numbers featured in this chapter.

https://github.com/The-ReSolver/rpcf/tree/main
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4.2.2 Velocity Statistics

In Figure 4.3 the turbulent dissipation and the energy input rates from the wall shear
stress, computed using the following relationships

E =
∫︂

Ω
∥∇× u∥2 dV I =

∫︂

∂Ω

∂u
∂y

· ı̂ dS

are plotted against each other for flows at Re = 450, Re = 1000, and Re = 5000, in
panels (a-c), respectively. Note that the norm used primarily in this chapter, ∥(·)∥2,
refers to the standard Euclidean norm. This demonstrates the periodic, quasi-periodic,
and turbulent regimes of the flow. The flow at Re = 450 forms a closed loop that is
assumed here to be exactly periodic. As the Reynolds number is increased to
Re = 1000 the loop spreads out as the state-space attractor becomes more complex,
bifurcating into a torus. The result is a flow that still seems rather periodic, but with
variations that can only be accounted for by the presence of lower frequency modes
becoming active. Finally Figure 4.3(c) demonstrates the turbulent case well at
Re = 5000.

Figure 4.4 shows the mean velocity profiles obtained for each Reynolds numbers
mentioned above, with the laminar profile included, representing any solution of a
sufficiently low Reynolds number. There is a clear trend with the profiles as the
Reynolds number increases. As the Reynolds number increases, the mean momentum
transfer of the flow increases, transporting velocity from the walls to the core of the
channel. This is reflected in a steeper velocity gradient in the centre of the channel,
equal to twice the laminar profile gradient. This double gradient region becomes
larger as the Reynolds number increases, and as the flow reaches the wall the velocity
changes ever more rapidly to match the wall velocity. This leads to higher shear
stresses at the walls as the Reynolds number increases as expected.

FIGURE 4.3: Energy dissipation rate against energy input from the walls for Re = 450,
Re = 1000, and Re = 5000, in panels (a-c), respectively.
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FIGURE 4.4: Mean velocity profiles of RPCF at various Reynolds numbers, plotted
with the laminar Couette flow profile for comparison.

Applying the RANS equations to Couette flow gives the following relation between
the mean shear and Reynolds stress

−u′v′ +
1

Re
∂u
∂y

= u∗, (4.6)

where u∗ is the (non-dimensional) friction velocity, obtained by taking the boundary
value of the mean shear stress. Since in the core of the flow the mean velocity gradient
is linear, Equation 4.6 implies that the Reynolds stress u′v′ is constant over the same
region. This is a well-known fact of Couette flow and is unaffected by the presence of
the Coriolis term in the governing equations. Figure 4.5 displays the non-zero
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FIGURE 4.5: Non-zero Reynolds stresses of RPCF at Re = 5000.
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Reynolds stresses for Re = 5000. The invariability of u′v′ is confirmed by this plot,
with the other cross-component Reynolds stresses being exactly zero. The other
stresses represent the relative mean energy content of each velocity component over
the height of the channel. The wall-normal velocity contains the majority of its energy
in the core since the flow has to be parallel to the wall. The streamwise and spanwise
velocities are most energetic near the walls, where relatively small but energetic
vortical structures reside. As will be seen in Section 4.2.4 the primary structure of the
flow is the streamwise roll in the centre of the channel, that act to transfer momentum
from the walls to the centre of the flow. These rolls are the primary source of the
unsteady energies of the wall-normal and spanwise velocities.

4.2.3 Spectral Analysis

The following spectral analysis have been performed over the homogeneous spanwise
direction and time. Due to the spanwise direction being modelled with periodic
boundary conditions, the raw velocity fields can simply be analysed using a discrete
spectra through the application of an FFT. Welch’s method is used for the temporal
spectra, with Hann windowing to reduce the effects of spectral leakage, given by the
function

w(s) =
1
2
(1 − cos(2πs)), (4.7)

for s ∈ [0, 1].
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FIGURE 4.6: Spanwise spectra of RPCF at Re = 25, in panel (a), and Re = 50, in panel
(b), plotted against the wall-normal coordinate.
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Figure 4.6(a-b) displays the spectra at Re = 25 and Re = 50, respectively. The spanwise
wavenumber is denoted as kz which is evaluated at multiples of the fundamental
wavenumber β = 2π/Lz which defines the largest wave permissible in the finite
domain size. The flows at these Reynolds numbers are stable equilibrium, and thus no
temporal spectra are presented, instead only showing the spanwise spectra against the
wall-normal height. The two spectra are very similar in form, notably with Re = 50
being larger in magnitude than Re = 25. This extra energy primarily comes from the
spanwise constant mode, kz = 0, and is a consequence of the growing strength of the
primary streamwise vortex that dominates the flow. The effect of these vortices on the
spanwise constant mode can be seen for Re = 25 as well, with the spectral peak being
slightly more towards the centre of the channel. This implies that the vortices grow as
the Reynolds number increases, shifting some of the energy towards the walls.
Otherwise, the spectra for both flows drop off very quickly, showing the dominant
modes have a wavenumber of kz = 2β, i.e. the third columns of Figure 4.6(a) and (b).
This is a common trend that will persist throughout all the regimes featured here.

Moving onto the case of Re = 450 where the flow has since bifurcated to a stable
periodic solution. As mentioned, Welch’s method with Hann windowing is used to
obtain the temporal spectra. Since the flow here is periodic, however, it is not
necessary to average the spectra over multiple sections of the data. Instead, a single
slice of the flow, at a given wall-normal location, is extracted. Due to the finite
sampling rate, the resulting data is not exactly periodic, which would lead to spectral
leakage if a FFT was used directly. Instead, the slice of the flow is windowed in time
which minimises the spectral leakage and leads to much more well-defined set of
spectral peaks. Figure 4.7 illustrates the resulting spectra obtained with this method,
at wall-normal locations of y ≈ −0.88 and y ≈ 0 in panels (a-b), respectively. Only a
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FIGURE 4.7: Spanwise and temporal spectra at Re = 450 located at wall-normal posi-
tions of y ≈ −0.88 in panel (a) and y ≈ 0 in panel (b).
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FIGURE 4.8: Spanwise spectra over the wall-normal height at Re = 450, sampled at
frequencies kt = i/25 for i ∈ {1, 2, 3} in panels (a-c), respectively.

small section of the total computed spectra is shown, representing the relatively small
number of active spanwise and temporal modes in the flow. The base fundamental
frequency for the flow corresponds to a period of T = 25 which is the period of the
flow. The only other significant spectral content is contained in the harmonics of this
fundamental frequency, with a little spectral leakage due to the sampling error. The
spanwise modes still contain most of their energy in the dominant vortices with a
wavelength of 4 spanwise units. The main takeaway of this set of spectra is to confirm
the periodicity of the flow with a single strong frequency underlying it, as opposed to
quasi-periodic flows that would have multiple fundamental frequencies with their
associated harmonics.

Figure 4.8 shows the spanwise spectra of the periodic flow at Re = 450 over the height
of the channel, selected at the fundamental frequency of the flow and the two
consecutive harmonics in panels (a-c), respectively. The spectral energy of the flow at
the fundamental frequency of the flow is concentrated near the walls and for the small
spanwise wavenumbers, representing the large magnitudes of the streamwise rolls.
The larger harmonics in Figure 4.8(b-c) show a gradual spread of the energy over
more of the channel and to higher spanwise wavenumbers. The trend is that higher
temporal frequencies are better correlated with higher spanwise wavenumber, as
faster evolving structures are typically smaller, reflected in the spectra of Figure 4.8.
The total magnitude of the spectral energies also decreases for the larger temporal
harmonics as expected. These results, being somewhat typical for fluid flows, is useful
to establish the growing complexity of the flow, and understand exactly where the
energy containing structures are located.

Moving onto the turbulent regime, Figure 4.9 shows the spanwise-temporal spectra of
the flow at Re = 5000, at the same wall-normal locations as in Figure 4.7. The first
thing to note is the spectrum is much more broadband in both the spanwise and
temporal directions, with few distinct spectral peaks, indicating that the flow is made
up of a set of modes over a continuum of frequencies. The flow near the channel
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FIGURE 4.9: Spanwise and temporal spectra at Re = 5000 located at wall-normal po-
sitions of y ≈ −0.88 in panel (a) and y ≈ 0 in panel (b). Cut-outs of the spectra are

shown corresponding to the similar spectral range as displayed in Figure 4.7.

centre has a slower spectral decay in the temporal direction, implying more of a mix of
large and small scale eddies in the flow, as opposed to near the wall where the flow is
more structured due to the restrictions imposed by the rigid boundary. In fact, the
effect of the rigid boundary can be seen in Figure 4.9(a) where higher wavenumber
(smaller wavelength) modes have a larger proportion of the energy compared to the
lower wavenumber (larger wavelength) modes. The cutouts of the spectra, showing a
similar spectral range as in Figure 4.7 are done to better inspect the strength of the
structures that were dominant at Re = 450. It is clear that the same streamwise rolls
with a wavelength of 4 spanwise units are still energetically dominant in the flow and
are present at the same fundamental frequency corresponding to a period of T = 25.

Figure 4.10 shows the spanwise spectra of the flow at Re = 5000 plotted over the
height of the channel, similarly to Figure 4.8. The spectra are sampled at the temporal
frequencies corresponding to periods of T = 25, T = 12.5, and T = 25/3 ≈ 8.33,
which represent the dominant unsteady temporal modes and its two harmonics. The
spectra show the largest energies near the walls of the domain at spanwise
wavenumber corresponding to structures that vary with a wavelength of 4 spanwise
units. This once again corresponds to a set of vortices that vary twice over the length
of the domain in the spanwise direction. The decay is relatively fast, going below an
order of magnitude after only a few harmonics. The centre of the channel shows
regular peaks corresponding the same vortices, however with a smaller magnitudes.
It should also be noted that magnitude of the total spectra does not monotonically
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FIGURE 4.10: Spanwise spectra over the wall-normal height at Re = 5000, sampled at
the same temporal frequencies as in Figure 4.8.

decrease as the temporal frequency increases, implying a complex and finer-grained
structure to the flow. This will be clearly observed in the next section.

4.2.4 Dominant Turbulent Structures and SPOD

The analysis of RPCF will now conclude by demonstrating the dominant features of
the flow, including over the statistically inhomogeneous wall-normal direction,
utilising SPOD for the analysis. Figure 4.11 displays snapshots of the DNS flow
obtained for Re = 25, Re = 50, Re = 450, and Re = 5000 in panels (a-d), respectively.
The primary feature in all of the flows are the streamwise rolls, shown to be very
prominent in the spectra of the flows. The rolls in the equilibrium cases,
Figure 4.11(a-b), only differ in their strength, with the higher Reynolds number
equilibrium clearly hosting stronger vortices that transfer the momentum more
effectively. The unsteady flows in Figure 4.11(c-d) also have the same rolls, however,
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FIGURE 4.11: Snapshots of the velocity fields at Re = 25, Re = 50, Re = 450, and
Re = 5000, in panels (a-d), respectively.
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FIGURE 4.12: Streamwise vorticity snapshots of the flow at Re = 450, with a temporal
separation of 5 time units.

they instead oscillate, growing and shrinking in size. The characteristic time for the
rolls to grow and shrink is T = 25, identified from the spectral analysis.

The flows in Figure 4.11(c-d) at Re = 450 and Re = 5000, respectively, have many of
the same features as each other, however close inspection of the turbulent flow in
Figure 4.11(d) reveals the presence of small scale variations that are not present at
Re = 450, which varies more monotonically over its domain. The effect of these
smaller scale motions at Re = 5000 can be most clearly seen by comparing Figure 4.12
and Figure 4.13. These figures show a handful of snapshots, separated by 5 time units,
of the streamwise vorticity of the flow for Re = 450 and Re = 5000, respectively. The
vorticity field for Re = 450 is clearly more coherent, with the streamwise rolls
featuring heavily. The largest proportion of the vorticity, however, comes from the
near wall region, at the top of the large rolls. This is where the majority of the flow
energy is added as the large shear forces generate vortices that are shed into the core
of the flow. This is even more pronounced in Figure 4.13 where the magnitude of the

FIGURE 4.13: Streamwise vorticity snapshots of the flow at Re = 5000, with a temporal
separation of 5 time units.
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near the walls is several times larger while the core of the flow maintains a very
similar total vorticity. The flow at Re = 5000 is clearly more chaotic, with eddies of
various sizes originating from the wall shear stresses being subsequently shed into the
flow without a regular pattern. However, underneath all the noisy fluctuations
created by the turbulent eddies, the same pattern of oscillating rolls are clearly present
at both Re = 450 and Re = 5000. The flow clearly has a large amount of coherence that
is present throughout its various regimes up to turbulence.

4.2.4.1 SPOD Methodology

To quantify the degree of coherence, an SPOD analysis is performed for Reynolds
numbers of Re = 450 and Re = 5000. The methodology used to generate the SPOD is
described in Towne et al. (2018), utilising a spectral averaging technique similar to
Welch’s method for single dimensional periodograms. Before presenting the results of
the SPOD analysis, a little space is dedicated to describing the methodology used to
compute the modes and their rankings.

Let qkz, i ∈ CN denote the instantaneous state vector at time ti for all the points in the
domain Ω, where N denotes the number of discrete points making up the domain.
i ∈ {1, . . . , M}, where M denotes the number of available snapshots, and kz denotes
the spanwise wavenumber used. The state vector is indexed in the spanwise
wavemumber domain since the flow is known to be homogeneous in this direction,
and is best decomposed into a Fourier basis in this direction prior to the SPOD
analysis. The result is that the SPOD analysis is restricted to constructing a set of
modes in the inhomogeneous wall-normal direction for every spanwise wavenumber
kz available. The data matrix is then formed as such

Qkz =
(︂

qkz, 1 qkz, 2 · · · qkz, M

)︂
, (4.8)

where Qkz ∈ CN×M. It is a bad idea to directly Fourier transform this data matrix in
time to obtain the cross-spectral density matrix, since the Fourier coefficients obtained
will not converge as M tends to infinity. This is where the Welch method is utilised to
give a more well-defined set of Fourier coefficients at the cost of spectral resolution.
The data matrix Qkz is split into multiple (optionally overlapping) blocks, denoted as
Q(n)

kz
∈ CN×N f where N f is the number of snapshots in each block. Let Nb denote the

number of blocks, and No denote the number of snapshots that overlap between each
Q(n)

kz
. At this point, the data in each block is windowed, and the result is Fourier

transformed in time to give the following block spectral matrix

Q̂(n)
kz

=
(︂

q̂(n)
kz, 1 q̂(n)

kz, 2 · · · q̂(n)
kz, N f

)︂
, (4.9)
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where q̂(n)
kz, k is the Fourier coefficient of the windowed data at the temporal frequency

fk. A new matrix is now formed Q̂(k)
kz

where each column is the Fourier coefficient q̂(n)
kz, k

for all blocks n ∈ {1, . . . , Nb}, and a fixed frequency fk. The cross-spectral density
matrix is then computed as S(k)

kz
= Q̂(k)

kz
Q̂(k)†

kz
, where (·)† denotes the conjugate

transpose of the a matrix. The problem of finding the SPOD is then reduced to finding
the eigenvalues and eigenvectors of S(k)

kz
. However, since this is a N × N eigenvalue

problem, and N can be very large compared to Nb it is far more efficient to compute
the following eigenproblem instead

Q̂(k)†
kz

Q̂(k)
kz

Θ
(k)
kz

= Θ
(k)
kz

Λ
(k)
kz

. (4.10)

It can be shown that the eigenvalues obtained from this adjoint eigenproblem are the
same as the eigenvalues of S(k)

kz
, with the eigenvectors being related as follows

Ψ
(k)
kz

= Q̂(k)
kz

Θ
(k)
kz

Λ
(k)
kz

− 1
2 . (4.11)

Solving this problem provides the first Nb SPOD modes and their relative contribution
to the original data set, and this is done for all the spanwise wavenumbers kz available
in the data. There are the additional considerations of the quadrature weights to
ensure the eigenvectors are correctly scaled, as well as the effect of the window on the
eigenvalues obtained, details of which can be found in Towne et al. (2018). The issue
of quadrature weights comes up later in this thesis when implementing the variational
optimiser, and the details of the method used is discussed in Section 6.1.

4.2.4.2 SPOD Analysis

As already noted the flow at Re = 450 is highly periodic, and so the SPOD analysis
splits the DNS data into blocks corresponding to two periods of the flow (∼ 50 time
units) with no overlap in the windows. As with the previous spectral analysis, Hann
windowing is included to account for any deviation from periodicity introduced from
the finite sampling rate.

Figure 4.14 shows the top 18 eigenvalues obtained from the SPOD analysis of the flow
Re = 450 plotted against the temporal frequency kt. Figure 4.14(a) shows the spanwise
constant eigenvalues (kz = 0) and Figure 4.14(b) shows the eigenvalues for kz = 2β.
The first thing to note is a relatively uniform but rapid decrease in eigenvalue
magnitude at each frequency, with each eigenvalue generally being separated by a
couple orders of magnitude. Any eigenvalues at off spanwise mode numbers are
negligibly small. The largest magnitude eigenvalue is present at the temporally steady
and spanwise wavenumber of kz = 2β.
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FIGURE 4.14: First 18 SPOD eigenvalues for RPCF at Re = 450 plotted against the
temporal frequency, with panels (a-b) corresponding to spanwise wavenumbers of

kz = 0 and kz = 2β, respectively.
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FIGURE 4.15: Select set of temporally steady (kt = 0) SPOD modes for RPCF at Re =
450. Panels (a,b) and (c,d) show the SPOD modes at spanwise wavenumbers of kz =
2β and kz = 4β, respectively. Panels (a,c) and (b,d) show the first and second dominant

modes, respectively.

Figure 4.15 displays a number of the significant SPOD modes of the flow at Re = 450.
Figure 4.15(a-b) show the modes at the spanwise wavenumber of kz = 2/L, and
Figure 4.15(c-d) show the modes at the spanwise wavenumber of kz = 4/L.
Figure 4.15(a,c) show the dominant modes at the given spanwise wavenumber, and
Figure 4.15(b,d) show the second most dominant modes. The mode in Figure 4.15(a)
corresponds to the most dominant eigenvalue throughout the SPOD spectrum and
contains the vast majority of the streamwise roll structures. The majority of the energy
in the mode is contained in the cross-stream (wall-normal and spanwise) components
of the velocity, with a slightly weaker streamwise contribution focused near the walls
at the points where the large vortices are colliding. The mode in Figure 4.14(b) is
separated from the mode in Figure 4.14(a) by around five orders of magnitude,
meaning that it has a negligible effect on the overall flow. The modes in
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FIGURE 4.16: First 6 SPOD eigenvalues for RPCF at Re = 5000 plotted against the
temporal frequency, with panels (a-b) corresponding to spanwise wavenumbers of

kz = 0 and kz = 2β, respectively.
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FIGURE 4.17: Select set of SPOD modes for RPCF at Re = 5000. Panels (a,b) and (c,d)
show the SPOD modes at spanwise wavenumbers of kz = 2β and kz = 4β, respec-
tively. Panels (a,c) and (b,d) show the first and second dominant modes, respectively.

Figure 4.15(c-d) are difficult to link to exact structures in the flow seen in Figure 4.11,
which makes sense since the SPOD eigenvalues of all the modes are already roughly
two orders of magnitude lower than the dominant modes in Figure 4.15(a-b).

Moving onto the turbulent flow at Re = 5000, the eigenvalues at the same spanwise
wavenumbers are shown in Figure 4.16. Only the first 6 SPOD modes are shown,
which was done due to the memory restrictions. Still, at all frequencies shown there at
least a separation of two orders of magnitude between the largest and smallest
eigenvalues. The most obvious feature is the absolute dominance of the temporally
steady eigenvalues. This large spike is present in all non-zero and even spanwise
mode numbers, with a three to four orders of magnitude separation to the next
eigenvalue. Figure 4.17 show the set of modes corresponding to the same frequencies
as in Figure 4.15. The mode in Figure 4.17(a) corresponds to the dominant eigenvalue
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in Figure 4.16 and once again corresponds closely to the streamwise vortices, implying
that at this higher Reynolds numbers this structure is not only still important but is in
fact even more dominant over the total kinetic energy of the flow. It can be seen that
the streamwise velocity component of the streamwise vortex mode in Figure 4.17(a) is
weaker than in Figure 4.15, implying that a larger portion of the energy is held in the
cross-stream velocity components showing that the vortex has grown in strength. The
second largest mode in Figure 4.17(b) shows the same double vortex feature as in
Figure 4.15, but due to even larger separation in scale between the eigenvalues clearly
contributes even less to the energy of the flow. The higher spanwise wavenumber
modes show a similar large separation of eigenvalues at kt = 0 (not shown in
Figure 4.16), although with a lower total magnitude. The dominant mode at this
frequency, in Figure 4.17(c), has the majority of its energy concentrated near the walls,
and a large portion of the energy of the secondary vortices observed in Figure 4.13
near the walls where the vortices periodically meet. An additional mode with a
spanwise offset is required to cancel out the effect periodically, corresponding the
parts of the flow where the large streamwise vortices are separating instead of
colliding.

4.3 Resolvent Analysis

Moving on from the general characterisation of the 2D3C RPCF, we will now discuss
resolvent analysis of the given flow. This section is divided into two parts: the first
details how the modes are derived and what they represent, and the second takes
resolvent modes generated for some modest Reynolds numbers and assesses how
well they can reconstruct the desired flow for the same Reynolds number for which
they were generated. The goal of this section is not prediction, which requires a
method to produce the dynamical weights discussed in chapter 2. The reconstructions
presented later in this section are useful as initial estimate for how many resolvent
modes are required to accurately represent the desired flows studied in chapter 6.

4.3.1 Deriving Resolvent Modes

To derive the modes ψki required for the Galerkin projection described in Section 3.5,
we use the resolvent analysis framework as described in McKeon and Sharma (2010).
The benefit of this approach is that it is a systematic method for generating a unique
set of modes for every frequency k that have been shown to provide an efficient basis
for expressing ECSs for wall-bounded flows (Sharma et al., 2016b). Here the
derivation is performed specifically for the 2D3C RPCF configuration, a slight
variation to the application of the method to channel flows in literature, for which the
biggest notable difference is the addition of the Coriolis acceleration.
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To start, the velocity and pressure fields are decomposed into a steady base
component and the fluctuations around this base flow as follows

u (y, z, t) = ub (y) + u′ (y, z, t) , (4.12)

p (y, z, t) = pb (y) + p′ (y, z, t) . (4.13)

where the base flow only varies over the wall-normal (inhomogeneous) direction.
Although the pressure is explicitly decomposed here, an expression for pb is not
required for the implementation of the method, as it is completely prescribed by the
fluctuations u′ and the base velocity ub. Physically, the base pressure would be
streamwise and spanwise independent in this flow. Typically the base flow ub is set to
be the turbulent mean u, given by

u (y) = lim
T→∞

1
T

∫︂ T

0
u (y, z, t)dt . (4.14)

In this derivation, however, an arbitrary steady base flow is used instead of the mean.
When resolvent analysis is used to generate the modes for the analysis later in this
chapter, in Section 4.3.2, and for the optimisation in chapter 6, the laminar solution as
the base flow. This is a pragmatic choice and the reasons behind it are discussed in
some detail at the end of this section. In this work the primary goal is to utilise these
modes to construct models based on projections onto sets of resolvent modes. Thus,
although it is a departure from the literature to not use the mean profile as the base
flow in this derivation, as long as the modes produced are orthonormal and resemble
the flow then they can be used for the desired modelling purpose. It should be noted
that due to continuity, the base flow is in the streamwise direction only, i.e. ub = ub ı̂.
Substituting the decomposition into Equation 4.1 provides an evolution equation for
the fluctuations, expressed compactly as

M
∂q′

∂t
= Ncont (qb) + Lqb q′ + M f

(︁
u′)︁ . (4.15)

where q =
(︂

u p
)︂⊤

is a concatenated state vector of the velocity and pressure fields.
The operator Ncont (q) is the Navier-Stokes operator for RPCF, including the
continuity equation and pressure gradient term, given by

Ncont (qb) =

⎛
⎝− (ub · ∇) ub −∇pb +

1
Re

∆ub − Ro
(︂

k̂ × ub

)︂

∇ · ub

⎞
⎠ . (4.16)

Lqb is the linearisation of Ncont evaluated at the base flow qb, given by

Lqb =

⎛
⎝− (ub · ∇)− (∇ub) +

1
Re

∆ − Ro k̂× −∇
∇· 0

⎞
⎠ , (4.17)
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and f (u′) = − (u′ · ∇) u′ is the nonlinear term for the fluctuations u′. The continuity
equation is time-independent, so its inclusion in Equation 4.15 requires an influence

matrix M =
(︂

I 0
)︂⊤

to ensure that the time derivative and the nonlinear influence
f (u′) are restricted to the first three components corresponding to the momentum
equation in Equation 4.1a.

Now, define the Fourier expansion of the state fluctuation vector q′ in the
homogeneous spatial and time directions as follows

q′ (y, z, t) = ∑
k∈Z2

q′
k (y) eik·ξ , (4.18)

where k =
(︂

kz kt

)︂⊤
and ξ =

(︂
βz ωt

)︂
. These are the same variables as used in

Equation 3.54, with the homogeneous streamwise component not included to reflect
the streamwise independence restriction for the flow. The coefficients β = 2π/Lz and
ω = 2π/T are the fundamental wavenumbers and frequencies, respectively, for the
spanwise and temporal directions determined by the size of their relative domains. It
should be noted that since qb ̸= q then it is possible that q′

0 ̸= 0. The corresponding
identity for the Fourier coefficients

q′
k =

1
LzT

∫︂ T

0

∫︂ Lz

0
q′eik·ξ dz dt . (4.19)

Substituting Equation 4.18 into Equation 4.15 and applying Equation 4.19 to each
term, the following is obtained for the Fourier coefficients of the velocity fluctuations

iktωMu′
k = Lqbkq′

k + M fk, k ∈ Z2 \ {0} . (4.20)

The Fourier transformed nonlinearities on the RHS of Equation 4.20 are given by
fk = ∑l

(︁
u′

l · ∇
)︁

u′
k−l and represents the triadic interactions of the flow, the nonlinear

feedback that transports energy between scales and sustains any unsteady motion in
the flow. Triadic interactions refers to the interactions of velocity fluctuations at
different frequencies that produce a forcing in a third frequency. These interactions are
the drivers of the interactions in the flow that produce self-sustaining turbulence.
Equation 4.20 can now be rearranged to give a linear relationship between the velocity
fluctuations and the corresponding nonlinear interactions of the flow

u′
k = Hk fk, k ∈ Z2 \ {0} . (4.21)

The operator Hk is the resolvent and is defined as

Hk =
(︁
iktωM −Lqbk

)︁−1 M, k ∈ Z2 \ {0} . (4.22)
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The resolvent operator relates the unsteady response of the system to finite amplitude
forcings to the system via the linear mechanisms of the system. In this formalism
however, the nonlinear self-interaction of the fluid is viewed as the forcing, leading to
a feedback system that aims to balance the nonlinear interactions with the linear
response of the system that result from the nonlinearities. In depth discussions on the
interpretation of the resolvent can be found in McKeon and Sharma (2010) and Symon
et al. (2018). The explicit form of the resolvent for RPCF is given as

Hk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

iktω − 1
Re

∆k
∂ub

∂y
− Ro 0

Ro iktω − 1
Re

∆k 0 ∇

0 0 iktω − 1
Re

∆k

−∇· 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

−1

M. (4.23)

where ∆k is the Fourier transform of the Laplace operator. Due to the base flow ub

being purely streamwise and only varying in the wall-normal direction, all the
convective terms in Lqbk reduce to single base shear stress term ∂ub/∂y. In plane
Couette flow, this term is responsible for the non-normality of the resolvent operator,
leading to the amplification of finite amplitude inputs to the system which have been
linked to sub-critical bifurcations of the fluids from a laminar solution (Chapman,
2002; Symon et al., 2018). In the case of RPCF, the Coriolis force introduces an
additional off-diagonal component which can either amplify or reduce the resulting
non-normality. Without either of these terms the resolvent would in fact be completely
self-adjoint, and any forcing to the system would decay with time as a result of the
diffusive effects of the Laplace operator, especially at lower Reynolds numbers.

Applying the Schmidt decomposition, equivalently the Singular Value Decomposition
if the operator were discretised, gives the following decomposition

Hk (·) =
∞

∑
i=1

σkiψki (ϕki, ·) , (4.24)

where the inner-product in Equation 4.24 is the same as the one used in Equation 3.56.
The modes ψki and ϕki form an orthonormal basis set under this inner product for
each frequency

(︁
ψki, ψkj

)︁
=
∫︂ 1

−1
ψ†

kiψkjdy = δij, (4.25)

(︁
ϕki, ϕkj

)︁
=
∫︂ 1

−1
ϕ†

kiϕkjdy = δij, (4.26)

and σi denotes the singular value associated with each input-response mode pair.
These modes are ranked in order of the associated singular values σi ≥ σi+1 ≥ 0, for
all i ∈ N. The modes ψki and ϕki are the left and right singular modes and form a
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complete basis for the range (response) and domain (input) of the resolvent for every
k ∈ Z2 \ {0}, respectively. The range of the resolvent operator is the set of
incompressible fluctuations that obey the no-slip boundary conditions, and therefore
the set of modes ψki are divergence-free and obey the no-slip boundary condition.
Thus the resolvent response modes, just called response modes from hereon, satisfy
the desired properties in Equation 3.55 and thus can be used as the required basis for
the Galerkin projection of the optimisation problem. There is the problem, however,
that the resolvent is technically only defined for the non-zero frequencies k ̸= 0. If a
solution to the Navier-Stokes equations are sought, then in lieu of an accurate profile
for the mean known a priori, a basis for the mean is also required so that it can be
properly modelled for the variational optimisation in Chapter 3. To circumvent this
issue, it has been found that the resolvent of Equation 4.22 can be decomposed using
Equation 4.24 for k = 0, at least as long as a laminar base flow is provided. In general,
the exact physical interpretation of the basis used for the Galerkin projection is less
important as its ability to provide a valid orthonormal basis in the space of divergence
free and no-slip fields. In principle this basis can be obtained from many sources, such
as the eigenvectors of the Laplace operator which would produce a set of orthonormal
basis functions. The choice to continue to use the resolvent modes for the mean in
particular, despite their non-rigorous motivation, is a pragmatic choice.

The rate at which the singular values σi decay determines how accurately the
decomposition Equation 4.24 can be represented with only a finite number of the
modes. Formally, if

M

∑
i=0

σ2
i ≈

∞

∑
i=0

σ2
i , (4.27)

for a given M ∈ N, then Equation 4.24 can be truncated to a finite set of modes

Hk (·) ≈
M

∑
i=1

σkiψki (ϕki, ·) . (4.28)

This means, when using ψki for the Galerkin projection, with the truncation in
Equation 4.28, the infinite-dimensional state-space characterising the velocity field is
reduced to a finite dimensional subspace (for each frequency k) that aims to capture as
much of the important dynamical information as possible according to the
non-normal response of the system to given forcings. If the particular flow has a set of
nonlinear interactions fk that align highly with the set of input forcing modes ϕki then
only the corresponding set of response modes are required to accurately reconstruct
the resulting response. As mentioned, the accuracy of this truncation, and the
resulting approximation of the state-space manifold on which the desired solution
lies, depends on the decay rate of the singular values. The larger the decay rate, the
more singular values (and associated response modes) can be discarded from the sum
without sacrificing any more accuracy in the approximation of the resolvent. It should
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be noted that a fast decay rate in the singular values does not in itself imply a
low-order model based on resolvent modes is possible. Since the nonlinear forcing
component of Equation 4.21 could be preferentially directed towards sub-optimal
forcing modes, which would in turn increase the contribution of the associated
response modes in the output.

4.3.2 Efficacy of Resolvent Modes

In this section, the resolvent modes described previously are used as a basis to project
DNS data at some modest Reynolds numbers of Re = 50 and Re = 450, which appear
prominently in Chapter 6, and the dominant SPOD mode to assess how well they
capture the dynamical features of the flow. The resolvent modes used here and in
Chapter 6 are generated relative to a laminar base flow. The projection of a
spatiotemporally varying flow field is given by Equation 3.59, which gives an array of
coefficients aki for all frequencies k and resolvent modes used for the projection
i ∈ {1..M}, where M is the number of resolvent modes utilised at each frequency. A
new velocity field can then be reconstructed from the resulting coefficients using
Equation 3.54, which will be denoted here as uM. The computational cost of the
reconstruction is made up of the projection and expansion steps. The projection is a
series of inner-product (integral) computations that grow linearly with the resolution
of computational grid and with the number of modes used for the resolvent basis set.
The expansion step is equivalent to a matrix-vector product over all the frequencies
resolved on the computational grid, and again grows linearly with all the grid
parameters and number of resolvent modes used. In practice, for the reconstructions
shown in this section, the relevant computations were performed on the order of
minutes. For higher Reynolds numbers, however, this cost can grow rather quickly as
the required grid resolution grows in all directions as does the expected number of
modes required to represent such flows accurately.

As mentioned in previous chapters, the main objective of this thesis is to construct
dynamical weights for the resolvent modes generated for this particular flow. The
analysis here does not construct these weights. Instead the goal here to assess how
well the resolvent modes capture the dynamical when they are purely ranked
according the singular values in Equation 4.28, quantitatively motivating a truncation
of the resolvent modes later in chapter 6 while retaining the majority of the important
information of the desired flow.

The resulting projection of DNS data at Re = 50 and Re = 450 are shown in
Figure 4.18(a-b), respectively, subtracted from 1 to show the amount of missing kinetic
information in the projected flow. A complete set of 64 and 128 resolvent modes are
used for each Reynolds number respectively, corresponding to the number of
wall-normal points used in the DNS. These basis sets are then truncated. keeping only
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FIGURE 4.18: Projection error of DNS data from Re = 50 and Re = 450 in panels (a),
and (b), respectively, plotted against the number of modes used for the projection at
every spanwise wavenumber and temporal frequency. The complete set of 64 and 128
resolvent modes for each case, respectively, are generated using a laminar base profile.

the modes corresponding to the largest singular values. The reconstruction of the flow
is then performed using the truncated basis set and the error in the resulting
reconstruction is shown. Both plots show that over 99% of the kinetic energy is
captured 5 and 16 modes, respectively. The rapid decreases in projection error when
certain modes are included, versus the seemingly negligible effect of other modes
shows that particular resolvent modes have a much larger dynamical importance as
others, for instance the 12th resolvent mode for Re = 450 accounts for about 40% of the
total reconstruction capture on its own. An even more impressive energy capture is
achieved by the 2nd resolvent mode at Re = 50, which accounts for about 70% of the
total reconstruction.

To visualise why certain resolvent modes are particularly good at capturing the
dynamics of the flow, some of them are plotted in Figure 4.19 and Figure 4.20.
Figure 4.19 shows simply the first 4 resolvent modes obtained ranked by their singular
values. Of particular note is the second mode, in Figure 4.19(b), which bears a striking
resemblance to the dominant SPOD mode shown in Figure 4.15, containing the
characteristic streamwise rolls. The third and fourth modes, Figure 4.19(c-d), also
show some slightly stretched or diminished streamwise rolls which explains their
energy capturing abilities Figure 4.18(a). Interestingly the first mode in Figure 4.19(a)
contains two counter-rotating vortices over the height of the channel, something only
seen in the second dominant SPOD, which has orders of magnitude less influence on
the flow, explaining why it contributes very little to the construction of the DNS data.
The resolvent modes at Re = 450 is quite similar, with the modes associated with the
largest singular values having more intricate and smaller vortices, which contribute a
relatively little to the flow reconstruction, as can be seen in Figure 4.20(a-b) for the first
two resolvent modes. However, at this higher Reynolds number the resolvent mode
associated with the very important streamwise rolls are the 12th and to a lesser extent
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FIGURE 4.19: First four resolvent modes, panels (a-d), respectively, for Re = 50 for a
spanwise wavenumber of kz = 2/L where Lz = 8.
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FIGURE 4.20: First two resolvent modes, panels (a-b), respectively, as well as the
12th and 15th resolvent modes, panels (c-d), respectively, for Re = 450 at a spanwise

wavenumber of kz = 2/L where Lz = 8.

the 15th resolvent modes, shown in Figure 4.20(c-d). These modes correspond to the
largest drops in projection error of Figure 4.18(b), which again reinforces the
importance of the streamwise vortices in capturing the majority of the kinetic energy
of the flow.

The final result shown here instead projects the dominant SPOD mode in
Figure 4.15(a) onto a set of resolvent modes, at the corresponding frequency. Denoting
the particular SPOD as ψSPOD, the mode can be expressed as a linear sum of resolvent
modes

ψSPOD = ∑
i

γiψki. (4.29)

The resulting coefficients γi ∈ C are combined into a vector denoted as γ, with the
vector only containing the first M modes denoted as γM. The result is shown in
Figure 4.21, which resembles closely the plot in Figure 4.18(b). This is a consequence
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FIGURE 4.21: Projection error of the dominant steady SPOD mode shown in Fig-
ure 4.15 (at Re = 450) onto the resolvent modes used in Figure 4.18 for the corre-

sponding spanwise wavenumber.

of the majority of the energy of the flow being contained at the spanwise wavenumber
taken for Figure 4.21 which corresponds to the streamwise rolls. The are two very
obvious decreases in error, again once the 12th and 15th resolvent modes are included
in the projection. This is not too surprising a result due their obvious qualitative
resemblance to the particular SPOD mode. Taking all of this together, it is clear that
resolvent modes allow for a significant dimensionality reduction of the flow at
Re = 50 and Re = 450. Due to presence of the streamwise rolls throughout the
different regimes of RPCF, it is expected that resolvent analysis can provide a useful
low-dimensional model for the flow based at higher Reynolds numbers.

4.4 Summary

In this chapter RPCF has been introduced and characterised using DNS simulations of
the flow at various Reynolds numbers, fixed at a rotation number of Ro = 0.5.
Analysis of the velocity spectra revealed dominant frequencies primarily
corresponding to streamwise vortical structures that contain the majority of the kinetic
energy of the flow. The largest of these streamwise vortices grows in strength as the
Reynolds number increases and is the primary source of momentum transport of the
flow between the walls. SPOD analysis of the same DNS revealed the strength of these
structures have, with smaller scale and near wall structures being at least an order of
magnitude less dynamically significant.

The resolvent analysis framework is described next, showing how the resolvent
operator is derived and identifying the terms that contribute to the non-normality of
the operator, which is responsible for some of the transient growth and instabilities in
turbulent flows. Sets of resolvent modes are then generated for Re = 50 and Re = 450,
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Reynolds numbers that are used extensively in Chapter 6, upon which both DNS
flows and the dominant SPOD mode are projected. The results showed that a
relatively small number of the resolvent modes capture well over 99% of the energy of
the original flows, leading to the potential for dimensionality reductions of around
80%–90% of the original system.



97

Chapter 5

Statistical Estimation of the Lorenz
System

Before demonstrating the resolvent-based variational optimisation methodology as
described in Chapter 3 the same method is developed for a simpler low-dimensional
chaotic dynamical system. The basic operation of the methodology is demonstrated to
be able to find exact solutions of the Lorenz equations. Then, a slight detour is taken to
explore another application of the methodology as described in Section 1.5: generating
quasi-trajectories to approximate the statistics of chaotic dynamics. As discussed later
in this chapter, the aim is to show that these quasi-trajectories, long periodic
trajectories that do not satisfy the governing equations, still encapsulate the
fundamental structure of the attractor they are approximating, potentially at a lower
cost if a sufficiently truncated low-order model is used. To reiterate some of the
discussion in Chapter 1 and Chapter 2, the ultimate goal of building a set of invariant
solutions for the Navier-Stokes equations for various flow configurations is motivated
by the theory of low-dimensional chaos, which shows that these solutions provide a
natural basis to express the statistical (ergodic) properties of the chaotic dynamics. As
has been discussed in length, and shown in the literature, finding these solutions for
high-dimensional chaotic systems is far more difficult, complicating the application of
this theory in practice. The heuristic quasi-trajectories can potentially remove the
burden of having to find a complete representative set of solutions to apply cycle
averaging methods.

Section 5.1 takes the methodology from Chapter 3 and specialises it for
finite-dimensional (ODE) dynamical systems. Section 5.2 then describes the procedure
for resolvent analysis when applied to the Lorenz system of Lorenz (1963), describing
the method used to achieve an exact dimensionality reduction, losing none of the
dynamical information (Burton et al., 2025). The Lorenz system was chosen, despite
its natural low-dimensionality, since it provides a computationally accessible test-case
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to demonstrate the proposed framework, and being a very well studied system it is
known to possess the chaotic properties that motivate this work. The statistical
properties of the proposed quasi-trajectories are then presented in Section 5.4,
comparing with the statistics obtained from traditional time-stepping methods to
solve chaotic systems.

5.1 Low-Dimensional Optimisation

The projected optimisation methodology described in Chapter 3 is reformulated for
problems of incompressible fluid problems with Dirichlet boundary conditions. To
apply the same methodology to generate trajectories for finite-dimensional dynamical
systems it has to be modified. This modification is related to the inner product, the
space upon which the inner product acts, and a simplification of the constraints
imposed on the gradient-based optimisation. This is a result of the system not being
spatially extended, and thus not requiring any boundary conditions, in addition to no
incompressibility constraint and thus a pressure gradient term that requires some
special treatment. This section begins with an outline of the changes to the variational
optimisation, then moving on to how resolvent analysis can be performed for
finite-dimensional systems.

5.1.1 Problem Definition and Residual Gradient

The modification of the variational optimisation methodology is relatively simple,
taking the continuous spatial dimensions down to a finite set of state variables. The
governing equation is some autonomous dynamical system given by

dx
dt

= g (x) , x ∈ M ⊆ Rd, (5.1)

where M is the state space (or phase space) for the system. The trajectory can be
expressed as a function over time x : [0, T) ↦→ Rd, that is, the trajectory x maps a
particular time t ∈ [0, T) to a d-dimensional real vector. To help in the characterisation
of the problem, the space of closed state space loops is defined as

PODE
T = {x (t) | x (0) = x (T)} . (5.2)

In the space PODE
T , we define the following inner-product

⟨x, y⟩ :=
∫︂ T

0
x · y dt , (5.3)
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and induced norm ∥x∥ =
√︁
⟨x, x⟩. The local residual is defined as

r :=
dx
dt

− g (x) , (5.4)

and the global residual is defined in the same way as in chapter 3 repeated here for
convenience

R [u] :=
1
2
∥r∥2, (5.5)

where the norm induced from Equation 5.3 is used in place of the spatio-temporal
integral norm for the fluid formulation. This leads to the same optimisation problem
as in Equation 3.7, with the key differences being the optimisation space P no longer
including any boundary information (since no boundaries exist) and no
incompressibility constraint, as well as the global residual being defined as an integral
over only the period of the solution. It should be noted that from the lack of boundary
constraints on the states x it is now true that if x ∈ PODE

T then r ∈ PODE
T . This is in

contrast to the Navier-Stokes problem, where the no-slip boundary conditions are not
necessarily satisfied if the velocity field exists in the desired optimisation space.

Finding the gradient of R [x] follows a similar procedure as in the Navier-Stokes
problem, albeit simpler as a result of the evolution equations being purely algebraic
equations not requiring any derivations of adjoint operators or introduction of any
extra constraints on r. The gradient is given as

δR
δx

= −dr
dt

− L⊤ (x) r, (5.6)

where L = dg
/︁

dx is the Jacobian of g evaluated over the trajectory x, and (·)⊤
denotes the matrix transpose. Here the adjoint of the linearised derivative operators of
the Navier-Stokes equations are replaced with the analogous matrix transpose. This is
a matrix (L ∈ Rd×d) populated with the partial derivatives of the components of g
with respect to the components of x. The gradient with respect to ω is given as

∂R
∂ω

=
1
ω

⟨︃
∂

∂,
x
⟩︃

tr, (5.7)

where ω = 2π/T is the fundamental frequency of the trajectory, defined similarly as
in Chapter 3. The details of the derivation of Equation 5.6 and Equation 5.7 are
omitted due to their similarity to the derivations for the Navier-Stokes problem,
especially the gradient with respect to ω which is functionally identical only differing
the underlying definition of the inner product.
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5.1.2 Dimensionality Reduction

In the finite-dimensional case the process of the dimensionality reductions via a
Galerkin projection remains the same, only with the inner-product over a set of basis
functions replaced with a matrix-vector product of an appropriate, in general
rectangular, orthogonal matrix. The question of how the basis is generated for
dynamical systems governed by a finite number of ODEs is the topic of Section 5.2.
There the special form used for resolvent analysis of ODEs is explained in detail, and
how the natural structure of the problem lends itself to a dimensionality of an already
very low-dimensional system. This subsection is simply a restatement of the
mathematics of Section 3.5 without the added complications of boundary conditions
and incompressibility.

To tackle the time periodic constraint, the system is expanded in terms of a Fourier
series defined as

x (t) = ∑
n∈Z

xneinωt, (5.8)

with the Fourier coefficients defined by the integral

xn =
1
T

∫︂ T

0
x (t) e−inωt dt . (5.9)

Applying this expansion to the definition of the local residual trajectory in
Equation 5.4 gives

rn = inωxn − gn, (5.10)

where
gn =

1
T

∫︂ T

0
g (x (t)) e−inωt dt (5.11)

are the Fourier coefficients of the response of the system over the trajectory x. Now,
defining Ψn ∈ Cd×dr to be a complex valued orthogonal matrix, ΨnΨ†

n = I, for every
n ∈ Z, where (·)† denotes the conjugate transpose. It is assumed here that dr ≤ d, and
the degree to which the dimensions are compressed. Using this rectangular matrix,
the reduced-space coefficients an can be defined as an = Ψ†

nx′n. The original Fourier
coefficients of the trajectory can be recovered using the orthogonality of the matrix
x′n = Ψnan.

In this new reduced space, the global residual can be computed rather simply by
defining ρn = Ψ†

nrn, and left-multiplying Equation 5.4 by the projection matrix to
obtain

ρn = inωan − Ψ†
ngn. (5.12)
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Then, using Parseval’s theorem and substituting in the projection of the local residual
into the expression for the global residual

R = ∑
n∈Z

|ρn|2, (5.13)

where |z| = z†z is the magnitude of a complex valued vector. Optimising over the set
of coefficients an automatically satisfies the periodicity constraint with a
dimensionality reduction from a space of d dimensions to a space of dr dimensions.
This new optimisation can be summarised as

min
an, ω

R (an : n ∈ Z) . (5.14)

To perform the gradient-based optimisation a projected form of the gradient in
Equation 5.6 is required. The frequency gradient Equation 5.7 is relatively simple,
since the optimisation is still performed over ω, and so can remain unchanged apart
from noting then when it is computed it is typically done in terms of the respective
Fourier components to save computational effort. This is less relevant here as the
dimensionality of the system is so low. The projection of δR/δx is achieved similarly
to the infinite-dimensional case in Chapter 3, using first an expansion in terms of the
Fourier modes, and then a projection directly onto the basis. For the
finite-dimensional case this process gives

∂R
∂an

= Ψ†
n

∂R
∂xn

= Ψ†
n

[︂
−inωrn −

(︂
L⊤ (x) r

)︂
n

]︂
. (5.15)

With this final expression, it is now possible to perform a gradient-based optimisation
of the periodic trajectory x restricted to the linear subspace defined by the column
space of Ψn. The projection matrix is still derived using resolvent analysis, the details
of which are given in Section 5.2.

5.2 Resolvent Analysis of the Lorenz System

To perform the gradient-based optimisation of the Lorenz system, we require the
resolvent response basis, defined by the matrix Ψn. This can be obtained through a
very similar procedure as in Section 4.3, with a key difference being the linearity of
one of the equations governing the Lorenz system, which leads to an elegant
dimensionality reduction that can be achieved at no cost to the accuracy of the
resulting dynamics. The Lorenz system is defined with the following dynamical
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system

dx
dt

= σ (y − x) , (5.16a)

dy
dt

= x (ρ − z)− y, (5.16b)

dz
dt

= xy − βz. (5.16c)

The standard parameter values of σ = 10, ρ = 28, and β = 8
3 are used, for which it is

known the system exhibits chaotic motion confined to a strange attractor. The
governing equations are symmetric under the transformation [x, y, z] → [−x, −y, z],

which implies that the mean has the form x =
(︂

0 0 z
)︂⊤

where z denotes the mean
in the z-direction. The mean here is defined as

x = lim
t→∞

1
t

∫︂ t

0
x
(︁
t′
)︁

dt′ . (5.17)

Defining a mean-fluctuation decomposition of the state trajectory x (t) = x + x′ (t)
and substituting it into Equation 5.16 gives an evolution equation for the fluctuations

dx′

dt
= σ

(︁
y′ − x′

)︁
, (5.18a)

dy′

dt
= (ρ − z) x′ − y′ − x′z′, (5.18b)

dz′

dt
= −β

(︁
z + z′

)︁
+ x′y′, (5.18c)

which can be expressed compactly as

dx′

dt
= c + L (x) x′ + M f

(︁
x′
)︁

, (5.19)

where c =
(︂

0 0 −βz
)︂⊤

being the constant mean response of the system, the
linearised Lorenz matrix evaluated at x is given as

L (x) =

⎛
⎜⎝

−σ σ 0
ρ − z −1 0

0 0 −β

⎞
⎟⎠ . (5.20)

The nonlinear influence matrix is given as

M =

⎛
⎜⎝

0 0
−1 0
0 1

⎞
⎟⎠ . (5.21)
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and accounts for the nonlinearity only being present in the evolution equations for the
y and z components of the state. This matrix plays a similar role to the influence
matrix in Equation 4.15. As a result of the influence matrix, the nonlinear forcing

f (x′) =
(︂

x′z′ x′y′
)︂⊤

is a two-element vector.

Expanding Equation 5.19 in terms of the Fourier series defined in Equation 5.8 gives

inωx′n = L (x) x′n + fn, n ∈ Z \ {0} , (5.22a)

0 = c + f0, (5.22b)

which is the governing equation for the Fourier modes of the fluctuations in
Equation 5.22a as well as the mean constraint equation in Equation 5.22b. Similar to
the fluids case, Equation 5.22a can be rearranged into a linear system relating the
nonlinear forcing modes to the state response modes via a finite-dimensional
resolvent operator as follows

x′n = Hn fn, n ∈ Z \ {0} , (5.23)

where the resolvent operator is defined as

Hn = (inωI − L)−1 M, n ∈ Z \ {0} . (5.24)

Due to the influence matrix, the resolvent matrix for the Lorenz system is rectangular
by construction, specifically H ∈ C3×2. This is the key to the dimensionality reduction
of the system. Due to the relatively simple form of the linearised Lorenz matrix L, an
expression for the elements of the resolvent matrix can be derived resulting in

Hn =

⎛
⎜⎝

αn 0
βn 0
0 γn

⎞
⎟⎠ , (5.25)

where

αn = −σ/Dn, (5.26)

βn = − (inω + σ) /Dn, (5.27)

γn = 1/ (inω + β) , (5.28)

Dn = (inω + 1) (inω + σ) + σ (z − ρ) . (5.29)
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The convenient structure also allows for an explicit expression of the singular value
decomposition

Hn = ΨnΣnΦ†
n (5.30)

=

⎛
⎜⎝

ζn 0
ηn 0
0 κn

⎞
⎟⎠
(︄

σ1,n 0
0 σ2,n

)︄(︄
1 0
0 1

)︄
, (5.31)

where the coefficients of the left singular matrix Ψn are given as ζn = αn/σ1,n,
ηn = βn/σ1,n, and κn = γn/σ2,n. The rank-2 nature of the resolvent means there are
exactly 2 singular values that govern the transfer of nonlinear forcing to the solution
of the system. The response modes, defined by the columns of Ψn, have the property
that the first mode contains all the information from the xy-plane, while the second
mode contains only the information in the z-direction. As such, retaining only one of
the pair of modes restricts the dynamics to only the xy-plane or z-axis. Figure 5.1
shows a schematic for this projection, where the three-dimensional coefficient xn is
projected onto a two-dimensional subspace defined by the column space of Ψn,
resulting in the new two-dimensional vector an. This is in fact the exact projection
performed for the Lorenz system, as shown in Section 5.2.

Due to the right singular vector, Φn, being equal to the identity matrix as shown in
Equation 5.31 the following expression for Σn can be derived

Ψ†Ψn = Σ−1
n H†

n HnΣ−1
n = I, (5.32)

⇒ Σ2
n = H†

n Hn, (5.33)

Ψ1
n

Ψ2
n

xn

an

s

FIGURE 5.1: Schematic for the projection of the state onto the subspace defined by the
column vectors/space of the matrix Ψn, denoted with the subscripts 1 and 2.
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which gives for the individual singular values

σ1,n =

√︄
(nω)2 + 2σ2

|Dn|2
, (5.34)

σ2,n =

√︄
1

(nω)2 + β2
. (5.35)

Figure 5.2 shows the ratio of the singular values as given in Equation 5.34 and
Equation 5.35 as the frequency nω is varied. There is no large separation of scale
observed between these singular values and so the system cannot be accurately
represented with modal coefficients an ∈ Cdr . Physically this is obvious if the response
modes in Equation 5.31 are inspected. As mentioned, if one of the response modes is
neglected, then the dynamics are constrained to only the xy-plane or the z-axis for the
first and second mode, respectively, which cannot accurately reconstruct the structure
of the strange attractor embedded in the full state space since it has a fractal
dimension of larger than two.

Therefore, the dimensionality reduction used in this work is from C3 to C2, retaining
both of the response modes in Equation 5.31. This is an exact projection. That is to say,
there has been no rejection of any non-zero singular values. This can be considered a
special case of the more general (usually higher-dimensional) setting, where there are
more non-zero singular values as well as a distinctive separation of scales allowing the
rejection of a finite number of relatively small singular values.

As a final note, it is not necessary to perform the analysis as shown above. A more
traditional approach can be taken, akin to that featured in Section 4.3.1. This results in
a set of three response modes instead of the two fundamental modes obtained here.
The three singular values associated with each of these modes do not yield any
approximate reductions, since they are all of very similar scale. This is not examined
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FIGURE 5.2: Ratio of the singular values for the Lorenz system plotted against the
frequency.
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any further in this work, as the aim to provide a conceptual link between this
low-dimensional validating case and the more general high-dimensional fluid case.

5.2.1 Numerical Details

The optimisation process for each iteration is visualised with the flow diagram given
in Figure 5.3. The optimisation is initialised with a mean state x and fundamental
frequency ω which are used to generate the resolvent modes Ψn for n ∈ Z. Next, the
initial trajectory is generated. This flow diagram is very similar to the one shown in
Figure 3.4 with the key difference being that there is no requirement to project the
local residual rn onto the resolvent subspace since there are no incompressibility and
no-slip boundary constraints that need to fulfilled. In the literature, when seeking
exact solutions it is common to use close recurrences of chaotic trajectories obtained
from direct chaotic simulations to initialise a given trajectory, as done in Auerbach
et al. (1987) and Azimi et al. (2022), which is particularly important for
high-dimensional systems as the radius of convergence in such cases is small
compared to the space in which the state can inhabit. For the analysis that follows, we
found the results to be very robust to the initial guess for the quasi-trajectory and so
the coefficients an were initialised randomly with a Gaussian distribution. Once x, Ψn,
and an initial an are known, the optimisation loop can begin.

Over the duration of the optimisations performed in this chapter to obtain any UPOs
and quasi-trajectories, the fundamental frequency ω and the mean state x are fixed.
This is a notable difference compared to the optimisation performed to obtain exact
solutions in Chapter 6. When seeking exact solutions to the governing equations, it is
required to modify ω and x since they are not known a-priori. It is known that UPOs
of low-dimensional dynamical systems become exponentially more common as the
allowed periods is increased (Cvitanović et al., 2020). Since long periodic trajectories
are sought, it is expected that for a sufficiently large period (a sufficiently small
fundamental frequency) a UPO exists with a period differing by an arbitrarily small
amount. This means that if the period is chosen to be large then the optimisation is not
limited by the quasi-trajectory not having a sufficient amount of time to explore the
strange attractor. For the optimisation a mean state x obtained by averaging a chaotic
simulation, using Equation 5.17, is used. It may be the case that by restricting x and ω

there does not exist any global minima for R, meaning that no UPO exists for the
given period and mean state. However, as mentioned, the difference between the
period for a quasi-trajectory and an actual UPO can be made arbitrarily small by
increasing the period, for which the same is true for the mean state. So if the period is
large enough, the ability of the resulting quasi-trajectory to reconstruct the underlying
strange attractor is not significantly affected. In addition, fixing ω and x have the
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FIGURE 5.3: Flow diagram of a single iteration of the optimisation loop used to com-
pute the residual and its gradient starting from the modal coefficients an.

added analytical benefit of fixing the resolvent modes over the duration of the
optimisation, as the resolvent matrix Hn does not depend on anything else.

When computing the residual and its gradient, a “pseudo-spectral” method is used to
reduce the time complexity of computing the nonlinear (typically quadratic) terms.
This takes the form of expanding the coefficients an and inverse Fourier transforming
the result to obtain the time domain representation of the quasi-trajectory. The
nonlinear terms f (x) can then be efficiently computed over the length of the
quasi-trajectory, after which the result is Fourier transformed to obtain fn. Taking note
of Figure 5.3, fn is then used directly to compute rn. This means that over the course of
the optimisation the trajectory is transformed from reduced to full space and then
from spectral to time domain to be able to compute all the terms in the space where it



108 Chapter 5. Statistical Estimation of the Lorenz System

is computationally most efficient. The result is the gradient ∂R
/︁

∂xn , which is then
projected into the reduced space using Equation 5.15, providing the required gradient
with respect to the coefficients an.

The L-BFGS optimisation algorithm is utilised similarly to Chapter 6. The algorithm is
implemented as part of the SciPy package, with implementation details available from
Liu and Nocedal (1989); Morales and Nocedal (2011), with the line search algorithms
detailed in Nocedal and Wright (2006); Fletcher (2000). For further details on the
L-BFGS algorithm see Section 6.1.

The choice of convergence criteria is important in this context. Usually, a small global
residual is used as it indicates that an exact solution to Equation 5.1 has been found. In
this work the focus is on quasi-trajectories for which the global residual is not
expected to converge to a small value. Hence, it makes more sense here to track some
relevant time-averaged observable of the system and terminate the iterations once this
observable has converged to some value. This is explored more in Section 5.4.1 using
statistical measures of the Lorenz system.

5.3 Optimising for UPOs

The goal of this brief section to demonstrate the variational optimiser outlined above
successfully constructing exact solutions for the chaotic Lorenz system. This serves as
a quick validation of the method as described in the previous section, as well as acting
as a precursor to the results shown in Chapter 6.

Before beginning, however, a few specific things should be noted related to the
numerical details outlined above. Both the mean state and the period are fixed over
the duration of the optimisation. This would in general naturally make it impossible
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FIGURE 5.4: Residual trace in panel (a) and the state space evolution in panel (b) of the
shortest UPO of the Lorenz system that circulates both attractor lobes, with a period
of T ≈ 1.5586. Also plotted in panel (b) with grey dots is the initial condition used for

the optimisation.
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to make the global residual zero for the solution that is being sought. The periods for
the UPOs shown below are obtained from Dong (2018). This is not reflective of the
general case where the period is not known and has to be optimised for as well as the
shape of the trajectory. However this is not dwelled on here since the optimisation
over the period has been performed in the literature many times and there is no
question that its inclusion is well-defined. What is more important here is the
projection aspect of the optimisation, and its effect on the convergence rates. The
mean state is also fixed during the optimisation. The mean state is obtained by
propagating the initial states of each UPO provided in Dong (2018) and integrating the
resulting periodic orbit. This is integration is done using the “DOP853” algorithm
(Hairer et al., 1993), the highest order integration scheme provided by SciPy’s solve ivp
function. Again, it should be emphasised that the goal here is not to outright
demonstrate completely new solutions being obtained using the variational
optimisation. This task has already been completed for more complex situations,
instead it is a quick validation of the correctness of the implementation.

Figure 5.4(a) shows the global residual over the course of the optimisation for the
shortest period UPO features in Dong (2018), with a period of T ≈ 1.5586.
Figure 5.4(b) displays the projection of the initial condition used for the optimisation
(gray dots) and the final solution (solid blue line). The optimisation was initialised
with a set of Gaussian distributed random Fourier coefficients, as were all the
optimisations performed in this section for all the UPOs shown. It was found that the
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FIGURE 5.5: Sample of a few known UPOs for the Lorenz system, see Dong (2018) for
details of the UPOs.
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optimiser could reliably converge to the targeted UPO even with the completely
random initial states. The optimiser initially decreases the residual by several orders of
magnitude, after which it takes a few hundred iterations before another large decrease
in the residual is observed. The initial decrease it associated with the solution quickly
attracting towards the strange attractor. The rest of the time is spent organising the
trajectory on the attractor before it can find the exact trajectory that globally minimises
the residual. As the period grows larger, and there are more nearby UPOs with similar
periods, it is expected that a more accurate initial condition would be required.
Otherwise the optimiser would generally become stuck in a local minimum.

Figure 5.5 is a sample of four of other UPOs obtained from the initial conditions and
periods provided in Dong (2018). Direct comparison shows that each of the UPOs is
found very accurately, again using randomly distributed initial orbits. All of the
solutions shown start with a global residual of the order of R ∼ 105, and after roughly
10, 000 iterations this is decreased to below 10−6.

5.4 Quasi-Trajectories

Quasi-trajectories are obtained through the same optimisation procedure as performed
in Chapter 6 to obtain exact solutions to the Navier-Stokes equations, with the key
difference that the optimisation is terminated well before the residual has reached a
minimum. The optimisation is instead terminated using a heuristic approach, relying
on the convergence of certain observables of the system, which is shown to approach a
steady value far sooner than the residual. The result is a trajectory that does not satisfy
the governing equation, having a non-zero residual, while still capturing the essential
features of the strange attractor governing the chaotic dynamics. What follows is first
a discussion of the numerical details of the implementation of this framework, which
then leads to the main results of this chapter.

5.4.1 Statistics of Quasi-Trajectories

In this section, the quasi-trajectories generated using the low-order resolvent-based
model discussed in Section 5.2 for the Lorenz system are assessed in their ability to
approximate the statistics of chaotic solutions. To facilitate this, the following
observables are defined

J1 (x) =
√︂

x2 + y2 + z2, J2 (x) = xz. (5.36)

These observables will be averaged over the duration of a trajectory with period T,
denoted by Ji

T
.
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FIGURE 5.6: Optimisation of a quasi-trajectory, with the state space points shown in
panels (a,c,e,g), and the probability distribution functions over the z-direction shown
in panels (b,d,f,h), with the blue line corresponding to the Quasi-Trajectory (QT) and
the dashed grey line corresponding to the distribution obtained from chaotic data. The
initial trajectory (iteration 0) is shown in panels (a-b), iteration 100 is shown in panels
(c-d), iteration 1000 is shown in panels (e-f), and iteration 10000 is shown in panels

(g-h).
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The data presented in this section is obtained from two sources. The first, denoted as
“chaos” in the figure legends, is from chaotic simulations via black-box solvers
supplied by the solve ivp function from SciPy with an explicit Runge-Kutta 45 method
with adaptive time stepping, described in Dormand and Prince (1980), with the
output trajectory being uniformly sampled in time. The second source is from
quasi-trajectories, labelled with “QT” in the figures. These are initialised randomly,
generating the points in the time domain around the given mean x with a standard
deviation of 10. The coefficients an are then determined from the time domain
representation of the initial quasi-trajectory so that the optimisation can begin. The

mean state used for the optimisation is set to x =
(︂

0 0 23.64
)︂⊤

, obtained from
independent chaotic simulations of the system using Equation 5.17.

Figure 5.6 displays the optimisation of a quasi-trajectory with a period of T = 1000
starting from a random distribution around the mean and how it evolves over 100,
1000, and 10000 iterations. A period of T = 1000 is rather large for a quasi-trajectory of
the Lorenz system, and so the optimisation is not expected to be largely affected by the
choice of period and mean. For reference, the shortest UPO of the Lorenz equations
has a period of roughly 1.55 time units. On the left side the xz-projection of the
quasi-trajectory sampled for 10000 points is shown, reconstructed in the time domain
from the coefficients an. On the right side the corresponding probability distribution
function (PDF) over the z-direction, with the solid line representing the PDF obtained
from the quasi-trajectory and the dashed line being obtained from a chaotic solution.
We first note that there is a qualitative resemblance between the quasi-trajectory and
what is expected from a chaotic simulation of the Lorenz system. The noted
resemblance is achieved after only roughly 1000 iterations. This is a result of the
optimisation seeking out the strange attractor very early, guiding the quasi-trajectory
into a shape that lies on the attractor as well as possible for the given iteration. This is
reinforced with the PDFs at each iteration, with the PDF shown in Figure 5.6(f,h)
agreeing well with the PDF obtained from a chaotic solution. Both the quasi-trajectory
and chaotic solutions display a bimodal distribution. The PDF of the quasi-trajectory
at each iteration is computed using 40 bins over the range of z values obtained by the
quasi-trajectory. The coarseness of the bins used is due to the fact that as the number
of bins is increased the PDF would display peaks that do not subside as the number of
bins is increased. The presence of these peaks in the PDFs of periodic orbits was
observed and discussed in Zoldi (1998) and is a result of the turning points in the
orbits.

There is a notable feature of the quasi-trajectory that is not present in chaotic
trajectories. For the Lorenz system, there exists an unstable fixed point at the origin
(x =

(︂
0 0 0

)︂
), which repels any trajectory along its unstable manifold. However, as

a consequence of the way in which the variational methodology is constructed, the
residual is small around all fixed points regardless of their stability. This means that a
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FIGURE 5.7: Tails of the PDF (Probability Distribution Function) shown in panel (h) of
Figure 5.6, panel (a) near z = 0, and panel (b) near the extreme RHS of the distribution.

quasi-trajectory is not heavily penalised for drifting away from the strange attractor
towards the unstable fixed point at the origin. Another way of thinking about this is
the fact that the fixed point at the origin has two stable manifolds, one of which tends
to attract trajectories on the lower part of the lobes as the loops around one side of the
attractor become larger before switching sides. The unstable manifold for then propels
the trajectory back up into the attractor, which is a pattern that can be partially
replicated by a periodic quasi-trajectory with a long enough period. The other
unstable fixed points, at the centre of each lobe around which the state rotates, have
stable manifold that are directed directly outside of the attractor. It is speculated here
that this means the quasi-trajectory is not biased to tracking along this manifold in the
same way as near the origin, instead rotating around the other fixed points as
expected. This can be observed in Figure 5.6(g,h), where there is a small increase in the
density of the quasi-trajectory near the origin compared to the chaotic PDF that
approaches zero as z goes to zero. In Figure 5.7(a), a slice of the PDF of Figure 5.6(h) is
taken, plotted on a log-log scale, to show this trend more clearly. The chaotic PDF
continues down as z decreases in the fashion of a power law, while the quasi-trajectory
PDF plateaus at a particular distance from z = 0 after which it does not decrease any
further. The effect on the statistics, however, is minimal. The quantitative effect of an
unstable fixed point attracting quasi-trajectories under the variational optimisation is
dependent on the stability characteristics of the particular fixed point. In general, the
closer a particular fixed point (or any time-dependent solution) is to being neutrally
stable, the more slowly the optimiser converges towards it. Any manifold associated
with a fixed point that attracts or repels trajectories is recast as attracting under the
derived variational dynamics. As a result, solutions near bifurcation points are
difficult for the optimiser to identify and to account for accurately within the overall
picture of the dynamics. This difficulty with marginally stable solutions is well
known, as higher-order information is often required to properly characterise their
structure near bifurcation. It is not yet clear what effect this limitation will have in
turbulent flows, which are highly complex and contain (infinitely) many unstable
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solutions embedded within attractors — some of which may be arbitrarily close to
bifurcating at a given Reynolds number. This question likely has a very complex and
flow-dependent answer and represents a substantial direction for future work.

Figure 5.7(b) shows the far right side of the PDF from Figure 5.6(h), showing the
probability of the quasi-trajectory to undergo a particularly large loop around a lobe
of the strange attractor. It shows that the quasi-trajectory is able to capture some of the
more unlikely/extreme events of the chaotic motion. There is an upper limit to the
PDF that is smaller than that predicted from the chaotic PDF, however a larger
quasi-trajectory would lead to extreme events at larger values of z being captured. A
similar PDF to that in Figure 5.6 can be constructed by constructing a series of smaller
quasi-trajectories, making sure to initialise them with sufficiently different (random)
initial states. The expected number of quasi-trajectories required to construct a similar
PDF would be such that their total period adds to the total period of the longer
quasi-trajectory. However, the main bulk of the PDF may be correct, certain features,
such as the more extreme events in Figure 5.7, are expected to be captured less
accurately. It is possible that individual constructed quasi-trajectories could explore
these rarer sections of the attractor, however, the shorter the period of the
quasi-trajectory the less likely this will be. Despite certain short period UPOs being
observed to explore rarer events associated with intermittency in Kolmogorov flow
(Redfern et al., 2024), we would not necessarily expect this of quasi-trajectories. This is
a result of them being constructed as “typical” long orbits, effectively averaging the
properties of many different unstable solutions to create their overall behaviour. With
this in mind, in turbulent flows that exhibit rare events such as intermittency,
quasi-trajectories would need to be sufficiently long to average over unstable
solutions representing both the standard dynamics and the rare extreme events.

In Figure 5.8, the power spectra of the final quasi-trajectory achieved in Figure 5.6 at
100, 1000, and 10000 iterations is compared with that obtained from the chaotic data.
All spectra are obtained using Welch’s method, with Hann windowing to reduce
spectral leakage. Welch’s method was used to compute the average power spectra of
the quasi-trajectory, despite them being exactly periodic, because the coefficients an

obtained from the optimisation will be different between different optimisations
showing randomness with variances independent of the period T, similarly to the
Fourier coefficients of long chaotic (non-periodic) solutions Andrews and Waltz (1988).
A similar trend is seen as in the Figure 5.6, in that the power spectra after 100 does not
particularly resemble the chaotic spectra, missing the important peak at nω ≈ 1.3 and
its harmonics. After 1000 iterations the quasi-trajectory spectra displays a spread out
version of this peak with a couple of its harmonics, and finally 10000 iterations shows
the best agreement with the spectral peaks more clearly defined and multiple of its
harmonics resolved in agreement with the chaotic data. The high frequency
component of the spectra also gradually reduces over the duration of the optimisation,
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FIGURE 5.8: Comparisons of the power spectra obtained from the final quasi-
trajectory in Figure 5.6 at 100, 1000, and 10000 iterations, and chaotic data. The spectra
at each iteration (along with the corresponding chaotic spectra) is plotted offset from

each other to improve readability.

gradually approaching the spectral decay observed from the chaotic spectra. Notably,
there is an increase in the spectral energy in the low frequencies that persists in the
quasi-trajectory. This is likely an artefact of the previously mentioned fixed point at
the origin dragging part of the quasi-trajectory towards it. Near this point the
quasi-trajectory moves rather slowly, approaching a marginally unstable manifold,
which adds an extra low frequency component to the spectra. The spectra shown in
Figure 5.8 makes it clear that the bulk of the early optimisation work is to determine
the large scale features of the dynamics, represented with the spikes in spectral energy
(and their respective harmonics). The majority of the work of the later part of the
optimisation is spent tuning the finer features of the trajectory to fit as closely with the
turbulent solution, especially at the very low and high frequencies. This fine tuning
further decreases the residual but has little effect on the statistics of the solution.

Figure 5.9(a) the trace of the global residual, normalised by
⃦⃦

g
(︁
x f
)︁⃦⃦2 for the final

quasi-trajectory obtained over the duration of the optimisation of the same
quasi-trajectory as in Figure 5.6. It can be seen that the global residual has not yet
converged to either a zero R = 0 or a non-zero minimum after 10000 iterations.
Nevertheless, the close qualitative resemblance observed in Figure 5.6 is achieved
after only a moderate number of iterations. Figure 5.9(b) shows the period-averaged
observables defined in Equation 5.36 computed on the quasi-trajectory at each
iteration, plotted with horizontal lines corresponding to the values of the mean
observables for a long chaotic trajectory obtained from numerical integration of the
equations of motion. The values of the period averaged observables over the
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FIGURE 5.9: Trace plots of the global residual normalised by the size of the system
response g quasi-trajectory at the end of the optimisation x f in panel (a), and the mean
observables over the quasi-trajectory at each iteration of the optimisation in panel (b),
shown with the values obtained from a long chaotic trajectory as horizontal grey lines.
Annotated on the plots are the iterations corresponding to the reconstructions shown

in Figure 5.6.

quasi-trajectory approach the chaotic values, displaying a convergence of the statistics
well before the residual itself has converged, with most of the improvement being
done between 10 and 100 iterations. Thus, it is reasonable to say that this
quasi-trajectory has converged to the point of providing useful approximations to the
statistics of the chaotic dynamics at around 1000 iterations.

The local residual r in Equation 3.5 can be viewed as a small perturbation imposed on
the governing equations, and therefore a quasi-trajectory can be viewed as an exact
solution to this slightly perturbed system. The ratio of the global residual to the norm
of the system’s right hand side, R/∥g (x)∥2, can then be viewed as a measure of the
closeness of this forced system to original system. As such, these results show that
nearby systems to the Lorenz system, or equivalently a Lorenz system with a
particularly chosen light forcing, have very similar statistics to each other.

Figure 5.10 shows the results of a number of batch optimisations at increasing periods
T performed for 100, 1000, and 10000 iterations, with each batch consisting of 50
quasi-trajectories. Shown on the top are the ensemble averages of the period averaged
observables within the batch, denoted by

⟨︂
Ji

T
⟩︂

, and in the bottom is the associated
standard deviation of the period averaged observables within each batch, denoted
with σ

(︂
Ji

T
)︂

. The corresponding values for the period averaged observables obtained
from a long chaotic trajectory are shown with the dashed grey lines. The trend for
1000 and 10000 is for the period averaged observables to approach the long chaotic
values. The values of the period averaged observables for 100 iterations exhibit poorer
convergence towards the chaotic values, although the relative error is still rather
small, being on the order of 1% and 6% for

⟨︂
J1

T
⟩︂

and
⟨︂
J2

T
⟩︂

, respectively. The period
averaged observables for the 10000 iterations case are close to the long chaotic value
even for the shortest periods shown. Figure 5.10(c-d) illustrate the change in the
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FIGURE 5.10: The ensemble average and standard deviations of the period averaged
observables over a batch optimisation of 50 quasi-trajectories, performed over a range
of periods T. The optimisations were terminated at 100, 1000, and 10000 iterations.
Panels (a,c) show the observable J1, and Panels (b,d) show the observable J2. Panels

(a-b) show the ensemble averages, and Panels (c-d) show the standard deviations.

standard deviation of the period averaged observables with the quasi-trajectory
period exhibiting a steady decline as the period increases. The rate of this decrease is
roughly proportional to the inverse square root of the period shown in Figure 5.10
with the grey dashed line, a consequence of the central limit theorem. The larger
period therefore produces quasi-trajectories that become more similar from a
statistical point of view.

The result that the longer quasi-trajectories (for T ≳ 20) better reflect the statistics of
the chaotic trajectories stem from their ability to explore the larger fractions of the
strange attractor governing the chaotic dynamics. Therefore, a trade-off exists
between the accuracy of the statistical predictions obtained and the speed at which the
result can be achieved by varying the period of a quasi-trajectory. It should be noted
that

⟨︂
J1

T
⟩︂

approaches the chaotic value more closely for the optimisations that

terminate at 1000 iterations, whereas
⟨︂
J2

T
⟩︂

is closer to the chaotic value for the
optimisations that terminate at 10000 iterations. This result suggests that certain
observables may be most accurately captured during a quasi-trajectory optimisation.

Figure 5.11 is similar to Figure 5.10, but instead shows the standard deviation,
skewness, and kurtosis of the observables taken over the period T of a given
quasi-trajectory, denoted with stdT (·), skewT (·), and kurtT (·), in panels (a-b), (c-d),
and (e-f), respectively. These statistical moments are then averaged over the ensemble
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FIGURE 5.11: The ensemble average of the standard deviation in panels (a-b), skew-
ness in panels (c-d), and kurtosis in panels (e-f) of the observables J1 and J2 over the

same set of batch optimisation as in Figure 5.10.

of 50 optimisations. The ensemble standard deviation follows the same descent trend
as in Figure 5.10, so is omitted for the sake of compactness. The expected trend is that
for the same period quasi-trajectory, the higher-order statistical moments will be less
accurate. Figure 5.11 agrees with this, albeit with the estimation of the higher-order
modes only degrading for the first observable, J1. In fact, the quasi-trajectory statistics
of J2 appears to be accurately reconstructed for periods T ≳ 20 for all the statistical
moments shown, implying the total distribution is faithfully reconstructed including
the more extreme parts which would be emphasised by the kurtosis. The deviation of
the moments of J1 are difficult to directly attribute to a particular source, although it
appears that more iterations leads to slightly better agreement with the value obtained
from chaotic simulation. Additionally, the moments of J2 appear to converge to a final
value at a modest period, whereas the skewness and kurtosis of J1 have seemingly not
converged to the same degree. The optimisation then prioritises capturing certain
aspects of the dynamics first, in this case balancing the nonlinear interactions over the
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total magnitude which takes larger periods and more iterations to accurately capture.
In other words, the cross-correlations, represented by the observable J2, are very
accurately captured by quasi-trajectories with a modest period and without having
converged the global residual.

5.4.2 Time Cost of Computing Quasi-Trajectories

In this small test case for the Lorenz system, the computation of the quasi-trajectories
is much heavier than using a simple ODE solver. There are two primary reasons for
this. The first is that the variational optimization inherently scales worse than a
time-stepping approach to solving the governing equations since the whole temporal
evolution of the trajectory is considered simultaneously. The second and more
pertinent reason for this work is the low dimensionality of the system not admitting a
large dimensionality reduction. For the algorithm implemented here, depicted in
Figure 5.3, each iteration of the optimisation is dominated by the computation of the
FFTs in full-space and the projection or expansion steps between full- and
reduced-space. The time complexities of each of these operations are given by
O (N log (N)) and O (dr N) respectively, where N is the degrees of freedom of the
system (original dimension of the system multiplied by the temporal modes used),
and dr are the number of retained modes for the projection. For the variational
optimiser to arrive at a sufficiently accurate estimate of the statistics more rapidly than
a time-stepping method, it is required that the optimiser requires fewer
degrees-of-freedom to accurately approximate the statistics, which can be best
achieved through a large dimensionality reduction, i.e. dr ≪ d.

To illustrate for the Lorenz system, obtaining 1000 optimization iterations of a
quasi-trajectory with a period of T = 20 using 200 temporal modes (N = 600) with the
dimensionality reduction dr = 2 takes O (1) seconds. Obtaining a chaotic ODE
solution of the same period using solve ivp takes O (0.1) seconds. In short, for
low-dimensional systems, where the degrees of freedom are already small and the
dimensionality reduction is not large, computing quasi-trajectories is more expensive
than an ODE computation.

The potential power of the method becomes more apparent when applied to
high-dimensional systems, specifically fluid turbulence, where the possible
dimensionality reduction can be very large. This property, combined with the possibly
smaller required degrees of the freedom in the full-space, and potentially relaxed
time-step constraints, could reduce the time taken to find a statistically meaningful
solution. The method described here performs the majority of the computations in the
full state-space, only projecting back to the reduced space for the update to the
optimisation state. It is possible to perform a complete optimisation loop within the
reduced-space by converting the pseudo-spectral approach to computing the
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nonlinear terms to convolutions in the reduced-space, resulting in projected nonlinear
terms which are computed in terms of the coefficients an. Although convolutions are
known to scale worse with the size of the computation, the dimensionality reduction
could actually make the convolutions in reduced-space faster than FFTs in full-space.
To finish this discussion, the global-in-time description of the flow that is implicit in
the current framework would also permit temporal parallelism to be exploited, which
may lead to a further speed-up that is not possible in direct time-stepping methods
used by most flow solvers. It is expected that if a dimensionality reduction of the same
order or larger than the increased cost of computing over the entire future of the flow,
then the optimiser can outperform standard integration for obtaining statistics. A less
strict bound on the required dimensionality reduction required to achieve
performance parity might be possible if the statistics can also be more quickly
obtained when the whole length of the trajectory in state-space is resolved at once.

5.5 Summary

The main goal of this chapter was to provide a proof of concept that the statistics of
chaotic dynamical systems can be approximated using intermediate trajectories
obtained from the resolvent-based variational optimisation described in Chapter 3. It
does so by exploiting the (assumed) ergodicity of the dynamics on the strange
attractor, which allows a sufficiently long periodic trajectory to shadow true chaotic
trajectories in a similar way as typical time-stepping numerical solvers. The
demonstration was performed on the Lorenz system of Lorenz (1963), as it is a
relatively simple low-dimensional chaotic system that is well studied, and
importantly permits a dimensionality reduction through resolvent analysis. This
dimensionality reduction is exact in this case, that is, there are no non-zero singular
values rejected in the expansion of the resolvent operator. This is a special case of the
more general case which exists for high-dimensional systems. This exact reduction
also removes the concern that such a low-dimensional system would not possess a
sufficiently accurate low-order model if non-zero singular values were to be rejected.

The ability for the quasi-trajectories to reconstruct the complete statistics (distribution)
of the chaotic system while having a large and obviously non-converged global
residual is demonstrated. It was observed that only a modest number of iterations, on
the order of 1000 iterations was required to converge statistical moments of certain
observables of the system. In addition, a relatively small period of T ≈ 20 was
sufficient to obtain useful approximations to the statistics of the system. It was also
noted that certain features of the state-space, such as unstable fixed points, can have a
negative effect on the accuracy of the quasi-trajectory statistics near them. For
high-dimensional systems with more complex state-space topologies, the presence of
many fixed points or rare occurrences can have negative effects on the efficacy of the
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quasi-trajectory. However, it was observed that by ensuring the optimisation was not
allowed to run for too many iterations, the unstable fixed point had less time to
introduce errors into the statistics. The effect of the unstable fixed points have on the
quasi-trajectory estimation in fluid turbulence is a topic of future work.
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Chapter 6

Search and Analysis of Invariant
Solutions of RPCF

This chapter demonstrates the application of the methodology described in Chapter 3
to finding invariant solutions to the RPCF. The main goal of the chapter is to
demonstrate that even when the resolvent modes are truncated the variational
optimisation is able to find exact solutions to the Navier-Stokes equations. In addition,
the ability of the truncation to improve convergence rates of the optimisation without
significantly sacrificing the accuracy of the resulting solution is discussed.

This chapter, unfortunately, does not attempt to construct quasi-trajectories for
turbulent flows. This is primarily a result of the time constraints as a consequence of
the implementation method described at the end of Chapter 3. The details of this
implementation limitation and the proposed solution is discussed in more detail at the
end of this chapter and in Section 7.1.

The chapter starts in Section 6.1 with an outline of the numerical details required for
the implementation of the resolvent-based optimisation methodology. Then the
methodology is applied to finding equilibrium and periodic solutions to the RPCF in
Section 6.2 without any significant modal truncation demonstrating the base
properties of the optimisation. Section 6.3 then discusses the effects that truncating the
number of modes has on these previously discussed optimisation properties.

6.1 Numerical Details of Optimisation on RPCF

Fourier modes are used for the discretisation in the spanwise and time directions. The
wall-normal direction is discretised using a uniform grid of points, unless otherwise
specified. A uniform grid is not the most optimal choice in terms of the ability to
resolve the flow near the wall without being unnecessarily detailed in the bulk of the
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flow. This choice was primarily a pragmatic one, allowing for simplicity of analysis
and ease of comparison between DNS and optimisation which were obtained from
different sources. Any differentiation in the Fourier directions is performed using
standard spectral differentiation procedures, while finite differencing is used for the
wall-normal direction. A pseudo-spectral method is used to compute the nonlinear
terms to avoid the computation of expensive convolutions. The modal coefficients are
expanded back into physical space using Equation 3.54, where the nonlinear terms can
be computed point by point, after which the result is then transformed back into the
modal coefficients.

To avoid aliasing errors in computing the nonlinear terms of the Navier-Stokes
equations, a 3/2 padding rule is used. This de-aliasing approach pads the fields with
an extra 50% of Fourier modes in each direction. Once transformed back into physical
space, the now padded arrays are more finely discretised, which allows for proper
resolution of the higher frequency Fourier modes that result from the quadratic terms
in the computation. Once the nonlinear term has been computed in physical space, the
result is transformed back into spectral space at which point the extra Fourier modes
used in the padding are neglected. This stops any of the higher frequency modes that
are computed in the nonlinearity from reflecting back and contaminating the values of
the lower frequency modes.

Utilising the Hermitian symmetry of the Fourier expansion, due to the flow variables
being real valued, the inner product over the domain and period as defined in
Equation 3.2 can be computed in terms of the modal coefficients of Equation 3.54 as
follows

⟨︁
u′, v′⟩︁

Ωt
= TLz

[︄
a0i · b0i + 2

M

∑
i=1

∑
k∈A+

aki · bki

]︄
. (6.1)

where T and Lz are the period and spanwise length of the domain, respectively. The
fluctuation fields are used to ensure the boundary conditions are correctly accounted
for by the expansion into the modal space ψki. The set A+ = (Z × N) ∪ (N × {0}) is
half the frequency plane over which the Fourier series is defined, making use of the
Hermitian symmetry to reduce the size of the computation required. Figure 6.1 shows
the frequency plane for the spanwise and time frequencies, kz and kt, respectively,
with the Hermitian symmetry displayed.

To compute the modal coefficients aki and ski using Equation 3.59 and Equation 3.60 it
is necessary to compute the integral over the wall-normal direction. To do this, the
method of undetermined coefficients for quadratures (Dahlquist and Björck, 2008) is
used, where the integral takes the form

∫︂ 1

−1
f (y)dy = ∑

j
wj f

(︁
yj
)︁

, (6.2)



6.1. Numerical Details of Optimisation on RPCF 125

kz

kt
uk

u−k = u∗
k

A+

FIGURE 6.1: Diagram of the spectral plane, showing the subsets that make up the top
half-plane. The bottom half-plane is Hermitian symmetric to the top half-plane.

where yj is the wall-normal location of a point in the quadrature grid of the discretised
domain, and wj is the quadrature weight for that point determined through
polynomial fitting of a given order. In this work, third order polynomials are used
construct wj.

We are free to choose the optimisation algorithm used for solving Equation 3.52 since
any gradient-based method will work. Unless it is said otherwise, L-BFGS is the
algorithm used here. L-BFGS is a quasi-Newton method, incorporating approximate
Hessian information into each iteration, greatly improving the convergence properties
of the optimisation near minima when compared to gradient descent. This is a
particularly important aspect in this case, as the optimisation problem is highly
non-convex, with many possible solutions potentially very close together. The
problem is also generally quite poorly conditioned, mostly due to the influence of the
Laplacian which has large effects on the high frequency components of the flow that
decay away the most rapidly. The ability of L-BFGS to approximate the local curvature
of the solution reduces the effect of this poor conditioning, where gradient descent is
highly susceptible to it. This is demonstrated briefly in Section 6.2, where the
convergence of each algorithm is briefly compared. Further in depth discussions on
each algorithm can be found in Nocedal and Wright (2006). Any algorithm used here
is also coupled with the Hager-Zhang line search algorithm as described in Hager and
Zhang (2005). This further helps to improve convergence rates, albeit at the possibility
of reducing the robustness of the total optimisation. In practice, however, this is not
observed to be an issue.

When constructing the resolvent modes ψki, the laminar base profile is used, i.e.
ub = yı̂, as this is simple, and provides a reliably calculable set of modes ψki that are
defined for all k ∈ Z2. For the computation of the SVD the divide and conquer
algorithm is used.

All of the above numerics are implemented in the Julia programming language, with
all the code available on GitHub under the organisation The-ReSolver. Key packages
used are FDGrids.jl (developed by Davide Lasagna) for the finite differencing, and the
third party packages Optim.jl (Mogensen and Riseth, 2018) for solving the

https://github.com/The-ReSolver
https://github.com/The-ReSolver/FDGrids.jl
https://github.com/JuliaNLSolvers/Optim.jl
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optimisation problem, and FFTW.jl (Frigo and Johnson, 2005), which is a set of
bindings for the FFTW3 C library. Any validation is obtained relative to the solutions
featured in Chapter 4, using the same DNS solver available on GitHub.

6.2 Exact Nonlinear Solutions

This section is dedicated to validating the ability for the resolvent-based optimisation
to find exact solutions to the Navier-Stokes equations. This is demonstrated for both
equilibrium and periodic solutions in Section 6.2.1 and Section 6.2.2, respectively. The
majority of the solutions found are equilibria, with Section 6.2.2 demonstrating how
the optimiser performs when applied to a periodic solution. The difficulties
encountered with finding this periodic solution are discussed and are attributed
partially to the computational difficulties that arise in the higher-dimensional case,
and are otherwise speculated to be from other numerical and dynamical difficulties.

6.2.1 Equilibria

For all the equilibrium solutions presented in this section, the spanwise domain size is
fixed to Lz = 8, to allow for sufficient space for the streamwise rolls identified in
Chapter 4 to develop, at a Reynolds number of Re = 50 and Rotation number
Ro = 0.5. Let Ny and Nz denote the number of points used in the wall-normal and
spanwise directions, respectively. To begin, the optimiser is validated by its ability to
reconstruct a known solution to the flow. This was obtained using the custom DNS
solver, with a grid discretisation of Ny = 64 on a uniform grid, and Nz = 32
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FIGURE 6.2: Snapshots of the flows before and after the optimisation at Re = 50 and
Ro = 0.5, along with the solution obtained from DNS. Panel (a): the initial flow used
for the optimisation, obtained by perturbing the stable solution obtained from DNS
at the same Reynolds and Rotation numbers. Panel (b): the result of the optimisation

with a residual of R < 10−12. Panel (c): the original solution obtained from DNS.

https://github.com/JuliaMath/FFTW.jl
https://github.com/The-ReSolver/rpcf
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FIGURE 6.3: Residual trace for the optimisation of the initial flow given in Fig-
ure 6.2(a), using Gradient Descent (GD), Conjugate Gradient (CG), and L-BFGS op-
timisation algorithms. All solutions converge towards the solution obtained in Fig-

ure 6.2(b).

corresponding to 17 spanwise Fourier modes. No modes are discarded from the
resolvent expansion in this case to ensure a full basis set for the wall-normal direction.
This results in a full M = 64 being used in this case, where M denotes the number of
resolvent modes. This gives the optimisation problem about 1000 degrees of freedom.
The steady solution obtained from DNS is then projected onto this basis to obtain the
corresponding coefficients aki. These coefficients are then perturbed with white noise,
adding a random number roughly of the same magnitude as the largest coefficient at
each frequency k and mode number i. This results in the highly disordered field
shown Figure 6.2(a). Using L-BFGS, this initial perturbed flow is optimised to try to
recover the original solution. The result of this optimisation is shown in Figure 6.2(b),
with the solution originally obtained from DNS in Figure 6.2(c). It should be noted
that the period was initialised to an arbitrary non-zero value as it has no effect of the
computation.

The final solution obtained from the optimiser in Figure 6.2(b), labelled here as EQ1, is
qualitatively indistinguishable from the original stable solution obtained from DNS,
validating the optimiser’s ability to accurately find steady solutions for this flow,
when a full set of basis modes are provided for the modal expansion. For the sake of
comparison, the same initial flow shown in Figure 6.2(a) was also optimised using the
gradient descent and conjugate gradient algorithms. The traces for each algorithm
applied to the initial condition in Figure 6.2(a) is shown in Figure 6.3. Clearly L-BFGS
performs the best, achieving the residual of R = 10−12 after roughly 10000 iterations.
Gradient descent displays an initial large decrease in residual which quickly decreases
as the convergence rate slows. This slow convergence rate is ultimately due to the
large separation in the eigenvalues of the Hessian matrix of the residual near the
minimum, which leads to a poorly conditioned problem. Conjugate gradient also
outperforms gradient descent, achieving a smaller residual for the same number of
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iterations, however, after the initial large decrease in the residual at the beginning of
the optimisation, the convergence rate slows, approaching that achieved by gradient
descent. In addition, the cost of each iteration of conjugate gradient is larger than
L-BFGS. In sum, L-BFGS is able to achieve much lower residuals, several orders of
magnitude over only a few thousand iterations, while each iteration can also be
computed rather quickly.

One other note on what governs the convergence properties of the optimiser. As
discussed in Section 5.4.1 the magnitude of the stability, or equivalently how far away
a solution is from neutral stability, dictates how fast the optimiser can converge
towards it. The closer the solution is to neutrally stable the slower the optimiser
converges. This process continues to the limit of neutral stability where the optimiser
effectively stalls some distance from the solution. With this in mind, it is clear that
EQ1 is highly stable at the Reynolds number observed. The rest of the equilibria
featured in this section are also far from neutrally stable, making all of their
convergence rates relatively rapid.

To investigate the robustness of the optimiser to initial guesses, it was initialised with
a varied set of initial conditions exciting certain spanwise wavenumbers with the
intent of finding multiple new equilibrium solutions that are unstable in this Reynolds
regime. Variational optimisation is guaranteed to converge to a minimum, unlike
shooting methods, which are highly sensitive to initial conditions and can fail when
the initial guess lies even moderately far from a root. These minima are very likely
represent a solution due to the non-convex nature of the problem. The following
results demonstrate that incorporating the Galerkin projection into the optimisation
process has little to no impact on its robustness to initial conditions. While only a
relatively small subset of possible initial configurations is presented here, it is
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FIGURE 6.4: Final snapshots of the solutions obtained by optimising from various syn-
thetic initial flow fields, each called EQ2, EQ3, and EQ4, for panels (a-c), respectively.
The optimisations were performed at Re = 50 and Ro, with each residual obtaining

R < 10−12.
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FIGURE 6.5: Initial guesses for the unstable equilibrium solutions shown in Figure 6.4,
with each panel labelled to correspond to the given solution in the first figure.

noteworthy that a minimum was found for every combination of initial modes tested.
In most cases, this minimum corresponded to a global solution, with the residual
satisfying R ≈ 0. Each initial condition was optimised using the L-BFGS algorithm,
and convergence was deemed to have been achieved once R < 10−12, and a full set of
64 resolvent modes were used for the projection. The result of these optimisations is
shown in Figure 6.4, and the initial guesses for the flows shown in Figure 6.5.
Figure 6.4(a) was initialised with the first 5 modal coefficients aki excited with random
values at the spanwise frequency of kz = 4, corresponding to streamwise rolls with
half the wavelength of EQ1, with the rest of the coefficients left as zeros. This
converges to the unstable equilibrium, called here EQ2, with a very similar
streamwise roll pattern observed in EQ1, but with half the spanwise wavelength. EQ2,
as well as the rest of the equilibria shown here are referred to unstable due to the fact
that they are not observed in standard DNS. If instead the first 5 modal coefficients are
excited randomly for the spanwise frequency kz = 1, the solution in Figure 6.4(b) is
found, called here EQ3. This solution again has the streamwise roll expected from
these relatively simple solutions, but now with twice the spanwise wavelength. The
highly symmetric structures of EQ2 and EQ3 closely mirror the solution of EQ1 and
are ultimately expressing the same dynamics. To obtain a slightly more atypical
solution, a solution that displays something other than regularly spaced rolls, the flow
was initialised by exciting the first 8 resolvent modes at the steady (kz = 0) and first
unsteady (kz = 1) spanwise frequencies with random values. The result of optimising
such an initial condition is shown in Figure 6.4(c), called here EQ4. EQ4 shows a
streamwise roll pattern with a width larger than in EQ1, roughly 3 spanwise units in
length. This roll does not repeat over the remaining length of the domain since there is
not sufficient room. Instead, the flow remains mostly stagnant in the remaining space,
only expressing some very weak rolls that transports a small amount of the
momentum from the top wall downwards. The equilibria EQ2, EQ3, EQ4, are all
unstable. This instability was established rather crudely by taking the output from the
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optimiser and feeding it into the DNS solver as an initial condition. After a finite
amount of time all of the solutions were observed to break down into transients that
eventually decayed back to the stable solution EQ1.

It was found that if optimisations were initialised with fields that contain large
excitations in exclusively high spanwise frequencies, then the optimiser would not
converge to some equilibrium with dominant rolls at a similarly high spanwise
frequency, instead converging towards laminar or lower spanwise frequency
solutions. This is not too surprising, due to the fact that higher frequency oscillations
in spatial directions decay rapidly, requiring stronger nonlinear interactions to sustain
them. Since all these solutions exist at the same Reynolds numbers, the energy
required to sustain some of the higher frequency structures is not present in the total
energy budget of the flow, making them more unstable when compared to lower
frequency oscillations. This reasoning implies that either equilibrium solutions
containing smaller rolls are extremely unstable and thus have a small basin of
attraction for the optimiser, or equilibrium solutions containing smaller rolls do not
exist at all for the given Reynolds number. The link between the basin of attraction
and the stability characteristics of a particular equilibrium are going to be quite
complex, and are not investigated in depth here.

The bifurcation structure that lead to EQ2, EQ3, and EQ4 arising were not investigated
in any depth in this work. Primarily this is a result of time constraints on the project.
Some small exploration was performed with EQ2, continuing it backwards with
Reynolds number. It was found to arise after EQ1, likely as a result of a secondary
instability at the higher spanwise frequency. It is speculated that all the equilibrium
displayed here arise in the same way at various Reynolds numbers.

The spanwise power spectrum of EQ2 is shown in Figure 6.6 at iteration 20, 1000, and
8000 of the optimisation. The initial field used for the optimisation was excited at
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FIGURE 6.6: Spanwise power spectra of EQ2 of the solutions obtained at specific iter-
ations of its optimisation, sampled at the channel midpoint (y = 0).
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exactly one spanwise frequency, kz = 4, and over the duration of the optimisation the
spectral information is spread out over the domain. The optimiser initially increases
the spectral power at the harmonics (and mean) frequencies to the dominant base at
kz = 4 as can be seen at iteration i = 20. This is then followed by a rather long process
of refining, spreading out the signal to be slightly more broadband in nature,
gradually reducing the residual as the final solution is sought. The takeaway from this
is that the optimiser is rather quick to correctly identify the larger scale (lower
frequency) structures, which leads to the large initial decrease in the residual observed
in Figure 6.3, after which the optimiser goes through a much slower process of finely
tuning the balance of the interactions between all the frequencies, gradually damping
out higher frequency oscillations.

6.2.2 Periodic Orbits

This subsection presents a brief set of results demonstrating the optimiser solving for
a periodic solution. The optimiser is tasked with generating a periodic solution at
Re = 450, a regime where RPCF displays a stable periodic motion as shown in
Chapter 4. The flow is discretised with Ny = 128, Nz = 101 corresponding to 51
spanwise modes, and Nt = 51, and set of M = 128 resolvent modes for each Fourier
mode are used for the optimisation. This corresponds to a much larger problem with
roughly 300, 000 degrees of freedom. To slightly reduce computational cost, the
spanwise domain has been halved such that Lz = 4. This assumes that the dominant
streamwise structures repeat twice over the domain and there are no important larger
scale structures that are neglected with this change. To initialise the optimisation, the
stable periodic solution obtained via DNS at Re = 400 is injected with noise by
randomly perturbing the coefficients aki as done in the case for finding equilibrium
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FIGURE 6.7: Snapshots of the periodic solution (R ≈ 5× 10−10) obtained for Re = 450
with a period of T ≈ 25.41, for times of t = 0, T/4, T/2, and 3T/4 in panels (a-d),

respectively.
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FIGURE 6.8: Spanwise and temporal power spectrum of the periodic solution in Fig-
ure 6.7 at y ≈ −0.86 in panel (a) and y ≈ 0 in panel (b). Only a slice of the spectrum is

shown, showing only the lower spanwise and positive temporal modes.

solutions. The period was initialised by performing a spectral analysis of the solution
from the DNS solver. The spectral analysis was a simple Welch periodogram, from
which the fundamental mode frequency was used to determine the period of the flow.
This analysis yielded a initial period of T = 24.5. It was observed that the permitted
perturbation to the original field had to be notably smaller than for the optimisation of
equilibrium solutions. If the perturbation of the DNS field was too large then the
optimiser would converge to a periodic orbit that is not particularly close to the stable
periodic solution observed from the DNS at the given Reynolds number. It is a feature
of the variational optimiser that it is guaranteed to converge to some minimum after
enough iterations, not accounting for possible numerical errors. This can either be a
global minimum, corresponding to an exact solution of the Navier-Stokes equations,
or a local minimum with a non-zero residual. Local minimum could have no physical
significance, or they could represent so-called ghost solutions discussed in Zheng et al.
(2024). These are solutions that have undergone a saddle-node bifurcation and so are
no longer solutions to the Navier-Stokes equations, but nonetheless have an impact on
the local dynamics. The bifurcation structure of RPCF at the Reynolds numbers shown
is not investigated in any detail here, and it is not known if saddle-node bifurcations
populate the state-space and have large effects on the behaviour of the optimiser.

Shown in Figure 6.7 are a set of snapshots for the periodic solution obtained at
Re = 450, sampled at points along its trajectory. Note that for the sake consistency the
domain has been extended back to Lz = 8 for plotting Figure 6.7. This has the effect of
shifting the dominant spanwise frequencies. For EQ1, which had Lz = 8, every other
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FIGURE 6.9: Traces of the global residual in panel (a), and the solution period in panel
(b), of the periodic solution in Figure 6.7 over the duration of the optimisation.

the spanwise frequency sampled in the discretisation has a very small proportion of
the energy due to the repeating nature of the simulated structure. Restricting the
spanwise length to Lz = 4 removes these very small frequencies and retains only the
more dominant structures, as a result of the domain size now matching size of the
dominant modes of the solution. The primary streamwise rolling structures are clearly
present, now evolving in a wavy motion as consecutive vortices contract and expand.
Figure 6.8 shows the spectrum of the periodic solution in Figure 6.7 sampled at two
wall-normal positions: y ≈= −0.86 and y ≈ 0. The spectrum shown is a slice of the
total spectrum, only showing the lower spanwise modes and the positive temporal
modes. The higher frequency modes were cut-off due to them contributing an
extremely small portion of the flows total energy, and the negative temporal modes
are ignored due to them being symmetrical with the positive temporal modes (up to
numerical discrepancies). If there was an imbalance in the positive and negative
temporal frequencies this would be represented in the solution as apparent travelling
waves moving in either direction. Since there is no mean energy input into the flow in
the spanwise directions any solution must display this balance between the positive
and negative temporal frequencies. A chequerboard pattern is observed in the
spectrum near the centreline of the flow, which represent the presence of the
oscillating “tails” on either side of the vortices in Figure 6.7. The most energetic mode
is located at (kz, kt) = (1, 0) which is mode that best fits the streamwise rolls that do
not vary significantly with time. The spectrum at the location nearer the wall has a
more continuous decay.

As mentioned earlier, in obtaining this solution, the optimiser was found to be rather
sensitive to the initial guess for the flow. Only a relatively small perturbation from the
original DNS data, compared to the equilibrium solutions, was permitted to allow the
optimiser to converge to the desired periodic solution. If the perturbation was too
large then the optimiser would begin to converge to a different solution. The trace of
the global residual and flow period are shown in Figure 6.9(a-b), respectively. The
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FIGURE 6.10: Energy dissipation and production of the solution shown in Figure 6.7
shown over the course of the optimisation, showing iterations 0, 100, 200, 500, 1000,

5800 in panels (a-f), respectively.

residual of this solution is R ≈ 5 × 10−10, slightly above the convergence threshold
used for the equilibrium solutions in the previous section. The initial rapid decrease in
the residual is observed, with the convergence rate decreasing gradually as the
optimisation continues, with the addition that the lowest residual that can be achieved
is not as small as for the simpler equilibrium solutions. An obvious first justification
for the degraded performance compared to the equilibria shown earlier, is the
possibility of the periodic solution being sought is only marginally stable. Although
no in-depth analysis was performed to establish this, it was found through analysis of
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the DNS data that the solution is as stable as the equilibrium, with a characteristic
decay time on the order of thousands of time units. This could be a result of the
solution shown in Figure 6.7 representing a ghost solution, a state-space featured
commented on in Zheng et al. (2024). It is also possible that the difficulty in the
convergence for periodic solutions is a result of the modes being used either not
completely spanning the required space or carrying some numerical defects that
introduce small errors that manifest near the global residual minimum. It was
observed that the modes generated for the low to moderate temporal and spanwise
frequencies for the periodic case had large numerically induced oscillations in their
second derivatives. This is possibly a result of the base flow used, the specific grid
discretisation used, or a near singularly issue when computing the SVD of the
resolvent operator. This property should be investigated further to determine their
effect on the convergence rate and accuracy of the final solution. Further evidence that
the solution has not completely converged to the minimum is that the period in
Figure 6.9(b) is not displaying convergence towards a particular value. Figure 6.10
shows the energy dissipation and production of the periodic solution found at
Re = 450 over the duration of the optimisation. Shown specifically are iterations 0,
100, 200, 500, 1000, 5800 in Figure 6.10(a-f), respectively. The optimisation is initialised
with a noisy signal which has a significant amount of small scale perturbations, which
explains the large dissipation in the initial field shown in Figure 6.10(a). The
optimisation initially drastically decreases the dissipation and brings the energy
production from the walls into the same range. The rest of the optimisation time is
spent gradually smoothing out the trajectory modifying it into a double loop. This
means the first 100 or so iterations are primarily spent balancing the integral energies
of the flow and damping out the small scale noise. A large amount of time after this is
dedicated to making smaller modifications to the trajectory as it approaches the
desired global minimum. Figure 6.10(f) shows the final energy trajectory obtained by
the optimiser. It can be seen that the double loop is not perfectly repeated as would be
expected by the symmetry of the solution in time. This further implies that the final
solution obtained by the optimiser is not completely converged.

Several attempts were made to improve convergence and reduce the residual in the
optimisation of periodic flows. These are not detailed here, as none yielded a
meaningful improvement in performance. One approach involved modifying the
period gradient: it was excluded from the optimisation for the first few thousand
iterations, allowing the flow to settle before the large changes in the predicted
period—such as those seen in Figure 6.9(b)—could dominate. When the period
gradient was later introduced, it was scaled by a relaxation factor in an attempt to
dampen these fluctuations. An additional trial involved removing the period gradient
entirely. While damping the gradient led to a slightly smaller residual, the
improvement was marginal and did not significantly mitigate the stagnating
convergence, especially when compared to the optimisation of equilibria. A separate
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stable periodic solution was also identified at a lower Reynolds number, Re = 120,
with the expectation that a coarser grid and simpler dynamics might improve
optimisation performance. However, similar trends were observed: the residual
plateaued, and the period changes substantially without converging to a fixed value
before termination. The primary obstacle to further investigation of these issues is the
high computational cost of the optimisation process, as discussed at the end of
Chapter 3, along with limited time and resources. In future work, a more efficient
implementation would enable a more comprehensive investigation into the difficulties
associated with optimising periodic flows.

To conclude this section, Figure 6.11 displays all the equilibria and periodic solutions
showcased in this work, projected onto dissipation energy and energy input from the
boundary. The equilibria, represented with stars, are located on the equilibrium line
E = I . The periodic solution of Figure 6.7 is displayed as the line that oscillates
around the equilibrium line. The solution actually loops over the same trajectory in
energy dissipation-production space twice, with the second loop representing the
same solution to the first loop reflected along the spanwise direction. So, in a sense the
periodic solution, and generally the underlying periodic motion of this periodic
solution to RPCF are described by only half the period of the solution, with the other
half prescribed by a symmetry transformation. This is called a Pre-Periodic Orbit
(PPO) and is type of solution that could be found if the discrete and continuous
symmetries of the system are taken into account. Relative Periodic Orbits (RPOs) are
another example of a type of solution that can only be found if these symmetries are
incorporated into the optimisation. In its current implementation it is not possible to
find these types of solutions since the optimiser does not explicitly take into account
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Solution Re Lz T M Ny Nz Nt E Stable?

EQ1 50 8 - 64 64 32 - 12.267 Yes
EQ2 50 8 - 64 64 32 - 9.4185 No
EQ3 50 8 - 64 64 32 - 8.9345 No
EQ4 50 8 - 64 64 32 - 6.4772 No
PO 450 8 ∼ 25.4 64 64 32 51 25.747 Yes

TABLE 6.1: Summarised properties of the equilibrium and periodic solutions obtained
in Section 6.2.

any extra symmetries of the flow. It is possible to find travelling wave solutions (also
known as relative equilibrium), however none were found for this flow in practice. It
is not especially difficult to include this, however, as it simply includes an extra set of
variables representing the permutation of the flow under the investigated symmetries.
This is particularly important to include for certain flows, such as the 2D Kolmogorov
flow, since the vast majority of the solutions that appear to populate the state-space
are RPOs (Chandler and Kerswell, 2013). To flow properties and simulation
parameters for each of the solutions shown in this section are given in Table 6.1. Note
that the final period quoted in Table 6.1 is included as rough estimate as a result of the
final output of the optimiser not being completely converged.

6.3 Effect of Mode Truncation

The results discussed up to this point have utilised a full set of basis modes; the
number of modes used has been equal to the number of points used to discretise the
wall-normal direction. As discussed in Section 3.5 the projection onto the set of modes
ψki does not have to include a set that spans the entire function space. By rejecting the
resolvent modes associated with the smaller singular values of the resolvent operator
a low-order model is constructed. If the remaining modes are particularly effective, in
the sense that they point mostly in the same direction as the given solution, then an
accurate reconstruction can be obtained using only a small subset of the total number
of available resolvent modes. This idea is supported by the analysis in Section 4.3.2
which showed at the Reynolds numbers considered here that most of the dynamical
information is contained in the higher-ranked resolvent modes. In this analysis the
number of spanwise Fourier modes are not changed from the solution obtained in
Section 6.2.1.

The application of this methodology is shown in Figure 6.12, where the EQ2 solution
was perturbed by adding some random noise to the coefficients aki. The solution was
perturbed enough to move it off the minimum, increasing the residual to a much
larger value than the convergence criterion used here of R < 10−12, but not so much
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as to prevent the optimiser from converging towards the same solution. This
perturbed EQ2 flow was then optimised retaining a truncated set of the resolvent
modes for all frequencies, denoted as M. Here, as before, 64 resolvent modes represent
a complete basis, without any dimensionality reduction taking place in the
state-space. The results are shown in Figure 6.12.

Figure 6.12(a) shows the global residual traces for the perturbed field using 8, 16, 32,
and 64 resolvent modes. The residuals for each case reduce initially at a relatively
large rate, indicating the power of the variational optimiser to quickly seek out the
solution primarily by modifying the large scale structures. This initially fast decrease
is followed by a slower convergence rate, as is typically observed in the literature. The
primary point to note from Figure 6.12(a) is that the degree to which the convergence
rate decreases, and after how many iterations is strongly linked to the number of
modes used for the Galerkin projection. The smaller the number of modes used, the
faster the overall convergence rate is, achieving the minimum residual orders of
magnitude faster than when more modes are retained. Specifically, the case of M = 64
resolvent modes achieved its final residual after roughly 105 iterations, whereas the
M = 8 case shows the same residual after only hundreds of iterations. It should be
noted that an immediate result of truncating the resolvent modes is to reduce the
global residual of the initial field. This is a result of the noise introduced in the
perturbation of EQ2 being truncated in the projection, reducing the smaller scale noise
present in the starting flow. Any relative effects on the residual, i.e. normalised with
respect to the norm of the velocity field, is similar to that shown. This can be
understood by the fact that the truncation restricts the dynamics to a low-dimensional
state for the larger scales of the flow. These scales are the energy containing scales of
the flow and so the norm of the velocity field in this restricted subspace is only
changed by a small amount relative to its total magnitude. The residual, however, is
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FIGURE 6.12: Panel (a): global residual traces for the optimisation of a perturbed EQ2
solution, performed using M = 8, 16, 32, and 64 resolvent modes, all starting from
the same initial flow, using the L-BFGS algorithm. Panel (b): Accuracy of the resulting
solutions found by the optimiser relative to the “base” case obtained for 64 resolvent
modes, plotted against the number of modes used for the projection, each solution

being converged such that R < 10−12.
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FIGURE 6.13: Singular values of the resolvent operator with a laminar base flow for a
select number of spanwise frequencies at Re = 50 and Ro = 0.5.

far more sensitive to the small scale structures that are represented by the modes that
are being truncated. This means that the relative effect on the residual from truncating
these modes is large, removing a large number of directions from the optimisation
space where the residual can grow or shrink rapidly. This is ultimately the argument
that is made for why the convergence rate improves as the number of modes used
decreases, discussed further at the end of this section.

Figure 6.12(b) shows the accuracy of the resulting solutions obtained from the
projected optimisations plotted against the number of modes used for the Galerkin
projection. The accuracy was computed as the norm of the difference between the field
obtained from the projected optimisation, denoted as ∥uM∥Ω, and a base solution,
denoted as ∥ubase∥Ω, which is the solution obtained using the full set of resolvent
modes, i.e. M = 64. As the number of modes used for the projection is increased, the
error between the obtained solution and the base case reduces quite quickly initially,
when the number of modes used is small, but then reducing more slowly and
stagnating at around ∥uM − ubase∥Ω ≈ 10−3 at roughly M = 30. The initial decrease in
the error is a result of the added modes having a relatively large contribution to the
solution EQ2. After roughly 30 resolvent modes are being used, however, the accuracy
cannot be improved further as the rest of the modes that could be used contain an
extremely small component of the overall energy of the solution. To be specific, the
first 30 resolvent modes contain a little over 99.9% of the total solution’s energy. In
fact, by only retaining the first 4 resolvent modes, over 90% of the solution’s energy is
retained, implying an aggressive reduced order model can be used to construct a
physically significant solution while sacrificing some of the total accuracy.

The reason the error between the projected solution and the base case using the full set
of modes does not decrease monotonically to zero is primarily a result of the
complicated route taken by the L-BFGS algorithm over the duration of the
optimisation. The truncation slightly alters the initial condition, which leads L-BFGS
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FIGURE 6.14: Snapshots of the solutions obtained from the projected optimisation of
the perturbed EQ2 solution, for M = 3, 4, 5, 64 in panels (a-d), respectively.

to take different routes to the minimum representing the solution EQ2. Thus, although
the solutions obtained using the higher number of modes are all very similar, the only
way to decrease the error is to use a smaller residual as the criterion for convergence.
This conclusion is supported with Figure 6.13, where the singular values of the
resolvent operator used to generate the modes used for these optimisations are shown
for a select set of spanwise frequencies. The spanwise frequency kz = 0 correspond to
the spanwise mean, with the other non-zero frequencies being the unsteady spanwise
motions of progressively smaller wavelength. It can be seen that a large decay of over
two orders of magnitude takes place for kz = 0 and kz = 7 within the first 30 singular
values. For the largest frequency shown, corresponding to the largest spanwise
frequency used in the optimisation, has a much slower decay rate. This, however, does
not have a large effect on the accuracy of the solution obtained from the optimisation
since the small scale structures that would be represented with these structures play a
very small role in the solution to EQ2. Thus, by truncating roughly half the modes in
the SVD of the resolvent sacrifices only a small amount of the structure of the
resolvent and thus allows for accurate reconstructions of the desired solution.

This view of the error of each projected solution is reinforced by Figure 6.14, where the
snapshots of the solutions obtained using M = 3, M = 4, M = 5, and the base case
M = 64 are shown in panels (a-d), respectively. Each solution displays the desired
streamwise rolls with the correct spanwise wavelength. The solution obtained for
M = 3 has noticeable qualitative differences from the base solution, which is expected
from the error shown in Figure 6.12(b) being O (1). However, the solutions obtained
for M = 4 and M = 5 are far more similar to the base solution, despite the error
shown in Figure 6.12 still being rather large. Taking the results of Figure 6.12 and 6.14
together, as long as a sufficiently small number of modes are retained for the projected
optimisation the solution obtained will be able to reconstruct the structures of the
desired solution rather faithfully, at the cost of the true accuracy of the final output,
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but with a significantly improved convergence rate. This allows for a trade-off, if only
the very large scale structures of a solution are sought, without having to worry too
much about the ultimate accuracy of the solution, then by aggressively truncating the
number of modes used this solution could be obtained far faster than otherwise
available. This could be used as a method to initialise searches for ECS, using a
truncated set of modes to quickly reduce the residual. Once the largest structures are
resolved, the number of modes could be increased to better capture the smaller scale
structures once the largest ones are resolved, similar to the iterative methods
described in Rosenberg and Mckeon (2019) used to construct approximations to ECSs
based on the leading resolvent modes. This could achieve the best of both worlds,
exploiting the improved convergence rate of the truncated set of modes at first while
still being able to resolve the finer structures as required later on in the optimisation.
The output could also be passed to the Newton-GMRES-Hookstep method to quickly
finish the convergence following more closely to the procedure in Farazmand (2016).

The primary reason for this large difference in convergence rates related to the
number of modes used for the projection is a result of the modes working similar to a
preconditioner for the optimisation, improving the conditioning of the Hessian
matrix. The higher order modes, ψki for larger i, are associated with larger oscillations
in the wall-normal directions and are thus generally associated with higher frequency
and smaller scale motions in the flow. By removing these modes from the projection
the flow is effectively restricted to building the best possible solution using only larger
scale structures, typically the structures that have the largest share of the kinetic
energy of a given flow. In addition, the higher frequency variations in the flow have a
disproportionally large effect on the residual, where increases in coefficients aki results
in a larger increase in the residual for larger k and i. This ultimately is a consequence
of the Laplacian/diffusion terms in Equation 3.6 and Equation 3.43. It is well known
the spectra of the Laplacian results in large effects for high frequency inputs, which
physically is a consequence of more localised disturbances diffusing into the
surrounding fluid at a faster rate. This effect becomes dominant for the higher order
modes, and so the resulting residual function can be relatively poorly conditioned; the
Hessian at the minimum will have a large condition number as a result of the vastly
different growth rates of the residual in lower and higher frequency directions,
respectively. Truncating the number of modes used, therefore, removes the directions
with larger growth rates from the residual, improving the conditioning of the
optimisation problem and increasing the convergence rates. The effect of modal
truncation can be summarised as follows. By removing modes that correspond to
structures with a disproportionately large effect on the residual, both the optimisation
and the underlying dynamics are confined to a smaller subspace. This reduced
subspace is typically better conditioned, while still retaining the majority of the
energy-containing structures from the full system. As a result, the optimiser can
converge more rapidly to a local minimum that often lies close to the global minimum
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of the full-dimensional problem. The accuracy of this result ultimately depends on
how well the resolvent modes represent the true solution within the full state space.

6.3.1 Cost of Computing Solutions

The algorithm as depicted in Figure 3.4 transforms the velocity and residual fields
between full and reduced space. Therefore, when it comes to computing invariant
solutions this methodology does not provide a speed-up for each iteration as extra
time is required to perform the projection and expansion computations. It is possible
to formulate the optimisation problem completely in reduced space. This approach
would omit the requirement for expanding the modal coefficients back into the full
field. There are a couple of downsides to this approach. The first is due to the modes
not being known a priori requiring the projected operators to be pre-computed,
trading the speed gained in not transforming between spaces for the extra memory
requirements of storing the projected operators, which for high-dimensional systems
can be very expensive. The second problem stems from nonlinear terms, which when
computed in reduced space resemble a nested set of convolutions over the resolvent
and Fourier modes. This computation scales poorly with the number of modes in all
directions, which means for any application of the method to even moderate Reynolds
numbers would be much slower than the corresponding “fast convolution” approach
utilising the transformations between spaces. These reasons outlined are the primary
reasons why the algorithm is designed as it is. As shown in the previous section, even
if the time per iteration is not any faster for the resolvent-based optimisation the total
optimisation time can be greatly reduced through the improved conditioning afforded
through the projection.

The scaling behaviour of the time required to perform the variational optimisation is
discussed in Section 5.4.2. As previously noted, the efficiency of the methodology
outlined in Chapter 3 is only fully realised when substantial dimensionality reduction
is achieved. This reduction not only lowers the computational cost of the projection
and expansion steps but also significantly decreases the number of iterations required
to reach convergence—potentially by orders of magnitude. For example, the
optimisations used to produce the results in Figure 6.12 took approximately one hour
to complete for the base case with M = 64 modes, but only a few minutes when
reduced to M = 8 modes. Storing the modes is the dominant factor in terms of the
memory cost of the algorithm. Holding all the modes in memory for manipulation can
become very costly for high Reynolds number problems where all the spatial and
temporal discretisation become finer and the number of modes required for each
frequency generally increases as well. With each element of the modes being a 128 bit
complex number the total cost of storing the modes used for the periodic case in
memory is already nearly on the order of gigabits. For turbulent problems the
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required memory can grow very quickly, severely limiting the maximum number of
modes that can be used to represent the flow. Alternatively the modes could be read
directly from the disk as they are needed which comes at a clear penalty for the speed
of execution. The best solution here would not be to not have to use the modes at all
during the optimisation, instead performing all the computations in the reduced space
directly on the coefficients aki. A more in depth of a discussion on this alternative
implementation can be found in Chapter 7.

6.4 Summary

In this chapter, a number of exact solutions to RPCF are generated using the
resolvent-based variational optimisation methodology described in Chapter 3. The
method is shown to be robust to initial guesses, retaining this desirable property from
the general adjoint solver methodology (Farazmand, 2016). In addition, it was shown
that by seeding the initial guess for the flow with energies in select modes
corresponding to certain structures, the optimiser can be guided to converge to
solutions with particular features. The methodology is demonstrated for equilibrium
solutions and a periodic solution. It was found to be more difficult to converge the
periodic solutions, with the optimisation terminating before the residual has
converged, and not displaying the same linear convergence observed for the
optimisation of equilibrium solutions. The reason for the difficulties with periodic
solutions are postulated to be from a few possible sources. The first reason for the
weaker convergence could be a direct result of the optimisation problem being larger.
The extra temporal dimension that does not have to be considered for equilibria,
increasing the size of the problem by many orders of magnitude, in addition to the
finer discretisation required to resolve the flow at the higher Reynolds number. The
second is the periodic solution presented may be better understood as a ghost of a
periodic solution that exists at a different Reynolds number (Zheng et al., 2024). The
final possible source of error is the choice of modal basis, by either not providing the
necessary basis to completely describe the solution in the limiting infinite-dimensional
state-space, or from numerical errors stemming from its computation and the choice of
grid. Further work is required to properly understand the source of these difficulties.

A particular equilibrium solution found earlier was then projected onto a truncated
set of resolvent modes to demonstrate the effect that the low-order model has on the
accuracy of the resulting solution and to see if it modifies the convergence rates of the
optimisation. It was shown that truncating the resolvent modes leads to a significantly
improved convergence rate, reducing the number of iterations required to achieve
convergence by over an order of magnitude. The improved convergence is a result of
a pre-conditioning effect rejecting the modes has, reducing the condition number of
the Hessian matrix of the residual by damping the large growth rates of rapidly
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varying modes associated primarily with the Laplace operator. The accuracy of the
resulting low-order solutions compared to the base case (using the full basis set) is
shown to be very accurate with the total energy of the flow being recovered up to
three decimal places for ∼ 30 resolvent modes. Additionally, it was shown that the
qualitative resemblance of the very low-order solutions was very good, displaying the
ability for the method to be used as a way to accelerate the search of invariant
solutions through a coupled approach akin the method used in by Farazmand (2016),
or through a type of multigrid method that gradually includes more modes building
up flow complexity and accuracy as the residual decreases.
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Chapter 7

Conclusions

This chapter is dedicated to a summary of the work presented in this thesis and how
well it satisfies the main aims discussed in Chapter 1. In addition, there are added
discussions on the main limitations of the methods used, where the presented results
indicated difficulties in obtaining accurate solutions, and a list of future work that can
be performed based on the foundation laid out in this work.

The thesis focused on a novel application of the variational optimisation solver
developed by Farazmand (2016) and Azimi et al. (2022) coupled with a Galerkin
projection onto a basis defined by a set of modes obtained from resolvent analysis.
The method described in Chapter 3 is a novel approach to solve the problem that
arises due to the coupling of the incompressibility condition (pressure) and the no-slip
boundary condition. Ashtari and Schneider (2023) described another possible solution
to the problem, using the influence matrix method to update velocity to be compatible
with the pressure boundary conditions. The method as shown in Ashtari and
Schneider (2023) only applied to equilibrium solutions, whereas the method described
in this thesis is applicable to periodic solutions with any complex wall-bounded
geometry, while allowing direct utilisation of the compression abilities of modal
analysis techniques as discussed in Section 2.2. Using this projected variational
optimisation methodology, the thesis aims as given in Chapter 1 were as follows.

1. Assess the efficacy of resolvent modes for constructing low-order models of
RPCF.

2. Demonstrate the ability for the resolvent-based variational optimisation
methodology to find exact solutions to dynamical systems.

3. Investigate the effect low-order modelling has on the performance of the
optimiser.

4. Construct long periodic trajectories, called quasi-trajectories, that obtain useful
ergodic statistics without exactly satisfying the governing equations.
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After the main optimisation methodology was explained in Chapter 3 for the case of
fluid dynamics problems, Chapter 4 takes some time characterise RPCF, the prime
flow studied in this work. The velocity statistics and spectra are discussed, along with
the optimal basis for select Reynolds numbers using the dominant SPOD modes. The
first major objective is then addressed, analysing the resolvent modes for those same
flow regimes in their capability to represent the given flow in as few modes as
possible. It is shown that for the main Reynolds numbers considered in this work a
much smaller proportion of resolvent modes are required to retain the majority of the
flow’s kinetic energy.

In Chapter 5 a smaller version of the same problem is setup and analysed for the
Lorenz system (Lorenz, 1963) as an initial validating case, looking to satisfy the second
and especially the fourth objective above. The variational optimisation and resolvent
analysis formulations are specialised for the Lorenz system, and it is shown how to
achieve an (exact) dimensionality reduction by exploiting the partial linearity in the
governing equations for the Lorenz system. This projection takes the system from a
3-dimensional space down to a 2-dimensional space without any loss in dynamic
information. It is first demonstrated that the optimiser can generate known UPOs.
Then, the concept of quasi-trajectories introduced in Chapter 1 are then investigated.
It is successfully shown that these quasi-trajectories can provide useful statistical
information even when system residuals are large, O(1). The convergence of the
statistics compared to the period of the quasi-trajectory, as well as the number of
iterations taken for the optimisation. Both of these demonstrate that there is a
saturation in the accuracy obtained by the quasi-trajectories, after which increases in
the period and number of iterations does not produce any significant increases in
accuracy of the prediction compared to the chaotic statistics.

Chapter 6 features the direct application of the optimisation methodology in
Chapter 3 with the modes analysed in Chapter 4. This chapter focuses purely on the
exact solutions that can be obtained using the projected optimisation, and the effect
the number of resolvent modes used for said projection has on the optimisation
performance. It is demonstrated that the optimiser is able to recover both stable and
unstable equilibrium and periodic solutions to the Navier-Stokes equations, using a
complete basis. The magnitude of the stability, or equivalently how far away a
solution is from neutral stability, dictates how fast the optimiser can converge towards
it. The closer the solution is to neutrally stable the slower the optimiser converges.
This process continues to the limit of neutral stability where the optimiser effectively
stalls some distance from the solution. It is shown that truncating the number of
modes used can improve the convergence rate of the optimiser by orders of
magnitude. This improvement is justified by arguing that the Hessian matrix, the
operator that governs local convergence properties, is better conditioned as a result of
truncating resolvent modes associated with small singular values.
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7.1 Summary of the Analysis and Limitations

The analysis of Chapter 4 focused on characterising the main spectral features of
RPCF, the dominant features of the flow, and most importantly the efficacy of
resolvent modes in reconstructing the flow. This was done to motivate their use and
understand how many modes would be required to construct efficient low-order
models of the flow that can be exploited in finding invariant solutions. It was shown
that the flow at all Reynolds numbers is dominated by a set of streamwise rolls with a
well defined spectral content. The resolvent modes were shown to be able to
accurately reconstruct the flow with over 99% of its original kinetic energy with
roughly an order of magnitude fewer of modes than the spatial discretisation for
Re = 50 and Re = 450. Individual inspection revealed particular modes that captured
the streamwise roll structures which were identified as the significant dynamical
feature of the flow.

Chapter 5 successfully demonstrated that the optimiser could construct large period
quasi-trajectories that approximated statistics of chaotic trajectories, displaying both
qualitative and quantitative convergence for only a modest number of iterations,
between 1000 and 10000 well before the global residual has reached any local or global
minimum. The effect of unique state-space structures, specifically an unstable fixed
point at the origin, is observed to somewhat pollute the quasi-trajectory, as a result of
it being transformed into an attracting point under the variational dynamics. In
high-dimensional flows the effect of potentially many unstable, and rarely observed,
fixed points/equilibria is not known, although for quasi-trajectories it is possible that
they do not pose a significant issue as the solution would simply be much more
attracted to countably infinite unstable solutions embedded within the attractor that
are observed more commonly. The convergence of a few statistical moments of some
observables against the period of the quasi-trajectory and the number of iterations was
provided. A weak dependence on the number of iterations required to converge the
statistics of the observables was observed, with improved results for more iterations
as expected. The more dominant trend is that of the period of the quasi-trajectory. As
expected the larger the period the better the estimation of the statistics, as a larger
neighbourhood of the strange attractor is explored leading to more shadowing events
which better represents a true chaotic trajectory. In addition to improved accuracy of
the statistical estimation, the precision is also improved for larger periods, with the
spread of the predictions obtained from different quasi-trajectories of the same period
decrease in line with the central limit theorem.

The equilibrium solutions obtained in Chapter 6 displayed a large robustness to the
initial conditions chosen, and an ability to converge to both the stable solution (at the
given Reynolds number of Re = 50) and some more unorthodox unstable solution not
observed in the DNS. The use of the L-BFGS optimisation algorithm provided a very
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noticeable improvement in performance of the optimiser compared to the standard
choice of gradient descent for the optimisation algorithm. The effect of the number of
modes used was demonstrated on one of the unstable equilibrium solutions found
earlier in the chapter. Orders of magnitude improvements in the convergence rate
were observed for a low number of modes, with the accuracy (norm difference) of the
resulting solution showing only a modest drop-off. However, this accuracy decrease is
also shown to have little effect on the qualitative resemblance of the solution,
implying the modes exist in a dynamically very significant subspace and are able to
effectively compress the information in the flow. The optimiser is also demonstrated
for a periodic solution, using a continuation approach to generate a solution at a
higher Reynolds number. Specifically, the optimiser was initialised with a solution
obtained from DNS at a particular Reynolds number polluted with some noise, and
then sought out a solution at a higher Reynolds number. It was shown that the
optimiser is able to recover such a solution from a rather corrupted starting point.
However, the convergence rate observed for the time varying case was significantly
worse than for the equilibria. In the time varying case the convergence rate continues
to monotonically decrease as the optimisation continues, as opposed to the equilibria
optimisations where the average convergence rates essentially remain the same over
the duration of the optimisation. It was also observed that the period of the solution
was still changing when the optimisation terminated, implying that a true minimum
had not been reached. The worse performance of the optimiser was postulated to be
from a few possible sources. The first is the solution being close to bifurcation, where
it is known that convergence is degraded as solutions approach neutral stability. The
second is the possibility that periodic flow shown is not, in fact, an exact solution, but
is instead some sort of state-space ghost as discussed in (Zheng et al., 2024), which
means the desired periodic orbit does not correspond to a global minimum but
instead a local minimum, which may have unexpected effects on the convergence
properties of the optimiser once it is close. The second postulated source of
performance loss is some kind of numerical errors populating the resolvent modes. It
was observed that the modes generated for the low to moderate temporal and
spanwise frequencies for the periodic case had large numerically induced oscillations
in their second derivatives, which should be investigated further to determine their
effect on the convergence rate and accuracy of the final solution.

The current work did not demonstrate the use of quasi-trajectories on any
high-dimensional chaotic systems. Using quasi-trajectories necessarily requires one to
hold a very large dimensional object in memory, due primarily to the large number of
temporal modes required to properly resolve the evolution of a large period flow. The
current implementation of the resolvent-based optimisation is mostly optimised for
iteration time over the memory consumption, utilising pseudo-spectral methods to
avoid computing convolutions that scale poorly with the dimension of the problem.
This requires a number of intermediate objects that exist within the full, unprojected,
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state-space. Along the with the cost of holding the set of modes in memory for all the
required spanwise and temporal frequencies considered, the memory footprint of the
algorithm grows quickly. An implementation of the framework that performs the
optimisation completely within the reduced space defined by the relatively small
number of resolvent modes would be able to better exploit the memory savings that
could achieved from the dimensionality reduction from the modal projection. In terms
of implementation, this framework differs primarily in how the residual variables are
computed. Specifically, instead of an expand-transform-project procedure using
pseudo-spectral methods to treat the nonlinear terms, these terms would all be
computed directly in the reduced space by projecting the operators. These projected
operators could either be pre-computed and stored for use during the optimisation, or
computed each time they are needed by taking the necessary derivatives of the
provided modes. The primary downside of such an implementation would be the
requirements to compute the nonlinear terms with explicit convolutions. This is only
be comparable in speed only if the dimensionality reduction is significant, both in
terms of the number if modes used for the inhomogeneous directions of the flow as
well as the number of required frequencies in the homogeneous directions and time.
Such choices depend strongly on the size of the problem as well as the performance of
the compute resources available.

7.2 Further Work

The work in this thesis provides a conceptual framework upon which much work can
be based. Although the basic qualities of the resolvent-based optimiser have been
demonstrated in some relatively simple cases, there is a large body of possible work in
refining and applying the framework to more complex cases. Each of the possible
extensions of this work are given in each subsection below.

7.2.1 Pre-Conditioning Due to Low-Order Models

The discussion near the end of Chapter 6 justifies the improved convergence rates of
the optimiser when rejecting a large number of the resolvent modes for the Galerkin
projection as a form of Hessian pre-conditioning. The Hessian of the global residual is
in general poorly conditioned due to the effect of the Laplace operator, which has
eigenvalues that grow unbounded (in a continuous setting). It is argued that by
rejecting higher-order resolvent modes, the directions in the optimisation space that
correspond to the rapidly growing eigendirections of the Laplace operator are
projected away, improving the condition number of the Hessian and hence the
convergence rate. However, it is not shown here analytically. A proof of this would
constitute a rigorous argument for using the resolvent modes, or other appropriately
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chosen modes such as the eigenvectors of the Laplace operator themselves. This
would then be applied in more general cases to be able to improve convergence rates
and the general practicality of optimisation for finding invariant solutions to the
Navier-Stokes equations via generally pre-conditioned methods.

7.2.2 Quasi-Trajectories of Chaotic Flows

The arguably most pressing future application of this work is directly related to the
second aim of this thesis: demonstrating the usefulness of large period
quasi-trajectories in being able to estimate the statistics of turbulent flows. The
demonstration in this thesis is on the smaller case of 3-dimensional case, with only a
modest dimensionality reduction to 2 dimensions, which does not neglect any of the
dynamical information as would be the case for fluid problems.

The likely best route to this end would be to tackle the RPCF with this approach, or
some other flow with a single inhomogeneous spatial direction. The goal would then
be to demonstrate that statistical measurable/physical observables of the resulting
high-dimensional quasi-trajectory with a sufficiently large period have probability
distributions that resemble those achieved from a DNS simulation. This could be
achieved through comparison of energy plots (dissipations vs. energy production),
velocity statistics such as mean profile or Reynolds stress, or simply the kinetic energy
evolution of the flow. There is also the open question of whether extreme events and
intermittence observed in turbulent flows could be accurately captured, and if they
can, how large a period is required for the quasi-trajectory to do so.

There are some additional technical questions that could be answered as well. In this
work, the mean profile of the candidate solution is not fixed over the duration of the
optimisation. This was done to facilitate the search for exact solutions to the
Navier-Stokes equations in Chapter 6. However, resolvent analysis requires the user
to prescribe a given base profile, which in the literature is conventionally the turbulent
mean profile. If the mean profile is known a-priori and fixed for the optimisation once
the resolvent modes have been generated, then the effects of the accuracy of the given
mean profile could be studied. The aim in that case would be answer questions such
as: how accurate does the mean profile need to be for a quasi-trajectory to produce
accurate statistics, or could a profile obtained from RANS simulation (without
Reynolds stresses and a closure model) be sufficient for certain configurations to be
able to produce statistically useful quasi-trajectories?
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7.2.3 Sensitivity Analysis of Quasi-Trajectories

Quasi-trajectories have been proposed here as a possible method to estimate the
statistics of chaotic systems without having to accurately simulate them. As discussed
in the introduction, long UPOs of chaotic systems could be used to estimate the
sensitivities of ergodic statistics as shown in Lasagna (2018, 2020) for the Lorenz
system. Quasi-trajectories shadow orbits in the much the same way as any long
trajectory obtained through a time-stepping/integration algorithm, and so could be
used as a proxy to estimate the same sensitivities.

Using quasi-trajectories would have a couple of major benefits over using either
chaotic simulations or long UPOs. Compared to chaotic simulations, quasi-trajectories
are periodic orbits and thus the least squares shadowing methods Wang (2014);
Lasagna et al. (2019) would be directly applicable, with the adjoint formulation being
better conditioned due to the periodicity of the problem. Compared to long UPOs,
quasi-trajectories are simply easier to find, requiring a much smaller number of
iterations, with larger residuals. In addition, if a well-chosen basis is used, then an
efficient low-order model can be constructed reducing the memory and time costs of
obtaining the quasi-trajectory further. This would provide a lower bar to being able to
perform sensitivity analyses, impacting the flow of engineering designs and the
implementation of control schemes.

7.2.4 Hybrid-Solver

Farazmand (2016) originally developed the variational optimisation methodology,
referred the adjoint solver in the manuscript. The primary use of the method is not to

FIGURE 7.1: Hybrid solver approach, using variational optimisation (adjoint decent)
as an initialiser with a large radius of convergence that moves a solution to within
the much smaller radius of convergence for the faster converging Newton-GMRES-

Hookstep (NGh) solver. Obtained from Farazmand (2016)
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converge a solution to its minimum, but instead to exploit the optimiser’s large radius
of convergence and fast initial convergence rates to take solutions that otherwise
wouldn’t converge to within the radius of convergence for the faster converging
Newton-GMRES-Hookstep method. This hybrid approach achieves the best of both
worlds between robustness and total convergence iterations. This hybrid approach is
depicted in Figure 7.1.

As shown in Section 6.3, rejecting a significant set of the resolvent modes used in the
Galerkin projection can greatly improve the convergence rate of the optimiser without
completely sacrificing the accuracy of the solution obtained. The robustness of the
variational optimiser to initial guesses remains unaltered since the Galerkin projection
is a least-squares projection onto a linear subspace. In Farazmand (2016), the
optimisation was used to create a hybrid solver method; an initial high residual guess
was converged towards a minimum using the variational optimiser, and once the
trajectory is sufficiently close to the minimum the solver is swapped for
Newton-GMRES-Hookstep. This hybrid approach balances the large radius of
convergence of the optimisation and rapid convergence rates of the
Newton-GMRES-Hookstep to get the best of both worlds. Adding the Galerkin
projection to this hybrid methodology with an aggressive low-order model has the
potential to make this approach even more appealing. The aggressive low-order
model would generally further improve the convergence rate of the optimisation
phase of the hybrid solver, and still get the solution sufficiently close to the minimum
such that the Newton iterations would successfully converge. Referring back to
Figure 7.1, this “Adjoint descent” step of the solver can be replaced with the projected
optimisation which could reduce the number of iterations taken to converge to within
the “domain of attraction of NGh” by orders of magnitude. This would be another
step towards invariant solvers becoming more practical to use for research and
engineering design applications, as more and longer solutions could be found just as
fast and reliably with as little human input as possible.
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