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Abstract. Proof-theoretic semantics (P-tS) is the approach to meaning in logic based

on proof (as opposed to truth). There are two major approaches to P-tS: proof-theoretic

validity (P-tV) and base-extension semantics (B-eS). The former is a semantics of argu-

ments, and the latter is a semantics of logical constants. This paper demonstrates that

the B-eS for intuitionistic propositional logic (IPL) encapsulates the declarative content

of a version of P-tV based on the elimination rules. This explicates how the B-eS for IPL

works, and shows the completeness of this version of P-tV.
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1. Introduction

One intuition regarding the meaning of logical consequence, Γ � ϕ, is that
it holds by virtue of the logical form of Γ and ϕ, rather than their specific
content. One way to express this is by considering arbitrary interpretations
of the specific content and demonstrating that ϕ holds in any situation in
which Γ holds. This leads to Tarski’s interpretation of consequence based
on models M,

Γ � ϕ iff for any model M, if M � Γ, then M � ϕ

which defines model-theoretic semantics (M-tS). Observe that consequence
is defined in terms of the transmission of some categorical notion (in this
case, truth). Schroeder-Heister [66] has called this the ‘standard dogma’ of
semantics.

As Prawitz [51] explains, M-tS conflates the meaning of the logical con-
stants with the meaning of truth, since logical structure is defined in terms of
interpretations. For example, if T is defined as the least set satisfying certain
properties, including ‘ϕ∧ψ ∈ T iff ϕ ∈ T and ψ ∈ T ’, then no information is
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gained about ∧ by saying that it satisfies this relationship. Moreover, M-tS
fails to provide a genuinely consequential relationship between Γ and ϕ.

Tennant [75] observes that a consequential reading of a consequence judg-
ment Γ � ϕ implies that ϕ follows from Γ by some valid reasoning. This
requires a notion of a valid argument that encapsulates the forms of valid
reasoning. We must, therefore, explicate the semantic conditions required
for an argument that demonstrates

ψ1, . . . , ψn; therefore, ϕ

to be valid. Following Prawitz [51], these semantic conditions ought to be
based on the logical structure of ψ1, . . . , ψn and some fixed laws of thought.

Consequently, we abandon the denotationalist perspective on logic, on
which M-tS rests, where meaning is given relative to interpretation. Instead,
we adopt an inferentialist perspective, where meaning is given in terms of
inferential relationships—see Brandom [5] and Murzi and Steinberger [5].

In this paper, we work entirely in the setting of natural deduction in
the sense of Gentzen [74]. In inferentialism, even atomic propositions gain
meaning through their inferential roles. Thus, we use atomic systems to
define when the atomic propositions hold (rather than using models). Details
are provided in Sect. 2. Heuristically, atomic systems are sets of natural
deduction rules restricted to atomic propositions. This embodies a ‘meaning-
as-use’ philosophy. For example, the proposition ‘Tammy is a vixen’ means
’Tammy is female’ and ’Tammy is a fox’, governed by these rules:

Tammy is a fox Tammy is female
Tammy is a vixen

Tammy is a vixen
Tammy is female

Tammy is a vixen
Tammy is a fox

These rules, from the inferentialist perspective, are understood as supplying
the meaning of the proposition. The ‘and’ above is justified by comparison
with the laws governing conjunction (∧) in NJ,

ϕ ψ

ϕ ∧ ψ
ϕ ∧ ψ

ϕ

ϕ ∧ ψ

ψ

There are important philosophical and mathematical ramifications on the
structure of atomic system admitted — see, for example, Sandqvist [58,59]
and Piecha and Schroeder-Heister [43,69].

The area of logic concerning such a consequentialist reading of logic is
proof-theoretic semantics (P-tS) [16,68,77]. It is the area of semantics con-
cerning proof (as opposed to truth), where ‘proof’ means ‘valid argument’
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(as opposed to derivation in a fixed system). This includes both semantics
of proofs (i.e., validity conditions on ‘arguments’) and semantics in terms
of proofs (i.e., the meaning of logical constants in terms of consequential re-
lationships). We call the first proof-theoretic validity (P-tV) and the second
base-extension semantics (Be-S). This nomenclature follows from certain
traditions in the literature, but both branches concern validity and make
use of base-extensions in doing so.

Details of B-eS pertinent to this paper are provided in Sect. 4. Heuristi-
cally, a B-eS is defined by a support judgment �, relative to atomic systems
B, by clauses for logical constants, with the base case given by derivability
— that is, if p is an atomic proposition,

�B p iff �B p

(where �B p indicates p can be proved from the rules in B). This mirrors
satisfaction in M-tS but can differ significantly. In particular, taking the
standard clause for disjunction

�B ϕ ∨ ψ iff �B ϕ or �B ψ

renders IPL incomplete (see Piecha et al. [41,42,44]), unless additional struc-
ture is added elsewhere (see, for example, Stafford and Nascimento [37,72]).
Sandqvist [59] showed that IPL is sound and complete for a notion of support
with an alternative clause,

�B ϕ ∨ ψ iff ∀C ⊇ B and ∀p ∈ A, if ϕ �C p and ψ �C p, then �C p

This paper gives an operational account of this clause in the sense that it
explains what it says about arguments for ϕ ∨ ψ.

Given a notion of P-tV, consequence is defined as follows:

Γ � ϕ iff there is a valid argument from Γ to ϕ

Prawitz [46] conjectured that the original and most widely studied account
of P-tV corresponds to IPL, but this remains an open problem. The afore-
mentioned work by Piecha et al. [41,42,44] says that the conjecture fails
(i.e., IPL is incomplete with respect to the semantics) when the notion of
P-tV is slightly simplified. Stafford [71] has shown that the semantics for
Piecha et al [41,42,44] corresponds to general inquisitive logic — that is,
the intermediate logic(s) that extends IPL with the rule

H → (ϕ ∨ ψ)
(H → ϕ) ∨ (H → ψ)
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where H is a hereditary Harrop formula (see Miller [36]). While this rule is
admissible in IPL, it is not derivable — see Harrop [26].

In this paper, we consider P-tV in the Dummett-Prawitz tradition. A key
motivation lies in the following remarks by Gentzen [74]:

The introductions represent, as it were, the ‘definitions’ of the symbols
concerned, and the eliminations are no more, in the final analysis, than
the consequences of these definitions. This fact may be expressed as
follows: In eliminating a symbol, we may use the formula with whose
terminal symbol we are dealing only ‘in the sense afforded it by the
introduction of that symbol’

Prawitz [46,48,49] used his normalization theory for NJ to develop a se-
mantic concept reflecting this intuition. Dummett [10] later developed the
philosophical underpinnings of the idea.

The basic idea of P-tV in the Dummett-Prawitz tradition is that ar-
guments are valid by virtue of their form. One begins with some class of
canonical proofs relative to which validity is computed. Arguments are valid
if they represent a canonical proof. Thus, P-tV in the Dummett-Prawitz
tradition is based on the following ideas:

– the priority of canonical proofs

– the reduction of closed non-canonical arguments to canonical ones.

– the substitutional view of open arguments — that is, open arguments
are justified by considering their closed instances.

We defer to Schroeder-Heister [64] for a formal account of this version of P-tS
and its subsequent developments — see, for example, Prawitz [47–49]. This
is closely related to the Brouwer-Heyting-Kolmogorov (BHK) interpretation
of intuitionism — see Sect. 2.3 and Schroeder-Heister [65].

Typically, normalized closed arguments are valid iff their immediate sub-
proofs are valid, prioritizing introduction rules. Normalized derivations in NJ
conclude with introduction rules (see Prawitz [50]). Schroeder-Heister [67]
proposed an alternative based on elimination rules, drawing ideas by Prawitz
[46]. The logical form of a proposition tells us how we may use it; for example,
given an implicational proposition, its logical form says no more than this:
one may establish the consequent by establishing the antecedent. This is
expressed by the law of modus ponens,

ϕ → ψ ϕ
ϕ
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More generally, it is the elimination (not introduction) rules that says how
one may use a proposition of a certain logical form. This suggests a version
of P-tV based on elimination rules. As Schroeder-Heister [67] observes:

The intuition behind the approach based on elimination rules is that
a derivation is valid, if the result of the application of each possible
elimination rule to its end-formula is valid.

Thus an argument is no longer valid in virtue of its form or the form to
which it can be reduced (as in the introduction-based approach), but rather
in virtue of the immediate consequences one can reach starting with this
argument. This is a genuinely ‘consequentialist’ view of validity.

Importantly, basing P-tV on the elimination rules does not necessarily
mean that one is taking the elimination rules as prior to the introduction
rules. Hallnäs and Schroeder-Heister [23–25,63] have shown the elimination
rules arises from the introduction rules by means of Definitional Reflection
(DR):

whatever follows from all the defining conditions of an asser-
tion, follows from the assertion itself

For example, disjunction (∨) has the following introduction rules:

ϕ

ϕ ∨ ψ

ψ

ϕ ∨ ψ

Therefore, the defining conditions of ϕ∨ψ are ϕ and ψ. Thus, DR warrants
the following rule recognizable as the standard elimination rule:

ϕ ∨ ψ
[ϕ]
χ

[ψ]
χ

χ

Importantly, DR amounts to a closed-world assumption — in the sense of
Reiter [56] — on introduction rules as definitions.

As for P-tV based on the introduction rules, it is an open problem what
logic P-tV based on the elimination rules represents. This paper shows that,
assuming certain conditions about the notion of reduction on arguments
and base, this version of P-tV corresponds to the B-eS for intuitionistic
propositional logic (IPL) by Sandqvist [59]. That is, one derives the semantic
clauses of the B-eS from the semantic clauses of the P-tV. Hence, this version
of P-tV based on the elimination rules corresponds to IPL.

In other words, this paper says that the semantics of the logical con-
stants (as expressed in the B-eS) is indeed given by their consequential



A.V. Gheorghiu, D.J. Pym

relationships. Conversely, taking the semantics of the logical constants (as
expressed in the B-eS) as conceptually prior to logical consequence, this pa-
per shows that consequence in IPL indeed obtain by virtue of the logical
form of the propositions involved. Consequently, the elimination-based ap-
proach provides a more ‘consequentialist’ reading of validity, focusing on the
immediate uses of a proposition.

Much of the analysis in this paper concerns understanding precisely how
the choice of reduction and base recover intuitionism. It begins with unpack-
ing BHK, constructivism, and intuitionism. This is the subject of Sect. 5.
However, further clarity might be gained by looking at constructivism in a
classical sense. We discuss this further in Sect. 7.

We begin in Sect. 2 with an overview of natural deduction, the setting
in which this paper takes place. In Sect. 3, we define P-tV as used in this
paper. In Sect. 4, we give the B-eS for IPL by Sandqvist [59]. The main
contribution of the paper is in Sect. 5 where we formally relate P-tV and
B-eS. In Sect. 6, we discuss the position of negation in P-tS, which is known
to be a subtle issue (see, for example, Kürbis [32], relative to the work of this
paper. Finally, in Sect. 7, we give a summary and conclusion to the paper.

Throughout, we fix a denumerable set of atomic propositions A. Relative
to such a set we define F by the following grammar:

ϕ:: = p ∈ A | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ → ϕ | ⊥
We may use meta-variables Γ and Δ (possibly adorned with subscripts

or primed) to denote sets of formulas; we use P, Q, S (possibly adorned
with subscripts or primed) to denote sets of atoms. We may write ¬ϕ to
abbreviate ϕ → ⊥.

2. Background

2.1. Natural Deduction

We require some familiarity with natural deduction in the style of Gentzen [50,
62,74]. In this section, we give a terse but complete summary to keep the
paper self-contained.

The objects studied in natural deduction are arguments:

Definition 1. (Argument) An argument is a rooted, finite tree of formulas
in which some (Possibly no) leaves are marked as discharged. An argument
is open if it has undischarged assumptions; otherwise, it is closed.
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We use calligraphic style to denote arguments (e.g., A denotes an ar-
gument). The leaves of an argument A are its assumptions, and the root
is its conclusion. An argument A is an argument from Γ to ϕ iff the open
assumptions of A are a subset of Γ and the conclusion of A is ϕ. We may
use the following notations to express that A is an argument from a set of
formulas Γ to a formula ϕ:

A
ϕ

ΓA
ΓA
ϕ

Throughout this paper, we consider the composition of arguments. Let
A be an argument with open assumptions Γ and {ϕ1, . . . , ϕn} ⊆ Γ. Let
B1, . . . ,Bn be arguments with conclusions ϕ1, . . . , ϕn, respectively. We write
cut(B1, . . . ,Bn, A) to denote the argument that results from composing A
with B1, . . . ,Bn at the assumptions; that is,

cut(B1, . . . ,Bn, A) :=
B1
ϕ1 . . .

Bn
ϕn

A
Note that the open assumptions of cut(B1, . . . ,Bn, A) are (Γ−{ϕ1, . . . , ϕn})∪
Γ1 ∪ . . . ∪ Γn, where Γi is the set of open assumptions in Bi for i = 1, . . . , n,
respectively.

Importantly, arguments may be regulated by a set of rules. A set of
rules is called a natural deduction system. This is what we now define. We
follow the presentation and ideas from Schroeder-Heister [62] and Piecha
and Schroeder-Heister [43,69].

Definition 2. (Natural Deduction Rules) An nth-level rule is defined as
follows:

– A zeroth-level rule is a rule of the following form in which ϕ ∈ F:

ϕ

– A first-level rule is a rule of the following form in which ϕ1, . . . , ϕn, ϕ ∈ F,
ϕ1 . . . ϕn

ϕ

– An (n+1)th-level rule is a rule of the following form in which ϕ1, . . . , ϕn, ϕ ∈
F and Γ1, . . . ,Γn are (possibly empty) sets of nth-level atomic rules:

[Γ1]
ϕ1 . . .

[Γn]
ϕn

ϕ
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Having sets of rules as hypotheses is more general than having sets of
propositions as hypotheses; the former captures the latter by taking zeroth-
order rules. Since the premises may be empty, an mth-level rule is an nth-
level rule for any n > m.

Example 3. The following is a natural deduction rule:

ϕ1 ∨ ϕ2

[ϕ1]
χ

[ϕ2]
χ

χ

We extract a special case of natural deduction rules that do not contain
any logical constants:

Definition 4. (Atomic Rule) A rule is atomic iff it only contains propo-
sitional variables.

Example 5. Let p1, p2, d, x ∈ A. The following is an atomic rule:

r
[p1]
x

[p2]
x

x

Note that atomic rules are an important part of P-tS as they make up the
pre-logic notion of ‘proof’ that forms the base case of P-tS — see Sect. 4 for
details. Presently, it is important to note the subtlety in their uses from other
(‘logical’) natural deduction rules: they are not closed under substitution.
This is expressed explicitly in Definition 11. The reason is both historical
and philosophical: rules containing complex formulas are logical reasoning
principles appropriate for the logical constants involved; meanwhile, atomic
rules are pre-logic notions of reasoning — see Prawitz [50], Dummett [10],
and Piecha and Schroeder-Heister [43,69], and Schroeder-Heister [62].

Example 6. (Sandqvist [59]) Consider the rule in Example 4 with the
propositions standing as follows: r is ‘Sandy is a sibling of Mary’, p1 is
‘Sandy is a brother of Mary’, p2 is ‘Sandy is a sister of Mary’, and x is any
other proposition. The rule expresses that the proposition x may be inferred
from Sandy’s sibling-hood to Mary by case distinction. It is not appropriate
on the basis of such reasoning being permitted that one should be able to
reason by case-distinction of that sibling-hood to infer the proposition x
from some statement, say, ‘The sky is blue.’

A collection of rules is called a system:

Definition 7. (Natural Deduction System) A natural deduction system is
a set of natural deduction rules.
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Definition 8. (Atomic System) An atomic system is a natural deduction
system comprising only atomic rules.

We use script-style to denote atomic systems (e.g., A denotes an atomic
system).

Example 9. In Fig. 1 is shown the natural deduction system NJ by Gentzen
[74].

While a natural deduction system may have infinitely many rules, it is
at most countably infinite as the language is countable.

An argument regulated by a natural deduction system N is called an
N-derivation. The set of N-derivations may be defined inductively by com-
posing instances of rules from N . To define this formally, we require sub-
stitution:

Definition 10. (Substitution Function) A substitution function is a map-
ping θ : A → F. The set of all substitutions is S.

Typically, one defines a substitution function by specifying the map for
some finite subsection of A and extending it to the rest of the domain by
some arbitrary assignment to formulas. This is a minor detail that does
not affect the work in this paper. The action of a substitution θ extends to
formulas as follows:

θ(ϕ) :=

⎧
⎪⎨

⎪⎩

θ(p) if ϕ = p ∈ A

⊥ if ϕ = ⊥
θ(ψ1) ◦ θ(ψ2) if ϕ = ψ1 ◦ ψ2 for ◦ ∈ {→, ∧, ∨}

Definition 11. (Derivation in a Natural Deduction System) Let N be a
natural deduction system. The set of N-derivations is defined inductively as
follows:

– Base Case. Let r ∈ N be a zeroth-level rule concluding ϕ. We consider
two cases:

– r is atomic. The natural deduction argument consisting of the node ϕ
is a N-derivation.

– r is not atomic. For any substitution θ, the node θ(ϕ) is an N-derivation.

– Induction Step. Let r ∈ N be an (n + 1)st-level rule,

[Γ1]
ϕ1 . . .

[Γn]
ϕn

ϕ

We consider two cases:
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– r is atomic. Suppose for each 1 ≤ i ≤ n there is an N-derivation Di of
the following form:

Γi, Δi

Di
ϕi

The natural deduction argument with root ϕ and immediate sub-trees
D1, . . . ,Dn is a N-derivation of ϕ from Δ1 ∪ . . . ∪ Δn.

– r is not atomic. Suppose for any substitution σ such that for each
1 ≤ i ≤ n there is an N-derivation Di of the following form:

σ(Γi), Δi

Di

σ(ϕi)

The natural deduction argument with root σ(ϕ) and immediate sub-
trees D1, . . . ,Dn is a N-derivation of ϕ from Δ1 ∪ . . . ∪ Δn.

Definition 12. (Derivability) Let N be a natural deduction system. The
N-derivability relation �N is defined as follows:
Γ �N ϕ iff there exists an N-derivation D such that

the open assumptions of D are subset of Γ and the conclusion is ϕ

An N-derivation is closed iff it is closed as an argument, in which case it
is called an N-proof.

Example 13. The following is an example of an open NJ-derivation:

p ∨ q
[p]

q ∨ p
∨I

[q]
q ∨ p

∨I

q ∨ p
∨E

It witnesses p∨q �NJ q∨p. The labels on the inferences are to aid readability
and are not formally part of the argument.

This concludes a general introduction to natural deduction in the sense
of Gentzen [74] suitable for this paper. We include some further specific
background of natural deduction — namely, normalization results for NJ —
below.

2.2. System NJ

There are many presentations of IPL in the literature. Therefore, we begin
by fixing the relevant concepts and terminology for this paper.

In this paper, IPL is a certain consequence judgement � on sequents. Our
principal characterization will be through a natural deduction system.



From Proof-Theoretic Validity...

Figure 1. Natural deduction system NJ

Definition 14. (Natural Deduction System NJ) The natural deduction sys-
tem NJ is comprised of the rules in Fig. 1.

Proposition 15. (Gentzen [74]) There is an NJ-proof of ϕ iff ∅ � ϕ.

The rules of NJ with subscripts I and E are the introduction rules (I-
rules) and elimination rules (E-rules), respectively. They sometimes come
in pairs; for example,

D1
ϕ

D2

ψ

ϕ ∧ ψ
∧I

ϕ ∧E

Such derivations contain superfluous argumentation for ϕ and so are called
detours.

Definition 16. (Detour) A detour in a derivation is a sub-derivation in
which a formula is obtained by an I-rule and is then the major premise of
the corresponding E-rule.

Definition 17. (Canonical) A derivation is canonical iff it contains no de-
tours.

Prawitz [50] proved that canonical NJ-proofs are complete for IPL; that
is, we may refine Proposition 15 as follows:

Proposition 18. (Prawitz [50]) There is a canonical NJ-derivation from
Γ to ϕ iff Γ � ϕ.

The argument uses a reduction relation � that precisely eliminates de-
tours; for example, detours with implication (→) are reduced as follows:

D1
ϕ

[ϕ]
D2

ψ

ϕ → ψ
→I

ψ
→E

�

D1
ϕ
D2

ψ
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The reflexive and transitive closure of � is denoted �∗. This reduction
relation is normalizing, and its normal forms are canonical proofs.

This establishes the relevant syntax and proof theory required for IPL in
this paper.

2.3. The BHK Interpretation

Intuitionism, as defined by Brouwer [6], is the view that an argument is valid
when it provides sufficient evidence for its conclusion. This is IL. Famously,
as a consequence, IL rejects the law of the excluded middle — that is, the
meta-theoretic statement that either a statement or its negation is valid.
This law is equivalent to the principle that in order to prove a proposition it
suffices to show that its negation is contradictory. In IL, such an argument
does not constitute sufficient evidence for its conclusion.

Heyting [27] and Kolmogorov [31] provided a semantics for intuitionis-
tic proof that captures the evidential character of intuitionism, called the
Brouwer-Heyting-Kolmogorov (BHK) interpretation of IL. It is now the
standard explanation of the logic.

Supposing a notion of proof for atomic formulae,

– a proof A of ϕ ∧ ψ is a pair 〈B1, B2〉 such that B1 is a proof of ϕ and B2

is a proof of ψ;

– a proof A of ϕ ∨ ψ is either a pair 〈0, B〉 such that B is a proof of ϕ or a
pair 〈1, B〉 such that B is a proof of ψ;

– a proof of ϕ → ψ is a method f for constructing a proof of ψ from a
proof of ϕ;

– nothing is a proof of ⊥.

The propositions-as-types correspondence — see Howard, Barendregt,
and others [1–3,29] — gives a standard way of instantiating the BHK in-
terpretation as terms in the simply-typed λ-calculus. Technically, the set-up
can be sketched as follows: a judgement that D is an NJ-proof of the sequent
ϕ1, . . . , ϕk � ϕ corresponds to a typing judgement

x1 : A1, . . . , xk : Ak � M(x1, . . . , xk) : A

where the Ais are types corresponding to the ϕis, the xis correspond to
placeholders for proofs of the ϕis, the λ-term M(x1, . . . , xk) corresponds to
D, and the type A corresponds to ϕ.

Lambek [33] gave a more abstract account by showing that simply-typed
λ-calculus is the internal language of cartesian closed categories (CCCs),
thereby giving a categorical semantics of proofs for IPL. In this set-up, a
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Figure 2. Curry–Howard–Lambek correspondence

morphism

[[ϕ1]] × . . . × [[ϕk]]
[[D]]−→ [[ϕ]]

in a CCC, where × denotes cartesian product, that interprets the NJ-proof
D of ϕ1, . . . , ϕk � ϕ also interprets the term M , where the [[ϕi]]s interpret
also the Ais and [[ϕ]] also interprets A.

Altogether, this describes the Curry-Howard-Lambek correspondence for
IPL as summarized in Fig. 2 in which:

– D ⇒ Γ � ϕ denotes that D is an NJ-derivation of ϕ from Γ;

– x : AΓ � M(x) : Aϕ denotes a typing judgment, as described above,
corresponding to D; and

– [[Γ]]
[[D]]� [[ϕ]] denotes that [[D]] is a morphism from [[Γ]] to [[ϕ]] in a CCC.

To generalize to full IL (and beyond), Seely [70] modified this categor-
ical set-up and introduced hyperdoctrines — indexed categories of CCCs
with coproducts over a base with finite products. Martin-Löf [35] gave a
formulae-as-types correspondence for predicate logic using dependent type
theory. Barendregt [1] gave a systematic treatment of type systems and the
propositions-as-types correspondence. A categorical treatment of dependent
types came with Cartmell [7] — see also, for examples among many, work
by Streicher [73], Pavlović [39], Jacobs [30], and Hofmann [28]. In total,
this gives a semantic account of proof for first- and higher-order predicate
intuitionistic logic based on the BHK interpretation.

Pym and Ritter [53] have provided a generalization of the BHK interpre-
tation closely related to P-tV. The original motivation was as a semantics
of reductive logic.

The traditional approach to logic is through the deductive paradigm in
which conclusions are inferred from established premises. However, in prac-
tice, logic typically proceeds through the dual paradigm known as reductive
logic: sufficient premises are inferred from putative conclusions by means of
‘backwards’ inference rules. Pym and Ritter [53] have given a semantics to
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Figure 3. Constructions-as-Realizers-as-Arrows Correspondence

constructions in reductive logic using the language of BHK in a way that
recalls P-tV. Specifically, they give the constructions-as-realizers-as-arrows
correspondence Fig. 3 based on polynomial categories, which extend a cat-
egory in which arrows denote proofs for a logic by additional arrows that
supply ‘proofs’ for propositions that do not have proofs but appear during
reduction:

– Φ ⇒ Γ � ϕ denotes that Φ is a sequence of reductions for the sequent
Γ � ϕ;

– [Γ] � [Φ] : [ϕ] denotes that [Φ] is a realizer of [ϕ] with respect to the
assumptions [Γ]; and

– [[Γ]]
[[Φ]]� [[ϕ]] denotes that [[Γ]] is a morphism from [[Γ]] to [[ϕ]] in the appro-

priate polynomial category.

They also defined a judgement w �Θ (Φ : ϕ)Γ which says that w is a world
witnessing that Φ is a reduction of ϕ to Γ, relative to the indeterminates of
Θ.

We observe in this characterization obvious similarities with the BHK
interpretation of IL (see Sect. 2.2). Specifically, it coheres with the general-
ization by Pym and Ritter [53]:

– the judgment Φ ⇒ Γ � ϕ corresponds to P-tV,

– the judgment [Γ] � [Φ] : [ϕ] corresponds to the realizers interpretation of
arguments in Sect. 5, and

– the judgment [[Γ]]
[[Φ]]� [[ϕ]] corresponds to B-eS.

Thus, in this paper, we move from the realizers perspective, in which the
witnessing arguments must be constructed explicitly to the types perspective
in which the witnessing arguments are observed implicitly as arrows.
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3. Proof-theoretic Validity

There are several accounts of proof-theoretic validity—see, for example,
Prawitz [46–48,50] and Schroeder-Heister [64,68]. Typically, they are based
on the introduction rule and can be seen as a way to realize the sentiment
expressed by Gentzen [74] (see Sect. 1) that the introduction rules represent
definitions of the connectives involved. Prawitz’s Conjecture [48] is the state-
ment that IPL is complete with respect to P-tV based on the introduction
rules.

As explained in Sect. 1, Piecha et al. [42] show that Prawitz’s Conjecture
fails when P-tV is slightly simplified. Indeed, Stafford [71] has shown that
the logic described by the simplified version of P-tV is a (general) inquisitive
logic. In contrast, Takemura [57] suggests that the conjecture holds without
the simplification.

In this paper, we consider an alternate version of P-tV that is based on
the elimination rules. In contrast to the treatment of P-tV based on the
introduction rules, we show that this version of P-tV does correspond to
IPL when certain details of the setup are met.

In Sect. 2, we introduced the idea of an atomic system. These atomic
systems will form the base case of validity. However, we do not necessarily
want to consider all atomic systems, but rather some specific forms—see,
for example, Piecha and Schroeder-Heister [43,69]. Therefore, fix a notion
of base B (i.e., a subset of all atomic systems). It is these systems that will
form the basis of validity. Henceforth, we consider only atomic systems that
are bases. Thus, given a base B, we may write C ⊇ B to express that C is
a superset of B that is also a base.

Furthermore, in Sect. 2, we discussed the idea of reduction by Prawitz [50].
This also forms an essential part of the definition of proof-theoretic validity.
Presently, we will not fix some particular set of reductions, but rather work
relative to such sets as a parameter. Thus, let R be a set of reductions—that
is, functions from arguments to arguments. While specific features of the el-
ements of R may be desirable (e.g., that they are computable), we shall not
impose any such restrictions until they become necessary.

Definition 19. (Validity for Arguments) Let B ∈ B be a base. An argu-
ment A is B-valid iff:

(1) it is a closed argument ending with an atomic formula and either it is a
B-proof or it R-reduces to a NJ ∪ B-proof
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(2) it is a closed argument ending with a complex formula and, for any
C ⊇ B, for any extension of A by an elimination rule, using C -valid
arguments for the minor derivations and restricting to atomic conclusions
where applicable (namely, ⊥E and ∨E), the result is a C -valid argument

(3) it is an open argument such that, for any C ⊇ B, any extension of A
by C -valid arguments of the assumptions C1, . . . , Cn results in a C -valid
argument.

An argument A is valid iff A is B-valid for every base B.
We may write Γ �B ϕ to denote that there exists a B-valid argument

from Γ to ϕ. Similarly, we may write Γ � ϕ to denote that there is a valid
argument from Γ to ϕ. Immediately by Definition 19,

Γ � ϕ iff Γ �B ϕ for any B

Definition 19 merits some remarks. The restriction to C -derivations with
an atomic conclusion is required to render the definition inductive. In prac-
tice, this side condition only arises in the case of ∨E and ⊥E. However, one
could replace ∧E

1 and ∧E
2 with

ϕ ∧ ψ
[ϕ,ψ]

χ
χ

and the condition would then be more uniformly applied. The original for-
mulation of validity for arguments based on elimination-rules by Prawitz [46]
did not have the restriction and instead omitted disjunction altogether. The
inclusion of disjunction was published in Prawitz [51], where he also refers
to Dummett [10].

Schroeder-Heister [64] observe that the restriction is closely related to
the fact that the definability of first-order logical constants in second-order
propositional ∀ →-logic. In particular,

U ∨ V := ∀X.(U → X) → (U → X) → X

— see Prawitz [50]. This suggests that proof-theoretic validity based on the
elimination rules corresponds to atomic second-order propositional logic Fat,
as studied by Ferreira [13]. In this case, the variable X in the second-order
definition of ∨ is restricted to range over atoms.

There is a question regarding what logic this notion of P-tV represents.
Ferreira and Ferreira [14,15] showed that with the second-order definitions,
Fat corresponds to IPL. Schroeder-Heister [67] notes that this result renders
IPL a good candidate for the notion of validity above, but that there is room
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for doubt as it depends on the choice of B and R. In Sect. 5, we specify some
condition for which the notion of validity in Definition 19 characterizes IPL.

Taking R to only contain Prawitz’s [50] reduction operators does not
suffice to render all the rules of NJ valid.

Example 20. (Schroeder-Heister [67]) Consider ∨E for any B,

if Γ �B ϕ ∨ ψ, Γ, ϕ �B χ, and Γ, ψ �B χ, then Γ �B χ (�B ∨E)

To render this statement true, it suffices to use, in addition to Prawitz’s [50]
reductions, some permutative reductions.

For example, in the case where χ = χ1 ∧ χ2, one has the argument

D
ϕ ∨ ψ

[ϕ]
D1

χ1 ∧ χ2

[ψ]
D2

χ1 ∧ χ2

χ1 ∧ χ2

where D, D1, D2 witness the hypotheses in (�B ∨E).
To show that this argument is B-valid, given that D, D1 and D2 are

B-valid, we may use the following permutation reduction:

D
ϕ ∨ ψ

[ϕ]
D1

χ1 ∧ χ2

[ϕ]
D2

χ1 ∧ χ2

χ1 ∧ χ2

χi

�i D
ϕ ∨ ψ

[ϕ]
D1

χ1 ∧ χ2
χi

[ψ]
D2

χ1 ∧ χ2
χi

χi

We carry on reducing until the conclusion is an atom, at which point we
appeal to (1) in Definition 19.

We remain agnostic as to exactly what reductions are used:

Condition 21. The set of reductions R is such that the use of disjunction
elimination (i.e., ∨E) is a B-valid argument.

That is, the argument

χ1 ∨ χ2

Γ, [χ1]
B1
χ

Γ, [χ2]
B2
χ

χ

is B-valid whenever B1 and B2 are B-valid.
Furthermore, for any C ⊇ B,

ΓB
χ1 ∨ χ2

Γ, [χ1]
B1
χ

Γ, [χ2]
B2
χ

χ
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is C -valid whenever B is B-valid, and B1 and B2 are C -valid.

We return to the issue of reduction operators and bases in Sect. 5. Presently,
we require only that the notion of reduction can eliminate any extraneous
logical content from a B-valid argument:

Condition 22. If there is a B-valid argument from P ⊆ A to p ∈ A, then
there is a B-derivation from P to p.

The same idea allows us to characterize exactly what it means for a for-
mula χ to be a vacuous assumption in an argument. This means either that
there already exists a valid argument for it relative to the current assump-
tions, so that it needs not be assumed itself; or it means that whenever there
is a valid argument from it, there is a valid argument without it. These two
cases correspond to the left and right directions of the following condition:

Condition 23. The set of reductions R is such that the following holds:

Γ �B χ iff ∀C ⊇ B, ∀p ∈ A, if χ,Γ �C p, then Γ �C p

This completes the definition of P-tV.

4. Base-extension Semantics

As explained in Sect. 1, by ‘base-extension semantics’ we mean semantics for
a logic in terms of proofs in a base. There are many varied examples of B-eS
in the literature including, inter alia, Eckhardt and Pym [12] for modal logic,
Gheorghiu et al. [18,19] for substructural logic, Makinson [34] for classical
logic, Nascimento [37,72] using multi-bases, and Piecha et al. [41,42,44] and
Stafford [71] for super-intuitionistic logics. Also related, taking a slightly
more general scope, is work by Goldfarb [22]. In this paper, we follow the
version of B-eS by Sandqvist [58,59].

The B-eS for IPL given by Sandqvist [59] only admits certain atomic
systems. A Sandqvist Base is a an atomic system containing only atomic
rules of the form

c
p1 . . . pn

c

[Q1]
p1 . . .

[Qn]
pn

c

where Q1, . . . , Qn are (possibly empty) finite sets of atoms. The set of
Sandqvist bases is denoted S.

The B-eS for IPL is defined by the following support judgment:
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Figure 4. Base-extension semantics for IPL

Definition 24. (Support in a Base) Support in a base B — denoted �B

— is defined inductively satisfying the clauses of Fig. 4. First, we define
a one-side judgment and use (Inf) to define a two-sided judgment (thus,
Δ �= ∅). Finally, we define support by quantifying over bases, which may
be one-sided or two-sided.

There are clear similarities between the B-eS and P-tV. Perhaps most
striking is the treatment of disjunction (∨). In the case of the B-eS, the
‘second-order’ definition adumbrates the categorical expression of P-tS by
Pym et al. [54,55] and the logic programming perspective by Gheorghiu
and Pym [20]. Importantly, Piecha et al. [41,42,44] have shown that the
semantics obtained by replacing (∨) in Fig. 4 with a Kripke-like clause for
disjunction

�B ϕ ∨ ψ iff �B ϕ or �B ψ

is incomplete for IPL. Stafford [71] has shown that it corresponds to a super-
intuitionistic logic known as inquisitive logic.

We require only two background results:

Lemma 25. (Sandqvist [59]) �B ϕ ∨ ψ iff, for any χ and any C ⊇ B,
ϕ �C χ and ψ �C χ, then �C χ.

Theorem 26. (Sandqvist [59]) Γ � ϕ iff Γ � ϕ.

We want to relate this semantics directly to the construction of intuition-
istically valid arguments. The theorem cannot be generalized as follows:

Γ �B ϕ iff Γ �NJ∪B ϕ

An immediate counter-example is given in the case where Γ = ∅ and ϕ = ⊥.
Aside: In this paper, ⊥ cannot be proved in a base B — that is, �B ⊥ is
impossible. Indeed, it is not grammatical as bases only concern non-logical
content and, in this paper, ⊥ is regarded as a logical construct! While there
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are versions of P-tS in which ⊥ is included in bases — see, for example,
Piecha et al. [42] — we follow the set-up of Prawitz [46] and Sandqvist [60]
where it is not.

Nonetheless, the base case holds and plays an important part in the proof
of completeness:

Lemma 27. (Sandqvist [59]) Let P ⊆ A and p ∈ A,

P �B p iff P �B p

Rather than focusing on the notion of derivability, we may recover a
version of the generalization by focusing of valid argument. This is the main
result of the paper, Theorem 34:

Γ �B ϕ iff Γ �B ϕ

Since P-tV considers arguments and their dynamics and B-eS represents
only a judgment of formulae, we may think of them as the operational and
declarative counterparts of the same proof-theoretic semantics.

5. From Proof-Theoretic Validity to Base-Extension Semantics

5.1. Constructivity, Intuitionism, and Validity

Schroeder-Heister [65] observes that P-tV represents a ‘constructive’ notion
of validity. In this section, we explore this idea as it explicates how P-tV
relates to B-eS. We can understand this through realizability : formulas are
realized by objects, known as realizers, whose existence certifies the validity
of the formula.

In the BHK interpretation of IPL, a realizer of a formula ϕ → ψ is a
function that takes as inputs a realizer of ϕ and outputs a realizer of ψ — see
Sect. 2.3. This functional relation is what makes the semantics constructive,
as the functions construct a realizer for ψ from a realizer for ϕ.

In P-tV, a realizer for ϕ → ψ is a valid argument for ϕ → ψ. This is
identified with a valid argument from ϕ to ψ. Thus, in adopting P-tV, we
move from functions to arguments as the method for creating realizers.

Recall that P-tV (Definition 19) is paramaterized on a sets of reductions
R. Precisely what notion of constructivity it expresses depends on what
reductions are adopted. Presently, we present some conditions that should
express the intuitionistic notion of constructivity. In Sect. 7, we discuss how
this analysis changes as the target logic changes.

Firstly, for intuitionism, we expect at least the introduction rules to be
valid constructors. Thus:



From Proof-Theoretic Validity...

Condition 28. The set of reductions R is such that uses of the introduction
rules comprise valid arguments.

For example, the argument
ϕ1 ϕ2

ϕ1 ∧ ϕ2

is a valid argument for any ϕ. By Definition 19, this means that for any
B-valid arguments for ϕ and ψ, one has a B-valid argument for ϕ ∧ ψ.

Observe that the traditional reduction operators by Prawitz [50] suffice
for Condition 28. This follows as Definition 19 essentially requires one to
assume a B-valid argument for the premises and then apply an elimination
rule, and the reductions precisely return the assumed argument.

Secondly, we require understanding the conditions under which one has
a realizer for ⊥. In contrast to BHK, the answer ought not to be ‘never’ in
P-tV, as presumably one should be able to conclude ⊥ from an inconsistent
set of assumptions. We return to this in Sect. 6. Dummett [10] proposes the
following for intuitionism:

Condition 29. The set of reductions R is such that the following holds:

Γ �B ⊥ iff Γ �B p for all p ∈ A

Thirdly, Schroeder-Heister [66] observes that constructive semantics fol-
lows the standard dogma of semantics in which the validity of a consequence
is understood as the transmission of the validity of assumptions to the con-
clusion. Hence, by Definition 1919, a B-valid argument from ϕ to ψ trans-
mits C -validity of ϕ to ψ for C ⊇ B. Hence, accepting this standard dogma,
we impose the following:

Condition 30. The set of reductions R is such that the following holds:

Γ �B ϕ iff ∀C ⊇ B, if �C ψ for ψ ∈ Γ, then �C ϕ

This concludes the analysis of constructiveness, intuitionism, and validity.

5.2. From Proof-Theoretic Validity to Support

In summary, the conditions for reductions R are such that for any base B:

– (Condition 21) The full disjunction-elimination rule applies, not only
when it has atomic conclusions.

– (Condition 22) If there is a B-valid argument from atomic assumptions
to an atomic conclusion, then there is a B-derivation from those assump-
tions to the conclusion.
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– (Condition 23) A formula is not required as an assumption if there is a
B-valid argument with the same open assumptions except the formula.

– (Condition 28) The introduction rules construct B-valid arguments.

– (Condition 29) There is a B-valid argument concluding ⊥ iff there are
B-valid arguments concluding p for any atom p ∈ A.

– (Condition 30) The standard dogma of semantics — that is, the trans-
mission view of consequence — applies to B-validity.

We call a set of reductions satisfying these conditions supportive. Relative
to such reductions, entailment (P-tV) and support (B-eS) coincide. This is
the content of Theorem 34, below.

Lemma 31. If the set of reductions is supportive, the following hold:

Γ �B ϕ1 ∧ ϕ2 iff Γ �B ϕ1 and Γ �B ϕ2 (∧-right)

χ1 ∨ χ2, Γ �B ϕ iff χ1, Γ �B ϕ and χ2, Γ �B ϕ (∨-left)

Γ �B ϕ → ψ iff ϕ, Γ �B ψ (→-right)

(∧-left)

We demonstrate only one illustrative case, the others being similar.

Proof of ∨-left. First, we show that χ1 ∨χ2, Γ �B ϕ implies χ1, Γ �B ϕ
and χ2, Γ �B ϕ. Let A be a B-valid argument witnessing χ1 ∨ χ2, Γ �B ϕ.
Observe that A is also a B-valid argument witnessing χi, χ1 ∨ χ2, Γ �B ϕ
for i ∈ {1, 2}. If χ1 ∨ χ2 does not occur in A, then the proposition holds
trivially. If χ1 ∨ χ2 does occur in A, let Bi be the use of ∨I,

χi

Bi
χ1 ∨ χ2

Observe that Bi is B-valid by Condition 28. Moreover, observe that Bi

witnesses χi, Γ �B χ1 ∨ χ2. The desired result follows from Condition 23.
Second, we show that χ1, Γ �B ϕ and χ2, Γ �B ϕ, together imply χ1 ∨

χ2, Γ �B ϕ. Let A1 and A2 be valid arguments for the assumptions. Let B
be as follows:

χ1 ∨ χ2

[χ1], Γ
A1
ϕ

[χ2], Γ
A2
ϕ

ϕ

By Condition 21, argument B is B-valid argument. It witnesses the desired
conclusion.
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This Lemma simplifies the presentation of the argument that proof-
theoretic validity is equivalent to support; that is, the proof of Theorem 34.

Proposition 32. (Monotonicity in P-tV) If Γ �B χ and C ⊇ B, then
Γ �C χ.

Proof. This follows immediately from Definition 19 by the monotonicity
of derivability in a base — that is, �B p implies �C p for any C ⊇ B.

Proposition 33. (Monotonicity in B-eS) If Γ �B χ and C ⊇ B, then
Γ �C χ.

Proof. This was shown by Sandqvist [59].

We regard these propositions as sufficiently basic statements that we may
apply them without explicit reference.

Theorem 34. Assuming the set of reductions for arguments is supportive,

Γ �B ϕ iff Γ �B ϕ

Proof. We proceed by induction on the multiset ordering induced by the
ordering on the size of formulas (i.e., the number of logical constants they
contain):

– Base Case. We have Γ ∪ {ϕ} ⊆ A. We reason as follows:

Γ �B ϕ iff Γ �B ϕ (Cond. 22)

iff Γ �B ϕ (Lemma 27)

– Inductive Step. There is a non-atomic χ ∈ Γ ∪ {ϕ}. We distinguish
case when χ is on the right and on the left, χ = ϕ and χ ∈ Γ. Certain
steps are immediate consequence of unpacking Definition 24, they have
been labelled by the definition without further elaboration. Throughout,
we label the use of the induction hypothesis by ‘IH’.

Let χ = ϕ. We proceed by case analysis on the structure of ϕ:

– ϕ = ⊥. We reason as follows:

Γ �B ⊥ iff Γ �B p for all p ∈ A (Cond. 29)

iff Γ �B p for all p ∈ A (IH)

iff Γ �B ⊥
The last line follows easily from (Inf) and (⊥) in Fig. 4.
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– ϕ = ϕ1 ∧ ϕ2. We reason as follows:

Γ �B ϕ1 ∧ ϕ2 iff Γ �B ϕ1 and Γ �B ϕ2 (Lemma 31)
iff Γ �B ϕ1 and Γ �B ϕ2 (IH)

iff Γ �B ϕ1 ∧ ϕ2

The last line follows easily from (Inf) and (∧) in Fig. 4.
– ϕ = ϕ1 ∨ ϕ2. We reason as follows:

Γ �B ϕ1 ∨ ϕ2 iff ∀C ⊇ B ∀p ∈ A, (Cond. 23)

if Γ, ϕ1 ∨ ϕ2 �B p, then Γ �B p

iff ∀C ⊇ B ∀p ∈ A, (Lemma 31)

if Γ, ϕ1 �B p and Γ, ϕ2 �B p, thenΓ �B p

iff ∀C ⊇ B ∀p ∈ A, (IH)

if Γ, ϕ1 �B pand Γ, ϕ2 �B p, then Γ �B p

iff Γ �B ϕ1 ∨ ϕ2

The last line follows easily from (Inf) and (∨) in Fig. 4.
– ϕ = ϕ1 → ϕ2. We reason as follows:

Γ �B ϕ1 → ϕ2 iff Γ, ϕ1 �B ϕ2 (Lemma 31)

iff ∀C ⊇ B, if �C ψ for ψ ∈ Γ, ϕ1, then �C ϕ2 (Cond. 30)

iff ∀C ⊇ B, if �C ψ for ψ ∈ Γ, ϕ1, then �C ϕ2 (IH)

iff Γ �B ϕ1 → ϕ2

The last line follows easily from (Inf) and (→) in Fig. 4.

This completes the case analysis.

Let χ ∈ Γ. That is, we have χ,Δ �B ϕ for some set Δ. We proceed by
case analysis on the structure of χ:
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– χ = χ1 ∧ χ2. We reason as follows:

χ1 ∧ χ2, Δ �B ϕ iff ∀C ⊇ B, if �C ψ for ψ ∈ Δ and (Cond. 30)

�C χ1 ∧ χ2, then �B ϕ

iff ∀C ⊇ B, if �C ψ for ψ ∈ Δ ∪ {χ1, χ2}, then �C ϕ
(Lemma 31)

iff ∀C ⊇ B, if �C ψ for ψ ∈ Δ ∪ {χ1, χ2}, then �C ϕ
(IH)

iff ∀C⊇B, if �C ψ for ψ∈Δ and �C χ1 ∧ χ2, then �B ϕ
(Def 24)

iff χ1 ∧ χ2, Δ �B ϕ (Def 24)

– χ = χ1 ∨ χ2. We reason as follows:

χ1 ∨ χ2, Δ �B ϕ iff χ1, Δ �B ϕ and χ2, Δ �B ϕ (Lemma 31)

iff χ1, Δ �B ϕ and χ2, Δ �B ϕ (IH)

iff χ1 ∨ χ2, Δ �B ϕ

The last line follows easily from (Inf) and Lemma 25.
– χ = χ1 → χ2. We reason as follows:

χ1 → χ2, Δ �B ϕ iff ∀C ⊇ B, if �C ψ for ψ ∈ Δ and (Cond. 30)

�C χ1 → χ2, then �B ϕ

iff ∀C⊇B, if �C ψ for ψ∈Δ and χ1 �C χ2, then �B ϕ
(Lemma 31)

iff ∀C⊇B, if �C ψ for ψ∈Δ and χ1 �C χ2, then �B ϕ
(IH)

iff ∀C⊇B, if �C ψ for ψ∈Δ and �C χ1→χ2, then �B ϕ
(Def. 24)

iff χ1 → χ2, Δ �B ϕ (Def. 24)

This completes the induction.

A corollary is an affirmative answer to Prawitz’s Conjecture for P-tV
based on the elimination rules:

Corollary 35. Assuming the set of reductions for arguments is supportive
and restricting to Sandqvist bases,

Γ � ϕ iff Γ � ϕ
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Proof. We reason as follows:

Γ � ϕ iff Γ �B ϕ for all B ∈ S. (Def. 19)

iff Γ �B ϕ for all B ∈ S. (Theorem. 34)

iff Γ � ϕ (Def. 24)

iff Γ � ϕ (Theorem 26)

We have given precise conditions under which P-tV and B-eS coincide. It
remains to determine precise what sets of reductions are indeed supportive;
as Schroeder-Heister [67] observes, the reduction used by Prawitz [50] do
not suffice (see Sect. 3). We leave this to future work.

6. Ex Falso Quodlibet?

In Sect. 5, we accepted the meaning of ⊥ in terms of ex falso quodlibet (EFQ),

⊥
ϕ

The section is motivated by the BHK interpretation of intuitionism (Sect. 2.3)
in which

‘nothing is a proof of ⊥′

This causes an apparent conflict in this paper that requires some explana-
tion.

While realizability and proof-theoretic validity are deeply connected, they
are not the same thing. The realizability interpretation takes place at an
essentially classical meta-level, while proof-theoretic validity takes place at
an essentially intuitionistic meta-level.

What we mean when we say that realizability is classical is that this
‘if. . . , then . . . ’ in its clauses are classical. In the parlance of realizability,
EFQ says the following: If there is a realizer for ⊥, then there is a realizer
for ϕ. Since the antecedent is false, the implication hold vacuously.

By contrast, when we say that proof-theoretic validity is intuitionistic,
we mean that we have chosen the notion of validity to be such that: given a
B-valid argument for ⊥, one may construct a B-valid argument for ϕ. For
this condition to be a definition, we apply a closed-world assumption in the
form of definitional reflection (DR). In this case, the expression of DR is
somewhat different from the version given in Sect. 1. Schroeder-Heister [67]
has given a detailed account and observes that for the particular version of
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DR we use, our bias is ‘to consider “consequential” clauses’ as definitions,
rather than introduction. This is captured in Condition 29 (Sect. 5), which
establishes EFQ as the definition of ⊥.

This distinction between realizability and proof-theoretic validity is why
IPL is not ‘structurally’ complete — see, for example, Pogorzelski [45]. While
the horizontal bar in natural deduction corresponds to realizablity — that
is, the existence of realizers for the things above it guarantee the existence of
the things below it — the implication corresponds to proof-theoretic validity
— that is, there is a B-valid argument for ϕ → ψ iff there is a B-valid
argument from ϕ to ψ.

To end this section, we note that the remarks about the constructiveness
of EFQ being classically justified is not new. Indeed, it is an essential part of
the standard analysis on the relationship between EFQ and the disjunctive
syllogism (DS),

ϕ ∨ ψ ¬ϕ

ψ

— see, for example, Johansson and Heyting [8] and Pereira et al. [40]. How
does the existence of valid arguments for ϕ ∨ ψ and ¬ϕ necessitate the
existence of a valid argument for ψ? It is not that one is constructed from
them, rather it is that in this situation, on the basis of the classical reasoning
at the meta-level in which the arguments exist, we conclude that there must
be a valid argument for ψ. The details are as described below.

Suppose one has B-valid arguments D1 and D2 for ϕ∨ψ and ¬ϕ, respec-
tively. The existence of D1 suggests that there is a B-valid argument D′

1 for
either ϕ or ψ. Suppose that it is D′

1 is a B-valid argument for ϕ, then using
D2, we can construct a B-valid argument for ⊥ using →E,

[ϕ]
D2¬ϕ

⊥ →E

However, there is no B-valid argument for ⊥. Contradiction! Hence, we
must reject our assumption, and the only remaining possibility is that D′

1 is
a B-valid argument for ψ (not ϕ). We thus conclude, by classical reasoning,
from the existence of B-valid argument for ϕ ∨ ψ and ¬ϕ that there is a
B-valid argument for ψ without constructing one.

This work on EFQ adumbrates the readings of ⊥ by Tennant [75,76] and
Fukuda and Igarashi [17] in which it is a declaration about the state of a
construction. More generally, Berto [4] has developed a reading of negation
as a ‘modal’ operator making a declaration about the set of accessible worlds.
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7. Conclusion

Proof-theoretic semantics is the approach to meaning based on proof (as
opposed to truth). There are two broad approaches to it in the literature:
proof-theoretic validity (P-tV) and base-extension semantics (B-eS). The
former is a semantics of arguments, and the latter is a semantics of a logic
in terms of arguments. Heuristically, P-tV provides a semantics by taking
a sequent as valid iff it admits a valid argument. In this paper, we demon-
strate that a certain version of P-tV provided by Prawitz [46] (see also
Schroeder-Heister [67]) contains the same semantic content as the B-eS for
IPL provided by Sandqvist [59]. This explains why this B-eS is complete.

To make the connection between P-tV and the B-eS of IPL, the pa-
per considers carefully the notions of reduction and base that capture the
‘constructive’ content of intuitionistic proof. This follows from the BHK in-
terpretation of intuitionism (see Sect. 2). This, of course, raises the question
of whether or no the other logics can be similarly captured. For example,
there are B-eS for a variety of modal [12] and intuitionistic substructural
logics [18,19] relative to which the kind of analysis in this paper could be
performed. Thus, future work includes extending the analysis herein to these
domains and thereby understanding the consequential reading and construc-
tive content of these logics.

On this note, we may particularly ask for a truly consequential reading
of classical entailment. According to Dummett [9]:

In the resolution of the conflict between these two views [the truth-
theoretic reading of classical connectives, and the demand that it be
explained without recourse to the principle of bivalence] lies, as I see
it, one of the most fundamental and intractable problems in the theory
of meaning; indeed in all philosophy.

Sandqvist [58] addressed this with a B-eS akin to the one in this paper. This
work takes → and ⊥ as the only primitive connectives and provides the same
B-eS for IPL, but with atomic systems restricted to rules without discharge
(other choices are also possible - see Sandqvist [60,61]). This provided an
anchor relative to which one can investigate classical logic.

In parallel, Gheorghiu and Pym [21] have shown that the key factor driv-
ing the proof-theoretic semantic distinction between intuitionistic and clas-
sical logic lies in the interpretation of disjunction (cf. Dummett [11]). More-
over, just as intuitionistic logic corresponds to the (simply typed) λ-calculus
as a canonical instantiation of the realizability (i.e., BHK) interpretation,
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classical logic corresponds to the λμ-calculus (see Parigot [38]). In this con-
text, Pym and Ritter [52] have shown that one can give two natural inter-
pretations of disjunction, both of which are constructive, through λμ-terms,
one corresponding to intuitionistic disjunction and the other corresponding
to classical disjunction. Investigating the concept of proof-theoretic validity
for classical logic relative to these findings remains future work.
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