UNIVERSITY OF
Southampton

University of Southampton Research Repository
Un ty of Southampton Research Repositor

Copyright () and Moral Rights for this thesis and, where applicable, any accompanying data are
retained by the author and/or other copyright owners. A copy can be downloaded for personal non-
commercial research or study, without prior permission or charge. This thesis and the accompanying
data cannot be reproduced or quoted extensively from without first obtaining permission in writing from
the copyright holder/s. The content of the thesis and accompanying research data (where applicable)
must not be changed in any way or sold commercially in any format or medium without the formal

permission of the copyright holder/s.
When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g.

Thesis: Author (Year of Submission) "Full thesis title", University of Southampton, name of the
University Faculty or School or Department, PhD Thesis, pagination.

Data: Author (Year) Title. URI [dataset]






UNIVERSITY OF SOUTHAMPTON

Faculty of Social Sciences
Southampton Business School

Deep Learning for Credit Risk Management
Under Market Complexity and Illiquidity

by

Kamesh Korangi

MBA, B.Tech
ORCiD: 0000-0001-6528-5092

A thesis for the degree of
Doctor of Philosophy

June 2025


http://www.southampton.ac.uk
http://orcid.org/0000-0001-6528-5092




University of Southampton
Abstract

Faculty of Social Sciences
Southampton Business School

Doctor of Philosophy

Deep Learning for Credit Risk Management Under Market Complexity and
Iliquidity

by Kamesh Korangi

This thesis investigates three problems relating to the credit or financial risk
management of Small and Medium-sized Enterprises (SMEs) and listed mid-cap
firms. Both types of firms face specific challenges affecting their access to credit.
Mid-caps firms have to deal with various market complexities and are often crowded
out by large-cap firms, whilst SMEs have only indirect market exposure and
collectively are a considerable risk to lenders. By utilising alternative data and recent
advances in deep learning, the three papers formmg this thesis develop and
empirically test a series of novel prediction methods that can contribute to decreasing

the cost of capital for these firms and enhance risk management practices for lenders.

First, in Chapter 1, an introduction is provided outlining the contextual setting of the

thesis, the research aims and the intended contributions of the three papers.

The first paper (Chapter 2) is a study on default prediction for mid-cap firms, which
introduces the challenges they face and modelling issues for predicting the default
term structure. Different deep learning models are introduced and a novel
multimodal architecture is proposed to make effective use of fundamental, market
and pricing data, along with a framework to interpret the model predictions. The
results show that deep learning models are powerful predictors and confirm some

results from the literature.

The second paper (Chapter 3) studies large-scale time-varying portfolio optimisation
for the same class of mid-cap firms. It shows how to filter complex networks at a large
scale by combining existing techniques in a novel way. These networks are then used
as inputs to a deep learning architecture that employs graph neural network models
and a series of further layers for portfolio selection. The results confirm the
effectiveness of using network information when devising portfolios to maximise
return per risk, showing robust performance of the graph neural ne tworks over long
periods. Unlike earlier studies, this study shows that investing in peripheral firms in
the networks might create additional risks. To our knowledge, this is the first study
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that includes firms that defaulted over the data period and explicitly considers
changes in the universe of investable firms over time.

The third paper (Chapter 4) studies credit lines of small and medium-scale enterprises
to predict their default probability using behavioural and network data. Building on
the previous two papers, we use a multimodal model with graph neural networks and
deep learning to advance behavioural credit default prediction models. We use
explicit networks from transactions, ownership and supply chain relationships over a
large set of such firms and together with behavioural data that we derive from the
revolving credit lines usage, we find the behavioural data highly predictive of default
whilst the need for more complex models arises when using the network data.

Finally, Chapter 5 concludes with methodological contributions and the scope of
application of these studies, individually and collectively. It also puts forward ideas
for future studies that could extend the application of deep learning models to other
credit risk modelling problems.
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Chapter 1

Introduction

This thesis puts forward a series of novel credit risk management methods for firms.
Credit risk is the possibility of a loss to the lender due to a borrower’s inability to meet
their repayment obligations. Managing this risk implies an ability to predict, over a
certain period, the likelihood of borrowers defaulting, quantify the size of the losses if
they do default, and understand various common risks inherent in such borrowers.
The timing of these risks may also be studied to manage them better. A risky firm
could be denied credit right at the application stage, or a firm’s health could
deteriorate after credit has been granted, implying that models are needed for credit
assessment, monitoring and portfo]io risk management. As credit is fundamental to
economic and financial stability and thus systemically important, it is also a highly
regulated area, often overseen by central banks. Hence, firms need to understand the
models that are subject to regulatory requirements as part of their credit risk
management processes. Effective and transparent credit risk model development is

key to advancing all of these areas of credit risk management.

Firms are typically classified based on their size, according to revenue or number of
employees. In this thesis, we focus on listed mid-cap firms and small and
medium-sized enterprises (SMEs). Figure 1.1 provides a comprehensive categorisation
of firms by size, with higher layers in the pyramid being associated with fewer firms.
In the literature, we see that large-caps are often the focus of study as clean data is
available for such listed firms. However, due to their strong competitive position,
their defaults are less susceptible to market factors and are more due to isolated
governance issues. This means they have low default rates, and with a low volume of
firms, they lend themselves less to statistical analysis. Mid-caps may be better suited
for credit risk studies, but they do present data availability problems. Also, they may
be prone to changing their accounting methods and could exhibit illiquid trading
patterns. Therefore, current credit risk models for listed mid-cap firms tend to still be
primarily qualitative, with only a few quantitative factors. For example, they may
combine industry, business, and governance risk factors into a single firm rating or
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feature qualitative judgements made by analysts. In contrast, SMEs are generally
private enterprises with similar information asymmetry issues, and timely data is
even more complex to acquire for research purposes. Credit risk models for SMEs
typically have more in common with quantitative models for individual borrowers, as
SME:s are far more numerous than listed large-cap firms. By studying both mid-caps
and SMEs, albeit in different papers, we are able to redeploy some of the techniques
we propose for listed mid-caps to overcome some of the data issues for SMEs. Our
research thus starts with default prediction for mid-caps and ends with a similar
problem for SMEs, employing methods that are connected primarily through deep
learning and network models.

Credit assesment: Rating Agencies.
Credit modeds: Qualtiative modelling
Debt Lending: Markets

@ Credit assesment: Intemal rafings! Rating Agencies
o M Credit models: Qualtiafive modeling
§§ id-caps Debt Lending: Banks/Private Equity/ Market
& =

Credit assesment: Internal raings
Credit models: Qualtiative modelling
Debt Lending: Banks/Private Equity

Credit assesment: Intemnal ratings/ Extemnal bureaus

- Credit models: G ive and i
medium scale Debt Lending: Banks/ Specialist Lenders/ Govemment Agencies
enterprises

small scale Credit assesment: External bureaus
- Credit models: Quanbtative modeling
gnierprises Debt Lending: Banks/ Specialist lender

Private
individuals

FIGURE 1.1: Types of firms by size and typical credit risk models and main credit or
debt providers for such firms. Sources: Modified and adapted from multiple sources
(Chan and Lazzara, 2015; Commission, 2021; Jayroe, 2024)

Deep learning models are a subset of Machine Learning (ML) methods, which are, in
turn, an important class of Artificial Intelligence (AI) methods. Deep learning models
have produced state-of-the-art results in various domains, aided by breakthroughs in
computational techniques. They are particularly adept at extracting relationships
where the data is available on a large scale but could be sparse or assume different
formats such as textual, networks or image data, all of which are unsuitable for earlier
classes of Al methods. In this thesis, we further build upon these models to adapt
them for credit risk problems and, in doing so, improve the performance of credit risk
models and also find novel ways to build deep learning architectures that use
different forms of data. Furthermore, we empirically test them over extended time

frames or a large population of firms.



Starting with all US mid-caps over a period of 30 years, the first paper addresses
empirical evidence in credit risk pricing suggesting that existing models
underestimate the market-implied risk. This shows that further improvement in the
modelling is necessary, and we seek to address that by taking a more holistic view and
considering different data sources with varying frequencies of observations. With only
deep learning models able to effectively handle daily data combined with annual
statements, we adapt a transformer model and develop a training routine for it to
extract maximum value from the data. We use a single deep learning model to
establish the whole term structure of default, which is impossible with many
traditional models. This study also shows us that deep learning models are suitable

where data is large-scale but sparse, with missing data.

Improving the accuracy of default prediction for each firm, using firm-level data, is
only one part of the process. All of these firms operate within a shared market
environment and face similar business and competitive pressures. This leads to
correlated risks, which creates new risks for portfolio management. In the second
paper, we work on the same dataset of mid-caps, but now analyse their relationships
more extensively and seek to build portfolios that can outperform traditional portfolio
optimisation methods. Using a combination of network filtering and graph neural
networks, we develop novel methods that go beyond conventional linear covariance
matrices to decide on the capital allocation for such firms. Unlike previous studies
that commonly ignored defaulted firms, we explicitly include them in our universe of
firms, which adds to the practical appeal of our method.

For the third paper, we combine some of the methods of the first and second paper
and apply them to a unique large-scale SME dataset. We partnered with one of the
largest financial institutions to source the data, which covers a large collection of SME
firms and explicit networks between them. Unlike in the first two papers, the problem
we concentrate on is credit monitoring, for which use the firms’ behavioural data. We
propose a deep learning multimodal architecture that combines the graph neural
networks used in Paper 2 with the architecture from Paper 1, to create a robust model.
This is able to distill information from large-scale networks with multiple relationship
factors. This study thus seeks to quantify the predictive value of these networks for
SMEs and the stability of using such complex signals for default prediction.

The rest of this introduction chapter is structured as follows: We start with the
economic contributions by SMEs and the challenges they face, in Section 1.1. In
Section 1.2, we further characterise their environment by looking at the current state of
credit risk models (Section 1.2.1) and the leading players in this industry

(Section 1.2.2), and by giving a brief overview of regulations that govern these credit
risk models (Section 1.2.3). Looking for solutions, next, we provide a brief overview of
deep learning models (Section 1.3), with the history in Section 1.3.2, different data
inputs they work with (Section 1.3.3), model assessment, and ﬁnally surveying some
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relevant existing studies that use deep learning in finance (Section 1.3.7). In

Section 1.4, we then introduce the primary objectives of this thesis, bringing together
all the questions raised up to that point. Finally, Section 1.5 concludes the introduction
by setting out the contributions made by each of the papers in answering those

research objectives.

1.1 SMEs and the challenges they face

Worldwide, Small and Medium-scale Enterprises (SMEs) are the largest job generators
and significant contributors to any national economy. The SME definition varies by
country and region; in Europe, these are firms with revenue of less than 50 million
euros and fewer than 250 employees. In the US, however, the definition varies by
sector, but generally, they have fewer than 500 employees. Typically, they are unlisted
or private firms and have relationships with banks as their primary credit providers.
As employment generators, they provide around 60% of employment in most
countries; in Europe, they are reported to account for 65% for jobs and contribute 52%
of the value generated by all firms (Di Bella et al., 2023).

Compared to larger firms, there is, however, a substantial gap in their access to finance
and especially the cost of capital, which impacts SME growth (Ayyagari et al., 2007;
Rao et al., 2021; OECD, 2024). The process lenders use to score SMEs sits somewhere
between the personalised approaches used for large corporates and the fully
automated credit approval process in place for consumers, as illustrated in Figure 1.1.
This dual approach adds to the cost for the banks and financial intermediaries that
provide SME credit (Munro, 2013). The lack of structured data, ownership issues,
legacy banking systems, and limitations of the models themselves contribute further
to this problem (Beck and Demirguc-Kunt, 2006; Moscalu et al., 2020).

Another risk is their exposure to market or environmental shocks. The 2008 financial
crisis and the 2021 pandemic showed a widening growth gap, with larger firms
emerging much stronger after such shocks. Demirgiic-Kunt et al. (2020) show
significant deleveraging of SMEs after the global financial crisis, indicating a lack of
market access. In contrast, large-caps could access the markets as and when support
mechanisms developed by the government were deployed. This shows a different
mechanism is needed for SMEs. There are structural issues with credit access, which
means that the most innovative firms continue to suffer while non-innovative firms
within SMEs face the cyclical risk of lack of access (Lee et al., 2015). Similarly, the
pandemic has restricted access to capital for SMEs compared to other small firms or
even larger firms with credit constraints (Zhang and Sogn-Grundvag, 2022). Adian
et al. (2020) find larger financing gaps as more information partnerships are required
to be able to provide financing. Although shocks such as these could be quite
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infrequent, they constitute considerable risks that models must be able to cope with.

As a result, traditional models appear less suitable to such firms.

1.2 Credit markets for SMEs

Economic growth is strongly linked to credit growth and the maturity of credit
markets. Studies show asymmetry where the credit flow is towards larger enterprises,
especially during periods of high volatility, which forces SMEs and even larger
unlisted firms to deleverage (Demirgiic-Kunt et al., 2020). This deleveraging impacts
growth on the upturn and job growth. Credit growth is possible when there are
developed institutions that can take credit risk. Among these, financial institutions,
particularly banks, have credit risk as their most significant risk-taking activity.
Financial markets have distributed this credit risk across diverse financial investors,
promising improved risk management by diversifying and matching the risk and
enabling even more growth in the credit markets. Sound credit risk management is
essential as these markets evolve, as several bodies of regulation, such as those based
on the Basel Accords, show. Credit risk management aims to maximise the return on
capital for the lending institution by adjusting for the risk exposure. This exposure is
not limited to loans, but can also stem from other obligations such as guarantees in
trade finance or dealing with several counterparties in different financial products

such as derivatives, foreign exchange, and equity.

High rates of default of businesses have various multiplier effects and impact a
country’s economy as a whole. Given these costs, large-scale investments continue to
improve corporate credit risk management techniques. Over the years, professional
practice has evolved with many businesses providing different services. They include,
for example, rating agencies predicting a firm’s credit risk, data providers aggregating
various data sources, and financial institutions such as banks and investors such as
pension funds or mutual funds developing models of credit risk suitable for their own
purposes. Academic research also continues to develop by studying various factors
that contribute to the failure of firms at the micro and macro level and by introducing
novel models for predicting default. While credit risk models exist for individuals and
firms, modelling practice, too, has evolved, catering mostly to large companies or
individuals. Rating agencies, using a mix of quantitative and qualitative factors, look
to predict the credit risk of borrowers. Their rating process is costly, however, and so is
limited to larger companies (Langohr and Langohr, 2010; White, 2013). Consumer
credit risk is also well understood, with a small number of credit bureaus, such as
Equifax and Experian, rating individual borrowers’ credit risk in various countries.
There is, however, a widely reported gap for smaller and medium-scale enterprises
whose credit needs are not met within the current setup, as we have seen in studies

mentioned earlier for SMEs.
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The difference between the demand for credit and the supply of credit available to
SMEs, including micro-enterprises, globally is a staggering USD 5.2 trillion (Bruhn

et al., 2017). This gap is higher in developing countries where just the credit gap
accounts to around 19 percent of GDP. Later studies have confirmed these gaps; in the
informal sector, these gaps may be even higher. In the UK, a similar situation exists
regarding SMEs, with data suggesting that only 17% of business loans in the UK were
given to SMEs, whilst 83% were made to large corporations (Lu, 2018). The main
solution is a collaboration with technology providers and data providers, which

points towards the need for advanced models (Bruhn et al., 2017).

1.2.1 Corporate credit risk models

In this section, we brieﬂy examine advances made with respect to three main types of
credit models and summarise some of the literature on company default prediction.
We highlight some of the issues with these models and their applicability to the
problems we focus on.

1.2.1.1 Statistical models

Initial research on default prediction models in the academic area starts with the
univariate analysis by Beaver (1966). Altman (1968) introduced multivariate analysis,
which continues to be developed until today.

Beaver used a set of 30 financial accounting ratios and looked to predict the one year
ahead probability of default of a company using five years of history of these ratios.
The data set was a sample of 158 large firms, thus missing out on the defaults in
smaller firms. An optimal cut-off was found for each ratio, which would reduce the
classification error. The cash flow to debt ratio was found to be the most significant
ratio in this prediction model. Altman’s Z-Score model used a set of 22 financial
accounting ratios and a few market equity-based ratios of the past year to predict one
year ahead default probabilities. Five variables were selected using correlation
analysis and significance testing of all the variables. These were used as inputs for the
discriminant analysis models. The discriminant analysis produces a score from a
linear combination of the ratios, called Z-score. The data set was smaller having 66
firms in total, all in manufacturing. However, recognising that large companies do not
fail as often, they were excluded from the analysis, and as smaller companies did not
have the required data, the dataset consisted of mid-size firms. This model was
extended by Altman et al. (1977) into what was called the ZETA model, which made
modifications to the original Z-Score model. A number of studies in between applied
the model to different industries. The new model focused on more prominent

companies with an average of USD 100 million in assets and a longer horizon from
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one year to five years. The dataset consisted of 111 firms. Unlike the original model,
the ratios were adjusted by standardising the variables. The model used seven ratios
and although evidence was found of non-linear relationships, the test sample still

performed well with a linear discriminant analysis model.

Ohlson (1980) developed a logit model for default prediction for similar companies
and called it the O-Score model. These logit models have since been deployed across a
large set of credit risk models for individual consumers and firms. The resulting
models are also widely studied and were extended to private companies using book
values of equity rather than market ratios of initial models and to emerging market
companies with similar ratios. Similar statistical models to predict credit ratings
issued by rating agencies were developed, which are essential in day-to-day practice
as the transition from one rating category to another impacts the portfolio mark to
market losses. In 2007, for a smaller dataset of US-based SMEs, and again in 2010, for a
more extensive set of UK-based SMEs, Z-score model variants were developed that
address the challenge of the non-availability of financial statements (Altman and
Sabato, 2012; Altman et al., 2010). They quantiﬁed behavioural variables such as audit
quality and delays in financial statements or court proceedings, which improved the
model. In our current approach, we deploy techniques that can better use
non-financial information and disparate sources of information instead of explicitly

coding them, thus reducing the cost of producing such information.

Variants of these statistical models such as Moody’s RiskCalc, which was developed
using more than 1.5 million firms and features extensive transformations to the
financial ratios, are successfully used in practice (Falkenstein et al., 2000; Dwyer et al.,
2004). The Altman-based SME models have led to the emergence of fintech firms that
developed these models commercially (Sanga and Aziakpono, 2023). The logistic
regression-based models are extensively used within banks and credit bureau
agencies to calculate a risk score for firms and individuals. Most academic studies
now use logistic regression as a benchmark when developing new models, as we do as

well in our first paper.

1.2.1.2 Structural models

A second set of models are structural models, which use a combination of accounting
and pricing information within an option theoretic framework. Merton (1974)
developed the first such model using Black-Scholes options theory. The latter theory
involves viewing the firm’s equity value as the price of a call option on the firm’s
value, with the exercise price equal to the firm’s debt level. At maturity, the option
pays out if the firm’s value is greater than the debt, or the equity value is zero if the
firm’s value is below the debt level. This pricing model can be converted to predict the
probability of default as equivalent to the probability of the option being exercised



8 Chapter 1. Introduction

from the debt holder’s perspective, and also to determine the credit spreads for the
debt instruments, generally bonds.

Options theory enables asset pricing using the underlying asset’s volatility. However,
the volatility of companies is observable only for public companies from the trading
information of the equity prices. Hence, in its original form, this approach applies to
large companies with public trading information. Also, a firm’s default (PD) and
recovery (RR) is assumed to depend on capital structure, which does not hold in
real-world scenarios. The initial model was easily extended, relaxing certain
assumptions such as flat interest rates (Black and Cox, 1976; Geske, 1977). Black and
Cox later worked on allowing immediate default instead of waiting until maturity.
Vasieck developed a model to price short-term loans (Vasicek, 1984). Kim et al. (1993)
developed a corporate bond valuation model which takes away some of the
assumptions and incorporates real-word features by modelling interest rates and
incorporating other forms of default where a liquidity crunch could precipitate default
even as the valuation of the firm could be high. Their main objective was to model the
credit spreads more closely to the observed spread information in the real world,
incorporating as many drivers of default. Longstaff and Schwartz (1995) showed how
credit spreads of firms with similar default risk can vary significantly if the firms’
assets have different correlations with changes in interest rates. They further extended
their models to price floating rate credit risk. Further studies looked to find the
determinants of credit spread changes. Duffie et al. (2007) used the structural
approach to predict multi-period corporate default, in contrast to most other studies
which focused on one year ahead default prediction. In the first paper of this thesis,
we have a similar focus on producing multi-period probability of default predictions,
as we believe the term structure of default probabilities is more useful in various
applications.

In professiona] practice, Moody’s KMV model uses a structural model approach to
calculate the expected default frequency, with a time horizon of one year (Crosbie and
Bohn, 2003). Compared to the statistical models, one of the difficulties that remains
with this type of model, though, is how to adapt it to private companies, as, for those

firms, no listed equity information is available.

1.2.1.3 Reduced-form models

Reduced-form models avoid many of the assumptions imposed by structural models.
They do assume that a firm’s default time is exogenous and that a default intensity
function drives this default. This function can comprise latent state variables,
accounting ratios, or market-related variables. One of the appeals of doing so is that,
instead of having to estimate the probability of default over a specific time frame,
intensity models can also give the duration to default. For example, Lane et al. (1986)
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applied the Cox proportional hazard model to produce default probabilities for a
dataset of 464 US banks. Their model uses similar ratios as many of the statistical
models discussed in section 1.2.1.1 and was found to perform similarly to
discriminant analysis based statistical models. Jarrow and Madan (1991) developed a
hazard rate model to predict the bankruptcy of non-financial firms, over a period of
thirty years. This paper used the ratios employed by previous statistical methods and
combined them with additional market-based data; the hazard rate model
outperformed others when using market-based data. Jarrow and Turnbull (1995) later
extended these models allowing both the interest rate term structure and credit spread
term structure to be stochastic, unlike previous structural models which assumed
interest rates as fixed. These models were further adapted to use credit rating
information and transition information. The advantage is that no capital structure
information is needed, and the default is modelled as a Poisson process. Hull and
White (2000), using the term structure of default probabilities, derived bond prices,
applying these reduced-form models to price credit derivatives.

In professiona] practice, these models have been mainly applied to price credit
derivatives like Credit Default Swaps (CDS). One of their advantages is that
macroeconomic factors can be used to model the default process, making these
models quite flexible. However, as they rely on public information, which needs
constant trading information and bond prices, difficulties in applying them to private
companies or companies with illiquid trading patterns, and especially those with
non-tradeable debt, generally make them unsuitable for SMEs or mid-caps.

1.2.1.4 Private company models

Unlike the statistical models discussed earlier, other types of credit models cannot
easily be extended to SMEs or private companies. Companies like Dun & Bradstreet
and Experian do provide business scores for private companies, but they are targeted
towards trade credit for suppliers and purchasers who seek reassurance as to whether
a company can meet the very short term obligations that arise out of these contracts.
In this section, we look briefly at the main models for private companies.

Developed by Moody’s, RiskCalc for private companies (Falkenstein et al., 2000) uses
a statistical approach to determine the most critical accounting ratios to estimate the
probability of default. Their solution is intended for firms too large to be considered a
simple extension of an individual, but without publicly traded equity information.
Each accounting ratio variable is transformed using non-parametric approaches by
interpolation mapping. This is just a univariate analysis for each ratio, which, when
ordered by percentile, has a similar distribution to the default frequency. Lower-rated
firms have exponentially increasing default rates compared to higher-rated firms; the
ratio should exhibit similar characteristics to be included in the model. These
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transformed ratios are used as inputs to the generalised probit model, which generates
unadjusted probabilities of default. The latter are subsequently transformed to
expected default frequencies, which are ﬁnally mapped onto Moody’s rating scale.
The time horizon used by RiskCalc is either 1 year or a longer term of 5 years. The
longer term may be more relevant considering that, at the time a loan is originated,
problematic credit applications were unlikely to be approved.

These models tend to use only accounting information and are trained on a large data
set of private companies, making them more robust. They have later been extended to
include economic indicators as well (Dwyer et al., 2004). In the first part of our thesis,
even though we deal with public companies, they are somewhat similar to private
companies in that financial accounting information is more readily available than
equity pricing information.

1.2.1.5 DPortfolio credit models

Through the 1990s, as credit markets developed innovative products catering to
different kinds of firms and investors, the credit risk management of all such different
products became quite complex. There was no single measure of risk for different
products that would allow one to compare a portfolio of bonds and CDS with
counterparty credit risk. Credit value-at-risk models were developed mainly at banks,
under the impetus of newly introduced regulations, to solve this complexity. These
are portfolio-level models and different to the models discussed earlier as they
aggregate the modelling outputs of individual credit models to the portfolio level.
Two types of value-at-risk models have emerged: default mode models and
mark-to—market models. In the first model, losses occur only when the credit defaults;
in other words, it considers a binary outcome. Mark-to-market models consider a
wider variety of outcomes, namely the transitions between different rating categories
of the borrowers in the portfolio. Losses thus arise whenever the borrower’s
creditworthiness deteriorates or the correlations change between borrowers.

Two well-known credit value-at-risk models are CreditMetrics and CreditRisk+.
CreditMetrics is a methodology developed by JP Morgan (Gupton et al., 1997). The
model aims to arrive at a portfolio value at risk by taking as inputs the user’s
portfo]io, credit rating transition matrices, present credit spreads of individual credits,
recovery rates for each credit, and modelled correlation changes between the credits.
In so doing;, it looks to capture the diversification benefits of a portfolio and recognise
concentration risks that are not easy to capture with firm-level default prediction
models. A structural model is generally used to determine the transition matrices for
each rating to help calculate an individual firm’s credit risk. Given a one-year horizon,
possible credit prices are calculated and discounted to the present time. Correlations
across the credits are used to calculate the portfolio’s market risk, and the difference is
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credit value at risk. These models are deployed at a high level of decision—making to
make efficient use of capital and for regulatory reporting to understand the whole risk
of a bank.

CreditRisk+, developed by Credit Suisse Boston, focuses on default as the main factor
influencing the portfolio’s credit risk (Giese, 2003). It does not use any structural
model assumptions, and models default as an individual Poisson process, similar to
reduced form models. It considers information relating to an exposure’s size and
maturity, as well as the credit quality and systematic risk of an obligor. The inputs to
the model are the credit exposures, borrower default rates, volatilities and recovery
rates. The model’s output can be used to determine the level of economic capital
required to cover the risk of unexpected credit default losses. Given the minimal
inputs, standard default rates, and sector information, the model is easily scalable to
large portfolios and computationally efficient. The default rate process is
independently modelled using macroeconomic factors, making it more responsive to

market changes.

1.2.2 State of the industry

Rating agencies are essential in credit markets for firms, just as credit bureaus like
Experian, Equifax and TransUnion play a similar role for individual consumers. The
impact of the rating firms on the wider industry has been well studied (Frost, 2007;
Agarwal et al., 2016; Camanho et al., 2022). At a sovereign level, the actions of rating
agencies have been scrutinised in public. For corporates, they have been criticised for

over-generous ratings that fuelled the financial crisis.

The main output provided by credit rating agencies is a credit rating scale, denoted by
alphanumeric characters, reﬂect—ing the potential risk of a borrower. Each such rating
could then be mapped to the probability of default over a medium term of 3 to 5 years.
However, the same agencies have largely been unable to cater to the SME segment of
the market, as they use qualitative and quantitative benchmarks to arrive at a rating.
This process is not easily scalable and is limited to the large corporations or sovereign
nations that can afford this process. In our thesis, we look at developing a
comprehensive model to eliminate qualitative criteria that are generally related to
market conditions by incorporating various data sources and allowing the model to

learn these attributes.

1.2.3 State of the regulations

The need to regulate financial institutions increased as credit markets became more
complex and started to pose a systemic risk to the global economy. With the failure of



12 Chapter 1. Introduction

a few institutions well documented, the need for global regulation of credit risk
became essential. Basel I first standardised the risk weights for different classes of
credit, as, previously, every bank was modelling the risk differently. The Basel II
accord fine-tuned these risk weights while allowing more complex models to be built,
borrowing in particular from value-at-risk models. It allowed for internal
ratings-based or standardised approaches (the latter of which penalised banks for not
developing more sophisticated models). The Basel I1I regulations developed since the
financial crisis impose increased capital requirements and also regulate the overall

leverage and minimum liquidity that needs to be maintained within each bank.

Credit risk management is not just about adjusting returns for the risk taken but also
relates to several factors, such as identifying inherent risk, creating tolerances, limits
and adequate credit controls. Firstly, a credit-granting strategy needs to be developed.
This implies modelling credit risks to understand each firm’s credit status before any
credit is granted. Furthermore, appropriate credit monitoring tools must be designed
to track individual credit exposures. These could again involve models that capture
behavioural information. Additional models may be developed to understand
concentration risks inherent in the portfolio, and appropriate provisions must be
made. Not optimising on any of these metrics would lead to costly capital provisions.
An internal rating system is necessary to comply with the Basel Accords and deploy

the capital economically to generate better risk-adjusted returns.

Given all these requirements and considering some of the problems highlighted
earlier, it may be costly for banks to develop even more sophisticated models for
SMEs. Therefore, in our thesis, we set out to develop methods that external
institutions could also explore to model some of the risk in SME credit portfolios.
Using advanced computational methods to increase the precision of these risk
estimates could also decrease the rejection rates for these firms as well as increase the
profitability of institutions engaging in SME lending.

1.3 Deep learning models

This thesis’s main contributions lie in applying advanced deep learning models to
large-scale credit risk management problems. Whereas hitherto techniques in this
domain used to be limited by computing power, as computing availability increased
drastically, credit risk techniques have yet to capitalise on these improvements ful]y.
Moreover, the types of data sources have also become more diverse, and many
alternative data sets are now available that do not just consist of tabular, numeric data.
However, they are typically associated with higher model complexity, and data
processing for such large alternative data sets is again not straightforward.
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Seeking to leverage these computational advances, deep learning models have
produced state-of-the-art results in several domains and created groundbreaking
applications in several industries. In the research presented in the thesis, we look to
apply them to credit risk management problems, showing what adaptions need to be
made to make recent methods in this field suitable to each setting and improve the

predictive power of the models or their risk management properties.

In this section, we will first introduce deep learning methods and trace the history of
some of the earlier studies. We will then discuss their application to different data
types, thereby indicating how we may adapt them to our own data sources. Where
possible, we will also discuss the explainability of these models.

1.3.1 Advances in computational methods

Being part of the artificial intelligence branch of computational studies, deep learning
is a form of computational learning of concepts from the data using successive layers.
For example, the model is trained on the data in supervised learning settings to detect
relationships between the desired output and the input. This is achieved through
developing a hierarchy of concepts or data representations. New concepts or
relationships are learnt as the model processes the data from one layer to another. The
layers closest to the input data tend to capture lower-level concepts, such as
boundaries in images, while the layers closer to the output capture higher-level
concepts, such as whether a face is embedded in the image. As these layers learn
through the data that is served, no formal know]edge discovery is required. We delve
into a brief history and relevant foundational algorithms that make this possible and
link this to the relevance of modern architectures.

Most problems we encounter are in a form where the exact relationship is unknown,
so we must approximate it. In the most simplest form,

Y = F(X;0). (1.1)

Equation 1.1 shows the basic form whereby we are interested in finding the output Y
using the input features X, and we have to determine F () In the credit risk literature,
Y could be a binary variable indicating default or in portfolio optimisation. It could be
a vector of asset weights. X are a set of features that we, as modellers, believe may be
relevant to the output we need. 6 is the set of parameters that can define F(-). Hence,
our task is to find values for these and thus model the relationship between inputs and
output. In this, deep learning models serve the same purpose as traditional models. In
non-deep learning methods, however, certain assumptions and constraints are

imposed on the F () ; for example, a linear relationship is assumed when applying
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linear regression methods. This form may be useful when the data is limited or only
certain data features are selected. Most traditional models also assume a certain
distribution of the data, which makes calculating first and second-order moments in
the data tractable and, hence, builds an approximate relationship. Deep learning
methods, in contrast, are more flexible and do not require making as many

simplifying assumptions such as linearity.

This research focuses on two types of deep learning models: sequential and graph
neural network models. Sequential models were first designed for natural language
problems such as language translation, sentiment analysis and vision problems, but
they have a natural application in time series data, too, such as that used for market
analysis and credit risk modelling. In particular, self-attention models like
transformers, originally proposed for language translation tasks, produce
state-of-the-art results and generalise well to other sequential problems (Vaswani

et al., 2017). Secondly, the interest in graph neural networks has also rapidly grown in
recent years due to their ability to exploit the topology of the data to produce
state-of-the-art results in network analysis problems (Scarselli et al., 2009). They are,
for example, suitable to understand the system dynamics of financial networks. In the
papers that make up this thesis, we aim to use these models as a base model and

extend them to capture complex risk structures.

1.3.2 History of deep learning

Deep learning, a subset of machine learning, has attracted considerable attention in
the last decade, significantly influencing a wide array of domains. Marked by several
key milestones, technological advancements, and a series of breakthroughs, its
computational techniques, which mimic human learning, have permeated fields such

as healthcare, finance, and technology.

The perceptron was the first neural network model, developed by Rosenblatt (1958)
based on earlier work by McCulloch and Pitts (1943). This model proposed a single
perceptron which combines the inputs through weight parameters and has an
activation function. However, it could solve only linearly separable problems. The
next significant breakthrough came with the development of the backpropagation
algorithm (Rumelhart et al., 1986). This addressed the limitations of the simple
perceptron by enabling efficient training of multi-layer neural networks. The
algorithm uses gradient descent, which adjusts the weight parameters in each model
layer and minimises the error by propagating it backwards through the layers.

The 1990s saw the development of architectures being built for different data types to
solve particular problems. Convolutional networks were developed by Yann LeCun,
with the first version of LeNet demonstrating the effectiveness of convolutional neural
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networks for image recognition tasks, particularly handwritten digit classification

(Le Cun et al., 1990; Lecun et al., 1998). They introduced the concepts of local receptive
fields or convolutions, shared weights, and spatial subsampling (pooling). In parallel,
Recurrent Neural Networks (RNNs) were introduced by Elman (1990) for sequential
tasks such as language modelling, speech recognition and language translation. They
were further extended by Hochreiter and Schmidhuber (1997) who developed Long
Short-Term Memory (LSTM) networks. Whereas initial RNNs had the problem of
vanishing gradients due to the earliest layers’ weight parameters being very slow to

update, this was resolved largely with LSTM models.

In the next decade, Hinton et al. (2006) introduced Deep Belief Networks (DBNs),
which is a generative model that learns to mimic the input data so that new synthetic
data can be generated. For a specialised task, this generative model is fine-tuned to
produce the required outputs. This utilises initially unsupervised pre-training,
followed by supervised fine-tuning for specific tasks such as classification. This work
created a resurgence in interest in deep learning as it showed the flexibility of different
training regimes on the same model.

In 2012, AlexNet won the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) by a large margin, marking a significant resurgence of CNNs (Krizhevsky
et al., 2012). AlexNet incorporated many novel features at the time, which are
common now. The first model made efficient use of Graphical Processing Units (GPU)
for training the model, which reduced the training times drastically while also
increasing the complexity of the model in terms of the number of parameters that
could be trained. It also incorporated different activations such as ReLU (short for
Rectified Linear Unit), and for regularisation, included dropout layers. GPU-based
acceleration introduced so many improvements that larger models continued to be
built with AlexNet, containing up to 62 million parameters (compared to 60 thousand
in LeNet models earlier). Generative Adversarial Networks, introduced by
Goodfellow et al. (2014), revolutionised the generative modelling ability of deep
learning models, which laid the foundations for the realistic image and video
generation that are commonplace today with the latest diffusion models. The next
significant breakthrough came in the form of the transformer architecture, introduced
by (Vaswani et al., 2017). This eschewed recurrence in favour of self-attention
mechanisms, leading to more efficient training and superior performance on various
Natural Language Processing (NLP) tasks. These transformer architectures have

become the main models for the deep learning progress made in recent years.

Deep learning models have enabled state-of-the-art systems that are also widely used,
such as Google’s Assistant, Apple’s Siri or Amazon’s Alexa. They are commonly
deployed in some form in the recommendation systems we encounter in online
e-commerce or music streaming platforms. Computer vision-related deep learning has
enabled major advancements in object detection, segmentation and recognition,
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encapsulated by systems like YOLO (You Only Look Once) (Redmon, 2016). Similarly,
the NLP field has been transformed with models like BERT (Devlin et al., 2018), GPT
(Generative Pre-trained Transformer) (Radford et al., 2018), and T5 (Text-to-Text
Transfer Transformer) (Raffel et al., 2019), which have pushed the boundaries of

language understanding, translation, summarisation, and question answering.

There are still many active areas of development in deep learning, as further
challenges need to be overcome. Importantly, deep learning models are often treated
as "black boxes", making it hard to understand their decision—making process. This
brings the interpretability of these models” predictions into question. Work in progress
on explainable AI (XAI) techniques aims to provide insights into model predictions
(Barredo Arrieta et al., 2020). Another challenge is linked to the realisation that deep
learning models are computationally intensive and require sigm'ficant resources,
notably as the models increased in complexity over the past few years. Research into
model compression, efficient architectures, and pruning are areas of further interest in
this space. A final example of an area of active interest is the development of fair
models and establishment of ethical guidelines for Al application development as well
as Al research (Cheng et al., 2020; Liang et al., 2021). For instance, a key concern here
is that models are shown to inherit bias from the training data, which can lead to
unfair outcomes for sections of the population (Sahin et al., 2024).

1.3.3 Data inputs

Deep learning has proven especially successful in utilising new (non-traditional) data
sources. Historically, many of these alternative data sources were not amenable to
quantitative analysis. With the latest developments, though, they have become a
powerful source of information. In various application areas, the growing amount of
high-dimensional data, combined with an increase in computation power and new
learning algorithms (i.e. deep learning), are thus allowing data scientists to solve
complex problems. They are, for example, being applied in image and speech
recognition, reconstructing brain circuits, new drug molecule discovery, natural
language understanding and many other fields (LeCun et al., 2015).

Here, we briefly review different types of data, including alternatives to traditional
tabular data, and identify the deep learning methods designed to handle them.

1.3.3.1 Images

The selection and handling of image data types are often critical in designing robust
and efficient deep learning models. The choice of image data type can affect

everything from preprocessing options to the architecture and performance of the
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model. There are several ways in which every pixel in an image can be encoded
(Nixon and Aguado, 2019). One common type are binary images, where each pixel in
an image is 1 (white) or 0 (black). This is ideal for basic segmentation tasks and is
helpful in optical character recognition and in medical imaging to highlight specific
structures. Grayscale images represent intensity values where colour information is
not necessary, but detailed image information is needed for tasks such as facial
recognition or texture analysis. Colour images consist of multiple channels, usually
three (Red, Green and Blue, in short RGB), each of which is similar to the earlier
grayscale encoding. RGB images are used more broadly for image classification and
object detection. More advanced versions can add multiple channels, such as
multi-spectral images or depth images, which capture data across multiple
wavelength bands and distance information from the viewpoints. These are used in
remote sensing, agriculture, autonomous driving, and various other applications that
require an understanding of spatial relationships. These image data are often further
processed by applying normalisation, which scales the values to a defined range,
usually [-1, 1]. This helps train the model with better convergence and stability. The
image is also resized to fit the model input requirements. Techniques like rotation,
scaling, and ﬂipping can provide the model with diverse training datasets. This also
helps the model be robust and generalisable. In the first paper, we also employ the
concept of channels but instead of image data, whose channels tend to have the same
dimensions, we have financial panel data in which the number of dimensions differs
per channel. Hence, we tweak the models to adjust for these differing dimensions.
The complexity comes in with the model architecture and training regimes.

CNNs have been the core models to process image data types. They are designed to
automatically and adaptively learn spatial hierarchies of features from input images.
The basic structure consists of a convolutional layer, activation and pooling layers.
The convolutional layer applies a set of learnable filters to the input image to produce
multiple feature maps. This is done by computing the dot product between the filter
and the image sections. A non-linear activation function is applied on these feature
maps. ReLU (Rectified Linear Unit), i.e. f(x) = max(0, x), is most commonly used,
but Sigmoid and Tanh activations are also possible options. In this thesis, we used the
ReLU activation function. For a survey of various activation functions, we refer the
reader to Apicella et al. (2021). Finally, the pooling layers downsample the dimensions
of the inputs and reduce the spatial size. This is done by either max or average
pooling, whereby the maximum or average values in the filter map are used,
respectively (Gholamalinezhad and Khosravi, 2020). This process is often repeated a
few times to allow learning of different aspects of the data. The model typically will
have fully connected layers where the convolutional feature maps are flattened, and
activation functions such as softmax or sigmoid layers allow the model to be used for
classification or other tasks. Some of the foundational models in this space are:
LeNet-5, which uses two sets of convolutional and pooling layers and one fully



18 Chapter 1. Introduction

connected layer; AlexNet, which has five convolutional and pooling layers and three
fully connected layers using the ReLU function; VGGNet, a simplified version which
performed better; the Inception models, which utilised multiple convolutional filters
sizes to produce efficient spatial hierarchies; and, ﬁnally, ResNet which introduced
skip connections or residual blocks, both of which enable gradients to flow directly
thus enabling very deep networks without any performance degradation (He et al.,
2015). CNNs’ ability to automatically and adaptively learn spatial hierarchies of
features makes them extremely powerful for image recognition. Transformer models

are also being increasingly applied in this space (Han et al., 2023).

1.3.3.2 Sequential data

Sequential data is characterised by dependencies between observations in time or
space. The observations are ordered and dependent on previous time steps. This is in
the form of multivariate time series (e.g. stock prices over time of different stocks),
panel data (e.g. financial statements over time across multiple firms) or language (e.g.
words in a sentence). This form of data is pervasive across many domains, including
NLP, finance, healthcare, and more. Another common feature of this kind of data are
variable-length sequences, which can vary in the history and depth of each sequence,
requiring models that can handle such variance. The context is important here, so the
meaning of neighbourhood and current data points depends on the most recent
historical data. This means the models require memory and methods to pass essential
turning points in the series. Data with time as one of the dimensions is what we
mostly encounter in this thesis, as we dealt with large sets of firms observed over
extended historical periods to arrive at predictions for these firms.

Deep learning models designed to handle sequential data commonly excel in
extracting temporal or spatial patterns, making them indispensable for speech
recognition, language translation, and time-series forecasting tasks. LSTM models are
the foundational models that can learn these long-term dependencies and can handle
variable-length sequences. Gated Recurrent Units (GRUs) are a simple alternative to
the LSTM models, with fewer gates and parameters, providing similar performance
and reduced computational complexity. Transformer models have been the
breakthrough models in this area, processing entire sequences in parallel rather than
sequentially, leading to huge improvements in sequential data tasks (Vaswani et al.,
2017). They are superior in handling long-range dependencies, as well as highly
parallelisable, leading to reduced training times. Their use of attention mechanisms
allows the models to focus on different parts of the input sequence when creating the
outputs. These have found applications in NLP tasks such as text classification or
sentiment analysis (in which models learn to categorise text and assess its sentiment).
Furthermore, compared to earlier models, the transformer model improved language
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translation and speech recognition capabilities to a degree that is closer to
human-level performance. In the area of time-series analysis, they have been
integrated in weather forecasﬁng and anomaly detection (Mousavi et al., 2020; Wen
et al., 2022). They also improved the areas of healthcare and genomics in predicting
newer protein structures and gene expression and can detect anomalies much faster

from medical time series (Chandra et al., 2023).

Transfer learning is widely used with these models, as pre-trained models, previously
trained on large tasks, can be fine-tuned for specific domain tasks. For example,
models such as BERT, trained on general language datasets, have been fine-tuned for
NLP tasks in the healthcare or finance domains. This cuts the training cost for
practitioners by a large margin and helps explain the surge in the adoption of these
models. The performance achieved across such a variety of domains shows the
general learning ability of these types of models. Nonetheless, understanding
different models’ nuances, strengths, and appropriate applications remains key to

leveraging deep learning for sequential data tasks.

1.3.3.3 Tabular data

Tabular data is one of the common data types encountered in many domains. It
consists of rows and columns, where each row represents an observation and each
column represents a feature or attribute. While deep learning has traditionally
excelled in handling unstructured data such as images, text, and audio, recent

advancements have made it increasingly effective for tabular data.

Tabular data can comprise different, he terogeneous features where columns could be
of a different data type. It can thus contain a mix of numerical, categorical and ordinal
features. A database of firms, for example, might include features such as revenues
(numerical), sector (categorical) and market capitalisation range (ordinal). Often,
tabular data also contains missing values that need to be addressed. It is common as
well to see the features being related or interacting with each other. These patterns
could often be complex and require sophisticated modelling techniques to be captured
effectively.

Preprocessing and feature engineering are required to prepare these data as inputs to
the models. Normalisation and standardisation are techniques for scaling the features
to a specific range or distribution. This ensures uniformity and improves convergence
during training. Min-Max scaling, which transforms features to the [0,1] range, and
standardisation, whereby features are rescaled to a mean of zero and a standard
deviation of one, are common techniques. Categorical variables need to be encoded,
typically using one-hot encoding, which expands the categorical variable into several
binary features. Design decisions may be taken when multiple categorical values are
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possible for a single feature, which may involve grouping them first and then one-hot
encoding them.

Missing values can, for example, be addressed by imputing the mean, median or
mode. Outlier features can affect some of these, but they may also be winsorised.
Simply removing rows or columns with missing values can lead to data loss; to
minimise this risk, we can impute the missing value but also create a binary
categorical feature for each feature to represent whether the data was replaced. This
technique we have used throughout the thesis.

Fully Connected Networks (FCNs) are the simplest neural network architectures that
deal with tabular data, and they have been shown to work well for regression and
classification tasks on structured data. Wide and deep learning techniques where the
wide component captures feature interactions and deep components capture complex
patterns have been deployed in recommendation systems and predictive analytics
(Cheng et al., 2016). Further use cases have been used to generate embeddings that
can be used in the models, thus reducing the dimensionality and capturing semantic
relationships.

Traditional models that assume linear relationships might not always work well for
tabular data, but deep learning models have not been as successful here as on other
data types (Gorishniy et al., 2021; Shwartz-Ziv and Armon, 2022). In contrast,
tree-based ensemble models such as random forests and XGBoost are consistently
found to perform very well in this context (Grinsztajn et al., 2022). The latest deep
learning model developments are reporting higher performance, but there is no
comprehensive evidence yet that deep learning models will outperform other models
like we often see with other forms of data (Hollmann et al., 2025). Hence, while deep
learning has for some time been dominant in unstructured data domains, its
application to tabular data is still evolving.

1.3.3.4 Graph data

Graphs or network data are structures used to represent relationships among entities.
They appear in numerous domains, including social networks, biological ne tworks,
transportation systems, and the Internet. Graphs consist of nodes (vertices)
representing entities and edges (links) representing relationships between these
entities. For example, they could connect users in a social network or firms in a
relationship network. The graph structure varies with each case. Depending on the
setting, the edges can be undirected, directional or bidirectional. The edges can also
have weights, signifyjng the strength of the relationship. In many graphs, the nodes
and edges also have attributes, which give a set of feature vectors. For a user in a

social network, for example, the node attributes could be profile information, whilst
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edge attributes could include the number of interactions and the kind of interactions
between friends.

There are many techniques to represent the graphs. Especially for larger-scale graphs,
efficiently representing them becomes important as the computational complexity
increases. An adjacency matrix is a square matrix used to represent a finite graph.
Each matrix element indicates whether there is an edge between the corresponding
nodes. The edge list is another form of representation in which each edge is
represented as a tuple. Node and edge attributes could be converted to
low-dimensional vector representations using different techniques while preserving
the graph topology and node features. DeepWalk applies random walks to generate
node sequences and then uses skip-gram to learn embeddings (Perozzi et al., 2014).
Node2Vec extends this model by introducing bias to the random walks (Grover and
Leskovec, 2016). These representations can be used as inputs to deep learning models
that are trained to provide suitable outputs from them.

Deep learning models that were designed to handle graph data, often called Graph
Neural Networks (GNNSs) (Scarselli et al., 2009), have shown substantial promise in
learning from these data structures. Graph Convolutional Networks (GCNs) extend
traditional convolutional neural networks to non-Euclidean graph data (Bruna et al.,
2014). Convolutions are applied over graph nodes, aggregating feature information
from the node’s neighbours. They have been used in node classification and
community detection. Graph Attention Networks (GATs) use the attention
mechanism to assign different weights to the nodes in a neighbourhood, focusing on
the most relevant nodes during aggregation. These are effective in scenarios where the
importance of neighbouring nodes varies. For example, firms in a network can be
influenced more by the major firms’ financial health than some of its other neighbours.
GraphSAGE (Graph Sample and Aggregation) generates node embeddings for
previously unseen data using inductive learning, aggregating features from a sample
of a node’s neighbours. They are used in large-scale graphs and dynamic graphs
where nodes or edges change over time.

GNNS’s have been deployed in various domains. In social ne twork analysis, they are
used for link prediction (for example, a suggestion for adding friends) and community
detection (identifying groups of nodes with similar properties or interests) (Fan et al.,
2019). In recommendation systems, they may be applied for collaborative ﬁ]tering and
content-based filtering to recommend similar items to users (Ying et al., 2018). They
are used in fraud detection to identify malicious behaviour in social networks or
fraudulent transactions in financial networks (Xu et al., 2021). In transport systems,
they may be used for predicting traffic or for route optimisation (Peng et al., 2020). In
many of these settings, GNNs face key challenges regarding scalability and the
dynamic nature of the real world. Hence, techniques such as sampling, efficient sparse
matrix operations, and dynamic embeddings constitute areas of further research.
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Since this thesis uses several of the data types discussed in the previous sections,
ranging from panel data to graph data, we will next discuss how to integrate and
learn from these different data modalities.

1.3.4 Multimodal models

Multimodal learning involves integrating and processing data from multiple
modalities, such as text, image, audio, video, and sensor data (Ngiam et al., 2011).
This approach leverages the complementary information from different data types to
enhance the model’s performance and robustness. Multimodal architectures have
found applications in a variety of domains, including NLP, computer vision,
healthcare, and human-computer interaction. For a full review and applications of
these models, we refer to Jabeen et al. (2023).

Different modalities possess different properties and structures (e.g., the text is
sequential, images are spatial, and audio is temporal), but they also provide
complementary information, which enhances the overall understanding and context.
As an example, combining visual and textual information helps to understand an
image caption better. However, they bring their own challenges, which include the
problem of dealing with redundant or noisy information. Hence, they require robust
mechanisms to filter and integrate useful data.

There are several fusion techniques in multimodal learning (Sahu and Vechtomova,
2021; Pawlowski et al., 2023). Early fusion combines raw data from different
modalities at the initial stage before feeding it into the model. This is the traditional
method and easy to implement. However, it might cause information loss as one
channel might dominate the other. Late fusion combines the outputs only at the final
level while keeping the modalities separately trained until then. This, however, loses
any interactions that could be learnt. Hybrid fusion combines both approaches by
combining intermediate representations and then further training together.

Deep learning-based multimodal architectures are widely being developed.
Multimodal Deep Boltzmann Machines (MDBMs) extend the earlier DBM by using
separate layers for each modality and then using a shared representational layer
(Srivastava and Salakhutdinov, 2012). Multimodal autoencoders combine separate
encoder networks to generate latent representations, which are then decoded into the
original modalities. These effect-ively denoise the data (Zhu et al., 2019) and
image-text alignment tasks (Liu et al., 2023). Multimodal transformers are also quite
effective as the attention mechanism is applied across different modalities and used
for various audio-visual and text tasks (Xu et al., 2023). These have been used in tasks
such as automatic image captioning, visual question answering, and cross-modal
retrieval such as image search via text.
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The aforementioned models present their own challenges in properly aligning and
synchronising data from different modalities with varying temporal and spatial
resolutions. They increase the computational requirements and memory fool-print,
which calls for efficient architectures and parallel processing techniques.
Notwithstanding these challenges, ongoing research and advances in multimodal
learning promise to further expand its applications to complex real-world problems,
enabling more efficient, accurate and interpretable models.

1.3.5 Loss functions

Loss functions, or objective or cost functions, are critical components in neural
networks and deep learning algorithms. They need to be differentiable for the
gradient descent and backward propagation algorithms that deep learning models
rely on in their optimisation, to work. In supervised learning, they generally quant-ify
the difference between the predicted and actual output in absolute or probabilistic
terms. The change in the loss value for each training batch guides the optimisation
process on how to update the model’s parameters. Selecting an appropriate loss
function is crucial, as it directly impacts the model’s performance and convergence. A
number of loss functions are commonly used, depending on whether the problem is
classification or regression.

For classification tasks, the cross entropy loss (CEL) is the most common choice, which
is a log-likelihood function. This is defined for each observation i and summed to

obtain a batch-level loss or full sample loss. Thus, for observation i,

1 C
CELi = = Y. (viclog(P(3;0)) (12)
c=1

Where C is the number of classes, y; is a binary variable indicating whether the final
output belongs to class ¢, and P(yj.) is the predicted probability for that class. In this
thesis, we deal with multi-label classification and binary classification tasks. For the
former, we tweaked this cross-entropy loss to make it suitable for multi-label
classification. In a multi-label problem, the same observation could be in multiple
classes, unlike regular classification, where each observation could belong to only one
class. For binary classification, the loss function is commonly expressed as a sum,

rather than a mean, as shown below.

CEL; = —(yilog(P(9:)) + (1 — i) log(1 — P(7:))) (1.3)

For regression tasks, Mean Absolute Error (MAE) or Mean Squared Error (MSE) are
commonly used. These are also called L1 and L2 loss, respectively.
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Mean Absolute Error (MAE), as defined below, measures the average magnitude of
the absolute differences between actual and predicted values over a sample of size n.
This is useful when the presence of outliers is less severe or when we want to treat all
deviations equally.

1 n
MAE = Y [y — 94 (14)
i=1

Mean Squared Error (MSE) is the average of the squared differences between actual
and predicted values:

1 n
MSE = — 3} (yi — 9:)*. (15)
i=1

These could also be used as optimising criteria within speciﬁc parts of the deep
learning model to restrict the outputs of intermediate layers, which could help

improve the overall model’s performance.

1.3.6 Performance criteria

Performance criteria measure how well the models have performed over the data. The
same functions discussed earlier as loss functions are typically used for regression
tasks, in addition to R? or Adj usted-R2. Other criteria are needed for classification
tasks depending on the data and predicted outcome distribution. Most performance
criteria can be derived from the confusion matrix, shown in Table 1.1.

TABLE 1.1: Confusion matrix for classification tasks

Predicted

Positive Negative
Positive TP FN
Actual “Njooative FP N

For each observation, a classification model either correctly classifies it, resulting in a
true positive (TP) or true negative (TN), or it incorrectly classifies it, which results in a
false positive (FP) or false negative (FN). We can create suitable performance criteria
by taking the count of observations in each of these categories.

The accuracy of the models is widely used when the classes are balanced and can be
defined from the confusion matrix as

Accuracy = (TP+TN)/(TP+FP+ TN +FN). (1.6)
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Furthermore, we can define:

Precision = TP/ (TP + FP) (1.7)
Recall = TP/(TP +EN) (1.8)
Flscore = 2 x Precision x Recall/(Precision + Recall) (1.9)

Recall is also called the true positive rate (TPR), whilst the false positive rate (FPR) is
1 — TPR. These values are used to plot the Receiver Operating Characteristic (ROC)
curve across all thresholds of TPR and FPR. The area under this curve is called the
AUCROC, which is preferred over accuracy in classification tasks where there is a
class imbalance in the data set. This is when one of the class frequencies is
considerably lower than the other classes, as it is regularly encountered in credit risk
modelling settings where loan defaults tend to be much rarer than non-defaults.

In addition to these widely used metrics, customised metrics could be developed
depending on the problem, which might also be suitable as a loss function to optimise
the model. In portfolio optimisation, for example, typically, the Sharpe ratio is the
metric used, which is the average expected return of the portfolio over the risk-free
rate relative to the volatility. We will further discuss this in the relevant chapter.

1.3.7 Applications of deep learning in finance

Machine learning models have a longer history in finance, having seen various
applications such as using support vector machines in classification (Kim and Sohn,
2010) or K-means clustering algorithms. We refer to the comprehensive review by
Nazareth and Ramana Reddy (2023) for machine learning applications in finance. The
recent advances in Al and specifically deep learning models have also found
applications in finance due to their predictive power, ability to extract relationships
from different data types, and generative abilities (for example, when having to

summarise documents).

They have been broadly studied in the finance domain in the following areas.

* Risk management: Deep learning can produce predictions about risk that could
be extracted from existing data sets with better accuracy or from novel
high-dimensional data sets. This thesis is also a prime focus as it seeks to predict

the default of mid-cap companies and SMEs. These predictions could be further



26 Chapter 1. Introduction

used to derive capital provisions in a bank or for investing decisions at other
financial institutions. Other work has used deep learning techniques to analyse
textual data contained in company filings (or other alternative data sets) (Mai
et al., 2019; Stevenson et al., 2021) and detect sentiment or derive other numeric
features that can be fed into the risk management models (Glorot et al., 2011;
Wang et al., 2016).

¢ Trading strategies: Deep learning models have been used to create automated
strategies as they have been found to be good at predicting the best-performing
assets (Nelson et al., 2017; Jiang et al., 2024), or at detecting change points or
regime switches much earlier than other models (Wood et al., 2022). They also

have been used for hedging strategies (Buehler et al., 2019).

¢ Portfolio optimisation: Here, deep learning methods may be employed to find
the best assets to invest in and how much of the available capital to allocate to
them while considering criteria such as minimising portfolio losses or
drawdowns (Hu and Lin, 2019; Zhang et al., 2020). This forms the problem
setting for the second paper of the thesis.

* Generative data: Deep learning models have also been used to simulate market
environments, generating data that could further aid model training (Wiese
et al., 2020). Another application has been in setting up workflows mimicking an
expert using large language models which can summarise large amounts of text,
such as legal documents (Watson et al., 2024; Singh et al., 2024).

In this thesis, we research two of these areas — risk management and portfolio
optimisation. Within risk management, we focus on credit risk, which constitutes the
largest risk for banks. Deep learning models have attracted growing attention in the
credit risk literature, both in individual (consumer) lending and corporate credit. They
have been mainly studied there for default prediction or credit scoring, classifying
borrowers based on their risk grade, or detecting fraud. With the increased availability
of large datasets such as graphs and networks, deep learning models are being trained
on a variety of input data to improve the performance of standard models. They also
serve to understand the value of different alternative datasets being available. This
allows institutions to decide on which data collection procedure to prioritise putting
in place.

In credit risk management, explainability is key, particularly where added regulatory
scrutiny applies. Deep learning models have limitations in this regard. Research is
ongoing to improve them for more general use cases and credit risk management. In
the thesis, we considered some of these developments and adapted them to our areas
of enquiry. Hence, the following section will briefly elaborate on some relevant work
here and how it applies to our work.
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1.3.8 Interpretability

Being able to interpret or understand the predictions of the models is often a
precondition to proceed with deploying the models in real-life scenarios. However,
deep learning models are complex and are thought of generally as black-box models,
especially compared to more traditional models (Sahin et al., 2024). The same
properties that allow them to work on large-scale data, especially those with high
dimensionality or different data modalities, bring out challenges in interpreting them.
Many studies in this area have been on post-hoc explainability, where we try to
understand the models’ predictions after the training has happened (Vale et al., 2022).
Such explanations could be model-agnostic or model-specific. Whereas the former
type can be used with any type of model, the latter are useful only for a particular
architecture. In this thesis, we consider both kinds of explanations to better

understand the models and the risk drivers they identify.

The model-agnostic methods used in part of our work involve a form of Shapley
Additive exPlanations (SHAP) analysis (Lundberg and Lee, 2017), which has been
extended to answer specific questions about the relative importance of different data
sources and around which historical period most influences the predictions. Doing so
requires grouping the features, whilst the results also inform our choice of

architecture.

Having now set out the application context of our research, and the deep learning
advances that underlie our proposed methods, the next section will elaborate on the
objectives of the thesis and the research questions addressed by the three papers.

1.4 Thesis objectives

The broad aim of the thesis is to advance the area of credit risk management using
deep learning approaches, thereby focusing on SMEs and listed mid-cap firms. Small
improvements in these risk management techniques can lead to many benefits, such
as improved access to credit markets for SMEs, whilst the research may equip
investors with cutting-edge tools to improve decision processes, as well as make a
contribution towards making the credit markets more robust to different

macroeconomic environments.

Specifically, the three papers that make up the thesis will address the following

research questions.

The first paper looks to design and test a transformer-based deep learning model for
predicting the probability of default for mid-cap firms over the short to medium term.
One of our starting premises is that, by considering the interaction between credit and
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market risk, we should be better able to model the credit risk of these or other
companies with limited liquidity. Hence, we will incorporate market-related signals
into the credit risk models, thus combining the types of models used in consumer
lending with those in corporate credit risk modelling. To do so, we will need the
capability to model complex interactions inherent to deep learning models. Among
several challenges related to these types of firms, we also seek to address the
difficulties in producing longer-term predictions, which present models cannot
handle. Furthermore, we look to contribute to this strand of research by creating not
only novel deep learning techniques but also providing interpretations for the
predictions of these models. In so doing, we also seek to answer some of the questions
raised in the credit risk literature and provide regulatory insight.

The second paper moves away from firm-level models to understanding the
system-wide dynamics of a portfolio of mid-cap firms. Its first objective is to
investigate how to create a network of correlated firms from such a large universe of
firms with sparse historical data. Secondly, we look to use this topology to construct
an optimal investment portfo]io (in terms of volatility-adjusted returns), using graph
neural network models. In designing our approach, we ensure that companies that
default sometime over the study’s timespan do not have to be omitted; we explore
why other studies do and make the case they should be included. To assess the
effectiveness of our proposed graph neural network solution, we compare the
risk-adjusted returns of the resulting portfolios with those generated by several
established approaches and aim to understand the differences in their respective
strategies. We also study the robustness of the model performance over long periods.

In the third and final paper, network models and multimodal learning are applied to a
large dataset from a major international lender containing information on SMEs and
their revolving credit lines. From this, we derive a series of behavioural features that
we include in our default prediction models. We then aim to study whether adding
network data about other related firms can improve the model’s predictive capability.
We thus aim to quantify the relative value of the network data for this prediction and
also explain the models by identifying the most important behavioural features in the
dataset. This paper thus combines some of the work from the previous two papers
while also analysing behavioural data, which is less well studied in the literature. As
with the first paper, the ultimate aim is that any improvements may improve capital
access for SMEs and /or improve profitability for SME lenders.

1.5 Paper contributions

The main contributions from the first paper on mid-cap corporate default prediction
are as follows. First, we developed a novel deep learning approach to credit risk
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modelling by applying an advanced transformer-based model to time series panel
data. This approach also features a custom loss function and a performance metric
specific to the term structure problem. Second, we put forward a framework for
multimodal learning that combines the different data sources and allows for a
differential training approach to train each model separately. Third, we identified a
suitable method to interpret the predictions of the deep learning model. Specifica]ly,
to establish which data sources and time periods contribute most towards default
prediction, we use a custom method that uses Shapley values to quanﬁfy the relative
importance of groups of variables. Finally, another contribution is to the credit risk
literature, as we show how a multi-horizon probability of default model can be built
within a single model, taking advantage of deep learning techniques, and how this
model produces good results not just in the short-term but over a medium term of
three years.

Our main contributions in the second paper are on portfolio optimisation using graph
neural networks. First, we developed topological portfolio optimisation models for
mid-cap firms, extending the literature that had hitherto focused mostly on stochastic
models for the se gment. Second, we applied advanced dependence measures to a
large set of assets to generate networks that capture the complex relationships that
occur between the return data for different mid-caps. Finally, we showed how these
networks can be fed to graph deep learning models to produce portfolio weights and
compared their performance against traditional approaches. We developed custom
layers that give better training consistency (smoother gradient descent), and we used
the whole deep learning architecture for optimisation. We also explained the selection
and capital allocation strategies and showed that the deep learning models are robust
over time and, most of the time, outperform other methods whilst requiring fewer
transactions. We also contributed to the literature on large-scale portfolio optimisation
by using over 5000 firms and 30 years of data and including firms with high default
risk.

The third and final paper extracted explicit networks from the data and generated
behavioural data from a unique lending data source. We showed that the deep
learning embeddings generated from the network data improve upon the behavioural
predictions by utilising the state of the current network neighbours of a firm. We
found that network information alone can also predict default and remains so during
external shocks when the behavioural data as a whole could be affected and become
less valuable. However, in a typical economic environment, behavioural data
performs well. Using tabular data, we found that the performance uplift from deep
learning models is insigru’ficant. Still, once the data turns more complex, as with the
graph data, the performance gap with benchmark models becomes much more
sizeable, confirrning earlier literature.
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Overall, the thesis addressed the broader question of how deep learning may be
successful]y adapted to credit risk management, particularly in areas where there are
speciﬁc data challenges, such as high dimensionality, different data modalities, or
gaps in the data, that speciﬁc deep learning solutions are well-equipped to handle. It
also highlighted the importance of network data in this domain and its role in

different macroeconomic environments.

1.6 Structure of the thesis

The rest of the thesis is organised as follows. Chapter 2 contains the first paper on
default prediction for mid-caps using transformer-based deep learning models.
Chapter 3 contains the study on mid-cap portfolio optimisation using graph neural
networks. Chapter 4 continues with the work on SME credit lines, using behavioural
and network data for credit risk default prediction. Chapter 5 concludes the thesis,
again highlighting the main contributions and discussing where there is scope for
further research.
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Chapter 2

A transformer-based model for
default prediction in mid-cap
corporate markets 1

Abstract

In this paper, we study mid-cap companies, i.e. publicly traded companies with less
than US$10 billion in market capitalisation. Using a large dataset of US mid-cap
companies observed over 30 years, we look to predict the default probability term
structure over the medium term and understand which data sources (i.e.

fundamental, market or pricing data) contribute most to the default risk. Whereas
existing methods typically require that data from different time periods are first
aggregated and turned into cross-sectional features, we frame the problem as a
multi-label time-series classification problem. We adapt transformer models, a
state-of-the-art deep learning model emanating from the natural language processing
domain, to the credit risk modelling setting. We also interpret the predictions of these
models using attention heat maps. To optimise the model further, we present a custom
loss function for multi-label classification and a novel multi-channel architecture with
differential training that gives the model the ability to use all input data efficiently.
Our results show the proposed deep learning architecture’s superior performance,
resulting in a 13% improvement in AUC (Area Under the receiver operating
characteristic Curve) over traditional models. We also demonstrate how to produce an
importance ranking for the different data sources and the temporal relationships using

a Shapley approach speciﬁc to these models.
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2.1 Introduction

Traditional credit risk models cater to individual consumers with empirical models
(built by applying statistical or machine learning methods to large datasets). In
contrast, corporate credit risk models are often theory-driven or may include a
qualitative component. Rating agencies play an important role in determining
corporate credit risk. That rating process is costly, and it also has a strong subjective
component (Frost, 2007; Rona-Tas and Hiss, 2010). The subjective component is often
needed because, unlike with consumer credit risk models, the small number of firms
may affect the quality of statistical models. Although this approach is appropriate for
large companies, for the much larger population of small to medium-sized companies,
such a qualitative assessment would not be scalable. Neither could we reapply the
same quantitative approaches developed for consumer credit risk, as the default
signal in the corporate setting comes from a complex combination of internal and
external market conditions. In our work, we seek to both remove the subjective
component of the rating process and take a different quantitative approach by
incorporating various data sources such as accounting data, pricing data and general
market data into a multi-channel deep learning model that predicts the default risk of

mid-cap companies that are active in debt (bond or loan) markets.

Mid-cap firms (in short ‘mid-caps’) are defined as firms with USD 1 to 10 billion
market capitalisation and are likely constituents of Dow Jones Wilshire Mid-cap index
or S&P 400 Mid-cap index. Their debt has a shorter legal maturity period of around 5
to 10 years for mid-caps (over 20 years for large-caps). The effective maturity of the
debt can be as short as half the le gal maturity, after considering embedded options
and coupon rates that tend to be higher than those for large-caps. Mid-caps also tend
to differ from large caps in terms of the relative credit risk they pose. In corporate debt
markets, the mid-caps typically hold a non-investment grade credit rating, implying
higher credit risk. Given that the listed mid-cap companies provide public data about
their financial accounts, stock exchanges publish stock prices, and default history is
available, lenders have all the data required to construct sophisticated credit risk
models. In this paper, we use a combination of financial accounting data, historical
pricing data of the firm and general market performance data to predict the
probability of default.

Despite the availability of such data, building such models presents several
challenges. First, the credit spreads or prices implied by the models often differ from
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what is empirically observed, termed as the Credit Spread Puzzle by Amato and
Remolona (2003). This means mid-cap credit risk is not accurately priced and can lead
to underestimation of potential losses. A second challenge is the difficulty in
separating credit risk and market risk for mid-cap firms (Jarrow and Turnbull, 2000).
Finally, the covenants in debt offerings and embedded options make the maturity and
capital structure dependent on market conditions (Liu et al., 2016). All these issues
make it difficult for lenders or investors to assess risk on a large scale, thus limiting
access to credit for the companies involved. To address this, governments have
established supporting institutions providing financing to mid-caps and small and
medium-sized enterprises such as the European Investment Bank (EIB) in Europe and
the British Business Bank in the UK.

Another challenge in building corporate default prediction models lies in the time
horizon of the prediction models. Most credit risk models study the probability of
default over a one-year time horizon due to business practices and regulatory
frameworks such as the Basel Accords (Basel Committee on Banking Supervision,
2003). However, the time between financial distress to an actual default could easily
last longer in firms. In the capital requirement models cited above, this is reflected by
the maturity component of debt, but they are not usually captured by the probability
of default (PD) models. Several methods have been proposed to extend the models to
longer horizons (Duffie et al., 2007; du Jardin, 2015; Altman et al., 2020). Still,
multi-horizon models are not widely implemented due to the lack of large historical
data under different macroeconomic conditions, changes in distribution of the
variables, relationship drift between explanatory variables over time and the changes
in relationship with the dependent variable (du Jardin and Séverin, 2012). Different
models tend to be developed for different time horizons, and generally, an ensemble
of models is used for better performance, making the modelling complex. We are
interested in predicting the probability of default from a short-term horizon of several
months to a medium-term horizon of one to three years, using a unified model. This is
close to the effective maturity of these instruments and considers most lenders’

investment horizons in this area of the market.

The techniques used for default prediction modelling have evolved over time and
very much remain an active area of research (Dastile et al., 2020). Traditionally,
popular linear models such as the logit model or discriminant analysis require making
a large number of discretionary decisions when handcrafting a set of predictive
features, such as the choice of lookback period and aggregation function, and making
some restrictive assumptions about the distribution of the data or the functional form
of the relationship between those features and default risk (e.g. linearity). In addition,
large datasets may also require further feature selection (Jones et al., 2017). On the
other hand, machine learning models allow for a large set of features and can handle

non-linear relationships, which can produce predictive performance gains over linear
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models. However, integrating different kinds of (often diverse) data sources remains
challenging as the process to represent data becomes complex (Mai et al., 2019). Such
data could include non-structured data (such as text or audio) and may contain a mix
of high-frequency data (such as daily price history) and low-frequency data (such as
accounting information). Deep learning models (LeCun et al., 2015), however, can
cope not only with large amounts of data, but, using techniques such as multimodal
learning, they can also handle different types of data effectively (Ngiam et al., 2011).
Furthermore, they are able to identify non-linear correlations over longer time frames,
which other methods could overlook. These properties make deep learning a
promising approach for the mid-cap default prediction setting, as they allow us to use
different forms of data (such as high-frequency pricing data and low-frequency
accounting information) alongside each other and capture how they affect default risk
without the need for manual feature creation.

Within the deep learning community, Long Short-Term Memory (LSTM) models,
originally developed by Hochreiter and Schmidhuber (1997), have for some time been
the common method of choice for time series or sequential data. Therefore, we also
include LSTMs in our study. However, transformer-based deep learning models have
recently produced state-of-the-art results in tasks involving other sequential data such
as text, audio and video data (Vaswani et al., 2017). We expect them to perform
similarly well on time-series data (Wu et al., 2020), as they can capture long-range
dependencies in the data. Crucially, they do not incorporate the position of a data
point in a time series as relevant, which is a different design compared to LSTM-based
models which employ recurrence as a key feature, using the present input and
selected past information to arrive at a prediction. Instead, transformers use the whole
past information along with the present to produce their predictions.

Although deep learning can help increase the accuracy of model predictions,
interpreting how these predictions are derived presents an added challenge. We
address this issue in two ways. Firstly, we will show how transformer models,
although complex, are more transparent than recurrent networks, as they allow us to
visually interpret the temporal relationships extracted from the data using attention
heat-maps. Secondly, we will apply a Shapley approach (Shapley, 1953) to quanﬁfy
the relative importance of groups of variables and the temporal importance of the
data. This will allow us to get sophisticated insights about the mid-cap risk structure.

Therefore, the three key research questions addressed in the paper are:
1. Can an effective transformer-based model be developed that uses accounting,
pricing and market data for mid-cap default prediction?

2. Can this architecture accurately predict a term structure for the probability of
default over a short to medium-term horizon (3 months to 3 years)?



2.2. Literature Review 35

3. Which data sources and past time periods contribute most to the default risk
estimates?

The remainder of the paper is organised as follows. Section 2.2 presents a literature
review on corporate default risk modelling, discussing the popular models, studies on
specific mid-cap issues and relevant machine learning research. Section 2.3 describes
the data used in the paper. The proposed models and the baseline models against
which they are compared are described in Section 2.4. Section 2.5 discusses the
experimental design, custom metrics, the Shapley group method and hyper-parameter
tuning strategies. Section 2.6 presents the results and highlights some discussion
points relevant to mid-cap companies.Finally, Section 2.7 summarises the
contributions and suggests future steps.

2.2 Literature Review

Corporate default prediction research has thus far focused on three types of
approaches. All of these have also seen commercial implementations,by rating
agencies such as Standard & Poor’s (S&P), Moody’s and Fitch Ratings. First, statistical
models for default prediction use accounting information from financial statements
and apply econometric techniques. These models initially used univariate analysis
(Beaver, 1966), later multivariate analysis (Altman, 1968), and they continue to be
developed to the present day (Altman et al., 2020). S&P and Fitch use this approach
commercially and augment the models with expert opinions and industry-specific
metrics. There are, however, limitations to these models. Accounting information
could be restated by management or discretionary changes limit the predictive power
of these models when companies are under financial stress (Beaver et al., 2012). The
second set of models are structural models, which use a combination of accounting
and pricing information, within an option theoretic framework. Merton (1974)
developed the first such model using Black-Scholes option theory. Structural models
are used in commercial applications such as Moody’s KMV model (Crosbie and Bohn,
2003). Despite their ability to use current market price information to predict default,
there are some limitations to these models as well. Assumptions on asset volatility
need to be made as they are not observable and the firm capital structure needs to be
simplified to quantify the value of debt as an option on the firm value. Also, default of
the firm is endogenous to the model and occurs when the asset value drops below
debt outstanding. The real picture, however, is much more complex for mid-cap
companies (Jarrow and Turnbull, 2000). The third type of models are reduced form
models. They use mainly market information and especially credit spread information
of public companies, applying arbi‘rrage-free valuation techniques. Jarrow and
Turnbull (1995) first introduced these models where both the interest rates term
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structure and credit spread term structure are stochastic, unlike previous structural
models which assumed interest rates as fixed. Their main use has been in the pricing
of credit derivatives of large firms. However, as they rely on public trading
information and bond prices, they cannot be applied to private companies or
companies with illiquid trading patterns or non-tradeable debt, which makes them

unsuitable for mid-cap companies.

Mid-cap companies present their own specific challenges to these credit risk models.
Amato and Remolona (2003) first reported the phenomenon of the credit spread
puzzle; i.e., they found that the difference between the model-based credit risk
estimates and the empirical risk increases as credit ratings drop below investment
grade, which is where most mid-cap companies are rated. De Jong and Driessen
(2012) and Lin et al. (2011) have suggested the existence of a liquidity premium as one
possible factor impacting the credit risk estimates for these companies. Beckworth

et al. (2010) found monetary policy shocks to be another factor determining credit
spreads, together with economic conditions. Acharya et al. (2013) further explain the
puzzle by adding shocks to economic conditions through liquidity, especially for
mid-cap companies with non-investment grade ratings. Later studies by Feldhutter
and Schaefer (2018) found the credit spread puzzle to be more pronounced for high
yield or mid-cap companies, while large firms were less affected. Du et al. (2019)
reduced the difference between model and empirical credit spreads by further
improving the structural models, including uncertainty from asset risk. Bai et al.
(2020) reject the existence of the credit spread puzzle, but their report uses credit
default swap spreads, which is a different market to the bond markets used in
previous research. The bond market is more relevant to mid-cap firms as they need to

raise debt in bond or loan markets.

The third set of challenges that complicate mid-cap credit risk modelling arise from
market risk factors. For any firms whose debt is traded, credit risk is not easily
separable from market risk. This holds even more for mid-cap companies, whose debt
is more correlated with equity indices than with treasury rates, which are
representative for debt markets (Jarrow and Turnbull, 2000).

As the aforementioned studies show, modelling mid-cap credit risk is complex and
different approaches consider a variety of factors. In this paper, we aim to bring
together some of these strands by looking at accounting factors, general market factors
and firm equity performance to estimate the probability of default or credit risk.
What's more, we propose to tackle this problem with deep learning models and make

a case for why they are more suitable.

In default or bankruptcy prediction, Tam and Kiang (1992) was one of the first to use
neural networks(shallow) which had better performance against linear models like

logistic regression models and Zhang et al. (1999) also demonstrate robustness to



2.2. Literature Review 37

unseen data using neural networks.Kim and Sohn (2010) applied Support Vector
machines(SVMs) to small and medium scale enterprises default prediction and
reported greater accuracy. Later research continued with ensemble of model
predictions. Alaka et al. (2018) reviewed different predictive models such as
multi-layer neural ne tworks, support vector machines, rough sets, case-based
reasoning, decision trees, genetic algorithms, logistic regression and discriminant
analysis models in the domain of bankruptcy or default prediction. They found that
ensemble models performed better but integrating them is a challenge. Dastile et al.
(2020) performed a meta-analysis of the literature and found that in general ensemble
of classifiers performed better.They also found deep learning models to show
promising results.

Compared to the former machine learning techniques, there is a much smaller but
growing number of papers in the area of credit risk modelling that have applied deep
learning models, such as LSTMs, convolutional neural networks, and, most recently,
transformers. Kim et al. (2021) applied LSTM models to bankruptcy prediction for all
US firms between 2007-2019 and found LSTM and ensemble models to perform best in
identifying bankruptcies accurately. Given LSTMs common use in other domains as
well, we have included them as one of the baseline models in our work. Mai et al.
(2019) applied convolutional neural networks to a large dataset containing textual
data (from the 10-K reports on financial performance and risks submitted by company
management) along with other accounting data and found deep learning models to
perform better. Stevenson et al. (2021) applied BERT (Bidirectional Encoder
Representations from Transformers) to predict default in micro, small and
medium-sized enterprises. They found textual data provided by a loan expert to be
predictive of default.

Our approach differs from the above work by considering time-series panel data and
modifying transformer models to analyse such data (as opposed to the textual data to
which they are most often applied). Vaswani et al. (2017) first developed the
transformer model, which introduces a multi-headed self-attention mechanism. This
mechanism removes recurrence so that the whole data input can be used. Also, it
allows interactions between inputs when extracting relationships. Multiple heads also
allow different relationships to be learned. Transformer-based models have since then
significantly outperformed LSTM-based models in natural language tasks (Lakew

et al., 2018) and speech-related problems (Karita et al., 2019). Moreover, this
performance improvement should be extendable to tasks that require taking
advantage of complex non-linear relationships that vary temporally (such as the
evolution of markets, prices and fundamentals that we study in this work).

Hence, the first contribution of our study is that we are the first to propose a
transformer-encoder model for corporate default risk modelling. To adapt this model
to our problem, we propose a custom loss function and a performance metric speciﬁc
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to the term structure problem. Second, we develop a framework for multi-modal
learning that can combine the different data sources and allows for a differential
training approach, where we can train each model separately.

Machine learning models improve predictions but come at the cost of reduced
interpretability, which hinders their application in highly regulated areas such as
credit risk (Alaka et al., 2018). Transformer models, even though they are complex, are
arguably more interpretable compared to other deep learning methodologies. For
example, Wiegreffe and Pinter (2019) studied the attention weights after training the
model and found them useful for explaining the model’s predictions. Although these
weights are useful to understand the impact of individual variables, we are also
interested in understanding the relative importance of each of the three data channels.
For that purpose, we adopt an additional methodology based on Shapley values.
Several methods based on Shapley values have been proposed to interpret a model
(Lundberg and Lee, 2017), but as we aim to quantify the importance of a group of
variables, we follow the approach by Nandlall and Millard (2019). In so doing, we are
able to make a third contribution, which is to answer questions about the relative
importance of different data sources and study how these relationships vary over time.

Our fourth and final contribution is to the credit risk literature, as we show how
multi-horizon probability of default estimates can be produced using a single deep
learning model, and how this model produces good results not just in the short term
but over a medium term of up to three years.

To benchmark the predictive performance of our proposed transformer model against
other methods, we consider a series of methods including logistic regression, shallow
neural networks, machine learning classifiers such as XGBoost, and other deep
learning alternatives such as LSTMs and Temporal Convolutional Networks (TCN).
XGBoost, a scalable decision tree-based ensemble learning algorithm developed by
Chen and Guestrin (2016) has achieved state-of-the-art results in many machine
learning competitions, especially in classification tasks using structured data (Nielsen,
2016). The same technique applied to bankruptcy prediction also produced good
results (Zieba et al., 2016). Second, Temporal Convolutional Networks (TCN) are
another deep learning model which combines a series of techniques used in both
sequence and image processing models. TCNs have been successfully used to classify
time series data in health (Sun et al., 2015; Lea et al., 2017) and other domains (Pelletier
et al., 2019). We use the version of TCN developed by Bai et al. (2018) — a generic
architecture that can be adapted to our task. Similarly to transformer models, TCNs
have not yet been applied to default prediction in consumer or corporate credit risk
either, as far as we are aware. Hence, by comparing our proposed transformer model
to several powerfu] benchmark models, we add the necessary robustness to the
findings of our study.
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2.3 Data

We collected 30 years of data related to mid-cap companies listed in the US from 1990
to 2020, from the following sources: CRSP/Compustat for accounting data and
pricing data, Bloomberg and CRSP for default information, and Datastream for
market performance data. We exclude financial firms as their leverage and accounting
measures are different from non-financial firms, following the standard practice in the
corporate default prediction literature (Shumway, 2001).

2.3.1 Data channels

We distinguish between three different data sources (channels):

(i) Fundamental channel: This provides quarterly accounting data expressed as
ratios observed at different time points. Sampling is done quarterly instead of
over yearly intervals, as the latter would miss the accounting periods” seasonal
volatility. The quarterly data is annualised using the last twelve months’ metric
such that all data is comparable. This data source is useful in capturing the
firm'’s state at a specific time period or understanding how changes in those
ratios may affect default risk. We refer to Appendix A.1 for more details about

the ratios included and Figure 2.1 shows how data is processed.

(ii) Market channel: Quarterly market performance is collected over the same time
period as the fundamental channel data. This data captures general market
conditions and includes any financial ratios derived by combining accounting
and market data. We refer to Appendix A.2 for the complete list of market
indices used.

(iii) Pricing channel: Daily high, low and close history of each firm's equity prices. It
consists of very few features, but they are collected at a much higher frequency
than the other two channels, providing a detailed record of each firm’s recent
market valuation history.

2.3.2 Default definition and date selection

We define that a firm defaults if any one of the following criteria is satisfied: the firm
filed for bankruptcy ; the company is under liquidation; a credit event has been
declared as defined by the International Swaps and Derivatives Association (ISDA)
which led to the triggering of Credit Default Swaps (CDS); or the firm has failed to
pay interest or principal on any of its debt instruments.
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This is a broader default definition than simply identifying default on the basis of a
bankruptcy filing. It is intended to capture most default scenarios at the earliest
opportunity. For example, failure to pay interest or principal is an early indicator of
default, which predates a subsequent bankruptcy filing (if any). CDS events also
sometimes capture defaults earlier, as the market participants independently
determine them. A CDS trigger might not push a company towards bankruptcy, but it
could mean losses to its debt holders. This definition makes the predictive modelling
more challenging as the firm'’s financial data might not yet have deteriorated to the
same extent as with the traditional bankruptcy or liquidation filing approach.
However, it is a more useful approach as this replicates the real-world scenario. For
bankruptcy and liquidation data, we used a combination of Bloomberg and
Compustat data. For the rest of the data, Bloomberg, CRSP and Datastream were used.

The timestamp that we record for each reporting event is also important to note. Here
we take a different approach to the literature, by using the actual reporting date on
which the financial results are published, which may differ from company to
company. This approach avoids having to add an extra lag to the financial information
as is typically done.

2.3.3 Target vector and data structure

To be able to predict default over a short to medium-term horizon, we create a
multi-label target vector consisting of binary variables, Y}, of the form

Y; = [defaults,, def aultey, defaultoy, defaulty,, defaulty,, defaults,],

with 1 denoting that a default event occurred over the corresponding time period, or 0
otherwise. For example, if default occurred 10 months after the timestamp, the vector
would hold the values [0, 0,0,1,1, 1]. This creates an incremental multi-label
classification problem, where, as the time horizon increases, the class imbalance
decreases. However, a longer time horizon makes the event harder to predict.

The observed inputs, X, for each firm are a matrix of dimensions w x f, where w is the
maximum number of historical time periods and f denotes the number of features
(input variables) in the data. The input variables collected from the three channels are
further preprocessed using standardisation and by treating outliers and missing data.
We normalise the data using median and interquartile values and winsorise the data
for values beyond 6 times the interquartile ranges. This limits the impact of severe
outliers on the model parameters. We replace missing values with the median and
add dummies to mark those replacements, since reporting gaps more frequently occur
when firms are under financial stress and, thus, these data might not be missing at
random. The process chart in Figure 2.1 shows the raw data conversion from various
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data sources and the preprocessing steps taken to make them suited for the models we

apply.

24 Models

In this section, we describe our novel Custom Transformer Encoder model (CTE), as
well as another recent deep learning model against which it will be benchmarked, i.e.
Temporal Convolutional Networks (TCN). For brevity, we omit describing our other
baseline models (i.e. shallow neural networks, LSTM, XGBoost and logistic regression)
as those are more widely known. The inputs to both the models is a matrix of type
NxT where N is the features of the company over T time periods and the output is a
vector of size six representing probability of default over 3 months,6 months, 9

months,1 year, 2 year and 3 years.

2.41 Custom Transformer Encoder (CTE)

Transformers have thus far been used mainly in the field of Natural Language
Processing (NLP). These models incorporate a self-attention mechanism store learned
patterns. When looking at sequential data, this mechanism ensures that each data
point is related to every other data point in the sequence. The architecture further
allows for multiple attention heads, each of which can focus on a different aspect of
the input, thereby extracting complex non-linear relationships. This ability makes
Transformers different in how they handle sequence data. Unlike earlier sequence
models based on Recurrent Neural Networks (RNNs), such as LSTMs, transformers
take the whole sequence as an input and focus on multiple disjoint sequences to
generate patterns. The standard model consists of an encoder and a decoder, as is
typical in sequence-to-sequence models. During training, the encoder takes the
numerical input and each of its head learn different input aspects, thus creating a
higher-order representation. The encoder output is transferred to the decoder. The
decoder applies a similar attention mechanism to the output sequence and further
applies one more attention combining the encoder representation and earlier output
sequence representation. This is passed through a dense feed-forward network to
produce the final target vector. This architecture has produced state-of-the-art results
in language translation tasks as cited earlier.

The type of data that transformers are designed to handle, i.e. sequence data, makes
them suitable not just for natural language problems but also for time-series data. In
the NLP setting, the output could be a translated text in a different language
(multi-output), sentiment analysis (single output), or other output. The language
input has a sequence-like structure due to the grammar and context of the sentence.
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Each word in a sentence can be seen as analogous to a time period in our data. In
natural language applications, each word is converted to a vector of integers based on
spelling, meaning, and other language attributes. Similarly, for each time period, we
have many features that represent the financial state of the firm. When applied to
language tasks, transformers apply multi-headed attention to each sentence and learn
the sentence’s relationship to the output. Here we apply a similar process over time
series (sequence) data to learn to predict default probability.

Further advances are being made regarding the application of transformers to time
series forecasting (Li et al, 2019a; Wu et al., 2020). In this paper, we modify the
original Transformer, by using only the encoder part to form a representation of the
input data. As our problem is a multi-label classification task, instead of using the
decoder, we then use the encoder output combined with max pooling layer which
picks the maximum weighted representation and traditional dense layer to better suit
our prediction target. This way, our transformer model encodes our set of time series
into several feature vectors, which provide a detailed description of the company and
its market context. From the original transformer, we also modify the initial layer by
replacing the embedding layer with a 1D convolutional layer as shown in Figure 2.2a.
This helps us in two ways. Firstly, unlike textual data that needs to be converted to
numerical data accessible to the model, the time series data is already available in a
numerical format. Secondly, transformer models have a fixed model size, which
ensures a constant size flow of the input representation through each layer of the
model. The initial convolutional layer modifies the time-series input to match the
model size of the transformer model. This makes it possible to combine different data
sources and model outputs, as we will show later. As the performance of the
transformer proved sensitive only to the model size and number of layers other
aspects of the encoder are left unchanged.

2.4.2 Temporal Convolutional Network (TCN)

A temporal convolutional network is a generic architecture for sequence data (Bai

et al., 2018) which was found to give better results over benchmark models such as
LSTMs and provides a good trade-off between model complexity and performance.
TCNss can store a longer memory than traditional LSTMs and hence perform much
better when there are long term persistencies in the data like in financial performance
of a company where losses or weak performance could persist over time.

TCNs build up a hierarchical memory over a sequence of data. Initially, they look at
nearby relationships for data points and build up a shorter representation of the data
as shown in Figure2.2b, near the inputs. Each block consists of dilated convolutional
layers with weight normalisation and dropout. This representation is again passed
through another block to build a higher-level representation which is the row of
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blocks above Input in Figure 2.2b. Unlike transformers that focus on all data
simultaneously, TCNs build representation in a traditional sequential manner. They
achieve this through convolutions. This makes them closer to image recognition
models such as Convolutional Neural Networks (CNNs) but applicable to sequential

data, including time-series data.
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FIGURE 2.2: Deep learning models

2.4.3 General architecture

One of our paper’s contributions is that it develops a framework to add multiple data
sources and combine them. To enable this, a multimodal approach is proposed the

architecture of which is given in Figure 2.3.

We could train this multimodel in three different ways: train one data channel at a
time; or train each model to its input but simultaneously; and ﬁnally, the differential
training approach, which utilises the ﬂexibi]ity of our architecture by training each
model and data channel separately and still incorporating all the data. We study all
three approaches. When a model is trained separately, the models” weights or
parameters are reused in the multimodal model. As the parameters are tuned for a
speciﬁc model, we could either freeze the parameters or use them as initial weights for
training in the multimodal setup. Freezing the parameters does not update them
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FIGURE 2.3: General deep learning model architecture

while training. This also improves the training time of the multimodal models (Glorot
et al,, 2011; Lu et al., 2015).

The arrows in Figure 2.3 highlight the general data flow structure from inputs to
outputs in Figure 2.3. The dotted lines around inputs or models mean they could be
combined or run individually based on the analysis that we are looking to run. For
example, if we are looking to use the fundamental channel data only, the other inputs
will be disabled, and only one model will be used. The speciﬁc model that will be
used for this data could be either CTE, TCN or LSTM, but the setup is easy to extend

to other forms of data and models as well.

2.5 Model training and experiments

This section describes the loss function, the custom Shapley method we developed for
interpretation of the models, the hyperparameter tuning strategy, the optimisation

measures used during training, and the two testing strategies used.

2.5.1 Loss function

Here we define the loss function used during training for our models to find the
weights or parameters. As we are dealing with an incremental multi-label
classification problem, we define a custom loss metric. With the last layer of the
network outputting the logits (#;) for our respective time horizons (i.e. 3 months to 3

years), we enter each of those outputs into a sigmoid cross-entropy with logits
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function, defined as follows:

loss = —(y¢ * log(sigmoid(ij¢)) + (1 — y¢) * log(1 — sigmoid(ij¢)) 2.1)

where y; denotes the true default outcome (0 or 1) for that outcome period. To obtain a
loss value for the entire observation, we sum the loss values over all those time
horizons. This loss function is different from the typical cross-entropy loss function for
multi-class classification, as, instead of only one class having a positive outcome, we
often observe multiple such outcomes depending on when the default occurred. Note
that we do not have strict independence among the binary target vector variables as
some combinations are not possible by definition. While we have not enforced that
limitation in our current models (which could be done, e.g., by penalising the
weights), it did not lead to incorrectly speciﬁed probabilities in our results.

2.5.2 Shapley variable group importance

We use Shapley values, a solution concept from game theory, to explain the relative
importance of channels and the models’ temporal dependence (Nandlall and Millard,
2019). Shapley values are calculated for the multimodel by framing the problem in the
form of a cooperative game. Playing a game is analogous to using the model to
predict. Maximising the prediction metric is the objective, called the score function.

The players in the game are the data channels defined earlier. If a channel is selected,
it is denoted by 1, and 0 otherwise. For G channels, the universe of possible
combinations is denoted by T where |T| = 26, and each combination is a profile p;
wherei = 1,2,..,26. |p;| is the number of channels selected. When |p;| is 1, the profile
is denoted by e;, implying only one channel among the G channels is selected.

The Shapley set (Q;) of a channel g is all the sets in T in which channel g is not
selected (¢*" element is 0).

The score function is a characteristic function taking only values between 0 and 1, a
higher score indicating a more favourable outcome. While accuracy is often used as a
score, in our setting, model performance is more often measured using the Area
Under the ROC Curve (AUC). A higher AUC value suggests better ability to
discriminate between defaults and non-default, but unlike accuracy, AUC does not
take a zero value (but rather a value between 0.5 and 1), so to turn it into a valid score
function, we need to rescale it into the so-called Gini coefficient (equal to 2*AUC-1)

and use this as our score function.

The marginal contribution of the i" channel is dependent on the proﬁle. For a proﬁ]e
pn where the i th channel is not included, the marginal contribution is the difference in
score when the channel is added:
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m(pn, €i) = 5(pn +€:) —s(pn) (2.2)

The Shapley value for channel i, 5(i),is now defined as

5(i) = Z)Q m(pus€i) * (|pa]) (1G] = |pn| = 1!/ (IG])! (23)
PnEl

In other words, S(i) is the (weighted) average contribution of the i* channel to the
game, weighing all possible combinations to which the channel can be added
appropriately. A higher score implies a higher contribution of the channel’s data
towards the predictive power of the model.

2.5.3 Hyperparameter tuning

We used a grid search to tune the hyperparameters for each model, using a validation
data set covering 20% of the total data. To speed up the search, we used parallel
processing techm'ques.

For logistic regression, we used the saga solver with L2 penalty, as it is easier to
optimise than the L1 penalty but performed similarly in our experiments in terms of
predictive performance.

The XGBoost model hyperparameters were tuned with a grid search for the learning
rate {0.001, 0.01, 0.1}, maximum depth {2, 3, 4}, number of estimators {50, 100, 250, 500}
and alpha {0.1,...,0.9}. These numbers were chosen so...

For the deep learning models, we found the batch size and number of epochs to be
less important as we trained the models with early stopping, as explained later in
section 2.5.4. The shallow neural network consisted of two hidden layers and one
output layer. The first two layers were tuned over different number of units in the
range of {50,100,150,200} and {10,20,30,40,50}, respectively. In the LSTMs, we tuned the
number of units, over the range {16,32,64,96,128,150}, the dropout rate {0.1,0.2,0.3} and
the optimiser {"adam’,’sgd’}. The TCN’s hyperparameters are different as it is a
convolutional network-based model. There, we conducted a grid search on the
number of filters {16,32,64,128}, kernel size {1,3,6}, the activation function {'tanh’,’relu’}
and dropout {0.1,0.2,0.3}. Finally, in the proposed CTE, the model size and number of
layers are the key parameters that need to be determined. We tuned the model size
(M) over {6,12,18,24,36,48,54,72,84,96,102} and based on validation data perforrnance
set it to 72. The number of layers (I) was tuned over {1,2,3,4,6,12}. Once the layers and
model size are fixed, h or the number of heads is defined as M/[. All the other



48 Chapter 2. Mid-cap default prediction

hyperparameters in the model were unchanged from their defaults as the impact of
further tuning them proved marginal.

To select the window size for the accounting input data, we experimented by training
LSTM and TCN models with different window sizes of 4, 8 and 12. This represents
lookback periods of 1, 2 and 3 years, respectively, as each year has four quarters of
accounting data. Both models performed better with larger window sizes, implying
that using a longer time span of financial data benefits deep learning, and that these
methods have the capacity to process it.The same window size was applied across all
models and combinations later on.

As for the pricing channel, this has daily prices covering the previous two years,
making the potential lookback period quite deep. We used a grid search for the
appropriate window size for each model, trying window sizes of3,6,9,12 and 24
months. In the results section, we will report how the performance of each model
changes with the choice of window size.

2.5.4 Training settings

To prevent overfitﬁng the data, we trained the models with early stopping, whereby
training is stopped when the validation set loss metric no longer decreases. To avoid
local minima, a patience setting of five (eight) was selected for the multimodal
(single-channel) model setup, respectively. We apply more patience to single channel
training as it is expected to take a larger number of epochs compared to the
multimodal model whose parameters have already been tuned. This is especially true
for the pricing channel where single-channel training ran for 30-40 epochs in our

analyses, while the multimodal training only required 3 to 5 epochs.

All models were first assessed on an independent test set (20% of the data), using
AUC as the performance criterion. Furthermore, to assess the robustness of the model
performance estimates, we also carried out a stratified 10-fold cross-validation
procedure. This ensures the model is tested to various changes in variable
distributions and relationship or concept drift over time. Instead of the traditional
procedure which would simply divide the training observations into 10 folds, we
define the folds by assigning different companies to different folds; this ensures that
observations linked to the same company appear in the same fold. We will report the
average performance and variance across all folds.
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2.6 Results and discussion

In this section, we present three sets of results. The first subsection summarises and
compares the performance of all models, on the test set. The next subsection shows
the results of our robustness checks. Thirdly, we show how the transformer model’s
multi-head attention weights can provide a partial model explanation and we
compare the importance of the three channels using the Shapley approach.

2.6.1 Model performance results
2.6.1.1 Single channel, quarterly fundamental data

First, we consider all models built using only the fundamental channel data as input.
Table 2.1 shows the AUC for each resulting model and each time horizon (e.g., d 1y is
the AUC score for the estimated probability of default in one year). The first column

takes the average AUC over all time horizons.

TABLE 2.1: Model performance: single channel, fundamental data(best result in bold)

Input: Quarterly fundamentals only AUC

Model ‘ Average ‘ d_3m ‘ d_6m ‘ d_9m ‘ d_ly ‘ d_2y ‘ d_3y
CTE 0.785 0.824 | 0.811 | 0.797 | 0.775 | 0.756 | 0.747
TCN 0.780 0.814 | 0.804 | 0.793 | 0.775 | 0.750 | 0.743
LSTM 0.777 0.808 | 0.799 | 0.792 | 0.772 | 0.753 | 0.742
NN 0.756 0.768 | 0.774 | 0.769 | 0.762 | 0.747 | 0.738
XGB 0.715 0.749 | 0.739 | 0.731 | 0.713 | 0.684 | 0.676

Logistic 0.702 0.643 | 0.681 | 0.702 | 0.719 | 0.732 | 0.733

With an average AUC of 0.785, the transformer (CTE) model shows the best
performance, but it is closely followed by the sequential deep learning models TCN
and LSTM. All of these models outperform a shallow neural network model (NN). A
potential explanation could lie in emerging complex structures which deeper models
are better able to capture. XGB did not give competitive performance, which suggests
it probably requires a larger number of observations to extract predictive patterns. As
expected, logistic regression, being a relatively simple linear classifier, has the weakest
performance.

2.6.1.2 Single channel, quarterly market data

The market data channel contains general market prices of several indices as well as

some company-specific data, which differentiates the data observed for different firms
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in the same time period. Table 2.2 summarises how each of the models performs on
this second data source.

TABLE 2.2: Model performance: single channel, market data(best results in bold)

Input: Quarterly market data AUC

Model | Average |d_ 3m |d_6m |d9m |d_ly |d_2y |d.3y
CTE 0.767 0.786 | 0.790 | 0.777 | 0.759 | 0.742 | 0.748
TCN 0.767 0.779 | 0.782 | 0.776 | 0.761 | 0.748 | 0.754
LSTM 0.770 0.786 | 0.784 | 0.775 | 0.762 | 0.753 | 0.762
NN 0.772 0.787 | 0.790 | 0.782 | 0.765 | 0.752 | 0.754
XGB 0.752 0.760 | 0.763 | 0.756 | 0.745 | 0.743 | 0.749

Logistic 0.741 0.771 | 0.766 | 0.751 | 0.728 | 0.713 | 0.715

As shown, the deep and shallow neural network models all perform similarly. They
are, however, better than the XGB or the logistic model. This could be linked to the
high level of repetition in data that is linked to the same time period, which the former
models are better designed to handle. With the AUCs being somewhat lower than in
Table 2.1, there is clear value in the market data but less than in the accounting data.

2.6.1.3 Single channel, daily pricing data

The pricing channel contains just three features but has more frequent data than the
fundamental or market channels. The first question is which look-back period or
window size of past data to select.

TABLE 2.3: Pricing model performance for different lookback window sizes (best re-
sults in bold)

Test AUC Window size

Model ‘ 3m ‘ 6m ‘ 9m ‘ ly ‘ 2y
CTE 0.698 | 0.710 | 0.711 | 0.716 | 0.736
TCN 0.702 | 0.715 | 0.726 | 0.701 | 0.731
LSTM 0.588 | 0.654 | 0.626 | 0.570 | 0.657

NN 0.702 | 0.703 | 0.702 | 0.705 | 0.708
XGB 0.681 | 0.693 | 0.701 | 0.707 | 0.715

Table 2.3 shows that, as the pricing data’s window size increases, the transformer
model’s AUC consistently improves, from 0.698 to 0.736. TCN, LSTM and, though to a
lesser extent, NN tend to improve with larger window sizes, too. Note that we
dropped the logistic regression model from the analysis as its performance on the
pricing data was close to random.

Based on these results, a two-year window is selected. Next, employing this two-year
window, Table 2.4 shows how well each model can predict default.
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TABLE 2.4: Model performance: single channel with pricing data(best results in bold)

Input: Pricing data AUC
Model ‘ Average ‘ d_3m ‘ d_6m ‘ d_9m ‘ d_ly ‘ d_2y ‘ d_3y
CTE 0.736 0.756 | 0.747 | 0.759 | 0.735 | 0.716 | 0.700
TCN 0.731 0.761 | 0.750 | 0.747 | 0.729 | 0.706 | 0.694
LSTM 0.657 0.692 | 0.681 | 0.671 | 0.643 | 0.625 | 0.632
NN 0.708 0.733 | 0.733 | 0.726 | 0.708 | 0.681 | 0.669
XGB 0.715 0.749 | 0.739 | 0.731 | 0.713 | 0.684 | 0.676

The CTE and TCN are clearly superior to the other methods in this setting. In other
words, they can extract more meanjngfu] information from daily mid-cap equity
prices. However, the overall performance remains lower compared to the other
channels, indicating that there is less predictive value in this type of data. The models
also take longer to train: while the models for the other two data channels converged
in 8 to 10 epochs, the pricing data took 30-40 epochs. As there is much more noise in
daily pricing, it takes longer to derive a useful signal for default prediction.

Combining high-frequency pricing data with low-frequency accounting data is not
straightforward. Directly combining such data would require resizing the input
matrices (e.g. by turning quarterly data into daily values). Instead, deep learning
provides several alternatives for building multi-channel models, as discussed next for
the best performing model type identified thus far, i.e. the CTE model.

2.6.1.4 Multi-channel, all data

The multi-channel model is designed to use data from all three channels, using the
architecture proposed in Figure 2.3. As this allows that the three sets of inputs are fed
to the network separately, they can have different dimensions. We consider the
different approaches to training described in Section 2.4.3. That is, either we can
jointly train the full model, or train separate model components and then freeze the
weights for those channels. The results for the corresponding training options are
presented in Table 2.5.

TABLE 2.5: Multi-channel CTE model performance, for different training methods.

Input: Quarterly and daily data channels AUC

Method Average | d3m |d 6ém |d9m|d1ly |d2y|da3y
Training together 0.811 0.827 | 0.823 | 0.818 | 0.804 | 0.795 | 0.800
Pricing channel freeze 0.816 0.838 | 0.828 | 0.820 | 0.810 | 0.802 | 0.800

Market and Pricing channel Freeze 0.821 0.844 | 0.839 | 0.826 | 0.811 | 0.800 | 0.803
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The prediction model clearly benefits from including all three channels, as the AUC is
larger than for all previously trained models. showing how long time frames, varied
data, and a complex data flow can lead to better results. A multi-channel model with a
differential training approach yields the best AUC (average of 0.821), outperforming a
simultaneous training strategy (0.811). This suggests the former approach is better at
handling the structural differences between the three input sets.

2.6.2 Robustness check: 10-fold cross validation

To test the robustness of our findings, we performed a 10-fold stratified cross
validation check for the multi-channel model, with the strate gy that produced best
result, assigning firms to different folds as described in Section 2.5.4.

TABLE 2.6: Stratified k-fold cross validation: mean AUC (standard deviation)

Stratified 10-fold cross validation AUC

Average | d_3m | d_é6m | d_9m | d_1y | d_2y | d_3y

0.869 (0.011) | 0.881 (0.025) | 0.884 (0.016) | 0.880 (0.013) | 0.871 (0.010) | 0.854 (0.008) | 0.846 (0.010)

Table 2.6 confirms that the proposed CTE architecture produces excellent default
predictions, regardless of the time horizon. These results support the idea that the
learning is able to detect true patterns as opposed to noise, which successful]y
generalise to previously unobserved companies. Furthermore, the deep learning
model can efficiently combine multiple information channels with limited
preprocessing.

2.6.3 Interpretability of the architecture

Although the CTE was shown to produce highly accurate predictions, one challenge
lies in providing a suitable interpretation of what factors led to those predictions.
Hence, to better understand the model, we will first demonstrate how to interpret the
transformer model’s multi-head attention weights; the second subsection will then

discuss the insights gained from the Shapley approach outlined earlier.

2.6.3.1 Multi-headed attention weights

Transformers models, for all their complexity in design, do provide an interesting
layer of interpretability. Each head in each layer of the transformer encoder is
expected to learn a different input data aspect. This kind of interpretation has been
previously used in the NLP domain for translation tasks. Here we adapt the idea to
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(B) Average weights for firms with no observed default

FIGURE 2.4: Attention weights mapped to time periods, over defaults and survivals

time series data. To illustrate this, we select the fundamental channel data only. This
gives a direct interpretation between the CTE output and input.

Each plot in Figure 2.4 visualises the attention weights for one of the four heads (see
the figure columns) in one of the two layers (rows) of the transformer model trained
earlier. The horizontal axis in each plot divides the input data according to time
quarter; the vertical axis is the output representation. This mapping thus shows which
time period is given a higher weight by the head; the highest weights are shown in
yellow, the lowest are in deep blue. To understand how the model distinguishes
between default and non-default outcomes, we compare the average weights for firms
that default (top panel) with those that do not (bottom panel).

The first layer of defaults and survivals exhibits few differences. However, the second
layer does show differences: The second head in the second layer for defaulted firms
focuses on data from the t — 5-th period and t — 2-th period while the same head for
survived firms, looks at the f — 1 period. This can be interpreted as follows: if a firm
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(C) Channel importance over time

FIGURE 2.5: Channel Importance Interpretation

has certain financial ratios in the last quarter of accounting data (f — 1), it will be more
likely to be classified as a survival. However, if it does not satisfy this, the model looks
at previous financial year data (t — 5) to check for specific patterns to classify the firm
as a default. This shows the model extracting complex temporal relationships. Some
heads in both cases mainly use the present time period (t — 4 to t) to extract
relationships. In the next section, we proceed to quantlfy the importance of present
data over past data.

2.6.3.2 Relative importance per channel

Using the Shapley derived method defined earlier, we present the results for each
channel’s relative importance. The method allows us to see how each combination of
the inputs has impacted the AUC score.

In Figure 2.5a, the fundamental channel has the highest relative importance, 30%. This
means that, on average, the inclusion of fundamental data into the model improves
the model’s AUC metric by 30%. Figure 2.5b reports the AUC values for different data
combinations. For example, using just the fundamental channel, we achieve an AUC

of 0.791. Adding the Pricing channel improves the performance slightly to 0.807, while
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the Market channel improves the AUC metric by 5.3%, to 0.833. From both of these, it
is clear the Market channel adds a statistically signiﬁcant contribution compared to
the pricing channel.

To take a closer look at the impact of the pricing channel, we look at how the relative
importance of channels varies over each prediction horizon in Figure 2.5c. In the short
term, the pricing channel plays some role with 16.2% importance and decreases to just
5% in the three-year horizon. We could infer the pricing channel provides some
signalling in the short term. Still, over the medium term, fundamentals and the
general market environment play a larger role in determining the probability of
default. This follows intuition and somewhat aligns with the weak market efficiency
hypothesis: prices reflect the market’s current belief, taking into account short-term
fluctuations, but true long-term estimation ignores these blips caused by events that

may prove meaningless in hindsight.

The temporal aspect of the results is another important factor that needs to be
understood. Which time period contributes most towards the results could be
calculated using the same Shapley method. We group the variables into yearly data,
starting from the quarterly data. The twelve quarters of data are grouped into two
groups. The first group contains one year worth of data, which is the firm'’s present
data, while the rest of the data is grouped as past. Each channel is then evaluated on
test data to get their relative importance.

TABLE 2.7: Shapley Contribution of each channel over time (%).

Shapley values
Channel ‘ Present 1 year Past 2 years
Fundamental 52.3 124
Market 35.1 20.0
Pricing 38.4 9.3

The results in Table 2.7 show the importance of the latest time period over previous
years data across all channels. In the fundamental channel, over 52% of the
performance comes from the present time period data. The previous time periods still
contribute positively to the model’s predictions. However, in the market channel, the
temporal aspect is relatively more important as 20% of the contribution comes from
past data. The changes in the environment or market cycles make an impact on firm
performance. The present state of the market is impacting a firm at an individual level
with a lag. This could be expected as it takes some time for uncertainty in the
macroeconomic environment to impact firms. In the pricing channel, 2 years of past
data is more important compared to previous year data. This implies a long term
relationship being extracted. Firms in decline have a general under-performance in
their equity, and these could be known over a long term than short term price
movements.
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2.7 Conclusion

The paper has shown deep learning techniques are powerful in default prediction for
mid-cap companies when carefully engineered, predicting complete term structures,
going beyond one-year predictions hitherto common in the area. The increasing
complexity of the models does increase predictive power. To be able to get this
increased performance, however, new strategies were needed. Combined multimodal
architectures were designed, as they were much better than a single large model. This
architecture also gave the flexibility to treat each data source differently and take

advantage of selective learning mechanisms.

Custom learning methods needed to be devised specifically for the problem. We
developed a custom loss metric for training purposes that is relevant to the
incremental multi-label classification problem. An efficient setup is important as
several models with different data combinations and different hyperparameters’
choices need to be tuned. Using measuring performance consistently and increased
the training speed by applying on the whole training set instead of at the batch level is
traditionally done. Such options need to be carefully considered when deploying

end-to-end deep learning models.

While the training strategy and the custom loss functions can be applied in any deep
learning model, such as TCN or LSTM, we also developed a transformer-based model
and showed how to adapt them to handle structured data. The increase in this
model’s performance over large amounts of data shows promise in handling complex
non-linear relationships over long time frames. CTE handled lower-frequency data
with many related features and handled high-frequency data when other models had

significant drops in performance.

On the contribution towards financial analysis, our results show that deep learning
models apply to mid-cap companies, probable more so than traditional approaches
applied to large-cap companies. The former are companies where data could be
missing or not as extensively followed as the latter companies. Their prices could be
more volatile and have a higher default rate compared to large-cap companies as well.
We were also able to show that accounting data still has more value in predicting
default. However, pricing data can provide valuable signals provided we develop a

specific strategy to handle this source of information.

Predicting the probability of default over a multiple time horizon was accomplished
within the same model architecture. This information would be useful to understand
the term structure of credit spreads. Instead of tuning multiple models to different
data sources, we could find a single model to produce multiple outputs, as in
ensemble models.
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We developed a custom methodology to interpret a deep learning model using
Shapley values for groups of variables. We could infer pricing information is of
limited, time-decaying, usefulness, while the market context is much more important.
Also, we were able to visually understand the differences between defaulted firms
and surviving firms from the heatmaps derived from the CTE model. With increased
performance and better interpretability, we believe deep learning models could add
significant value in the default prediction space for corporates or possibly other credit
risk domains.

Another potential avenue for future research, expanding multimodal learning, could
be further extended to develop new kinds of scorecard models for credit risk. Adding
further channels to predict business sector performance, management, and other
factors would be interesting. This paper dealt with only structured data and more
towards financial and market data, complementing previous research that used
unstructured data such as text. The framework given here could be extended to any
other type of data to improve the model further. Adding unstructured data like
textual documents to the channels could further improve the model, e.g.,
incorporating management discussions information to the fundamental channel and
news feed with relevant company news to the pricing channel.
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Chapter 3

Portfolio optimisation using Graph
neural networks

Abstract

Apart from assessing individual asset performance, investors in financial markets also
need to consider how a set of firms performs collectively as a portfolio. Whereas
traditional Markowitz-based mean-variance portfolios are widespread,
network-based optimisation techniques offer a more flexible tool to capture complex
interdependencies between asset values. However, most of the existing studies do not
contain firms at risk of default and remove any firms that drop off indices over a
certain time. This is the first study to also incorporate such firms in portfolio
optimisation on a large scale. We propose and empirically test a novel method that
leverages Graph Attention ne tworks (GATs), a subclass of Graph Neural Networks
(GNNs). GNNs, as deep learning-based models, can exploit ne twork data to uncover
nonlinear relationships. Their ability to handle high-dimensional data and
accommodate customised layers for specific purposes makes them appealing for
large-scale problems such as mid- and small-cap portfolio optimisation. This study
utilises 30 years of data on mid-cap firms, creating graphs of firms using distance
correlation and the Triangulated Maximally Filtered Graph approach. These graphs
are the inputs to a GAT model incorporating weight and allocation constraints and a
loss function derived from the Sharpe ratio, thus focusing on maximising portfolio
risk-adjusted returns. This new model is benchmarked against a network
characteristic-based portfolio, a mean variance-based portfolio, and an
equal-weighted portfolio. The results show that the portfolio produced by the
GAT-based model outperforms all benchmarks and is consistently superior to other

strategies over a long period, while also being informative of market dynamics.

Keywords
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Portfolio optimisation, mid-caps, correlation networks, distance correlation, filtered
graphs, deep learning, graph attention networks

3.1 Introduction

Portfolio optimisation is crucial in financial risk management, as performance
correlations between firms in a portfolio bring unforeseen risks. Given that each
investor’s risk profile differs, the portfolio construction model must also account for
different objectives. One such type of model, based on the classic work by Markowitz
(1952, 1959), is mean-variance optimisation, which trades off maximising returns
against minimising volatility. In this paper, too, we look to optimise with a
mean-variance objective, but we do so over a large set of firms that could also default
or go bankrupt. This problem must be solved for an investable universe that is
expanding, as financial markets continue to develop, and emerging and private
markets are becoming increasingly accessible. All these assets have different risk and
liquidity profiles. Against this backdrop, which firms to select and what proportion of
capital to allocate to each is an increasingly high-dimensional problem.

Portfolio optimisation often involves estimating the expected returns and covariance
matrix and then using a constrained optimisation method to find the asset allocation
weights that maximise the portfolio objective. The classical mean-variance measure is
not without its problems, though, and portfolios optimised using it have been shown
to exhibit poor out—of—sample performance (Siegel and Woodgate, 2007). Assumptions
about the normality of returns and absence of transaction costs, as well as the presence
of regimes in markets, make the classical model difficult to implement (Guidolin and
Ria, 2011). Even if these assumptions are fulfilled, the expected mean of the portfolio
returns and the covariance matrix cannot be readily estimated as they are not
observed in practice, which means that, instead, the sample mean and covariance
matrix are commonly used (Ao et al., 2019). Furthermore, it is challenging for such
models to cope with high dimensionality, a common characteristic of modern
portfo]ios (DeMiguel et al., 2009b). To better address these challenges, new methods to
solve the portfolio optimisation problem continue to be developed, borrowing from
different techniques in other domains, such as fuzzy programming (Arenas Parra

et al., 2001), cluster analysis (Puerto et al., 2020), quantum annealing (Venturelli and
Kondratyev, 2019) and deep reinforcement learning (Shi et al., 2022a).

Of particular interest to our work are topological or network studies for portfolio
optimisation (Pozzi et al., 2013; Li et al., 2019b). Network models exploit graph data
structures to identify relationships that may be impossible to detect by Euclidean
data-based models. In our case, the network nodes are the firms, and each edge
represents a relationship between two firms. More forma]ly, the network at a given
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time t is represented as an undirected graph G = (V;, 6}) where V; are the nodes or
firms and &; is the set of edges, often represented by an adjacency matrix A of
dimension |V;| x |V}|.

The aforementioned network studies consistently find that allocating capital to firms
in the peripheries of the networks produces higher returns, due to low correlations
with other parts of the network. Similarly, to produce a diversified portfolio,
mean-variance models also tend to prefer firms in the peripheries of the network
(Onnela et al., 2003). However, studies using the former methods have only been
deployed to small portfo]ios or were limited to a speciﬁc sector. Here, we look to
extend these topological analyses to the whole market of US mid-cap companies, a

much more challenging and realistic problem setting.

Mid-cap firms (in short ‘mid-caps’) are defined as firms with a 1 to 10 billion USD
market capitalisation and are likely constituents of the Dow Jones Wilshire Mid-cap or
S&P 400 Mid-cap indexes. Modelling the performance of these firms is complicated by
the low-volume and, at times, illiquid nature of trading, which makes their return
distributions non-normal (Castellano and Cerqueti, 2014). They are also far more
numerous compared to large-cap firms, which makes mid-caps less suitable for
analysts to cover. However, as they behave as a separate autonomous asset class, they
can further improve the diversification aspect of a portfolio if included (Petrella, 2005).
Over the long term, mid-caps also provide a premium in return for the same risk,
which is desirable for any portfolio seeking financial returns (Ge, 2018). Given the
large number of companies in the mid-cap universe, simple index replication
strategies, such as those implementing the popular marke t-weighted methodology of
the Russell 2000 Index, can be costly though. Furthermore, investors may have
different horizons and risk tolerance, whilst constituent churn can negatively affect
performance (Cai and Houge, 2008; Cremers et al., 2020). Hence, a comprehensive
approach is needed to generate portfolio weights for mid-cap firms that yield better
risk-adjusted returns. Another area of practical interest to which our study may be
applicable is the development of new automated ETF strategies for such companies.
The latter would require large-scale portfolio optimisation models incorporating the

strategy constraints of the particular ETE

Studying the correlation between firm’s returns or volatilities is an integral part of any
portfo]io optimisation procedure. Pearson correlation approaches, generally used by
mean-variance models, can only capture linear dependencies and pairwise
correlations. Instead, in this work, we employ the distance correlation measure
(Székely et al., 2007). This is able to capture non-linear relationships between pairs of
firms. Sun et al. (2019) compared the use of distance correlation with Pearson
correlation for portfolio optimisation, and found that the distance correlation strate gy
indeed performs well. Furthermore, most previous studies did not allow for natural
churn in the portfolios, the presence of which we believe makes distance correlation
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an even more attractive option. Thirdly, as mid-cap companies are more illiquid
compared to large-caps, their available trading history may be shorter, less uniform, or
missing for some period of time. The distance correlation measure can handle such
time series features and still produce a quantitative measure of the relationship
between firms. This allows us not to drop any firms, thus avoiding selection bias.
Hence, we use the covariance matrix generated by distance correlations to produce a
fully connected initial network of firms. Subsequently, we apply the Triangulated
Maximally Filtered Graph (TMFG) method introduced by Massara et al. (2017) to filter
this dense matrix. This process results in a network with fewer edges, representing the
strength of the relationships between firms with minimal loss of information. The
added sparsity yields more meaningful initial relationships that subsequent models

can build upon.

Once networks are formed and stock price data are included, traditional methods fall
short on handling the complex resulting data structure. Deep learning techniques,
however, with their ability to create higher-order representations of any available
data, commonly excel at this. As they do not impose restrictions on the data
distribution and can handle non-standard data types by design, they are applicable in
a wide variety of se ttings. For example, they have produced state-of-the-art results in
several domains, such as speech recognition, natural language processing, object
detection, drug discovery, and genomics (LeCun et al., 2015). Furthermore, deep
learning models tend to scale well to high-dimensional datasets, Avramov et al. (2023)
applied deep learning techniques such as feed-forward neural networks and
conditional autoencoders to identify mispriced stocks consistent with most
anomaly-based trading strategies. A recent study on midcap default prediction has
also shown (Korangi et al., 2022), they can be designed to find optimal solutions for
various problem types with different objectives or constraints. This suggests that deep
learning methods may be well-suited to mid-cap portfolio optimisation.

In this paper, we propose employing a class of deep learning methods, Graph Neural
Networks (GNN), which can learn non-linear, complex representations of the firms.
More specifically, we use Graph Attention networks (GAT), a variant of GNNs that
employs attention mechanisms to weigh the importance of a firm’s neighbouring
nodes (Velickovic et al., 2018). Unlike previous topological studies, which have shown
that network structure can play a vital role in portfolio optimisation, GNNs distil
information from the relationships to produce the portfolio weights without relying
on a few static measures. GATs, in particular, work on specific sub-structures of graph
data, while the graph data can be dynamic. This makes them an attractive option for
portfo]io optimisation, as the relationships between firms can change over time and
may behave differently under different macroeconomic environments. The
optimisation procedures of deep learning architectures also work well in

higher-dimensional space, such as the historical returns ofa large number of firms.
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Like other deep learning architectures, GATs can also be trained to optimise any
chosen objective function and are flexible in terms of the types of output that can be

produced.

To measure portfolio performance, we use the widely applied Sharpe ratio, i.e. the
ratio of returns over volatility (Sharpe, 1966). We employ a similar criterion for model
training, by using a custom loss function derived from the Sharpe ratio. This allows us
to target generating optimal portfolio weights, without having to predict individual
returns in the same way that, for example, Zhang et al. (2020) did. To cope with the
dynamic nature of the problem and allow the set of active mid-cap firms to vary over
time, we use a rolling window approach which allows graph inputs and past returns

data to vary as we move between forecast periods.

Therefore, the three key research questions addressed in the paper are the fo]lowing:

1. Can an effective network topology be constructed from sparse historical data on

a large collection of firms?

2. Are graph attention networks able to generate higher-order representations of
this network that enable constructing an optimal portfolio for mid-caps?

3. How does the model perform under different market conditions, and can we

infer useful strategies from the model results?

In so doing, the paper makes three main contributions. First, we develop topological
portfo]io optimisation models, extending the literature that hitherto focused chieﬂy on
stochastic models, and applying the resulting approach to the challenging set of
mid-cap firms. Second, by using GPUs and parallel computing, we are the first to be
able to apply the distance correlation measure and subsequent TMFG filtering at this
scale. Finally, we use the resulting networks as inputs to graph-based deep learning
models and show how these are capable of producing portfolio weights for the large

number of firms we are faced with.

The remainder of the paper is organised as follows. Section 3.2 reviews the relevant
literature, focusing on large-scale portfolio optimisation, graphs and graph-based
deep learning models. Section 3.3 describes the data and the process by which this
data is converted into graphs, as well as deﬁm’ng several measures used in our work.
The proposed models, and the baseline models against which they are compared, are
further described in Section 3.4. Section 3.5 elaborates on how we set up the empirical
analysis, summarising the different steps and types of model comparisons made.
Section 3.6 then presents and discusses the results. Finally, Section 3.7 summarises the

main insights gained from our study and suggests some future research.
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3.2 Related literature

In this section, we discuss relevant literature for the study, focusing on large-scale
portfo]io optimisation studies and GNNs.

3.2.1 Correlation networks and portfolio models

Portfolio optimisation has been the subject ofa large body of research, and novel
methods, with various constraints and objectives, continue to be developed
(DeMiguel et al., 2009a; Branch et al., 2019). Of particular interest to our work are
studies that have focused on optimising large-scale portfolios effectively. Perold (1984)
was the first to do so, by considering the speciﬁc nature of dense covariance matrices,
and recommending strategies to make them sparse so that their analysis becomes
computationally feasible. More broadly, the first branch of large-scale portfolio
optimisation studies followed a similar approach by devising algorithms to reduce
computational time and memory space requirements for the classical mean-variance

approach.

Later studies on large-scale portfolio optimisation have focused on proposing model
extensions and computational methods to solve them, measuring the performance of
the resulting allocation weights using performance metrics such as the Sharpe ratio.
Extending the mean-variance framework by adding a probabilistic constraint
requiring that the expected returns exceed a chosen threshold with a high confidence
level, and introducing additional trading constraints, Bonami and Lejeune
(2009-05/2009-06) proposed a novel exact solution for their resulting model, which
they tested on a portfolio of up to 200 firms. Demonstrating their approach for pools
of stocks of up to 100 S&P 500 firms, Ao et al. (2019) proposed an unconstrained
regression representation of the mean-variance portfo]io problem, which they
estimated using sparse regression techniques. Bian et al. (2020) and Dong et al. (2020)
used regularisation methods for portfolio optimisation as, without such methods, a
large universe of stocks would lead to overly small or unstable allocations (and,
hence, high transaction costs). They found that these techniques improved portfo]io
performance (in terms of the Sharpe ratio) compared to the standard model.
Performance-based regularisation, whereby the sample variance of the estimated
portfo]io risk and return is restricted, also perforrned better on several Fama-French
data sets (Ban et al., 2018). Recently, Bertsimas and Cory-Wright (2022) reviewed the
size of portfolios that previous large-scale portfolio optimisation studies were able to
handle and proposed a ridge regression-based regularisation algorithm that speeds up
the convergence of sparse portfolio selection. They showed that their method can
select up to 1000 stocks from the Wilshire 5000 equity index. However, they did so
without reporting the Sharpe ratio of this selection.
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Despite these computational advances, we argue that, in all of the aforementioned
work, either there was further scope for increasing the portfolio size, or the
performance analyses to measure the efficacy of the proposed algorithms were
restricted to using simulated data. Additionally, in all of these studies, the universe of
firms or assets from which to select was always kept constant, and firms that default
or those that are acquired or liquidated were thus omitted, eliminating an important
driver of idiosyncratic portfolio risk. Instead, we take a dynamic approach and allow
both the universe of selectable stocks and the chosen portfolio to change over time. In
so doing, we avoid selection bias and ensure that our approach more closely mirrors a
real-world scenario wherein investors wish to invest in a certain market sector or asset
class. We seek to make an optimal decision considering all of the firms available
within that asset class at any given time.

In order to create a sparse covariance matrix, another alternative explored in the
literature is information filtering using graphs or network data. How to build sparse
networks that represent information contained in large data sets is an active area of
study in various domains such as internet search (Xie et al., 2018), social networks
(Berkhout and Heidergott, 2019) and, similarly to our paper, finance (Fan et al., 2013).
New applications also continue to emerge, such as social network analysis for link
prediction (Zhang and Chen, 2018), recommender systems (Fan et al., 2019), or the
study of object interactions in complex systems (Battaglia et al., 2016). In previous
work related to ours, starting from a graph representing correlated assets, Onnela

et al. (2003) and Cho and Song (2023) showed that investing in the peripheries
identified by a filtered subgraph provided benefits for portfolio diversification. They
used a static slice of S&P 500 companies, starting at a larger base than previous
studies, but the firms again remained unchanged over the long time frame of 20 years
that they studied.

In any of these application settings, graph filters aim to maintain the most relevant
information by constraining the topology of the graphs. For example, idenﬁfying the
Minimum-Spanning Tree (MST) is a filtering mechanism for dense graphs that keeps
the edges with the highest weights and allows no cycles or loops in the graph
(Mantegna, 1999). The Planar Maximally Filtered Graph (PMFG) imposes a different
constraint on the graph’s topology, requiring it to be planar; i.e., there should be no
edge crossing on a plane (Tumminello et al., 2005). Compared to MSTs, PMFGs were
found to be more robust for financial market networks as market conditions change,
without losing much information content (Yan et al., 2015). Alternatively, Triangulated
Maximally Filtered Graph (TMFG) is a more computationally efficient algorithm since,
unlike PMEG, it can be parallelised (Massara et al., 2017). In this work, we adopt the
latter method for correlation networks of stocks, making them suitable for the large
datasets we work with.
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As we mentioned earlier, we use the distance correlation measure to account for the
strength of the relationship between firms. Alternatively, Diebold and Yilmaz (2012,
2014) developed the connectedness metric, using VAR (Vector Auto Regression)
decomposition methods, to measure the pairwise relationship between firms. Their
approach can identify individuals or clusters of firms crucial to networks and quantify
the direction of risk spillovers. However, these methods have limitations for large
networks, such as those for mid-cap firms, due to the amount of historical data they
require. Given these limitations, we instead used the distance correlation measure for
pairs of firms, and TMFG for filtering, to provide the sparse network which serves as
the input to our deep learning-based models. For a more extensive survey
encompassing time-series correlations and network filtering in financial markets, we
refer the reader to Marti et al. (2021).

3.2.2 Graph Neural Networks

GNN's were first proposed by Scarselli et al. (2009) for node classification tasks.
Similarly to recurrent neural networks (RNNs), the first generation of GNNs
employed recursion, which they used to learn higher-order representations for a node
from its neighbours. As the deep learning field evolved with the emergence of RNNs
for sequential data, Convolutional Neural Networks (CNNs) for primarily image
processing, and attention-based models (Vaswani et al., 2017) for spatial analysis of
unstructured data, non-euclidean data models based on GNNs also developed in
parallel. Graph Convolutional Networks (GCNs) borrowed concepts from CNNs,
such as kernel filter size and stride, to generate representations for graphs (Kipf and
Welling, 2017). They produced state-of-the-art results on popular graph datasets such
as citation networks and knowledge graphs, outperforming semi-supervised or
skip—gram—based graph embeddings, label propagation and regularisation
approaches. Graph Attention Networks (GATs) further improved on these results by
introducing variable aggregation of neighbours, and they also proved successful in
transductive learning tasks where the data is not fully labelled (Velickovi¢ et al., 2018).
We refer the reader to a comprehensive survey by Wu et al. (2021) for a general
introduction to GNNs and their various flavours.

Thus far, GNNSs have been applied in some application areas related to finance or
financial markets. For example, they were used in consumer finance for fraud
detection (Xu et al., 2021) and credit risk prediction (Oskarsdéttir and Bravo, 2021).
Feng et al. (2022) used a combination of a GCN model and self-attention (unlike in a
GAT, which has self-attention as part of its own architecture) for making stock
recommendations, i.e. to predict the top 3 stocks (out of 738 stocks) for the next period.

Overall, we argue that deep learning methods, such as GATs, are better deployed at
scale, on a large set of illiquid, risky firms such as mid-caps, than on a small set of
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established firms, as they are well equipped to extract complex relationships but need
a large enough amount of data to produce stable solutions.

3.3 Methods

In this section, we describe the data used for this study, the distance correlation
measure and the graph ﬁ]tering algorithm, which provide the inputs for the GNN and
other benchmark models.

3.3.1 Data

We collected the daily closing prices of all mid-cap companies listed in the US over 30
years, from 1990 to 2021. A total of 16,793 firms were active for at least part of this
period. For portfolio selection, we use a three-year rolling window, which limits the
allocation problem to around 5,000 firms at any given time point. This number
changes substantially over time due to defaults and firms entering or leaving the
mid-cap universe, as can be seen on a year-by-year basis from Figure 3.1. Here, default
is when a firm has entered liquidation/ bankruptcy or experienced another credit
event that adversely affected the firm’s equity. The default rate varied around 1.5% in
any given year; over the full period, 8.5% of total firms faced some form of default.

3000

0.00%

FIGURE 3.1: Number of firms and year-on-year default rate in the sample

We convert the prices to daily returns for each firm, denoted by r,; for a firm u at time
t. These return series are divided over time into a training (50%), validation (25%), and
test set (25%), with the most recent data serving as the test set. We have more details
of this split in Section 3.5.1 To enable capturing relationships between firms, we
calculate the return-volatility series using the standard deviation of these returns and
a 30-day lookback period. Using return-volatility series is in line with previous work
on connectedness by Diebold and Yilmaz (2012, 2014), who, like us, employed return
volatilities instead of returns to look for such correlations. In financial market settings,
the return-volatility series has some interesting properties compared to the return
series, such as exhibiting pronounced co-movements during short risk-off periods but
showing weaker relationships under more benign market conditions. This series also
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tends to have strong serial correlation and closely mirrors market investor sentiment
(e.g. being positively correlated with the volatility index, VIX), which are essential for
identifying crises (Huang et al., 2019). Those are precisely the circumstances in which
the performance of different portfolio allocation strategies can diverge substantially.

More formally, for a firm u at time ¢, return volatility is defined as

Cut = O(Tut,Tut—1,- - -, Tut—20). We let V represent the total universe of firms, which we
observe over N periods, with V; C V denoting the set of firms active at time ¢
(t=1,2,...,N). Using a lookback period of T (set to 3 years) , each firmu € V; has a
daily return series,

Xut = (rm—lr Put—2,--- rruf—T) € ]RT’ (8-1)

and a daily return-volatility series,

Lt = (Cuf—lx Cut—2,+++, Cut—T) € RT. (3.2)

To prepare the input to the models, we stack the individual return series from (3.1) for
all firms in V;, to obtain the feature matrix X; € RVIXT je.

X; = [.’Cu Xop oo Xygp vvs xm“]T. (33)

3.3.2 Distance correlation

We quantify the strength of relationship between two firms by evaluating their return
volatilities and applying the distance correlation measure. Distance correlation is a
generalised measure of dependence, which is capable of capturing non-linear
dependencies and is known to perform well in domains such as signal processing
(Brankovic et al., 2019) and computational biology (Mendes and Beims, 2018). Starting
from the volatility series [, I, for two firms u, v (see equation (3.2) but omitting ¢ for
brevity) , our distance correlation measure, dcor(u, v), is derived as follows.

For each firm, we consider the absolute change in volatility between any times i and j
over some (lookback) period of length T, and then double-centre the resulting T x T
matrix. Each such rescaled firm-level change matrix can now be compared against the
matrices of the other firms, to derive the distance correlation between each pair of
firms. More formally, we first define two matrices A = (a;;) and B = (b;;), for a pair
of firms u and v, respectively, as

ajj = ||0ui — Iu;'”
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bi,}' = ”Im' - Iw’“

wherei,j € {t —1,t —2,..,t — T}, and || - || is the Euclidean distance. Each such
matrix captures times when the corresponding firm has higher or lower volatility
compared to other time periods. By doing so across all times, we obtain quantiﬁed
values of the firm’s volatility changes over the observed time period. This sets up a
comparison with another firm over the same period. To make the values comparable
between two firms with different risk characteristics, we define two further matrices
A = (a:}j), B = (b:v!j), i,j =1,2,..., T, that normalise the matrices A, B,

r

A ;= @jj —a;—daj +a..

!

bi,j = b,'!]' — b; — b,’_ +b..

where a_ i is the mean across rows, a; is the mean across columns and a_ is the mean
across all values in matrix A (and similarly for B). The distance covariance, dcov(u, U),
now is the average over all entries of the element-wise multiplication of A" and B!,
from which the distance correlation can then be obtained, as follows:

=T t-T
deov(u,0) =1/T* Y} a:v!j b:v!j
i=t—1j=t—1

dcor(u,v) = dcov(u,v)/ \/dcov(u, u) dcov(v, v). (3.4)

This measure has some valuable properties that are relevant to our problem (Székely
et al., 2007):

1. dcor(u,v) = 0, if and only if I, and [, are independent.

2.0< dcor(u, v) < 1, unlike Pearson correlation which instead captures the linear
dependence as a number between -1 and 1. This is useful because we are
interested in the strength of the dependence rather than the direction of the
dependence.

3. The measure can produce a value for two series of unequal length. Given that
firms can drop in and out of the universe, resulting in different histories, this
feature allows one to nonetheless consider the relationship between them.

A naive implementation of distance correlation calculation has O(T?) time complexity
for a pair of firms. Optimisation methods exist to implement this in O(T log T) when
faced with two series. Still, the main problem is to calculate correlations between
many firms and over multiple periods (Huo and Székely, 2016). In our experiments,
we chose to implement the required computations in a distributed architecture, using
a mix of GPUs and CPUs. Parallelising the pairwise comparisons between firms
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(using workload manager SLURM and High Performance Computing) facilitates the
calculation of large correlation matrices. The resulting code can handle the problem
size in a reasonable time.

Writing d ijasa shorthand for the distance correlation, dcor('vi, vj), computed between
any two nodes v;, vj € Vs, the resulting dependency matrix, Dy = (d,',j), generally leads
to a complete graph in which each firm is connected to all other firms.

Some studies have used threshold conditions to remove weaker edges (those
associated with small correlation values) from this graph, but the choice of threshold
value is arbitrary, and the composition of our portfolio changes over time, further
complicating the use ofa global threshold mechanism. Instead, we use a more
advanced technique from graph theory to filter D; and remove weaker connections

from it.

3.3.3 Graph filtering

The filtering technique we chose is the Triangulated Maximum Filtered Graph (TMFG)
method proposed by Massara et al. (2017), which, like PMFG, imposes a planarity
constraint on the graph but is more scalable to larger datasets such as ours. Using the
topological features of the graph as a constraint, a planar graph retains most of the
information with fewer edges. A planar graph can be drawn on a plane (or a sphere)
without any two edges crossing. Such graphs have attractive features making them
tractable for analysis, by, for example, simp]ifying cluster or community detection.

We denote by K = (V,, ;) the dense graph before filtering, wherein, for any two
nodes v;, vj € Vi (i # j), we let (v, vj) € Fiif and only if d,',j > 0. Using the distance
correlation values from Equation (3.4) as edge weights, TMFG filters K by searching
for a (near-)maximal planar subgraph G, i.e., one with the highest possible sum of
retained edge weights. Planarity constraints reduce the edges from |V;|(|V;| — 1)/2in
K to at most 3(|V;| — 2) in graph G.

The TMFG algorithm grows this planar graph by optimising a chosen score function
at each iteration step. In this paper, we select as score function the sum of edge
weights between pairs of firms, as given by our distance correlation measure. The
procedure starts by identifying a clique of four firms that have the largest such sum of
correlations among all firms. A clique is when all the distinct vertices in the sub-graph
have an edge between them, i.e, all clique members are connected. This happens in
most cases in our volatility networks, as all firms are correlated and unlike]y to have a
zero value. Next, out of all remaining firms, the algorithm looks for the node (firm)
that has the largest sum of correlations (here: distance correlations) with any
connected subset of three nodes that are already in the ne twork (so, initially, three
within that clique of four) and extends the network with this node and the extra three
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connections. It keeps repeating this until all firms are added again to the network.
Doing so guarantees that the new graph is planar and sparse. To improve
computational efﬁciency, the algorithm maintains and updates incrementally a cache
of possible combinations of these sub- graphs. At the end of this process, a sub-graph
G = (W, &), inwhich & C F, is created.

The resulting graph will serve as input to the deep learning models and graph-based
portfolio models. Its planarity property also aids visual representation. Figure 3.2
depicts a sample graph extracted from our data. This shows, for an example time
period, the topology of the generated network as being characterised by a fair]y small
number of central nodes and a large periphery. As we roll over the data window, we

construct such a graph for each subsequent time period.

FIGURE 3.2: Snapshot of network of mid-cap firms showing the remaining node con-
nections after TMFG filtering.

3.3.4 Network measures

The graphs created after TMFG filtering could be used directly for portfolio
optimisation, as some studies (Li et al., 2019b; Pozzi et al., 2013) have done. Rather
than employing deep learning in a subsequent step, these prior approaches basically
involve investing in the graph’s most ‘peripheral” assets. As we believe it is helpful to
compare our new GAT-based approach against such a simpler network-index based
approach, we next outline an inverse peripherality score, p;, for each node (firm)

i€ Vin graph G, which will later be used in section 3.4.2.2 to determine the allocation
weights for this benchmark model.
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Specifica]ly, we propose a composite score incorporating three common centrality
measures: a node’s degree, betweenness and closeness. These metrics have been
studied since the 1970s (Freeman, 1977) and remain popular in the network analysis
literature (Oskarsdéttir and Bravo, 2021). For the first of these, i.e. the de gree
centrality of node i, we take the number of nodes to which i is directly connected (also
referred to as the node’s neighbours) relative to the total number of nodes (other than i
itself). More formally, having defined the set of neighbours of i as

N; = {v|(i,v) € &} (3.5)

the degree centrality, dc;, for firm i, is defined as

de; = |Ni|/([Ve| = 1) (3.6)

The second measure, betweenness centrality, can be thought of as an indicator of the
amount of activity that passes through a graph node when any changes occur in the
network. To measure this activity level, it considers the shortest paths between all

pairs of nodes. The betweenness centrality of a node is the fraction of these shortest

paths (other than those starting or ending in the node) that pass through that node.

For a firm i, this is defined as

be; — Z s(u, v|i) (3.7)

u,veVs S (u 4 U)

where s(u,v) is the number of shortest paths between (u,v), and s(u, v|i) is the
number of these shortest paths that pass through i, with s(u,v|i) = 0ifi =uori =7,

and s(u,v) =1ifu =v.

Our third centrality measure is closeness centrality, cc;, which, fora given node i,
considers the reciprocal of the average length of the shortest paths to all other nodes

that are reachable from that node. Hence, for a firm i,

(1Bi]) (1Bx))
(Vi = 1) Lues, d(u, i) (3.8)

cc; =

where B;; contains the set of nodes that one can reach from 7, not including i itself, and
d(u, i) is the shortest distance (in terms of edge count) between (u, i); for example,
d(u, 1') = 1 if there is an edge that directly connects both nodes. In our setting, the
TMEFG graph (G) still connects all the nodes, so all nodes are reachable from one
another, but, unlike in K, the distance now varies. As with the other two measures,
higher scores for cc; imply higher centrality, with values ranging between zero and
one.
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We use the networkx library implemented by Hagberg et al. (2008) to calculate these
three centrality measures. Averaging them produces a simple inverse peripherality
(centrality) score, p;, for each firm i,

pi = (de; + be; + cc;) /3. (3.9)

3.3.5 Model performance and loss metric

We adopt the Sharpe ratio as the final perforrnance measure for the models (Sharpe,
1966). This is a well-studied metric to measure portfolio performance. Whilst there
have been studies proposing further refinements to deal with some of its limitations
(Lo, 2002; Farinelli et al., 2008), we use the widely accepted form of the metric. For an
individual firm u, we estimate the Sharpe ratio from the sample mean and variance of
the returns (defined in (3.1)). The same method also applies to portfolio returns. To
produce the latter, we take a weighted sum of the individual returns using the
corresponding allocation weights in the portfolio, giving a return series that has a
similar format to an individual firm’s return series.

Thus, for a series with T daily returns, a firm’s mean return and return variance are

given by:
1 T
;uu — ? fzzl Tut

o

1Z )
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t=1
From these quantities, the Sharpe ratio, SR,, can be easily estimated as

—r
SR, = 7 7F
Uﬂ

where R f is the risk-free interest rate. For ease of calculation, we set this rate to zero as
a constant baseline for all. Therefore, the Sharpe ratios produced here cannot be
compared to those reported by other studies, but they do allow for a direct
comparison between the models in this study. After training, we use them to test
model performance and report how they evolve. For the model training itself, we take
a different approach outlined below.

Most supervised deep learning models have a prediction target, but in our problem,
we do not aim to predict but provide a score for each firm, i.e. the weight to be

assigned to that firm in the portfolio. To enable this, we can convert the Sharpe ratio to
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a suitable loss metric, which the deep learning models will seek to minimise during
training. Maximising the Sharpe ratio is equivalent to minimising the negative
logarithm of that ratio, which gives us a more convenient loss function. A similar
approach was used by Zhang et al. (2020), using gradient ascent and a differentiable
Sharpe ratio. The loss function is thus expressed for a portfolio p with a daily returns
rpt at time t as

LF = —In(pp) + In(0y). (3.10)

where Fpt is calculated from the weights vector W; ¢ ]R“”fl,

[Vi]
fpt = ) _ Wity (3.11)
i=1

3.4 Models

3.4.1 Graph Attention Networks

Different types of GNNs have been developed to learn from graph data. In this paper,
we opted for GATs rather than the earlier class of GCNs. As explained in section 3.2.2,
the latter were introduced along with convolutional neural ne tworks, which were
designed for image processing. Unlike image data, however, graph data are more
complex in that they may have a variety of features and node connections that vary in
importance. GCNs generate a higher-order representation of input features and
neighbours, by weighting the features of each neighbour based on its respective
degree centrality. This choice of a single measure rules out more complex weighting
mechanisms. GATs solve this problem by using the self-attention mechanism. The
latter introduces learnable parameters to generate the weights for neighbours, making
GATs more flexible in how they learn from the neighbours’ features (Velickovic et al.,
2018). This is particularly attractive in many real-world settings where, like in ours,
the graphs are dynamic and evolve as time passes, or in many financial settings,
where market conditions also tend to vary over time. In those settings, fixed
weighting of neighbours might not perform well. The mechanism also allows for
different features to be learnt through multiple heads, such as short-term moves in
one head and longer-term relationships in another. Furthermore, the attention
operations are more efficient than alternative approaches, since they are parallelisable

across node neighbour pairs.
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Here, we formally define the GAT specific to our problem. Given a graph G = (W}, &)
as defined in section 3.3.3, and the input features defined in (3.3), GAT transforms the

input features X; into a higher-order representation H; given by

Hy=[hhy ... hy ... ¢y, " (3.12)
where 1, € RT

Note the dimensionality change from T to T’ with this transformation. Specifically, for
a given firm u (and, from here on, omitting the current time ¢ for brevity), the
transformation function from x, to h,, for a GAT with K heads, is defined as

hu =K F(xu, Zoen,ax (1, ) (Wixo)) (3.13)

in which Ny, as before, are the neighbours of firm u,. For each head k, W & RT*T jsa
weight parameter matrix of the model that is learnt during training, a(u, 'U) is the
weighted importance score of adjacent firm v, F(-) applies an activation function

(ReLU), and || is the concatenation operator applied to the outputs of all K heads.

The function a(u, v) is where each type of GNN differs; whereas it was a convolutional
function for GCNs, it is attention for GATs,

a(u,v) = softmax (o(a [Wxy,||Wxo])) (3.14)

where ¢ is a non-linear function (speciﬁcally, Leaky Regularized Linear Unit, in short
I_eakyReLU), acRT isa weight vector, and || is again the concatenation operator. In

our experiments, we set T'=24and K = 8.

Above, H; is a higher-order representation of the input features X;. To convert this
representation to a one-dimensional portfo]io weights vector, we next reduce the
dimensionality by adding a series of learnable layers. We use two blocks of
feed-forward networks, which first apply batch normalisation. This normalises the
feature inputs in the standard way, using mean and standard deviation, which enables
faster convergence and optimisation. We pass this through the first feed-forward
network and then apply dropout. The dropout process helps to improve the stability
of the training, reducing overfitting. The second feed-forward network uses L1, or
LASSO, regularisation to further shrink and eliminate unnecessary weights. We

denote the output of each layer i by s;,.

Siw = 0 (Wi * hy + b)

where i = 1,2 are the two feed forward networks, W; and b; are their trainable weights

and bias terms, respectively, and o is a nonlinear function (for which we used ReL.U).
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The s1 passes through a normalization layer and dropout layer before it reaches the
next feed-forward block. The final output s, € R provides the (as yet unscaled) scores
for the starting universe of firms.

We introduce a final allocation layer in the model to rescale these scores to generate
the final weights and meet the weight constraints, i.e., making sure that the values
range between [0, 1] and add up to 1. This layer is labelled ‘Importance Layer’ in
Figure 3.3. A softmax output function would have been the standard solution to
generate these weights, as used by most deep learning papers if they need the outputs
to add up to one. However, given the size of our investment universe, softmax would
lead to many tiny holdings of firms, which is impractical and can bring high
transaction costs. Instead, we prefer to concentrate the portfolio in fewer positions,
which reduces the cost of managing the portfo]io. To this end, we considered two
alternatives. One is to use sparsemax, which generates sparse outputs that would be
more suitable to our application scope (Martins and Astudillo, 2016). Another is to
introduce a weight reduction mechanism in the final layer of the model, that generates
the final weights and uses the output of the feed-forward network s, to bring the
sparsity with regularisation, thus bringing the weights to what we need and with
allocations in fewer firms,

. 52u
S T
szl 520

We found our mechanism more stable and straightforward to implement than softmax
and sparsemax. The training loss function reduction tended to be smoother and more
consistent, with the same input producing similar weights over different runs. In
contrast, the convergence path with the other training mechanisms was noisier, i.e. the
loss over the epochs was more volatile. Note that this allocation layer could be easily
extended to meet other portfolio constraints (e.g. choosing the top K firms).

We use standard GATs with their original parameters where possible and
implemented them using the Spektral package developed by Grattarola and Alippi
(2021). The full model with the added layers is summarised in Figure 3.3. The data
embeddings are displayed in colour and the deep learning layers are shown as
unfilled boxes in the figure. The GAT layer takes a graph as input. Each node in the
graph also has the corresponding firm’s return series as node features. For each of
these nodes, the GAT model generates an embedding which is further processed by
dense layers with non-linear (ReLU) activation, dropout and L1 regularisation, as
previously discussed. These scores are then converted to portfolio weights in the
importance layer, which collects the scores from earlier steps and, using the
reduce-weight mechanism previously described, allocates weights. From this, we can
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obtain a series of Sharpe ratios for each graph, which we then average to measure the
model’s performance over the full time period.

- IS

\

Firm N

FIGURE 3.3: GAT-based model: First embeddings are obtained from GAT and for
each node new representations are created before they are combined to form portfolio
weights

3.4.2 Benchmark portfolios
3.4.2.1 Mean-variance model

As discussed earlier, Markowitz (1952)’s mean-variance model is widely recognised as
a cornerstone of modern portfolio theory. Therefore, we include the model as one of
the benchmark models. For |V;| firms active at time t, the model assists in determining
the optimal weights w; for each asset i in the portfolio, thereby requiring that

Eli‘ll w; = 1. In so doing, one looks for an optimal trade-off between the expected
(here, quarterly) returns and the portfolio’s volatility.

In its classical implementation, the expected return and the variance of the portfo]io,
E(Rp) and V(R,), are estimated from the sample using the sample mean and

covariance,
[Vi|

E(Ry) = ; anm (3.15)
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V(Rp) =Y ) wiwjcou(i, f) (3.16)
j

where y; is the mean return of i** asset and cov(i, j) is the sample covariance between

the return series for firms 7 and j.

We solve the mean-variance problem using an optimisation library that uses quadratic
programming (Martin, 2021). Intuitively, the model is expected to have a preference
for lowly correlated firms to achieve diversification benefits. A high-dimensional
portfo]io poses computational challenges, however, which cause our model run times

to increase considerably.

3.4.2.2 Network index model

As previously discussed studies have shown, portfo]ios invested in peripheral assets
tend to outperform portfolios containing more central firms. One of our benchmark
models, referred to as the network index model, uses the peripherality measure
defined in Section 3.3.4 and allocates capital according to the inverse of this score. We
rescale these weights so that they sum up to one. Thus, for each node or asset i in the
network,

w; =1/ p;

w;
w; =

=T

The model takes a graph as input at each iteration and calculates the weights as
shown above. To test this approach’s performance, the resulting portfo]io’s daily
returns are then calculated using the observed individual firm performance over the

next three months.

3.4.2.3 Equal-weight portfolio

The equal-weighted portfolio is an important benchmark strategy against which to
compare any models with high dimensionality, such as those in our mid-cap universe.
The strategy consists of simply assigning equal weights to all the firms in the
portfolio. For each firm i in a set of firms V;, the weight w; thus corresponds to

w; = |Vi| L. (3.17)

This allocation may not be practical when developing a portfolio strategy for a large
number of firms, as the transaction costs increase considerably. For simplicity,
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however, we assume that there are no transaction costs!, and use this equal-weight
portfolio as the market benchmark in our study. It is widely reported in the literature
that the equal-weighted strategy, is difficult to beat, especially as the portfolio size
increases, because the risk of model misspecificaﬁon error increases for models that

use complicated strategies (DeMiguel et al., 2009b).

3.5 Experimental setup

In this section, we elaborate on how we set up our analyses and compared the
different models.

3.5.1 Empirical analysis: overview and training settings

At each step of our rolling window procedure, we go through a series of steps
preparing the data and building and comparing our different models. This pipeline is
depicted in Figure 3.4. All models are measured on the same test period, and using the
same set of firms. The equal weighted portfolio, for example, does not need training,
but to facilitate a meaningful comparison, this strategy is assigned the same test set as
the GAT-based model.

The first stage is the preparation of model inputs, which sees the raw data being
converted to returns and volatilities. For each time period, the volatility data is then
used to create the dense distance correlation matrix, which is filtered by the TMFG
algorithm to create a sparse graph.

The second stage in the pipeline is when the models receive the appropriate inputs for
training. The mean-variance model and equal-weighted model are fed the expected
returns data. The GAT model, in addition to the return series, also receives a filtered
graph as additional input. When training this model, we adopt early stopping to
prevent overfitﬁng. A patience of 15 epochs is applied to avoid local minima. Lastly,
the network index model is given the graph input, and calculates the peripherality
score for each node.

All models generate investment weights at the final output stage, and their
performance is measured using (unseen) test data, which is two quarters ahead of
training data and one quarter ahead of the validation data (i.e., all models are tested
on an out-of-time sample). The Sharpe ratio is calculated at portfolio level for each
quarter. These steps are repeated as we slide to the next window of returns, resulting

1As discussed earlier, our method would perform well in the presence of transaction costs, since it
is designed to produce a sparser portfolio. Later results will show that this no-cost assumption actually
favours our benchmarks as their portfolio turnover is higher.
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in an updated set of correlation values and a new graph, which are then fed into
another model run. We track the performance of each of these series of models over

time and report the results in Section 3.6.

FIGURE 3.4: Empirical setup: overview

3.5.2 Evaluation metrics

The Sharpe ratio provides a suitable measure of portfo]io performance. However, to
further explore how the respective portfolio solutions differ, we employ some

additional metrics.

Firstly, we use two of the node centrality measures discussed earlier, specifically
betweenness and degree centrality, to calculate portfolio—]eve] centrality scores. For
each of these scores, we take the weighted average over all firms in the portfolio, using
the allocation percentage as respective weights. This will show how peripheral the

nodes selected by each model tend to be.

Secondly, we compare the industry-level composition of the portfolios, as different
strategies might overweight certain industry sectors.We calculate each sector

weighting by summing the portfolio weights of each holding in that sector.

Lastly, bearing in mind the dynamic nature of the problem, we also report turnover
statistics. In theory, there are four possibilities for each position in a portfolio: either it
is newly added, unchanged, closed, or modified (i.e. its allocation increased or
decreased), compared to the previous period. Due to the size of the mid-cap universe
and its natural turnover, we chose to focus on two types of changes. Specifically, we
will consider the newly added or closed positions in a portfolio, relative to the natural
rate of change. The latter can be easily derived from the equal-weight portfolio, as this
will create or close positions only if the companies are new to or have exited the
mid-cap universe, respectively. Thus, for each model, we calculate the number of new
(closed) positions in the portfolio, subtract from this the number of new (close)
positions found in the equal-weight portfolio, and divide by portfolio size. We then
define relative portfolio turnover as the sum of both percentages.
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3.6 Results and discussion

We begin this section by reporting the mean performance of each model according to
the Sharpe ratio, followed by how this ratio varied over a 30-year period.
Subsequently, we explore how the resulting portfolios differed in terms of the
peripherality of the chosen holdings, sector distribution, and turnover.

3.6.1 Model performance

Table 3.1 shows the mean portfolio performance of the four strategies, over the
training, validation and test data splits. We annualised the shape ratio as we have a
horizon of one quarter. On the test data, the GAT models have the highest Sharpe ratio
of 1.082. In other words, the GAT models tend to offer better risk-adjusted returns
than all of our benchmark methods. This suggests that deep learning models can learn
intricate relationships based on the provided input features and the adjacency
information derived from the volatility networks, which allows them to beat our
benchmark strategies. In line with earlier studies confirming that even well-designed
portfolio models find it hard to outperform equal-weighted portfolios (especially
when the portfo]ios are large) (DeMiguel et al., 2009b), we can see the latter having the
second-highest Sharpe Ratio, closely followed by the network index benchmark. The
Mean-Variance model exhibits the worst performance, confirming similar ﬁndings in
studies on large-scale portfolio optimisation (Ao et al., 2019). One explanation may be
that their inputs, i.e. the expected returns and (linear) covariance matrix, do not have
the same amount of information contained in them as do the returns time series and

filtered adjacency matrix that serve as the inputs to the GAT models.

TABLE 3.1: Portfolio optimisation performance results

Sharpe Ratio (annualised) train  val test

Equal 0.825 0.925 0.830
Network 0.817 0917 0.820
Mean-Variance Portfolio  0.779 0.785 0.700
GAT 1.819 1.480 1.082

Whereas the rightmost column of Table 3.1 reports the average ratio over all the test
data sets, further insights can be gained from plotting a four—quarter moving average
of these quarterly ratios (showing the last 12 months’ performance). Figure 3.5 details
how the models thus perform over time. Apart from an initial period of five years
over which all the models appear to perforrn similarly, this plot shows the GAT
models performing consistently well from there on. We can also observe that the
mean-variance models, including in the recent past, have underperforrned. Although
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the relative performance gap between the GAT models and the equal-weight strategy
and network-index based models appears smaller (especially so near the end of the
time span), the GAT models tend to more often have the edge over these two strategies
as well. As the market went through several cycles during this extended time period,

these ﬁndings appear robust to general market conditions and re gime changes.
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FIGURE 3.5: Model performance over time

3.6.2 Strategy differences: peripherality of holdings

Next, we further examine some of the factors that may explain the performance
differences observed above. Firstly, Figure 3.6 shows how two of the (weighted)
average centrality scores defined earlier differ between the portfolios produced by
each strategy. The set of bars on the left (right) shows betweenness (degree) centrality,
respectively. The black lines represent the standard deviation of these scores over time.

Model
0.006 - GAT

I Equal
N Network
EEE Mean-Variance

0.002 4

0.001 4

0.000 -

Betweenness centrality Degree centrality
Params

FIGURE 3.6: Weighted centrality of portfolios

Although the GAT and mean-variance models appear similar in terms of their mean
betweenness centrality, this score varies heavily over time for the mean-variance
model, showing that the latter strategy is undecided in choosing between nodes that
are either more or less peripheral. The betweenness scores for the GAT model show
much lower variability over time, suggesting that the latter more consistently prefers
companies from certain parts of the graph structure. The network index benchmark
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model chooses the most peripheral nodes according to the same criterion, but the
previous section showed that the resulting portfolios underperform against those
selected by the GAT model. This could be due, in part, to a relative overweight on
peripheral nodes. Also, the earlier chart in Figure 3.1 showed that mid-cap firms carry
around 1.5% default risk, which will impact the portfolio quite drastically and might
eliminate any possible performance gains from selecting the more peripheral nodes.
This is a different conclusion from previous studies, especially those based on
topological information for portfolio optimisation (Li et al., 2019b). However, those
studies often excluded firms that defaulted over the study period and also tended to
remove any firms that do not have the complete data available.

From the degree centrality scores shown on the right, we can draw a similar
conclusion; i.e., the GAT model is associated with the smallest variance in centrality.
Although the actual means are fairly close, the GAT model tends to select nodes that
have marginally higher degree centrality than those in the equal-weighted portfolios

or those for the other benchmarks.

To shed further light on this, we revisit the filtered network previously shown in
Figure 3.2, adding the portfolio weights allocated by the GAT model to Figure 3.7.
This shows the allocations focusing on select branches instead of merely selecting the
most peripheral nodes. The darker pink tones show where the model did not allocate
any capital at all. As we move higher up in the colour scale, we see larger weights
directed towards a few peripheral firms (see dark green tones) and smaller weights

distributed across numerous central firms (white and light green tones).

FIGURE 3.7: Distribution of GAT portfolio weights over nodes of mid-cap network
snapshot
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3.6.3 Strategy differences: sector allocation

Figure 3.8 shows the share of the portfolio’s capital that is allocated to each of the
different industry sectors. The equal-weighted portfolio (orange bars) provides a
useful baseline for comparison, as it shows how the overall population of mid-cap
firms is distributed. The largest sector is manufacturing, with around 45% of firms.
The network-index model portfolios have a similar sector composition to the
equal-weighted portfo]io (but as seen in Figure 3.6, they choose more peripheral
nodes). The mean-variance model shows greater variance in industry weightings than
other models. This is somewhat expected fora large-scale portfo]io, as, with the
universe of firms changing every quarter, mean-variance portfolio optimisation can be
unstable. Here, it tends to underweight the larger manufacturing sector and
overweight the transportation and public utilities sectors. As seen from their relative
variation in industry allocations, the GAT model, over time, rebalances sector
weightings more extensively than the equal and network-based portfolios, but less so
than the mean-variance model. This may put the GAT model in a better position to

achieve stable returns under different market conditions.
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FIGURE 3.8: Industry allocations per model

3.6.4 Strategy differences: portfolio size and turnover

To better understand some of their cost implications, we end the analysis by

examining the resulting portfo]io size and turnover for each strate ay.

Firstly, to help us compare how sparse the portfolio selections are for the GAT and
mean-variance models, Figure 3.9 plots, for each time period, the percentage of firms
from the corresponding universe to which no capital has been allocated. Note that the
network index and equal-weight strategies were left out from this chart, as both will
assign non-zero weights to all of the firms. As can be clearly seen, the GAT model
requires holding far fewer firms than our mean-variance implementation, which is
unsurprising given that the former includes a regularisation mechanism that is
lacking in the latter. The resulting difference in unallocated firms is substantial and
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consistent over time. The changes over time observed for the GAT model may be
indicative of changing market conditions.

FIGURE 3.9: Fraction of firms that do not have any capital allocated, over time

Secondly, we evaluate the quarterly turnover of each strategy. Unlike the capital
allocation reported earlier, this relates to the count of positions changing between
periods (or number of trades). Figure 3.10 shows, for the different types of portfolios,
the mean proportion of holdings that were new positions, as well as how many
positions were closed since the last quarter as a percentage of portfolio size. Turnover
is the sum of these two, represented by the combined bar height. The equal-weight
portfolio sees 16% turnover on average, with some further variability indicated by the

error bars. This reflects the natural churn as companies enter or leave the universe.

Among the other methods, the GAT model has the lowest turnover, albeit with a
higher variance than the network model. This means that, on average, it requires
fewer trades but, depending on market conditions, there are some periods where it
uses substantially more than the network index model.

Table 3.2 summarises how much of each model’s turnover is in excess of the natural
change (by subtracting the turnover of the equal-weight portfolio). From this, we can
again see that the GAT model requires little such excess turnover compared to the
other strategies. For example, the portfolios produced by the GAT model, on average,
add a mere 2.07% more new positions from one quarter to the next, whilst they close
an additional 2.03% of existing positions (compared to 2.83% and 2.68% for the
mean-variance portfolios). With an overall excess turnover of 4.10%, the GAT model is

GAT
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FIGURE 3.10: Trades in the portfolio as a % of total firms
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thus associated with a relative reduction of 25% and 15%, compared to the
mean-variance and network index models, respectively. This strongly suggests that
the GAT model will have lower transaction costs compared to traditional models.

3.7 Conclusion

In this paper, we have put forward a solution for large-scale portfolio optimisation
using deep graph learning. We have seen how GAT-based models, a type of model
within the broader family of deep learning models, can extract intricate relationships
that other traditional models can not. While most studies focus on portfolio
optimisation for assets that have re gular availability of prices, we focused on
problems where the data is more difficult to model, by choosing to analyse the volatile
mid-cap market. The study of such firms in itself is of interest for a variety of reasons.
Whilst they are far more numerous than their large-cap counterparts, their smaller
size makes them more vulnerable to market movements and larger correlation with
the overall economy, something most structured stochastic models ignore. They also
potentially offer higher returns for commensurate risk to investors, while better risk
management may lead to better access to financial markets for those firms.

In designing our approach, we have linked several areas of study. We applied the
distance correlation measure to firm volatility pairings, to capture more complex
connections between firms than with alternative approaches. From this, we generated
a sparse graph by employing the Triangulated Maximally Filtered Graph algorithm, a
filtering technique that is applicable to large-scale graphs. Through this, we explicitly
incorporate the interdependence of midcap companies. These filtered graphs were
then presented to a GAT model, which can identify higher-order relationships. The
final allocation layers of our deep learning solution were designed to optimise the
embeddings generated by the GAT models, and the regularisation parameters used in
the deep learning models imposed constraints on possible weights and the number of
firms to which capital can be allocated. Being derived from the Sharpe ratio, the
chosen loss function set a risk-adjusted return objective for portfolio performance
maximisation. Other portfolio objectives could similarly be used and further

constraints imposed on the portfo]io allocations.

TABLE 3.2: Mean (excess) turnover by model (in excess of natural change)

% change new closed turnover
Network 248 236 4.84
Mean-Variance Portfolio 2.83  2.68 5.50
GAT 2.07 2.03 4.10
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Starting from the premise that deep learning models should be adept at optimising
many high-dimensional problems such as ours, our experiments with real-world
midcap data indeed showed that the GAT-based models achieved better performance
than other alternatives. We also studied how these results were robust to different
market conditions and looked at the distribution of firm allocations across different
strategies, to identify some of the factors explaining how the GAT models differed. In
so doing, we found that they tended to choose companies that are not too much in the
periphery and allocated capital to fewer firms. Lastly, we observed that the typical
turnover associated with the GAT models was lower than that of the alternatives,
although, on fewer occasions, they did make more substantial changes to reposition
the portfolio.

As for future work, further graph neural network models could be developed to
predict aspects like market regimes, or produce early-warning indicators for financial
networks. By changing the objectives and revising the loss function, we could also
extend deep graph learning-based portfolio optimisation models towards different
goals, such as the construction of Environmental, Social and Governance (ESG)
portfolios, or other types of diversified portfolios, and solve problem instances on a
much larger scale than before.
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Chapter 4

Network-enhanced credit risk
models for SME credit lines

Abstract

Credit lines are borrowing facilities that firms can draw from up to an agreed limit.
They are used primarily for liquidity management, as they offer ﬂexibility within a set
credit agreement. For banks, these lines of credit also create procyclical risk, as the
exposure tends to increase during challenging economic conditions. As individual
firms draw from these lines and signal their financial health through their repayment
behaviour, this creates behavioural patterns that could signal the firm-level risk of
default and deterioration in the wider market environment, thus impacting other
firms. However, the prevalence of instalment-based products results in them being
less widely studied than other debt instruments, such as bonds or loans. This paper
uses credit line data from a large database of Small and Medium-sized Enterprises
(SMEs). We generate a large set of behavioural features related to credit line usage
from temporal data. We also create a dynamic network of all firms using explicit
inter-firm transaction data, ownership data, and the financial transactions due to
explicit supply chain relationships between firms. This allows us to capture how
default risk may propagate between firms. Alongside these, we also use financial
information and credit agreement terms as further inputs to our model. For the
behavioural and financial information, we create panel data for each firm and use it as
input to temporal deep learning models, speciﬁcal]y graph attention ne tworks. Using
a multimodal architecture, a deep learning model that can incorporate different data
sources effect-ively, we combine the temporal and graph models to produce a one-year
probability of default for a given firm. To gauge its performance, we compare this
model with logistic regression, traditional machine learning models, and baseline
deep learning models. We also seek to understand the predictive power of

behavioural data by comparing with other data sources.
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4.1 Introduction

Small and Medium sized Enterprises (SMEs) contribute significantly to any economy.
What constitutes an SME differs across countries and re gions; in Europe, these are
firms with revenues of less than 50 million euros and fewer than 250 employees,
while, in the US, the definition changes by sector, but generally, they should have no
more than 500 employees. While exact definitions may vary, the structural features of
these firms are similar. They typically provide around 60% of the employment in most
countries. In Europe, for example, they are reported to account for 65% of
employment and contribute 52% of the value generated by all firms (Di Bella et al.,
2023). Even though they play such an important role in an economy, they face higher
barriers regarding access to credit, compared to individual consumers or larger firms
(Ayyagari et al., 2007; Rao et al., 2021). The process used by lenders to score SMEs sits
somewhere between the personalised approaches used for large corporates and the
fully automated credit approval process that is in place for consumers. This dual
approach adds to the cost for the banks and financial intermediaries that provide SME
credit (Munro, 2013). The lack of structured data, ownership issues, legacy banking
systems, and limitations of the models themselves also contribute to this problem
(Beck and Demirguc-Kunt, 2006; Moscalu et al., 2020).

Revolving credit facilities (RCF) or credit lines are a form of credit provided by
financial institutions to manage the liquidity needs of a firm. The firm can borrow up
to a pre-agreed limit for a fixed period. Interest is paid on the drawn amount, and
likely commitment fees may be paid on the undrawn amount. This allows a firm to
avoid going through a time-consuming loan sanctioning process whenever it needs to
meet its cash needs. As some firms operate in a cyclical business and due to cash flow
delays that are inherent to their supply chains, most firms would need some revolving
credit arrangement with their primary bank (Sufi, 2009). The banks, too, benefit by
providing a credit line facility, as this provides behavioural insight into their client
firm, while earning them fees and interest. Customers that appeared initially risky
might, over time, be better understood after they start using the facility, especially if
there is strong seasonality in the cash flows or a longer working capital cycle, i.e., the
time it takes to convert working capital into cash revenues. This helps the banks to
better serve their clients and provide other forms of credit, such as loans (Aragon

et al., 2020; Acharya et al., 2021). However, these instruments also carry risks, as
studies show an increase in revolving line exposure in the period prior to default
(Bergeres et al., 2015; Berrospide and Meisenzahl, 2022).
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For every granted loan or credit line, banks must allocate a provision, which covers
expected losses, and use part of their capital to account for unexpected losses. The
capital for a specific facility or a loan is a certain percentage of Expected Loss (EL), the
latter of which is obtained by multiplying three factors: the loss Given Default (LGD),
i.e. the complement of the expected recovery rate after default has occurred, and
represented as a percentage of par; the Probability of Default of a firm (PD), generally
a one-year ahead probability of default; and the exposure at default (EAD), the
amount of monetary exposure of the bank to the defaulted firm, usually the full
amount owed plus an extra adjustment related to the expected utilisation of the
remaining credit line when the borrower is under stress. These three quantities need
to be modelled by the financial institution. Although there is little reported work on
PD modelling for revolving credit facilities, the EAD has received some attention. For
example, Wattanawongwan et al. (2023) and Tong et al. (2016) build EAD models for
retail credit card data and Thackham and Ma (2019) provided a similar study on EAD
for large corporates. Our paper covers an existing research gap by both focusing on
the PD of revolving credit while also tackling the challenging problem of SME lending.

To do so, we use the behavioural data of revolving credit facilities, which includes
features like timeliness in repayments, utilisation, and historical arrears. Behavioural
data comprises dynamic variables that track financial signals over time, which is not
possible for application scoring, where the data is largely static (Bellotti and Crook,
2013). Behavioural scoring of existing clients can, for example, be used to make
decisions on setting credit limits as a firm’s situation changes or to put firms into
different risk grades for capital calculations (Sohn et al., 2014). We further combined
this data with traditional accounting information and the profile of the firms, such as
business sector and location, to form a rich tabular set of data that can be used to
estimate the one-year ahead default probability.

Apart from such tabular data, alternative data sets are also increasingly available.
These, too, may provide useful indicators of a firm'’s risk, especially when traditional
data sources are not available (Owens, 2017). Financial institutions have large swaths
of internal data on customers such as SMEs, which are either collected directly,
sourced externally, or generated internally due to customer interactions. SMEs, in
particular, are benefiting from increased access to credit provided by fintech firms who
are tapping into alternative data sets (Lu, 2018). Networks are a prominent type of
data source, and relationships like common ownership, supply chain partnerships, or
transactions can be used to connect a group of firms. Using networks as a data source
gives additional insights into how risks are propagated and can capture inter-firm
dynamics that cannot be explained with just firm-level data (Cainelli et al., 2012). For
a lending institution, this kind of network view could provide early warning of how
one firm’s vulnerability could impact other firms in its portfo]io, and also provide

insights on correlation risks that exist in the portfolio (Giesecke and Weber, 2004).
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Network data have also been used in the context of SMEs and were found to improve
the models” performance when network metrics are added to the input features (Song
et al., 2016; Vinciotti et al., 2019; Oskarsdéttir and Bravo, 2021). However, most works
have focused on implied networks, or networks derived from tenuous relationships,
generally within a small network or a single type of network. This is due to the
limited availability of data, since SME datasets are private to an institution, and where
public data is available, it might be outdated. More timely data with extensive
coverage is needed to study the importance of networks for SMEs more fully.

For this, we partnered with one of the largest banks globally, who granted us access to
both behavioural and network data. We focused on default prediction for SMEs that
were previously granted credit, all within one major European economy. The data is
extensive, with more than 150 thousand SME firms and 3.8 million connections. It
contains monthly snapshots of contractual data, which can be used to generate
behavioural features, and network information based on three different connection
sources: firm ownership, supply chains and transaction information. Among these,
ownership links remain mostly static, whilst transaction networks are highly dynamic.
The complexity of the explicit inter-firm links revealed by these three connection
types, their dynamic nature, and the scale involved, as well as their intended use
alongside the available behavioural data, calls for advanced computational analyses,

such as those introduced in the realm of Artificial Intelligence (AI).

Al methods, and especially deep learning, have produced state-of-the-art results in
many problem settings. They have been developed to use various data types as
inputs, including images, video, audio, text, and ne tworks. Through multimodal
learning, these models combine these different data sources to generate new
integrated features, further improving the benchmark results in various domains
(Ngiam et al., 2011). Pre-existing methods were not ideally suited to using such data,
as they required making modelling decisions as to how to transform the inputs into
quantitative signals, without any assurances such inputs would prove useful.
Similarly to earlier studies of SMEs that also used network data (Lazo et al., 2021), we
could choose to define a few such explicit features ourselves, in an attempt to
represent the ne twork, but deep learning models can automatically generate large
embeddings that could be better tuned to the problem and help improve the model
performance. To extract the higher-order relationships in the network data, we
propose building upon graph attention networks (Velickovic et al., 2018), a deep
learning architecture that is designed specifically for network data. These models are
scalable to large networks but we need to make them suitable to handle the large,
dynamic ne tworks we have, and inte grate them into a multimodal architecture that is
able to use the behavioural data as well. Note that, unlike some previous studies on
consumer credit risk that also used deep learning models (Mercep et al., 2021) or
Graph Attention networks (GAT) models (Wu et al., 2023), this paper focuses on SME
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credit risk, which traditionally needed more qualitative inputs than consumer models

as relevant risk drivers proved more challenging to quantify.

Deep learning models, however, tend to be more difficult to interpret, which may be
an issue if the model will be used to screen applications and/or is subject to particular
regulatory scrutiny. With behavioural scoring, however, the model focus is on internal
monitoring and capital allocation after the borrower firm has already been granted a
credit line. In this study, we look for a middle ground whereby the resulting models
are at least partially explainable, whilst the (opaque) network embeddings generated
by the deep learning models lead to demonstrably more precise predictions than

traditional models.

Summarising how we seek to fill current gaps in the literature, our study looks to
predict the one-year ahead probability of default of SME firms that were granted
credit lines, by employing behavioural and network data held by financial firms. The
proposed approach is particularly salient when traditional data sources, such as
timely audited financial statements, are difficult to source or do not carry strong
signals. We feed these different data sources to a multimodal GAT, to produce the final
outputs, and test our methods on a large real-life dataset. The paper thus aims to

answer the fol]owing research questions:

1. Can SME default be predicted effectively using behavioural and network data?

2. Are the proposed deep learning methods suitable for drawing insights that
could be useful for other, more traditional models, when those are preferred?

3. Are the predictions stable over periods of shock to the system?

In terms of contributions made, this paper is the first to introduce multimodal
dynamic deep learning techniques to leverage multiple, explicit SME networks and
empirically compare the relative predictive power of behavioural and network data in
the context of SME credit lines. It does so with the help ofa large, real-world dataset
from a major lender, exploring the robustness and predictive capacity of the proposed

solutions over time.

The remainder of the paper is organised as follows. Section 4.2 reviews relevant
literature on credit lines, networks and deep learning, with a focus on SMEs.
Section 4.3 describes the data and the process by which this data is converted into
networks and relevant measures used in the study. The proposed models, and the
baseline models against which they are compared, are described in Section 4.3.2.
Section 4.4 then presents the results of the various models applied to different data
types. Finally, Section 4.5 summarises the contributions and suggests future steps.
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4.2 Literature review

There is extensive literature on credit risk modelling for established firms and
individual consumers, much of which proposed various techniques and benchmarked
them across different datasets. We refer the reader to Crook et al. (2007), Lessmann

et al. (2015), and Shi et al. (2022b) for detailed surveys of the main work in this area.
Instead, we focus mainly on the credit lines literature and the rationale for those
studies, whilst highlighting some of the differences with our own. Next, we review
existing studies in the credit risk domain that consider network data within the
speciﬁc context of SMEs or credit lines. Thirdly, we discuss some related deep learning
work.

4.2.1 Creditlines

Earlier studies on credit lines, or loan commitments as they are called in relation to
large corporates, show the need fora separate stream of study as they behave
differently from instalment loan products yet make up an important part of a bank’s
risk exposure (Shockley and Thakor, 1997; Martin and Santomero, 1997). Part of the
appeal of credit lines to banks is that they reduce information asymmetry between
lender and borrower, as banks can monitor the risk actively, especially in the case of
SMEs. Sufi (2009) found evidence that credit lines provide liquidity support to the
firms, and not having a credit line is a powerful measure of financial constraints to
credit access compared to other indicators. A recent study by Chodorow-Reich et al.
(2022) compared drawdowns by large and small firms during the Covid-19 crisis,
identifying several obstacles faced by SMEs. These studies provide a clear rationale

for further work on SME credit lines that could alleviate some of these constraints.

From a risk mana gement perspective, rich behavioural data can be derived from credit
lines, providing signals that could be applied to other relationships with the borrower
firm, such as loans or underwriting services. In the case of SMEs, though, these are
challenging to manually monitor, and, instead, automated strategies must be
developed to assist the bank (Munro, 2013). This is precisely what this study sets out
to do, by extending the current methods for default risk management of a large-scale

portfolio of credit lines.

Through the large amount of undrawn credit in the system, credit lines or other forms
of revolving credit can transmit certain macroeconomic shocks. Greenwald et al.
(2020) studied different types of shocks and how they are transmitted. They found
that normal business cycle shocks are absorbed by these products, but extreme shocks
such as Covid-19 provided interesting conclusions in that large firms could crowd out

smaller firms. Acharya et al. (2021) established the systemic importance of these
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facilities, as they also function as liquidity insurance for the firms when there are
shocks to the system. They find credit lines are more cyclical than loans. The credit
amount drawn as a ratio of available credit increases ahead of recessionary periods,
and therefore could provide an early warning to the banks.

To fully quantify the credit risk of credit lines (or any other forms of revolving credit),
one has to estimate not just default risk but also exposure risk. In addition to requiring
banks to model the PD, the Basel II Accord mandates estimating Credit Conversion
Factors (CCF) to model the EAD parameter for credit lines. Tong et al. (2016) used
retail credit card data and studied models with and without the CCF to understand
EAD for revolving facilities. Credit cards are similar to credit lines for firms, where
there is an agreed limit, and it is up to the borrower how to utilise the credit limit.
Thackham and Ma (2019) provided a similar study on EAD for large corporates and
found that both exposure and limit need to be jointly modelled to derive the EAD
correctly. They also found evidence of active risk management by lenders decreasing
the limits to risky firms, as well as weak evidence of countercyclicality whereby
exposure to risky firms was reduced ahead of recessionary periods. Bergeres et al.
(2015) studied the dependence between exposure size and default risk of two different
retail products, term loans and credit lines, and found that higher drawdowns are
indicative of higher loan default risk and vice-versa. A recent study by
Wattanawongwan et al. (2023) used a large set of credit card defaults to build a series
of regression models for predicting EAD. They noted that the EAD risk drivers
differed depending on how close utilisation had come to the credit limit prior to
default.

In this paper, we chose not to target exposure risk but default risk, using prior
utilisation information as part of the input to a PD model. Although there is a large
body of work on default modelling for term loans and consumer loans in particular,
there has been a surprising lack of work reported in the academic literature that
focuses specifically on corporate credit line defaults. Some empirical work in the
setting of consumer credit cards has focused on setting limits based, at least in part, on
model-based estimates of default risk. For example, Alfonso-Sanchez et al. (2024) used
reinforcement learning to adjust credit limits and found the optimal policies are
non-trivial but can be now automated with such models. Sohn et al. (2014) take a
multi-step approach by first predicting the risk of default and then grouping similar
credit lines for profit maximisation. Stress testing credit card default using survival
models is another related area of research. In so doing, Bellotti and Crook (2013) were
able to include both behavioural features and macroeconomic conditions into their
models, which resulted in better forecasts. As an example of related work on SMEs,
Calabrese et al. (2016) used a novel generalised additive model to predict bankruptcy
in a large set of Italian SMEs, and found that it was important not to assume linearity

of the effects of explanatory variables. Their model, however, solely employed
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accounting data and did not consider credit line behavioural data, as we do in our
work.

A second key focus of our paper is how to incorporate data on inter-firm networks
into the default prediction models.

4,2.2 Networks in credit risk

Networks are found across a large variety of settings. The internet, social networks,
financial networks or supply chains are some of the important networks we encounter
regularly. There is considerable value to be unlocked from these networks, as, for
example, the PageRank algorithm developed by Brin and Page (1998) showed. A large
body of literature exists on various kinds of networks, as surveyed by Bricco and Xu
(2019) and Chunaev (2020). In this paper, we focus on SMEs, which are part of much
larger economic networks and, as economic actors, can be co-owned, and frequent]y
transact with other firms, all of which create rich networks.

One of the earlier examples of SME network studies by Naudé et al. (2014) analysed a
small survey sample including data on the social networks of SME owners. Using
structural equation modelling, they showed that the performance of SMEs is
influenced by the network structure and external networking behaviour of their
owners. Song et al. (2016), again with the help of survey data, considered the supply
chain network attributes of SMEs and analysed the relationships between different
types of inter-firm ties, information sharing, and the credit quality of SMEs. Other
studies have sought to embed ne twork information into traditional models, thus
aiming to improve the performance of those models. Vinciotti et al. (2019) were
provided access to transaction data on a sizable set of SMEs in the UK, from which
they generated a selection of network features that could be added to their credit risk
models. Their analyses showed that these network-augmented models performed
significantly better than models that merely used traditional accounting or other
structured data. Another study using an agricultural loans dataset developed a
multi-layer bipartite network and used that to create a novel personalised PageRank
centrality measure (Oskarsdéttir and Bravo, 2021). This measure was then added to
the existing feature set, which again was shown to improve the credit default
prediction performance.

Similarly to Oskarsdéttir and Bravo (2021), we also use a page-rank centrality measure
in our study, as one of the network features. The core difference between Vinciotti

et al. (2019) and our paper is that we consider three distinct sources of network data
and seek to leverage more complex patterns embedded in them, using state-of-the-art
deep learning methods.
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4.2.3 Deep learning and graph neural network applications

Deep learning methods have produced state-of-the-art performance in a wide range of
domains such as speech recognition, drug discovery, or language translation (LeCun
et al., 2015). Applied to large data sets and using large-scale computations, they are
able to discover intricate relationships that remained hidden with earlier models. Like
for other types of data, such as text or ima gery, deep learning has delivered dramatic
advances with network data as well. Graph neural networks (GNNs) are a family of
deep learning models specialised in using network data. Among them, Graph
Attention networks (GATs) have achieved state-of-the-art results on various graph or
network data sources. GATs leverage self-attention over the node features, which
assigns different importance to the nodes in the local neighbourhood, instead of
depending on the global structure, which was typical of earlier GNN methods. This
reduces the computational complexity and was also found to improve the
performance of the models (Velickovic et al., 2018). They are thus suitable to
large-scale graphs and can be deployed without excessive computation requirements.
We employ GATs to generate embeddings for each firm of interest, from the available
network data and behavioural data. These embeddings then serve as inputs to other
deep learning models that predict default probability.

Deep learning has recently attracted growing interest in credit scoring research. Using
behavioural data and applying deep neural networks improved the performance of
the credit ratings of a large loan portfolio (Mercep et al., 2021). Sun and Vasarhelyi
(2018) deployed neural networks on credit card behavioural data to predict
delinquency or default and suggested they are suitable for automating part of the
credit risk assessment. More recently, Ala'raj et al. (2021) used Long Short-Term
Memory (LSTM) models, a sequential deep learning model designed to handle
temporal data, applying them to behavioural data on retail credit card usage. Their
analyses showed that they significantly outperformed traditional methods on this
data. In a related retail banl(ing setting, deep learning methods have also been found
to improve credit card fraud detection capabilities (Alarfaj et al., 2022).

GNNgs, too, have been deployed for credit default prediction, albeit not for SMEs. A
first class of GNNSs, graph convolutional networks, were developed along with
convolutional neural networks used for image processing. Unlike image data,
however, graph data are more complex because they may have various features and
node connections that vary in importance. Graph convolutional networks, a subclass
of GNNs, generate a higher-order representation of input features and neighbours by
weighting the features of each neighbour based on its respective degree of centrality.
This choice of a single measure rules out more complex weighting mechanisms. GATs,
another subclass of GNNs, solve this problem by using the self-attention mechanism.
The latter introduces learnable parameters to generate the weights for neighbours,
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making GATs more flexible in learning from the neighbour’s features (Velickovic et al.,
2018). Zandi et al. (2024) proposed a three-stage model using graph attention network
embeddings as inputs to an LSTM model to capture temporal relationships. The
temporal outputs of the LSTM are then passed through an attention model to predict
default. Their networks are multi-layer networks derived from a well-known US
mortgage loans dataset, and formed using geography and the mortgage providers as
the relationship variables.

Furthermore, this is particularly attractive in many real-world settings, like ours,
where the SME networks are dynamic, showing signiﬁcant evolution as time passes.
Macroeconomic conditions also tend to vary over time. As a result, fixed weighting of
neighbours may not perform well, which is what happens with graph convolutions.
The attention operations are also more computationally efficient than alternative
approaches since they are parallelisable across node neighbour pairs. Different
features can be learnt through multiple heads, such as short-term moves in one
attention block head and longer-term relationships in another. The GAT model was
also employed by Wu et al. (2023) to predict credit card defaulters using a transaction
data network. Elsewhere, GCN models were used in combination with the publicly
available Lending Club data set of peer-to-peer loans, to create networks using
similarity measures for application, history or soft information such as location (Lee
et al., 2021), or using a composite similarity measure (Li et al., 2024). Compared with
traditional models, GCN models were found to perform better, especially when all the
networks are used as inputs.

Unlike the above applications of GATs to consumer credit, the present study turns to
SMEs and the credit lines they use. SMEs are more complicated as their risk profile
changes with their size, and they are traditionally more complex to service compared
to consumer credit. We expect deep learning models to improve model performance
in the credit monitoring phase that we are chose to focus on. Next, we outline our
approach and how we set out to test it.

4.3 Methods

This section describes our data, the models we built, and how we set up our

experiments.

4.3.1 Data

To conduct the study, we were provided access to an extensive SME credit line
portfolio of a major European financial institution which is part of the globally
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systemic important banks (FSB, 2024). From this, we sourced monthly data ranging
from February 2018 to March 2021. The aim was to predict the one-year ahead
probability of default for the firms that have an active credit line contract. We
highlight some data features in Appendix B.1. We also show a summary of the data in
the form of charts for defaults and network data in Figure 4.3 and Figure 4.1.

The data contains five kinds of information, which we group into static, contract,
financial, location and network categories. The first four fall into the structured
information category. The static information is generally collected before the credit
line contract is established with the firm and contains information (in anonymised
form) such as the location, number of employees, and any external information
supplied at the start. The contract information includes the specifics about the credit
line, such as the limit (i.e. the maximum drawn amount set by the bank), which,
combined with the behavioural variables collected by the bank, produces some extra
behavioural features related to utilisation. The third category is the financial
information from the balance sheet and income statements that are filed by the firm.
These are annual statements and have a one-year lag. As the focal firms are SMEs,
some of this information is missing, since reporting requirements could vary
depending on the size and age of the SME. For example, small and new firms might
not need to have standard accounting statements or could report more infrequently.
Next, the location information corresponds to where the SME is located, which is
again collected anonymously, meaning the connections are made through meaningless
codes. Finally, we have the network information, which provides detailed insights
into how individual firms are connected.

4.3.1.1 Network characteristics

Generally, a network consists of a set of nodes and ed ges that represent relationships
between the nodes. We will denote the network as Gy = (V;, &), in which V; are the
nodes and &; is the set of edges. In our study, it is the firms for which we need to
produce the probability of default that make up the nodes. The edges are based on
three different types of relationships: 1. ownership, 2. financial transactions between
firms, and 3. supply chain-related transfers. First, data about firm ownership, i.e. who
owns each firm, allows us to link firms that share at least one owner, which could be
an individual or another firm. The transfers represent factoring, invoicing or supply
chain relationships, all grouped into a single edge type. Factoring involves a
relationship between client firms and typically another financial institution, that help
the firm realising cash flow earlier than the payment date of the invoice; here, firms
with the same financial institution relationship will have a connection between them.
Invoicing is done when a firm in the supply chain is contracted with another firm,
which links the firms as having an invoicing relationship. Financial transactions are
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monetary payments that flow from one firm to another. In this, the transaction data
can resemble the supply chain-related transfer data, but it can also include other
payments, such as transfers to payroll firms, allowing for a richer view of the supply
chain. Transfers and transactions are daily data, which we aggregated to monthly
information. All this data is also not uniform, with different start periods and a few
months where the data is missing. We used a six month lookback period in this study.
Using this specific window allows us to assemble the network without having to
impute data, capture the ownership information and handle different starting periods
effectively. A particular feature of the ownership network is that data is missing in a
few months, but when we do have data, it is stable with a similar amount of monthly
information. We combine all of the information on ownership, transactions and
supply-chain transfers, for each pair of nodes. If the same pair of nodes have multiple
transactions or transfer information in the past six months, we aggregate the transfers
into two edge-related variables: total amount and total number of transactions. If
there are multiple owners between the firms, we model this as just one ed ge between
the firms, but the ed ge attribute is calculated as the number of shared owners.

Figure 4.1 shows the summary statistics for each month. The number of firms is
shown as a blue bar chart, with values plotted against the right-hand side axis, and the
number of edges as time series lines against the left-hand side axis. Note that the three
data sources have different starting periods as the bank initiated collections over time,
and some information, such as ownership, has data missing over certain periods. In
Figure 4.1, the number of ownership links are shown in purple colour, amounting to
approximately 100 thousand edges in each month and there are periods when the data
is missing and the number goes to zero. The supply chain transfer relationship data
starts much earlier from February 2018, shown as the yellow line in Figure 4.1. Lastly,
the transaction information contains actual monetary transfers between the firms.
These could be very similar to the transfers network but we do add that information.
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FIGURE 4.1: Network composition over time, showing the node count and the number
of edges from different network data sources

As we prepare our data, we do not account for the direction of the relationship so we
aggregate the three different relationship information types between two firms across
all networks in the last 6 months, creating undirected edges. Each edge contains
information about what kind of network connections applies and the frequency of
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links between a pair of firms. For a pair of firms that have common ownership, had
transactions in the last 6 months and supply chain information as well, we will thus
have a vector of attributes [b,, by, bsc, Co, Ctr, Csc|, Where [by, by, bs.] are binary attributes
indicating whether they are from ownership, transactions or supply-chain transfer
networks, respectively. [co, Ctr, cg,:] indicates the frequency of this relationship in the
past 6 months. If they transacted three times and do not have another relationship, the
edge attributes would be [0,1,0,0, 3, 0] for the pair of firms. The networks start from
July 2018 for the input to the models, as we need 6 months of history. For example, for
August 2019, we have 139,808 firms in the network with 382,694 edges.

In this study, the network at a given time t is, hence, represented as an undirected
graph, G:. For each node, the neighbours of that node are crucial to calculate certain
network-related features. Formally, we define the set of neighbours for node i,
denoted by \V;, as

Ni =4l )) € &} 1)

The other data categories are tabular in nature, and we combine them to create a
snapshot for each firm in a given month. There are two ways to handle the data:
aggregating to the firm level or treating each contract separately. We observed that
each company could have multiple contracts, not all of which might be actively used.
We tried the first way, which was to group all lines ofa given company into one and
create credit behaviour variables that tracked the aggregate utilisation (i.e., total
balance over the sum of limits) over the last six months. This, however, made us lose
important behavioural information as having multiple contracts would affect the
utilisation metrics. Instead, we used a hybrid approach, in that we used the contract
with maximum exposure or the highest drawn amount so as to capture all the
patterns, while we used the firm-level features for the other static or financial

information.

4.3.1.2 Firm characteristics

Table 4.1 summarises some of the observed data according to the size of the firms.
There are 156,460 distinct firms in this sample. On average, the largest (medium-sized)
firms, cate gorised as P3, have 10.32 times the exposure (the monetary amount that is
drawn) of the smaller firms, which means their default count might be small, but
when they do default, there is a larger amount at risk per firm. The overall default rate
is 4.95%, which is largely due to the category of smallest firms (P1). As we see, the
average number of contracts per firm is much higher for medium-sized (P3) firms

than for micro to small (P1) firms.
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TABLE 4.1: Population of firms by size over the entire time period with default rate
and drawn amount relative to category P1

Firm Type Total Defaults  Default Relative Avg no of
firms rate exposure  contracts

Medium (P3) 18,749 486 2.59% 10.32x 5.5

Small (P2) 36,421 1,475 4.05% 3.31x 3.15

Micro to Small (P1) 101,290 5,776 5.70% 1.00x 1.32

Total 156,460 7,737 4.95%

These networks are also heterogeneous: some of the focal firms whose default risk we
seek to predict do not have any network information, whilst a large subset of firms do
not have a credit line with the bank but are nonetheless part of the networks. We
illustrate this with an example in Figure 4.2. This also shows the dynamic nature of

the problem with new firms joining the network.
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FIGURE 4.2: An example subnetwork depicting the heterogeneity of firms using

coloured nodes and the edges representing a relationship from any network source

being observed in the past six months; the figure also illustrates the dynamic nature of
the network by showing how it might change from one month to the next

In this figure, the blue and green coloured nodes are the ones we are interested in
predicting default for; the red-coloured node is part of the network of firms but does
not have a revolving credit facility, so there is no exposure information for it. In the
next period, a new firm k joins the network. We show one feature, exposure for each
firm, and the default is the target variable, which is the status of the firm one year
ahead. If we were to remove firm X, then the network would lose information. For
firm i, the status of firm j could be important. Also, we show firm [, which does not
have network information, meaning the models have to fall back on behavioural data
for that firm. The illustration assumes these have not had any transactions or
supply-chain transfers in the past 6 months, and we could not find any ownership
data for the firm.
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Active firms have at least one active credit line contract, which are the blue and green
coloured nodes in the example. We plot the number of active firms in each month in
Figure 4.3. Compared to the firm count in Figure 4.1, this number is much lower, since
a sizable proportion of firms in the network do not have an active credit line contract.
Inversely, some firms have an active credit contract but are not part of the network
(shown as ‘out of network” in Figure 4.3).
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FIGURE 4.3: Active firms and the default rate in a given month aggregated to all firm
sizes

4.3.1.3 Population changes over time and default characteristics

Figure 4.3 shows similar information to that in Table 4.1, but now separated by month
irrespective of the size of the firm. The default rate is shown as an orange time series
against the left-hand side axis, and the number of active firms in a given month is
shown as a bar chart against the right-hand side axis. Here, the default rate tells us of
the active firms in a given month and how many defaulted in the next year. This
differs from the earlier Table 4.1 where we aggregated over the entire time period and
differentiated only by firm size. The default rate shows a cyclical trend, with default
rates initially rising until May 2019, from 2.73% to 4.2%. They then kept falling until
the start of the pandemic, around March 2020, to a low of 2.08%. The rate doubled in
the next few months and has been at these elevated levels until the end of the data
period, suggesting a clear impact of the pandemic shock.

Every month, we use the network described above, and the tabular behavioural data
available at that time, as inputs to our models. After producing a probability of
default for the subsequent year, we roll one month forward for the next prediction.

4.3.1.4 Behavioural features

The data already includes some behavioural variables in the contracts listing, the most
important of which are listed in Appendix B.1. In selecting which additional

behavioural features to create from the available data, we follow Tong et al. (2016),
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who proposed some similar features to predict EAD. Table 4.2 shows this list of
features that we created. For those features that roll up behavioural data over time, we
use the same lookback period of 6 months as we did with the networks. We define the
exposure as the amount drawn in the relevant contract and utilisation as the ratio of
the exposure to the credit limit of the revolving credit facility. In addition to these, the
contract data has ready-made behavioural features. We describe those essential
features in Appendix B.1.

TABLE 4.2: Customised behavioural variables used in the models

Variable Description

utilisation Ratio of exposure to limit on the contract with maximum exposure
max_delinquency The present worst delinquent state across all contracts
contract_count Number of contracts the firm has active

total_exposure Overall exposure across all contracts

total_limit Overall limit across all contracts

min_utilisation The lowest utilisation across all contracts in the past 6 months

max_delinquency_time The worst delinquent state across all contracts in the past 6 months

All the behavioural features, including customised and ready-made features for a firm
i, are from here on represented as a vector, X; pep.

4.3.1.5 Derived network features

In addition to behavioural features, we also include a few network features, which are
denoted by Xj ,, for firm i. We use the well-known measures of degree centrality,
betweenness centrality, and personalised PageRank for each node, which can be
calculated from the network topology. The degree and betweenness centrality
quant-ify how important that node is in the ne twork, either counting the neighbours or
shortest path that pass through it (a measure of how much control the firm has). We
selected degree and betweenness centrality based on earlier studies (Naudé et al.,
2014; Poenaru-Olaru et al., 2022). The PageRank metric, unlike the other metrics,
differentiates the neighbours or the connections based on the importance of nodes
(Brin and Page, 1998).

The degree centrality dc; for firm i is defined as
dei = NG|/ (V] = 1) 4.2)

or the total number of neighbours divided by the total number of nodes minus one. N;
again denotes the set of neighbours for node i.
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The betweenness centrality measure specifies the activity that passes through a node
in the network. To measure this activity level, we first compute the shortest paths
between all pairs of nodes. The betweenness centrality of a node is the fraction of the
shortest paths that pass through the node relative to all shortest paths in the network.

For a firm i at time ¢, this is defined as

s(j, k|i)
be;, = : 43
C,f I,};vt S(j,k) ( )

where s(j, k) is the number of shortest paths between (j, k) and s(j, k|i) is the number
of shortest paths that pass through i. s(j,k|i) = 0ifi = u ori = v, and s(j, k) = 1 if
j=k.

Finally, the personalised PageRank allows us to discriminate between the nodes. We
use personalised instead of traditional PageRank as, in our network, there are a
number of nodes that do not represent firms requiring a default prediction, which
means their importance is lower compared to the firms we are interested in. This
measure has been extended for credit risk prediction using multi-layer networks by
Oskarsdéttir and Bravo (2021). For all nodes in a network, the PageRank is calculated
recursively, with a maximum of p iterations. The personalised PageRank vector is the
probability, for each node, that a random walker lands on it. A higher value implies
higher importance in the network.

PPy=0-PPy 1+ (1—a)-h (4.4)

11 are the nodes of interest which have default and contract information, and « is a
parameter for the algorithm, which represents the probability that, at each iteration,
the walk is over the neighbours of the current node and, with a probability 1 — &, we
start the walk again from any of the nodes of interest. This a is also called the
damping factor and is set to 0.85 as per most studies.

In addition to these traditional metrics of centrality, we also introduce a few network
features based on the utilisation and current delinquencies of a firm’s local
neighbourhood. For example, for each firm, we add the average utilisation observed
over the contracts of all neighbours. We know from earlier studies that high credit
utilisation by a given firm is associated with increased default risk for that firm (Tong
et al., 2016). If utilisation by any firm linked to that firm is also found to be important,
this would be a novel insight gained from this study, giving us an early warning
signal of how risk might propagate over a network of firms.

All aforementioned network features can be easily incorporated into any traditional
model, as they can be merged with any other tabular data.
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4.3.2 Models

The problem at hand is a case of binary classification, in which we look to predict the
risk of a default event one year ahead, using behavioural and network features. The
first subsection below covers the GAT model. Next, we discuss the multimodal
architecture in detail, the reasons for choosing it over other possible multimodal
architectures, and how we trained and fine-tuned all models. We also discuss the

benchmark models and the training settings that are speciﬁc to all these models.

4.3.2.1 Graph Attention Networks

Here, we formally define the GAT specific to our problem. Given a graph G; = (V;, &)
as defined in section 4.3.1.5, and the input features defined earlier, the GAT transforms
the input features X;, of dimension T, for firm i, into a higher-order representation H;

of dimension T’ given by

H; = F(X;, Zjena(j, k) (WX;)) (4.5)

Here, N;, defined in equation (4.1), are the neighbours of firm i. W € R(T'*T) is a
weight parameter matrix of the model that is learnt during training. a(i, j) is the
weighted importance score for the pair of firms j and i. This is the self-attention
mechanism, which consists of a feed-forward layer, non-linear ReLU function and
finally, Softmax layer. A feed-forward network over each neighbour firm j with the
present firm i first generates the embeddings. The ReLU is a non-linear activation
applied on these embeddings, and ﬁna]ly, the Softmax layer generates the attention
weight for each pair of firms. The function a(i, j) is where each type of GNN differs;

whereas it was a convolutional function for GCNs, it is attention for GATs,

a(i, j) = softmax; (o(a [Wx;|[Wx;])) (4.6)

where ¢ is a non-linear function, LeakyReLU in this case, a € R2T" and | | is the

concatenation operator.

F(-) applies the non-linearity function (usually a Regularized Linear Unit, ReLU) after
aggregating all weighted outputs. GAT also allows for multi-head attention, where
each head learns a different input aspect. For a K-multi-head attention, we
concatenate each head’s outputs to construct the final representation. In this study,
based on where the GAT is in the multimodal architecture, we used K = 2,4. The GAT
model is a significant component of the multimodal model used for this study.
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4.3.2.2 Multimodal architecture

Figure 4.4 depicts the full multimodal architecture used in our study. The input is a
graph where all the nodes contain their features, and these same node features are the
inputs to a feed forward linear block (shown on the left). These features consist of the
behavioural features and network features discussed above. For all models to receive
the same input, we use only the firms that are part of the network here for
comparison, hence leaving out firms that have a revolving faci]ity but did not generate
any network information in the past 6 months. For firm i in the graph, its node
attributes are X pen || Xinw (Where || is again the concatenation operator). We see the
neighbours of this node are j, k, z, each with their own attributes. The active firms are
denoted by a boolean flag, mask = 1 (we see the features are from the data), but for the
firm z whose mask = 0, these features are just filled as ones, as this is a firm that is part
of the network but does not have any revolving contract. The firm z will, hence, not be
part of the training or test firms set. These features are the inputs to the GAT model
(labelled as GATConv in the figure), which we discussed in Section 4.3.2.1. The graph
embeddings at these layers are H; for a firm i. Note that the H; can also replace
derived network features when used in a traditional model. We test these embeddings
with the benchmark random forest model and report them in the results section
(section 4.4).

A non-linear transformation is applied to the GAT model output with the ReLU layer.
We pass these outputs two more times, as each successive block of layers can learn
higher-order representations, commonly done in deep learning models. The blocks
closest to the output should have different embeddings that are much more suitable to
what we want to predict. In the ﬁgure, we write 2x to denote that the previous section
of blocks is thus repeated two times. For the structured data, the embeddings pass
through a pair of Linear and ReLU blocks, after which they are all combined with the
Concat block.

A second part in the architecture (shown in the left section of Figure 4.4) simply passes
the firm-level tabular data, X; pe || X nzw, to a series of deep learning layers. The first
linear block is represented as

M; = F(W - (X pen || Xinw) + b) 4.7)

where F(-) represent the non-linear ReLU activation function, W is the learnt
parameter matrix and b is the bias term. The GAT blocks generate embeddings from
the firm’s features and also use the neighbours’ features. This linear block generates

embeddings of a firm’s own input features.

Further down, the final output from this tabular data component M; (left) is
concatenated with the network embedding H;, produced by the graph learning
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FIGURE 4.4: Multimodal architecture overview with behavioural structured data and
network embeddings
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component (right). To learn any relationships between these two representations and

default, we train the model further with another set of linear and ReL.U blocks which

generates the combined embeddings of tabular and network embeddings. We deploy
dropout (Srivastava et al., 2014) to avoid overfitting and layer normalisation (Ba et al.,
2016), which normalises the parameters and reduces training time. Lastly, we use the

sigmoid layer to derive the final probability of default, as this is a binary classification
problem. The sigmoid function provides a suitable output between 0 and 1.

This architecture allows us to quantify model performance differences on various data
speciﬁcat-ions and models. For example, it helps us answer whether the tabular data
or network is more important, and also, among the different model components,
whether the GAT adds value or whether using the linear blocks, which are
feed-forward networks, is sufficient. This can be achieved by masking, with the help
ofa binary ﬂag indicating whether to include some element. For example, when
discussing the ne twork he terogeneity earlier on, we have already seen that, at a firm
level, each firm had a binary mask (which can also be seen in Figure 4.4) indicating
whether it is included in the training. Likewise, each block in the architecture can be
configured similarly. We can thus test this full multi-modal architecture under
different combinations. Appendix B.2 presents more details on these extensions. The
various configurations are used to report the results.

4.3.2.3 Benchmark models

We use two benchmark models to compare our own model: logistic regression and
random forests.

Logistic regression is the most widely used model for credit scoring or default
prediction. In this paper, the model is used in a similar context, to predict a one-year
probability of default for each firm in any given month. The logistic regression gives

the probability of default as
e+ B*Xi pen

1 + ea-l—ﬁ*X,vMJ,
where « and B are the parameters estimated using the training data. The logistic
model is retrained every month to facilitate a like-for-like comparison with our

proposed model.

Random Forests are ensemble models that use a collection of decision trees to arrive at
an overall model output. Each decision tree is trained on a different sample of the
data, choosing splits from a random subset of the variables (Breiman, 2001). They
have been used as benchmark models in fraud detection (Alarfaj et al., 2022) and
credit scoring (Lessmann et al., 2015; Ala’raj et al., 2021).
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4.3.3 Experimental settings

Part of the experimental setup involves comparing the predictive performance of
different groups of variables. Initially, we start with our benchmark models and add
the different groups of variables. We group them by the type of information, which we
discussed in Section 4.3.1. From this, we use the two most informative groups, and we
use feature selection to use the most informative set of features. Using this set of
features, we test with our proposed model and architecture and again with the
benchmark models.

4.3.3.1 Data preprocessing and training split

We replace all the missing data with their median values in the original data and, each
time, create another binary variable indicating whether that value was missing or not.
These newly created missing variable flags are added to the data. Missing data could
indicate some behaviour that is not yet expressed but is not necessarily random. The
study by Korangi et al. (2022) on mid-caps showed that missing data are a good
indicator of future deterioration of the health of a firm.

As explained earlier, during the training and evaluation phase, we represent the
heterogeneity in the firms by using a binary mask flag. If the firm is an active firm, ie.,
one which has an active credit line, it is included in the training and testing set of
firms and masked as 1. The other firms in the network are not used to measure
training or test performance. For training purposes, we split the data in different
ways, initially out-of-time, whereby the last 30% of the data following December 2020
was used as a test set, and the data from June 2018 to December 2020 constituted the
training set. We also used out-of-universe validation where we removed the firms that
are part of the test set from the training data such that the firms in the test set do not
feature at all in the training set. We use these splits for our initial results, to
understand the data sources and to prepare the features for the GAT model and the
other benchmark models.

The deep learning models had a different split, as we can only predict for the firms in
the network. This same split is used for the benchmark models such that all models
process same data. The ne tworks also vary with time, so we ran a similar
out-of-universe validation but within the same time. So for every graph, we used one
set of firms as testing firms and the remaining as training firms. The GAT model trains
on the same graph but the test firms are not visible. We report the AUC for these

models using this in-time but out-of-universe testing procedure.
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4.3.3.2 Model assessment and loss function

For performance measurement, we used the Area Under the Receiver Operating
Characteristic Curve (AUC) measure. As we have a classification problem showing
pronounced class imbalance in every period (i.e. only a small set of firms default),
using an accuracy metric is unsuitable. A higher AUC value for the model suggests a
better ability to discriminate between defaults and non-defaults. We look for a value
greater than 0.5 as the latter value would signify random predictions. The higher the
AUC, the better the model performance; perfect classification would give a value of 1.
This metric has been widely used in default prediction literature (Calabrese et al.,
2016; Oskarsdéttir and Bravo, 2021; Korangi et al., 2022)

Training the deep learning models also require a loss function to minimise for the
gradient descent. We use the binary cross entropy function,

entropy(yi, Li) = —(yi * log(L;) + (1 — y;) *log(1 — L;)) (4.8)

where L; is the probability of default produced by the model, and y; denotes the true
default outcome (0 or 1) for a firm i.

4.3.3.3 Parameter selection and model tuning

Each model in our study has a set of hyperparameters that must be set or fine-tuned,
and every run could be different. In this section, we describe the hyperparameters for
each model and the range of values we tried.

The deep learning models have a large number of different parameters, as we used
four blocks of GAT and ReLU for the networks. The first and the final GAT block had
multiple head attention with an output dimensionality of [32, 128, 64, 64] for each
block, respectively. The Linear block for the neural network and the multimodal
architecture were the same with dimensionality of [4096, 512, 80, 80]. We used the
default dropout rate of 0.5 for all models. We arrived at these from a hyperparameter
search across these outputs and found these to be the best fit for the first graph.

For the logistic regression, we use L1 regularisation to shrink some of the coefficients
to zero and perform variable selection. In the random forest, we set a maximum depth
of 10 and use the default settings elsewhere.

In the next section, we report the results and raise some points in the discussion.
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4.4 Results and discussion

4.4.1 Performance across benchmark models

As we handled large data sets, we tested out different combinations of the data to
prepare for behavioural credit default prediction. We needed to understand which
data was giving the highest predictive power and focus on that data to create
behavioural variables. We looked at the four different kinds of information and
gradually increased the data input to our model. For this purpose, we used only
logistic regression (LR) and random forests (RF), since they are easier to train and
produce benchmark models. The results are reported in Table 4.3. We started with
static information such as client type and number of employees, which was not
informative of default at all, as both models had AUC close to 0.5. Once we add
contract information, the AUC increases considerably, especially for the Random
Forests (RF in the table). Next, we added financial data to the static and contract
information, which did not improve the performance by much, but the (anonymised)
location information did improve the model, albeit only slightly. Based on this
finding, we decided to utilise the contract information and location information for
the rest of the study.

TABLE 4.3: All data groups, benchmark models performance, to select the most rele-
vant features

Out-of-time AUC Model
Input Logistic RF
Static information 0.508 0.506
+ Contract information 0.660 0.761
+ Financials 0.666 0.764
+ Static location information 0.671 0.777
Contract information + Network features 0.601 0.833
Out-of-universe AUC Model
Input Logistic RF
Contract information + Network features  0.598 0.830

We added network features to this data source and performed the two validation tests
outlined in Section 4.3.3. The results are shown in the lower part of Table 4.3. In both
test setups, we employed only contract information and network features. The
validation shows that the logistic regression model continues to perform fairly poorly.
In contrast, the random forest model performed even more after augmenting with the
network features listed in section 4.3.1.5.
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A key finding from the table is that the Random Forest model performs substantially
better than logistic regression, for example, giving an AUC of 0.830 for the
network-augmented out-of-universe and out-of-time test set (see bottom row). The
AUC on the out-of-time test set (0.833) is rather similar, giving us some confidence
that there is no overfittjng. Encouragingly, these are much better than the out-of-time
AUC results without the network information, shown in the higher half of the table.
This demonstrates that there is already a lift in predictive power by simply adding
network features to the firm’s own features.

For the next analysis, we dropped the logistic regression, as its results were not
favourable, and instead focused on the random forest as the benchmark model,

adding a neural network model as that is more relevant to the next analysis.

4.41.1 Multimodal performance

In this section, we add the deep learning models to our analysis. The results are shown
in Table 4.4 for the test set and average over all periods. For the contract information
we identified earlier as our preferred behavioural data source, we performed variable
selection to include the most relevant behavioural variables, calculating them as we
discussed previously. The left column shows the input data sources for each model on
the right. Where the results are not applicable we leave them blank.

TABLE 4.4: AUC performance of each model over different sets of inputs

Metric: AUC Model
Input data RF NN GAT

Behavioural data +

Network features 0.8780 0.7350 0.7822
GAT model embeddings 0.8964 - -
Network data

Network features 0.7390 0.6825 0.8241
GAT model embeddings 0.7947 - -

The first two result rows shows the AUC when behavioural data are combined with
either the derived network features from section 4.3.1.5 or deep learning model
generated embeddings. We see that, with an AUC score of 0.878, the RF model
outperforms the other two models when we just take the behavioural data and add
the calculated network features. However, the next row shows that the model can be
improved further by using the deep learning embeddings instead of these simpler
network features. This percentage point improvement of 1.8%, however, needs to be

evaluated against the added cost and complexity of deploying these deep learning
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models. As we compare against some of our earlier results that omitted network data,

we can see that adding network data again improves the models signiﬁcantly.

To further test, we then trained the models using only the ne twork data as input, the
results of which are shown in the second half of Table 4.4. Here, we see that the GAT
models are able to extract some higher relationships and hence have better predictive
power than the other two models, giving an AUC of 0.8241. Moreover, the
embeddings generated by GAT are powerful, as the NN model, which is similar to the
GAT but without the network structure as an input, performs worse with an AUC of
0.6825. This shows that the GAT embeddings are better value compared to the neural
network model embeddings. Note that we discussed how to extract these embeddings
in Section 4.3.2.1. We did not test with the neural network embeddings and used the
GAT model embeddings for RF input. They improved the random forest performance
from 0.878 to 0.8964 higher up the table and from 0.7390 to 0.7947 if we do not use
behavioural data.

These results shed light on the relative importance of behavioural variables and the
added network data in improving the models. The deep learning model embeddings
add value to the performance when they are combined with the random forest model,
whereas the GAT model outperforrns without the behavioural data, but
underperforms when it is present. We believe this may be due to the nature of the
data, as a more complex model such as the GAT might not be required when there is
already a strong direct relationship between our target feature and some of the
independent variables, which is the case with the behavioural data. This confirms
earlier studies that suggested that, on tabular data, tree ensemble models such as
random forests tend to perforrn better than deep learning models, although this area is
still evolving,.

4.4.2 Evolution over time

Over all the data, we have seen the behavioural data, which are constructed features,
have far more predictive power. The network can be represented in the form of
traditional network variables, and that further improved the model’s performance.
Here, for the best model, that is, the random forest, we conduct an out-of-universe
validation. We sample 30% of firms into a test set and remove them from the training
set. The model is trained every month with only the training set of firms, and we test
the model’s perforrnance on the active firms in the test set. In practice, we expect the
model to be retrained and to work with firms that have not been part of the model.
The novel set of firms can be challenging. This is why we chose the random forest
model for this validation. Figure 4.5 shows the AUC score over time, with the solid
line representing the AUC score when all the data is given as input, and the two
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dashed lines are the AUC scores when either only the behavioural or the network data

are inputs to the model.

ALC Scol

network and behavicural data

FIGURE 4.5: Model performance over time

We see that behavioural data does well compared to the ne twork data. Interestingly,
the curve also resembles the default rate in Figure 4.3. We clearly see that when there
was an external shock to the system in March 2020 (COVID-19 pandemic), the
behavioural model performance deteriorated, roughly with a two-month lag. As the
economy was in shock, there were a lot of irregular payments that caused the model to
deteriorate. The AUC picked up again as the economy was normalised (reopening
after lockdowns) to the new behaviour. The network performance, on the other hand,
was more resilient, showing that valuable performance could be extracted from it,
especially when the portfolio experiences an external shock. In other words, adding
network features to the model can bring not just improved but also more stable
performance. Taken on its own, in the early part of the available timespan, the
network data started quite well. Still, perforrnance deteriorated, which we believe is
due to the availability of the data in the network and mixed signals generated with the
churn in the data. As time evolved, the network data perforrnance stabilised.

The overall model’s AUC is also quite high, which will be linked to us testing the
model during the same period as the training data now. This shows, though, that the
model is resilient to being presented with new firms and can predict their default risk
even when it has not encountered the firm in the training data. The model has thus

learned some generalisable features from the training set that is being used.

Overall, these out-of-universe results show that the behavioural features are again the
most important, but network features also add a lot of value in further improving the

model and can be relied upon in macroeconomic shocks.
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4.4.3 Explainability

Finally, we conducted SHAP analysis to explain the model results better and quantify
the importance of the groups of variables (Nandlall and Millard, 2019). We did this
test on the best-performing random forest model with all the features available. This
analysis has been extensively used in the deep learning literature to identify the most
important input features. Figure 4.6 shows a beeswarm plot of the SHAP analysis. We
also map the variable names to their description in Appendix B.2. This should be read
for each variable. The SHAP value is plotted against the x-axis, with the impact on the
model estimates of high (low) values of the feature shown in red (blue), respectively.
For example, high values of irregular_count thus have a strong positive impact on the

model estimates for default risk (i.e. they are deemed to increase the risk).
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FIGURE 4.6: Beeswarm plot of the SHAP value explanations

The SHAP analysis shows that the count of contracts exhibiting some irregularity has
the highest relative importance, and from the variables we created, the utilisation ones
appear to be the most important features. This confirms results mentioned in earlier
studies where more risky firms could draw down on their limits and thus increase the
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exposure and utilisation (Agarwal et al., 2006; Bellotti and Crook, 2013;
Wattanawongwan et al., 2023). The number of days some payments are due is also
important. Here, we note that we categorised default as any contract that is over 90
days due, thereby using the definition that is widely used by banks. We believe the
models could be further tested when these signs of irre gularity are unavailable. Lastly,
the network features also come into play, with degree centrality, PageRanl(, and the
average status of a firm’s neighbours’ contracts being important variables.

4.5 Conclusions and further research

In this study, we worked with a unique credit lines dataset, to predict SMEs’ default
probability from behavioural data relating to revolving lines of credit, and explicit
networks comprised in the data. We initially used a deep learning architecture, along
with random forests and logistic regression as benchmark models. We found the
behavioural data to have good predictive power in itself, and adding the

network-related variables improved the model performance even further.

The deep learning models did not perform well with behavioural data as there are
easier relationships in behavioural variables that more traditional models can exploit.
However, with no behavioural data, just using the ne tworks as the inputs to these
models performs fair]y well. Here, the GAT model perforrns particularly well
compared to a similar deep neural network model, which shows some network
structure in the data being exploited by the GAT, which other models cannot. They
generate embeddings which, when fed together with behavioural data, produce better
results for the traditional models as well. However, we feel more research is needed
here, in light of the mere 1% improvement we observed by using graph embeddings
as opposed to network features that were calculated in the traditional manner. The
costs of maintaining these models and developing them over time initially might look
too high compared to the improvement, but further analysis suggested these models
may be more suitable to changing data distributions or economic environments, so the
embeddings could be more robust.

We conclude that the behavioural data, in particular, does not need higher-order
relationships to predict default better, as these variables themselves track the firm’s
behaviour closely. Some changes in these behaviours are predictive of default. After
conducting an explanatory analysis of the features, we find higher utilisation and the
number of times the account was irregular in the past to be some of the most
important features, conﬁrmjng earlier studies. We believe the deep learning models
will be better equipped to detect the very first signs of irregularity. We would need to
define our research problem again, which could be subject for further research.
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With an out-of-universe sample validation over the time period for which we have the
data, we found the models to track the observed default rates as long as they are
stable. When there was an extreme shock in the environment in the form of a
pandemic causing the behaviour of the portfolio to be impacted, we found the
behavioural data lost some of its importance while the network data performance was
largely stable. As the markets returned to normality, albeit with higher default rates,
the behavioural models picked up again and improved their performance. We believe
network models could, hence, be deployed in stress testing the portfolio to different
economic conditions. Over time, as network data collection improved, we found the
models initially had lower perforrnance as newer relations were established, but once

they were established, they were quite robust over time.

Future work could look at using deep learning models directly to generate
behavioural features without having to manually calculate them, which could
generate novel features for behavioural credit scoring. For the networks, an
interesting area would be to use the embeddings to model contagion and create
systemic early warning signals for portfolio deterioration. We have not included much
external data about the firms, and this could potentially be another area to explore to
improve the model’s performance further.

We conclude that behavioural variables are significant predictors of the probability of
default, and traditional models can be suitable if one has access to this kind of close
monitoring data. When such data is unavailable, we have seen deep learning models
perform quite well, extracting higher-order relationships and embeddings that are
more powerful than calculated network features.
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Chapter 5

Conclusions

5.1 General conclusions and summary of the thesis outcomes

This thesis proposed novel approaches to address credit risk modelling problems in
high-dimensional and sparse data settings. These approaches aimed to alleviate the
high cost of credit for SMEs or to better diversify into illiquid firms such as mid-caps.
An interdisciplinary strategy was adopted to conduct the research, which involved
bringing in new techniques from other areas to improve credit risk models. In doing
so, I have made methodological contributions in risk management, adaptation of
computational methods, and using novel data sets. In risk management, I studied the
term structure of default prediction instead of single point, large-scale portfolio
optimisation, and using behavioural features for default prediction in revolving credit
facilities. In the me thodological contributions using computational methods, I was the
first to adapt the now widely popular transformer encoder designed for textual data
for panel data methods, used different loss functions to suit the modelling objectives,
developed suitable training methods, quantiﬁed the importance of various input data
sources, developed custom deep learning layers to make them ideal for portfolio
optimisation and developed multimodal architectures to use various kinds of data as
inputs effectively. Finally, I used novel data sets focusing on mid-caps and SMEs
throughout this thesis. I concentrated on mid-cap firms for initial studies as they are
less well-studied. I hypothesised that deep learning models are more suitable when
the data is sparse and wide (several features with lots of missing data) or there is
illiquid pricing of market data (no continuous trading data). I focused on long time
scales of 30 years to test the robustness of these models. With the SME dataset, this is
one of the few studies that has worked on such a large-scale dataset from a major
financial institution. I studied revolving credit facilities, as the literature is sparse
compared to loan data, and worked with behavioural features. Network data also
featured prominently as another data source that I used, by either creating networks
from tabular data using existing filtering techniques for the mid-cap data, or using
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existing network data inherent in some of the transactions and ownership information
from the SME dataset. In general, in all of these areas, the results are promising. In this
section, I go into further detail about the results and identify limitations and the future
scope of such studies.

In this study, we tried to replicate the business environment while being aware of the
challenges this brings out. On the data, while data selection choices can make them
suitable for academic research, they can result in survivorship bias, which makes it
challenging to deploy them. Our data is population-based studies, where I consider all
the data. This helps to bridge the gap between academic research and its application
in industry. This ambition is also apparent in the final chapter, where I worked with a

large financial institution and sought to provide insights from their data.

The limitations to applying them in the real world pose a different challenge now. The
areas of enquiry studied in the thesis are promising to explore further but
simultaneously prove complex to deploy. Business needs dictate timely, fast and
interpretable analysis. At the same time, complicated, robust modelling with
improved accuracy and performance could be beneficial over a longer term and might
need significant investments. I identified several specific modelling improvements
such as a differential training approach, initialisation of graphs through a graph
filtering approach, and use of deep learning embeddings as inputs to traditional
models. From these speciﬁc contributions and improvements, in this section, I also
expand this work'’s results into a much broader scope for our work and show the
complex needs of future research. As more alternative datasets emerge, the
complexity of handling them requires institutions to invest in advanced analytics and
deep learning capabilities and adapt these to their needs. I do not believe all
alternative datasets would be valuable for improving the model’s predictive power.
However, with increasingly available alternative data sets of all types, it is essential to
develop methods to evaluate such datasets without much manual time and effort. To
even come to that decision quickly, we need more computational methods, such as
deep learning methods, as they work on various datasets that require minimal data
processing and less domain expertise.

The practical application of these methods to real-world data brings clear
computational challenges. None of the research presented in this thesis would have
been possible without using state-of-the-art GPUs and multiple high-memory
computing nodes. However, once these challenges are tackled, the questions that can
be asked become much broader, and the corresponding analysis can be applied to
large-scale data settings. An interesting observation made over the course of my
research is that, whereas at the outset, there were hardly any computing libraries
speciﬁc to deep learning models, by the end of my research, we are now inundated
with a wide variety of available libraries. This shows the rapid evolution and
adaptation of deep learning and its interest worldwide. As these advances are likely
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to continue, I expect the challenges of adapting them to credit risk research questions
will remain an interesting research focus over the coming years, especially as this
brings about meaningful performance uplifts.

Specifica]ly, I investigated three problems related to small or medium-sized
businesses. I started by improving the firm-level credit default predictions for publicly
listed mid-cap firms (often illiquid to trade). Next, I approached this same set of firms
collectively and optimised the risk-adjusted returns of a mid-cap investment portfolio.
Third and ﬁna]ly, I worked on an extensive private data set where I leveraged
behavioural and network data to improve the credit default prediction of SME firms.
A common thread among these three studies is that I worked on large datasets and
employed similar computational techniques and deep learning methods. Each
application required a degree of adaptation from the standard procedures in terms of
the training and grouping of the data sets, the collective network and behavioural
feature generation, and the design of speciﬁc architectures required to solve each

problem.

For the first study on mid-cap firms, I focused on publicly listed mid-cap companies,
as, similarly to unlisted companies, these often have limited liquidity. This differs
from most deep learning studies in finance, which tend to gravitate to other large
public data sets, such as those relating to large companies (for which there is
continuous trading data), or on market microstructures such as limit order books or
high-frequency trading. I correctly hypothesised that deep learning models could also
be effective when the data is sparse, but a large breadth of data is available. Using
different data of varying frequency of availability obtained from accounting
information, market prices and general market economic data, I developed a
transformer-based model. I needed to adapt it, as it was initially designed for natural
language processing, and it was better to equip it to a panel-data setting like ours. The
transformer-based model was powerful, offering better default prediction than a
series of benchmark models, provided that a differential training regime was used.
Specifica]ly, I learnt that iteratively freezing previously trained models whilst adding
further models in our multichannel architecture allowed it to use all input data
effectively. Also, instead of producing a single one-year probability of default
estimate, I modelled the default probability term structure over a short to
medium-term horizon. This required introducing a different loss metric more suitable
to the problem. This resulted in capturing some intuitive time dependencies in the
forecasts. I also asked which periods and data sources are more critical. For this, I
employed a Shapley approach to derive the importance of groups of features.

The second part of the research continued on the subject of mid-cap firms but looked
at them collectively as a portfolio of investable assets rather than on a firm-by-firm
basis. Firstly, I had not yet considered the interactions between the firms, which could
bring additional insights. Looking at much of the existing research, I also found that
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they focused on very different types of firms, e.g. constituents of highly liquid indices,
and routinely eliminated firms that defaulted (which could result in survivorship
bias). To address this, I created a network topology of the firms based on historical
market pricing information. This information was often sparse as these firms traded
infrequently, so I used a procedure that had been shown effective in other application
areas for similar data types but not used until now in portfolio optimisation. Once I
had created the networks, the next question was about extracting value from them, for
which I deployed deep learning models for network data (deep graph neural
networks). Finally, I examined whether these are robust enough and how they work in
different market conditions. This study also had to adapt the deep learning models to
function in problems where reinforcement learning is generally used. I created new
deep learning layers that satisfy portfolio constraints and produce portfolio
allocations. I had limits on the number of firms that could be invested using
regularisation parameters. I also had to modify the loss function like in our earlier
study, and now creating one suitable for this problem.

For the final research output of this thesis, I combined some of the knowledge and
skills gained from the previous two studies in that I again combined different data
sources and applied network learning. This time, though, I focused on credit lines for
small businesses, thus aiming to add to the sparse literature on this type of credit
product within the SME context. Also, rather than build an application scoring model,
I set out to build a behavioural scoring model, which, in the credit scoring literature,
has been an under-researched topic for all business lines. Although, like in consumer
lending, a firm’s prior credit utilisation should provide the lender with a rich data
source for creating behavioural features, it appeared no other studies had previously
reported work on this within the SME setting, possibly as such data can be
challenging to source. The network data considered in this study arose from
relationships between SMEs regarding ownership, financial transactions between
firms, and supply chain relationships. As default risk might potentially propagate
over the ensuing firm networks, I investigated how to extract value from this data. I
examined the suitability of multimodal deep learning models combining tabular and
network data. I looked at additional insights deep learning models can generate,
especially from the network data. One of the critical aspects here was the presence of a
macroeconomic shock (the pandemic) in the data, which gave us interesting insights
and allowed us to compare the stability of the predictive power of the models. I
concluded the research by studying the importance of networks as features or
embeddings, showing that behavioural data in itself is powerful.

After establishing the main reasoning behind the three research areas I looked at, I
now take a critical approach to our results, discuss our contributions and idenl-ify
details of our experiments that could be improved and broader risk management

techniques that could be worked on.
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5.2 Discussion

5.2.1 Illiquid and sparse data application of deep learning

Deep learning models often get deployed when large amounts of data with several
features are widely available. In this thesis, we kept the high dimensionality of the
data but looked at areas where there might not be complete data available. Using that
gap, we saw the insights we could get from such data together with deep learning
models; we improved the credit risk default prediction modelling, deployed a single
model for several predictions, adapted deep learning models for panel data structure
and also quantified the importance of these different data sources. In what follows, I
develop these insights further and identify areas of improvement in each area.

In Chapter 2, I developed deep learning techniques to predict a default term structure
of mid-cap companies. Within a single multimodal model, I provided the probability
of default over the short term from 3 months to up to 3 years. This extends the
traditional focus on one year ahead default and more closely aligns with banking
practice that must measure corporate risks across a term rather than at a specific time.
This was made possible by the deep learning models I relied upon. I found that these
advanced computational deep learning methods can be deployed as long as the
training program and architecture work well with the data, a challenge modellers
must overcome. The models are initially complex to design, and the training periods
to optimise the architecture take a long time. However, training the model with newer
data is less time-intensive once the model architecture is decided. I developed new
differential training strategies, which are now commonplace in fjne-tum'ng large
language models. Also, the models allowed a natural combination of the data without
dropping much of the initial data. A new multimodal architecture had to be designed
to use different data sources. Their performance was better, showing the efficacy of
using all the data available; unlike the traditional models for which to work, I would
have to remove a lot of input data as the data sources cannot be merged easily.

A few specific research questions remain that could be answered further within this
context. I would have liked to introduce constraints on the outputs of the model,
where I establish the default curve to be upward-sloping over time. This could be
done by weighing the loss function differently instead of averaging, as done in our
work. The model does predict with more uncertainty over longer periods, which is
expected as we predict more into the future, and the data becomes less useful, which
reduces performance. This expectation in the form of constraints might have further
improved the model by reducing the search space for the models and bringing in
faster optimisation. In our next paper on portfolio optimisation (Chapter 3), I
developed custom layers that could apply constraints; I believe a similar setup might
work even better. Another area of improvement on the credit side is to incorporate
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more data types. Textual reports, company ﬁlings and news reports have improved
the predictive power individually, but explicitly looking at how they impact mid-caps
will make different challenges arise, as there might not be much, or maybe much more
sparse, public news or reports coverage on a large set of companies. Deep learning
models are better suited for prediction in these sparse settings. The data collection
process will become challenging. Existing research uses such data types, but not for
mid-caps, where the default rates are higher and individual firm risk matters more
than large-caps, where defaults are largely due to idiosyncratic issues such as
governance. This is an exciting area as I bring more relevant data sources to the
problem, which do not naturally lend themselves to such analysis with earlier
traditional models.

Another aspect is the challenge of deploying end-to-end deep learning models, as we
have seen here. Without customised learning methods that show an understanding of
the problem and the data, it might be challenging to extract higher performance,
which could lead to wrong conclusions that these models do not perform. I first
designed the problem as a multilabel classification one and created a training loss
metric suitable to that kind of classification problem. The experimental setup with the
computing power available to analyse should also be considered, as model training
takes a long time, especially in the hyperparameter search space phase of the
experiment. Different combinations of these parameters must be trained on large
datasets; therefore, the experimental setup is critical. The choice of hyperparameters
also needs to be examined, as the default values in the literature have been designed
for different problems. Here, we are adapting for credit risk settings with a general

data imbalance (far fewer defaults) as a characteristic of these datasets.

Designing a new deep-learning model is another challenge. I developed a
transformer-based model, but I adapted it for panel data. I used only the encoder part,
which is similar to the BERT architecture. These architectures have been shown to be
effective in classification problems like the ones I tackled; other types of problems,
such as time-series to time-series prediction, would require full encoder-decoder
transformers. The panel data structure is very similar to the input transformer models,
except that the input data has a sequential nature. The data is not the same type at
each sequence but has different meanings. In our inputs to the model, I have balance
sheet information, cash flow information, and pricing information where each data at
a specific time for a firm is related but not the same type. I have shown how the model
performs with lower frequency data and incorporated higher frequency data like
pricing into the same model. Competing models cannot handle this pricing source,
and had I considered the traditional approach of having one data set as input after
combining all of them, I would have concluded that pricing information is not
relevant to default prediction, but instead, I showed that pricing information was

relevant for short-term default prediction. Still, the lower frequency balance sheet and
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fundamentals drive longer-term probabilities. This confirms the market’s experience
and how the model correctly captures and models this insight. I also used strong
benchmark deep learning models such as TCN and LSTM. I have observed that the
architecture of the models matters and that attention, part of the transformer model,
was learning a different higher-order relationship to default, improving its
performance. From a perspective of credit risk literature, I also saw the importance of
missing data. This is generally irrelevant when we look at large-cap companies, but
where default risk is relatively high, I found that missing data generated some
importance. This happens because mid-cap companies could be changing their
accounting methods or delaying the results during stressful times for the company.
These stressed situations could lead to default in the future. A company might
overcome some of these challenges, but this is a good behavioural data point for how
it changes. Later, I saw how important behavioural data is for credit default prediction
in a different setting. Some missing data situations might be good when there is a
merger and acquisition situation, which again leads to such changes in the accounting
data. I did not investigate the causes of this missing information and whether there is
any structural pattern to it, but that is an interesting area of inquiry.

Combining some risk management and deep learning areas, another aspect of the
paper was the ability to train on multiple data sources within the same model and for
different prediction horizons. Traditionally, I would have to develop an ensemble of
models to work with multiple prediction horizons and other data types. This
approach also allows for more learning of relationships that can be learnt from one
data source to another, where together, they can deliver better results than
individually. Moreover, the model can be easily extended to different data types,
allowing further refinement of classification performance.

Interpretability of the predictions was another area I looked at in this work, as deep
learning models are challenging to interpret. I looked at visually understanding the
attention matrix of different transformer heads, following some, at the time, nascent
experiments in explaining text models. When I averaged these matrices over default
and surviving firms, we saw a clear difference in the model parameters thresholds,
which gives different colours in our heat maps. It shows the higher-order learning and
differentiation between these firms. Another area I looked at was developing a custom
Shapley-based method. The existing literature was on individual feature
interpretability. However, with the large number of available features, it was difficult
to provide such an interpretation, as the existing Shapley approaches will again be
complicated to interpret and consume significant computing resources. Instead, I
grouped the variables and ran the Shapley-based method by adding and removing
groups of variables in all permutations, taking advantage of the additive property of
Shapley values. It showed us how the results vary for the importance of data sets over

time and which data source is more important. With this approach, I believe it is easier
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to interpret the results and improve the understanding of data sources. A different
grouping of the data could be used regarding the cost of acquiring those features or
the complexity of the features, which can recommend what data collection process
needs to improve for the credit risk management of such risky companies.

For future work, this multimodal learning process could be extended in terms of the
data sources, as I discussed earlier, and by using the same model for different credit
risk areas, such as provisioning and pricing of the credit risk. The model could
become more robust when trained on different outputs, as with other popular deep
learning models in multitask learning. This work successfully adapted the advanced
computational methods in the form of deep learning models and used them in a large
data setting of mid-cap default prediction. Ilooked at different aspects of this problem,
both from deep learning model design and the multi-horizon default prediction.

5.2.2 Deep learning models as an optimisation structure

In this section, I focus on using deep learning models as an optimisation structure
rather than a prediction model. We tested this with portfolio optimisation for mid-cap
firms. We provided a different way to generate relationships between firms, modified
a deep learning model with custom allocation layers, and tested the robustness over a
long period. In this subsection, I develop insights from the networks and portfolio
models and identify areas of improvement.

I was the first to examine this problem by combining different research areas. First, [
used the volatility series to capture the relationship between firms instead of the
return series of firms. Volatility is studied to understand market regimes, and high
volatility times lead to more intercorrelated risk than less volatile times. I expected
such a series would capture the market and interrelationship dynamics more than
return series data. This is particularly significant when relationships fluctuate over
time; otherwise, there might be little to learn from that data. The distance correlation
measure was more apt, with firms appearing and disappearing over time to establish

the relationships.

Next, I borrowed from graph theory methods the TMFG graphs to filter the dense
covariance matrix I generated, as this reduces the training complexity of the model,
which I encountered in the earlier study on mid-cap firms. This also allowed us to
extract more structural information with established methods and has garnered
significant attention from the community in conferences and symposiums where we
have discussed this work. Finally, the GAT model was trained on these graphs to
develop the embeddings with a customised loss function, a modified form of the
Sharpe ratio. I used the same performance metric but in its traditional form to
measure the model’s performance. This is similar to the mean-variance model, where
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the returns are maximised, keeping the variance to a minimum. I saw that with the
same data and similar objectives, the outcomes were very different between a
mean-variance model and a deep learning model. Without the deep learning model,
the conclusion would be that mean-variance models cannot work on large-scale
portfo]io optimisation. However, it is the form or the search space that is deployed.
Compared to the optimisation procedures developed in deep learning, traditional
methods are optimised to lower their computing requirements and make assumptions.
For the same problem expressed in the form of a deep learning architecture, the
outcome is that they are quite suitable. These architectures can better approximate any
complex relationship or outcome due to the hierarchic representation of relationships
and the ability to find optimum in high dimensional settings. The GAT model found
the optimum embeddings in the high dimensional space. These embeddings needed
to be converted to the weights or the available allocation, which led us to develop a
custom layer. Such layers are more straightforward to represent using deep learning
technology as various constraints or maximising layers are readily available,
analogous to objectives and constraints in quadratic optimisation procedures.

Next, I discuss some areas for speciﬁc improvement regarding portfolio optimisation
based on the data, models and experiment settings. I did not look into using different
network creation strategies. Some of the other network creations from returns data
could be different, and using another metric, such as the interconnectedness metric
used in financial networks, could have generated different networks or used
traditional Pearson correlation. There is a caveat, though, with the interconnectedness
metric, as this requires high—frequency data, which is challenging to obtain for long
periods. Next, about the modelling, there are two ways to make the models
end-to-end with deep learning models for portfolio optimisation. They could be
deployed to detect the relationships between the firms analogous to a covariance
matrix (one of the inputs to the portfolio optimisation models) using an adjusted
attention mechanism without the distance correlation and TMFG approach we used.
Feng et al. (2022) has used that with GCN and attention mechanism but not at the
scale we faced in this thesis. Still, I believe that in areas with plenty of data, whole
market covariance matrices could be developed, and these covariance metrics could
be tracked over time to detect changes in asset class (stocks, bonds or derivatives)
relationships. Another aspect of the modelling is using edge attributes to generate
better embeddings. In this study, the GAT model was trained without using the edge
features available with the distance correlation metric between any pair of firms in the
network; this could be another area to explore further. Finally, end-to-end deep
learning models need different training strategies in the experiment settings. This
could be achieved with different objective and loss functions, which can be developed
from existing traditional portfolio metrics such as max drawdown, information
coefficient and others. I also found merging this study with previous portfolio studies
challenging, as no studies considered the possibility of default risk within the same
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portfo]io allocation approach. For portfolio optimisation, reinforcement learning is
often used in studies as no labelled data is available to make it a supervised learning
problem. I took a different approach, using supervised learning with a custom layer
that satisfies the portfolio constraints, but much more can be done in this space.

To bring the models to more practical implementations, especially for portfolio
managers who manage a multitude of funds, I could adopt more constraints to the
portfolio. Practical ones could be such that no position can get more than a certain
amount of capital or that positions need to be churned over time and cannot be
constant, all of which translates to developing a more customised approach. This
constraint-aware approach may help the model train better for specific purposes.
Also, different constraints for the portfolio, like sectoral constraints, climate or
social-related constraints during the weight allocation stage, might optimise the
portfolio differently and satisfy specific business purposes. This helps the investment
decision-making process to be more robust and reduces the ex-post risk of finding out
the model-generated weights are not applicable; hence, another manual overlay is
needed.

We have shown the shortcomings of traditional models when applied to a large-scale
portfo]io optimisation, especially compared to the GAT model, and the robustness of
the model. The model can build upon the initial filtering to develop better
embeddings suitable to the optimisation problem. There was noticeable performance
improvement in a setting where trading prices are not readily liquid. The model also
continues to work over an extensive period of 30 years, encompassing several market
environments, such as bullish and bearish environments and a few recessionary
periods.

Studying such firms is critical to unlocking excess returns without taking a
commensurate risk. This will reward the firms in lowering the cost of capital and
increasing the investor base. I expect such models to be widely adopted by
institutional investors rather than retail investors, as the computing requirements and
the data processing are quite exhaustive. One of the key takeaways is the different
results that I get compared to portfolio studies using network topology. Choosing
peripheral firms, which have the least connections in the network, might not work
well in mid-cap firms with a higher chance of default compared to alternative
portfolios. The GAT models chose neither the most central nodes nor the peripheral
nodes, which gives a balance of risk and performance. From a portfolio optimisation
view, these become relevant when looking at large-scale private firm networks.

Finally, the model turnover is a metric that helps understand how practical it is to
implement the portfolio. In large-scale portfolios, using an equal-weighted approach,
shown in earlier studies, performs much better than any sophisticated portfolio

studies, especially as the number of assets increases. In this study, equal-weighted
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portfo]ios do not work, though, as it is costly to trade on every change in the portfolio,
and more importantly, it will contain all the risky companies in the portfo]io. A single
default or bankruptcy will impact the portfolio much more than collective
underperformance in a large set of firms. Also, the churn in the equal-weighted
portfolio is significant as the firms” universe changes quickly over time. The GAT
model was more restrictive than others, with the lowest turnover in the firms and

avoiding peripheral or firms that could default or go bankrupt.

As a future study, this could be adapted to discover market re gimes. These occur
when markets trade with similar re gimes, especially the regimes of high and low
volatility, which are studied in the literature. Here, one could use the graph
embeddings to understand different market regimes and see if these embedding
generations have similarities in similar market environments. Networks have been
used to study contagion and systematic risk, and I believe the GAT embeddings could
also serve a similar purpose. I applied large-scale portfolio optimisation for risky
mid-cap firms and found the GAT-generated allocations are robust over time and cost
less in portfolio turnover. I also used a deep learning model as a generic optimisation

structure rather than a prediction model, which is how often they are used.

5.2.3 Multimodal deep learning models for private large-scale datasets

In this section, we revisit the application of multimodal deep learning models,
working with internal data of large financial institutions and focusing on behavioural
data on SMEs’ credit lines. We found network data to be relevant, but behavioural
data is quite powerful. We also found network data to be robust to market changes. I

will go into more detail in this section.

Chapter 4 studies these SMEs with multimodal deep learning models. As initially
discussed in the Introduction, SMEs are an essential source of job generation in any
economy but suffer due to data limitations when accessing credit. I looked to improve
the default prediction models of SMEs using behavioural data and internally
generated network data. The behavioural data was quite predictive of the default, and
simpler models sufficed to explain them. However, network-related variables were
also important, and I found these features to be predictive in themselves but not as
powerful as behavioural variables. This confirmed earlier studies that showed the
power of behavioural variables in default prediction and how simple models can
extract the relationship necessary to predict default. The behavioural data, however,
may not always be available as it requires contracts that financial institutions can
monitor over time. I focused on credit lines because they generate that behavioural
data. Once established, the network data could be used when behavioural data is

absent, as the relationships do not change drastically over time.
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Another contribution from the study was that behavioural data could be susceptible
to macroeconomic shocks, as I have observed that firms’ behaviour changes
drastically over time. In my sample, the default rates for the population go up during
a big shock to the market. Using behavioural models in those environments would
not produce reliable results as the previous behaviours are no longer relevant. In those
periods, the networks were robust, which could offer learning of the economic shocks
transmitted. The network models rely on the neighbours of the firms, so their
behaviour could be localised but still have transmission shocks spread, which

improves the model’s predictions during volatile times.

There are further areas of development. The network data are he terogeneous, i.e. the
nodes are of different types, such as firms that only own other firms but are not part of
the population for which I want to predict default. Various graph neural network
methods for heterogeneous graphs were developed during the last year, and using
them could further improve the models. I used heterogeneity by masking the data,
which is a basic method in our view when looking at deep learning graph neural
network developments. On the credit side, one of the improvements could be in using
more extended data periods. We were limited to using specific data periods from 2018
to 2021. The data before 2018 were different, with changes in internal procedure
indicating that the data definitions before the period were different, and restrictions
on data extraction meant that we could not use the data after 2021. A more varied
period could have tested the model more robustly than the out-of-universe selection
and masking procedures. In addition, having relevant macroeconomic data for the
firms could further improve the models, as these firms are subject to systemic risk.
Still, different sectors react differently to it, and the network data could have picked
up on such differences as it has an integrated view of the market. Another area of
study can be to look into the default shock transmission in the network, i.e., how
many years after neighbouring firms show similar signs after default or how the
dynamics of the risk propagation across the network.

The deep learning models did not perform better than standard alternatives with
behavioural data, as there are st-raightforward relationships in behavioural variables
that traditional models can use to predict default. However, with no behavioural data,
just using networks as the inputs to these models, they perform sufficiently accurately
to be used on their own. The GAT model performs particularly well compared to a
similar deep neural network model, which shows some network structure in the data
being exploited by the GAT, which other models cannot. They generate embeddings
which, when run together with behavioural data, produce better results for the
traditional models. However, I feel more research is needed in this area with the 1%
improvement I got in the results using graph embeddings compared to conventional
network features. The costs of initially maintaining and developing these models over

time might look too high compared to the improvement. Still, I believe these models
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are more suitable for changing data distributions or economic environments, so the
embeddings could be more robust as we have seen they had a stable performance
during a pandemic shock while behavioural models’ performance deteriorated.

We also conducted an explanatory analysis of the behavioural and network variable
data to gauge the relative importance of these data sources. Confirming our earlier
studies, I found that missing data in the behavioural data is also important in
predictions. Missing data may not be completely random, and churn may signify
some change in events within the firm. In behavioural data, I found that higher
utilisation of the contract limit is another marker for likely stress in the future. This
confirms earlier studies, which showed similar behaviour by firms. One of the reasons
for the underperformance of the deep learning model is that they are good at finding
the turning points or breaks in the data, in our case, periods of high default
transitioning towards a lower default period. There could be scope for future studies
on this topic that deploy models for different behavioural markers. In our research, I
classified someone as default that is overdue on their payments for over 90 days, but I
could use an earlier period to detect stress the first time it happens, like trying to
understand which accounts go into arrears the first time; deep learning models might
better answer these questions. As [ saw with just network data, they could be trained
to find some higher-order relationships to detect default prediction better than
traditional models. Data collection methods also play a role in the performance of
complex deep learning models. I have seen the network data improve over time in the
data we used in our study, with ownership data coming later, so we had periods when
there was only one dataset. With richer representation, ne twork-based models
improve their performance. Established network metrics could easily represent the
network data, which increases performance over just the behavioural data model by
adding to the models. The deep learning embeddings still improved the model, but
not as much as I hoped they would. However, the model embeddings can be even
more potent for prediction with better data representation. The behavioural data
could also be further improved by adding even more features that could be generated,
such as intra-firm credit line contract changes; I looked at only the maximum value
contract in this study.

Credit lines are major predictors of changing behaviour and could serve as an input to
a firm'’s other credit contract models. This will enable closer tracking and better
pricing of risk, both for the firm and the financial institution that provides the credit. I
have seen that the internal network data generated by the firm is quite helpful because
it is explicit, and advanced analytical methods need to be deployed to extract value
from it. The final predictive model was traditional, but inputs needed to be sourced by
generating new behavioural and network characteristics.
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5.3 Future work

I identify a few areas of work with more general themes throughout this work. This
work combines credit risk studies, advanced computational methods using deep
learning and novel datasets. I looked at often illiquid mid-caps and understood
various market risks, and I also inte grated the studies for private large-scale datasets
of SME firms. On the credit risk side, I expect to have models that can be developed
together with publicly available data models and private datasets. Here, I worked
with publicly available data or private datasets. Still, some of the risks inform each
other, and using macroeconomic embeddings generated from public data models in
private data models could be informative of the current macroeconomic
environments. These could further improve the model’s predictive powers. I would
also like to see the work extended into the pricing of the credit instruments, such that
they are no longer classification problems but regression problems with precise
objective functions. Deep learning methods can find the optimum values in a
higher-dimensional space to work with complex objective functions.

Another area of further study is automating the architectures of the deep learning
models. I chose specific deep-learning models based on the data and the nature of the
problem. For example, with the credit default prediction problem for mid-caps, I used
transformer models because the underlying input for these models has a panel
data-like structure. For the subsequent two studies, networks were important, which
meant using the GAT models. Deep learning architecture’s initial and final layers play
important roles, such as how we combine the embeddings and the need fora
feed-forward network in an intermediate layer within the architectures. Sometimes, it
might not be clear which model is to be used among so many available models. I have
identified three broad areas in the literature: pruning, quantisation, and automated
machine learning (AutoML). Pruning removes deep learning layers, which reduces
the number of parameters in the model to be learnt. The impact on model
performance and the amount of pruning must be tracked to identify the optimal
number of layers. The second measure is quantisation, which decreases the
parameter’s precision from 64 bits to 16 or 8 bits for the learnable parameters. This
reduces computational complexity and has shown that it does not impact model
performance metrics as much. Finally, the AutoML approach could be tried, where the
architecture is learnt based on the data and the nature of prediction. Given the
available alternative data types and how different models perform against different
data types, this approach would become needed in the future. Much of this project’s
literature and research was in the development phases. While our data was quite
complex, much research time was spent on the data collection and making them fit the
input models. I would leave these changes as the significant next steps in advancing
research, especially when using scalable computational methods that work on
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population-level datasets. Together with such advanced analytical methods, we could
further improve the models, as the results for improved perforrnance are still there.

Among the three significant areas of risk management problems that I studied, I had
to develop customisable loss functions in two of them; I believe it is an understudied
area to determine which loss function is best suitable to a given problem and the
reasons for this. The model uses the loss function as a training objective to minimise,
so choosing this needs to be well thought out. Several loss functions are developed,
but which ones to use depends on the data and the expected output.

Combining different data sources and how we choose to combine them is another area
of study that will come from computing research. This work showed methods for
using various data types and developing multimodal models. Much of the research
assumes that some of the costs are worth the complexity, which is generally the case as
the amount of capital invested in solving such problems is immense, but it needs to be
carefully considered. Contrary to expectations, the models” computational or training
costs are trivial in terms of the amount of work needed to maintain these models.
Monitoring of the model’s performance needs to be developed. As we have seen in
Chapter 4, we could see models where the traditional, more explainable models are at
the front, but deep learning models could be used to develop some intricate features
as input to these models. Overall, we should be able to work on a model that
incorporates varied data sets and applies them to different prediction and
optimisation problems, making the model robust and improving over time. I believe
that seeking to achieve this goal, in a variety of other applications, still offers a
promising area of research. It could also impact the industry by advancing best
practices for using different data sources.
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Appendix A

Mid-cap default prediction

A.1 Fundamental channel data variables

Accounting and market-based ratios calculated from raw data are shown in Table A.1.
This data is used as part of fundamental channel data in the models. Ratios that need
price or market performance is used in the market channel. Ratios used are derived
from Mai et al. (2019)

TABLE A.1: Ratios and Variable description

Ratios Derived Descripti
atios Deriw scription textbfRatios Derived ~ multicolumn1]lDescription

ACTLCT Current Assets/Current Liabilities
APSales A s P ‘::h,-’ CASHMTA Cash and Short-term assets/ (Market Equity + Liabilities)
PSal ccounts Payable/ Sales
LTMTA Total Liabilities/ (Market Equity + Liabilities
CASHAT Cash and Short-term assets/ Total Assets / . quity )
iy MB Market-to-Book Ratio
CHLCT Cash/Current Liabilities NIAT Net /Total Asset
et Income/ Tof sse
EBITDA/AT EBITDA /Total Assets . .
NIMTA Net Income /(Market Equity + Total Liabilities)
EBITAT EBIT/ Total Assets
EBITSALE EBIT/Sale NISALE Net Income /Sales
ITS. s
PRICE Log(Price
EAT Total Debts/ Total Assets SEOAT ; 8l ;T)t L Acet
INVCHINVT Growth of Inventories /Inventories quity/ Total Asse
) . WCAPAT Working Capital /Total Assets
REAT Retained Earnings/ Total Asset e
. LCTCHAT (Current Liabilities — Cash)/ Total Asset
INVTSALE Inventories /Sales R
. K e, LCTAT Current Liabilities/ Total Asset
RELCT Retained Earnings/ Current Liabilities e
. LCTSALE Current Liabilities/Sales
LTAT Total Liabilities / Total Assets e R
LCTLT Current Liabilities/ Total Liabilities
SALEAT Sales/Assets e
RSIZE Log(Market Capitalization)
LOG(AT) Log(Total Assets) SIG Stock Volatility
MA ‘olatili
LOG s L ale
(Sales) og(Sale) EXCESSRETURN Excess return over S&P 500

A.2 Market channel data variables

The various market variables are used to place the performance of the company. 1

month and 3-month returns of each of these variables are included
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TABLE A.2: Market channel

Market variable & Data Stream Variable

S&P 500 Return S&P 500 COMPOSITE - PRICE INDEX
Corporate Index ICE BofA US Corporate Index - Yld to Mat convent
High Yield Index ICE BofA US High Yield Index - Yld to Mat convent

Treasury Index ICE BofA US Treasury Index - Yld to Mat convent
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Appendix B

Network-Enhanced Credit Risk
models

B.1 Model input variables by type

The Shap feature variables are listed in two tables, Table B.1 and Table B.2 are given in
this appendix. We describe the variables and also group them into a relevant category
to understand them better. The bank category contains the variables that are defined
by our financial institution; while they are not static, this category is not completely
behavioural either. Static features are data that we do not expect to change over time.
The other variables are self-explanatory.

B.2 Multimodal specification

The multimodal architecture can be modified to create consistent inputs for the model
without further transformations. We mask the data or the layers that we do not need
while keeping the training procedure the same, with similar learning rate, optimisers
and loss function. This actually allows us to see the impact of only the changes we
make. Figure B.1 shows the masking with a cross mark. For example, Figure B.1(a)
shows when the GATConv blocks are masked it makes a neural network (NN) model.
The inputs only go through the Linear model and we can understand the impact of the
GAT blocks in our model. Similarly, in Figure B.1(a), we mask the behavioural data so
that we use only the minor network features as inputs; the models need some input
and we chose to use network features as these come from the same network again. We
call this model the GAT NW model as the input is only network information. This
represents the model used for the second half of results presented in Table 4.4 where
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TABLE B.1: Important features from the SHAP analysis

Variable Type of variable  Description

status Behavioural Status of the contracts <15,
<30days due

exposure Behavioural Exposure in the current con-
tract

limit Bank Bank defined limit on the
contract

bankingrelationship Network Degree centrality of the firm
in the network

irregular_count Behavioural Number of current contracts
that are irregular

last_activity Behavioural Last activity in the current
contract

historical_irregular_contracts Behavioural Number of historical irregu-
lar contracts

historical_irregular_amount Behavioural Historical irregular amount

utilization Behavioural Ratio of exposure to limit

contract_count Behavioural Total humber of contracts

total_exposure Behavioural Total exposure in all contracts

total_limit Bank Total limit over all contracts

min_utilization Behavioural Min utilisation across all con-
tracts

most due contract status Behavioural Of all current currents the
contract that is most due

location_code Static Most frequent location of the
firm

max_current_delinquency_state Behavioural Maximum delinquency state

of all contracts

na_historical_irregular_current

Missing indicator

The worst state the contract
historically has been in
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TABLE B.2: Continuation of important features from the SHAP analysis

Variable

Type of variable

Description

na_des_historical_irregular_contract

Missing indicator

Description of the worst
state the contract has
been in

na_timestamp_historical

Missing indicator

Tmestamp of entry of the
worst state

na_accountant

Missing indicator

Kind of accountant for
the contract firm

size P1 Static Size of the firm, one hot
encoded variable P1,P2,
P3

size P2 Static Size of the firm, one hot
encoded variable P1,P2,
P3

pr Network Page Rank

dc Network Degree centrality of the
firm in the network

bc Network Betweenness centrality

average_bankingrelationship Network Average degree of link-
age of all neighbours

total_bankingrelationship Network Total degree of linkage of

all neighbours

we used only network data as input. This helps us to clearly understand the power of

the network data in the model and how it impacts performance.

B.3 Training evolution

Here, we present the evolution of training over a single graph. We used three learning

rate regimes in the model, initially with a higher learning rate and gradually reducing

it. The chart in Figure B.2 shows the training over 15000 epochs. We test the efﬁcacy of

the fit on the same training data but using the AUC performance metric. The model is

trained for accuracy but the validation is done based on the AUC. This gives a

reasonable check on overfitting in the model.
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(B) Model setup with no behavioural data (GAT NW); each node’s features are excluded from
training

FIGURE B.1: Multimodal training setup
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FIGURE B.2: Training of the multimodal model; decreasing loss with stability
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