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A compendium of human gene functions 
derived from evolutionary modelling

Marc Feuermann1, Huaiyu Mi2, Pascale Gaudet1, Anushya Muruganujan2, Suzanna E. Lewis3, 
Dustin Ebert2, Tremayne Mushayahama2, Gene Ontology Consortium* & Paul D. Thomas2 ✉

A comprehensive, computable representation of the functional repertoire of all 
macromolecules encoded within the human genome is a foundational resource  
for biology and biomedical research. The Gene Ontology Consortium has been 
working towards this goal by generating a structured body of information about 
gene functions, which now includes experimental findings reported in more than 
175,000 publications for human genes and genes in experimentally tractable model 
organisms1,2. Here, we describe the results of a large, international effort to integrate 
all of these findings to create a representation of human gene functions that is as 
complete and accurate as possible. Specifically, we apply an expert-curated, explicit 
evolutionary modelling approach to all human protein-coding genes. This approach 
integrates available experimental information across families of related genes  
into models that reconstruct the gain and loss of functional characteristics over 
evolutionary time. The models and the resulting set of 68,667 integrated gene 
functions cover approximately 82% of human protein-coding genes. The functional 
repertoire reveals a marked preponderance of molecular regulatory functions, and 
the models provide insights into the evolutionary origins of human gene functions. 
We show that our set of descriptions of functions can improve the widely used 
genomic technique of Gene Ontology enrichment analysis. The experimental 
evidence for each functional characteristic is recorded, thereby enabling the 
scientific community to help review and improve the resource, which we have made 
publicly available.

Human genes are segments of the genome that encode instructions 
for making molecular machines—primarily proteins but also non-
coding RNAs—that perform the functions that create and sustain the 
human body. Determining the entire functional repertoire of these 
gene products is vital for understanding human biology and for the 
treatment of disease. Previously published attempts to comprehen-
sively construct and analyse the entire repertoire of functions encoded 
by human protein-coding genes were featured in reports of drafts of 
the human genome sequence in 2001 (refs. 3,4). Both publications 
reported analyses of the set of human protein-coding genes that 
were state-of-the-art at the time using protein family identification 
software such as Pfam5 and PANTHER6 and the nascent Gene Ontol-
ogy (GO) to define functional classes7. These studies reported that a 
functional characteristic was either known or could be predicted for 
approximately 40%4 and 58%3, respectively, of human protein-coding 
genes. However, these initial studies had several limitations, includ-
ing that gene function was described at only a high level and there 
were no traceable links to supporting experimental evidence. As a 
result, most genes were assigned to a single, broad category of func-
tion, and the accuracy of that assignment was not readily verifiable, 

which made it difficult to build on these analyses as more experimen-
tal results became available. Since that time, multiple resources that 
include human gene functions have been developed8–10, including our 
own work in the GO Consortium11,12, but these have not been system-
atically aimed at a complete, computable representation for human  
genes.

Here we describe our work to develop a representation of human 
protein-coding gene functions that is as complete as possible given 
the currently available data using an approach based on explicit evo-
lutionary modelling13,14. This process required the construction of evo-
lutionary models at a large scale: in total, models were constructed for 
6,333 phylogenetic trees in the PANTHER database15,16 and all available 
experimental information in the GO knowledgebase. In the resulting 
representation, the overall function of each human gene is described by 
a set of multiple functional characteristics (annotations). Each charac-
teristic is represented by a selected term from the GO ontology (a formal 
ontology of gene functions), is supported by traceable experimental 
evidence and potentially has a distinct evolutionary history. We have 
made this set of human gene functions publicly available at https://
functionome.geneontology.org.
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Creating a genome-wide set of functions
Our process to create a comprehensive set of human gene functions is 
shown in Extended Data Fig. 1 and described in detail in the Methods. It 
relies on expert human curation with extensive computational support. 
The first step involved the identification of publications that reported 
experimental findings regarding the functions of genes, from which 
biocuration scientists (biologists with expertise in data science) created 
‘primary GO annotations’. A GO annotation links a gene to a functional 
characteristic, coupled with the evidence for that assertion. The func-
tional characteristic is selected from the graph of classes (or terms) 
available from the GO ontology, an information science structure that 
enables complex experimental findings in biology to be represented 
in a form amenable for computation. The GO ontology defines three 
broad categories of functional characteristics: molecular function 
(MF; functions that the gene product performs at the molecular level); 
biological process (BP; functions at the level of cellular and organism 
systems); and cellular component (CC; the cellular structures where 
the gene product is active). Primary GO annotations currently include 
findings from more than 175,000 peer-reviewed, published papers, 
with most of these coming from studies of model organisms. These pri-
mary GO annotations are arguably the most extensive and widely used 
source of functional information about gene function11,12. However, 
they do not constitute a comprehensive representation of human gene 
functions. First, each primary annotation is limited in scope to a gene 
functional characteristic that was experimentally demonstrated in a 
single publication. Consequently, primary annotations are often more 
reflective of the details of the experiment than the underlying gene 
function. Moreover, annotations to the same gene can be partially or 
completely redundant with each other, even if they refer to apparently 
distinct GO terms (see Methods for examples). Primary annotations 
are also subject to biases in the published literature; for example, the 
tendency of studies to focus on only a subset of human genes17,18. But 
perhaps most importantly, direct experimental knowledge of human 
gene functions remains incomplete. Thus, a comprehensive represen-
tation of human gene functions requires leveraging the vast amount 
of experimental knowledge obtained in a wide range of other organ-
isms, which can provide important information because of the deep 
evolutionary conservation of many protein-coding genes.

To address these limitations, we implemented a second step to 
review and integrate the primary GO annotations—for both human 
and related non-human genes—into a comprehensive, minimally 
redundant description of human gene functions. This step created a 
synthesis of the primary GO annotations, analogously to how a review 
article synthesizes findings from primary research publications. In 
this approach, called phylogenetic annotation using Gene Ontology 
(PAN-GO), we performed the following actions: (1) systematically 
reviewed all functional evidence in the GO knowledgebase for related 
genes within the evolutionary tree of a gene family; (2) selected a set of 
maximally informative and independent functional characteristics; and 
(3) constructed an evolutionary model of how each selected functional 
characteristic evolved in a gene family (that is, when it arose and, in 
many cases, was subsequently lost). The evolutionary models were then 
used to provide integrated PAN-GO annotations for each human gene.

The explicit evolutionary modelling approach represents an advance 
over previous work to leverage homology information19,20, which falls 
into two broad categories. Methods that use protein families (for exam-
ple, Pfam5 and InterPro2GO21) or subfamilies or orthologous groups (for 
example, PANTHER15 or COGs22) used in earlier genome-wide functional 
analyses of the human genome3,4 have been updated and regularly 
expanded. However, they are nonetheless limited to representing 
functional characteristics that are broadly conserved over an entire 
family or subfamily and can therefore lack coverage and precision. 
By contrast, methods that use pairwise identification of homology23 
or orthology24,25 essentially treat each homologous gene pair, and 

each functional characteristic, in isolation rather than integrating 
experimental information over multiple related genes. More recently, 
methods based on deep learning have shown promise26,27 but still face 
similar challenges. In all of these methods, homology relationships 
at the sequence level are used to make implicit inferences about the 
evolution of gene functions. To our knowledge, the work presented 
here is the first to make the evolutionary models explicit at the scale 
of entire genomes.

PAN-GO evolutionary modelling process
We first illustrate the modelling process using the example of the 
ubiquitin-activating enzyme (UAE) family. This family has been well 
studied in the literature, which enabled us to compare our evolution-
ary model to previously published findings. The UAE family is found 
in all kingdoms of life and includes ten human genes. Members of the 
UAE family can activate a range of ubiquitin-like modifiers (UBLs), 
small proteins that once activated are attached to other proteins to 
mark them for regulation. Fig. 1a shows part of the UAE gene family 
tree in the evolutionary modelling tool called phylogenetic annota-
tion and inference tool (PAINT; see Methods for details), focusing on 
the clade containing the human ATG7 gene. The modelling process 
considered both the gene tree (indicating here the origin of the ATG7 
clade before the last common ancestor (LCA) of eukaryotes) and the 
sparse experimental knowledge of the functions (primary GO annota-
tions) of the genes in the tree (Fig. 1a, green squares and callouts). The 
most informative, nonoverlapping set of functional characteristics (GO 
classes) were selected, and then an evolutionary model was created, 
specifying the tree branch along which each characteristic arose during 
evolution (Fig. 1a, bottom callout). The model in Fig. 1 corresponds to 
the simplest evolutionary model28–31 that explains these experimental 
observations given the evolutionary history in the gene tree. Finally, 
the PAN-GO annotations for human ATG7 were assigned by applying the 
evolutionary model, assuming inheritance (Fig. 1a, dotted line) of the 
functional characteristics (GO terms) ‘Atg12 activating enzyme activity’ 
and ‘Atg8 activating enzyme activity’ (GO term labels are indicated in 
single quotes). In this example, the evidence for human gene function 
was therefore derived from experiments on related genes in other 
organisms. For example, the ‘Atg8-activating enzyme activity’ of human 
ATG7 is supported by experiments in mouse32 and in budding yeast33.

Figure 1b shows the PAN-GO model for MFs in the entire UAE family, 
which contains nine other human genes in addition to ATG7, as well 
as homologous genes from archaea and bacteria. This model dem-
onstrates several important features of the PAN-GO process. First, 
different members of the same family can have highly different anno-
tations of function. By contrast, the family-based approach used in 
previous characterizations of human gene functions3,4 does not assign 
a functional characteristic to any genes in the UAE family (see Pfam5 
PF00899) because the diversity of functions prevents a functional 
assignment that applies to all members. Second, the model is designed 
to represent actual evolutionary events, to the degree possible given 
the reconstructed phylogeny. Because GO classes that describe func-
tions are discrete, we expressed the model of each change in function 
during evolution as a combination of gains and losses of GO classes. 
For example, in the branch leading to ATG7, the ancestral ‘sulfotrans-
ferase activity’ (supported by experimental annotations in the clade 
of bacterial genes and one clade of eukaryotic genes including human 
MOCS3) evolved into a UBL-activating enzyme activity specific for the 
ATG12 and ATG8 family of UBLs. In the PAN-GO model, this functional 
change is modelled as a loss of the GO term ‘sulfotransferase activity’ 
(as this term is no longer an accurate description of the newly evolved 
function) and a gain of two GO terms: ‘Atg12 activating enzyme activity’ 
and ‘Atg8 activating enzyme activity’.

Using only a gene tree and experimental GO annotations, our mod-
elling process constructed a function evolution model that captured 
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the major evolutionary events in this family, which were previously 
determined through highly labour-intensive detailed studies. In our 
model, the MOCS3 clade retains the ancestral ‘sulfotransferase activ-
ity’, consistent with previous assertions that MOCS3 provides an evo-
lutionary link to prokaryotic enzymes in this family34,35. Although the 
phylogenetic tree does not reconstruct the order of early gene duplica-
tions (shown in Fig. 1b as multiple branches descending from a single 
ancestral gene), our model does allow us to distinguish the order of 
gene duplications and functional modifications that occurred more 
recently to generate the three human genes UBA1, UBA6 and UBA7. 
For these three genes, our model is consistent with a previously pub-
lished model36 in essential details: (1) the ancestral gene was specific for 
ubiquitin; (2) the duplication leading to UBA6 pre-dated that leading 
to UBA7; and (3) UBA7 changed its specificity from ubiquitin to ISG15 
(which we modelled as a loss of ‘ubiquitin activating enzyme activity’ 
and a gain of ‘ISG15 activating enzyme activity’).

The PAN-GO set of human gene functions
The PAN-GO evolutionary models for 6,333 gene families, combined 
with selected primary GO annotations for a small number (61) of human 
genes that were not in PANTHER families, resulted in a set of 68,667 
integrated GO annotations of function for 17,079 human protein-coding 
genes (81.9% of the consensus gene set of 20,851 reported by UniProt37). 
PAN-GO annotations covered all three broad categories of the GO onto
logy, comprising 18,499 MF, 22,022 CC and 28,146 BP annotations. The 
coverage of genes by GO terms from each broad category is shown in 

Extended Data Fig. 2, and the distribution of annotations per gene is 
shown in Extended Data Fig. 3.

To characterize the PAN-GO annotations and to demonstrate their 
utility, we performed an in-depth comparison of PAN-GO annotations 
to other available sets of human GO annotations. This included com-
parisons both to GO annotations from the published literature and to 
predicted GO annotations using methods that have been extensively 
tested and reviewed, including several automatic function prediction 
methods that have been benchmarked in the Critical Assessment of 
Function Annotation evaluations20 or similar benchmarks. Details of 
the comparison are described in the Supplementary Information, and 
we summarize here the main findings. First, PAN-GO added 43,206 
new annotations for human genes that were not previously present in 
the set of human primary GO annotations. Of these new annotations, 
5,570 refer to related but more specific GO terms and therefore add 
more functional detail. The majority (37,636), however, are in distinct 
branches of the ontology and represent functional characteristics 
that are missing from the set of human experimental annotations. As 
described in the Methods, we used an established procedure38 to esti-
mate a ‘reliability’ of these new annotations between 90–97%. Second, 
most experimental GO annotations for human genes are excluded 
from the PAN-GO set. This is due to the selection of largely independ-
ent, maximally informative GO terms for inclusion in the evolution-
ary models. Using datasets from previously published case studies39 
(Supplementary Information), the PAN-GO set performed better in 
enrichment analyses than the set of all GO annotations, as PAN-GO 
avoids a major confounder in these analyses that arises from highly 
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Fig. 1 | PAN-GO annotation process illustrated using the UAE family.  
a, View of the PAINT software tool (Methods) showing the process of creating  
a function evolution model for the human ATG7 gene (top) that integrates 
function information from related genes. The phylogenetic tree (left) shows 
the evolutionary relationships between genes found in different organisms. 
Tree nodes represent speciation events (circles) and gene duplication events 
(squares); extant genes are labelled with the UniProt five-letter species code51 
and gene symbol when available. For each extant gene, the sparse experimental 
function annotations are shown on the right (green squares, each column  
is a distinct GO class). Information in the gene tree and primary GO annotations 
(green callouts) is used to construct a parsimonious model for function 
evolution (bottom callout, dark blue), in which the selected functional 
characteristics first arose in an ancestral, ATG7-like gene. These functions were 
then transmitted by inheritance to the human ATG7 gene (dashed yellow arrow). 

b, The PAN-GO evolutionary model and PAN-GO MF annotations for all human 
genes in the UAE family. Gene duplication events and functional evolution  
have resulted in ten human genes that serve as activating enzymes (AEs) with 
different functions at the molecular (shown here), cellular and organism levels 
(see full model at https://pantree.org/tree/family.jsp?accession=PTHR10953). 
The PAN-GO function evolution model is shown by circles indicating gains  
in function, with crosses indicating losses of function and orange arrows 
indicating inheritance of ancestral function. The LCA of the family had 
‘sulfotransferase activity’ (gain labelled 1), which was passed on to the human 
MOCS3 gene (arrow leading from 1), but this function was modified in other 
descendants (losses and gains labelled 2–11) to create the canonical UAEs of 
varying specificities for different UBLs. For example, human UBA5 is specific 
for the UBL called UFM1. Branch lengths represent the numbers of amino-acid 
substitutions per site. The tree was drawn using the iToL tool52.

https://pantree.org/tree/family.jsp?accession=PTHR10953
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annotated genes39. Thus, the PAN-GO set is valuable both for the new 
annotations added and for the noisy primary annotations removed.

Experimental evidence for gene functions
As described above, each of the 68,667 PAN-GO annotations is sup-
ported by one or more lines of experimental evidence. We categorized 
each line of evidence as direct (based on experiments on a given human 
gene) or homology-based (based on experiments either on a paralogous 
human gene or a homologous gene in another organism). Figure 2 shows 
the distribution of these sources, which considerably overlapped. Nota-
bly, only 25,997 (38%) of the PAN-GO annotations were supported by a 
direct primary annotation (yellow oval in Fig. 2). The remaining 42,670 
PAN-GO annotations (62%) were derived from the tree-based homology 
inference process. Homology inference therefore contributed nearly 
1.8 times as many annotations as the direct experimental annotations to 
the final set of PAN-GO-reviewed human gene annotations. Nearly half of 
the homology-based annotations (21,098 out of 42,653) were supported 
by model organism data alone, with no experimental evidence from 
either the human gene itself or a human paralogue. In addition, nearly 
all homology-based annotations were supported by model organism 
data even if they were also supported by human paralogue data (shown 
in Fig. 2 by the blue area as an almost complete superset of the red area). 
Even for the human gene annotations that have direct experimental 
support, there was additional evidence from a model organism over 
70% of the time (yellow area overlapping with blue in Fig. 2).

We determined the contributions from each model organism to the 
human PAN-GO annotations (Extended Data Table 1). The overall trend 
indicates the contributions depend on both the evolutionary distance 
to humans and the depth to which an organism has been studied experi-
mentally. Data in the mouse (divergence from human about 80 million 
years ago) supports around 60% of PAN-GO human annotations, and 
Escherichia coli (divergence about 4,000 million years ago) supports 
about 3%, a result highlighting that even distantly related organisms 
can provide insight into human biology.

The landscape of human gene functions
We used the structure of the GO ontology to group PAN-GO annota-
tions into broad categories to provide insight into the landscape of 
human protein-coding gene functions (Fig. 3). We analysed two distinct 
aspects of gene function, the molecular-level functions performed 
individually by a protein (MF; Fig. 3a) and the systems-level processes 
performed in conjunction with other proteins (BP; Fig. 3b). For MF, the 
most noteworthy feature is the preponderance of regulatory functions, 
which specifically control the activities of other genes and proteins. 
These were not limited to DNA-binding, gene-specific transcription 

factors (which was previously reported3,4,40) but also included the fol-
lowing other major classes: (1) protein-modifying catalytic activities, 
including protein kinases and proteases, enzymes that covalently 
modify other proteins to modulate their functions; (2) regulators of 
MFs through specific noncovalent-binding interactions; (3) signalling 
receptors; (4) ligands for receptors; (5) GTPases, primarily large and 
small G proteins, which are molecular switches that regulate other 
proteins through binding; and (6) transcriptional co-regulators, most 
of which modify chromatin to make specific regions of DNA accessible 
to transcription factors. Together, these classes comprise 5,882 genes, 
which account for nearly half of the genes with known MFs. A large pro-
portion of human protein-coding genes therefore seem to be involved 
in the precise control of the performance of other protein functions, 
a ‘parts list’ with the potential for creating highly complex biological 
programs. At a higher level of biological organization, Fig. 3b provides 
an overview of the biological programs (GO BP) that are carried out by 
multiple genes that function together. These range from programs 
that occur primarily at the cellular level (for example, biosynthesis, 
catabolism, cellular structure biogenesis and modification) to those 
of larger-scale multicellular systems. At the cellular level, the follow-
ing processes involve the largest number of genes: signalling (that 
is, the detection, transduction and integration of signals and other 
stimuli); regulation of transcription (the control of gene expression 
levels and major responses to signal transduction); cell differentiation 
(in which a cell develops into a particular type with a specific physi-
ological role); and cytoskeletal organization (the maintenance and 
change of cell shape). The number of genes implicated in multicellular 
processes (such as anatomical structure development, immune system 
processes, and nervous system processes including synaptic signal-
ling) was considerably smaller than for cellular processes. This result 
is not surprising given that all proteins are expressed in a cell, and thus 
nearly all genes perform some cellular level function together with 
other proteins in that cell. By contrast, only a subset will be involved in 
processes that coordinate the actions among different cells. Moreover, 
for many multicellular processes, the roles of specific genes are not as 
well understood as for cellular processes.

The evolution of human gene functions
Although we constructed the evolutionary models with the specific 
aim of creating a comprehensive representation of human gene func-
tions, the models also provide insights about the evolutionary origins 
of these functions. Fig. 4a shows the distribution of the times at which 
human gene functions first evolved in terms of the LCAs represented in 
our models. The distributions show peaks (periods with greater func-
tional innovation) and valleys (less innovation), with four distinguish-
able peaks: (1) the evolution of eukaryotes; (2) the period spanning the 
evolution of animals (Eumetazoa) and then bilaterian animals; (3) the 
period spanning the evolution of vertebrates (Euteleostomi) and then 
land animals (Tetrapoda); and a smaller peak during (4) the evolution 
of placental mammals. A similar pattern was previously observed for 
human gene ages41, which is anticipated to correlate to some degree 
with the evolution of gene functions. However, the gene ages displayed 
additional, dominant peaks at the extremes of very ancient (before the 
last universal common ancestor (LUCA) of cellular life) and relatively 
recent (placental mammals to primates) time periods. This discrepancy 
may be due in part to the challenges in assigning ages to genes42, which 
shows the importance of considering function directly.

In our models, the majority of human gene functions evolved 
long ago, and some more than 4 billion years ago (Fig. 4a, black bar 
below LUCA). Notably, more than half of all human protein-coding 
genes have inherited a functional characteristic (Fig. 4a, grey bars) 
that evolved in our distant, single-celled ancestors (before the evolu-
tion of multicellularity in animals at least 715 million years ago) and  
over one-third have not changed in overall function since that time 

Non-human model evidence

Human paralogue evidence
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5,904
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9,728
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Fig. 2 | Sources of experimental evidence for PAN-GO annotations. Venn 
diagram showing the number of PAN-GO human gene annotations according to 
the source of the experimental evidence used for the PAN-GO annotation.
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(black bars). By contrast, relatively few human protein-coding gene 
functions evolved after the LCA of placental mammals (Eutheria) almost 
100 million years ago. It is important to note that the functional charac-
teristics in our models are limited to GO terms that have experimental 
support for a human gene or a related gene and will tend to underes-
timate true functional changes during evolution. For example, in the 
PAN-GO model for a cytochrome P450 family (PTHR24300), 18 human 
genes inherit the GO term ‘xenobiotic metabolic process’ from a com-
mon ancestor in which that functional characteristic evolved more than 
1 billion years ago. This functional description is correct; however, at 
a more detailed level not currently captured by GO terms, different 

human cytochrome P450 families have more recently evolved distinct 
specificities for different types of xenobiotic chemicals43. Neverthe-
less, the difference between the two distributions in Fig. 4a shows that 
our models do identify many instances of functional change. If all the 
functional characteristics of a gene arose at the same time, the grey 
and black bars would be the same. Therefore, the differences are due 
to additional functional characteristics that arose later in evolution. 
For example, of the 1,300 human genes that can trace at least one func-
tional characteristic to a LUCA (bottom grey bar), only 470 (bottom 
black bar) did not undergo further functional changes. In the period 
immediately before the LCA of vertebrates 429 million years ago, many 
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genes changed in function (grey bar compared with the black bar). In 
most cases, these changes are due to the known prominence of gene 
duplication in the evolution of the vertebrate genome44,45. Figure 4a 
shows how gene duplication manifests in gene function evolution as 
functional modifications in which a duplicate gains and/or loses some 
functional characteristics while retaining others.

We used the GO ontology structure to create groups of human genes 
that share the same type of functional characteristic at various levels 
of resolution and graphed the distribution of when that characteristic 
evolved (different genes in the same functional group may have evolved 
that function during the same interval or different intervals). Figure 4b 
compares the distributions for selected functional groupings. At a high 
level of functional grouping (broad groups with many genes), metabolic 
functions tended to have evolved earlier (most having appeared by the 
LCA of Eukaryota) and signalling functions substantially later (similar to 

the overall distribution). Immune system functions appeared relatively 
recently (primarily in vertebrates through to mammals). At a lower 
level of grouping, we gained additional resolution. Among metabolic 
processes, consistent with previous studies46, the basic cellular pro-
cesses of carbohydrate metabolism and especially glycolysis appeared 
very early in evolution, mostly before LUCA. Human DNA replication 
functions evolved mostly before the Eukaryotic LCA, but consistent 
with other phylogenetic studies47, our models indicated that the func-
tions of a few components were present in the LUCA, despite the lack 
of homology between core DNA replication machinery in bacteria and 
eukaryotes. Most human signalling processes appeared much later, 
with only a few, such as intracellular phosphatidylinositol-mediated 
signalling, having evolved before the Eukaryota LCA. Transcriptional 
regulation showed an additional broad peak of innovation from before 
the Opisthokonta LCA (the LCA of both animals and fungi) through the 
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Fig. 4 | Distribution of the age of human gene functions. Most human gene 
functions evolved from very distant ancestors. a, Distribution of the time 
periods at which human genes evolved their present-day functions as assessed 
using two measures: the overall function of a gene (black bars, considering all 
functional characteristics) and the oldest functional characteristic of a gene 
(grey bars). Black bars indicate the most recent (newest) functional characteristic 
to arise in the evolutionary model for that gene, whereas grey bars indicate the 
age of the most ancient (oldest) functional characteristic among all the 
functional characteristics for that gene. As shown in Fig. 1, each evolutionary 
event in our models is mapped to a branch of a gene tree, which represents a 
period of time separating the LCAs of two different taxonomic groups; the 
evolution of each functional characteristic is assigned to the corresponding 
time interval (see Methods for details). As an additional reference, LCAs are 

expressed in more commonly recognized terms towards the right side. b, Age 
distributions for different types of human gene functions; each time interval is 
shaded according to the fraction of genes that evolved a given functional type 
during that interval. Different types of functions display substantially different 
age distributions, with some basic cellular metabolic functions in humans 
having remained largely unchanged over billions of years, whereas other 
groups, such as regulation of transcription and immune processes, have 
undergone substantial recent evolutionary change. Higher-level functional 
types are indicated in bold, with more specific subtype names indented below. 
Taxonomic names are from NCBI Taxonomy53, except Amorphea, the group 
that includes the Amoebozoa and Opisthokonta (fungi and animals). Note  
that different functional characteristics of the same gene may have evolved at 
different times. Ma, millions of years ago.
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Eumetazoa (animal) LCA, when many additional new transcription fac-
tor families evolved. Signalling pathways were substantially expanded 
in animals and then in vertebrates. For example, the WNT signalling 
pathway evolved before the Eumetazoa LCA (early animal evolution), 
and the platelet-derived growth factor (PDGF) signalling pathway first 
evolved before the vertebrate LCA with further modifications before 
the tetrapod LCA. For human genes with roles in immune system pro-
cesses, we observed a peak before the vertebrate LCA and a long tail 
through to the placental mammal LCA, which reflects the evolutionary 
appearance and further elaboration of the adaptive immune system.

Discussion
We reported here an initial representation of the functions of human 
protein-coding genes that aimed to be as complete and accurate as 
possible: a draft human gene ‘functionome’. Using explicit evolution-
ary modelling and expert review, we integrated all experimentally sup-
ported knowledge accumulated in the GO knowledgebase over the past  
25 years for human genes and related genes in highly studied model 
organisms. Multiple advancements distinguish this functionome from 
those published previously3,4 and from previously available annotations 
in the GO knowledgebase11 (Supplementary Results). Notably, the cov-
erage of human genes is greater, with 82% of genes associated with at 
least one functional characteristic compared with 40–58% previously 
reported in the literature, and 67% currently covered by primary GO 
annotations (Extended Data Fig. 2). Moreover, every PAN-GO functional 
characteristic has a fully traceable evidence trail, which ultimately links 
back to the experiments on which it is based (either directly on the human 
gene, a related gene or both). Finally, PAN-GO annotations represent a 
synthesis, succinctly summarizing all available primary GO annotations 
into a nonredundant set of functional characteristics for each gene. We 
showed that compared with other sources of GO annotations, the num-
ber of PAN-GO annotations is relatively consistent across human genes 
(Extended Data Fig. 3). Furthermore, using PAN-GO directly in enrich-
ment analyses reduced a major source of bias that arises from highly 
annotated genes39 (see the section ‘Comparison of gene set enrichment 
analysis results’ in the Supplementary Results). Unlike other sources 
of GO annotations, in PAN-GO each selected GO term is designed to 
represent a distinct functional characteristic, and the annotation set is 
therefore minimally redundant. This feature may be unfamiliar to many 
GO knowledgebase users, who may assume that more annotations are 
always better and that distinct annotations always represent distinct 
functions. This property may also make the PAN-GO annotation set useful 
as a training set for machine learning in the prediction of gene functions.

The evolutionary modelling approach enabled us to draw some 
preliminary conclusions about the evolution of human gene func-
tions. We found that most human gene functions were inherited from 
very ancient ancestors, before the evolution of the first multicellu-
lar animals. The actual fraction may be even larger, as phylogenetic 
approaches in general have been shown to underestimate gene ages 
in protein families with highly diverged sequences, for which homol-
ogy cannot be reliably established on the basis of protein sequence 
similarity48. However, we probably underestimated the number of 
recent, relatively fine-grained functional changes that have occurred 
during evolution owing to lack of experimental data and insufficient 
precision of GO terms. Our models also showed that different types of 
functions appeared and were then further elaborated with additional 
functional components during different time periods, which led to a 
range of distinct patterns of evolution.

The functional information from non-human genes was crucial for 
achieving the high coverage and specificity of PAN-GO annotations. 
However, it also showed that even with the inclusion of extensive know
ledge from studies of model organisms, the current collective know
ledge of the human functionome remains incomplete. In the PAN-GO 
annotation set, roughly 30% of human genes have either no annotations 

or annotations to just one aspect of the GO ontology, similar to another 
recent estimate of the ‘unknowme’49. We anticipate that the PAN-GO 
annotations will help identify gaps in our knowledge that can be filled 
by new experiments and by the inclusion of existing publications that 
are not yet in the GO knowledgebase. We encourage the community 
to review the human gene functions in which they have expertise and 
submit suggested publications that should be added to the GO knowl-
edgebase and incorporated in the PAN-GO annotation set. We also 
anticipate that additional functional information for poorly character-
ized human genes will be added from high-throughput phenotyping of 
gene knockouts in human cells and tissues (https://morphic.bio) and 
mouse embryos50. The comprehensive set of human gene functions 
we present here should therefore be viewed not as an end point but 
as a snapshot that will be continually refined and expanded over the 
coming years, building on the work of a large international community 
of experimental, computational and biocuration scientists.
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Methods

Primary GO annotations
The process for creating GO primary (experimental) annotations from 
the published literature has been previously described in detail54. 
New annotations from additional publications are added at the rate 
of approximately 4,000 per month, and some annotations, if they 
have been superseded in light of new experimental results or updates 
in the biological representation captured in the ontology, are revised 
or removed. Scientific publications used to support experimental GO 
annotations are labelled with a PubMed LinkOut55 whenever possi-
ble and can be retrieved at https://pubmed.ncbi.nlm.nih.gov/?term=lo
provGeneOntol%5bSB%5d. A small number of additional publications 
are not indexed by PubMed. Our analyses used the ontology and annota-
tions from the GO knowledgebase release 22-03-2022 (https://release.
geneontology.org/2022-03-22/index.html, https://doi.org/10.5281/
zenodo.6399963). There were 713,330 primary annotations, includ-
ing 147,872 annotations to human genes and 565,458 to genes in other 
organisms. For all annotation counts, we excluded direct annotations 
to the class ‘protein binding’, as these statements represent observed 
interactions but are not descriptions of function in the same sense as 
other GO annotations56, and are therefore not considered for inclusion 
in the PAN-GO set.

Overview of the evolutionary modelling approach
Our approach13 brings together all experimentally supported GO anno-
tations for all members of a gene family, in the context of a phylogenetic 
tree representing how those genes are related, to generate a model of 
the evolutionary process by which the members obtained the functions 
they now possess. This is a longstanding, standard method for recon-
structing the evolution of traits or characters that is commonly applied 
to species28–31. Here we applied a similar approach to trees of genes 
rather than species and to functional characteristics rather than phe-
notypic characters. However, modelling gene functional characteristics 
involved the major additional challenge that the experimental data are 
sparse and highly unevenly distributed. Genes have been studied to 
widely varying degrees depending on scientific and medical interest, 
and this interest has been largely concentrated on genes in humans 
and a handful of model organisms. To address this challenge, we also 
use many other pieces of evidence, such as protein domain structure, 
known active-site residues, free-text function descriptions from the 
UniProtKB/Swiss-Prot knowledgebase37, among others.

For each gene family, we generated an evolutionary model that speci-
fies how each functional characteristic, represented by a GO class, was 
gained or lost during evolution. Specifically, we describe the evolution 
of function in terms of three types of event: root, gain and loss. A root 
event is defined as a GO class that is inferred to have been present in the 
LCA of the protein family. A gain event is defined as a GO class that was 
not (or cannot be confidently inferred to be) present in the LCA of the 
entire family, but arose later along a specific branch of the tree. A loss 
event is defined as a GO class that had arisen earlier (through a root or 
gain event) but was subsequently lost along a specific subbranch of the 
tree (that is, in some but not all descendants of the original root or gain).

Every root or gain event must be supported by direct experimental 
evidence in at least one, but often multiple, of the descendants of the 
root or selected branch of the tree. As a result, each event is based on 
a combination of traceable experimental evidence and curator infer-
ence of the point in evolution (the root or a specific branch in the tree) 
at which this function first appeared. The Evidence and Conclusion 
Ontology (ECO)57 evidence code IBD (ECO:0000319 ‘inferred from 
biological descendant’) was used to denote this type of evidence, and 
all genes with experimental evidence are stored as metadata to provide 
a traceable evidence trail. Loss events prevent GO classes from being 
inherited by specific subclades that descend from a gain event; the 
evidence used for loss events is described in more detail below.

The evolutionary model for the family was then used to create 
inferred annotations for each family member based on inheritance 
from ancestors in the tree: a GO class is inherited by all children of a root 
or gain event for that class unless a loss of that same class is encountered 
along the path in the tree. All family members will therefore receive the 
same GO annotations if the family has only root events, but different 
annotations if there are any gain or loss events along specific internal 
branches of the tree. These inferred annotations comprise the set of 
human gene functions we describe here and can be identified in the GO 
knowledgebase by the ECO code ‘inferred from biological ancestor’ 
(IBA) (ECO:0000318). Each IBA annotation also includes the following 
metadata for providing a traceable evidence trail: (1) the persistent 
identifier of the tree node from which the annotation was inherited (the 
root node or terminal node of the annotated gain branch); and (2) the 
source of the experimental data used to support the root or gain event.

PAN-GO evolutionary modelling process
A more detailed description of the process of producing and updating 
PAN-GO annotations is shown in Extended Data Fig. 4. The process 
includes manual construction of an evolutionary model for each family, 
using as input PANTHER phylogenetic trees and primary GO annota-
tions. Both automated and manual updates are performed in response 
to user feedback, changes in biological knowledge in the ontology, 
changes in primary annotations and changes in PANTHER tree topology. 
Updated PAN-GO gene annotations (IBA) are generated monthly from 
these updated models. The different steps leading to the final PAN-GO 
gene annotations are described in this section.

Phylogenetic trees
The gene trees were obtained from the PANTHER knowledgebase15. The 
PAN-GO annotation set presented here was generated using v.15.0 of 
the knowledgebase, released in 2020. Trees were constructed using 
the GIGA tree reconstruction algorithm58 for protein-coding genes in 
142 organisms that span the tree of life, but the selection of organisms 
(https://pantherdb.org/panther/speciesTree.jsp) was biased with the 
aim of reconstructing genome evolution in humans and well-studied 
model organisms. The trees were fully reconciled with the known spe-
cies tree, and all nodes were annotated by event type (speciation, gene 
duplication and horizontal gene transfer) and the common ancestor 
species or clade for speciation nodes. Each tree has an associated pro-
tein sequence alignment that was used to reconstruct the phylogeny. 
Protein sequences were obtained from the UniProt Reference Pro-
teomes resource37, which selects one canonical protein sequence per 
protein coding gene in each genome.

Creating curated models of function evolution
To implement the PAN-GO process, we created a specific software 
tool for manual curation of function evolution models, which we call 
PAINT13. The PAINT user interface provides an integrated view of the 
phylogenetic tree, a matrix of experimental GO annotations structured 
by ontology relationships, a multiple sequence alignment annotated 
with functional sites from UniProt/Swiss-Prot records37 and domains 
from the Pfam resource5. It also displays brief free-text descriptions of 
the protein products of each gene in the tree, protein names and links 
to pages in knowledgebases including UniProt/Swiss-Prot and model 
organism databases. PAINT enables expert biocuration scientists to 
transform the input information, a phylogenetic tree with experimental 
GO annotations on terminal (leaf) nodes of the tree, into an output 
evolutionary model as described above. The specific guidelines for 
constructing models of function evolution in a protein family, to pro-
mote consistency and reproducibility of the evolutionary models, are 
detailed at https://wiki.geneontology.org/PAINT_User_Guide. Curators 
also meet regularly to review sample families from each curator, to 
review and to cross-check the evolutionary models. The evolutionary 
models are saved to a relational database and can be accessed and 
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viewed at https://pantree.org. The PAN-GO annotations derived from 
the models are exported in Gene Annotation Format (GAF) (https://
geneontology.org/docs/go-annotation-file-gaf-format-2.2/) and depos-
ited in the GO knowledgebase. They are also included in the data dis-
tributed by providers of GO annotations such as UniProt-GOA59. These 
annotations are labelled with the evidence code IBA, and contain meta-
data with details of the evidence or provenance, including the curated 
tree node from which it inherited its function (represented as a stable 
PANTHER tree node identifier) and the genes providing the original 
experimental evidence. Source code for the PAINT tool is available at 
GitHub (https://github.com/pantherdb/db-PAINT).

Inspection of the phylogenetic trees. The first step of the PAN-GO 
curation process consists of the analysis of the structure of the phyloge-
netic tree to gather clues about the evolution of the family. Speciation, 
duplication and horizontal transfer events are closely considered. Spe-
ciation events define the age of the family and the taxonomic distribu-
tion of related genes in different clades. This information helps guide 
the choice of GO classes based on the functions known to occur in the 
species present in a tree or subtree. A more ancient ancestor (which 
generally leads to a wider species distribution) may lead to more con-
servative annotations owing to uncertainty in reconstructing ancient 
functions. The tree can also provide other important clues for identi-
fying functional evolution events. Duplication events are examined 
closely as these events often lead to gain and/or loss of functions. Hori-
zontal gene transfers, which include some eukaryotic mitochondrial or 
plastid genes with origins in ancestral prokaryotic endosymbionts, are 
also carefully evaluated, as functional characteristics of a transferred 
gene may have been modified after transfer.

Application of taxonomic restrictions. Because of the high diver-
sity of living organisms, it is not possible to cover all species with a 
taxon-neutral ontology and there are inherent taxon specificities 
in many branches of the GO ontology. An iconic example is the cel-
lular component ‘mitochondrion’, which is specific to eukaryotes. 
Explicit formalization of taxon constraints60 are used to avoid taxon- 
inappropriate annotations. The PAINT curation tool highlights any 
inconsistencies between taxon constraints and annotations when  
constructing an evolutionary model.

Analysis of the experimental evidence. The analysis of all the experi-
mental data available enables the selection of the most relevant classes 
that will be used in the evolutionary model for a gene family. An essential 
indicator is the consistency of the MF, BP and CC classes associated with 
the various members across species represented in the tree. If the anno-
tations in a clade of related genes are consistent, they are likely to have 
all inherited those aspects of function from their LCA, which suggests 
that those functions evolved before the LCA. If they are inconsistent, a 
curator attempts to identify consistent subclades that evolved a differ-
ent function, or gained or lost a function. Assessing consistency among 
GO classes that are not explicitly related in the ontology structure is 
challenging and often requires deep biological knowledge on the part 
of the curator. To decide which classes are appropriate to be associated 
with members of a protein family, the PAN-GO curators use additional 
sources: they can review the content of model organism databases or 
UniProtKB/Swiss-Prot (https://www.uniprot.org) through direct links 
provided by the PAINT tool. Curators often assess additional references 
to confirm or invalidate certain data. Finally, the presence of particular 
predicted sites and domains (active sites, transmembrane regions or 
protein domains) may lend more support for specific functions having 
evolved along particular branches in the tree.

Selection of the most informative annotations
In principle, PAN-GO curation could have resulted in an evolutionary 
root or gain event in the tree for every GO class that was annotated to 

at least one family member from experimental evidence. In practice, 
however, there is often considerable redundancy and overlap between 
these GO classes, and not all terms represent actually distinct func-
tional characteristics. Consequently, the PAN-GO curation process is 
selective. We provide some examples below. To provide a quantitative 
estimate of the selectivity, we counted, for each family, the number of 
nonredundant function classes (that is, excluding annotations to more 
general classes in the ontology) that were available to a curator; these 
were all the classes that could have been used in the evolutionary model 
for the family. We then calculated the number of classes actually used in 
the evolutionary model for each aspect of the ontology. Extended Data 
Table 2 shows the average of these values over all families. On average, 
only 24%, 28% and 13% of the experimentally annotated MF, CC and BP 
GO classes, respectively, were annotated to root or gain events during 
the phylogenetic curation process. In general, this high selectivity is 
due to the integrative aspect of the process: all experimental GO anno-
tations for all family members are considered as a whole. By contrast, 
an experimental GO annotation is designed to capture a specific find-
ing from experiments reported in a single publication. As a result, a 
PAN-GO curator can select the most informative GO classes among the 
experimental annotations and recognize when different experimental 
annotations are likely related to the same underlying function. Often, 
functionally related terms are also related in the ontology (the PAINT 
tool groups together hierarchically related terms to facilitate the selec-
tion process). Curators can then distinguish such apparent functional 
differences from actual functional differences among family members. 
Extended Data Table 2 shows that the PAN-GO curation process results 
in selection of a relatively small fraction of GO biological process classes 
compared with the other aspects of the GO ontology. This is due in 
part to the complexity of the biological process branch of the ontol-
ogy (around 30,000 classes versus <10,000 each for MF and CC), and 
partly due to less stringent criteria for involvement in a process versus 
the other aspects. Many of the excluded classes are either related but 
less informative classes or downstream effects of the primary functions 
of the gene, such as peripheral functions or phenotypes and readouts 
that represent consequences of a gene’s function but not accurate 
descriptions of the function itself.

An example of BP class selection is shown in Extended Data Fig. 5a: the 
regulation of production of various interleukins and transcription of 
downstream targets are observations (experimental readouts) for the 
‘cytoplasmic pattern recognition receptor signalling pathway’. There 
are several reasons that primary annotations for the same underlying 
function often use related, but not identical, GO classes: primary anno-
tation is spread out in both space and time, and each species is often 
treated by a different curator. This is compounded by the fact that some 
functional characteristics (GO terms) are important in a few species 
but too specific for inclusion in the evolutionary model. Moreover, 
the authors of the articles from which the primary annotations are 
drawn use widely varying terminology. Primary GO annotations that 
are only supported by data from large-scale experiments (most typi-
cally, cellular localization) or annotations inconsistent with all other 
data available for the family are set aside until there is strong support 
by other annotations.

In many cases, parent and child classes (indicating less specific, rep-
resentations of a functional characteristic) are both used for primary 
annotation throughout the families, but only the most relevant ones 
are selected in the PAN-GO process (Extended Data Fig. 5b): the GO 
terms ‘regulation of innate immune response’ and ‘cellular response to 
virus’ are more general classes for the concept ‘antiviral innate immune 
response’, which is more representative of the function of genes in the 
family. It is the integrated analysis of the family and its primary annota-
tion that enabled the PAN-GO curator to select the most appropriate 
class (or classes) to include in the evolutionary model.

As in the ‘three blind men and the elephant’ parable, primary anno-
tations, which describe individual experimental observations, are 
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generally correct but sometimes only tell part of the story. The goal 
of the PAN-GO curation is to provide a more integrated picture when-
ever possible while still providing a comprehensive set of GO function 
annotations.

Capturing loss of function and preventing inheritance of low- 
confidence annotations. Loss of function is based on specific types 
of evidence when available. In some cases, negative primary GO anno-
tations (indicated by the NOT qualifier) are available, and in this case 
the loss event (like root and gain events) uses the IBD evidence code. 
In other cases, when important residues or domains are known to be 
required for the function, multiple sequence alignments can reveal 
the absence of these important features in some branches and provide 
evidence for the loss of function; these are denoted with the ‘inferred 
from known residues’ (IKR) (ECO:0000320) evidence code. The loss 
of function due to mutations in specific amino acids such as active 
site residues is well characterized in the literature for some families 
(for example, PTHR24418, non-receptor protein kinase family). For 
families with relatively well-studied genes, it is often possible to infer 
that a lack of corroborating GO annotations suggests that the function 
has been lost; in these cases, curators check the UniProtKB/Swiss-Prot 
knowledgebase as well as the literature to increase the confidence 
of such inferences. In less well-studied families (that is, with sparse 
experimental GO annotations), curators may decide to introduce a 
loss (particularly after gene duplication) to avoid false-positive annota-
tions. These events are denoted by the ‘inferred from rapid divergence’ 
(IRD) (ECO:0000321) evidence code. The main purpose of this step is 
to remain conservative in the PAN-GO inference process to ensure the 
high quality of the annotation set produced. It should be noted that 
loss events labelled with IBD or IKR result in negative GO annotations 
(indicating that a gene does not possess a given functional character-
istic), and these annotations are available in the GO knowledgebase. 
However, for clarity, we do not include negative annotations in the 
PAN-GO set of human gene functions available at https://functionome.
geneontology.org, and these appear only in the evolutionary models.

Annotations for genes that were not in a PANTHER family. There are 
994 human genes that are not currently in a PANTHER family, and these 
mainly encode short proteins, many of which do not exhibit clear evolu-
tionary conservation. Only 114 of these genes had primary annotations. 
For 61 of these genes, we were able to select informative primary annota-
tions and included them in the PAN-GO set of human gene functions.

Staying current with evolving knowledge
As the GO ontology and primary gene annotations are constantly being 
expanded and revised in response to new experimental data and inter-
pretation, the PAN-GO process includes an automated updating and 
publishing step after each new GO knowledgebase release (approxi-
mately monthly) or each new PANTHER release (yearly). In addition, 
issues identified by feedback from GO curators and the wider GO user 
community lead to manual review of the ancestral annotations (or, 
much less commonly, trees) as appropriate. The PAN-GO project has 
developed an extensive software suite to support these updates and 
improvements.

Addressing changes to GO classes and annotations. The monthly auto
mated updating step after each new GO knowledgebase release handles 
any required action due to changes in the ontology classes (terms) 
or experimental GO annotations that were used as evidence for the 
functional evolution events in the evolutionary model. These actions 
include updates for obsolete and merged classes, and the removal of 
any annotation no longer supported by experimental data or failing 
taxon restrictions.

Evolutionary models are also updated according to the availability 
of new experimental data and subsequent primary GO annotations, 

as new classes and new annotations cannot be integrated automati-
cally but go through manual analysis of the experimental evidence. For 
instance, during the complete review of the ontology associated with 
transcription, the class ‘histone chaperone activity’ was created, and 
primary annotations were revised. This new class was used to update 
the evolutionary models of applicable PANTHER families such as 
PTHR21315 or PTHR12040.

Addressing updates to the topology of phylogenetic trees. The 
phylogenetic trees are updated after release of new PANTHER ver-
sions, based on the annual release of the protein sequence data from 
the UniProt Reference Proteomes and Quest for Orthologs efforts61. 
PAN-GO evolutionary models refer directly to stable tree-node identi-
fiers; that is, each gain and loss event is associated with the identifier 
for the terminal node of the branch along which the event occurred. As 
tree-node identifiers are retained between PANTHER versions whenever 
possible, the PAN-GO annotations for those branches are retained in 
the newer version of PANTHER trees. However, improvements in tree 
reconstruction algorithms and the addition of more species sometimes 
lead to modifications of the family structure: some families can be 
split into several smaller families or merged into a single, larger family. 
Consequently, some branches can move from one family to another or 
be lost. When this happens to a branch that was annotated in a PAN-GO 
evolutionary model, a ‘require review’ notification is added to the  
affected families, and curators review and revise the evolutionary mod-
els when necessary.

Addressing user feedback. Extensive feedback from experts from 
several model organism databases permitted the addition of an ex-
tra layer of quality control to the PAN-GO evolutionary models. Feed-
back is handled through the GO annotation issue tracker in GitHub  
(https://github.com/geneontology/go-annotation/labels/PAINT%20
annotation). The two largest contributors of feedback tickets have 
been PomBase, the scientific resource for Schizosaccharomyces pombe  
(fission yeast) (https://www.pombase.org/)62, with nearly 600 up-
date requests, and FlyBase, the scientific resource for Drosophila 
melanogaster (fruit fly) (https://flybase.org/)63, with over 200 update  
requests, over a 7 year period. The genomes of Drosophila species con-
tain many traces of more or less ancient duplication events, which also 
enable a better understanding of these events in the whole phylogenetic 
tree and contribute to improving our evolutionary models of gain or 
loss of functions64. The other resources in the GO Consortium, includ-
ing model organism databases and UniProtKB, also contributed to the 
validation of the annotations (total of 100 update requests).

Analysis methods
Accessing and using the human PAN-GO annotations. The PAN-GO 
annotations used for the analyses presented here can be downloaded 
at https://functionome.geneontology.org/download/functionome_ 
release.gaf.gz.

Estimating the reliability of PAN-GO annotations. There is no abso
lute source of truth that enabled us to assess the correctness of GO 
annotations. To address this problem, a surrogate measure called  
‘reliability’, which can be calculated for GO annotations, has been pre-
viously proposed38. This measure takes advantage of the fact that GO 
annotations are being added and removed over time, and they can be 
compared at different time points to calculate the reliability of older 
annotations. Specifically, if an experimental annotation is later added 
to the GO knowledgebase that is to the same or more specific term 
than an older annotation, the older annotation is considered to be 
confirmed. Conversely, if an experimental annotation is later added 
to the GO knowledgebase that uses the NOT qualifier (indicating that 
a gene has been shown NOT to have that functional characteristic) and 
is either the same or less specific than the older annotation, the older 
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annotation is considered to be rejected. Because NOT annotations 
are rare in the GO knowledgebase, the number of rejected annota-
tions is low in practice, thereby leading to an inflated reliability. The 
previous study38 suggested that another property could be calculated, 
the number of older annotations that were later removed, based on 
the assumption that they were later judged to be incorrect. They then 
defined reliability as:

N N N NReliability = /( + + ) (1)confirmed confirmed rejected removed

where Nconfirmed is the number of GO annotations present in an older ver-
sion (at time point t0) of an annotation set, which were later confirmed 
before time point t1, Nrejected is the number of GO annotations present 
at time t0 that were rejected between time points t0 and t1, and Nremoved 
is the number that were removed between time t0 and t1.

Using this method, we calculated the reliability of PAN-GO annota-
tions. We first gathered all primary annotations made between Octo-
ber 2019 and March 2022 from the GO knowledgebase using the date 
stamp on each annotation. We then compared them with the PAN-GO 
annotations in the October 2019 release of the GO knowledgebase. 
The comparison included 11,102 new primary annotations and 21,145 
PAN-GO annotations for the same set of 4,007 human genes. If the GO 
class from the new primary annotation is the same or more specific as 
that of a PAN-GO annotation, the PAN-GO annotation is considered to 
be confirmed. By this definition, 2,354 PAN-GO annotations for 1,608 
genes were confirmed. Extended Data Table 3 shows the breakdown of 
the confirming primary annotations by evidence code; most of these 
derive from direct assays on a specific gene product (IDA), and only 29 
were from high-throughput studies (HDA).

Of the new experimental annotations, there were 54 negative (NOT 
qualifier) annotations, of which only three disagreed with PAN-GO 
annotations. After reviewing these three negative annotations, we 
found that one was specific to one protein isoform but not the canonical 
protein encoded by the gene (so the PAN-GO annotation is correct), and 
the remaining two were to the same transporter gene and refer to zinc 
as a substrate (SLC30A10 NOT ‘zinc ion transmembrane transporter 
activity’, and SLC30A10 NOT ‘intracellular zinc ion homeostasis’). 
However, other papers (supporting other primary GO annotations) 
have demonstrated these same functions for SLC30A10, and therefore 
confirm the PAN-GO annotations. As a result, there were 0 negative 
GO annotations that can be considered to reject PAN-GO annotations. 
We recognize that 54 negative annotations is a small sample, which 
will underestimate the actual PAN-GO error rate. Following the previ-
ously described method38, we also examined the PAN-GO annotations 
that were present in our October 2019 release but later removed. We 
found 4,809 PAN-GO annotations had been removed, but in most cases, 
annotations were removed owing to redundancy with another, more 
informative PAN-GO annotation (fine-tuning of the annotation set) and 
not because of an error. To estimate an error rate, we reviewed a random 
sample of 500 removed annotations and categorized each one as cor-
rect but not meeting PAN-GO selection criteria (fine-tuning of selected 
annotations for modelling), incorrect (selection in the evolutionary 
model of an experimental annotation that is actually incorrect) or 
uncertain (demonstrated in a homologue but possibly incorrect for the 
annotated human gene). We found that 7 (1.4%) were incorrect and 20 
(4%) were uncertain. Assuming these percentages approximately hold 
for the entire set of removed annotations, we estimated that between 67 
(removed because they were incorrect, 4,809 × 1.4%) and 260 (removed 
because they were either incorrect or uncertain, 4,809 × 5.4%) were 
removed because of errors. This would give a reliability (equation (1) 
above) of PAN-GO annotations between 90% (260/(2,354 + 260)) and 
97% (67/(2,354 + 67)).

One example of a clearly incorrect PAN-GO annotation was found 
within the carnitine O-acyltransferase family (PTHR22589). CPT1C, in 
contrast to the CPT1A and CPT1B paralogues, does not have ‘carnitine 

O-palmitoyltransferase activity’ in mitochondria, but localizes in the 
endoplasmic reticulum where it shows ‘palmitoyl-(protein) hydrolase 
activity’65,66. This type of incorrect inference of functional conservation 
through ancient duplication events, and therefore errors in evolution-
ary modelling, is one of the most common errors we found during our 
review. When such errors are discovered, the PAN-GO evolutionary 
model is updated to correct the error.

A relatively frequent case of important fine-tuning of PAN-GO anno-
tations relates to the sometimes subtle difference between a GO term 
for a BP and the corresponding GO term for regulation of that process. 
Frequently, the primary annotation derived from an experiment, often 
based on the effects of a genetic manipulation such as a deletion, uses 
the regulatory term. Other experiments, however, may show that the 
protein in question is directly involved in the process (resulting in an 
annotation to the process itself rather than its regulation). Several 
PAN-GO annotations were updated (5 in our sample of 500) to consist-
ently reflect either involvement in, versus regulation of, a particular 
BP. Other common updates were due to inconsistencies in the primary 
annotations for enzyme complexes to the GO term ‘complex assembly’ 
(10 in our random sample of 500), which we consider to be fine-tuning 
as they are correct even if not highly informative.

Broad functional categories on the PAN-GO website. To facilitate 
browsing of the PAN-GO annotations, and for visualizing the landscape 
of human gene functions in Fig. 3, we mapped each annotation to a 
set of selected, relatively high-level GO categories. Broad functional 
categories were taken from the generic GO subset, which is available 
at https://release.geneontology.org/2022-07-01/ontology/subsets/
goslim_generic.obo. Note that these are categories of annotations, not 
genes, so a gene annotated to multiple distinct GO terms may appear 
in multiple categories. Note also that some of these broad categories 
are subcategories of others; in this case, a gene was assigned only to 
the more specific subcategory, and not the more general category, 
to minimize the overlap between categories and therefore facilitate 
visualization and browsing.

PAN-GO annotation browser. We developed a simple web-based tool 
for exploring the set of human gene functions, including links to all 
experimental evidence and phylogenetic trees. It is implemented using 
ElasticSearch and is available at https://functionome.geneontology.
org/. Code is available from GitHub (https://github.com/pantherdb/
pango).

Contributions of experimental evidence from model organism anno-
tations. Primary GO annotations (supported by published experimental 
evidence) are used for all PAN-GO annotations. We characterized this 
evidence in detail for each model organism (Extended Data Table 1).  
Column 2 reports the number of PAN-GO annotations that are support-
ed by one or more publications with experimental evidence for func-
tion of a gene in that organism. Evidence obtained from experiments 
on human genes is divided into two rows: one for direct evidence for a 
given gene and one for evidence for a related (paralogous) human gene. 
Column 3 reports the number of PAN-GO annotations supported only 
by experimental evidence for homologous genes (that is, it excludes 
any PAN-GO annotations that have direct experimental evidence for 
the human gene). These annotations were inferred from other human 
paralogues or non-human homologues, but have not yet been experi-
mentally confirmed. Column 4 counts PAN-GO annotations that are 
based on non-human experimental data only. Column 5 counts PAN-GO 
annotations that are based on evidence from only one species. Column 6 
counts all experimental annotations in each organism that could poten
tially be used as literature evidence for human PAN-GO annotations.

Evolution of gene functions. For each PAN-GO annotation, we ret
rieved the branch of the evolutionary tree that was modelled as having 

https://release.geneontology.org/2022-07-01/ontology/subsets/goslim_generic.obo
https://release.geneontology.org/2022-07-01/ontology/subsets/goslim_generic.obo
https://functionome.geneontology.org/
https://functionome.geneontology.org/
https://github.com/pantherdb/pango
https://github.com/pantherdb/pango


gained that functional characteristic, representing when that char-
acteristic first evolved in an ancestor of a human gene. Because the 
phylogenetic approach defines ancestors in terms of LCAs of extant 
species, our evolutionary model specifies the interval between two 
of these LCAs, during which the functional characteristic evolved. The 
approximate dates for each of these LCAs has been determined67, so we 
could convert the LCA interval to a time interval. For instance, if a gene 
function characteristic now found in a human gene first appeared along 
the branch leading from the LCA of Eukaryota and Archaea (around 
4,250 million years ago) to the LCA of plants and animals (the LCA of Eu-
karyota, about 1,598 million years ago), then the function first evolved 
between 4,250 and 1,598 million years ago, and was then transmitted 
unchanged from parent to child for at least 1.6 billion years all the way 
to modern humans.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
PAN-GO browser: https://functionome.geneontology.org. PAN-GO 
annotations: https://functionome.geneontology.org/download/func-
tionome_release.gaf.gz. Evolutionary models: https://pantree.org, 
https://functionome.geneontology.org/download/IBD.gaf. Phylo-
genetic trees: https://data.pantherdb.org/ftp/panther_library/15.0/.

Code availability
The following code and software are available from GitHub: website 
code, https://github.com/pantherdb/pango; and PAINT software (for 
constructing evolutionary models), https://github.com/pantherdb/
db-PAINT.
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Extended Data Fig. 1 | Overview of process for creating the set of human 
gene functions. First, experimental results from the scientific literature are 
captured as primary GO annotations, and stored in the GO knowledgebase  
(GO KB). The next step is phylogenetic integration: a massive corpus of primary 
annotations for genes in multiple different organisms was integrated using 
phylogenetic trees that represent the evolutionary relationships between 

genes. For each gene family tree, selected primary annotations are used to 
construct an explicit evolutionary model of gains and losses of gene function 
along branches of the phylogenetic tree, and the evolutionary model is then 
used to create the integrated PAN-GO annotations for human genes. The set  
of human gene functions reported here comprises nearly 69,000 integrated 
annotations.



Extended Data Fig. 2 | Breadth of annotation coverage of human genes as 
measured by the number of different aspects of GO (MF, BP and CC) to 
which a given gene is annotated. For comparison with PAN-GO, two other 

sources of GO annotations in the GO knowledgebase are shown: primary 
annotations for human genes (EXP) and computationally predicted 
annotations (IEA).
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Extended Data Fig. 3 | Evenness of annotation coverage as measured by  
the distribution of distinct GO terms annotated to each human gene. 
Distributions are shown for PAN-GO annotations, experimental annotations 
(EXP) and computationally predicted annotations (IEA). Before counting 
distinct GO terms for genes, we made each set as non-redundant as possible,  

by removing annotations that are to the same or more general term than 
another annotation in that set (note that a more general term is implied by the 
more specific term in the ontology). Direct annotations to ‘protein binding’ 
(GO:0005515) have also been removed.

http://amigo.geneontology.org/amigo/term/GO:0005515


Extended Data Fig. 4 | Process for creating, updating and releasing 
evolutionary models and PAN-GO (IBA) annotations derived from  
the models. The central task is the software-assisted process of PAN-GO 
annotation and review using the PAINT tool. PAINT integrates the primary GO 
experimental annotations with the PANTHER trees built from UniProt Reference 
Proteomes (blue squares), allowing curators to construct an evolutionary 

model of each gene family, which is used to produce annotations in family 
members (green). Updates, both automated and curator-reviewed (orange 
squares), are made at each GO knowledgebase release to reflect changes in the 
underlying data (ontology and annotations), and upon release of new PANTHER 
versions.
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Extended Data Fig. 5 | Selection of GO classes (functional characteristics) 
for evolutionary modeling from among available classes with experimental 
evidence (primary GO annotations). This figure shows part of the tree 
corresponding to PANTHER family PTHR14074 (which includes genes involved 
in recognition of viruses and other pathogens) in the PAINT tool. Out of over  
40 BP classes associated with this family through primary GO annotations, only 
two have been selected for the evolutionary model: ‘antiviral innate immune 

response’ and ‘cytoplasmic pattern recognition receptor signaling pathway’ 
(red text). The other classes (black text) correspond to peripheral processes or 
phenotypes (A), or are related classes, parent or child classes of the most relevant 
classes (B) and have not been selected for the evolutionary model. Green squares 
indicate primary GO annotations for the gene in that position of the tree, and 
red circles highlight different BP classes annotated to the members of this 
family during GO primary annotation.



Extended Data Table 1 | Sources of experimental evidence for human PAN-GO annotations

Divergence times (Ma, million years ago) from humans are taken from the TimeTree resource67.
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Extended Data Table 2 | Average number of GO classes selected for evolutionary modeling, compared to total number of 
experimentally annotated GO classes in each family



Extended Data Table 3 | Type of experimental evidence 
for later GO annotations that confirmed earlier ‘predicted’ 
PAN-GO annotations

These are primary annotations added to the GO knowledgebase between October 2019 
and March 2022, which were found to confirm (by direct experimental evidence) PAN-GO 
annotations made before October 2019 that were previously supported only by experimental 
evidence for a homologous gene. Detailed documentation of GO evidence codes can be 
found at https://geneontology.org/docs/guide-go-evidence-codes/.

https://geneontology.org/docs/guide-go-evidence-codes/
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