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Abstract
The article proposes a new implication for three-valued logical systems. The tautolo-
gies of this implication are exactly the same as for the classical implication in the
two-valued Boolean logic. In the setting of this new implication, the conjunction and
disjunction can be viewed as binary modalities. The article studies the definability and
complete axiomatisation of the three versions of these modalities capturing Kleene’s,
weak Kleene’s, and short-circuit versions of the connectives.

Keywords Three-valued logic · Axiomatisation · Completeness

1 Three Implications

In this article, we propose a new implication for three-valued logics. Unlike a tradi-
tional (“Boolean”) logic, a three-valued logic assumes that each statement has one
of three values: false (F), uncertain (U), and true (T). The two most commonly stud-
ied implications for three-valued logics are Kleene (1938) and Łukasiewicz’s (1932,
p.213) implications. In this article, we denote these implications by →K and →Ł,
respectively.

The truth table forKleene’s implication is shown at the left of Figure 1. For example,
symbol T at the intersection of F-row and U-column means that F →K U is equal to
T. The truth table for Łukasiewicz’s implication is shown in the centre of Figure 1.
Note that the only difference between Kleene’s and Łukasiewicz’s implications is at
the centre cell: U →K U has value U and U →Ł U has value T.

The truth table for the implication that we propose is shown at the right of Figure 1.
Since this implication is the focus of this article, we denote it simply by →. We call
our implication “classical”. Although this name sounds pretentious, we will justify its
use later in this section.
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Fig. 1 Kleene’s, Łukasiewicz’s, and classical implications

Fig. 2 Three negations

The negation in a Boolean logic is often defined as an implication to false. In other
words, the formula¬φ is often viewed in aBoolean logic as an abbreviation forφ → F.
We can use this intuition to define three negations in three-valued logic as φ →K F,
φ →Ł F, and φ → F. We denote the expression φ →K F by ¬Kφ and call it “Kleene’s
negation”. Figure 2 shows the truth tables for the expressions φ →K F, φ →Ł F, and
φ → F. As one can see from this figure, the expressions φ →K F and φ →Ł F are
equivalent. Because of this, we will not consider a “Łukasiewicz’s negation”. At the
same time, as the same figure shows, φ → F defines a different negation, which we
call “classical” negation and denote by ¬φ. Informally, the classical negation ¬φ has
the meaning “φ does not have value T”. Although the classical implication is new to
the current article, the classical negation has been considered in the literature before
(Hernández-Tello et al., 2017, 2021).

To justify the use of the terms “classical implication” and “classical negation”
we need first to introduce the notions of a valuation and a three-valued tautology.
Throughout the rest of the article, we assume a fixed set of propositional variables.

Definition 1 A valuation is a function from the set of propositional variables into the
set {F,U, T}.
Definition 2 A valuation is Boolean if its range is the set {F, T}.

Recall that we interpreted the negation as an implication to false in order to justify
the meaning of Kleene’s and classical negations. In the rest of this article, it will be
slightly more convenient to assume that constant false is not present in our language
and to consider both of these negations as primitive connectives.

In the context of this section, by a formula, we mean any propositional formula that
uses only connectives →K, →Ł, →, ¬K, and ¬. For any formula φ and any valuation
∗ we define the truth value φ∗ recursively, using Figure 1 (for →K, →Ł, and →) and
Figure 2 (for ¬K and ¬).

Definition 3 A formula φ is a three-valued tautology if φ∗ = T for each valuation ∗.
Definition 4 A formula φ is a Boolean tautology if φ∗ = T for each Boolean valua-
tion ∗.
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Note that Boolean tautologies are exactly the tautologies in the classical Boolean
two-valued logic.

Theorem 1 Each three-valued tautology is a Boolean tautology.

Proof Consider any three-valued tautology φ and any Boolean valuation ∗. By Def-
inition 4, it suffices to show that φ∗ = T. By Definition 2, function ∗ is a valuation.
Therefore, φ∗ = T by Definition 3 and the assumption of the theorem that formula φ

is a three-valued tautology. ��
Note that the converse of Theorem 1 is not true. For example, formula p →K p is a
Boolean tautology but it is not a three-valued tautology. Indeed, if ∗ is any valuation
that maps propositional variable p into U, then (p →K p)∗ = U, see Figure 1. What is
surprising is that, as we show in the next theorem, the converse of Theorem 1 is true
if one considers formulae that use only classical implication → and classical negation
¬. In other words, in the language containing only those two connectives the set of
three-valued tautologies is the same as the set of Boolean tautologies! This means
that we can take any tautology in the classical Boolean propositional logic that uses
only implication and negation, such as, for instance, (p → q) → (¬q → ¬p), and
this formula will have to be a three-valued tautology where → and ¬ are interpreted
as classical implication and classical negation in three-valued logic. To phrase this in
yet another way, the set of three-valued tautologies in the language containing only
→ and ¬ is exactly the set of tautologies in the classical Boolean propositional logic.
This unexpected observation justifies the use of the terms “classical implication” and
“classical negation” when referring to connectives → and ¬ in a three-valued logic.

Theorem 2 Each Boolean tautology containing only classical implication and classi-
cal negation is a three-valued tautology.

Proof Let us consider the set of all tautologies in the classical Boolean two-valued
logic that uses only implication and negation. It is well known (Mendelson, 2009) that
the set of such tautologies can be axiomatised by the logical system consisting of the
Modus Ponens inference rule and the following three axioms:

φ → (ψ → φ),

(φ → (ψ → χ)) → ((φ → ψ) → (φ → χ)),

(¬φ → ¬ψ) → (ψ → φ).

Thus, to finish the proof of the theorem, it suffices to show that each of these three
axioms is a three-valued tautology and that the set of three-valued tautologies is closed
with respect to theModusPonens inference rule.Weprove this in the four claimsbelow.

Claim 1 (φ → (ψ → φ))∗ = T for each valuation ∗.
PROOFOF CLAIM Suppose that (φ → (ψ → φ))∗ �= T for some valuation ∗. Thus,

φ∗ = T (1)
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and (ψ → φ)∗ �= T, see the right table in Figure 1. The last statement implies that
ψ∗ = T and φ∗ �= T, see the same table, which contracts statement (1).

Claim 2 ((φ → (ψ → χ)) → ((φ → ψ) → (φ → χ)))∗ = T for each valuation ∗.
PROOFOF CLAIM Suppose ((φ → (ψ → χ)) → ((φ → ψ) → (φ → χ)))∗ �= T for
some valuation ∗. Thus, see the right table in Figure 1,

(φ → (ψ → χ))∗ = T (2)

and ((φ → ψ) → (φ → χ))∗ �= T. The last statement, see the same table, implies

(φ → ψ)∗ = T (3)

and (φ → χ)∗ �= T. Similarly, the last statement implies that

χ∗ �= T (4)

and φ∗ = T. The last statement, using the same truth table and statements (2) and (3)
imply that (ψ → χ)∗ = T and ψ∗ = T. Therefore, by the same truth table, χ∗ = T,
which contradicts statement (4).

Claim 3 ((¬φ → ¬ψ) → (ψ → φ))∗ = T for each valuation ∗.
PROOFOF CLAIM Suppose that ((¬φ → ¬ψ) → (ψ → φ))∗ �= T for some valuation
∗. Thus, see the right table in Figure 1,

(¬φ → ¬ψ)∗ = T (5)

and (ψ → φ)∗ �= T. The last statement, by the same table, implies that ψ∗ = T and
φ∗ �= T. Hence, (¬ψ)∗ �= T and (¬φ)∗ = T, see the last column in Figure 2. Therefore,
(¬φ → ¬ψ)∗ �= T by the right table in Figure 1, which contradicts statement (5).

Claim 4 If formulae φ and φ → ψ are three-valued tautologies, then formula ψ is
also a three-valued tautology.

PROOFOF CLAIM Suppose that ψ∗ �= T for some valuation ∗. Note that φ∗ = T by
the assumption of the claim. Therefore, (φ → ψ)∗ �= T by the right table in Figure 1,
which contradicts the assumption of the lemma that formula φ → ψ is a three-valued
tautology.

This concludes the proof of the theorem. ��
Together, the two theorems above imply that the set of three-valued tautologies in the

language containing only the classical implication and the classical negation is exactly
the set of tautologies in the classical two-valued logics. The two observations below
show that a similar result does not hold for Kleene’s and Łukasiewicz’s implications.

Fact 1 If the formulae φ and ψ have value U, then the value of the formulae φ →K

(ψ →K φ) and (¬φ →K ¬ψ) →K (ψ →K φ) is U.
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Fig. 3 Weak Kleene’s (left), short-circuit (centre), and Kleene’s (right) conjunctions

Fig. 4 Weak Kleene’s (left), short-circuit (centre), and Kleene’s (right) disjunctions

Fact 2 If the values of formulae φ, ψ , and χ are U, U, and F, respectively, then the
formula (φ →K (ψ →K χ)) →K ((φ →K ψ) →K (φ →K χ)) and the formula
(φ →Ł (ψ →Ł χ)) →Ł ((φ →Ł ψ) →Ł (φ →Ł χ)) have value U.

As we observed above, the logical system containing just classical implication and
classical negation is exactly the classical Boolean propositional logic. The language of
this system can be potentially extended with other connectives. For example, one can
consider an extension of this logical system by the so-called weak Kleene conjunction
∧. As we will see in the next section, in three-valued logic, weak Kleene conjunction
is not definable through classical implication and classical negation. Thus, intuitively,
weak Kleene conjunction acts as a binary modality in the classical propositional logic.
Because of this, later in this article, we will be able to claim that Lindenbaum’s lemma
and other standard properties of maximal consistent sets from classical logic are valid
for 3-valued logical systems based on classical implication and classical negation.

In this article, we study three possible extensions of the above logical system by
different sets of additional connectives. We introduce these three extensions in the
next section.

2 Three Logical Systems for Conjunction and Disjunction

There are at least three different ways to define conjunction and disjunction in three-
valued logics that have been proposed in the literature. Surprisingly, all three of them
are used in a significant way in programming languages.We show the three definitions
of conjunction and of disjunction in Figures 3 and 4, respectively.

The left-most truth tables in those two figures define so-calledweakKleene’s (1952,
p.334) conjunction and disjunction, respectively. These operations have been origi-
nally introduced by Bochvar (1937). Many programming languages have a type that
they call “Boolean” but it is actually a three-valued type with the third value being
undefined. For instance, the Boolean expression (0/3 < 2) ∧ (3/0 < 2) has the unde-
fined value because the result of the division of number 3 by number 0 is undefined.
Different programming languages name and handle undefined values slightly differ-
ently. In Java, for example, the undefined value is called “an exception”. The left-most
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truth tables in Figures 3 and 4 define the property of connectives & (conjunction) and
| (disjunction) in Java if U is interpreted as throwing an exception.

In this article, by Weak Kleene’s Logic we mean the logical system that describes
the three-valued tautologies in the language containing classical implication, classical
negation, weak Kleene’s conjunction, and weak Kleene’s disjunction. One of the con-
tributions of this article is the proof that the connectives of Weak Kleene’s Logic are
independent. That is, none of them is definable through any combination of the three
others. The other important contribution is a sound and complete axiomatisation of
WeakKleene’s Logic.Wewill also observe that Kleene’s negation is definable through
classical negation, weak Kleene’s disjunction, and weak Kleene’s conjunction.

The truth tables in the middle of Figures 3 and 4 define so-called short-circuit
conjunction and disjunction. To understand the intuition behind these operations,
consider the Boolean expression (0/3 > 2) ∧ (3/0 > 2). A short-circuit evalua-
tion of this expression observes that the statement 0/3 > 2 is false and, without
evaluation of the statement 3/0 > 2, returns false as the value of the entire expres-
sion (0/3 > 2) ∧ (3/0 > 2). Similarly, a short-circuit evaluation of the expression
(0/3 > −2) ∨ (3/0 > 2) returns the value true even though the value of the right
disjunct is undefined. Short-circuit connectives can be found in many programming
languages. In Java, they are called “conditional-and” (Gosling et al. (2023), Section
15.23) and “conditional-or” (Gosling et al. (2023), Section 15.24) and denoted by &&
and ||, respectively.

In this article, by Short-Circuit Logic, we mean the logical system that describes
the set of all three-valued tautologies in the language containing classical implication,
classical negation, short-circuit conjunction, and short-circuit disjunction. We will
analyse dependencies between these connectives and give a complete axiomatisation
of Short-Circuit Logic. We also will show that Kleene’s negation is definable through
classical negation, short-circuit conjunction, and short-circuit disjunction.

The truth tables at the right of Figures 3 and 4 define so-called Kleene’s conjunction
and disjunction (Kleene, 1938). They are also sometimes called “strong” Kleene’s
conjunction and disjunction. These conjunctions are not used in Java, but they are
used in modern SQL database language to handle unknown Boolean values (Winand,
2023).

The situation with Kleene’s connectives is a bit different fromweakKleene connec-
tives and short-circuit connectives. First, Kleene’s negation is not definable through
any combination of classical implication, classical negation, Kleene’s conjunction,
and Kleene’s disjunction. Second, our proof technique, in the case of Kleene’s con-
nectives, requires the presence of Kleene’s negation in the language. Thus, we include
Kleene’s negation as one of the primitive connectives in the logical system describing
the properties of Kleene’s conjunction and disjunction.

Furthermore, classical negation is definable through classical implication and
Kleene’s negation and Kleene’s conjunction are definable through Kleene’s disjunc-
tion and Kleene’s negation. As a result, for our third logical system, we have chosen
the language containing classical implication, Kleene’s negation, and Kleene’s dis-
junction. By Kleene’s Logic we mean the set of all three-valued tautologies in this
language. In this article, we will show that primitive connectives of Kleene’s Logic
are independent and give a sound and complete axiomatisation of this logic.
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3 Weak Kleene’s Logic

A complete tableau system for the original Weak Kleene’s logic can be found, for
example, in the online supplement of Beall and Logan (2017). Bonzio et al. (2017)
gives axiomatisation of paraconsistent original Weak Kleene’s Logic (the set of all
formulae whose truth value is never false). These works include neither classical
implication nor classical negation. The goal of this section is to give a complete
axiomatisation of weak Kleene’s connectives in the language containing classical
implication → and classical negation ¬.

Within the context of this section, by ∧ and ∨ we mean weakKleene’s conjunction
and weak Kleene’s disjunction, respectively. In this section, by a formula, we mean
any formula that uses only connectives →, ¬, ∧, and ∨. For any valuation ∗, we
assume that the value φ∗ ∈ {F,U, T} is defined recursively using the right truth table
in Figure 1 for implication →, the right-most column in Figure 2 for negation ¬, the
left truth table in Figure 3 for weak Kleene’s conjunction ∧, and the left truth table in
Figure 4 for weak Kleene’s disjunction ∨.

3.1 Undefinability results

Before giving a complete axiomatisation of the logical system containing connectives
→,¬,∧, and∨, we show that these four connectives are independent. In other words,
we show that neither of them can be expressed through a combination of the three
others. More precisely, we show that using each of these connectives one can construct
a formula that is not semantically equivalent to a formula that uses only the remaining
three connectives, where semantical equivalence is defined as follows:

Definition 5 Formulae φ and ψ are semantically equivalent if φ∗ and ψ∗ have the
same value for each possible valuation ∗.

We obtain the undefinability results using the “truth set algebra” technique proposed
in Knight et al. (2022) and also used in Deuser et al. (2024). To illustrate the technique
on an easier example, we first show the following result:

Theorem 3 Formulae p ∨ q, p ∧ q, and ¬p are not semantically equivalent to any
formula that uses only connectives →.

Proof Let us first show that the formula p ∨ q is not semantically equivalent to any
formula that uses only classical implication →. Without loss of generality, we can
assume that our language only contains propositional variables p and q. Then, the
truth table for each formula can be given as a 3 by 3 table whose rows represent
three possible values of propositional variable p and whose columns represent three
possible values of propositional variable q. For example, the upper-left diagram in
Figure 5 shows the truth table for formula p → q.

It is relatively easy to verify that the set of seven truth tables shown in Figure 5 is
closed with respect to the implication. For example, the second diagram in the second
row of this table shows the truth table for the formula (q → p) → p. The third
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diagram in the same row shows the truth table for the formula q. The truth table for
the formula

((q → p) → p) → q

could be computed by computing the classical implication → at each of the nine cells
separately. For example, the low-left cell of the truth table for the formula (q →
p) → p contains T and the low-left cell of the truth table for the formula q contains
F. Note that the value of T → F is F. Thus, the low-left cell of the truth table for the
formula ((q → p) → p) → q must contain F. By repeating this computation eight
more times, one can see that the truth table for the formula ((q → p) → p) → q is
captured by the first diagram of the first row in Figure 5. As a side note, observe that
because the first diagram of the first row depicts the truth table for the formula p → q,
we have just shown that formulae ((q → p) → p) → q and p → q are semantically
equivalent.

One can similarly consider all 49 possible pairs of truth tables shown in Figure 5
and see that the cell-wise implication of any two of them is one of the seven truth
tables depicted in Figure 5. Therefore, the truth table of any formula that contains
only propositional variables p and q and classical implication → is one of the seven
truth tables depicted in Figure 5.

Finally, observe that the truth table for weakKleene’s disjunction∨, see centre truth
table in Figure 4, is not among the seven truth tables shown in Figure 5. Therefore, the
formula p ∨ q is not semantically equivalent to any formula that uses only classical
implication →.

A similar argument can be made to show that the formulae p ∧ q and ¬p are also
not semantically equivalent to any formula that uses only the classical implication →.

��
The proofs of the next four theorems are very similar to the proof of Theorem 3.

However, instead of the set of seven truth tables depicted in Figure 5, these proofs
use the sets of 658, 90, 656, and 576 truth tables, respectively. We used a computer
program to verify that those sets are closed with respect to the required operations.

Theorem 4 Formula p ∧ q is not semantically equivalent to any formula that uses
only connectives →, ∨, and ¬.

Theorem 5 Formula p ∨ q is not semantically equivalent to any formula that uses
only connectives →, ∧, and ¬.

Theorem 6 Formula p → q is not semantically equivalent to any formula that uses
only connectives ∨, ∧, and ¬.

Theorem 7 Formula ¬p is not semantically equivalent to any formula that uses only
connectives →, ∨, and ∧.

3.2 Axioms

In this section, by Bφ we denote the excluded middle law formula φ ∨ ¬φ. Note that,
in three-valued logic, the formula φ ∨ ¬φ has value T if and only if the value of φ
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Fig. 5 The first row shows the truth tables for the formulae p → q, (p → q) → q, and q → p. The
second row shows the truth tables for the formulae p → p, (q → p) → p, and q. The third row shows the
truth table for the formula p

is one of the two Boolean values: T and F. We read Bφ as “formula φ has a Boolean
value”. By the axioms of Weak Kleene’s Logic, we mean axioms A1 through A19
listed in Table 1. In the context of this section, we write 
 φ and say that formula φ is
a theorem of Weak Kleene’s Logic if φ can be obtained from the axioms of the Weak
Kleene’s Logic using the Modus Ponens inference rule:

φ, φ → ψ

ψ
.

In the context of this section, we write X 
 φ if a formula φ is provable from
axioms A1 through A19 and an additional set of formulae X using the Modus Ponens
inference rule. Note that statements ∅ 
 φ and 
 φ are equivalent. We say that the
set of formulae X is inconsistent if there is a formula φ such that X 
 φ and X 
 ¬φ.
Note that because axioms A1, A2, and A3 of the classical Boolean logic and the
Modus Ponens inference rule are present in this system, the Weak Kleene’s Logic is
an extension of the classical Boolean logic by two new connectives (∧ and ∨) in the
same sense as, for example, S4 modal logic is an extension of the classical Boolean
logic. This means that the maximal consistent sets can be defined in the standard way
and they have the same properties as in any other extension of the classical logic. For
example, as we state in Lemma 3, Lindenbaum’s lemma is true for such sets. Also,
for instance, if a formula is derivable from a maximal consistent set, then this formula
must belong to such a set.

Table 1 also contains axioms A20 through A31. These are not axioms of Weak
Kleene’s Logic. Some of them are provable in our logical system and some are not
three-valued tautologies. The column labelled with “WK” specifies the status of each
of the formulae A1 through A31 in Weak Kleene’s Logic. The columns labelled with
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Table 1 Axioms

Formula WK SC K

A1 φ → (ψ → φ) Axiom Axiom Axiom

A2 (φ → (ψ → χ)) → ((φ → ψ) → (φ → χ)) Axiom Axiom Axiom

A3 (¬φ → ¬ψ) → (ψ → φ) Axiom Axiom Axiom

A4 B¬φ Axiom Axiom Provable

A5 φ → Bφ Axiom Provable Provable

A6 Bφ → B(ψ → φ) Axiom Axiom Axiom

A7 B(φ ∧ ψ) → Bφ Axiom Axiom False

A8 B(φ ∧ ψ) → Bψ Axiom Axiom False

A9 B(φ ∨ ψ) → Bφ Axiom Axiom False

A10 B(φ ∨ ψ) → Bψ Axiom False False

A11 Bφ → (Bψ → B(φ ∧ ψ)) Axiom Axiom Provable

A12 Bφ → (Bψ → B(φ ∨ ψ)) Axiom Axiom Axiom

A13 φ ∧ ψ → φ Axiom Axiom Provable

A14 φ ∧ ψ → ψ Axiom Axiom Provable

A15 φ → (ψ → (φ ∧ ψ)) Axiom Axiom Provable

A16 φ → (Bψ → φ ∨ ψ) Axiom Provable Provable

A17 Bφ → (ψ → φ ∨ ψ) Axiom Axiom Provable

A18 B(φ → ψ) → (φ → Bψ) Axiom Axiom Axiom

A19 φ ∨ ψ → (¬φ → ψ) Axiom Axiom Axiom

A20 φ → φ ∨ ψ False Axiom Axiom

A21 B(φ ∧ ψ) → (φ → Bψ) Provable Axiom Provable

A22 ¬φ → (Bφ → B(φ ∧ ψ)) False Axiom Provable

A23 B(φ ∨ ψ) → (¬φ → Bψ) Provable Axiom Provable

A24 ¬Kφ → ¬φ Provable Provable Axiom

A25 ¬Kφ → Bφ Provable Provable Axiom

A26 ¬φ → (Bφ → ¬Kφ) Provable Provable Axiom

A27 B¬Kφ → Bφ Provable Provable Axiom

A28 Bφ → B¬Kφ Provable Provable Axiom

A29 φ → ψ ∨ φ False False Axiom

A30 ¬φ → (¬ψ → (B(φ ∨ ψ) → Bφ)) Provable Provable Axiom

A31 ¬φ → (¬ψ → (B(φ ∨ ψ) → Bψ)) Provable Provable Axiom

“SC” and “K” show the status of the same formulae inShort-Circuit Logic andKleene’s
Logic. We further discuss these columns later in the article.

Theorem 8 (soundness) If 
 φ, then φ is a three-valued tautology.

Proof We verified the soundness of axioms A1, A2, and A3 as well as of the Modus
Ponens inference rules in Claim 1, Claim 2, Claim 3, and Claim 4, respectively. The
proofs of soundness of the remaining axioms are similar. ��
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3.3 Completeness

In this subsection, until the proof of Theorem 9, we assume a fixed maximal consistent
set of formulae X . We define valuation ∗ as follows:

Definition 6 For any propositional variable p, let

∗(p) =

⎧
⎪⎨

⎪⎩

T, if p ∈ X ,

U, if Bp /∈ X ,

F, otherwise.

Lemma 1 Function ∗ is well-defined.

Proof It suffices to show that if p ∈ X , then Bp ∈ X . Indeed, suppose that p ∈ X .
Hence, X 
 Bp by axiomA5and theModusPonens inference rule. Therefore,Bp ∈ X
because X is a maximal consistent set1. ��
Lemma 2 (truth lemma) For any formula φ,

1. φ ∈ X iff φ∗ = T,
2. Bφ ∈ X iff φ∗ �= U.

Proof We prove the statement of the lemma by structural induction on formula φ. In
the case when formula φ is a propositional variable p, we have φ ∈ X iff p ∈ X iff
∗(p) = T iff p∗ = T iff φ∗ = T by Definition 6. Similarly, Bφ ∈ X iff Bp ∈ X iff
∗(p) �= U iff p∗ �= U iff φ∗ �= U.

Suppose that formula φ has the form ψ → χ . We prove the two parts of the
statement of the lemma separately.
Part 1. (⇒) : Assume that ψ → χ ∈ X . Then, by the Modus Ponens inference rule,
if ψ ∈ X , then X 
 χ . Thus, because X is a maximal consistent set, if ψ ∈ X , then
χ ∈ X . Hence, by the induction hypothesis, if ψ∗ = T, then χ∗ = T. Therefore,
(ψ → χ)∗ = T by the right-most truth table in Figure 1.
(⇐) : Assume that (ψ → χ)∗ = T. Thus, by the right-most truth table in Figure 1,
if ψ∗ = T, then χ∗ = T. Hence, by the induction hypothesis, if ψ ∈ X , then χ ∈ X .
Then, one of the following cases takes place:
Case A: ψ /∈ X . Thus, ¬ψ ∈ X because X is a maximal consistent set. Note that
the formula ¬ψ → (ψ → χ) is a Boolean tautology. Thus, due to the completeness
theorem for Boolean logic (Mendelson, 2009), this formula is provable from axioms
A1-A3. Hence, X 
 ψ → χ by the Modus Ponens inference rule. Therefore, ψ →
χ ∈ X because X is a maximal consistent set.
Case B: χ ∈ X . Then, X 
 ψ → χ by axiom A1 and the Modus Ponens inference
rule. Therefore, ψ → χ ∈ X because X is a maximal consistent set.
Part 2. (⇒) : Suppose that (ψ → χ)∗ = U. Thus, ψ∗ = T and χ∗ = U by the right-
most truth table in Figure 1. Hence, ψ ∈ X and Bχ /∈ X by the induction hypothesis.
Then,ψ ∈ X and X � Bχ because X is a maximal consistent set. Thus, X � ψ → Bχ

1 As we observed in Section 3.2, if a formula is derivable from amaximal consistent set, then it must belong
to this set.
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by the Modus Ponens rule applied contrapositively. Hence, X � B(ψ → χ) by axiom
A18 and the Modus Ponens rule applied contrapositively. Therefore, B(ψ → χ) /∈ X .
(⇐). Suppose that B(ψ → χ) /∈ X . Then, X � B(ψ → χ) because X is a maximal
consistent set. Thus, by the Modus Ponens rule, applied contrapositively,

X � ψ → χ and X � Bχ, (6)

using axioms A5 and A6, respectively.
At the same time, note that the formula ¬ψ → (ψ → χ) is a Boolean tautology.

Thus, due to the completeness theorem for Boolean logic (Mendelson, 2009), this
formula is provable from axioms A1-A3. Hence, X � ¬ψ by the part X � ψ → χ

of statement (6) and the Modus Ponens inference rule applied contrapositively. Then,
¬ψ /∈ X . Thus, ψ ∈ X because X is a maximal consistent set. Also, Bχ /∈ X by
the part X � Bχ of statement (6). Hence, ψ∗ = T and χ∗ = U by the induction
hypothesis. Therefore, (ψ → χ)∗ = U by the right-most truth table in Figure 1.

Suppose that formula φ has the form ¬ψ . We again prove the two parts of the
lemma separately.
Part 1. (⇒) : Suppose that ¬ψ ∈ X . Then, ψ /∈ X because set X is consistent. Thus,
ψ∗ �= T by the induction hypothesis. Therefore, (¬ψ)∗ = T the right-most column in
Figure 2.
(⇐) : Suppose that (¬ψ)∗ = T. Thus, ψ∗ �= T by the right-most column in Figure 2.
Then,ψ /∈ X by the induction hypothesis. Therefore,¬ψ ∈ X because X is amaximal
consistent set.
Part 2. (⇒) : It suffices to prove that (¬ψ)∗ �= U. The last statement is true for any
formula ψ by the right-most column in Figure 2.
(⇐) : It suffices to show that B¬ψ ∈ X . The last statement is true by axiom A4
because X is a maximal consistent set of formulae.

Suppose that formula φ has the form ψ ∧ χ . We again prove the two parts of the
lemma separately.
Part 1. (⇒) : Assume that ψ ∧ χ ∈ X . Then, X 
 ψ and X 
 χ by the Modus
Ponens inference rule using, respectively, axiom A13 and axiom A14. Hence, ψ ∈ X
and χ ∈ X because X is a maximal consistent set of formulae. Thus, ψ∗ = T and
χ∗ = T by the induction hypothesis. Therefore, (ψ ∧χ)∗ = T by the truth table at the
left of Figure 3.
(⇐) : Assume that (ψ ∧ χ)∗ = T. Thus, ψ∗ = T and χ∗ = T by the truth table at
the left of Figure 3. Then, ψ ∈ X and χ ∈ X by the induction hypothesis. Hence,
X 
 ψ ∧ χ by axiom A15 and the Modus Ponens inference rule applied twice.
Therefore, ψ ∧ χ ∈ X because X is a maximal consistent set of formulae.
Part 2. (⇒) : Assume that B(ψ ∧ χ) ∈ X . Then, X 
 Bψ and X 
 Bχ by the
Modus Ponens inference rule and, respectively, axioms A7 and A8. Hence, Bψ ∈ X
and Bχ ∈ X because X is a maximal consistent set of formulae. Thus, ψ∗ �= U and
χ∗ �= U by the induction hypothesis. Therefore, (ψ ∧ χ)∗ �= U by the truth table at
the left of Figure 3.
(⇐) : Assume that B(ψ ∧ χ) /∈ X . Thus, X � B(ψ ∧ χ) because X is a maximal
consistent set of formulae. Hence, either Bψ /∈ X or Bχ /∈ X by axiom A11 and the
Modus Ponens inference rule applied contrapositively twice. Then, either ψ∗ = U or
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χ∗ = U by the induction hypothesis. Therefore, (ψ ∧ χ)∗ = U by the truth table at
the left of Figure 3.

Suppose that formula φ has the form ψ ∨ χ . We once again prove the two parts of
the lemma separately.
Part 1. (⇒) : Assume that ψ ∨ χ ∈ X . Thus, X 
 B(ψ ∨ χ) by axiom A5 and the
Modus Ponens inference rule. Hence, X 
 Bψ and X 
 Bχ by, respectively, axioms
A9 and A10 and the Modus Ponens inference rule. Then, Bψ ∈ X and Bχ ∈ X
because X is a maximal consistent set. Thus, by the induction hypothesis,

ψ∗ �= U and χ∗ �= U. (7)

At the same time, the assumption ψ ∨ χ ∈ X also implies X 
 ¬ψ → χ by
axiom A19 and the Modus Ponens inference rule. Thus, again by the Modus Ponens
inference rule, if X 
 ¬ψ , then X 
 χ . Hence, because X is a maximal consistent set,
if ψ /∈ X , then χ ∈ X . Then, by the induction hypothesis, if ψ∗ �= T, then χ∗ = T.
Therefore, (ψ ∨ χ)∗ = T by the truth table at the left of Figure 3 and statements (7).
(⇐) : Suppose that (ψ ∨ χ)∗ = T. Thus, by the truth table at the left of Figure 3,

ψ∗ �= U and χ∗ �= U

and, in addition, at least one of the following statements is true:

ψ∗ = T or χ∗ = T.

Hence, by the induction hypothesis,

Bψ ∈ X and Bχ ∈ X

and either

ψ ∈ X or χ ∈ X .

Thus, X 
 ψ ∨χ by the Modus Ponens inference rule and either axiom A16 or axiom
A17. Therefore, ψ ∨ χ ∈ X because X is a maximal consistent set.
Part 2. (⇒) :Assume thatB(ψ∨χ) ∈ X . Then, X 
 Bψ and X 
 Bχ by, respectively,
axiom A9 and axiom A10 and the Modus Ponens inference rule. Hence, Bψ ∈ X and
Bχ ∈ X because X is a maximal consistent set. Then, ψ∗ �= U and ψ∗ �= U by the
induction hypothesis. Therefore, (ψ∨χ)∗ �= U by the truth table at the left of Figure 3.
(⇐) : Suppose that (ψ ∨ χ)∗ �= U. Then, ψ∗ �= U and ψ∗ �= U by the truth table
at the left of Figure 3. Hence, Bψ ∈ X and Bχ ∈ X by the induction hypothesis.
Thus, X 
 B(ψ ∨ χ) by axiom A12 and the Modus Ponens inference rule. Therefore,
B(ψ ∨ χ) ∈ X because X is a maximal consistent set. ��
Lemma 3 [Lindenbaum] Any consistent set of formulae can be extended to a maximal
consistent set of formulae.
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Proof Recall that our logical system is an extension of the classical propositional logic
by two binary modalities: ∧ and ∨. Thus, the standard proof of Lindenbaum’s lemma
(Mendelson (2009), Proposition 2.14) applies here. ��
Theorem 9 (strong completeness) For any set of formulae � and any formula φ, if
� � φ, then there is a valuation ∗ such that γ ∗ = T for each formula γ ∈ � and
φ∗ �= T.

Proof Suppose that� � φ. Then, the set�∪{¬φ} is consistent. By Lemma 3, it can be
extended to a maximal consistent set X . Note that φ /∈ X because set X is consistent.
Therefore, γ ∗ = T for each formula γ ∈ � and φ∗ �= T by Lemma 2. ��

The logical system introduced in this section includes classical negation ¬ but
does not include Kleene’s negation ¬K. Note however that Kleene’s negation ¬Kφ is
definable in our language:

Lemma 4 The formulae ¬K p and (p ∨ ¬p) ∧ ¬p are semantically equivalent.

4 Short-Circuit Logic

In the context of this section, ∧ and ∨ mean short-circuit conjunction and disjunction
as defined in the centre of Figure 3 and Figure 4, respectively.

4.1 Undefinability results

Using the technique discussed in Subsection 3.1, one can prove the following results.
The proofs of these results use sets of 642, 72, and 576 truth tables, respectively.

Theorem 10 Formula p ∧ q is not semantically equivalent to any formula that uses
only connectives →, ∨, and ¬.

Theorem 11 Formula p ∨ q is not semantically equivalent to any formula that uses
only connectives →, ∧, and ¬.

Theorem 12 Formula¬p is not semantically equivalent to any formula that uses only
connectives →, ∧, and ∨.

The three results above, of course, are very similar to the corresponding undefinabil-
ity results in Subsection 3.1. So, it is perhaps surprising that, unlike in the case ofWeak
Kleene’s Logic, classical implication is definable through short-circuit disjunction and
classical negation:

Lemma 5 The formulae p → q and ¬p ∨ q are semantically equivalent.

As a result, in this section, we technically do not have to consider the classical impli-
cation at all. In spite of this, in this section, we still decided to treat → as a primitive
connective. We do it not only to be faithful to the title of the article but also because
we still want to be able to claim that any Boolean tautology using only → and ¬ is
provable from axioms A1-A3. If → is treated as an abbreviation, this result is still
true but is harder to argue for. Thus, in this section, by a formula, we still mean any
formula that uses connectives →, ¬, ∧, and ∨.
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4.2 Complete Axiomatisation

Short-Circuit Logic has been proposed in Bergstra and Ponse (2012). Work (Bergstra
et al., 2021) gives a complete set of equivalences for this logic in the language contain-
ing short-circuit conjunction, short-circuit disjunction, and Kleene’s negation (earlier
denoted by ¬K). It is easy to see that classical implication and classical negation are
not definable in this language. Indeed, if all propositional variables are assigned value
U, then all expressions build out of short-circuit conjunction, short-circuit disjunction,
and Kleene’s negation also have value U. At the same time, U → U and ¬U both have
value T. In this subsection, we give an axiomatisation of Short Circuit Logic in the
language with connectives →, ¬, ∧, and ∨.

As in the previous section, byBφ wemean the excludedmiddle law formulaφ∨¬φ.
Of course, here, unlike the previous section,∨ is the short-circuit disjunction. It is easy
to see, however, that just like in the case of Weak Kleene’s Logic, the formula φ ∨¬φ

has value T if and only if formula φ has one of two Boolean values: T or F.
The axioms of Short-Circuit Logic are those of formula A1-A31 in Table 1 that are

marked as axioms in the “SC” column of the table. In the context of this section, we
write X 
 φ if a formula φ is provable from these axioms and the additional set of
formulae X using the Modus Ponens inference rule. Just like before statements ∅ 
 φ

and 
 φ are equivalent. We say that a set of formulae X is inconsistent if there is a
formula φ such that X 
 φ and X 
 ¬φ.

Among the remaining formulae in Table 1, some are theorems and some are not
three-valued tautologies. In the table, we marked them as “provable” and “false”,
respectively.

Theorem 13 [soundness] If 
 φ, then φ is a three-valued tautology.

Note that Lindenbaum’s lemma holds in Short-Circuit Logic for the same reason
as in Weak Kleene’s Logic.

Lemma 6 [Lindenbaum] Any consistent set of formulae can be extended to a maximal
consistent set of formulae.

The completeness theorem for Short-Circuit Logic is stated as Theorem 14 at the
end of this subsection. Its proof follows the same pattern as the completeness proof
for Weak Kleene’s Logic. Here, we also assume that X is fixed, until the proof of
Theorem 14, maximal consistent set of formulae.

Let valuation ∗ be defined as follows:

Definition 7 For any propositional variable p,

∗(p) =

⎧
⎪⎨

⎪⎩

T, if p ∈ X ,

U, if Bp /∈ X ,

F, otherwise.

Lemma 7 Function ∗ is well-defined.
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Proof It suffices to show that if p ∈ X , then Bp ∈ X . Indeed, suppose that p ∈ X .
Hence, X 
 p ∨ ¬p by axiom A20 and the Modus Ponens inference rule. Then,
X 
 Bp by the definition of abbreviation B. Therefore, Bp ∈ X because X is a
maximal consistent set. ��
Lemma 8 (truth lemma) For any formula φ,

1. φ ∈ X iff φ∗ = T,
2. Bφ ∈ X iff φ∗ �= U.

Proof We prove the statement of the lemma by induction on the structural complexity
of the formula φ. If φ is a propositional variable, then the argument is the same as in
Lemma 2.

Suppose that formula φ is an implication. In this case, the proof of lemma is the
same as the corresponding proof for Lemma 2. Note that the corresponding proof of
for Lemma 2 is using axiom A5, which is technically not an axiom of Short-Circuit
Logic. However, this axiom is a special case of axiom A20, which is an axiom of
Short-Circuit Logic.

If formula φ has the form ¬ψ , then the proof is also the same as the corresponding
proof for Lemma 2.

Suppose that formula φ has the form ψ ∧ χ . In this case, the proof of Part 1 of the
lemma is the same as the corresponding proof in Lemma 2. Of course, instead of the
truth table at the left of Figure 3 one should refer to the truth table at the centre of the
same figure. We now prove Part 2 of the lemma.
(⇒) : Assume that B(ψ ∧ χ) ∈ X . Thus, X 
 Bψ by axiom A7 and the Modus
Ponens inference rule. Hence, Bψ ∈ X because X is a maximal consistent set. Then,
by the induction hypothesis,

ψ∗ �= U. (8)

At the same time, the assumption B(ψ ∧ χ) ∈ X also implies X 
 ψ → Bχ by
axiom A21 and the Modus Ponens inference rule. Hence, again by the Modus Ponens
inference rule, if X 
 ψ , then X 
 Bχ . Thus, if ψ ∈ X , then Bχ ∈ X because X is
a maximal consistent set. Then, if ψ∗ = T, then χ∗ �= U by the induction hypothesis.
Therefore, (ψ ∧χ)∗ �= U by statement (8) and the truth table at the centre of Figure 3.
(⇐) : Assume that (ψ ∧ χ)∗ �= U. Thus, ψ∗ �= U by the truth table at the centre of
Figure 3. Hence, by the induction hypothesis,

Bψ ∈ X . (9)

We consider the following two cases separately:
Case A: ψ ∈ X . The assumption (ψ ∧ χ)∗ �= U, by the truth table at the centre of
Figure 3, implies that if ψ∗ = T, then χ∗ �= U. Then, by the induction hypothesis,
if ψ ∈ X then Bχ ∈ X . Hence, Bχ ∈ X by the assumption of the case. Thus,
X 
 B(φ ∧ ψ) by statement 9, axiom A11 and the Modus Ponens inference rule
applied twice. Therefore, B(φ ∧ ψ) ∈ X because X is a maximal consistent set.
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Case B: ψ /∈ X . Then, ¬ψ ∈ X because X is a maximal consistent set. Hence,
X 
 B(φ ∧ ψ) by statement (9), axiom A22 and the Modus Ponens inference rule
applied twice. Therefore, B(φ ∧ ψ) ∈ X because X is a maximal consistent set.

Suppose that formula φ has the form ψ ∨ χ .
Part 1. (⇒) : Assume ψ ∨ χ ∈ X . We consider the following two cases separately.
Case A: ψ ∈ X . Thus, ψ∗ = T by the induction hypothesis. Then (ψ ∨ χ)∗ = T by
the truth table at the centre of Figure 4.
Case B: ψ /∈ X . The assumption ψ ∨ χ ∈ X , by axiom A20 and the Modus Ponens
inference rule, implies that X 
 (ψ ∨χ)∨¬(ψ ∨χ). In other words, X 
 B(φ ∨ψ).
Then, X 
 Bψ by axiom A9 and the Modus Ponens inference rule. Thus, Bψ ∈ X
because X is a maximal consistent set. Hence, by the induction hypothesis,

ψ∗ �= U. (10)

At the same time, the assumption ψ ∨ χ ∈ X implies X 
 ¬ψ → χ by axiom
A19 and the Modus Ponens inference rule. Note that the assumption ψ /∈ X of the
case implies that ¬ψ ∈ X because X is a maximal consistent set. Hence, X 
 χ .
Thus, χ ∈ X because X is a maximal consistent set. Then, χ∗ = T by the induction
hypothesis. Therefore, (ψ ∨χ)∗ = T by statement (10) and the truth table at the centre
of Figure 4.

(⇐) : Suppose (ψ ∨ χ)∗ = T. Then, see the truth table at the centre of Figure 4, one
of the following two cases takes place:
Case A: ψ∗ = T. Thus, ψ ∈ X by the induction hypothesis. Hence, X 
 ψ ∨ χ by
axiom A20 and the Modus Ponens inference rule. Therefore, ψ ∨ χ ∈ X because X
is a maximal consistent set.
Case B: ψ∗ �= U and χ∗ = T. Thus, Bψ ∈ X and χ ∈ X by the induction hypothesis.
Hence, X 
 ψ ∨χ by axiom A17 and the Modus Ponens inference rule applied twice.
Therefore, ψ ∨ χ ∈ X because X is a maximal consistent set.
Part 2. (⇒) : Suppose that (ψ ∨ χ)∗ = U. Then, see the truth table at the centre of
Figure 4, one of the following two cases takes place:
Case A:ψ∗ = U. Hence, Bψ /∈ X by the induction hypothesis. Thus, X � Bψ because
X is a maximal consistent set of formulae. Hence, X � B(ψ ∨ χ) by axiom A9 and
the Modus Ponens inference rule applied contrapositively. Therefore, B(ψ ∨ χ) /∈ X .
Case B: ψ∗ = F and χ∗ = U. Then, ψ∗ �= T and χ∗ = U. Hence, ψ /∈ X and Bχ /∈ X
by the induction hypothesis. Thus, ¬ψ ∈ X and X � Bχ because X is a maximal
consistent set of formulae. Then, X � ¬ψ → Bχ by the Modus Ponens inference
rule applied contrapositively. Hence, X � B(ψ ∨ χ) by axiom A23 and the Modus
Ponens inference rule applied contrapositively. Therefore, B(ψ ∨ χ) /∈ X .
(⇐) Suppose that (ψ ∨ χ)∗ �= U. Then, see the truth table at the centre of Figure 4,
one of the following two cases takes place:
Case A: ψ∗ = T. Then, ψ ∈ X by the induction hypothesis. Thus, X 
 ψ ∨ χ by
axiom A20 and the Modus Ponens inference rule. Hence, X 
 (ψ ∨ χ) ∨ ¬(ψ ∨ χ)

again by axiomA20 and theModus Ponens inference rule. Then, X 
 B(ψ ∨χ) by the
definition of notation B. Therefore, B(ψ ∨ χ) ∈ X because X is a maximal consistent
set of formulae.
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Case B: ψ∗ = F and χ∗ �= U. Then, ψ∗ �= U and χ∗ �= U. Hence, Bψ ∈ X and
Bχ ∈ X by the induction hypothesis. Thus, X 
 B(ψ ∨ χ) by axiom A12 and the
Modus Ponens inference rule applied twice. Therefore, B(ψ ∨ χ) ∈ X because X is
a maximal consistent set of formulae. ��

The proof of the next theorem is similar to the proof of Theorem 9, but it uses
Lemma 8 instead of Lemma 2.

Theorem 14 [strong completeness] For any set of formulae � and any formula φ, if
� � φ, then there is a valuation ∗ such that γ ∗ = T for each formula γ ∈ � and
φ∗ �= T.

The next lemma shows that Kleene’s negation is definable in the Short-Circuit
Logic. Note that, unlike Lemma 4, here, ∨ and ∧ denote the short-circuit disjunction
and conjunction.

Lemma 9 The formulae ¬K p and (p ∨ ¬p) ∧ ¬p are semantically equivalent.

5 Kleene’s Logic

In this section, we study the definability of connectives and axiomatisation of Kleene’s
Logic. Recall that, see Lemma 4 and Lemma 9, Kleene’s negation ¬K is definable
through ¬, ∧, and ∨ in Weak Kleene’s and Short Circuit logics. As a result, in the
previous two sections, we were not considering ¬K as a primitive connective.

5.1 Undefinability results

As the next theorem shows, the situation is different in Kleene’s Logic. In this theorem,
and the rest of the section, by ∧ and ∨ we mean Kleene’s conjunction and Kleene’s
disjunction.

Theorem 15 Formula¬K p is not semantically equivalent to any formula that uses only
connectives →, ¬, ∧, and ∨.
The proof of the above theorem uses the same technique as our other undefinability
results. It is based on 108 truth tables.

Due to the above theorem, let us start by first considering all five connectives: →,
¬, ¬K, ∧, and ∨. Next, observe that
Theorem 16 The following pairs of formulae are semantically equivalent:

1. p ∧ q and ¬K(¬K p ∨ ¬Kq),
2. p ∨ q and ¬K(¬K p ∧ ¬Kq).

Due to the above theorem, either of the connectives ∧ and ∨ can be omitted from our
language. We have chosen to omit ∧ and to keep ∨. Finally, observe that
Theorem 17 The following pairs of formulae are semantically equivalent:
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1. ¬p and p → ¬K p,
2. p → q and ¬p ∨ q.

This means either of the connectives ¬ and → can be omitted from our language. We
have chosen to omit ¬ and to keep →. This leaves us with connectives →, ¬K, and ∨.
The next two theorems, in combination with Theorem 15, show that neither of these
three connectives can be defined through the other two. The proofs of these theorems
use 2688 and 82 truth tables respectively.

Theorem 18 Formula p ∨ q is not semantically equivalent to any formula that uses
only connectives → and ¬K.

Theorem 19 Formula p → q is not semantically equivalent to any formula that uses
only connectives ∨, and ¬K.

5.2 Complete Axiomatisation

Out of the three logical systems considered in this paper, Kleene’s Logic is the
most studied in the literature. Weak completeness for Hilbert-style and Genzen-style
axiomatisations have been proven in Kearns (1974) and Cleave (1974), respectively.
Strong completeness is shown in Kearns (1979). Neither of those works deals with
the classical implication or classical negation.

In this subsection, we give a complete axiomatisation of Kleene’s Logic in the lan-
guage containing the connectives→,¬K, and∨.We defineBφ and¬φ as abbreviations
for the formulae φ ∨ ¬Kφ and p → ¬K p, respectively. Note that in this section the
definition of B is using Kleene’s negation ¬K. In the previous two sections, to define
B, we used the classical negation ¬. This change is necessary because the formula
φ ∨ ¬φ is a three-valued tautology in Kleene’s Logic.

The axioms of Kleene’s Logic are those formulae in Table 1, that are labelled with
the word “axiom” in column “K” of the table. The only inference rule of the logic is
Modus Ponens.

Theorem 20 [soundness] If 
 φ, then φ is a three-valued tautology.

The proof of the completeness theorem follows the samepattern as the completeness
results in the two previous sections. We fix a maximal consistent set of formulae X
and define valuation ∗ as follows:

Definition 8 For any propositional variable p,

∗(p) =

⎧
⎪⎨

⎪⎩

T, if p ∈ X ,

U, if Bp /∈ X ,

F, otherwise.

Lemma 10 Function ∗ is well-defined.

Proof It suffices to show that if p ∈ X , then Bp ∈ X . Indeed, suppose that p ∈ X .
Hence, X 
 p∨¬K p by axiom A20 and the Modus Ponens inference rule. Therefore,
Bp ∈ X because X is a maximal consistent set. ��
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Lemma 11 For any formula φ,

1. φ ∈ X iff φ∗ = T,
2. Bφ ∈ X iff φ∗ �= U.

Proof We prove the statement of the lemma by induction on the structural complexity
of the formula φ. If φ is a propositional variable or an implication, then the argument
is the same as in Lemma 8.

Suppose that formula φ has the form ¬ψ . We prove the two parts of the lemma
separately.
Part 1. (⇒) : Suppose that¬Kψ ∈ X . Then, X 
 ¬ψ and X 
 Bψ by axiomsA24 and
A25, respectively, and the Modus Ponens inference rule. Hence, ψ /∈ X and Bψ ∈ X
because X is a maximal consistent set of formulae. Then, ψ∗ �= T and ψ∗ �= U by the
induction hypothesis. Thus, ψ∗ = F. Therefore, (¬Kψ)∗ = T by the truth table for ¬K,
see Figure 2.
(⇐) : Suppose that (¬Kψ)∗ = T. Then, ψ∗ = F by the truth table for ¬K, see Figure 2.
Then, ψ∗ �= T and ψ∗ �= U. Hence, ψ /∈ X and Bψ ∈ X by the induction hypothesis.
Thus,¬ψ ∈ X and Bψ ∈ X because X is a maximal consistent set of formulae. Then,
X 
 ¬Kψ by axiom A26 and Modus Ponens inference rule applied twice. Therefore,
¬Kψ ∈ X because X is a maximal consistent set of formulae.
Part 2.The statementB¬Kψ ∈ X is equivalent to the statementBψ ∈ X byaxiomsA27
and A28, the Modus Ponens inference rule, and because X is a maximal consistent
set of formulae. The statement Bψ ∈ X is equivalent to the statement ψ∗ �= U
by the induction hypothesis. The statement ψ∗ �= U is equivalent to the statement
(¬Kψ)∗ �= U by the truth table for ¬K, see Figure 2.

Finally, suppose that formula φ has the form ψ ∨ χ .
Part 1. (⇒) : Assume that (ψ ∨ χ) ∈ X . Then, X 
 ¬ψ → χ by axiom A19 and
the Modus Ponens inference rule. Thus, again by the Modus Ponens inference rule,
if ¬ψ ∈ X , then X 
 χ . Hence, because X is a maximal consistent set of formulae,
if ψ /∈ X , then χ ∈ X . Thus, by the induction hypothesis, if ψ∗ �= T, then χ∗ = T.
In other words, ψ∗ = T or χ∗ = T. Therefore, (ψ ∨ χ)∗ = T by the right-most truth
table in Figure 4.
(⇐) : Suppose that (ψ ∨ χ)∗ = T Then, either ψ∗ = T or χ∗ = T by the right-most
truth table in Figure 4. Hence, by the induction hypothesis, either ψ ∈ X or χ ∈ X .
Thus, X 
 ψ ∨χ by either axiom A20 or axiom A29 and theModus Ponens inference
rule. Therefore, ψ ∨ χ ∈ X because X is a maximal consistent set of formulae.
Part 2. (⇒) : Assume that (ψ ∨ χ)∗ = U. Thus, by the right-most truth table in
Figure 4, one of the following cases takes place:
Case A: ψ∗ = U, ψ∗ �= T, and χ∗ �= T. Then, by the induction hypothesis, Bψ /∈ X ,
¬ψ ∈ X , and ¬χ ∈ X . Hence, X � Bψ /∈ X and X 
 B(ψ ∨ χ) → Bψ by axiom
A30 and the Modus Ponens rule applied twice. Hence, X � B(ψ ∨ χ) by the Modus
Ponens inference rule applied contrapositively. Therefore, B(ψ ∨ χ) ∈ X because X
is a maximal consistent set of formulae.
Case B: ψ∗ �= T, ψ∗ �= T, and χ∗ �= T. This case is similar to Case A except that it
uses axiom A31 instead of axiom A30.
(⇐) : Suppose that (ψ ∨ χ)∗ �= U. Thus, by the right-most truth table in Figure 4,
one of the following three cases takes place:
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Case A: ψ∗ = T. Then, ψ ∈ X by the induction hypothesis. Thus, X 
 ψ ∨ χ by
axiom A20 and the Modus Ponens rule. Hence, X 
 (ψ ∨ χ) ∨ ¬(ψ ∨ χ) ∈ X again
by axiom A20 and the Modus Ponens inference rule. In other words, X 
 B(ψ ∨ χ).
Therefore, B(ψ ∨ χ) ∈ X because X is a maximal consistent set of formulae.
Case B: χ∗ = T. The proof, in this case, is similar to the proof in Case A except that
instead of using axiom A20 twice, it first uses axiom A29 and then axiom A20.
Case C: ψ∗ = F and χ∗ = F. Then, ψ∗ �= U and χ∗ �= U. Hence, Bψ ∈ X and
Bχ ∈ X by the induction hypothesis. Then, X 
 B(ψ ∨ χ) by axiom A12. Thus,
B(ψ ∨ χ) ∈ X because X is a maximal consistent set of formulae. ��

The proof of the next theorem is similar to the proof of Theorem 9, but it uses
Lemma 11 instead of Lemma 2.

Theorem 21 [strong completeness] For any set of formulae � and any formula φ, if
� � φ, then there is a valuation ∗ such that γ ∗ = T for each formula γ ∈ � and
φ∗ �= T.

6 Conclusion

In this article, we proposed a new implication for three-valued logic that, together
with the matching negation, has exactly the same properties as the implication and
the negation in the two-valued Boolean logic. In the setting with this implication
and this negation, other connectives of three-valued logic can be viewed as modal
operators. We considered three sets of such operators corresponding to Weak Kleene
Logic, Short-Circuit Logic, and Kleene’s Logic. In all three cases, we gave a sound
and strongly complete axiomatisation of the corresponding logical system.

In the future, we would like to explore the applicability of our approach to multi-
valued logical systems with more than three values.
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