PNAS www.pnas.org

Early life of Neanderthals

Main Manuscript for

1

2

3

4

5 6

7

8

9

10 11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Alessia Nava^{a,b,1,2}, Federico Lugli^{c,d,1,2}, Matteo Romandini^{c,e}, Federica Badino^{c,f}, David Evans^{g,h}, Angela H. Helbling^{g,h}, Gregorio Oxilia^c, Simona Arrighi^c, Eugenio Bortolini^c, Davide Delpianoⁱ, Rossella Duchesⁱ, Carla Figus^c, Alessandra Livraghi^{i,k}, Giulia Marciani^c, Sara Silvestrini^c, Anna Cipriani^{d,l}, Tommaso Giovanardi^d, Roberta Pini^f, Claudio Tuniz^{m,n,o}, Federico Bernardini^{m,n}, Irene Dori^{p,q}, Alfredo Coppa^{r,s,t}, Emanuela Cristiani^a, Christopher Dean^{u,v}, Luca Bondioli^{w,x}, Marco Peresani^{i,1}, Wolfgang

Müllerg,h,1, Stefano Benazzic,y,1

^aDANTE - Diet and ANcient TEchnology Laboratory, Department of Maxillo-Facial Sciences, Sapienza University of Rome, Rome, Italy bSkeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK Department of Cultural Heritage, University of Bologna, Ravenna, Italy ^dDepartment of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy ePradis Cave Museum, Clauzetto, Italy fInstitute of Environmental Geology and Geoengineering - IGAG CNR ^gInstitute of Geosciences, Goethe University Frankfurt, Frankfurt am Main, Germany ^hFrankfurt Isotope and Element Research Center (FIERCE), Goethe University Frankfurt, Frankfurt am Main, Germany Department of Humanities, University of Ferrara, Italy Prehistory Section - MuSe, Museum of Science, Trento, Italy University Rovira i Virgili, Tarragona, Spain ¹Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades NY 10964-1000 USA ^mAbdus Salam International Centre for Theoretical Physics, Trieste, Italy ⁿCentro Fermi, Museo Storico della Fisica e Centro di Studi e Ricerche Enrico Fermi, Roma, Italy ºCenter for Archaeological Science, University of Wollongong, Wollongong, NSW, Australia PSoprintendenza Archeologia, Belle Arti e Paesaggio per le province di Verona, Rovigo e Vicenza, Italy ^qDepartment of Biology, Laboratory of Anthropology, University of Florence, Florence, Italy 'Department of Environmental Biology, Sapienza University of Rome, Rome, Italy Department of Genetics, Harvard Medical School, Boston, MA 02115, USA ^tDepartment of Evolutionary Anthropology, University of Vienna, Vienna, Austria ^uDepartment of Earth Sciences, Natural History Museum, London, UK 'Department of Cell and Developmental Biology, University College London, London, UK "Bioarchaeology Service, Museum of Civilization, Rome, Italy "Department of Cultural Heritage, University of Padua, Padua, Italy 'Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany

 ${}^1\text{To whom correspondence may be addressed. } Email: alessia.nava@uniroma1.it; federico.lugli6@unibo.it; marco.peresani@unife.it; w.muller@em.uni-frankfurt.de; stefano.benazzi@unibo.it$

²These authors contributed equally to this work.

37	Biological Sciences, Anthropology		
38	Physical Sciences, Geology		
39			
40	Keywords		
41 42	$Nean derthal\ ontogeny,\ nursing\ strategy,\ dental\ histology,\ spatially-resolved\ chemical\ analyses,\ life\ histories,\ Sr/Ca.$		
43			
44	Author Contributions		
45 46 47 48 49 50 51 52 53	S.B. initiated and led the study; A.N., F.L., M.R., C.D., L.B., M.P., W.M., S.B. designed the study; A.CP., A.H., D.E., F.L., S.S., T.G., W.M. produced chemical/isotopic data; F.BD. and R.P. produced ecological framework; A.N., C.D., L.B. produced histology data; C.T., F.BR. produced the microtomographic record; A.H., A.N., D.E., E.BR., F.L., G.O., L.B., W.M. analyzed or assisted in analysis of data; M.P., M.R., R.D., A.L., D.D. coordinated archaeological excavations; A.CI., C.F., E.BR., E.C., G.M., G.O., I.D., S.A. curated, sampled and/or described analyzed teeth; A.N., C.D., F.L., L.B., S.B., W.M. wrote the manuscript with considerable input from D.E., M.R., F.B., M.P. and with contributions from all authors; all authors contributed to final interpretation of data		
55	This PDF file includes:		
56 57 58 59 60	Main Text Figures 1 to 4 Supporting Information		
1	Abstract		
2	The early onset of weaning in modern humans has been linked to the high nutritional		
3	demand of brain development that is intimately connected with infant physiology and		
4	growth rate. In Neanderthals, ontogenetic patterns in early life are still debated, with		
5	some studies suggesting an accelerated development and others indicating only subtle		

differences to modern humans. Here we report the onset of weaning and rates of enamel

growth using an unprecedented sample set of three late (~70-50 ka) Neanderthals and one

Classification

36

9 Upper Paleolithic modern human from Northeastern-Italy via spatially-resolved 9 chemical/isotopic analyses and histomorphometry of deciduous teeth. Our results reveal 10 that the modern human nursing strategy, with onset of weaning at 5-6 months, was 11 present among these Neanderthals. This evidence, combined with dental development 12 akin to modern humans, highlights their similar metabolic constraints during early life 13 and excludes late weaning as a factor contributing to Neanderthals' demise.

Significance Statement

The extent to which Neanderthals differ from us is the current focus of many studies in human evolution. There is debate about their pace of growth and early life metabolic constraints, both of which are still poorly understood. Here we use chemical and isotopic patterns in tandem with enamel growth rates of three Neanderthal milk teeth from Northeastern Italy to explore the early life of these individuals. Our study shows that these late Neanderthals started to wean children at 5-6 months akin to modern humans, implying similar energy demands during early infancy. Dental growth rates confirm this and follow trajectories comparable with modern humans. Contrary to previous evidence, we suggest that differences in weaning age did not contribute to the demise of Neanderthals.

Main Text

Introduction

 Maternal physiology, breastfeeding and the first introduction of supplementary foods are key determinants of human growth (1). The high nutritional demands of the human brain during the first years of life has been identified as the main reason for the early weaning onset in modern humans (2, 3). Indeed, supplementary food is needed when an infant's nutritional requirements exceeds what the mother can provide through breastmilk only (4) and this dietary development can introduce foods that are higher in protein, calories and key micro-nutrients than maternal milk (4, 5). Weaning onset occurs in contemporary non-industrial human societies at a modal age of 6 months (6).

At present, our knowledge about the link between the pace of child growth, maternal behavior and the onset of weaning among Neanderthals is still limited. Previous work based on permanent teeth from eight Neanderthal specimens reported that Neanderthal tooth crowns tend to develop faster than in modern humans, suggesting infant growth was generally accelerated (7). However, a permanent first molar and a second deciduous molar from La Chaise (France, 127-116 ka and <163 ka respectively) placed rates of Neanderthal tooth growth within the range of modern humans (8). Equally, the association between dental and skeletal growth in a 7-year-old Neanderthal from El Sidròn (Spain, 49 ka) indicated that Neanderthals and modern humans were similar in terms of ontogenetic development, with only small-scale dissimilarities in acceleration or deceleration of skeletal maturation (9). Finally, other work suggested that the early growth of the Neanderthal brain was fast as in modern humans with similar energetic demands (10). Maps of Ba/Ca ratios of permanent tooth sections of two early Neanderthals (Payre 6, 250 ka and Scladina, 120 ka) have been interpreted (controversially, see below) as indicators of weaning onset at ~9 (11) and 7 (12) months of age respectively(), later than the modal age in contemporary humans(6). Similarly, wear stage analyses of a large number of deciduous dentitions suggested that introduction of solid food in Neanderthals was delayed by one year compared to modern humans (13). Here we investigate such key aspects of early life in Neanderthals by combining new data on chemical detection of weaning onset with deciduous enamel growth rates. We utilize dental histomorphometry (8, 14), spatially-resolved chemical (15) and isotopic profiles (16, 17) of dental enamel to reconstruct growth rates (14), nursing practices (4) and mobility (16) during the Middle and Upper Paleolithic at high (up to weekly) time resolution. We analyzed an unprecedented set of teeth (n = 4) (SI Appendix, Text S1) from adjacent archaeological sites in Northeastern Italy (SI Appendix, Text S2), dated from the Late Middle to the Early Upper Paleolithic, from Neanderthal-modern human contexts (70-40 ka). These four exfoliated deciduous fossil teeth include three Neanderthals (Fumane 1, a lower left deciduous second molar (18), ~50 ka; Nadale 1, a lower right deciduous first molar(19), ~70 ka; Riparo Broion 1, an upper left deciduous canine (20), ~50 ka) and one Early Upper Paleolithic modern human (UPMH) as

39

40 41

42

43

44 45

46

47 48

49 50

51

52

53

54 55

56

57 58

59 60

61 62

63

64

65

66

67

comparative specimen from the Fumane site (Fumane 2, an upper right deciduous second incisor (21), Protoaurignacian, ~40 ka) (Fig. 1).

72 [Insert Figure 1 here qui entrano in didascalia le citazioni Rasmussen 2014 e Seguinot

73 2018 (22, 23)]

Exfoliated deciduous teeth derive from individuals who survived permanent tooth replacement and were thus unaffected by any mortality-related bias (24). All teeth come from the same geographic area within a ~55 km radius (Fig. 1), and Fumane 1 and 2 were recovered from different archaeological layers in the same cave, thus allowing direct comparisons in a well-constrained eco-geographical setting.

We quantified enamel incremental growth parameters such as postnatal crown formation time and daily enamel secretion rates (25), and we detected the presence of the neonatal line as birth marker (26) by optical light microscopy on thin sections of the deciduous dental crowns. Weaning onset was investigated via Sr/Ca profiles on the same histological sections along the enamel-dentine junction (EDJ) by laser-ablation inductively-coupled-plasma mass spectrometry (LA-ICPMS) (15). In order to detect mobility and/or potential non-local food sources in maternal diet, ⁸⁷Sr/⁸⁶Sr isotope ratio profiles were measured by LA-multi-collector-ICPMS (see Materials and Methods) (16, 17). Moreover, we evaluated elemental ratio profiles in teeth from children with known life history (*SI Appendix*, Text S3, (15)).

90 Results

The neonatal lines marking birth were visible in all four archaeological specimens, despite their worn crowns (*SI Appendix*, Fig. S1), allowing the precise estimation of postnatal crown formation times (Fig. 2a). The deciduous first molar Nadale 1 and the deciduous canine Riparo Broion 1 lie within the modern human variability (27-30), while the second deciduous molar Fumane 1 shows a shorter postnatal crown formation time compared with the known archaeological and modern human range (27). The UPMH Fumane 2 deciduous lateral incisor postnatal crown formation time falls instead in the lower limit of the modern human range (28, 30). Overall, the enamel growth rates and the

Commented [AN1]: Delete before submission

differences in their relative tissue volumes and morphologies (7-9).

Daily enamel secretion rates (DSRs) of all specimens, collected in the 100 µm thickness along the enamel dentine junction where laser tracks were run, are reported in Figure 2b, compared with range of variation (min., mean, max.) of modern humans (27-30).

Neanderthal DSRs in the first 100 µm of enamel thickness are slower than the

time to form postnatal enamel compares well with modern human data, regardless of

along the enamel dentine junction where laser tracks were run, are reported in Figure 2b, compared with range of variation (min., mean, max.) of modern humans (27-30). Neanderthal DSRs in the first 100 µm of enamel thickness are slower than the corresponding modern human range of variability. However, when the entire dental crown is considered, the distributions of Neanderthal DSRs lie within the lower variability ranges of modern humans (Fig. 2c). The UPMH Fumane 2 DSRs fit the lower portion of the modern human ranges (Fig. 2b,c). The postnatal crown formation times in Neanderthals couple with slower DSRs than in modern humans, as expected given the thinner enamel in Neanderthals' permanent and deciduous teeth (31, 32).

[Insert Figure 2 here] references in caption: (27-30)

Weaning onset was determined using the topographical variation of the Sr/Ca ratio along the EDJ (15) (Fig. 3a, *SI Appendix*, Text S3). In exclusively breastfed newborns, the enamel Sr/Ca ratio is markedly lower relative to their prenatal levels (15, 33, 34). This is because human milk is highly enriched in Ca, i.e. Ca is selectively transferred, compared to Sr, across the mammary glands and the placenta (35, 36). Such behavior is confirmed by analyses of breastmilk and infant sera (37). In comparison to human, herbivore milk (and derived formula) is characterized by higher Sr/Ca levels, due to the lower initial trophic position (38). Our dietary model for early life (Fig. 3a, *SI Appendix*, Text S3) agrees with the expected Sr behavior (15, 34, 39), showing a decrease in Sr/Ca during exclusive breastfeeding and changes in the slope of the profile across the major dietary transitions (i.e. introduction of solid food and end of weaning; for additional discussion see *SI Appendix*, Text S3) (34). This model has been tested successfully in this study on a set of contemporary children's teeth with known dietary histories, including their mothers' eating habits (*SI Appendix*, Text S3 and Fig. S6-S8). Alternative literature models for Ba/Ca (11, 12) point to an increase of Ba/Ca in postnatal enamel during

Commented [AN2]: Delete before submission

- 129 breastfeeding, yet due to even stronger discrimination across biological membranes,
- 130 Ba/Ca behavior is expected to be similar to Sr/Ca (34), as indeed unequivocally observed
- here (SI Appendix, Text S3 and Fig. S6-S8) and elsewhere (15, 40-42).

132133

[Insert Figure 3 here] references in caption: (15)

134 135

136

137

138

139

140 141

142

143 144

145

146

147

148

149

150 151

152

153 154

155

156 157

158

Nadale 1 (Fig. 3b), Fumane 1 (Fig. 3c) and Fumane 2 (Fi. 3e) are sufficiently wellpreserved from a geochemical point of view. Riparo Broion 1 (Fig. 3d) instead shows some diagenetic overprint (overall Ba is far more affected than Sr; see SI Appendix, Text S4 for our diagenesis assessment strategy and detailed description of the diagenetic imprints), but the overall biogenic elemental pattern can still be discerned (Fig. 3f, where only the portions with [U]<0.05 ppm are included in the interpolated profiles). Overall, Ba is more diagenetically affected than Sr; see SI Appendix, Text S4 for our diagenesis assessment strategy and detailed description of the diagenetic overprints. Two out of the three Neanderthals, Fumane 1 and Riparo Broion 1, clearly show a decreasing trend in Sr/Ca ratio immediately post-birth, followed by slope changes with the first introduction of non-breastmilk food at 115 days (3.8 months) and 160 days (5.3 months; Fig. 3c,d), respectively. An even stronger signal of transitional food intake is visible in Fumane 1 at 200 days (6.6 months) in the form of a steep increase in Sr/Ca ratio. For the oldest Neanderthal specimen Nadale 1, following a marked variability before birth, the Sr/Ca profile slightly decreases until 140 days (4.7 months, Fig. 3b). We cannot determine the weaning onset for this individual, who was still being exclusively breastfed by ~5 months of life. The UPMH Fumane 2 has a substantial portion of the prenatal enamel preserved and only a short postnatal enamel growth record (~85 days vs ~55 days respectively, Fig. 3e). This precludes the chemical detection of the onset of weaning, although the Sr/Ca drop at birth clearly indicates breast-feeding. The prenatal Sr/Ca increase in Fumane 2 could be related to changing dietary habits of the mother during pregnancy. A similar trend in prenatal enamel is observable in MCS2 (Figure 3a), whose mother followed a diet poor in meat during pregnancy. The Sr isotope profiles of all investigated teeth show very limited intra-sample variability, confirming that Sr/Ca variations likely relate to Commented [AN3]: Delete before submission

changes in dietary end-members rather than diverse geographical provenance of food sources (Fig. 4). These data also give insights in Neanderthal mobility and resource gathering. The ⁸⁷Sr/⁸⁶Sr ratios of all Neanderthal teeth overlap with the respective local baselines, defined through archaeological micromammals (43). This suggests that the mothers mostly exploited local food resources. Fumane 1 and Fumane 2, both from the same archaeological site, are characterized by contrasting ⁸⁷Sr/⁸⁶Sr ratios (0.7094 vs 0.7087), indicative of a different use of resources between Neanderthal (local resources) and early UPMH (non-local resources). Such behavior might have been driven by climatic fluctuations, suggesting colder conditions at ~40 ka, dominated by steppe and Alpine meadows (44).

168169170

159

160

161

162

163

164

165

166

167

[Insert Figure 4 here]

171

Discussion

172173174

175

176

177

178 179

180

181

182 183

184

185 186

187

188

189

Nursing strategies are strictly linked to fertility rates, maternal energetic investment, immune development and infant mortality (45). All of these ultimately contribute to demographic changes of a specific population, with key relevance to the study of human evolution. Prolonged exclusive breastfeeding has a positive impact on an infant's immune system; however, longer breastfeeding negatively influences women's fertility via lactational amenorrhea and thus inter-birth intervals (46). It has been shown that the age peak for weaning onset is reached at around 2.1 times birth weight (47), implying that infants who grow more rapidly need to be weaned earlier than those with a slower pace of growth. Based on modern models, a sustainable timing for infant weaning onset would thus range between 3 and 5 months of age (4). However, contemporary non-industrial societies start weaning their children at a modal age of 6 months (6). Similarly, the World Health Organization recommends exclusive breastfeeding for the first six months of an infant's life (48). This time frame broadly corresponds to the age at which the masticatory apparatus develops, favoring the chewing of first solid foods (4). Such evidence suggests that both skeletal development and infant energy demand contribute to the beginning of the weaning transition. Introduction of non-breastmilk foods is also crucial in reducing

190 the energetic burden of lactation for the mother (6). Breastfeeding represents a substantial investment of energy resources (total caloric content of modern human breastmilk =~60 191 192 kcal/100 mL) (49), entailing an optimal energy allocation between baby feeding and other subsistence-related activities. 193 Our time-resolved chemical data point to an introduction of non-breastmilk foods at ~5-6 194 months in the infant diet of two Neanderthals, sooner than previously observed (11, 12) 195 196 and fully within the modern human pre-industrial figures (6). Neanderthals, therefore, were capable of being weaned at least from the fifth post-natal month in terms of 197 supplementing the nutritional requirements of an infant that is growing a large brain with 198 199 high energy requirements. This evidence, combined with deciduous dental growth akin to modern humans, indicates similar metabolic constraints during early life for the two taxa. 200 201 The differential food exploitation of Fumane 1 and Fumane 2 mothers suggests a 202 different human-environment interaction between Neanderthals and early UPMHs, as 203 seen in Sr isotope profiles. The UPMH Fumane 2 mother was consuming low-biopurified non-local foodstuff with elevated Sr/Ca and possibly spent the end of her pregnancy and 204 205 the first 55 days after delivery away from the Fumane site. The most parsimonious 206 interpretation is that mother and child of Fumane 2 likely lived away from Fumane Cave and that, many years after, the UPMH child lost his tooth at Fumane Cave, away from his 207 original birthplace. Conversely, all Neanderthal mothers spent the last part of their 208 209 pregnancies and the lactation periods locally and were consuming high-biopurified local food due to the low Sr/Ca-values (see Fig. 3e). Such evidence of a seeming limited 210 211 mobility for these Neanderthals women counters previous hypotheses of a large home-212 range of Neanderthals (50, 51). 213 The introduction of non-breastmilk food at ~5-6 months implies relatively short interbirth intervals for Neanderthals due to an earlier resumption of post-partum ovulation 214 215 (52). Moreover, considering the birth weight model (47), we hypothesize that Neanderthal newborns were of similar weight to modern human neonates, pointing to a 216 217 likely similar gestational history and early-life ontogeny. In a broader context, our results suggest that nursing mode and time among Late Pleistocene humans in Europe were 218 219 likely not influenced by taxonomic differences in physiology. Therefore, our findings do not support the hypothesis that long postpartum infertility was a contributing factor to the demise of Neanderthals (13). On the other hand, genetic evidence indicates that Neanderthal groups were limited in size (53), which is not in agreement with the shorter inter-birth interval proposed here. Thus, other factors such as e.g. cultural behavior, shorter life-span and high juvenile mortality might have played a focal role in limiting Neanderthal's group size (54, 55).

226 227 228

229 230

231

232

233

234235

236

237238

239240

241242

243 244

245

246

247248

249250

220

221222

223

224225

Materials and Methods

Thin slices of teeth preparation

Prior to sectioning, a photographic record of the samples was collected. Thin sections of the dental crowns were obtained using the standard method in dental histology described in (56, 57) and prepared at the Service of Bioarchaeology of the Museo delle Civiltà in Rome. The sectioning protocol consists of a detailed embedding-cutting-mounting procedure that makes use of dental adhesives, composite resins, and embedding resins. In order to be able to remove the crown from the resin block after sectioning and to restore the dental crowns, the teeth were initially embedded with a reversible resin (Crystalbond 509, SPI Supplies) that does not contaminate chemically the dental tissues and is soluble in Crystalbond cleaning agent (Aramco Products, Inc.). A second embedding in epoxy resin (EpoThin 2, Buehler Ltd) guarantees the stability of the sample during the cutting procedure. The sample was cured for 24 hours at room temperature. Teeth were sectioned using an IsoMet low speed diamond blade microtome (Buehler Ltd). After the first cut, a microscope slide previously treated with liquid silane (3 M RelyX Ceramic Primer) was attached on the exposed surface using a light curing adhesive (3M Scotchbond Multi-Purpose Adhesive) to prevent cracks and any damage during the cutting procedure. A single longitudinal bucco-lingual thin section, averaging 250 µm thick, was cut from each specimen. Each ground section was reduced to a thickness of ~150 µm using water resistant abrasive paper of different grits (Carbimet, Buehler Ltd). Finally, the sections were polished with a micro-tissue (Buehler Ltd) and diamond paste with 1 µm size (DB-Suspension, M, Struers).

- 251 Each thin section was digitally recorded through a camera (Nikon DSFI3) paired with a
- 252 transmitted light microscope (Olympus BX 60) under polarized light, with different
- 253 magnifications (40x, 100x, 400x, including the ocular magnifications). Overlapping
- 254 pictures of the dental crown were assembled in a single micrograph using the software
- 255 ICE 2.0 (Image Composite Editor, Microsoft Research Computational Photography
- 256 Group) (SI Appendix, Fig. S1).
- 257 After sectioning, the crowns were released from the epoxy block using the Crystalbond
- 258 cleaning agent and reconstructed using light curing dental restoration resin (Heraeus
- 259 Charisma Dental Composite Materials).
- 260 Sr isotopic analysis by solution MC-ICPMS
- 261 To determine local Sr isotope baselines we analyzed archaeological rodent teeth from the
- same sites where the human teeth were found (SI Appendix, Table S1). Samples were
- 263 prepared at the Department of Chemical and Geological Sciences of the University of
- Modena and Reggio Emilia, following protocols described elsewhere (16, 58) and briefly
- 265 summarized here.
- 266 From each archaeological site we selected several rodent tooth specimens, according to
- 267 the stratigraphic distribution of human samples. Enamel from micromammal incisors was
- 268 manually removed using a scalpel. Few teeth were also analyzed as whole (dentine +
- enamel). Before the actual dissolution with 3M HNO₃, samples (1-5 mg in mass) were
- washed with MilliQ (ultrasonic bath) and leached with ~0.5 M HNO₃. Sr of the dissolved
- 271 specimens was separated from the matrix using 30 μl columns and Triskem Sr-Spec
- 272 resin.
- 273 Sr isotope ratios were measured using a Neptune (ThermoFisher) multi-collector
- 274 inductively-coupled-plasma mass spectrometer (MC-ICPMS) housed at the Centro
- 275 Interdipartimentale Grandi Strumenti (UNIMORE) during different analytical sessions.
- 276 Seven Faraday detectors were used to collect signals of the following masses: 82Kr, 83Kr,
- ⁸⁴Sr, ⁸⁵Rb, ⁸⁶Sr, ⁸⁷Sr, ⁸⁸Sr. Sr solutions were diluted to ~50 ppb and introduced into the
- Neptune through an APEX desolvating system. Corrections for Kr and Rb interferences
- 279 follow previous works (16). Mass bias corrections used an exponential law and a ⁸⁸Sr/⁸⁶Sr
- 280 ratio of 8.375209 (59). The Sr ratios of samples were reported to a SRM987 value of

- 281 0.710248 (60). During one session, SRM987 yielded an average 87Sr/86Sr ratio of
- 282 0.710243 ± 0.000018 (2 S.D., n = 8). Total laboratory Sr blanks did not exceed 100 pg.
- 283 Spatially-resolved Sr isotopic analysis by laser-ablation plasma mass spectrometry
- 284 (LA-MC-ICPMS)
- 285 LA-MC-ICPMS analyses were conducted at the Frankfurt Isotope and Element Research
- 286 Center (FIERCE) at Goethe University, Frankfurt am Main (Germany) and closely follow
- 287 analytical protocols described by Müller & Anczkiewicz (2016) (17); only a brief
- summary is provided here aiming at highlighting project-specific differences. A 193 nm
- 289 ArF excimer laser (RESOlution S-155, formerly Resonetics, ASI, now Applied Spectra
- 290 Inc.) equipped with a two-volume LA cell (Laurin Technic) was connected to a
- 291 NeptunePlus (ThermoFisher) MC-ICPMS using nylon6-tubing and a 'squid' signal-
- smoothing device (61). Ablation took place in a He atmosphere (300 ml/min), with ~1000
- 293 ml/min Ar added at the funnel of the two-volume LA cell and 3.5 ml/min N₂ before the
- squid. Laser fluence on target was $\sim 5 \text{ J/cm}^2$.
- 295 Spatially-resolved Sr isotopic analyses of dental enamel were performed on the thin
- 296 sections (100-150 μm thick) used for enamel histology and trace element analysis (see
- below), in continuous profiling mode following the enamel-dentine-junction (EDJ) from
- apex to cervix (14), less than 100 μm away from the EDJ. Tuning of the LA-MC-ICPMS
- 299 used NIST 616 glass for best sensitivity (88Sr) while maintaining robust plasma
- 300 conditions, i.e. 232 Th 16 O/ 232 Th <0.5% and 232 Th/ 238 U>0.95 with RF-power of ~1360 W.
- In view of the low Sr concentrations in these human enamel samples ($\sim 60-100 \,\mu g/g$), we
- 302 utilized 130 µm spots, a scan speed of 5 µm/s and a repetition rate of 20 Hz to maintain
- 88 Sr ion currents of $\sim 2-3.5 \times 10^{-11}$ A. Nine Faraday detectors were used to collect the ion
- 304 currents of the following masses (m/z): ⁸³Kr, ~83.5, ⁸⁴Sr, ⁸⁵Rb, ⁸⁶Sr, ~86.5, ⁸⁷Sr, ⁸⁸Sr,
- 305 ⁹⁰Zr. Baseline, interference and mass bias corrections follow (17). The isotopically-
- 306 homogenous (Sr) enameloid of a modern shark was used to assess accuracy of the Sr-
- 307 isotopic analysis and yielded ${}^{87}\text{Sr}/{}^{86}\text{Sr} = 0.70916 \pm 2$ and ${}^{84}\text{Sr}/{}^{86}\text{Sr} = 0.0565 \pm 1$ (2 S.D.).
- Raw data are reported in Dataset S1.
- 309 Spatially-resolved elemental ratio and concentration analysis by laser-ablation
- 310 plasma mass spectrometry (LA- ICPMS)

311 All LA-ICPMS analyses of archaeological samples were conducted at the Frankfurt Isotope and Element Research Center (FIERCE) at Goethe University, Frankfurt am 312 313 Main (Germany), using the same LA system described above, but connected via a squid smoothing-device to an Element XR ICPMS. Analytical protocols follow those by Müller 314 et al (2019) (15); and only a brief summary is provided here aimed at highlighting 315 differences. LA-ICPMS trace element ratios/concentrations of the comparative 316 317 contemporary teeth were obtained at Royal Holloway University of London (RHUL) using the RESOlution M-50 prototype LA system featuring a Laurin two-volume LA cell 318 (58), coupled to an Agilent 8900 triple-quadrupole-ICPMS (ICP-QQQ or ICP-MS/MS). 319 Compositional profiles were analyzed parallel and as close as possible to the EDJ, 320 following the same tracks used for Sr isotope analyses. We employed 15 µm spot sizes 321 (FIERCE) or 6 µm (MCS3, RHUL) and 34 µm (MCS1 and 2, RHUL), respectively, as 322 323 well as a scan speed of 5 μm/s and a repetition rate of 15 Hz; prior to acquisition, samples 324 were pre-cleaned using slightly larger spot sizes (22 - 57 µm), 20 Hz and faster scan speeds (25 - 50 μ m/s); laser fluence was ~5 J/cm². The following isotopes (m/z) were 325 analyzed: ²⁵Mg, ²⁷Al, ⁴³Ca, (⁴⁴Ca), ⁵⁵Mn, ⁶⁶Zn, ⁸⁵Rb, (⁸⁶Sr), ⁸⁸Sr, ⁸⁹Y, ¹³⁸Ba, ¹⁴⁰Ce, (¹⁶⁶Er, 326 ¹⁷²Yb), ²⁰⁸Pb, ²³⁸U. The total sweep times for the Element XR and the 8900 ICP-MS/MS 327 were ~0.8 and 0.4-0.5 s, respectively; however, because of the slow scan speeds, this 328 small difference has no effect on the compositional profiles presented here. Primary 329 330 standardization was achieved using NIST SRM612. Ca was employed as internal standard (43Ca); [Ca] at 37 %m/m was used to calculate concentrations for unknown 331 bioapatites, although not required for X/Ca ratios. Accuracy and reproducibility were 332 333 assessed using repeated analyses of the STDP-X-glasses (62) as secondary reference 334 materials; the respective values for Sr/Ca and Ba/Ca (the element/Ca ratios of principal interest) here are $1.8 \pm 6.6\%$ and $-0.2 \pm 6.0\%$ (%bias ± 2 S.D. (%)); this compares well 335 with the long-term reproducibility for these analytes reported previously (63). Raw data 336 are reported in Dataset S2 and S3. 337 The compositional/isotopic profiles were smoothed with a locally weighted polynomial 338 339 regression fit (LOWESS), with its associated standard error range (±3 S.E.) for each predicted value (64). The statistical package R (ver. 44.0.0) (65) was used for all statistical computations and generation of graphs.

Assessment of the enamel growth parameters and of the chronologies along the laser

343 tracks

 Dental enamel is capable of recording, at microscopic level during its formation, regular physiological and rhythmic growth markers (66-68). These incremental markings are visible under transmitted light in longitudinal histological thin sections of dental crowns. Enamel forms in a rhythmic manner, reflecting the regular incremental secretion of the matrix by the ameloblasts (i.e. the enamel forming cells). The rhythmical growth of enamel is expressed in humans at two different levels: a circadian rhythm that produces the daily cross striations(69, 70) and a longer period rhythmic marking (near- weekly in humans) that give rise to the Retzius lines (71). Physiological stresses affecting the individual during tooth growth cause a disruption of the enamel matrix secretion and mark the corresponding position of the secretory ameloblast front, producing Accentuated (Retzius) Lines (ALs) (72, 73). The birth event is recorded in the forming enamel of individuals surviving the perinatal stage, and leaves - usually the first - Accentuated Line,

356 namely the Neonatal Line (NL) (26, 74, 75).

357 The time taken to form the dental crown after birth was measured on each thin section

adapting the methods described in literature (30, 76).

A prism segment starting from the most apical available point on the enamel dentine junction (EDJ) and extending from this point to an isochronous incremental line (i.e. the NL, an AL or a Retzius line) was measured. The incremental line was followed back to the EDJ and a second prism segment was measured in the same way. The process was repeated until the most cervical enamel was reached. The crown formation time is equal to the sum of the single prism segments. To obtain time (in days) from the prism length measurements, local daily secretion rates (25) (DSR) were calculated around the prism segments and within 100 μm from the EDJ, by counting visible consecutive cross striations and dividing it by the corresponding prism length. The chronologies of accentuated lines (ALs) in the modern sample closely match the timing of known

- 369 disruptive life history events in the mother (illness, surgery) and infant, and so are well
- within the range or error (1.2-4.4%) observed for this histological ageing method (67).
- 371 DSRs were collected across the whole crown on spots chosen randomly in order to get
- 372 the DSRs distribution. Groups of cross striations ranging from 3 to 7 were measured. For
- each crown the number of measured spots ranges between 49 and 233.
- 374 After LA-ICPMS analyses, a micrograph highlighting the laser tracks was acquired at
- 375 50x magnification. This was superimposed to a second micrograph of the same thin
- section at 100x magnification, to gain better visibility of the enamel microstructural
- 377 features. The chronologies along the laser tracks were obtained matching the tracks with
- 378 the isochronous lines.

379 380 381

399

380 Acknowledgments

- Archaeological excavations at Fumane and De Nadale are coordinated by University of
- 383 Ferrara and supported by public institutions (Fumane: Lessinia Mountain Community,
- Fumane Municipality, BIMAdige; De Nadale: Zovencedo Municipality) and private
- associations and companies (De Nadale: RAASM). Archaeological excavations at Riparo
- Broion are coordinated by University of Bologna and University of Ferrara and supported
- by H2020 grant 724046 SUCCESS. Superintendency SAPAB-VR provided access to
- the samples of Nadale 1, Riparo Broion 1, Fumane 1 and Fumane 2. We thank the parents
- and the children who donated deciduous teeth and who carefully recorded the dietary
- 390 events of their children. Michael P. Richards and Marcello Mannino are thanked for
- 391 stimulating discussions and for having initiated isotopic studies of the specimens at
- Fumane. This project was funded by the European Research Council (ERC) under the
- 393 European Union's Horizon 2020 Research and Innovation Programme (grant agreement
- 394 No 724046 SUCCESS awarded to Stefano Benazzi erc-success.eu and grant
- 395 agreement No 639286 HIDDEN FOODS awarded to Emanuela Cristiani -
- 396 www.hiddenfoods.org). FIERCE is financially supported by the Wilhelm and Else
- 397 Heraeus Foundation and by the Deutsche Forschungsgemeinschaft (DFG, INST 161/921-
- 398 1 FUGG and INST 161/923-1 FUGG), which is gratefully acknowledged. LA-ICPMS
- 1 1 cos and 1 to 1 101/22 1 1 coso), which is gratefully decisionledged. Let let Mis

analyses at Royal Holloway University of London, used for early comparative samples

shown in the supporting material, was supported by NERC equipment funding (NERC CC073). The Marie Skłodowska-Curie Actions-European Commission provided a research grant to AN.

404 405 **References**

Commented [AN4]: Formattare prima della submission

- 406 **(Kelefelice**
- 407 1. Sellen DW (2007) Evolution of infant and young child feeding: implications for contemporary public health. *Annu. Rev. Nutr.* 27:123-148.
- 409 2. Kennedy GE (2005) From the ape's dilemma to the weanling's dilemma: early weaning 410 and its evolutionary context. *Journal of human evolution* 48(2):123-145.
- 411 3. Kuzawa CW, et al. (2014) Metabolic costs and evolutionary implications of human brain development. *Proceedings of the National Academy of Sciences* 111(36):13010-13015.
- 413 4. Humphrey LT (2010) Weaning behaviour in human evolution. *Seminars in Cell and*414 Developmental Biology 21(4):453-461.
- 415 5. Davies DP & O'Hare B (2004) Weaning: a worry as old as time. *Current Paediatrics* 416 14(2):83-96.
- 417 6. Sellen DW (2001) Comparison of infant feeding patterns reported for nonindustrial 418 populations with current recommendations. *The Journal of nutrition* 131(10):2707-2715.
- Smith TM, et al. (2010) Dental evidence for ontogenetic differences between modern
 humans and Neanderthals. Proceedings of the National Academy of Sciences of the
 United States of America 107(49):20923-20928.
- 422 8. Macchiarelli R, et al. (2006) How Neanderthal molar teeth grew. Nature 444(7120):748.
- 423 9. Rosas A, *et al.* (2017) The growth pattern of Neandertals, reconstructed from a juvenile 424 skeleton from El Sidrón (Spain). *Science* 357(6357):1282-1287.
- 425 10. de León MSP, Bienvenu T, Akazawa T, & Zollikofer CP (2016) Brain development is similar in Neanderthals and modern humans. *Current Biology* 26(14):R665-R666.
- 427 11. Smith TM, et al. (2018) Wintertime stress, nursing, and lead exposure in Neanderthal children. Science Advances 4(10):eaau9483.
- 429 12. Austin *C, et al.* (2013) Barium distributions in teeth reveal early-life dietary transitions in primates. *Nature* 498(7453):216-219.
- 431 13. Skinner M (1997) Dental wear in immature Late Pleistocene European hominines. J.
 432 Archaeol. Sci. 24(8):677-700.
- 433 14. Dean MC (2010) Retrieving chronological age from dental remains of early fossil
 434 hominins to reconstruct human growth in the past. *Philosophical Transactions of the* 435 *Royal Society of London B: Biological Sciences* 365(1556):3397-3410.
- 436 15. Müller W, et al. (2019) Enamel mineralization and compositional time-resolution in 437 human teeth evaluated via histologically-defined LA-ICPMS profiles. Geochimica et 438 Cosmochimica Acta 255:105-126.
- 439 16. Lugli F, et al. (2019) Strontium and stable isotope evidence of human mobility strategies 440 across the Last Glacial Maximum in southern Italy. *Nature ecology & evolution* 3(6):905-441 911.
- 442 17. Müller W & Anczkiewicz R (2016) Accuracy of laser-ablation (LA)-MC-ICPMS Sr isotope
 443 analysis of (bio) apatite–a problem reassessed. *Journal of Analytical Atomic* 444 *Spectrometry* 31(1):259-269.
- 445 18. Benazzi S, et al. (2014) Middle Paleolithic and Uluzzian human remains from Fumane 446 Cave, Italy. *Journal of Human Evolution* 70:61-68.
- 447 19. Arnaud J, et al. (2017) A Neanderthal deciduous human molar with incipient carious
 448 infection from the Middle Palaeolithic De Nadale cave, Italy. American journal of
 449 physical anthropology 162(2):370-376.

- 450 20. Romandini M, et al. (in review) A late Neanderthal tooth from northeastern Italy.451 Journal of Human Evolution.
- 452 21. Benazzi S, et al. (2015) The makers of the Protoaurignacian and implications for 453 Neandertal extinction. Science 348(6236):793-796.
- 454 22. Rasmussen SO, et al. (2014) A stratigraphic framework for abrupt climatic changes
 455 during the Last Glacial period based on three synchronized Greenland ice-core records:
 456 refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews
 457 106:14-28.
- 458 23. Seguinot J, et al. (2018) Modelling last glacial cycle ice dynamics in the Alps. *The Cryosphere* 12(10):3265-3285.
- 460 24. Wood JW, et al. (1992) The Osteological Paradox: Problems of Inferring Prehistoric
 461 Health from Skeletal Samples [and Comments and Reply]. Curr. Anthrop. 33(4):343-370.
- 462 25. Nava A, et al. (2017) New Regression Formula to Estimate the Prenatal Crown Formation
 463 Time of Human Deciduous Central Incisors Derived from a Roman Imperial Sample
 464 (Velia, Salerno, I-II cent. CE). Plos ONE 12(7):e0180104.
- Dean MC, Spiers KM, Garrevoet J, & Le Cabec A (2019) Synchrotron X-ray fluorescence
 mapping of Ca, Sr and Zn at the neonatal line in human deciduous teeth reflects
 changing perinatal physiology. Archives of oral biology 104:90-102.
- 468 27. Mahoney P (2011) Human deciduous mandibular molar incremental enamel development. *American Journal of Physical Anthropology* 144(2):204-214.
- 470 28. Mahoney P (2012) Incremental enamel development in modern human deciduous anterior teeth. *American Journal of Physical Anthropology* 147(4):637-651.
- 472 29. Dean MC, Humphrey L, Groom A, & Hassett B (2020) Variation in the timing of enamel formation in modern human deciduous canines. *Archives of Oral Biology*:104719.
- 474 30. Birch W & Dean MC (2014) A method of calculating human deciduous crown formation 475 times and of estimating the chronological ages of stressful events occurring during 476 deciduous enamel formation. *Journal of Forensic and Legal Medicine* 22:127-144.
- 477 31. Fornai C, et al. (2014) Enamel thickness variation of deciduous first and second upper molars in modern humans and Neanderthals. Journal of human evolution 76:83-91.
- 479 32. Olejniczak AJ, et al. (2008) Dental tissue proportions and enamel thickness in Neandertal and modern human molars. *Journal of Human Evolution* 55(1):12-23.
- 481 33. Humphrey LT, Dean MC, Jeffries TE, & Penn M (2008) Unlocking evidence of early diet 482 from tooth enamel. *Proceedings of the National Academy of Sciences of the United* 483 *States of America* 105(19):6834-6839.
- 484 34. Humphrey LT (2014) Isotopic and trace element evidence of dietary transitions in early life. *Annals of Human Biology* 41(4):348-357.
- 486 35. Rossipal E, Krachler M, Li F, & Micetic-Turk D (2000) Investigation of the transport of 487 trace elements across barriers in humans: studies of placental and mammary transfer. 488 Acta Paediatrica 89(10):1190-1195.
- Humphrey LT, Dirks W, Dean MC, & Jeffries TE (2008) Tracking dietary transitions in
 weanling baboons (Papio hamadryas anubis) using strontium/calcium ratios in enamel.
 Folia Primatologica 79(4):197-212.
- 492 37. Krachler M, Rossipal E, & Micetic-Turk D (1999) Concentrations of trace elements in sera 493 of newborns, young infants, and adults. *Biological trace element research* 68(2):121.
- 494 38. Burton JH, Price TD, & Middleton WD (1999) Correlation of bone Ba/Ca and Sr/Ca due to biological purification of calcium. *J. Archaeol. Sci.* 26(6):609-616.

- 496 39. Tsutaya T & Yoneda M (2015) Reconstruction of breastfeeding and weaning practices
 497 using stable isotope and trace element analyses: a review. American Journal of Physical
 498 Anthropology 156(S59):2-21.
- 499 40. Peek S & Clementz MT (2012) Sr/Ca and Ba/Ca variations in environmental and biological sources: a survey of marine and terrestrial systems. *Geochimica et Cosmochimica Acta* 95:36-52.
- Metcalfe JZ, Longstaffe FJ, & Zazula GD (2010) Nursing, weaning, and tooth
 development in woolly mammoths from Old Crow, Yukon, Canada: implications for
 Pleistocene extinctions. *Palaeogeography, Palaeoclimatology, Palaeoecology* 298(3-4):257-270.
- Tacail T, Kovačiková L, Brůžek J, & Balter V (2017) Spatial distribution of trace element
 Ca-normalized ratios in primary and permanent human tooth enamel. Science of the
 Total Environment 603:308-318.
- 509 43. López-García JM, Berto C, & Peresani M (2019) Environmental and climatic context of 510 the hominin occurrence in northeastern Italy from the late Middle to Late Pleistocene 511 inferred from small-mammal assemblages. *Quaternary Science Reviews* 216:18-33.
- 512 44. López-García JM, dalla Valle C, Cremaschi M, & Peresani M (2015) Reconstruction of the
 513 Neanderthal and Modern Human landscape and climate from the Fumane cave
 514 sequence (Verona, Italy) using small-mammal assemblages. *Quaternary Science Reviews* 515 128:1-13.
- Miller EM (2018) Beyond passive immunity: Breastfeeding, milk and collaborative
 mother-infant immune systems. *Breastfeeding: New Anthropological Approaches*,
 (Routledge, New York), pp 26-39.
- 519 46. Campbell KL & Wood JW (1988) Fertility in traditional societies. *Natural human fertility*,
 520 (Springer), pp 39-69.
- 521 47. Lee PC (1996) The meanings of weaning: growth, lactation, and life history. *Evolutionary*522 Anthropology: Issues, News, and Reviews: Issues, News, and Reviews 5(3):87-98.
- 523 48. World Health Organization (2009) Infant and young child feeding: model chapter for textbooks for medical students and allied health professionals.
- 525 49. Prentice P, et al. (2016) Breast milk nutrient content and infancy growth. Acta Paediatrica 105(6):641-647.
- 527 50. Richards M, et al. (2008) Strontium isotope evidence of Neanderthal mobility at the site of Lakonis, Greece using laser-ablation PIMMS. J. Archaeol. Sci. 35(5):1251-1256.
- 529 51. Wißing C, et al. (2019) Stable isotopes reveal patterns of diet and mobility in the last Neandertals and first modern humans in Europe. Scientific reports 9(1):1-12.
- 531 52. Taylor HW, Vázquez-Geffroy M, Samuels SJ, & Taylor DM (1999) Continuously recorded
 532 suckling behaviour and its effect on lactational amenorrhoea. *Journal of biosocial* 533 science 31(3):289-310.
- 534 53. Prüfer K, et al. (2014) The complete genome sequence of a Neanderthal from the Altai Mountains. *Nature* 505(7481):43-49.
- 536 54. Garber CM (1947) Eskimo infanticide. The Scientific Monthly 64(2):98-102.
- 537 55. Trinkaus E (1995) Neanderthal mortality patterns. J. Archaeol. Sci. 22(1):121-142.
- 538 56. Nava A (2018) Hominin dental enamel: an integrated approach to the study of
 539 formation, maturation, and morphology (Unpublished doctoral dissertation). PhD
 540 (Sapienza University of Rome, Rome).

- 541 57. Caropreso S, et al. (2000) Thin sections for hard tissue histology: a new procedure.
 542 Journal of Microscopy 199(3):244-247.
- 543 58. Weber M, Lugli F, Jochum KP, Cipriani A, & Scholz D (2018) Calcium carbonate and 544 phosphate reference materials for monitoring bulk and microanalytical determination of 545 Sr isotopes. *Geostandards and Geoanalytical Research* 42(1):77-89.
- 546 59. Steiger RH & Jäger E (1977) Subcommission on geochronology: convention on the use of
 547 decay constants in geo-and cosmochronology. Earth and planetary science letters
 548 36(3):359-362.
- McArthur JM, Howarth R, & Bailey T (2001) Strontium isotope stratigraphy: LOWESS
 version 3: best fit to the marine Sr-isotope curve for 0–509 Ma and accompanying look up table for deriving numerical age. *The Journal of Geology* 109(2):155-170.
- Müller W, Shelley M, Miller P, & Broude S (2009) Initial performance metrics of a new
 custom-designed ArF excimer LA-ICPMS system coupled to a two-volume laser-ablation
 cell. Journal of Analytical Atomic Spectrometry 24:209-214.
- Klemme S, et al. (2008) Synthesis and preliminary characterisation of new silicate,
 phosphate and titanite reference glasses. Geostandards and Geoanalytical Research
 32(1):39-54.
- Evans D & Müller W (2018) Automated extraction of a five-year LA-ICP-MS trace
 element data set of ten common glass and carbonate reference materials: Long-term
 data quality, optimisation and laser cell homogeneity. Geostandards and Geoanalytical
 Research 42(2):159-188.
- 562 64. Cleveland WS, Grosse E, & Shyu WM (1992) Local regression models. *Statistical Models* in S 2:309-376.
- R-Core-Team (2020) R: A language and environment for statistical computing. (R
 Foundation for Statistical Computing, Vienna, Austria).
- 566 66. Antoine D, Hillson S, & Dean MC (2009) The developmental clock of dental enamel: a
 567 test for the periodicity of prism cross-striations in modern humans and an evaluation of
 568 the most likely sources of error in histological studies of this kind. *Journal of Anatomy*569 214:45-55.
- 570 67. Dean MC (2006) Tooth microstructure tracks the pace of human life-history evolution.
 571 Proceedings of the Royal Society of London B: Biological Sciences 273(1603):2799-2808.
- 572 68. Hillson S (2014) *Tooth development in human evolution and bioarchaeology* (Cambridge University Press, Cambridge).
- 574 69. Lacruz RS, et al. (2012) The circadian clock modulates enamel development. *Journal of Biological Rhythms* 27(3):237-245.
- 576 70. Zheng L, et al. (2013) Circadian rhythms regulate amelogenesis. Bone 55(1):158-165.
- 577 71. Dean MC (1987) Growth layers and incremental markings in hard tissues; a review of the
 578 literature and some preliminary observations about enamel structure in *Paranthropus* 579 boisei. Journal of Human Evolution 16(2):157-172.
- Nava A, Frayer DW, & Bondioli L (2019) Longitudinal analysis of the microscopic dental enamel defects of children in the Imperial Roman community of Portus Romae (necropolis of Isola Sacra, 2nd to 4th century CE, Italy). *Journal of Archaeological Science: Reports* 23:406-415.
- 73. Witzel C, et al. (2006) Reconstructing impairment of secretory ameloblast function in
 porcine teeth by analysis of morphological alterations in dental enamel. Journal of
 Anatomy 209(1):93-110.

587 588 589	74.	Sabel N, et al. (2008) Neonatal lines in the enamel of primary teeth—a morphological and scanning electron microscopic investigation. <i>Archives of Oral Biology</i> 53(10):954-963.
590	75.	Zanolli C, Bondioli L, Manni F, Rossi P, & Macchiarelli R (2011) Gestation length, mode of
591		delivery, and neonatal line-thickness variation. Human Biology 83(6):695-713.
592	76.	Guatelli-Steinberg D, Floyd BA, Dean MC, & Reid DJ (2012) Enamel extension rate
593		patterns in modern human teeth: two approaches designed to establish an integrated
594		comparative context for fossil primates. <i>Journal of Human Evolution</i> 63(3):475-486.

Figure legends

 Figure 1. Geographical, paleoecological and chronological framework. (a) Oxygen isotope curve from NGRIP (22), with Greenland Stadials 5-21 highlighted. Chronologies of the human specimens are also reported (see Supplementary Information for details); Fumane 2 is UPMH (green), while Fumane 1, Riparo Broion 1 and Nadale 1 are Neanderthals (yellow). (b,c,d) Modelled Alpine glacier extent during the time intervals of the teeth recovered at the sites of Fumane Cave (b,c), Riparo Broion (c) and Nadale (d); location within Italy is shown in the inset. Simulations show a high temporal variability in the total modelled ice volume during Marine Isotope Stages 4 (70 ka snapshot) and 3 (50, 40 ka snapshots) with glaciers flowing into the major valleys and possibly even onto the foreland (23).

Fig. 2. Dental crown growth parameters. (a) Postnatal crown formation time in days from birth for the different deciduous teeth. The range of variability reported in literature for modern and archaeological individuals is represented by red, blue, green lines. (b) Boxplot of the daily secretion rate (DSR) variation in the first 100 μ m from the enameldentine-junction (min, second quartile, median, third quartile, max) and range of variation (min, mean, max) of modern humans (MH), re-assessed from (27-30). (c) Boxplot of the daily secretion rate variation across the whole crown (mean, second quartile, median, third quartile, max) and range of variation (min, mean, max) of modern humans (MH), re-assessed from (27-30). Ldm1 = lower deciduous first molar; Ldm2 = lower deciduous second molar; Udc = upper deciduous canine; Ldi2 = lower deciduous later incisor.

Fig. 3. Nursing histories from time-resolved Sr/Ca variation in Middle-Upper Paleolithic deciduous teeth. UPMH = Upper Paleolithic modern human; NEA = Neanderthal. The elemental profiles were analyzed within enamel close to the enameldentine-junction (EDJ); [U] and [Mg] are reported as sensitive proxies for diagenetic alteration (15) (see SI Appendix, Text S4). The birth event is highlighted by a vertical line. The compositional/isotopic profiles were smoothed with a locally weighted polynomial regression fit (LOWESS), with its associated standard error range (±3 S.E.) for each predicted value. (a) Comparison between two contemporary known feeding history individuals, MCS1 (exclusively breastfed) and MCS2 (exclusively formula-fed); t1=transitional period starts, first time solid food; t2=strongly reduced breastfeeding during day; t3=transitional period ends, end of breastfeeding; (b) Nadale 1: the slight decrease of Sr/Ca indicates exclusive breastfeeding until the end of crown formation (4.7 months); (c) Fumane 1: Sr/Ca variation indicates breastfeeding until 4 months of age (fully comparable with MCS1 sample, see Supplementary Figure S6); (d) Riparo Broion 1: Sr/Ca profile indicates exclusive breastfeeding until 5 months of age; (e) Fumane 2: 55 days of available postnatal enamel shows exclusive breastfeeding. (f) Fossil specimens' Sr/Ca profiles adjusted to the birth event; the interpolated modelled profiles were calculated based on those portions unaffected by diagenesis ([U]imit of detection, 0.05 ppm), with strong smoothing parameters to reveal the biogenic signal. Riparo Broion 1,

the specimen most affected by diagenesis, retains the expected breastfeeding signal (see panel a). See Material and Methods section for details.

Fig. 4. Mobility of the Middle-Upper Paleolithic infants via time-resolved ⁸⁷Sr/⁸⁶Sr **profiles of their deciduous teeth.** Grey horizontal bands represent the local Sr isotopic baselines defined via the Sr isotopic composition of archaeological rodent enamel (*SI Appendix*, Table S1). The birth event is indicated by a vertical line. (a,b) Nadale 1 / Fumane 1: exploitation of local food resources through the entire period; (c) Riparo Broion 1: possible limited seasonal mobility (non-local values between c. -45 and 85 days, ~4 months); (d) Fumane 2: exploitation of non-local food resources through the entire period.