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by Hector Antonio Fernandez Melendez

The nature of dark matter and dark energy remains an open question in mod-
ern physics. While dark matter is inferred from astrophysical observations and dark
energy accounts for the accelerated expansion of the universe, their fundamental ori-
gins remain unknown. This motivates alternative approaches to explain the observed
behaviour of the universe by modifying our current theory of gravity. This thesis pro-
poses a novel method for testing such modified theories of gravity by exploiting the
dynamics of quantum phononic excitations present in Bose-Einstein Condensates
(BECs), which can be realized in tabletop experiments with current technology.
Our proposal implements quantum metrology within the physics of the BEC and its
phononic excitations, taking advantage of Gaussian states and the tritter operation
to prepare highly sensitive phonon states for estimating gravitational parameters.
Specifically, we aim to measure the gravitational potential of an oscillating massive
sphere by estimating the exerted acceleration on a BEC, inferred through phonon
dynamics. We predict an acceleration precision of approximately 1077 m/s?, allow-
ing us to test deviations from Newtonian gravity. We examine two modified-gravity
models: Modified Newtonian Dynamics (MOND) and Lambda-gravity. The preci-
sion of our method enables the distinction between MOND and Newtonian gravity
under experimentally feasible conditions. For Lambda-gravity, our setup allows us
to measure Newton’s gravitational constant G with a relative precision of 1077,
improving current measurements by two orders of magnitude. Additionally, it pro-
vides an upper bound on the cosmological constant of A < 1073! m~2, representing
the first laboratory-based experimental constraint on A. In conclusion, this thesis
presents a novel, high-precision method for probing Newtonian gravity while paving

the road for future research focused on probing relativistic effects.
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Chapter 1

Introduction

Technological progress has consistently improved our ability to achieve more pre-
cise measurements. Nowadays, relativistic corrections are continually taken into ac-
count for various applications, such is the case of GPS technology [I]. This progress
is also reaching the quantum technologies, exemplified by current plans aiming to
take tabletop experiments to space-based setups [2, 3]. However, the effects of mo-
tion and gravity on quantum experiments and technologies have remained largely
unexplored [4].

Since a complete theory of quantum gravity has not been achieved, the most reli-
able approach to understanding the interplay between quantum matter and gravity,
based on the current theoretical progress, is through quantum field theory (QFT).
This theory describes quantum matter within a relativistic framework, respecting
principles from special relativity, such as Lorentz invariance. Furthermore, this
framework can be extended to curved spacetime, allowing the study of quantum
fields in a more general gravitational setting [5].

To understand how motion and gravity affect quantum experiments, we appeal
to quantum metrology, the field dedicated to measuring physical parameters with
high precision using quantum theory. By employing techniques like laser interferom-
etry, quantum metrology has played a crucial role in achieving major breakthroughs,
including the detection of gravitational waves at LIGO [6]. Recently, it has been
applied to quantum field theory, leading to the development of a framework for rel-
ativistic quantum metrology. This has allowed the estimation of parameters associ-
ated with quantum fields evolving under relativistic settings, showing that motion

and gravity can enhance or degrade quantum entanglement [7]. It has also been



demonstrated that quantum metrology can be employed to measure the Unruh ef-
fect [8], estimate the curvature of spacetime [9], and determine the expansion rate
of the universe [10].

In particular, quantum metrology has greatly benefited from cold atom systems,
such as the Bose-Einstein condensate (BEC). Their high degree of control and low
internal noise make them an ideal testing ground [II]. A notable application is
BEC-based gravimetry. Current BEC gravimetry relies on atom interferometry,
where the wave function of each atom in the BEC is split into two paths and then
recombined to measure independent phase differences. However, if one is interested
in studying the interplay between quantum matter and gravity, atom interferometry
presents certain limitations. On one hand, it is founded in non-relativistic quantum
mechanics [12, 13|, dismissing effects typical to QFT, such as particle creation [14,
15] or the mixing of field modes [16]. On the other hand, its precision scales with the
size of the experiment, requiring larger interferometers to improve the measurement
precision, which restricts the capabilities of this approach.

One can take an alternative approach to BEC gravimetry by considering fre-
quency interferometry [17], which takes advantage of the phononic collective oscil-
lations of the atoms in a BEC. This novel method has been proposed to measure
gravitational waves [I8] and develop gravitational gradiometers [19]. These propos-
als apply quantum metrology to bosonic quantum fields, modelling the BEC and
its phonons as a quantum field evolving over a fixed background spacetime, which
is employed to measure gravitational parameters related to the structure of the un-
derlying spacetime. This framework has also been implemented in non-relativistic
settings to measure Newtonian gravity. In contrast to atom interferometry, fre-
quency interferometry offers different advantages when applied to BEC gravimetry.
Firstly, it allows a relativistic description, which was recently achieved by the the-
oretical description of the relativistic BEC. Secondly, the measurement precision
depends on the lifetimes of the BEC and the phonons, thereby eliminating the need
for larger experiments. Therefore, this approach stands as a promising method for
measuring not only Newtonian gravity but also for probing relativistic effects in
quantum systems.

Beyond the scales of tabletop experiments, important open questions related to
gravity arise when studying astrophysics and cosmology. The observation of the
universe’s accelerated expansion |20}, 21] and the anomalous rotation of galaxies [22]

have raised questions regarding our understanding of the universe. This has led us to



1.1. Thesis Objectives

propose the existence of dark matter and dark energy. While dark energy is believed
to drive the accelerated expansion of the universe, accounting for approximately
70% of its matter-energy content, dark matter is invoked to explain astronomical
observations, which is considered to constitute around 25% of the universe. However,
their fundamental nature remains unknown.

Several models have been developed to explain and understand the nature of
these phenomena. Dark matter candidates range from weakly interacting massive
particles (WIMPs) to fuzzy dark matter and primordial black holes [23]. Experimen-
tal research has restricted the parameter space for several of these proposed models,
yet no conclusive results or evidence have favoured any of them in particular.

Alternatively, modified theories of gravity offer an approach to dark matter that
does not rely on the existence of missing matter to account for astronomical ob-
servations. In some cases, this approach could also account for dark energy. For
instance, f(R)-gravity extends general relativity by generalizing the Einstein-Hilbert
action [24]. At the level of Newtonian gravity, models such as Modified Newtonian
Dynamics (MOND) and Lambda-gravity change the Newtonian gravitational force.

In this thesis, we take advantage of the progress in quantum metrology to propose
a novel method for high-precision gravimetry using BEC phonons. Our approach
aims to improve current gravimetry accuracies while offering additional benefits to
existing techniques for testing deviations from Newtonian gravity. By applying this
method to two specific modified gravity models, which seek to explain the origins

of dark matter and dark energy, we aim to constrain their parameter space.

1.1 Thesis Objectives

The main objective of this thesis is to establish a novel experimental proposal
for high-precision measurements of gravity by employing BEC phonons within a
frequency interferometry framework. Specifically, we focus on the first application
of this method for exploring modified theories of gravity—motivated by the dark
matter and dark energy problems—by testing deviations from Newtonian gravity.

To this end, we explore two modified gravity models: Modified Newtonian Dy-
namics (MOND) and Lambda-gravity. For MOND, the objective is to investigate
whether the proposed experiment is sensitive enough to distinguish between Newto-
nian and MOND-like dynamics, thereby contributing to the currently limited Earth-

based tests of this model. For Lambda-gravity, the goal is to determine how precisely
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our method can measure Newton’s gravitational constant G and the cosmological
constant A, two fundamental constants that characterise this model. Additionally,
we seek to improve the current precision in determining G and to present the first
tabletop experiment designed for constraining A.

To enhance the measurement precision of BEC phonons within the frequency
interferometry scheme, we also propose the first implementation of the tritter oper-
ation applied to measure Newtonian gravity.

In addition to these primary objectives, this thesis also aims to pave the road
for extending our experimental proposal to test relativistic modifications of gravity
and, more generally, relativistic effects in the weak-gravity regime. Furthermore,
another goal is to encourage the realization of a proof-of-principle experiment of
our proposal, that is, an initial experimental demonstration of its feasibility, by
providing a comprehensive theoretical framework for employing BEC phonons to
measure gravity.

Finally, we expect that this proposal will not only contribute to fundamental
physics research but also motivate the generation of new technology and lay the
groundwork for its potential commercial implementation in high-precision gravime-

try.

1.2 Thesis Overview

The structure of the thesis is organized as follows. Chapter [2| lays the ground-
work by studying the evolution of bosonic quantum fields confined to a region in
Minkowski spacetime from the perspective of both an inertial observer and an accel-
erated observer. Through the quantization of the field, the Fock space is constructed,
and the concept of particles or excitations for each observer is introduced. The con-
nection between the inertial and accelerated observers is established by employing
a Bogoliubov transformation. This chapter helps us understand the dynamics of
quantum fields, to which we will later return in the context of Bose-Einstein con-
densation, and prepare the ground for constructing Gaussian states.

In Chapter [3] the focus shifts to describing Gaussian states and Gaussian trans-
formations. We begin by comparing the descriptions of quantum states in Hilbert
space and Phase space. In preparation for the rest of the chapter, the formal con-
struction of Fock space is presented. Then, Gaussian states and Gaussian transfor-

mations are introduced, with their respective descriptions in Phase space provided
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through the covariance matrix formalism. We review symplectic geometry, which
captures the properties of Gaussian states and transformation in Phase space. Fi-
nally, a list of the basic Gaussian states and their physical interpretation is given.

Chapter [4]introduces quantum metrology, the field dedicated to performing high-
precision measurements on quantum systems. By employing local estimation theory,
we derive the quantum Cramér-Rao bound, which is the quantity that establishes a
limit on the precision to estimate a physical parameter driving a change in a quantum
state. The quantum Fisher information for Gaussian states, which is required to
evaluate such precision, is introduced using the covariance matrix formalism. Then,
the notion of a metrological scheme is presented, and we discuss its usefulness in
preparing and optimizing parameter estimations. The chapter concludes with a
discussion on the application of quantum metrology to relativistic settings and the
progress achieved in this direction.

In Chapter [5, we provide a comprehensive review of the study of the Bose-
Einstein condensation phenomenon. It first examines the non-interacting Bose gas,
identifying a phase transition that occurs below a critical temperature, which is esti-
mated. Then, the weakly interacting Bose gas is investigated by introducing the Bo-
goliubov theory. The BEC’s ground-state energy and thermodynamic equation are
derived in the zeroth-order momentum approximation. In the second-order approxi-
mation, the excitation spectrum reveals phonon-like elementary excitations. Finally,
the study of non-uniform BECs leads to the derivation of the Gross-Pitaevskii equa-
tion, which is employed to study small-amplitude perturbations in the BEC. This
chapter also investigates the relativistic BEC (RBEC) in flat space by following a
similar approach to the non-relativistic case. Using the Bogoliubov approximation,
we derive the dispersion relation for small-amplitude perturbations and analyse its
limiting cases. For the gapless branch of the low-momentum limit, we identify the
acoustic metric, an effective metric governing the RBEC phonon evolution. Lastly,
we verify that in the Newtonian limit, the theory consistently recovers the non-
relativistic BEC description.

Chapter [6] integrates the material of previous chapters to establish the core
idea of this thesis: the experimental proposal for employing the BEC phonons to
measure gravity. The chapter begins by discussing the difference between atom
interferometry—the currently employed method for BEC-based gravimetry—and
frequency interferometry, a novel method on which our proposal is based. Then,

the experimental setup proposed for probing gravity using the BEC is detailed.



1.2. Thesis Overview

This involves placing an oscillating massive sphere near the BEC, which acts as a
source of gravitational potential. Next, we derive the dynamics of the BEC under
the gravitational influence of the oscillating sphere. Assuming the presence of small-
amplitude perturbations in the BEC, we obtain the equations of motion for both the
condensed atoms and the perturbations, where the dispersion relation allows us to
identify these perturbations as phonons. By implementing quantum metrology, we
can establish a metrological scheme that is enhanced by using a tritter to estimate a
physical parameter related to the induced acceleration on the BEC, which quantifies
the effects of the gravitational potential from the oscillating sphere. We derive a
formula that bounds the measurement precision, which depends on numerous exper-
imental parameters. We provide a review of the state-of-the-art BEC experiments
and discuss the conditions and constraints that the experimental parameters must
satisfy. To conclude, we analyse the precision’s parameter dependence and compute
its explicit value for different sets of experimental parameters.

Building upon this experimental framework, Chapter [7] explores its application
for testing deviations from Newtonian gravity. We consider two modified-gravity
models: Modified Newtonian Dynamics (MOND), which alters the gravitational
force at accelerations below ~ 107'% m/s?, and Lambda-gravity, which extends
Newton’s gravitational force by introducing an additional term dependent on the
cosmological constant. For both cases, we derive the gravitational potential of the
oscillating sphere and the corresponding theoretical prediction for the value of the
acceleration amplitude, comparing it to the Newtonian result. In the case of Lambda
gravity, we estimate the precision for measuring Newton’s gravitational constant G
and the cosmological constant A, comparing our results with the current state-of-
the-art precisions.

Taking a broader perspective, Chapter [§| summarizes an extensive market anal-
ysis dedicated to the technological implementation and commercialisation of BEC-
based quantum gravimeters as proposed in this thesis. Finally, Chapter [J] summa-
rizes the main results of the thesis and outlines future directions for research.

As supplementary material, Appendix [A] presents a complete list of the fun-
damental one-mode and two-mode Gaussian transformations and Gaussian states
described employing the covariance matrix formalism. Appendix |B| indicates the
number of particles associated with the basic Gaussian states. In Appendix [C] the
code used to calculate the expression for the quantum Fisher information in
is provided. Appendix @ contains the code for evaluating the precision in .



Chapter 2

QFT in Minkowski Space for
Confined Bosonic Fields

Quantum field theory (QFT) is the natural generalization of quantum mechanics.
It goes beyond the one-particle quantum mechanical description of nature governed
by the Schrodinger equation. Furthermore, QFT is a Lorentz-invariant formulation,
making it a relativistic description. From the study of QFT, important consequences
arise, including the prediction of antimatter’s existence and the fact that the particle
number is no longer conserved [5]. It represents a semiclassical description, meaning
that matter and radiation are quantized and evolve within a fixed classical spacetime.

Usually, QFT is studied assuming flat Minkowski spacetime. However, studying
quantum fields on curved spacetime has yielded interesting outcomes. Among the
most important results obtained, we can find the Hawking radiation [25] 26] and the
cosmological particle creation [27, 28]. In practice, one may consider that spacetime
is flat near the Earth, but this is a consequence of our technological limitations in
making high-precision measurements. Recent works have pointed out that quantum
experiments may be sensitive enough to detect small-magnitude differences in the
parameters describing spacetime or non-inertial motion. It is expected that this will
be tested in the near future [29]. This opens the possibility to experimentally explore
the dynamics of quantum fields under accelerated motion, gravitational fields and
curved spacetime.

Since this thesis focuses on the study of the Bose-Einstein condensate and is in-
terested in examining its relation to relativistic effects, a good starting point before

tackling these subjects is the study of the evolution of a confined bosonic quantum
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field in Minkowski spacetime. This approach is helpful in understanding the de-
scription and evolution of a quantum field without the complexities associated with
BEC physics while simultaneously learning about the description of quantum fields
in Minkowski spacetime, the natural framework of special relativity.

In this chapter, we restrict ourselves to studying the evolution of bosonic matter,
which is described as a real scalar quantum field with no spin, such as light or
the excitations created on a BEC. As we are interested in describing real tabletop
experiments, we confine the quantum fields to a cavity. As a first step, we consider
the field to be on a flat Minkowski spacetime described from an inertial reference
frame. Then, we describe it from the reference frame of an accelerated observer.

This chapter is organized as follows: Section discusses the evolution of a
confined massive quantum field ¢ in Minkowski spacetime for an inertial observer
with coordinates (t,z). The solutions to the equation of motion are derived and
quantized through canonical quantization. The resulting Hamiltonian corresponds
to an infinite collection of quantum harmonic oscillators, which allow the introduc-
tion of particle creation and annihilation operators, as well as the construction of
a Fock space. In Section a similar procedure is followed for an accelerated ob-
server with coordinates (7, x), yielding a similar construction that results in a Fock
space for a different set of particles. Finally, in Section [2.3] the relationship between
the field’s descriptions by the inertial and accelerated observers is established using
a Bogoliubov transformation. The metric signature (—, 4, +,+) is employed, with
Greek indices taking the values: 0, 1, 2, 3 and Latin indices running through the
spatial coordinates. The summation convention is applied for repeated indices, and

natural units where ¢ = h = 1 are assumed for this chapter.

2.1 Inertial Cavity

Consider a real scalar field ¢ with mass m on a curved spacetime described by

the metric g,,,. The classical Lagrangian density of this system is given by

L=y (—;gﬂ”vmvm - ;m%ﬂ) : (2.1)

where g = det(g,,) and the operator V corresponds to the covariant derivative
[0, B0]. Invoking Hamilton’s principle, the dynamical evolution of the Lagrangian is

set by the Euler-Lagrange equation in curved spacetime [31],
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oL oL

= Ve

foler o(V,9)
For the massive real scalar field ¢, this leads to the Klein-Gordon (KG) equation

= 0. (2.2)

(O—-m?)¢ =0, (2.3)

where [ is the d’Alembert operator, which has the general form

0= \/1?96“ (vV=g9"d,). (2.4)

Restricting ourselves to the case of flat (141)-dimensional Minkowski spacetime,
where the metric 7, can be read from the line element ds®> = Nudrtdxz” = —dt? +
dz?, the d’Alembert operator is O = 7*¥8,0,. Then, the Lagrangian density reduces

to

C— _%nw/am 0,06 — %m2¢2, (2.5)

and the Klein-Gordon equation takes the form

(=0F + 02 —m?) ¢(t, z) = 0. (2.6)

The most general solution is obtained by constructing a complete set of orthonor-
mal modes. Following [30], the pseudo-inner product on the space of solutions to

the KG equation in Minkowski spacetime is defined as

(b1, b2k = —i /E (618085 — 63 0r61)d, (2.7)

where 3; denotes a constant-time hypersurface and * denotes complex conjugation.
To restrict the field inside a cavity, Dirichlet boundary conditions are imposed
on the field,

d)(tvxl) = ¢(t)$r) =0, (28)

where L := x, — x;, is the length of the cavity. The normalized solutions obtained

are

On(t,x) = sin [%(az — xl)} g twnt (2.9)
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where

2
wn = (%) +m2,  neZ'. (2.10)

Equation describes a single mode solution to the KG equation for a
massive scalar field inside a cavity of length L, inertially moving through Minkowski
spacetime. The modes get a discrete label n, which characterizes the energy of the
eigenstates through the eigenvalues given by .

The solutions can be classified into positive-frequency solutions ¢,, and negative-
frequency solutions ¢;, where ¢ denotes the complex conjugate of ¢,, according

to the following criteria:

z@thn = +Wn¢n, (2113)
100" = —wn . (2.11b)

This allows us to define a notion of a particle by identifying the positive-frequency
excitations of the field as particles.

The full solution to the KG equation can be expanded as

o(t.w) =Y landu(t,z) +aydy(t,2)] (2.12)

n
where the a,, are arbitrary complex functions.

In order to implement the canonical quantization, we need to calculate the
Hamiltonian density associated with the Lagrangian density . The canonically
conjugate field is

oL :
= oot e " o(t,z), (2.13)

where the dot represents temporal derivation. As customary, using a Legendre

m(t, )

transformation, the Hamiltonian density is computed as

H=np—L= % (7 + (0:0)* + m*¢?) . (2.14)

Now, we promote the classical fields ¢(t,z) and 7(t,z), to quantum operators

satisfying equal-time commutation relations

10
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[o(t, ), 7 (t, )] = i6(x — '), (2.15a)
[0(t, ), d(t,2")] = [7(t, 2),7(t,2")] = 0. (2.15b)

The Hamiltonian operator is then,

= / % (#(2)” + (@2d(t, 2))? + m2d(t, )7 da. (2.16)

Using the commutation relations, we can calculate Hamilton’s equations to obtain
that

Oy ¢ = —i[p(t, x), H] = #(t, ), (2.17a)
O 7t = —ilx(t,x), H) = (87 — m?)o(t, ). (2.17b)

Therefore, combining the two previous equations, we find that the quantized

field operator keeps satisfying the KG equation,

(=07 + 0% — m?) ¢(t, ) = 0. (2.18)

Then, the solution to the KG equation obtained for the classical case, Eq. (2.12)),
can be recovered and quantized by promoting the complex functions a,, and a;, to

quantum operators a,, and dL. The quantum field operator can be expressed as,

Ot,2) = 3 andnlt,2) + algi(t,2)] (2.19)

n
Using the commutation relations for the field operators, as well as the completeness
and orthogonality of the functions (2.9)), we can obtain that the operators a,, and
al satisfy the commutation relations [32, [33]

[&ma &T] = 5mn ; (2.20&)

n

G, 6] = [a,, a1 ] = 0. (2.20b)

These relations correspond to the ones usually associated with creation and annihi-
lation operators. To make sure of their interpretation, we substitute the expansions
of the field operators ¢(t, z) and # (¢, ) in terms of @, and a, into the Hamiltonian,

which results in

11
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, 1
H=> w, (&L@n + 2) : (2.21)
n

This Hamiltonian allows us to interpret the field operator q}), defined in Minkowski
spacetime governed by the Klein-Gordon equation, as an infinite collection of de-
coupled harmonic oscillators of bosonic nature. The operators &L and a,, create
and annihilate particles described by the functions ¢, (¢, ). These operators can be
used to define a basis for the Hilbert space where the basis states correspond to the
eigenstates of the number operator ny = &L&k for each k-th mode.
Restricting ourselves to the k-th mode, we can define the vacuum state |0),
through the relation
ar |0x) =0, for all k, (2.22)

as the state which contains no particles. The state containing nj particles can be

constructed by acting nj times the operator &L on the vacuum state,

k) = —
F Vng!

Considering the rest of the modes and defining the complete vacuum state as

(@)™ |0g) - (2.23)

|0) = ®%_ |0;), the most general state up to the k-th mode is given by

1

m(dbm (dg)m o (&j)nk 0) , (2.24)

|n15n2a" : 7nk‘> =

which contains n; particles in the first mode, ng particles in the second mode, etc.
These states are known as the Fock basis, and they form a basis for the Hilbert

space. When constructed this way, the Hilbert space is often called a Fock space.

2.2  Accelerated Cavity

Let us consider the case of a field contained inside an accelerated cavity. To de-
scribe the reference frame of a uniformly accelerated observer in a (1+1)-dimensional
Minkowski spacetime, we introduce Radar coordinates (7, x) [5, 30]. These coordi-
nates are defined for the right Rindler wedge, that is, the region where |t| < z, by

the transformation

12
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1

t = —e®Xsinh(an), (2.25a)
a
1

x = —e*X cosh(an), (2.25b)
«

where the coordinate domain is 0 < y < oo and —o0o < 17 < 0o, and a € R is a
parameter related to the observer’s proper acceleration. The inverse transformations

are given by

1 t

n= Etanhfl (x) , (2.26a)
1

X= 5 In[a?(2? — t2)]. (2.26Db)

Under this change of coordinates, the line element for Minkowski spacetime becomes

ds? = X (—dn? + dx?). (2.27)

To verify that Radar coordinates describe a uniformly accelerated observer, no-
tice that Eqgs. (2.25) imply the relation

2 — 12 = a7 2e?ox, (2.28)

which defines a family of hyperbolas for each constant value of y. These curves
represent time-like worldlines and describe the trajectory of point-like observers
experiencing a constant proper acceleration.

From the line element, the proper time along these trajectories is 7 = e*Xy for a
fixed x. The corresponding trajectory, z* = (¢, z), is described by Egs. ([2.25) and

its the four-acceleration, a#, is evaluated as

2 et
a“:dx
dr2

whose proper acceleration yields

= ae” “X(sinh(ae”*X1), cosh(ae™*XT)), (2.29)

a = y/akta, = ae X, (2.30)

This confirms that an observer described with Radar coordinates for a fixed y follows

hyperbolic trajectories with constant proper acceleration. Figure displays a

13
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Rindler chart where trajectories for constant x and constant n are shown.

Figure 2.1: Rindler Chart for the Right Rindler Wedge (|t| < x). Trajectories for
x =constant (dashed red lines) describe a family of uniformly accelerated point-like
observers. Trajectories for 7 =constant (dashed yellow lines) describe a family of
space-like trajectories that correspond to foliations of simultaneity for an acceler-
ated observer at a fixed own proper time. The Rindler horizons (solid blue lines)

correspond to t =z and t = —x.

Now, let’s consider an accelerated cavity in Minkowski spacetime containing
a scalar field ¢ governed by the KG equation (2.3). In Radar coordinates, the

d’Alembert operator takes the form

O =e 2X(—02 4+ 02). (2.31)

Then, the KG equation describing the evolution of a massive scalar field is

(=02 + 02 — e**Xm?)ih(n, x) = 0. (2.32)

For simplicity, we restrict ourselves to solutions for the massless scalar field case.
The accelerated cavity can be constructed by restricting the field inside a
bounded region. We suppose that the left wall of the cavity follows a uniformly
accelerated worldline of constant y = x;, while the right wall will follow another
uniformly accelerated worldline given by x = x,. The length of the cavity as mea-
sured by an observer co-moving with the accelerated reference frame, i.e. the proper

length, is given by [ = x» — xi.
To restrict the field to a cavity following a uniformly accelerated trajectory in

14
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Minkowski spacetime, we impose Dirichlet conditions on the field:

¢(77,Xl) = ¢(U,Xr) =0. (233)

Restricting ourselves to the case of a massless field, the mode solutions to the

KG equation in Radar coordinates can be expressed as

1

(0, x) = —== sl (x = xi)le” (2.34)

where the frequencies of the modes must satisfy the relation

Q) = —, neZt. (2.35)

The solutions can be split into positive frequency solutions 1, and negative fre-

quency solutions v according to

Zatwn = +Qn¢n 5 (2'363)
O = — Q. (2.36b)

The full solution to the KG equation can be expanded as

P x) =D [Antn(n,X) + Anti (0, %)] (2.37)

n
where A, is an arbitrary complex function.

The canonical quantization can be implemented following the approach taken
for the field inside the inertial cavity. For that, we need to obtain the Hamiltonian
associated with the field inside the accelerated cavity. Considering again the general
case of a massive scalar field, we use the general definition to compute the

Lagrangian density,

1 (03
L= 5 ((0g9)" = (9¥)* — m*y?e*X) . (2.38)
Then, the canonically conjugate field corresponds to

oL
I(n, x) = B O (1, %), (2.39)

therefore, through the usual Legendre transformation, we get that the Hamiltonian

15
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density reads

H= % (IT? + (Oy)? + e Xm?p?) . (2.40)

The classical fields ¥(¢,z) and II(¢,x) get promoted to quantum operators sat-

isfying equal-time commutation relations

[W(n,x),TI(n, x)] = id(x — X'), (2.41a)
[ (1. x), (0, X)] = [[(n, x), II(n,x)] =0, (2.41b)

so we can write the Hamiltonian operator as

= / % (110207 + @b (m. X)) + € Xm*(n. x)?) d. (2.42)

In analogy with the case of the inertial cavity, calculating Hamilton’s equations
yields 8,@(77,)() = II(n, x) and 8nﬂ(77,x) = (8)2( — e20Xm2)eh(n, x), which together
imply that the quantized field also fulfils the same KG equation as the classical field,

(—02 4+ 02 — > Xm2)(n, x) = 0. (2.43)

Returning the case of a massless quantum field, we recover the classical solution
for the quantized field by promoting the complex functions A4,, and A} to quantum

operators A,, and AL Then, the quantum field operator is

~

mx) =) [Anwn(n,x) + im0 (2.44)

n

where we find that the operators A, and AL satisfy the commutation relations

[Ama AL] = 5mn 5 (2.458,)
[Am, A = [AT A1 =0, (2.45b)

Using the expansion of the quantum field operator in terms of the A, AL oper-

ators, the Hamiltonian operator for the field inside the accelerated cavity is

=30, <A2An + ;) : (2.46)

Again, we have an infinite sum of decoupled harmonic oscillators where the operators

16
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AIL and A, can be related to the creation and annihilation of particles described by

the functions ¥, (1, x).
The Hilbert space can be constructed from the eigenstates of the number oper-
ator Ny = ALAk for the mode k. We can define the vacuum state |0) for the k-th

mode, which is the state containing no particles, as

Apl0)) =0 forall k, (2.47)

and so on, for the rest of the modes. A Fock state containing N particles in the

first mode, Ny particles in the second mode, etc., can be built as

1 SN .t
TR A () ()T ), (248)

i
where the complete vacuum state is |0') = ®%_,[0}).These states then constitute

|N17N27“' 7Nk‘> =

the basis for the Fock space of the accelerated cavity containing a quantum field in

Minkowski spacetime.

2.3 Bogoliubov Transformations

As we can see, the choice of a complete basis of solutions to the Klein-Gordon
equation in flat spacetime is not unique. However, the set of field mode solutions
detected by the inertial observer {¢,(t, ), ¢} (t,7)},cz+ and those detected by the
accelerated observer {1y, (n, x), ¥y, (1, X) },cz+ can be related to each other by a Bo-
goliubov transformation. A Bogoliubov transformation is a change of basis from
one set of mode solutions to another that preserves the commutation relations of
the field operators, that is, a unitary transformation. The relation between the field

solutions measured by the inertial and accelerated observers is given as

Gt 1) =D [ctmn Sty ) + B O3 (£, )], (2.49a)

n

U (6,2) =D [ S (6, T) + By P, )] - (2.49D)

n

The matrices «;; and ;; implementing the transformation correspond to the Bo-

goliubov coefficients. Using the orthonormality of the mode functions and the inner

17
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product (2.7, they can be expressed as

Omn = (wmv ¢n)KG , (2503)

We can find the relation between the mode solutions that we have obtained.
To achieve this, we parameterize the cavity geometry using the dimensionless small
parameter

h=a.lL, (2.51)

where a. is the acceleration at the centre of the cavity and L, as before, is the length

of the cavity from the rest frame. Performing a perturbative analysis for h < 1, we

get
1
app =1 — %Wznzhz + O(h%), (2.52a)
Qmn = N/mn (_jr;(rn(l__li:;n) h+0(h?), (2.52b)
Brnn = Wmh + O(Rh?). (2.52¢)

These expressions allow us to relate the field solutions between an inertial and an
accelerated observer.

Overall, Bogoliubov transformations are very important as they can be used
to model the time evolution of quantum fields. Such transformations arise, for
example, when considering changes in coordinate systems (such as Lorentz boosts
or transformations between observers) or as a result of spacetime dynamics [16].
They also arise, for instance, in the evolution of a phonon field inside a BEC when
it is perturbed by the passing of a gravitational wave, as in [I§].

Bogoliubov transformations carry deep physical meaning related to the particle
content in a quantum state as seen by different observers [5]. This can be seen by
considering the Bogoliubov transformation in terms of the annihilation and creation

operators:

A =Y (O i — Bl 1) (2.53)

n

A positive frequency excitation, as described by one observer, will be a superposi-

tion of both positive and negative frequencies as described by a different observer.

18
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Therefore, in QFT, there is no such thing as a universal notion of a particle. In par-
ticular, transformations where S = 0, which preserve the number of particles, are
called passive transformations, whereas transformations where 8 # 0, which create
or annihilate particles, are called active transformations.

It is worth noticing that an important property is satisfied by the Bogoliubov
coefficients. As the Bogoliubov transformation is unitary, it must preserve the field’s

commutation relations. This forces the coefficients to satisfy the relations

aol — BBt =1, (2.54a)
ap? = gal, (2.54b)

known as the Bogoliubov identities [5, 30].

In conclusion, Chapter 2 has provided the framework for understanding the be-
haviour of bosonic scalar fields confined to a region in Minkowski spacetime from
the perspectives of both an inertial and an accelerated observer. The quantization
of the scalar fields was performed using canonical quantization, which allowed us
to express each field as an infinite sum of quantum harmonic oscillators. This sub-
sequently led us to the construction of a Fock space for each observer, where the
natural states correspond to the particle states. By employing Bogoliubov trans-
formations, we have demonstrated the relationship between the fields and particle
content for each observer. This chapter laid the groundwork for the study of Gaus-
sian states, a particular family of states that can be generated from the vacuum
state of any Fock space and that will prove to have a useful implementation for

metrology. These states will be the main focus of the next chapter.
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Chapter 3

Gaussian States and the

Covariance Matrix Formalism

In the previous chapter, we studied a quantum field contained inside a cavity
travelling with an inertial or an accelerated motion through a (1+1)-dimensional
Minkowski spacetime. The analysis allowed us to understand the field in both cases
as an infinite sum of quantum harmonic oscillators, which, at the same time, can
be viewed as a decomposition of the quantum field in terms of bosonic quantum
modes. The natural description for this system involves Fock states, which specify
the number of particles in each of the modes of the field. Using the Fock basis, we
can construct a special family of states known as Gaussian states.

Gaussian states can be identified because their characteristic function has a
Gaussian form. They originate from Hamiltonians that are at most quadratic in
the canonical operatorsﬂ such as the creation and annihilation operators of the
harmonic oscillator or the position and momentum operators in quantum mechanics.
Although the condition of a quadratic Hamiltonian might seem restrictive, it is
commonly satisfied in many experimental settings in areas such as quantum optics,
optomechanics, trapped ions and atomic ensembles [34].

For example, Gaussian states naturally emerge as ground or thermal states of
bosonic systems, such as light fields, the vibrational modes in solids, or Bose-Einstein
condensates [35]. They have been extensively studied in the context of quantum op-
tics and have become a central theme in the area of continuous-variable quantum

information. Moreover, Gaussian transformations—the transformations that pre-

LOperators following canonical commutation relations.
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serve the Gaussianity of a state—are associated with typical experimental opera-
tions such as beam splitters and phase shifters. These features make Gaussian states
rather straightforward to generate and manipulate, making them easy to implement
experimentally [36], 37, 38].

From a theoretical standpoint, it is very convenient to work with Gaussian
states. Despite living in an infinite-dimensional Hilbert space inherited from their
continuous-variable nature, they can be completely described simply by their first
and second statistical moments using the covariance matrix formalism (CMF) [37].
Briefly speaking, the CMF provides a description for Gaussian states and Gaussian
transformations in Phase space [39], which is equivalent to the conventional descrip-
tion in Hilbert space but benefits from making calculations more tractable. For
instance, it can facilitate the evaluation of the entropy of a quantum state.

The chapter is organized as follows. In Section[3.1] the difference between Hilbert
space and Phase space, along with their implications for quantum states and trans-
formations, is discussed. Section [3.2] reviews the formal construction of Fock space
for a bosonic system. Gaussian states and its Phase space description, known as
the covariance matrix formalism, are introduced in Section The description
for Gaussian transformation in Phase space is given in Section [3.4] where the ex-
plicit relation between the Hilbert space and Phase space formalism for Gaussian
states and transformations is provided. Next, Section discusses the mathemati-
cal structure followed by Gaussian states and transformations in Phase space, that
is, the symplectic geometry. Section [3.6] presents Williamson’s theorem, which is a
tool that permits the factorization of Gaussian states in terms of symplectic ma-
trices. Finally, Section provides a list of the basic Gaussian states expressed in

terms of the covariance matrix formalism.

3.1 Quantum Continuous-Variable Systems:

Hilbert space vs Phase space

Quantum continuous variable systems are quantum systems whose degrees of
freedom are associated with canonical operators that have a continuous spectrum
[37]. The eigenstates of these operators define an infinite-dimensional basis for the
Hilbert space of the system. A classic example of a quantum continuous variable
system is a quantized bosonic field, which can be modelled as a collection of non-

interacting quantum harmonic oscillators with different frequencies. Continuous
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variable quantum systems play a relevant role in quantum communication and for
quantum sensing, detection, and imaging techniques [35].

Working with an infinite-dimensional Hilbert space can present some difficulties,
for instance, when studying the dynamics of the system. Restricting exclusively to
Gaussian states is a good strategy to make quantum continuous variable systems
more tractable since, in Phase space, Gaussian states can be completely described
by a finite number of degrees of freedom.

Usually, quantum states are described in Hilbert space by a positive semi-defined
operator known as the density matrix p. On the contrary, in Phase space, quantum
states are represented by a characteristic function, for example, the Wigner func-
tion. Another comparison arises when considering transformations. In particular,
Gaussian transformations in Hilbert space are driven by unitary transformations,
while in Phase space, they are represented by symplectic matrices.

Continuous variable systems are usually associated with the dynamical degrees
of freedom of non-relativistic particles (first quantization) or bosonic quantum fields
(second quantization). In any case, the formalism used to describe the Gaussian
states in Phase space is equivalent for both cases. In the next section, we construct
the Fock space for a bosonic system in preparation for defining and describing Gaus-

sian states.

3.2 Fock Space of a Bosonic System

In quantum field theory, a bosonic field is a quantum field composed of bosons.
Bosons are integer-spin particles that are characterized for obeying canonical com-
mutation relations and, consequently, they follow the Bose-Einstein statisticsﬂ A
key property derived from the statistics reveals that bosons are not subject to the
Pauli exclusion principle. Therefore, an arbitrary number of identical bosons can
occupy the same quantum state.

Examples of bosonic fields include scalar fields, which give rise to spin-0 bosons
such as the Higgs boson, and gauge fields, which correspond to spin-1 bosons like the
photon. Bosons can also exist in the form of composite bosons, where bound states of
fermions combine to behave effectively as a boson. Examples include Cooper pairs in

superconductors, atomic bosons like helium-4 atoms or Bose-Einstein condensates.

2In contrast, fermionic systems follow canonical anti-commutation relations and obey the Fermi-
Dirac statistics.
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Fields in the context of quantum field theory correspond to systems with a
varying number of particles. To mathematically represent such systems, we use the
Fock space, an algebraic structure that is constructed from the single-particle Hilbert
space to represent multi-particle states. The Fock space is the sum of the Hilbert
spaces representing zero-particle states, one-particle states, two-particle states, and
so forth.

More technically, if we denote as H the one-particle Hilbert space, then the

bosonic Fock space F(#H) is the direct sum of symmetric tensor powers of H [40]

F(H) = @ Sym(H®"), (3.1)
n=0

where Sym(+) is the symmetrization operator that ensures the tensor product states

are symmetric under particle exchanges and

H"=H@ - @H, (3.2)
H—/
n-times
is the n-particle Hilbert space.
The Fock basis can be constructed explicitly as follows. Consider a bosonic sys-
tem composed of a discrete number N of modes described by the following Hamil-

tonian,

N
, , , 1
H= kZ_lHk, Hy = hwy, <aLak T 2) , (3.3)

which, for instance, could originate from the quantization of the electromagnetic
field inside a cavity [41]. The infinite sum of quantum harmonic oscillators has a
straightforward interpretation in terms of bosonic particles. The Hamiltonian
describes the total energy of a collection of bosonic particles, which are created and
annihilated by the operators &L and ag, respectively. Each particle has an energy

hwy. These operators satisfy the standard canonical commutation relations,

[dk;d;] = Oki, [, 4] = [@L,&T] =0. (3.4)

The total particle number operator is defined as
Mot = By = Y ki, (3.5)
k k
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where ny, is the particle number operator for the mode k. It is relevant to notice

that these operators commute with each other for different modes
[k, ] =0, for k # 1. (3.6)

Therefore, the operator iz, commutes with the Hamiltonian H , implying that it is
possible to find a common set of eigenstates for both operators. These eigenstates

can be fully characterized by the action of the operators n; on them,

N ’n17n27--'7nk7"'> = Nk |n17n21-"7nk7"'>7 (37)

yielding the eigenvalues ny that correspond to the number of particles in the mode
k. The eigenstates |ni,ng,...) form an orthonormal basis for the Fock space that
is usually called the ‘particle-number representation’. The inner product in Fock

space is defined as

(n,ny,...|n1,ne,...) = Oty Oy ™ - (3.8)

The total number of particles n is found by applying the operator n;,s to the

eigenstates:
ﬁtat ]nl, no, .. > = Zﬁk ‘nl,TLg, .. > =n ]nl, no, .. > . (3.9)
k

The application of the operators &L and ay on the state [ni,ng,...) produces a new
state. The particle number of these new states can be calculated, and it is obtained
that

Rior G N1, 02, ...y = (n 4+ 1)ak [ny,na,...), (3.10a)

ﬁtat dk \nl,ng, .. > = (n - 1)&19 ]nl, no, .. > . (3.10b)

The action of the operators on the Fock basis translates into the increase or decrease
of the particle number by adding or subtracting a particle in the mode k. This
confirms the interpretation of dL and ap as creation and annihilation operators.
Since the operator 7, is a positive operatorﬂ it must be bounded from below. This
implies that a state |0) = ®,]€V:1 |0x) must exist, such that

3Given a Hilbert space H, a linear operator A:H — His called positive semi-definite A>0if,
for every |z) € H, (x|Az) > 0, [42].
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ix [0) =0, (3.11)

for every mode k. The state |0), called the vacuum, is the state that does not
contain any particles. The rest of the Fock states are built by repeatedly applying
the creation operators onto the vacuum state. In this way, the state containing n;

particles in the first mode, ng particles in the second mode, and so on, is created as
mma, ) = e (@)™ (@)™ - [0} (3.12)
T g |

where the states have already been normalized.
Finally, the explicit action of the creation and annihilation operators on the Fock

states is given by,

dL\nl,...,nk,..):\/nk—i—l\nl,...,nk—i—l,...), for ny > 0, (3.13a)
ag [n1y ..oy Nk o) = Nk ng, o ne— 1,000, for ng > 1. (3.13b)

In summary, the Fock space representation of the Hilbert space provides a natural
description for bosonic quantum fields, which correspond to systems with a varying
number of particles. The Fock states encapsulate the behaviour of the field by
specifying the field’s particle content. An example where this representation is well-
suited is found in Chapter [2] where we describe the motion through spacetime of
a cavity-confined quantum field. The Fock space will again become relevant in

Chapter [5, where we discuss the phonons of the Bose-Einstein condensate.

3.3 (Gaussian States in Phase Space

All the physical information about a quantum system is contained in its quantum
state. In Hilbert space, quantum states are represented by a density matrix p. The
density matrix is a positive-definite, self-adjoint operator of trace one that acts on
the Hilbert space of the system. In the case of a bosonic system, we have that
p i HE" — H®". When the state of the system is pure, which follows whenever
p* = ) is satisfied, the density matrix can be expressed as p = |p)(p|, for all
lp) € H®™. Any density matrix has an equivalent representation in Phase space in
terms of a characteristic function.

The defining feature of Gaussian states is that their associated characteristic
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function has a Gaussian form, which is completely determined by the first and
second statistical moments of the canonical operators. The Phase space description
of Gaussian states and Gaussian transformations is known as the covariance matriz
formalism [36, B7]. Notice that the covariance matrix formalism corresponds to a
subspace of the Phase space description of a quantum system with the restriction
to Gaussian states.

The representation of the covariance matrix formalism, however, is not unique.
The selection of the Hilbert space basis affects the definition of the statistical mo-
ments, leading us to at least two different representations of the covariance matrix
formalism. If the statistical moments are defined in terms of the creation and an-
nihilation operators, @ and af, we obtain the complex representation. However, if
they are defined in terms of the generalized position and momentum operators, &
and p, we get the real representation [43]. In this work, we will exclusively employ
the complex representation.

To start constructing the covariance matrix formalism, let us consider the bosonic
creation and annihilation operators az, dL for a bosonic system of N modes. All the
operators for each of the modes in the N-dimensional Fock space can be collected

into a 2/N-dimensional vector
A= (ay,...,an;al,....a0)T. (3.14)

The canonical commutation relations obeyed by the operators can be written com-

pactly by the use of the symplectic form K

A, Al] = K;;,  with K = SR (3.15)
0 —1
where Iy is the N x N identity matrix. The symplectic form K is a matrix that is
Hermitian K = KT and unitary K~ = KT, that additionally satisfies the relation
K? =Dy
Given a quantum state described by the density matrix p, the symmetric char-

acteristic function associated with the state is defined as [34],

x(&) = Tr[pD(€)] (3.16)

. At
where D(€) = e K& is the Weyl displacement operator, & is a 2N-dimensional
complex vector of the form & = (v,7*)7 and v € CV. For Gaussian states, the
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3.3. Gaussian States in Phase Space

characteristic function becomes [44],

X(€) = e 1€ TemdIKeE, (3.17)

which we can see, is completely determined by the first statistical moment d, also
called the displacement vector, and the second statistical moment I'; also called the

covariance matrix. They are respectively defined as:

= (A), (3.18a)
A;) —2(4,) (Al (3.18b)

where (A) denotes the expectation value of A in the state p, which is defined as

(A) = Tr(Ap) = (Tr(arp), Tr(azp), ..)" , (3.19)

with Tr(-) indicating the trace. The covariance matrix I' is a positive semi-definite
matrix that carries the most relevant properties of the state. Then, working with
the entire characteristic function is no longer necessary. The state of the system is
completely described by d and T'.

From their definition, the displacement vector and the covariance matrix carry

the following structure,

Qi

X Y
d=1_1. = ) (3.20)
d Yy* X
where d is an N-dimensional complex vector, d" its complex conjugate and X, Y
are N x N matrices with complex entries. The Hermiticity of the covariance matrix,
I' =T, imply that Xt = X and YT =Y.

In the standard formulation of Hilbert space, the density matrix represents a
physical state if and only if it is a positive semi-definite operator. That is, it must
fulfil p > 0. In Phase space, this condition, along with the canonical commutation
relations , is reflected by the inequality

I'+K>0. (3.21)

This is a necessary and sufficient condition for the covariance matrix to describe a

physical state. The condition considers Gaussian states, but it also must be followed
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by any covariance matrix associated with a more general non-Gaussian, continuous
variable state [34] [37].

3.4 Gaussian Transformations in Phase Space

Gaussian transformations are defined as the set of transformations that map
Gaussian states into Gaussian states. In Hilbert space, Gaussian transformations
are performed by unitary transformations U that act onto a quantum state as p/ =
U bf] T. These transformations can be generated via an exponential map where the
argument is at most quadratic in the annihilation and creation operators,

Zj* — eéATWA+ATK77 (322)

where v is a 2N- dimensional complex vector and W is a Hermitian matrix, both
possessing the same structure as the displacement vector d and the covariance matrix
I", established in .

In Phase space, Gaussian transformations are carried by symplectic transforma-
tions. Under the transformation represented by U , it can be shown [44], 45] that the

first and second statistical moments transform according to

d = Sd+b, I =STrst, (3.23)

with

1
S = eEW, b= (/ eiKWtdt> v, (3.24)
0

where S corresponds to a 2N-dimensional symplectic matrix and b € C?V. The re-
lationship between the unitary transformations and the symplectic transfor-
mations mediated through is of great relevance for describing Gaussian
states. It constitutes the recipe that allows us to move between the density matrix
formalism in Hilbert space and the covariance matrix formalism in Phase space.
We can obtain different Gaussian transformations depending on the specific se-
lection for W and +. For instance, setting W = 0 corresponds to the Weyl displace-
ment operator, which is the transformation that generates a coherent state. Setting
v = 0 can lead us to the phase-changing operator, the squeezing operator, or the

mode-mixing operator, depending on the particular form of W. In Appendix [A]
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we give the most general parameterization for the matrix W accounting for all the
1-mode and 2-mode Gaussian transformations.

We mentioned the symplectic nature related to the matrix S and the Gaussian
transformations in Phase space; however, it has not been formally established. In the
next section, we introduce the definition of the symplectic group, which connects the
Phase space formalism for Gaussian states and transformation with the symplectic

geometry.

3.5 Symplectic Geometry

Symplectic geometry focuses on the study of symplectic manifolds. Its inception
goes back to the Hamiltonian formulation of classical mechanics, where it was found
that the Phase space associated with certain classical systems exhibited the structure
of a symplectic manifold. A symplectic manifold (M, K) corresponds to a smooth
manifold M equipped with a closed, nondegenerate 2-form K, called the symplectic
form [46]. Symplectic geometry provides a natural mathematical framework for
Hamiltonian systems and also has applications to quantum mechanics and quantum
optics [47].

Returning to the transformation matrix S, let us investigate its algebraic prop-
erties. From the results obtained in , we can notice two properties. First,
the matrix S has the same structure as the covariance matrix and, second, it leaves
invariant the symplectic form K introduced in , which can be expressed as

s—[“ P .,  SKS' =K. (3.25)

ﬁ* a*
These properties precisely define the complex representation of the real symplectic
group in 2N dimensions Sp(2N,R). This group corresponds to the set of all 2N x 2N

complex matrices that preserve the symplectic form K,
Sp(2N,R) = {S|SKS' = K}. (3.26)

Therefore, we identify S as a symplectic matrix. An important remark is that this is
not a complexification of the group. Rather, it corresponds to a change of basis that
involves a transformation from the set of operators {Z;, f)j}, which constitutes the

real representation of the covariance matrix formalism, to the set of mode operators
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{a;, d;r-}, which constitutes the complex representation [37 [43].

The symplectic group can alternatively be understood as the set of all real linear
canonical transformations of a 2/N-dimensional vector space, where one can find that
there exists a one-to-one correspondence between these linear transformations and
the symplectic matrices [43,[47]. Then, the physical interpretation for the symplectic
matrices is that they are transformations that preserve the commutation relations
of the operators.

The Lie algebra associated with the symplectic group will be very useful when
describing quantum metrology on Gaussian states. The symplectic group Sp(2N, R)
is generated through the exponential map of the Lie algebra

sp(2N,R) = {KW;|W] = W;}, (3.27)

where W; define a set of Hermitian, 2N x 2N, linearly independent basis matrices.

The matrices KW are the infinitesimal generators of Sp(2N,R), as can be seen from

Eqs. (3.22)) and (3.24), and are associated with Hamiltonians that are quadratic in

the canonical operators [37, [43]. In Appendix [Al we set the most general parame-
terization for W that generates all the Gaussian transformations for the one-mode
and two-mode cases.

Before closing this section, an important final remark needs to be made. The

defining properties of the symplectic group given by (3.25) can be rewritten as

aat — B8t =1, (3.28a)
af” = pa’. (3.28b)

These relations turn out to coincide exactly with the identities satisfied by the coef-
ficients of a Bogoliubov transformation, as obtained in (2.54)). It can be concluded
then that Bogoliubov transformations are, in fact, symplectic matrices and thus
correspond to Gaussian transformations [44].

In general, the symplectic transformations driven by the matrix S can be clas-
sified in two ways: passive transformations and active transformations. Passive
transformations, characterized by the condition § = 0, correspond to transfor-
mations that preserve the number of particles and the energy of the system, like
phase shiftings or beam splitters. Active transformations, identified by the condi-
tion B8 # 0, do not preserve the number of particles or the energy of the system,

such is the case of the squeezing. In the next section, we will introduce the complete
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set of fundamental Gaussian states for one-mode and two-mode systems.

3.6 Wailliamson’s Theorem

In this section, we introduce a theorem of great relevance for the study of Gaus-
sian states of multimode bosonic systems. Williamson’s theorem [48] provides a

powerful mathematical tool to factorize a Gaussian state.

Williamson’s theorem. For any 2N x 2N positive definite matrix o, there

exists a symplectic transformation S € Sp(2N,R) that diagonalises o as

ST =8DST. (3.29)

where A\ corresponds to the symplectic eigenvalues of the matrix o, and D =

diag(A1, ..., AN, A1, -, An) is a 2N x 2N diagonal matrix.

A proof of the theorem can be found on [34]. The relevance of this theorem
relies on its application to the covariance matrices, demonstrating that any covari-
ance matrix can be diagonalized through symplectic transformations. Given their
correspondence to the covariance matrices, this fact directly translates into Gaus-
sian states. That is, every Gaussian state can be decomposed as the product of
symplectic matrices with a diagonal eigenbasis matrix D. In the next section, we
will see that D can be identified with the thermal and vacuum states of a bosonic
system.

The symplectic eigenvalues A of the matrix o are determined by solving the

eigenvalue problem [37, [44]

D = Eig, (Ko), (3.30)

where K corresponds to the symplectic form used throughout this chapter. If o rep-
resents a covariance matrix, then it corresponds to a physical state if the eigenvalues
satisfy the condition A; > 1 for all k. This constraint is equivalent to the condition
given by .

In practical applications, it is often convenient to consider only a subsystem of a
Gaussian state. In Hilbert space, this is done by tracing out all the modes or states

that are not of interest. In Phase space, partial tracing using the covariance matrix

31



3.7. List of Gaussian States in the CMF

formalism is very easy to compute. We just need to remove from the covariance
matrix the rows and columns corresponding to the unobserved modes, as well as the

elements from the displacement vector related to those dismissed modes.

3.7 List of Gaussian States in the CMF

In this section, we present the basic Gaussian states. The number of elemen-
tary Gaussian states that can be generated from a quadratic Hamiltonian can be
characterized by a finite number. These fundamental states can be obtained by
considering only one-mode and two-mode systems, where the generalization to a
higher number of modes is straightforward. Their physical meaning can be easily
understood in analogy with their interpretation within quantum optics [49]. This
section is complemented by Appendix which presents the number of particles

associated with each Gaussian state.

3.7.1 Thermal State

Let’s consider a system composed of N non-interacting bosonic modes, each
mode described by a state |1);) with an energy Ej. Assuming that each mode is
thermally populated, the number of particles per mode follows the thermal distri-

bution:

1 E E

~k k 4 k

Pin = - exp <_kBTnk> , Z =Tr [exp <_Mnk>] , (3.31)
where Z is the partition function, n; is the number operator for the mode k and
kp is the Boltzmann constant. In Hilbert space, the complete thermal state of

the system corresponds to the tensor product of the states of each of the modes

Pen = P, © - -- @ piY. In Phase space, the state is represented as

T (2 0
din =0, Iin = EB ; (3.32)
k=1 \ 0 Ak

where \;, = coth(mi: ). We find that the covariance matrix of a thermal state
corresponds precisely to the diagonal matrix of symplectic eigenvalues introduced in
the previous section [34} [35]. In connection with Williamson’s theorem, we conclude
that every Gaussian state can be generated starting from a thermal state. In this

sense, the most fundamental Gaussian state is the thermal state.
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3.7. List of Gaussian States in the CMF

The symplectic eigenvalues increase with higher temperatures and with lower
energies. In the limit as T" — 0, the eigenvalues approach A — 1, thus satisfying
the constraint A\ > 1 required for the covariance matrix to represent a physical

state.

3.7.2 Vacuum State

A special case from the thermal state is the vacuum state |0), corresponding to
the case when T' = 0. In this state, where there are no particles, the first moment
of the system vanishes dy,c = 0. Considering an N-mode system, the covariance

matrix representing the vacuum state simply is

| T (3.33)

Consequently, any state I' generated by applying a transformation S to the vacuum
state can be calculated simply as I' = S ST.

Thermal states are mixed states. However, when the temperature of the system
drops to zero, we end with the vacuum state, which is a pure state. The purity u,

of a Gaussian state p can be determined in terms of the covariance matrix as

L. " (3.34)

3.7.3 Coherent State

The coherent state |«) can be obtained by applying the Weyl displacement op-

erator Dy () to the vacuum state,

@) = Di(a) [0) = €m0 o) (3.35)
where a@ € C and the Weyl displacement operator is an operator generated from
a linear Hamiltonian. Coherent states are eigenstates of the annihilation operator
ar |a) = a]a). In the Heisenberg picture, the annihilation operator gets transformed
as & — a + «a. Coherent states constitute an overcomplete basis for the Hilbert
space since they are non-orthogonal states. In terms of the Fock basis, they can be

expanded as
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) = ezlol’ n;) N In). (3.36)

Coherent states are usually described as being the states that most closely re-
semble the behaviour of a classical harmonic oscillator. The expectation values of
the position and momentum operators in a coherent state follow the dynamics of the
classical harmonic oscillator. Furthermore, coherent states minimize the Heisenberg

uncertainty principle in a balanced way:

h h
Az =Ap = 5 = AZAp = ok (3.37)
Physical realizations of coherent states can be found in the light emitted from
lasers and in the ground state of Bose-Einstein condensates, superconductors and
superfluids, which can be approximated by coherent states.

In Phase space, a coherent state is represented by
d, = (o, )T, Iy =loy. (3.38)

3.7.4 Squeezed State

Squeezed states |si) are obtained by applying the squeezing operator to the
vacuum state. The squeezing operator can be classified into two categories: single-
mode squeezing and two-mode squeezing. In the single-mode case, the squeezing
operator is given by

~k o (&]‘27 A2)
Sleg =€ 2 , (3.39)
where 7 € R is known as the squeezing parameter. The two-mode squeezing operator

is introduced in Appendix [A] The single-mode squeezed vacuum state is obtained

as

K
|$1:59) = S1-5q 0) - (3.40)

The squeezing operators are generated from quadratic Hamiltonians of the form
H (a")2 + h.c. in the single-mode case and H dTl;T + h.c. in the two-mode case.
In the Heisenberg picture, the annihilation operator transforms as @ — (coshr)a —

(sinh r)&T. In Hilbert space, the single-mode squeezed state in terms of the Fock
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basis can be expressed as

V( ) 12n) . (3.41)

s (tanh r
[51- Sq \/coshr Z

Squeezed states, like coherent states, minimize the Heisenberg uncertainty prin-
ciple. However, the uncertainties for the canonical conjugated variables are not
balanced, that is, Az # Ap; rather, they follow

A = \/Ee—r, Ap = \/ECT, =  AiAp= g (3.42)

This implies that in squeezed states, the uncertainty of one of the canonical variables
is reduced at the expense of increasing the uncertainty of the other.

The asymmetry of the uncertainties has been conveniently applied to enhance
the measurement precision in different experiments. For instance, it has been used
in the LIGO experiment for gravitational wave detection [6] and in spin-squeezed
states of light to improve the precision of atomic clocks [50, [51].

The two-mode squeezed state is the paradigmatic example of entanglement for
Gaussian states and, generally, for continuous-variable quantum systems. This state
can be produced, for example, using non-linear optical crystals via a process known
as parametric down-conversion. Squeezed states have also been achieved on phonon
states in crystal lattices, spin states in neutral atom ensembles, and ion traps.

In Phase space, the first moment of the state vanishes disq = 0. Consequently,

the state is completely characterized by its covariance matrix

cosh2s;,  —sinh2s;
Fisq = . (3.43)
—gsinh 2s;,  cosh 2s;

3.7.5 Mode-mixed State

The mode-mixed state arises in the context of multi-mode systems, where at least
two modes are necessary. It is created by the mode-mixing transformation, which is
also famously known as a beam splitter. This transformation is the simplest example

of an interferometer. The transformation is defined by

~ A7 anT
B(#) = eflaTo-ab), (3.44)

where § € R is a parameter that characterizes the transmissivity 7 of the beam
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splitter. The transmissivity is defined as 7 = cos?6 € [0, 1], and we say that the
beam splitter is balanced when 7 = 1/2. In the Heisenberg picture, the annihilation

operators a and b are transformed as

joN

N
b)) \vitr  F

Before concluding the chapter, two interesting remarks can be made. Firstly,

jo}

(3.45)

o>

for Gaussian states, measurements are straightforward to implement in practice and
typically yield precisions close to the optimized bound. Furthermore, the states
themselves can be easily produced in any quantum optics laboratory through op-
tical operations (e.g. coherent states and thermal states or squeezed operations or
mode-mixing operations) and have shown to be experimentally convenient when
working with bosonic fields [38]. The second remark is that phononic excitations in
a BEC can be used for various purposes in analogy to photons, particularly for quan-
tum metrology. For instance, see [18], where Gaussian states constructed with the
phonons of a BEC were employed to develop a strategy for measuring gravitational
waves.

To conclude, this chapter has introduced the covariance matrix formalism and
employed it to establish the description of Gaussian states and Gaussian transfor-
mations in Phase space, which represent the chapter’s core idea. To support this, we
briefly discussed the differences between Hilbert space and Phase space and derived
the construction of Fock space, which is essential for generating Gaussian states.
Furthermore, we introduced symplectic geometry and Williamson’s theorem, two
crucial mathematical tools for a formal understanding of Gaussian states and Gaus-
sian transformations in Phase space. We ended by enlisting the basic Gaussian
states in terms of the covariance matrix formalism. In the next chapter, we intro-
duce quantum metrology and demonstrate how to implement this tool to Gaussian

states to estimate physical parameters driving the evolution of a quantum state.
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Chapter 4

Quantum Metrology for

(Gaussian States

Science relies fundamentally on the measuring process. Without a clear under-
standing of measurements, experiments would not be possible, and science as we
know it would not exist. Metrology is the branch of science dedicated to the study
of measurements, and it plays a fundamental role in ensuring precision, reliability
and consistency across science. Its main objectives include defining measurement
units, establishing standardized methods for reproducing measurements, quantify-
ing measurement uncertainties and improving measuring techniques. By providing
a rigorous study of measurements, metrology establishes an essential link between
basic scientific research and its practical application.

Quantum mechanics is essential for understanding the dynamics of small sys-
tems, like those at the scale of atoms and elementary particles. As systems become
smaller in size, more precise measurements are required to study their behaviour.
Quantum metrology is the area of physics that focuses on the practical measure-
ments of quantum systemsﬂ In particular, it takes advantage of quantum effects to
facilitate more precise measurements.

A key component of quantum metrology is the quantum phenomenon of entan-
glement. In quantum mechanics, entangled particles exhibit stronger correlations
than those observed in classical systems. This phenomenon has driven the develop-
ment and improvement of high-precision technologies currently in use. Significant

examples include the use of entangled photons in optical coherence tomography for

Do not confuse this with the ‘measurement problem’ in quantum mechanics.
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medical imaging [52], entangled atomic clouds for quantum-enhanced magnetometry
to measure magnetic fields [53], and squeezed states of light in the LIGO experi-
ment for gravitational wave detection [54]. By exploiting the unique properties of
quantum systems, quantum metrology has become one of the most promising areas
of technological development.

Since this thesis aims to propose a quantum tabletop experiment for measur-
ing a gravitational field—or, more precisely, for estimating a physical parameter
characterizing a gravitational field—quantum metrology is the appropriate field of
study.

This chapter is organized as follows. Section reviews the fundamental ideas
and concepts of quantum metrology. Following this, Section [£.2] introduces estima-
tion theory to establish the definition of the quantum Cramér-Rao bound, which
quantifies the parameter estimation precision. In Section the quantum Fisher
information for Gaussian states is presented using the covariance matrix formalism.
This quantity is crucial for evaluating the quantum Cramér-Rao bound. Section
describes the metrological schemes, which summarize the preparation and op-
timization of the estimation process. Finally, Section discussed the progress of

quantum metrology when considering relativistic effects.

4.1 Quantum Metrology’s Overview

Quantum metrology focuses on studying high-resolution and high-sensitive mea-
surements of physical quantities using quantum theory, particularly exploiting quan-
tum entanglement and quantum squeezing. The main goal of this research field is to
provide techniques that enable the precise estimation of physical parameters encoded
within a quantum state. By taking advantage of quantum resources, the application
of quantum metrology can outperform the precision and accuracy of measurements
performed with classical strategies [55, [56].

The study of quantum metrology can be broadly classified into two main cate-
gories depending on the nature of the degrees of freedom of the quantum system:
discrete and continuous. In discrete-variable systems, the Hilbert space is finite-
dimensional, and it is spanned by a discrete set of eigenstates. In this context,
quantum metrology focuses on discriminating between states using an appropriate
measurement basis. The paradigmatic example is the qubit, a two-level system

with two distinguishable states. In contrast, continuous-variable systems have an
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infinite-dimensional Hilbert space characterized by a continuous eigenbasis, with
the quantum harmonic oscillator being the classical example. In this case, quantum
metrology aims to estimate parameters encoded in a quantum state.

In the context of quantum metrology for continuous systems, estimation theory
provides the mathematical framework for studying parameter estimation [57, [58].
Estimation theory is the branch of statistics concerned with estimating the value
of a parameter based on the measurement of empirical data that contains random
components. The parameter in question characterizes the underlying physical state
of the system in such a way that its value influences the measured data distribution.

In general, estimation theory can be divided into two classes: global and local.
Global estimation theory assumes no a priori knowledge about the data distribution
of the parameter’s possible values. Conversely, local estimation theory works under
the assumption that the parameter is approximately located around a certain value.

Assuming that a physical parameter is known to be localized around a cer-
tain approximate value, local estimation theory provides an optimal measurement
that helps us estimate the parameter in the shortest amount of time or with mini-
mal resources. The central figure of merit when estimating an unknown parameter
corresponds to the quantum Cramér-Rao bound. This bound sets a limit on the
optimal measurement precision and is closely related to another important quantity,
the quantum Fisher information. In the next section, we provide a basic derivation

of these two quantities and elaborate on their physical interpretation.

4.2 Continuous-Variable Quantum Systems and Local

Estimation Theory

Consider a continuous-variable quantum system in a state represented by the
density matrix p., which depends on some real physical parameter e. In order to
estimate €, we conduct an experiment involving the measurement of an observable.
Each measurement yields an outcome x that depends on the value of €. Due to
the presence of errors and uncertainties in the measurement process, the relation
between € and the measurement outcome x is governed by an unknown probability
distribution p(e|z).

Since we only have access to the measurement outcomes z, the experiment can
be modelled using the state of the system p, and a positive operator-valued measure

(POVM) {Em}, which characterizes the measurement process on the system.
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The Born rule establishes the connection between the measurement outcomes x

and the parameter € as

p(xle) = Tr[ELp.], (4.1)

where the POVM {Ex} is defined as a set of positive semi-definite operators satis-
fying the completeness relation [ dz E, = ﬁ, with 1 denoting the identity operator.
The uncertainties of the measurement process are contained in the POVM, while
the uncertainties related to the state preparation are captured by p..

Through Bayes’ theorem, the conditional probability p(e|x) representing the like-

lihood of having the value € given the experimental data x, can be expressed as

p(z|e)p(e)
p(z)

where p(¢€) and p(z) are the unconditional probabilities of observing € and z, respec-

plelz) = : (4.2)

tively, and are assumed to be known or that can be inferred.

To estimate the value of € from the data x, an estimator T'(x) is defined. This cor-
responds to a function that maps the measurement data into a value of e. If the ex-
periment is repeated N times, resulting in the measurement outcomes (x1,...,2zx),

the estimator T acts as

T: (xl,...,xN)»—>T(x1,...,:1cN), (43)

mapping an N-tuple in RY to a real number. For a single measurement outcome z,

the mean value of the estimator is given by

1), = [ doplel T(a). (1.4)

An estimator is consistent if it asymptotically converges to the true value of € as the
number of measurements N tends to infinity. The estimator is unbiased if (T'), = e,
that is, if its mean value coincides with the true value of the parameter [55]. For N

independent measurement outcomes, the mean value for any estimator reads

(1), = /d:cl codxy p(zile) .. .p(xn|e)T (21, ..., 2N). (4.5)

A crucial quantity for the analysis of uncertainties in parameter estimation is
the Fisher information [59, [60], defined as
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Pl = [ de piale) (ilnmre))Q ~ [ (imxk))?. (46)

The Fisher information F'(e) measures the amount of information that the experi-
mental setup reveals from the value of € through the probability distribution p(x|e).
Since the experimental setup consists of the state p, and the POVM {£,}, the
Fisher information heavily depends on both the state of the system and the choice
of the measurement.

Given that F(e) is proportional to the derivative with respect to € of the outcome
probabilities p(z|e), it quantifies the system’s response to changes in e. Expressed
more intuitively, this means that bigger variations of the outcome probabilities imply
larger amounts of information extracted from the system. This is again discussed
at the end of this section.

To quantify the precision of the estimation process, the mean square error (MSE)

for the parameter € is defined as:

(Ae)?) = / da (T(z) — (T).)? p(ale), (47)

where the joint probability distribution for independent measurements can be writ-

ten as
N
p(ale) = [ [ plxile), (4.8)
i=1
with @ = (x1,...,xy) representing a vector that collects the measurement outcomes.

A lower bound on the mean square error in estimating € can be derived at this

point. The outcome corresponds to the Cramér-Rao bound [61]

1
<(A6)2> > W, (4.9)
valid for any estimator given a fixed number N of independent measurements. This
bound defines a fundamental limit to the minimal value of the error in estimating
€. The formal derivation of this result can be found in [59} [60]. The precision in the
estimation improves when the Fisher information increases. Therefore, designing ex-
periments that maximize the Fisher information is crucial for an optimal parameter

estimation. This optimization involves the careful construction of quantum states

41



4.2. Continuous-Variable Quantum Systems and Local Estimation Theory

p. and the selection of appropriate observables through the POVM {Em}

Let us revisit the Fisher information. Previously, it was used to obtain the
Cramér-Rao bound, which sets a limit on the precision of estimating a parameter
by optimizing for all possible estimators. However, we can go a step further and
optimize F'(e) also for all possible measurements. The quantum Fisher information
Fg(e) is then defined as the maximum of the classical Fisher information F'(e) over
all possible POVM {E,}

Fg(e) = sup{Ex}F(e), (4.10)

where SUD{ f; 3 denotes the supremum over the set of all possible POVMs. By
construction, the definition ensures Fy(e) > F(e). This leads to the definition

of the quantum Cramér-Rao bound

1

(Ae)?) > N (4.11)

which states that, on average, the estimation for e cannot be closer to its real
value than the inverse of the quantum Fisher information times the number of
measurements N performed. The quantum counterpart of the Cramér-Rao bound
establishes a lower bound to the precision of the estimation that is independent of
the measurement procedure as it is optimized for all quantum measurements [55, 62].
There is an alternative way to understand the quantum Cramér-Rao bound and
the quantum Fisher information that provides valuable insight into their physical
interpretation. Particularly, the quantum Fisher information is closely related to
the Bures distance dszB, a measure that quantifies the distinguishability between

two quantum states p; and py. The Bures distance [63] is defined as

dsh(pr. pa) = 2 |1 = VF(pr, )| (4.12)
where F(p;, pg) denotes the Uhlman fidelity [64], given by
2

F(p1,p2) = Tr < VD1 b2 \//A’T) : (4.13)

The fidelity measures the overlap between two quantum states. For identical states

the overlap is perfect, F(p,p) = 1, and for orthogonal states the overlap is zero,
f(ﬁ? /A)J_) =0.
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Now consider the state p, characterized by a parameter e. If the parameter
undergoes an infinitesimal change de, the distinguishability between the states p,

and p, 4. is related to the quantum Fisher information through [44} [55] 60, 65]

Fo(©) = i3 |1~ y/Flerac ). (4.14)
This equation reveals a connection between state distinguishability and parameter
estimation. The right-hand side quantifies the distance between the states p, and
Petdes While in the left-hand side the quantum Fisher information Fg(e) is key to
determine the precision of estimating e. Therefore, the more distinguishable the
states are under a small change in €, the higher the quantum Fisher information
becomes, which means a better precision to estimate €. This geometric perspective
reinforces the importance of optimizing the quantum states p, to maximize the

Fisher information.

4.3 Quantum Fisher Information for Gaussian States

Quantum metrology can be conveniently applied to Gaussian states, resulting
in a powerful tool. In this section, we take advantage of the covariance matrix
formalism to express the quantum Fisher information in terms of the displacement
vector and the covariance matrix.

Notice from the previous section that the quantum Fisher information was writ-
ten in terms of the density matrix p. When restricting ourselves exclusively to
Gaussian states, the quantum state p can be fully described by the displacement
vector d and the covariance matrix I'. Therefore, the quantum Fisher information
can be re-expressed in terms of these two quantities. A careful derivation can be
found in [44) [66].

Consider a quantum system described by a Gaussian state with initial displace-
ment vector dy and covariance matrix I'g. Suppose the state undergoes an evolution
driven by a symplectic transformation S(e) characterized by a parameter e. The
change in the state will be described according to Eq. as

d(e) = S(e)dy, T(e) = S(e)ToST(e). (4.15)

The goal is to estimate the parameter € encoded in the state by the transfor-

mation S(e). For a single-parameter estimation of a multi-mode pure state, the
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quantum Fisher information is given by [44]

= 3 2RlQUOQul] + 2d! (0 (e)dl(e) (4.16)

where N is the number of modes of the state, Re[] denotes the real part of the

argument and the matrix @ is defined through

P(e) = S71(€)d:S (), (4.17)

where 0, denotes partial differentiation with respect to €. The matrix P(e) naturally
follows the algebra ([3.25)) of the symplectic group,

R Q
P= , PK + KP' =0, (4.18)

Q* R*
where K corresponds to the symplectic form. Equation will play a central
role in Chapter [6] to determine the precision to estimate gravitational parameters.

In more general cases, we can account for the thermal effects. In particular, we
can consider a special class of thermal states, the isothermal states, whose symplectic
eigenvalues are all identical, Ay = ... = Ay = /\E|

The single-parameter estimation for a multi-mode isothermal state undergoing
the same symplectic transformation S(e), the quantum Fisher information general-
izes to [67, [68]

Fole) = ;1iiw1}{(r@)]i(@)1 +2d (T (e)d(e), (4.19)
where the dot represents the derivative with respect to €, and A is the symplectic
eigenvalue of the isothermal state. This expression is particularly relevant consid-
ering that, strictly speaking, it is impossible to generate a perfect vacuum state
and, likewise, to generate perfect pure states where the thermal component is non-
negligible.

Nonetheless, studies such as [69], which explores the effects of finite tempera-
ture in a BEC-based gravitational wave detector very similar to the proposal in
this thesis, indicate that the thermal contributions have a negligible impact on the

measurement precision, showing the robustness of the BEC-based detector.

2Recall that the symplectic eigenvalues were previously defined in equation (3.29)).
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It is worth highlighting that implementing the covariance matrix formalism in
quantum metrology has some advantages from the mathematical perspective. First,
the density matrix of Gaussian states is usually written as a Taylor series in opera-
tors. In the covariance matrix formalism, states are represented only by one vector
and one matrix. Another advantage arises when considering a subsystem, as there
is no need to take infinite-dimensional traces over all the quantum states. The ir-
relevant modes can be traced out from the covariance matrix by simply removing

their rows and columns.

4.4 Metrological Schemes

One of the most promising applications of quantum metrology lies in the de-
velopment of quantum technologies. In the previous sections, we established how
quantum metrology provides a method to determine the precision with which a
parameter can be measured when it is not a direct observable of the system. In
this section, we describe a systematic scheme for implementing quantum metrology.
The main strategy for implementing quantum metrology focuses on finding optimal
initial states and selecting optimal measurements that maximize the precision of
parameter estimation [70)].

The estimation process comprises a number of steps, starting with the selection
and preparation of a convenient initial state for the quantum system, often called
the probe state. The probe state should be selected according to how sensitive it is
to variations of the unknown parameter €. Next, € gets encoded into the probe state
by a unitary transformation, which physically corresponds to the interaction of the
probe state with an external system driving the transformation. The information
about € is then extracted by an appropriately chosen POVM. Finally, an estimator
processes the complete sequence of measurement outcomes to estimate the value of
the parameter. This procedure is known as the metrological scheme.

Figure[4.1]| provides a schematic representation of the metrological scheme, which

can be summarized as follows:

1) Selection and preparation of the probe state p.

2) Encoding of € into p, through the transformation U (e) representing the inter-

action of the probe with an external system, yielding the state p,.
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3) Extraction of the parameter information by selecting a suitable measurement
basis given by a POVM.

4) Estimation of the parameter based on the measurement outcomes {x;} after

N independent measurements.

1) Probe state preparation, fo 2) Encoding process, U () 3) Measurement

4 Y

Squeezed

vacuum state
W L1,22,...

T/ 4) Estimation

Vacuum state

Vs

Rotated squeezed  Displaced rotated T<CE1 ST e I,'N) ~ €
vacuum state squeezed vacuum state
.

Figure 4.1: Metrological Scheme for the Parameter Estimation Procedure. The
probe state is prepared in a state py. Then, the probe state undergoes an evolution
driven by a transformation U(e) that encodes the parameter e. The resulting state
P gets measured by a POVM that generates an outcome x;. After N independent
measurements, an estimator maps the outcomes to an estimation for the value of e.

This procedure applies to any quantum system described by a probe state pg
undergoing any unitary transformation U (¢). In the case of Gaussian states, the
probe state is fully described by the pair (dy, ), and the parameter € gets encoded
by the symplectic transformation S(e). The resulting state to be measured is given
by (d(€), T(¢)).

From the metrological scheme, it follows that quantum metrology focuses on
undertaking three main duties to optimize the parameter estimation process. The
first is to identify an optimal probe state that is the most sensitive to the changes
induced by U(e), meaning that it maximizes the quantum Fisher information. The
second task is to select optimal measurements that ensure the classical Fisher infor-
mation from the measurement saturates the quantum Fisher information, therefore
minimizing the mean squared estimation error. The third and final task is to choose
an appropriate estimator that most effectively generates an estimate for the real

value of e.
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Before concluding this section, let us discuss the scaling limits associated with
the estimation precision Ae derived from the quantum Cramer-Rao bound.

Consider N identical copies of the state p., which depends on the unknown
parameter €. Let’s assume that the state is associated with a single-particle sys-
tem. Then, performing N independent measurements of the state is equivalent to
performing a single measurement of a collection of N classically correlated (non-
entangled) particles in the state p,. By the central limit theorem, the precision of
the parameter estimation scales as Ae o< 1/ V/N. This statistical bound is known as
the standard quantum limit [70].

However, this limit can be improved by considering quantum effects. If the col-
lection of N particles is entangled, the central limit theorem does not apply anymore,
and the precision of the parameter estimation scales as Ae oc 1/N. This quantum-
enhanced limit is known as the Heisenberg limit and represents the ultimate limit
on the estimation precision.

Hence, the end goal of quantum metrology is to exploit quantum effects, such
as entanglement, to outperform classical methods and achieve the Heisenberg limit,
which is the optimal scaling rate for estimation precision given the energy stored in

a probe state.

4.5 Relativistic Quantum Metrology

Quantum metrology has been successfully applied to design quantum technology
for high-precision measurements. However, typical setups do not consider the effects
of relativity on quantum properties, which is surprising given the fruitful efforts to
combine quantum and relativistic theories.

The prime example is the standard model of particles, formulated in terms of
quantum field theory, which is a quantum theory that incorporates special relativity.
Another successful instance comes from the study of quantum field theory in curved
spacetime for predicting particular effects such as Hawking radiation [25] 26] or the
cosmological particle creation [27, 2§].

One of the most compelling ideas and recent achievements is the application of
quantum metrology to quantum field theory. As quantum metrology provides the
limits on the precision for estimating a parameter, it can be employed to validate
predictions in quantum field theory within curved spacetime and to demonstrate

whether measuring spacetime parameters is achievable with current and future tech-
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nology.

In this spirit, quantum metrology has recently seen a wide range of theoretical
applications that consider relativistic effects, thereby establishing the field of rela-
tivistic quantum metrology. A particular relativistic framework for quantum metrol-
ogy has been developed by applying metrology techniques to estimate parameters of
quantum fields that undergo relativistic transformations [4]. These techniques can
be applied to estimate spacetime parameters such as proper times, gravitational field
strengths, accelerations or small perturbations induced by changes in the spacetime
curvature.

Among the progress made, we can highlight the study of entanglement and
its generation due to either gravity or non-inertial motion [7], the development
of relativistic quantum accelerometers [4], the study of the precision of quantum
clocks [71], the determination of relativistic parameters such as the Schwarzschild
radius [72] or the development of a gravitational wave detector using Bose-Einstein
condensates [I§].

In conclusion, this chapter has presented the material required to understand
the figure of merit in quantum metrology: the quantum Cramer-Rao bound, which
establishes the precision for estimating a physical parameter. To achieve this, a
review of local estimation theory was required. The quantum Fisher information,
essential for evaluating the quantum Cramer-Rao bound, was introduced using the
covariance matrix formalism. Later, we discussed the concept of a metrological
scheme and its importance in establishing and optimizing the estimation process
of a physical parameter. Therefore, implementing the material presented in this
chapter will allow us to link the idea of parameter estimation to a system such as
the BEC.

In the next chapter, a comprehensive study of the physics of Bose-Einstein con-
densates is presented. This represents the final piece needed before establishing how
to employ the phonons in the BEC to measure gravity, which will be the focus of
Chapter [6]

48



Chapter 5

Bose-Einstein Condensate

A Bose-Einstein condensate (BEC) is a special state of matter that emerges when
a low-density gas of bosonic particles is cooled down to temperatures close to the
absolute zero of temperature. Under these conditions, a large fraction of the bosons
transition into their lowest-energy state, so the gas of bosons is collectively taken
into the same quantum state. In consequence, quantum effects not only determine
the system’s dynamics at the microscopic scale but also determine its macroscopic
behaviour.

Bose-Einstein condensation differs notably from more familiar states of matter
such as gases, liquids and solids. One way to gain some intuition behind the Bose-
Einstein condensation is by illustrating some of these differences. For instance, the
typical atomic density at the centre of a BEC is about 10'3-10'® cm™3. In contrast,
the molecular density of air at room temperature and atmospheric pressure is of the
order of 10'? cm™3, while the atomic density in liquids and solids is approximately
10?2 cm ™3 and the nuclear density in the atomic nuclei is around 103 cm™3. The
extremely low densities of BECs imply that the temperature required to observe
quantum effects is of the order of 107 K or less. In comparison, quantum phe-
nomena manifest below the Fermi temperature for the electrons in metals, which
normally corresponds to 10*-10° K, and below the Debye temperature for phonons
in solids, which is typically around 10? K. For liquid helium, quantum effects arise
below 1 K temperatures, while for atomic nuclei they arise for temperatures about
101! K.

From the experimental perspective, clouds of cold atomic gases represent a highly

convenient venue for studying quantum phenomena. First, BECs can be appropri-
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ately described using mean-field theory as a first approximation because almost all
the atoms in the system occupy the same quantum state. Second, the interactions
within a BEC, which play a fundamental role by giving rise to the collective phenom-
ena, can be experimentally fine-tuned by using different atomic species, exploiting
the Feshbach resonances, or modifying the strength of the magnetic or electric trap-
ping fields. Finally, given the low densities of the system, the microscopic structure
of the condensate can be directly probed by optical methods [73].

The original idea behind Bose-Einstein condensation dates back to 1924 when
S. N. Bose published a work dedicated to the statistical description of photons
[74]. A year later, based on Bose’s paper, A. Einstein predicted that a gas of non-
interacting bosonic atoms would undergo a phase transition below a specific critical
temperature. Due to the bosonic quantum statistics, the atoms would condense to
the lowest energy state [75].

Over the next decades, Einstein’s prediction remained experimentally unex-
plored. However, during that time, important theoretical contributions surrounding
his idea were developed. In 1938, F. London conjectured that Bose-Einstein con-
densation was the mechanism responsible for the superfluidity in “He [76]. Later,
in 1941, L. Landau was responsible for developing the theory of superfluids [77].
In 1947, N. Bogoliubov conceived the first microscopic theory of weakly inter-
acting Bose gases based on the Bose-Einstein condensation concept [78]. In the
1950s, the concept of nondiagonal long-range order was introduced, revealing how
Bose-Einstein condensation could give rise to quantum coherence over macroscopic
distances [79, 80, R1]. In 1961, the Gross-Pitaevskii equation was derived, which
describes the non-uniform weakly interacting Bose gas [82], 83].

Experimental research on dilute atomic gases was generated much later. Leverag-
ing the technical progress in atomic physics, the 1970s saw the development of mag-
netic and optical trapping techniques and progress in cooling mechanisms. In the
1980s, further improvement was reached in laser-based techniques, such as magneto-
optical trapping and laser cooling, to control neutral atoms. These efforts culmi-
nated in 1995, when the first gaseous BECs were successfully produced. First, E.
Cornell and C. Wieman achieved Bose-Einstein condensation by cooling a gas of
8TRb atoms down to 170 nK [84]. Shortly after, W. Ketterle produced a BEC using
23Na atoms [85]. For their groundbreaking achievements, they were awarded the
2001 Nobel Prize in Physics. Since then, BECs have been produced using numer-

ous atomic species and, interestingly, other bosonic constituents such as photons,
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molecules, polaritons and other quasi-particles.

In this chapter, we provide a thorough overview of the theoretical framework be-
hind Bose-Einstein condensation, following closely the treatment found in Pitaevskii
& Stingari’s textbook [86]. The structure of the chapter is as follows:

Section [5.1] starts by presenting the ideal Bose gas, which captures some of the
fundamental properties of Bose-Einstein condensation, such as the appearence of a
phase transition. Next, Section describes the weakly interacting Bose gas by
using the Bogoliubov theory from which the energy spectrum of the system can be
derived. Later, Section [5.3| considers the non-uniform Bose gas and introduces the
basic equation for describing a BEC, the Gross-Pitaevskii equation. Finally, Section
presents the description of the relativistic BEC in flat spacetime in analogy
to the one presented for the non-relativistic BEC. At the end of the section, the
Newtonian limit of the relativistic BEC is taken to ensure the consistency between

both approaches.

5.1 The Ideal Bose Gas

The ideal Bose gas represents the simplest example of Bose-Einstein conden-
sation, describing a uniform, non-interacting gas of bosonic particles. By studying
this model, one can correctly predict important characteristic properties of an actual
BEC, including the appearance of a critical temperature determining the condensa-
tion of the bosonic gas. This section provides the quantum statistical description of
the Bose gas using the grand canonical ensemble.

The grand canonical ensemble represents the possible states for a collection of
particles in thermodynamic equilibrium with a reservoir that can exchange both
energy and particles. In this ensemble, the probability of finding a state composed

of N’ particles, each in a state |k) with energy F is

Pi(EBy) = PN =F), (5.1)

where 5 = 1/kgT, kp is the Boltzmann constant, and u corresponds to the chemical
potential of the reservoir in thermal equilibrium with the system.

In statistical mechanics, the description of the system can be completely deter-
mined by knowing the partition function of the ensemble. For the present case, the

grand canonical partition function is given by
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ZBpw) =Y > Py(Ep) =Y Ny et (5.2)
k N'=0 k

N'=0
where the sum ), ranges over a complete set of eigenstates of the Hamiltonian with
eigenenergy Fj. The thermodynamic variables of the grand canonical ensemble are
the chemical potential y and the temperature 1. Other variables, like the volume
or the oscillation frequency of a harmonic trap, may be involved in the system only
through the eigenenergies of the Hamiltonian.
From the grand canonical partition function, we can define the grand canonical

potential,

Q=—kgTnZ, (5.3)

from which we can straightforwardly calculate the thermodynamical properties of
the system, such as the entropy, the average energy or the average pressure. For

example, the total number of particles can be expressed as

@
ou’

Let us consider the Hamiltonian of the ideal gas, described by a collection of

N = (5.4)

non-interacting single particles,
=i, (5.5)
i

where the eigenstates |k) are defined by the set {n;} of microscopic occupation
numbers n; of the single-particle states, which can be obtained from solving the

Schrédinger equation

L0 B _
H; <Pz'(7“) = Ez'SOi(T)- (5'6)

In the Fock representation (see Chapter, the many-body eigenstate of the Hamil-

tonian is

k) = (@)™ @)™ ...10), (5.7)

where a; and &ZT are the creation and annihilation operators for to the i-th single-

particle state, satisfying bosonic commutation relations [di,d}] = 6;; and [a;,a;] =
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[&3, &;] = 0. The vacuum is defined as a; [0) =0 .

Under fixed energy and particle number, the system can be depicted as a gaseous
system of N’ non-interacting indistinguishable particles confined to a volume V', with
total energy Ej. However, in the grand canonical ensemble, the number of particles

and the energy are not constant but are constrained by the following conditions

By inserting these conditions into the grand canonical partition function ((5.2)) and

summing over all possible values of N/, we obtain

Z(T, ) = H Z ePlu—eini (5.9)

where the sum extends over n; = 0,1,2,... for the case of bosonic particle&ﬂ
Using the grand canonical partition function, the total number of particles ([5.4)

can be evaluated via the grand canonical potential, which yields

1 _
N:ZW;ZW, (5.10)

where 7; is defined as the average occupation number of the single-particle state
with eigenenergy ;. This result implies an important constraint for the chemical
potential, bounding it from above as u < eg by the lowest eigenvalue of H (1).
Breaking this inequality would generate unphysical states with a negative occupation
number and energy smaller than pu.

The total number of particles can be separated into the ground-state and excited-

state contributions:

N:’ITL()—FZfLiENO—I-NT, (511)
i#0
with
1 . 1
No(T, ) = B _ 1’ Nrp (T, p) = z; P Ten (5.12)
1=

1For fermionic particles, the sum is limited to n = 0,1 by the Pauli exclusion principle.
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In the limit when u — &g, the number of particles in the lowest-energy state Ny
grows arbitrarily large, while the number of particles in the exited states N7 becomes
increasingly smaller.

Precisely, this limit determines the mechanism at the origin of the Bose-Einstein
condensation. We can identify Ny as the number of condensed particles, that is, the
number of particles in the ground state. Meanwhile, N7 corresponds to the number
of exited particles, i.e., the particles out of the condensate, which is also called the
thermal component of the gas [86].

Considering a fixed value T for the temperature, Figure [5.1] illustrates the be-
haviour of Ny and Np as a function of the chemical potential. The actual value of
w is fixed by the normalization condition N = Ny + Np. First, notice that Ny is of
order 1 except when p gets closer to g9, where Ny diverges. In contrast, Ny has a

smooth behaviour as a function of p and reaches its maximum, N., when p = &g.

No(T,p) ===-=~- j

Figure 5.1: Ideal Gas Model. The number of condensed particles Ny (dashed line)
and the number of particles out of the condensate N (solid line) as a function of
the chemical potential u for a fixed temperature T'. In the limit g — g, Ng diverges
and Np reaches a constant value Np(T,e9) = Ne.

Since N, is an increasing function of the temperature, N.(T') = Np(T,¢ep), we
can always look for a temperature in which N, > N is satisfied. Let us define the

critical temperature T, at which

Np(Ty,20) = N. (5.13)

For T > T, the condition N, > N is satisfied and implies that p remains below e,

o4



5.1. The Ideal Bose Gas

meaning that the ground-state occupation Ny is negligible in comparison to N. In
contrast, for T" < T, the condition N, < N is followed, the value of y approaches
€0, and the contribution of Ny becomes dominant.

Therefore, the critical temperature T, locates the threshold that determines the
occurrence of the phase transition originating the phenomenon of the Bose-Einstein

condensation.

The Ideal Bose Gas in a Box

Let us consider an ideal Bose gas confined to a box of volume V. In this case,
the single particle Hamiltonian of the system takes the free particle form
gv =2 (5.14)

prm— % .
The eigenstates ¢ of the system, considering the boundary condition p(x,y, z) =

oz + L,y, z) for L = V1/3, correspond to plane wave solutions

1
Pp = ﬁeﬂp'r/ﬁ, (5.15)

with energy ¢ = p?/2m and the momentum p = 27hn/L, where the components
of the vector m correspond to integer numbers. The chemical potential must be
negative since the lowest energy state has eigenvalue ¢y = 0.

The number of excited particles Np can be evaluated by making the replace-
ment >, — V/ (2rh3) [dp in equation (5.12). Using the change of variable
p? = 2mkpTx, we get

1 1%
= - B
Nr = % eﬁ(p2/2m—u) -1 - )\%93/2(6 )7 (516)
P

where the thermal wavelength Ar is given by
| 2mh?
Ar =4 —— 1
T mkgT’ (5.17)

93/2(2)_r(31/2) /OOO L gy (5.18)

z7ler — 1

and

is a special case of the Bose functions, where I'(s) is the factorial function (s — 1)!.
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Notice that the number of excited atoms Np is independent of the total number
of atoms in the gas but depends on the volume V of confinement. This is an
important fact, implying that if we add more atoms to the system, then the number
of condensed atoms Ny will increase, but the number of excited atoms will remain
the same. This saturation property predicted by the ideal Bose gas trapped in a
box has been experimentally confirmed and is also present in the case of harmonic
trappings [86].
To derive the critical temperature T, the condition is used, yielding

k2 ( n )2/3
kpT, = —— , 5.19
b m \gs/2(1) (5.19)

which is completely determined by the particle density n = N/V and the mass of
the particles of the Bose gas. The critical temperature predicted by the ideal Bose
gas model provides valuable experimental guidance for reaching the Bose-Einstein

condensation in the laboratory.

5.2 Weakly Interacting Bose Gas

While the ideal Bose gas model successfully captures some of the properties of
Bose-Einstein condensation, such as the appearance of a purely quantum-statistical
phase transition, it importantly neglects the interactions between particles. In re-
ality, particle interactions are always present, even for very dilute samples where
interactions are weak. Therefore, even in the weak interaction limit, interactions
play an essential role in the system’s dynamics, being responsible for the collective
behaviour exhibited in BECs.

The theoretical framework used to describe the weakly interacting Bose gas is
given by the Bogoliubov theory [78], and it represents the modern approach to
studying the Bose-Einstein condensation in dilute gases. Established in 1947 by
N. Bogoliubov, the theory allowed the calculation of the excitation spectrum and
the thermodynamic properties of the weakly interacting Bose gas. This section is

dedicated to presenting the basic construction behind the Bogoliubov theory.

5.2.1 Dilute Gases

In a dilute gas, the range 1y of interatomic forces is much smaller than the

average distance d between particles. Consequently, particles only interact when
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their distance is of the order of rg, which is rarely the case. Then, the condition

ro < d, (5.20)

constitutes the defining requirement for a dilute gas. This approximation allows us
to consider exclusively interactions between pairs of particles while safely neglecting
the rest of the interactions. The large separation between pairs of particles also
justifies using an asymptotic expression for the two-particle wave function, which is
fixed by the scattering amplitude.

In addition, the temperature 7" of the dilute gas is assumed to be low enough that
the particle’s momentum distribution for the thermal components p?/2m ~ kgT
remains much smaller than the particle’s characteristic momentum p. = fi/ro. This
yields the condition ,

h

Tew
< 2mkprg’

(5.21)

where m is the mass of the particles. Similarly, this condition implies that pro/h <
1. At such momenta, the scattering amplitude becomes independent of the particle
energy and the scattering angle. Then, in accordance with the standard scattering
theory, the scattering amplitude is completely determined by the s-wave scattering
length as. This means that a single parameter, the scattering length, characterizes
the effects of the interactions on the properties of the gas.

In terms of the scattering length, the requirement for dilute and weakly inter-

acting gases can be expressed as

las| < n™Y3, (5.22)

where n = N/V is the density of the gas, N is total number of particles and V' is the
gas volume. Satisfying this inequality ensures that the Bogoliubov theory remains

valid.

5.2.2 Bogoliubov Theory

The Hamiltonian describing a cloud of bosonic particles is given by
. h2 .. 1 [ 42 ..
i = / <2V\IITV\I/> dr+ 5 / WU - m e arar,  (5.23)
m

where W corresponds to the quantum field operator, U(r’ — r) is the two-body
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interaction potential and m is the mass of the particles. The first term corresponds

to the kinetic energy of the particles, and the second term represents the two-particle

interactions, where any external potentials have been left out for the moment.
Considering a uniform gas of volume V, the field operators can be written as a

plane-wave expansion

~ 1 .
U(r)=> ap——eP"/", (5.24)
P \/V

where ap, and a,, are, respectively, the annihilation and creation operators associated
with the single-particle state of a plane wave with momentum p. The operators
satisfy the commutation relations [ayp, &L,] = pp-

If we explicitly consider the potential U(r’ — 7), solving the many-body
Schrodinger equation at the microscopic level represents an arduous challenge. How-
ever, for a sufficiently dilute and cold gas, it can be concluded that the precise func-
tional form of the two-particle interaction potential is not required to describe the
macroscopic properties of the system as far as the potential reproduces the correct
value for the scattering length.

Thus, to implement the many-body formalism, we replace the microscopic po-
tential U(r’ — ) with an effective, soft potential Ueg(7). Since the macroscopic
properties of the system depend only on the scattering length, this method will
represent an appropriate approach to the many-body problem as far as we restrict
ourselves to the study of the macroscopic behaviour. Then, we define the effective

two-particle interaction potential as

Uy = / Us(r)dr (5.25)

Inserting the plane wave expansion and the effective potential into (5.23)), the

Hamiltonian acquires the form

2

: P° ot 1 . . S

H= Z %a;gap + WUO Z aTPlJrqaLQ*anl Qp,- (5.26)
p pP1,P2,9

Bogoliubov Approximation

A crucial step in the Bogoliubov theory is the implementation of the so-called Bogoli-
ubov approximation. The approximation is equivalent to assuming the macroscopic

occupation of the ground state of the field operator \il, which consequently gets
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treated as a classical field. In practice, it consists of making the replacement of the

operator ag with a complex number:

&0 — \/NQ. (527)

The physical meaning of this strategy can be understood more clearly by explicitly

rewriting the field operator expansion

- 1 - 1 .
\Il(r) = ﬁ ao + Z dpezp.r/ﬁ ~ ﬁ /NO + Z &pezp-r/h
p#0 p#0

The substitution of the ground state operator ag with the square root of the to-
tal number of condensed particles Ny reflects the macroscopical occupation of the
ground state. The substitution is justified when the ground-state occupation number
Ny is very large because losing or gaining one particle, Ny — 1 or Ny + 1, represents
a negligible fluctuation for the dynamics of the system.

By neglecting the quantum fluctuations of the macroscopically populated ground
state, the first term of the ¥(r) expansion loses its quantum nature, and the Bo-
goliubov approximation implies that a classical mean-field ¢ (r) will describe the
condensed fraction of particles of the Bose gas, whereas the non-condensed, excited
fraction of particles of the Bose gas will keep being described by a quantum field
operator &Ab

U(r) = y(r) + 5(r), (5.28)
where it is assumed by construction that (5{# corresponds to a small perturbation.
The Bogoliubov approximation represents an accurate approach for soft poten-
tials whose perturbations remain small at all distances. It will represent a poor
description at short length scales of the same order as the interatomic forces ro and
smaller than the average distance d between particles, where the potential is strong

and quantum correlations become relevant.
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5.2.3 Zeroth-Order Approximation
Ground-State Energy

In the ideal gas, when the temperature goes down to 7' = 0, all the particles
are condensed and N = Ny. By contrast, in a dilute Bose gas, the occupation
number of the excited states (p # 0) is finite but small at 7' = 0. Therefore, to a
zeroth order approximation, one can neglect in the Hamiltonian all the terms
proportional to d; and ap for p # 0. In this case, given that Ny ~ N, one can make
the substitution ag — V'N.

At the same order of approximation, the effective two-particle interaction poten-
tial Uy can be written in terms of the scattering length by applying the Born
approximation, which yields

Arh2ag

Uy = . 5.29
=2 (5.29)

The Born approximation assumes that the scattering process with a potential does
not significantly modify the total wave function or field of the system. Let us
introduce the interaction coupling constant

B Arhlag

_ 5.30
g — (5.30)

which captures the role of the interactions through the scattering length as. Under

the taken approximations, the ground-state energy becomes

1
Ey = iNng, (5.31)

where n is the density of the gas. The expressions obtained for the ground-state
energy Fy and the coupling constant g are valid for arbitrary interactions, as dis-
cussed in the previous section, as long as the potential reproduces the correct value
for the scattering length. However, the result for the effective potential Uy

holds as long as the first-order Born approximation is valid.

Thermodynamic Equation of State

Unlike the ideal gas, whose pressure vanishes when the temperature drops down
to T' = 0 when it is confined to a box potential, the weakly interacting Bose gas

possesses a Nonzero pressure:
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aEg . 9777,2
ov. 2
From this, one can evaluate the compressibility of the gas, dn/0P. By invoking the

P = (5.32)

hydrodynamic relation,

on 1

the sound velocity ¢y, which is an important parameter that characterizes the dy-

namics of the gas, is obtained to be

s = \/f. (5.34)

The thermodynamic stability of the system requires the compressibility to be posi-
tive. This imposes that the scattering length must be positive, i.e., a; > 0. There-
fore, the Bose-Einstein condensation for a dilute uniform gas is only possible for
positive values of the scattering length.

Finally, the chemical potential can be calculated via = 0Ey/ON. In terms of

the sound velocity, the chemical potential reads

p=mc>. (5.35)

This result is valid for diluted Bose gases. The relation between p and the sound

velocity, for a temperature T' = 0, is dictated by the formula mc? = ndu/on.

5.2.4 Second-Order Approximation

In the Hamiltonian , the first-order approximation is missing because there
are no terms containing only one particle operator, a, or di,. This fact is consistent
with the momentum conservation principle. Otherwise, the appearance of these
terms would imply that the Hamiltonian creates or annihilates a particle without
conserving the energy of the system.

Moving to the second-order approximation, we retain in the Hamiltonian all the
quadratic terms in the particle operators. Separating the ground-state operators ag

and &B from the excited-states operators a, and d; (p #0), yields
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2
- 2 Uo .t .t. - Uo atata a | oatat s oa o oatata s
H= Z %ai)ap + Wagagaoao + v Z(4a$a;r,aoap + a;r,aT_paoag + agagapa,p).
P p#0

(5.36)

Next, the Bogoliubov approximation is again invoked. In the third term of the
Hamiltonian, we can safely replace ay and d}; with v N. However, in the second
term, the approximation should be taken with higher accuracy, which is achieved

by considering the normalization relation

abao + > ahap = N. (5.37)
p#0
Also the potential Uy has to be considered beyond the lowest-order Born approx-
imation. This correction to Uy can be incorporated using high-order perturbation
theory, which reads [87]

g m
Uy=g HVZF : (5.38)
p70
where the relation of g with respect to the scattering length is still given by (5.30)).

Substituting the normalization relation and the effective two-particle interaction
potential Uy into (5.36]), we get that

1 2 1
H = SgnN +3 " Sibip + 5gn Y (2ahap +ahaly +apap) . (5:39)

which, interestingly, is uniquely fixed by the coupling constant g. Reading the terms
in the Hamiltonian, the first one is a constant term that does not contribute to the
dynamics, the second term corresponds to the kinetic energy of the particles, and the
third one describes the two-particle interactions. Within the interaction term, the
first sub-term represents the self-energy interaction of the excited states; the other
two sub-terms represent, respectively, the simultaneous creation and annihilation of

excited states of momenta p and —p.
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Diagonalized Hamiltonian and the Bogoliubov Transformation

The Hamiltonian, being quadratic in the particle operators, can be diagonalized

via a Bogoliubov transformation
ip = Upbp + vipi)ip, &L = u;i)L +U_pb_p, (5.40)

which introduces a new set of quantum operators Z;p and l;i, satisfying bosonic com-

mutation relations [I;p, I;L,] = dpp- The parameters up, and vy, correspond to complex

coefficients constrained by the condition

lupl? — Jo—p|* = 1, (5.41)

which guarantees that the commutation relations are satisfied. The condition implies

that the coefficients have the form
up = cosh oy, vp = sinh ay,. (5.42)

The parameter oy, is selected accordingly to cancel the off-diagonal terms of the
Hamiltonian.
After applying the Bogoliubov transformation and determining the coefficients

up and vp, one obtains the diagonalized form of the Hamiltonian:

H=Ey+ ep)bhby, (5.43)
p#0
where
NZ 1 p?>  m(gn)?
[\ _gn— P o) 44

is the higher-order approximation of the ground-state energy and

o= (£ 519

is the Bogoliubov dispersion relation for the system’s elementary excitations gener-

ated by the operators Bp and I;L The explicit form of the coefficients u, and vy, is

given by
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2¢(p) 2

The conclusions that can be extracted from equations ([5.43))-(5.45)) carry a deep

physical meaning. The original system consisting of a gas of weakly interacting

2/9 1
S i\/P/mW Ll (5.46)

particles, associated with the operators a, and &L, has an equivalent description in
terms of a system of non-interacting quasi-particles, with creation and annihilation
operators by, and (A)I,, of energy €(p).

Following the Bogoliubov transformation , in this picture, a real particle
d;r,, e.g. the atoms composing the Bose gas, is described as the mode superposition of
the forward propagating quasi-particles u;BL and the backward propagating quasi-
particles u_pb_p.

The ground state of the weakly interacting Bose gas at T' = 0, now corresponds

to the vacuum state for the Bogoliubov quasi-particles:

bpl0) =0  for p#0. (5.47)

Finally, it is worth discussing the experimental validity of the ground states de-

scribed by equations (5.31)) and (5.44). In general, the ground state of most physical

systems that present interactions through interatomic potentials corresponds to a
solid rather than a gas. In these systems, the gas phase is a metastable configura-
tion, and it is expected that three-body collisions will eventually take the system
into the solid configuration. The Bogoliubov theory presented in this section is valid
only for those metastable phases, which may compromise its utility. However, ex-
periments conducted for multiple atomic species have proven that the quantum gas
phase remains stable for a sufficiently long time, allowing systematic measurements

to confirm the predictions of the Bogoliubov theory.

5.2.5 Particles and Elementary Excitations

Let us recall the dispersion relation followed by the gas of non-interacting
quasi-particles. Analysing its behaviour under different momentum regimes offers
valuable insight into how the system transitions from collective to single-particle
excitations.

For low momenta p < mcs, the dispersion relation reduce to a linear form

64



5.2. Weakly Interacting Bose Gas

e(p) = csp, (5.48)

indicating that the quasi-particles behave as phonons. Therefore, the Bogoliubov
theory predicts that for a weakly interacting Bose gas, the low-momentum (long-
wavelength) excitations are described by travelling sound waves with speed c;. In
this regime, the Bogoliubov coefficients satisfy |uy| >~ |[v_p| > 1, so the Bogoliubov

transformation becomes approximately

al, ~ up (b, + b_p).
Conversely, in the high-momenta (short-wavelength) limit, p > mcs, the disper-

sion relation approaches the free particle behaviour

2

b
N — 5.49
e(p) ~ 5~ +gn, (5.49)

and the coefficients satisfy |uy| =~ 1 and |[v_p| =~ 0. Thus, a quasi-particle I;I, becomes

indistinguishable from a real particle d;r,, implying

At ol
ap ~ bp.
The transition between the phonon regime and the particle regime takes place

roughly when the kinetic energy p?/2m matches the interaction energy gn. Setting

p?/2m = gn and writing p = h/€, we can define the so-called healing length

1on
- V2mes

that defines the characteristic interaction length of the weakly interacting bosonic

¢ (5.50)

gas, which also can be interpreted as the shortest distance over which the wave
function changes.

The thermodynamic behaviour of the system can be derived by analogously
following the steps taken for the ideal gas. The energy of the elementary excitations
is given by the dispersion relation . At sufficiently low temperatures, where
the quasi-particles do not interact, the chemical potential for these excitations is
effectively equal to zero. From equation , the average occupation number Ny

of the quasi-particles of momentum p can be expressed as
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ot A 1
Ny = {bybp) = 5 (5.51)

eBelp) — 1
This quantity should not be confused with the average occupation number of real
particles N, = (dL&p>, for p # 0, which can be easily calculated via the Bogoliubov
transformation relating the particles and the excitations. This yields the useful

relation
AT ~ AT ~
No = lo—pl? + [up]? Bhbp) + [v_p[? (B ,5_p) (5.52)

Validity of Bogoliubov Theory

To conclude Section let us briefly review the applicability of the Bogoliubov
theory presented here. The fundamental assumption is that most of the atoms in
the gas are condensed, that is, Ny &= N. This clearly follows for low temperatures.
For temperatures of the order of the chemical potential, the condensate depletion
is also small, which is guaranteed by the diluteness condition, |as| < n~1/3. This
condition also represents a fundamental requirement that must be fulfilled. Finally,
provided that the temperature of the system lies below the critical temperature,
T < T,., both the phonon regime kgT < mc? and the particle regime kgT > mc?

are compatible with the Bogoliubov procedure.

5.3 Non-Uniform Bose Gas

The development of the theory for non-uniform dilute Bose gases is crucial for at
least two reasons. First, the experimental realization of Bose-Einstein condensation
almost always involves the presence of external trapping potentials—the most com-
mon of which is the harmonic or quadratic trap—that normally produce spatially
inhomogeneous systems. Second, non-uniformity is the source of new quantum
phenomena and effects that are absent in uniform gases. The theoretical frame-
work used to study non-uniform condensates is well-suited for both stationary and
non-stationary configurations, allowing the research of a diverse class of physical

problems.
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5.3.1 Gross-Pitaevskii Equation

To study the non-uniform interacting gas, the Bogoliubov theory must be gen-
eralized. One of the key ideas of the theory is to divide the field operator of the gas
into two terms: the condensed fraction and the excited fraction, as established by
(5.28]). This separation remains valid for non-uniform gases. At low temperatures
and to the lowest-order approximation, the Bogoliubov approximation is performed
by replacing the operator W(r,¢) with the classical field Wo(r,t), which will be
called the order parameter and corresponds to the wave function of the condensate.
This replacement is analogous to the transition from quantum electrodynamics to
classical electromagnetism, and it is justified by the presence of a large number of
particles in a single state, e.g., a large number of atoms in the ground state of an
atomic gas.

However, we have not yet specified the equation of motion that describes the
system. This equation can be derived in the Heisenberg picture by employing the
Heisenberg equation ihd,¥(r,t) = [¥(r,t), H]. Using the Hamiltonian and

the commutation relations for the field operator, we obtain

. 0 - . h2v2 Ay / T I\ 3
zhaq/(r,t)— o + Vext(r, t) + [ O (r', YU — r)U(r' t)dr' ) U(r,t).

(5.53)

Following the arguments used in the previous section for the uniform Bose gas,

we are allowed to make the replacement W(r,t) — Uo(r,t) as long as an effective
soft potential Ueg is used and the Born approximation is applicable. By assuming
that the function Wq(r,t) varies slowly at distances of the order of the interatomic
force, one can set ' to be approximately equal to 7 in the integrand, yielding the

Gross-Pitaevskii (GP) equation:

12 wo(rt) = (=T V() + gl W (r D2 ) Wolr, ) (5.54)
4 ot o\7, - m ext\T, gl¥olr, olr,t), .

where

g:/%xt(r)dr7

is the interaction coupling constant. This equation represents the main theoretical

tool for studying non-uniform dilute Bose gases at low temperatures. One of the
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main features of the equation is its non-linearity. The expression (5.30) for the
interaction coupling constant can be recovered by expressing the integral of Vexy(r)
in terms of the scattering length as,

B Arhag

g=— " (5.55)

In analogy with the discussion in the previous section, equations ([5.54]) and (5.55))

are valid for arbitrary forces, not being restricted by the use of soft potentials. The

energy of the system is obtained to be

h’ 2 2, 934

It was mentioned that the field operator ¥ and the order parameter ¥ play an
analogous role in relation to the quantum electrodynamics to classical electrodynam-
ics transition. Unlike Maxwell equations, the Gross-Pitaevskii equation explicitly
contains i. The reason for this difference lies in the fact that the photon’s classi-
cal dispersion relation, w = ck, does not depend on A, while the atomic dispersion
relation, w = hk?/2m, is h-dependent. The presence of h implies the presence of
coherent phenomena like interference.

Another feature from is its nonlinearity due to the particle interactions.
Thus, the Gross-Pitaevskii equation is helpful for studying coherence and interaction
effects, making the physics of Bose-Einstein condensation a rich field for theoretical
and experimental research.

It is important to establish the conditions of applicability of the GP equation.

1. Large particle number. The condensate must contain many atoms, allowing

U to be approximated by the classical field ¥y.

2. Diluteness. The diluteness condition, |as| < n~1/3, must be satisfied to keep

the particle collisions weak.

3. Low temperatures. Both quantum and thermal depletion of the condensate

must remain low. In practice, T' < T, ensures the system is mostly condensed.

4. Length Scale. Effects involving distances smaller than the scattering length
as lie outside the applicability of the GP equation.
coin-

Under these requirements, the density of the condensed particles |¥q(r)|?

cides with the total density of the gas n(r), which impies the normalization condition
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/|\I/0|2dr = N. (5.57)

Stationary Gross-Pitaevskii equation

The Gross-Pitaevskii equation takes a simple form in the case of stationary
solutions. When the external potential Veyi(7,¢) does not depend on time, one can

look for stationary solutions of the form

Wo(r,t) = Wo(r)e H/h, (5.58)

The temporal dependence is determined by the chemical potential, which can be

calculated via

oK
=N
Substituting the ansatz (5.58) into the GP equation, one obtains its time-

independent version known as the stationary Gross-Pitaevskii equation

(5.59)

(_ ﬁzf + Vext(r) + g\\I/o(r)P) Wo(r) = pWo(r), (5.60)

where the value of y gets fixed by the normalization condition [ |Wo|2dr = N. For
a uniform gas in the absence of an external potential, the chemical potential of the

ideal gas gets recovered p = g|¥g|? = gn.

5.3.2 Small-Amplitude Perturbations

The Gross-Pitaevskii equation admits an important family of time-dependent
solutions constructed from small-amplitude perturbations around the stationary
configuration of the system. Here, the spatial and temporal changes of the order
parameter are assumed to be small with respect to the stationary solutions, and the
new solutions obtained reflect the collective behaviour of the interacting Bose gases.
The small-amplitude perturbations can be interpreted as elementary excitations, or
pseudo-particles, of the system, whose behaviour can admit both a classical or a
quantum description. In this subsection, we focus on the quantum case.

Let ¥y be a stationary solution of the Gross-Pitaevskii equation with chemical

potential p. We consider small deviations from W by writing the field operator as
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U(r,t) = [Uo(r) + d(r,t)]er /", (5.61)

where 19(7', t) is a small quantum perturbation. This perturbation can be expanded

as an infinite sum of elementary modes or excitations

D(r,t) = Z[ui(r)f)ie*i‘”it + vf(r)l;jeiwit]. (5.62)
i

Here, the index ¢ labels the discrete modes, w; is the oscillation frequency of the
perturbation and the opertors I;ZT and b; respectively create and annihilate the i-
th elementary excitation. The operators satisfy the bosonic commutation relations
[bs, Bh = §;5. The complex functions u;(r) and v;(r) are determined by solving the

Gross-Pitaevskii equation in the linear limit.
Inserting ([5.61]) into the Gross-Pitaevskii equation and keeping the terms up to
the first order in ¥ yields the pair of coupled differential equations known as the

Bogoliubov-de Gennes (BdG) equations:

hwiui(r) = [Ho — pu+ 2gn(r)]ui(r) + g[¥o(r)|vi(r),

—hwivi(r) = [Ho — 4 2gn(r)]vi () + g[Wo ()] ?us(r), (5.63)
where
Hy= h;,v: + Vet (7). (5.64)

The operator H represents the single-particle Hamiltonian free of particle interac-
tions, and n(r) = |¥o(r)|? is the condensate density where the term gn(r) in the
BdG equations arises from the interactions in the mean-field approximation.

The solutions of the Bogoliubov-de Gennes equations determine the eigenfre-
quencies w; and the amplitudes u; and v; of the normal modes of the system gen-
erated by the operators l;I and b;. In general, the solutions must be computed
numerically. However, analytic expressions exist for collective oscillations around
the ground state of the uniform gas.

For a pair of mode functions (u;,v;) representing a normal mode of the system
associated with an elementary perturbation, the orthonormalization condition of the

solutions is given by
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/ it () () — v () (r)]dr = 6,5. (5.65)

This concludes the review of the study of Bose-Einstein condensation as consid-
ered in the standard setting of a laboratory on Earth, which we will also refer to as
the non-relativistic BEC. The next section focuses on generalising this phenomenon
to a relativistic setting, where the constituents of the BEC are considered to have a

relativistic nature; for instance, we can consider a Bose gas of relativistic particles.

5.4 The Relativistic Bose-Einstein Condensate in

Spacetime

One can consider the phenomenon of Bose-Einstein condensation not only for
non-relativistic bosons but also for their relativistic counterpart. The relativistic
description of a BEC moving over a general spacetime metric has been achieved.
The foundational work behind the development of the relativistic BEC can be found
in [88], where the Bogoliubov theory was successfully applied to a quantum field in
flat spacetime. Later, the generalization to curved spacetime was accomplished by
the authors in [89].

We are interested in describing a BEC located on a general spacetime metric to
investigate the behaviour of its quantum perturbations in curved spacetime and take
advantage of their dynamics to estimate physical parameters containing information
about the spacetime, such as the strength of the gravitational field or any parameter
characterizing its curvature. Since BECs are extremely small compared to the scales
found in the theory of relativity, one may think that the influence of spacetime on
the dynamics of the BEC is too small to be detected. Interestingly, amplification
effects produced by the slow propagation of excitations on the BEC make the effects,
in principle, observable [1§].

This relativistic formalism will not be implemented in this work. Nevertheless,
the aim is to didactically prepare the stage for generalizing the ideas presented in
this thesis for gravity exploration using BECs in a relativistic setting, which is more
natural for gravity. Furthermore, we want to encourage research in this direction,
both from the theoretical and experimental perspective, by demonstrating the po-
tential and versatility of this proposal. If the reader is not interested in exploring

this direction, this section can be safely skipped to continue reading Chapter [6]
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The relativistic Bose-Einstein condensate (RBEC) presents significant differences
from the non-relativistic BEC. For example, we can highlight the appearance of a
different energy spectrum for the perturbations or the presence of relativistic bosons
and anti-bosons.

This section is organized as follows. In Section the RBEC in flat spacetime
is examined through an analogous analysis to that of the non-relativistic BEC.
First, the ideal Bose gas case is studied to then consider weak interactions between
the particles of the Bose gas. By applying the Bogoliubov approximation to the
weakly interacting Bose gas while considering small-amplitude perturbations, we
derive the equation of motion for the condensate and the perturbations in Section
Section obtains the perturbation’s dispersion relation and analyses the
high-momentum and low-momentum limiting cases, with the latter subdividing into
gapped and gapless excitations. Section [5.4.4] considers the gapless-excitation case
to analyse the phonon dynamics, finding out that they evolve over an effective
metric, which is denoted as the acoustic metric. Finally, Section takes the
Newtonian limit of the RBEC to demonstrate consistency between the relativistic
and non-relativistic BECs and to show how modifications of general relativity could

be inherited at the Newtonian level.

5.4.1 Condensate’s Non-Linear Klein-Gordon Equation

We begin by considering the Lagrangian density describing an interacting rela-

tivistic scalar Bose field ‘i(w“) with coordinates x# = (¢, x) in flat spacetime,

m2c?

h2

AT A~
zzla‘l’“’_v@.vé_(

S d-U@d'd;N),  (5.66)

+ Vext(x“)> b

where m corresponds to the mass of the bosons, V(z*) is an external potential, and

U is a self-interaction with coupling constants A;(z*), which can be expanded as

U@ d:0) = 22(0'0)2 + 22(876)3 4. . (5.67)

The first term of the expansion corresponds to the two-particle interaction with
coupling constant Ag, the second one is the three-particle interaction with coupling
constant Az, and so forth.

Since the Lagrangian density is invariant under global phases, corresponding to
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a global U(1) symmetry, there exists an associated Noether charge and current that
are conserved. The first corresponds to the quantity N — N, denoting the difference
between the number of bosons N and the number of anti-bosons N, which will

appear later.

Ideal Bose Gas

In the ideal Bose gas, the interaction term U and the external potential V' vanish.

For an ideal gas of temperature T" and chemical potential p, we have

N-N= Z[nk(Tv M) - ﬁk(T7 M)]? (5'68)
k

with ng and ny respectively denoting the average number of bosons and anti-bosons
in the state of energy |Ek|,
G (T ) = s (569)
MR = BB — 1 R T GRET R — 1 '
where 8 = 1/kgT and E,% = h?k%c® + m2c*. Defining the number density n =
(N — N)/Q, where € is the volume of the gas, the relation between the critical

temperature 7T, and the density n is

1 / o sinh(B.mc?)
n =
473/21(3/2) Jo  cosh(Bc|Ek|) — cosh(B.mc?)
where I'(z) is the factorial function (z — 1)! and . := 5(7¢). In the non-relativistic

limit, kgT < mc?, the contribution of the anti-bosons can be neglected, and we
recover the relation (5.19)) for the critical temperature for the non-relativistic BEC.

k2 dk, (5.70)

Bogoliubov Approximation

In the low-temperature regime T' < T, where most relativistic bosons transition
into the ground state and Bose-Einstein condensation is realised, the field can be
approximated using a classical mean-field by making the substitution d — @, in an
analogous fashion as performed in . The classical mean-field ® is regarded as
the order parameter, or wave function, describing the dynamics of the condensate.

The equation of motion for ® can be derived using the Euler-Lagrange equation

oL 0L 9oL _
9% a(Vd) 0tod

(5.71)
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where the dot represents derivation with respect to the time coordinate t. Intro-
ducing the d’Alembert operator in flat spacetime [J = n#0,,0,, the dynamics of the

system is given by the non-linear Klein-Gordon equation

m2c? ,
O0d — ( =+ V(x“)) & —U'(p;A)® =0, (5.72)

where p = ®*® corresponds to the density of the condensate, and the prime ’
denotes derivation with respect to p. In the non-relativistic limit ¢ — oo, the Gross-
Pitaevskii equation (5.54) is recovered.

5.4.2 Small-Amplitude Perturbations

Similar to the small-amplitude perturbations analysis carried out for the non-
relativistic BEC in Section [5.3.2] we can study the behaviour followed by quantum
perturbations around the condensate’s wave function ®. In a similar spirit to ,
we decompose the field operator d as the classical mean-field ® describing the con-

densate plus a perturbation of quantum nature:

~

d = o(1 +9). (5.73)

For convenience, the Mandelung representation for the complex mean-field ¢ is

adopted. In this representation, ® is factorized into two real fields corresponding to
its modulus \/p(z#) and its phase 0(z*),

® = /pe'. (5.74)

Additionally, the following quantities are defined:

h
u = —n""0,0, (5.75a)
m
2
2 e oL
¢ = 2m2pU (pv >‘Z)7 (575b)
h? h?
T — O K (1 )] = ———nM L), .
p= 5[0+ n"0,(lnpdy)] 2y 9u(pdy) (5.75¢)

where u# is a four-velocity vector related to the conserved current j# = pmut/h
associated with the U(1) symmetry, ¢y indicates the RBEC’s self-interaction strength
and has units of velocity, and T}, is the generalized kinetic operator which reduces

to the standard kinetic operator —hA?V?/2m in the non-relativistic limit.
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Condensate’s Equation of Motion

To derive the equations of motion of the system, consisting of the condensate
and the quantum perturbations, the decomposition ((5.73) and the Madelung rep-
resentation are implemented in the non-linear Klein-Gordon equation. Then, the

condensate’s classical wave function evolves according to

m?c?

1 1
%\/ﬁ — 0"00,,0 — < o V) U +i ;au(paﬂe) = 0. (5.76)

Further implementing the quantities defined in (5.75)), the equations of motion of

the condensate read

Ou(put) =0, (5.77a)

h? Oyvp
—ugut = | V(h) + U (p; \y) — —= 1. 5.77b
=+ V) + U )~ 22 (5.770)
The first equation corresponds to the continuity equation, establishing the conser-
vation of the current j#. In analogy with the Gross-Pitaevskii equation, the second
equation determines the chemical potential of the condensate, which corresponds to

the temporal component of the four-velocity u*.

Perturbation’s Equation of Motion

The equation of motion governing the quantum perturbations, considering the

Madelung representation, is obtained to be

. 1 . L
O + 29t (2@ Inp+ 2'6#9> 0,09 — pU" (p; Xi) (9 + 19T) =0. (5.78)
Using the definitions ([5.75)), the equation for the perturbations of a relativistic BEC
can be expressed as
(ihu"d,, — T, — mc%) ¥ =mcg ., (5.79)

This equation involves two perturbation associated field operators, Y and {9T. Taking
its Hermitian conjugate, we can eliminate one of the fields and get a single equation

for the other, thus obtaining for )

1 h? .
(thut0, + Tp)c—z(—ihu“(‘?“ +17,) — ?17’“’8“;) o, ¥ =0. (5.80)
0
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This equation describes the propagation of linearized perturbations over the rela-
tivistic condensate, whose description is given by , and it represents a gener-
alization to the equations obtained in Section for the non-relativistic BEC. An
important fact to remark on is that the information of is contained in ,

but the opposite implication is not true.

5.4.3 Dispersion Relation

The dispersion relation characterizing the propagation of the RBEC’s pertur-
bations carries important physical insight for understanding their behaviour. For
the derivation of the dispersion relation, let us assume that the speed of the fluid
in the RBEC wu, the chemical potential p, the density of the RBEC p and the
self-interaction strength cg are constant both in space and in time. For simplic-
ity, consider the case when the background fluid is at rest, w = 0. Under these
assumptions, Eq. is reduced to

0 A 0 R
Kiu&: - D> (—z‘“at - hD) - D} 9 = 0. (5.81)
c m c m
The equation can be solved analytically by making the ansatz

V(t, x) = e~ Wik, (5.82)

using Fourier modes, which yields

uwoo e _u M2 (7) 2, 272 _
(cw ome2 +2mk > < YT ameY Ty ) c) ook =0,
(5.83)

whose solution is fulfilled for

0\ 2 9 0 0\ 2 972
9 9 ) 9 mu o 2mu mu co
e (Y 1 (@) + e () 1 ()
W=c +<h>[+u0]<h>\/+h (9

(5.84)

This equation establishes the dispersion relation describing the perturbation prop-

agation in an RBEC and generalizes the Bogoliubov dispersion relation (5.45)) from
the non-relativistic BEC.
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Associated with the RBEC dispersion relation, different regimes for the pertur-
bations can be found. This depends on the relative strength of the first two terms
in , the second of them being absent for the non-relativistic BEC case. Below,
a brief overview of the dispersion relation regimes is presented, to later focus, in the
next subsection, on the one relevant to this work. The complete overview of the
regimes is summarized in Table[5.1] For convenience, we introduce the dimensionless

parameter

b= (@f , (5.85)

40
where temporal component u° of the four-velocity u* determines the rate of the

passage of time.

Low-Momentum Regime
The low momentum limit of the dispersion relation is characterized by,

mu®
h
Making a Taylor expansion of ([5.84)) for small k&, up to the fourth order, the disper-

sion relation takes the form

k| < 5 (14 b). (5.86)

TTLUO

2 2
K4 2(141) aape (0 i
h 1+ mu ) 4(1+b)3

From this expression, several cases bifurcate, which can be broadly separated into

(5.87)

W?t%CZ

two types of perturbations: gapless excitations and gapped excitations. Let us
analyse these cases.

Gapless Fzxcitations.
Let us focus on the branch associated with the negative sign w_, for which the

dispersion relation is reduced to

b B \2 1
— K2 k4. 5.88
1+ - <mu0> 4(1+0b)3 ] (5:88)

In this case, the perturbations correspond to massless quasi-particles. Notice that

w_ X C

the dispersion relation has the same functional form as the Bogoliubov dispersion
relation ([5.45)) of the non-relativistic BEC. A further sub-regime can be obtained by
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RBEC’s Dispersion Relation
2 2 2 mu® 2 mu? 2 mul 2 2
High Momentum Regime
o Condition: |k| > mTuo(l +0b)
4
Massless field propagating at ¢: w% = c2k?
Low Momentum Regime
o Condition: [k| < ™2 (1+b) (x)
\’
0 2 2 2 4
wi ~ c? {kz +2(1£1) <%) (1+b) £ 5 F (1) 4(1’117)3}
Gapless Excitations Gapped Excitations
p)
2 2 mu® 24b7.2
el o) | oG
-~ 14+b mu®/  4(1+b)3 B \2 1 1A
+ (W) 4(1+b)3 }
2 Only allowed case: k% > k*
co2 22 |12 h 4
NRL: w? ~ c2 [k: + (3k5) k ]
W-Qi- ~ mgffcg gap/h2 + Cg,gapk2
Sub-regimes Sub-regimes
Phononic (IR) Particle (UV) b<1 b>1 2048 < M
o Condition: o Condition: U L Al
k| < 25 (14+0) | [k] > 2532 (1+b) 4 e N >i>LO
Always compatible | Compatible with (k) if: || 2 zmgL;Slagap WIRE TR
. me mu? * m +¢3 gapk® wime gaph?
with (x) I k| < T e
b>1 b1 b>1 bkl Non-relativistic
[} (2 (2 (3 massive particle
w2 mc2k? | w2 mcdk? Not hw_= 2(21;122
NRL: | Already in | compatible NRL: Vanishes at NRL
2=c3 | NRL i =12k

Non-Relativistic Limit (NRL) o Conditions: 1) ¢ w00 & u’ = ¢, 2) b1 & ¢ < c.

Table 5.1: Dispersion Relation Diagram. The dispersion relation of an RBEC is
schematically summarized. First, the two main regimes, the high-momentum and
low-momentum regimes, are displayed along with their defining conditions. Then,
in the low momentum regime, the excitations are divided into two different classes:

gapless and gapped excitations, each having sub-regimes depending on the behaviour
of b, where b = (co/u’)?.
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comparing the relative size of the k? and k* terms and studying the cases in which
one term dominates over the other and vice versa.
Phononic Regime (Infrared Relativistic).

The quadratic term k% dominates whenever the condition

2mcy

k| < (1+0b), (5.89)

is satisfied, which is always compatible with the low-momentum condition (5.86)).
In this limit, the dispersion relation matches that corresponding to phonon-like

perturbations

w? =2k, (5.90)

travelling at the speed of sound c;, defined by

s (ceo/u®)? b
T 14 (co/u)? 14D

In this case, the perturbations correspond to relativistic phonons.

(5.91)

C

To consider the non-relativistic limit, two conditions are required: first, the
interactions must be weak and second, we must take the limit ¢ — oco. Recall from
the definition that cg indicates the self-interaction strength of the RBEC.
Thus, the first condition requires that ¢y < ¢, which can be equivalently stated

as b < 1. The second condition can also be established by the limit u°

— C,
which implies that the BEC flows with a velocity 4 much smaller than the speed
of light (recall that the four-velocity follows the normalization n,,utu’ = —c?).
Therefore, in the non-relativistic limit, we have that ¢, — ¢y and the dispersion

relation becomes

w? = 2k, (5.92)

corresponding to the phononic perturbations present in the non-relativistic BEC,
which matches . Notice that cg corresponds to the speed of sound in the
non-relativistic BECﬂ Generally, ¢ will differ from ¢g, coinciding only in the non-
relativistic limit.

This regime becomes relevant when describing the evolution of phononic pertur-

bations on an RBEC for low-energy gravitational settings and in trying to connect

2Denoted cs throughout Section
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this theoretical framework to actual experiments. We will return to it in the next
subsection to derive the acoustic metric.

Particle Regime (Ultraviolet).
The opposite regime, where the k* term dominates, is determined by the condition

2me
k| > =0

(1+b), (5.93)

which is compatible with the condition (5.86)) only in the low-coupling case b < 1.

These two conditions together can be summarized as

mco 0

mu
— k — 5.94
- <kl < ——, (5.94)
yielding the dispersion relation
_ (hk)?
Ty (5.95)

This implies that the perturbations correspond to massive relativistic particles with
an effective mass mu®/c = p/c?, and coincides with the non-relativistic BEC’s
result indicating that decreasing the wavelength of the perturbation (or increasing
its momentum) puts in evidence the atomic structure of the condensate, e.g., see
(5.49).

In the non-relativistic limit, when u°

— ¢, we recover the dispersion relation
corresponding to particles of mass m
h2k?
hw_ = ——, 5.96
- (5.96)
revealing the atomic structure in the non-relativistic BEC.
Gapped Ezxcitations.

In the branch associated with the positive sign, the dispersion relation reads

o\ 2 2
245 h 1
2~ 401 ma k? 4. .
e [( ) h +1+b + mu? 4(1+b)3k (5.97)

Depending on the relative weight of the three terms appearing in the dispersion
relation, different cases for the perturbations arise. Concerning the k-dependent
terms, given that (5.86) is satisfied, the only allowed regime is when the k? term

dominates over the k* term. In such a limit, the dispersion relation simplifies as
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2 4
migc
2 _ MegCsgap | 2 2
wy = — 2 + €5 gaph”s (5.98)

where the speed c; gap and the effective mass meg are defined as

3/2,.0
Cs,gap 1= 31202, Meff 1= (12—i_f)b/ucm (5.99)
In this case, the perturbations result in massive relativistic particles with an effective
mass propagating at a speed ¢ gap. In the limit when b < 1, the mass term domi-
nates the k2 term, and the perturbations become non-relativistic particles of mass
meg- In the opposite limit, b > 1, both terms are of the same order of magnitude.

Finally, the k2 term dominates when

mu® 2(1 + b) < k< mu®
ho 1+ h

Let us look closer at what happens in the b < 1 limit. Since the mass term

(1+b). (5.100)

dominates in this limit, assuming a comoving reference frame where u° = ¢ and that
b can be neglected, the frequency of the perturbations simplifies to wy ~ +2mc?/A.
A gap, Ahw, =~ 2mc?, arises between the energy levels involving a massive factor of
2m. This mass gap indicates that the lowest energy excitation of this mode requires
the creation of a boson—anti-boson pair. The presence of anti-bosons is one of the
main differences compared to the non-relativistic BEC.

Finally, in the non-relativistic limit, the dispersion relation of the gapped pertur-
bations vanishes when taking the limit ¢ — oco. This is because the energy required
to excite these modes is much larger than the typical energy scales found in non-
relativistic configurations. Thus, boson—anti-boson pairs cannot be created, so the

modes cannot be excited.

High-Momentum Regime
The regime where the momenta is high arises when

m'LLO

h

where it is straightforward to get that the dispersion relation is reduced to w? =

|k| > (1+0b), (5.101)

c?k?. This corresponds to the standard dispersion relation of a massless field travel-

ling at the speed of light ¢, where the energy of the perturbation has become much
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larger than the chemical potential of the RBEC.

5.4.4 Acoustic Metric

Since the aim is to describe the propagation of phonon-like perturbations in an
RBEC considered in a context close to an actual experiment, the gapless branch w_
of the low-momentum regime is the appropriate case to consider. Following [88], the
propagation of phonons can be described as a quantum field evolving over a fixed
curved spacetime background only in the case when the relativistic kinetic operator
T, can be neglected. This condition is the relativistic analogue of neglecting the
quantum pressure term in the Gross-Pitaevskii equation in a non-relativistic BEC,
as is done, for instance, when considering the Thomas-Fermi limit.

Neglecting the operator T),, similar to the non-relativistic BEC case, involves
making an eikonal approximation. This corresponds to the assumption that the
variation of all the background quantities with respect to space and time is small
compared to the scales set by the wavelength and the period of the perturbations,

respectively. The eikonal approximation mathematically states that

O cg O uy

€o

0
AP« w_,

p
in addition to the corresponding relations for the spatial variations. Also, recall
that the phononic regime of the gapless excitations requires conditions (5.86]) and
(5.89) to be fulfilled. Combining these assumptions, the equation describing the

perturbations, (5.80]), simplifies to

< w_, <L w_, (5.102)

Up

c%u“au(u”ay) — "9, (pd,)| D = 0. (5.103)

Using the continuity equation ([5.77al), we notice that pu* is a conserved quantity in

the system. Thus, we can rewrite the previous equation as

A, (f18,)9 =0, (5.104)
where
= %u“u” — pnt, (5.105)
0

can be identified as the metric density f** = \/—gg"” associated with a metric g".
From the definition of f*”, it can be obtained that
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P ugu"> u#u,,]
G = ——Pt 1- n : 5.106
1= Ugu? [ c [nuu ( a3 o ( :

where coordinates z# = (ct, x) were used. Defining the four-velocity

b = ﬁ“ﬂ’ with  |Ju]| = vV=ugu?, (5.107)

the speed of sound ¢, defined in (5.91), can be generalised to the case when the

spatial components of u# are different from zero:

2 — 620(2)/”“”2 (5.108)
* 1+ g/l
which can be used to rewrite the metric as
c 2\ v,
Guv = p;s |:77MV + (1 - C;> ZQV] ) (5.109)

where 7, is the Minkowski metric in flatspacetime. Finally, recalling the

d’Alembertian operator in curved spacetime

_ L
TV

the equation of motion describing the propagation of phonons in an RBEC reduces

O o (V=99""0,), (5.110)

to the massless Klein-Gordon equation

09 =0, (5.111)
where the quantum field ¥ associated with the phononic perturbations evolves over
the so-called acoustic metric g,,,, which is composed of two terms. The first term
corresponds to the real spacetime metric 7,,,, while the second term corresponds
to an effective metric originated on the RBEC itself. Notice how the second term
depends on the four-velocity v of the fluid and on the RBEC’s self-interaction
strength ¢g. Additionally, notice the presence of the conformal factor that depends
on the density p = ®*® and, again, on ¢y. The acoustic metric was also derived
in [90] using a different approach based on fluid dynamics for the perturbations in
a relativistic, barotropic and irrotational fluid flow. The generalisation to a curved
real spacetime metric was achieved in [89].

As an example, let us consider the acoustic metric experienced by the quantum
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perturbations U when the real background spacetime corresponds to flat Minkowski
spacetime for the case of a comoving reference frame, v, = (¢,0,0,0). Here, the

acoustic metric reads

—c/c2 0 0 0
c 0 1 0 0
Guv = P— (5.112)
Cs 0 0 10
0 0 0 1

This means that even though the phononic perturbations Y live on a flat Minkowski
spacetime, the presence of the condensed part of the RBEC, given by the wave
function ® in , plays a role in the phonon propagation. In this case, it causes
time to flow more slowly.

To summarize, the RBEC can be described by a mean-field classical background
®, describing the condensed part of the system, plus quantum perturbations J. In
the low-momentum regime and whenever the kinetic operator T}, can be neglected,
these fluctuations behave like a phononic quantum field evolving over a fixed back-
ground curved spacetime for length scales larger than the so-called healing length,
where the change of the condensate is small compared to spatial and temporal scales

set by the perturbations.

5.4.5 Newtonian Limit

In this subsection, the Newtonian limit of the RBEC Lagrangian is directly taken
without going through the derivation of the equations of motion of the system.
On the one hand, this procedure allows the tracking of corrections coming from
modifications of gravity at the level of GR that may still be present at a Newtonian
leve]EL which can be explored using Earth-based experiments. On the other hand,
it shows the consistency and potential of the approach presented in this work. For
instance, under careful consideration and depending on the experiment in mind,
we could stay at the weak-gravity limit and use the BEC to study the relativistic
effects of linearized gravity without making the complete jump to Newtonian gravity.

Examples of this approach can be found in [89], where the acoustic metric was used

3Consider, for example, the geodesic followed by a particle in a Schwarzschild spacetime. There,
an effective gravitational potential at a Newtonian level can be derived, containing three terms:
the Newtonian gravitational potential energy (o< 7“71), the standard centrifugal potential energy
(o< 772) and extra contribution coming exclusively from GR (o 7~%). See Section 5.4 in [30].
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to study the entanglement in BECs, or in [91], where the passage of a gravitational
wave was simulated in a BEC.

As it was established in the previous subsection, the full effects of gravity on a
BEC can be studied through its relativistic formulation [88], 89 [91]. Considering an
arbitrary curved spacetime, the RBEC will be described by the Lagrangian density,

m2c? 2m

TS TP
= +ﬁvtr)<1> b+ 00'000|,  (5.113)

L=V [g“"aMéTaué +(

where the BEC’s wavefunction is described by a relativistic scalar field d whose
evolution happens over a fixed background curved spacetime with metric g,,. The
first term corresponds to the kinetic term. The second one considers an external
trapping potential V4, and a relativistic correction proportional to the second power
of m, the mass of the atoms in the BEC. The last term corresponds to the two-atom
interaction via the potential @4 and the coupling constant A, which depends on the
scattering length.

To achieve the Newtonian limit from the theory of general relativity, three re-

quirements must be fulfilled [30]:

1. Slow particles. Test particles should be moving slowly with respect to the

speed of light.

2. Weak gravity. Gravity should be weak, such that its effects represent just a

perturbation with respect to flat spacetime.

3. Static gravitational fields. The gravitational field should be static or have

negligible changes with time, such that the spacetime is fixed.

Basically, the Newtonian limit consists of a non-relativistic weak gravity limit of
general relativity. We shall apply these criteria to the BEC’s relativistic formulation.
For this, we must first consider the consequences imposed by the Newtonian limit
on the spacetime metric.

Consider that the BEC corresponds to an inertial observer. In general relativ-
ity, free-falling particles, or inertial observers, move along trajectories given by the

geodesic equation,
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A2zt dz® dxP
e = 114
du? thas du du 0, (5 )

where u is a scalar that parameterizes the particle’s trajectory with coordinates
oM = (ct,x"), and

e, = L o 19) 0 0 5.115

af — 99 (Oagsp + 08gpa — OpJap), (5.115)

corresponds to the Christoffel connection. In the non-relativistic limit, requiring the

particles to move slowly compared to the speed of light is translated into

dr dr’

(5.116)

where 7 = ct is the proper time of the particle. Under this condition, the geodesic

equation becomes

A2z cdt\ 2
“ =) =0 5.117
2 + Loo (dr) ) ( )

and the Christoffel symbol simplifies as

1
Lo = =59"Dpgoo- (5.118)

Now, let us assume the case when the BEC is subjected to weak gravitational
forces. When gravitational forces are weak, the spacetime metric can be linearized

as

G = Nuv + huu; (5119)

where 7, is the flat spacetime metric and hy, is a small perturbation such that
|huw| < 1. From the nondegeneracy condition of the metric, which allows the
definition of the inverse metric g*’g,, = 0}/, we find that to first order in hy,, the

14

inverse metric is g"¥ = n*¥ — h*¥. In this order of approximation, the geodesic

equation becomes
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d2at 1 dt\?
—— = ——n"*P9 h —_ . 5.120
dr? 27] prH00 (d7'> ( )

Further, requiring the gravitational field to be static implies the condition

doguw = 0. (5.121)
Then, using the coordinate time ¢, the particle’s acceleration is [30]
1

i = 50ho. (5.122)

Typically, in the non-relativistic weak-gravity limit of general relativity, the per-
turbation hgg is associated with the Newtonian gravitational potential ¢ of a massive

source of gravity by making the identification

hoo = —2¢, (5.123)

which constitutes the derivation of Newtonian gravity from general relativity. There-
fore, in the Newtonian limit, the only contribution of the metric to the Lagrangian

density comes from the temporal part of the perturbation

h
C C

The BEC’s Lagrangian density gets reduced to

hoo AP m2c®  2m ot atata s

£:—<1—202) [8i<1>8<1>+< e ALk ERt T

(14 M0 g6 a,b. (5.125)
2c2

Now, we must also take the Newtonian limit for the field operator ®. The time

dependence of ® can be factorized into two terms, taking the form

O(r,t) = Zm\i/(r,t)e_imgt/h, (5.126)
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where ¥ contains the kinetic energy E’ of the field, and the other factor considers

the rest mass energy. Considering the total energy E of the field, the kinetic energy

2

is written as B/ = E — mc*. In the non-relativistic limit, where the field moves

slowly compared to ¢, it is required that E' < mc?.

88, [91]

This implies the condition

ih|9y 0| < mc® W, (5.127)

which yields

B hoo h? o Stats
z:_—(1—262> [M(azq/aqf+gq/qf\1/ >+Vtr\w

h h 1 At oa
where g := h?\/2m is the self-interaction coupling constant. Taking the limit ¢ —

oo, the BEC’s Lagrangian density in the Newtonian approximation is obtained,

which further simplifies to

N’\:ﬁ

AP N 1 Sta
(qf 0,% — o, qf>——aix1/ax1;— Vir — =mhog | U0

2m 2
1 bt
~ 59 AR A (5.129)

Since we have arrived at a non-relativistic system of quantum nature, it is more
convenient to work within the Hamiltonian formalism. The associated Hamiltonian

density can be evaluated using the Legendre transformation

oL - -+ 0L

/H = = 6t\11 + at‘I’ = — L, (5130)
2(0 ) GAD
obtaining that
7;02 At ata o
H= Q—V\Il v —|—Vtr\Il U — *thQ\I/ U+ g\I/ LRVAUS (5.131)

Therefore, the Hamiltonian describing a BEC in the non-relativistic weak gravity
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limit can be written as,

i = / o' <—th2 Vi — Smhoo + g@xiz) U dr, (5.132)
v 2m 2 2
where V = LA is the volume of the BEC, and the coupling constant can be rewritten
as g = 4rh%as/m in terms of the scattering length a,. If we dismiss the presence
of the external gravitational force, represented by the term proportional to hgg,
we recover the standard textbook BEC Hamiltonian , under the pertinent
assumptions on the two-body interaction potential.

Connecting this limit to the relativistic description of the BEC highlights the
versatility of our scheme for investigating modifications of gravity that could be
examined at a low-energy relativistic level, as demonstrated in the examples [89, 9T]
mentioned at the beginning of this subsection. In the Newtonian limit, this approach
coincides with the usual treatment for studying BECs.

In summary, this chapter presented a comprehensive overview of the phenomenon
of Bose-Einstein condensation. First, we examined the non-interacting Bose gas,
where we observed the emergence of a phase transition below a critical temperature
whose value was estimated. Next, we investigated the weakly interacting Bose gas,
where the Bogoliubov theory was introduced. We derived the ground-state energy
and the thermodynamic equation for the zeroth-order approximation in the momen-
tum of the gas atoms. In the second-order approximation, we derived the excitation
spectrum, which revealed the presence of phonon-like elementary excitations. Fi-
nally, the study of the non-uniform BEC was established with the derivation of
the Gross-Pitaevskii equation and its application to the analysis of small-amplitude
perturbations.

Additionally, we studied the RBEC in flat space, following a similar analysis
to that conducted for the non-relativistic BEC. By employing the Bogoliubov ap-
proximation, we derived the dispersion relation associated with small-amplitude
perturbations. We analysed the different limiting cases of the dispersion relation.
For the gapless branch of the low-momentum limit, we derived the acoustic metric,
an effective metric over which the phonons in the RBEC evolve. Finally, we consid-
ered the Newtonian limit of the RBEC, consistently recovering the non-relativistic
BEC.

In the next chapter, we revisit the description of the BEC, taking into account the
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presence of an external gravitational potential. We will assume an oscillating massive
sphere serves as the source of this external gravitational potential. By combining this
scenario with quantum metrology, we derive the precision for estimating a physical

parameter characterizing the gravitational potential of the oscillating sphere.
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Chapter 6

Testing Gravity with a BEC

In previous chapters, we explored various areas of physics. In Chapter [2] we
studied the theoretical treatment of bosonic quantum fields. Gaussian states and
their description in terms of the covariance matrix formalism were discussed in
Chapter [3] along with quantum metrology and the estimation of physical parameters
in Chapter [4] and the physics of the Bose-Einstein condensate in Chapter [5 Now,
everything can be combined to construct a consistent framework for performing
high-precision measurements with the BEC’s elementary excitations by exploiting
quantum metrology and the benefits of Gaussian states. The aim is to present a
detector concept for measuring gravitational parameters to explore modified theories
of gravity in the light of dark matter and dark energy problems.

The structure of this chapter is as follows. Section discusses the difference
between the conventional implementation of BECs for gravimetry: atom interferom-
etry and the method proposed in this thesis: frequency interferometry. In Section
we explain the experimental setup proposed for employing the BEC to probe
gravity. This is achieved using the gravitational potential of an oscillating massive
sphere. Next, Section provides a detailed description of a BEC influenced by
the gravitational potential of the oscillating sphere. By assuming the presence of
small-amplitude perturbations in the BEC, we derive the equations of motion for
the condensed atoms and the perturbations. The dispersion relation of the per-
turbations identifies them as phonons, and their temporal evolution is obtained.
In Section quantum metrology is implemented for estimating a parameter that
quantifies the gravitational potential of the oscillating sphere, which is related to the

induced acceleration on the BEC. By establishing the metrological scheme, enhanced
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with the implementation of a tritter, we determine the precision for estimating this
parameter. Finally, Section discusses the experimental parameters involved in
determining the precision of the experiment. A review of the state-of-the-art BEC
experiments is provided, along with a discussion on the conditions and constraints
that the experimental parameters must follow. To close the chapter, we discuss the
parameter dependence of the precision for estimating the amplitude acceleration

and compute its value for different sets of parameters.

6.1 Atom Interferometry vs Frequency Interferometry

Our proposal for employing the phonons of the BEC to measure gravity relies
on the implementation of frequency interferometry. In contrast, the current exper-
imental approach to BEC gravimetry employs atom interferometry. This section

introduces both types of interferometry and provides a comparison between them.

6.1.1 Atom Interferometry

The interesting properties of BECs have been implemented to make high-
precision measurements. Atom interferometry is the most widely used technique
that has exploited Bose-Einstein condensation for metrological purposes [92, 93]. In
general, this technique has become an essential tool for fundamental physics research
and the development of practical applications. Commonly, atom interferometry is
performed by coherently splitting a system of cold atoms into two parts travelling
on different spatial trajectories. Later, the trajectories are recombined, making
the atoms interfere. If a parameter of interest interacts differently for each of the
trajectories followed by the system, a relative phase difference accumulates, which
can be measured to estimate the parameter [94, [05]. BECs have been extensively
implemented for atom interferometry, leading to experiments to make precision mea-
surements of physical quantities that include rotations [96l 7], accelerations [98],
energy differences [99], and magnetic gradients [100], in addition to the creation of
atomic clocks [101] and proposals for testing the equivalence principle or detecting
gravitational waves [102]. Also, several different features of the BEC have been ex-
ploited to perform atom interferometry: BEC’s solitons [103], BEC’s spin-squeezed
states [104], and BEC ring potentials [105].

In particular, BEC-based atom interferometry commonly implements an atomic
Mach-Zehnder (MZ) scheme for gravimetry, which is displayed in Figure This
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6.1. Atom Interferometry vs Frequency Interferometry

type of experiment places a BEC in free fall. Then, a sequence of optical pulses
acting as a beam splitter put each atom in the cloud in a superposition of two wave
packets with different momenta in analogy with the arms of the MZ interferometer.
The wave packets spatially separate vertically, providing the distance needed for
gravimetry. The wave packets are redirected towards each other with subsequent
optical pulses that act as mirrors. Finally, another beam splitter combines the wave
packets, allowing them to interfere. For N uncorrelated atoms, a relative phase
difference allows the estimation of a uniform gravitational acceleration [102] [106].
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Figure 6.1: Mach-Zehnder-type Atom Interferometry. A cloud of cold atoms in free
fall is split into two different spatial trajectories at different heights using a sequence
of optical pulses, which play the role of a beam-splitter. Subsequent sequences of
optical pulses act, first, like mirrors that redirect the trajectories of the atoms and,
later, like a second beam-splitter that recombines the atoms, making them interfere.
Finally, a relative phase accounting for any gravitational difference between the two
trajectories is measured.

The special quantum properties of Bose-Einstein condensation present an op-
portunity to enhance the precision of atom interferometers beyond the standard
quantum limit. However, the interatomic interactions occurring in the BEC are re-
garded as an unwanted hindrance that degrades precision. Furthermore, gravimetry
based on atom interferometry exhibits a precision that scales with the space-time
enclosed area, which is proportional to 2nkT?, where n is an integer number, k is
the wave number of the optical pulses, and T is the interrogation time [98], 102} [106].

Therefore, precision is improved by increasing this area, which implies extending the
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free-falling time of the cloud of atoms or increasing the interferometer size.

This fundamental limit has pushed this research area to consider performing
experiments where BECs are in microgravity to increase the precision [93]. In Earth-
based experiments, the focus has relied on the construction of big towers to increase
the free-falling distance. For instance, we can mention the 146 m tall ZARM drop
tower in Bremen, which has been able to perform microgravity experiments using
BEC-based atom interferometry presenting drop times of 4.7 s [I07], and the Einstein
Elevator in Hanover, which provides 4 s of microgravity experiments [108]. Space-
based experiments have been carried out to increase the free-falling time, and there
are plans to keep this research area active. For instance, the MATUS-I sounding
rocket mission accomplished the first BEC in space [109], the Cold Atom Laboratory
(CAL) experiment in the International Space Station (ISS) created the first BEC
on an Earth-orbiting platform [I10], and the Bose-Einstein Condensate and Cold
Atom Lab (BECCAL) is the next project planned to expand the experimental and
scientific capabilities of the CAL experiment in the ISS [93].

Despite the great efforts and progress achieved by BEC-based atom interfer-
ometry experiments, the limitations imposed by the free-falling times on these
types of experiments represent a major challenge that requires further technolog-
ical progress and economic investment in infrastructure. Under this scheme, the
best current precision for determining Earth’s acceleration, for instance, is around
Ag/g = 1.45 x 1072 [95, [I11]. Furthermore, from a theoretical point of view, the
formalism used in atom interferometry fundamentally depends on the Schrédinger
equation, which considers time as an absolute parameter common to all reference
frames. Dismissing the frame-dependence of time prevents the correct description

or prediction of any relativistic effect in the system.

6.1.2 Frequency Interferometry

In contrast, a different proposal for using Bose-Einstein condensation for metro-
logical purposes is based on a particular physical feature of BECs: their collective
oscillations. Instead of performing spatial interferometry with the atoms of a BEC,
the idea is to perform interferometry with the frequency modes of the BEC’s collec-
tive oscillations [17]. This method does not require the BEC to free-fall to capture
information about external phenomena. Rather, the BEC’s collective oscillations
are affected by external potentials or effects while they are being held by a trapping

potential. Here, the precision scales with the lifetimes of the BEC and the collective
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oscillations.

The origin of the idea can be traced back to the study of the evolution of con-
fined quantum fields under accelerated motion [112] and the theoretical realization
that acceleration produced observable effects in BECs [89]. Soon, these ideas were
combined to set the foundations for a theoretical framework for relativistic quan-
tum metrology focused on estimating spacetime parameters [4, [113]. Since then, the
framework has consistently been developed and refined, leading to the proposal of
several metrological experiments using the BEC’s collective oscillations. Examples
of such proposals include gravitational-wave detection [I8], gravitational potential
measurements [114], screened scalar fields measurements to constrain dark energy
[11 [115], and the development of a patent for gravimetry and gradiometry [19, [116].

Elementary oscillations
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()
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N |
0 BEC density

Figure 6.2: Quantum Frequency Interferometry. Depiction of a BEC held by a
uniform box potential and its frequency modes, or phonons. The phonon frequencies
are determined by the length of the BEC. In this scheme, phonon states are prepared,
which can later be mixed or squeezed, for instance.

The basis of this framework for relativistic quantum metrology is rooted in quan-
tum field theory, so it is well-suited for the study of relativistic effects. Moreover,
important progress has been made in this direction. For instance, the authors of
[117), T18] have developed a method for computing the evolution of confined quantum
scalar fields over a general curved spacetime metric restricted to a synchronous frame
of reference. Connecting this with the achievement of the relativistic description of
the BEC from Section [5.4—where the evolution of the BEC’s collective modes, or
perturbations, over spacetime was studied—allows the application of the relativis-
tic quantum metrology framework to the physics of the BEC, therefore taking the

theoretical progress to actual experiments that can be performed with current tech-
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nology.

This thesis aims to prepare the ground for future research into relativistic ap-
proaches that further advance the applications of the relativistic quantum metrology
framework and to encourage the experimental realisation of our proposal by demon-
strating its potential and versatility; thus, the relativistic framework has been intro-
duced. However, in this thesis, we apply the quantum metrology framework to the
BEC at a Newtonian, non-relativistic level, as this treatment is enough to explore
modifications of Newtonian gravity. Interestingly, it was shown in [I19] that the
effect of a gravitational wave passing through a small detector, like a BEC, can be
mimicked with a system of non-relativistic oscillating masses. Therefore, the New-
tonian limit is interesting enough by itself for testing gravity and for gravitational
parameter estimation.

The work presented in [114] demonstrates that changes in an external gravita-
tional potential lead to measurable phonon creation and phonon transitions on a
BEC placed nearby, which implies the BEC’s potential to probe gravitational fields.
In light of these results and motivated by the exploration of dark matter and dark
energy—two important open questions of gravitational nature—in this thesis, we
propose an experiment to carry out high-precision measurements to probe the grav-
itational potential. A further and more in-depth discussion of how dark matter and
dark energy exploration motivated this project is presented in the next chapter.

In the next section, we will describe the experimental setup proposed in this
thesis to test gravity. It comprises a BEC positioned near a massive gravitational
source in the form of an oscillating sphere. The aim of the following sections is to ex-
amine the gravitational influence of the massive sphere on the collective oscillations
of the BEC.

6.2 Experimental Setup

As a tabletop experiment to test gravity, in this thesis, we propose to study
the interaction between a BEC and an oscillating massive sphere, accounting for a
source of gravity. In particular, we propose to study the evolution of the collective
modes of a BEC in the presence of the massive sphere oscillating in resonance with
the frequency of the BEC’s collective modes, which will turn out to correspond to
phonons. The experimental setup is the following.

Let us consider an oscillating sphere with mass M and frequency 2, which gen-
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erates a time-dependent gravitational field. Placed next to it, we find a BEC of
length L held by a uniform box trap potential [120], aligned with the direction of
the oscillation, as depicted in [6.3] The length of the BEC is assumed to be much
smaller than the size of the sphere, which allows the restriction to one spatial di-
mension indicated by the z-axis. Let R(t) denote the distance between the BEC’s

centre and the sphere’s centre.

BEC

L

Oscillating mass, M

R(t)

02

Figure 6.3: Sketch of the Experimental Setup. An oscillating sphere of mass M with
frequency € and oscillation amplitude dr (on the right) is placed at a distance R(t)
from a BEC of length L (on the left).

The sphere is assumed to have a sinusoidal displacement R(t) = R + 0 sin(2t)
about a fixed position Ry, where dr denotes the oscillation’s amplitude. In general,
for sufficiently small BECs, L < R, and small oscillation amplitudes, dp < Ry, we
can expand the sphere’s gravitational potential ¢ inside the BEC up to first-order
both in z/R and in ér/Rp, where x € [-L/2,L/2] is a coordinate denoting the
position inside the BEC. The expansion yields

o(x,t) = ¢po(t) + a(t)x, (6.1)

where ¢g(t) and a(t) are, respectively, the gravitational potential and the accelera-
tion exerted by the sphere at the BEC.

6.2.1 Example: Newtonian gravity

To illustrate this expansion explicitly, take the standard case when the gravita-

tional potential of the oscillating sphere is given by Newtonian gravity
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GM
o(r) = 5

Using the small BEC approximation /R < 1, firstly, we expand the gravita-
tional potential around the BEC’s centre at r(t) = R(t) — =, with = € [-L/2,L/2].
A first-order Taylor expansion in z/R gives,

P, t) = — z +O(z?).

R(t) R(t)?
Notice that although the expansion is in the spatial coordinate, the distance between
the BEC and the sphere, R(t), and the gravitational potential itself, are time-
dependent. This does not represent a problem for the expansion since we can expand
the potential as a spatial function around R(t) at each instant t. Then, we can
consider the time evolution of the expansion as R(t) changes.

Now, using the sinusoidal movement of the sphere, R(t) = Ry + dr sin(2t), and
taking the small oscillation amplitude approximation dp < Ry, we Taylor expand

up to first order in di/ Ry, obtaining

GM or . GM 20R .
o(z,t) = — Ry <1 — R—IZ sm(Qt)> - R—% (1 — R—OR sm(Qt)) z +0(z%). (6.2

o(t) alt)

The acceleration a(t) thus consists of two components: a static and a time-dependent
term. The amplitude of the time-oscillating term for Newtonian gravity is defined

as

_ 2G Mg

=—— 6.3

Importantly, it can be shown that in general ¢((t) does not contribute to the
dynamics of the BEC’s phonons. Furthermore, as shown in [I14], the static part of
the acceleration a(t) has a negligible contribution to the phonon’s dynamics. The
physical interpretation of the latter is connected to the fact that the BEC’s phonons
are affected only by effects that resonate with their frequency. Therefore, only the
time-dependent part of the acceleration plays a relevant role in the dynamics, and,
as we will see in Section the value of acceleration amplitude aq can be estimated

using quantum metrology techniques applied to the BEC’s phonon states.
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The practical implementation of an oscillating massive sphere will be discussed
in Section Anticipating that discussion, let us estimate the magnitude of aq
for realistic parameters. Consider we perform an experiment using a sphere with
mass M = 200 g, oscillation amplitude g = 1 mm placed at a distance Ry = 1 cm
from the BEC. These values yield that

ag ~ 2.7 x 1078 m/s%. (6.4)

Naturally, when considering modifications of Newtonian gravity, the explicit
functional form of the acceleration a(t) exerted on the BEC will be uniquely de-
termined by the specific gravitational model considered. The goal of the proposed
experiment is to measure aq and compare it against the theoretical predictions given
by the different gravity models. In Chapter[7, we return to this question by deriving
the functional form of a(t) for the two modified gravity models considered in this
thesis: MOND and Lambda-gravity.

The following section is dedicated to the description of the BEC and its collective

excitations, considering the presence of an external gravitational field.

6.3 Description of a BEC

6.3.1 Hamiltonian Formalism and Field Decomposition

The description of the BEC under an external gravitational potential ¢(z,t)
follows in analogy with the procedure established in Chapter [5| Let us consider the
Hamiltonian (5.23) describing a Bose gas of particles with two-particle interactions

. . K2 4\ -
= / o' <—v2 F Vi + m(z,t) + gw*w) ¥ dr, (6.5)
v 2m 2

where V = LA is the BEC’s volume with L and A respectively corresponding to
the BEC’s length and cross-section, m is the mass of the BEC’s atoms, Vipap is
the trapping potential, and the two-particle coupling constant is g = 4wh?a/m as
established in for an effective interaction potential.

Assuming that the temperature T" of the Bose gas is much lower than the critical
temperature for condensation, the ground state becomes macroscopically occupied
by a large collective coherent state populated by a large number of atoms, achieving

the Bose-Einstein condensation. In this case, it is helpful to expand the field operator
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@@ngz(@0@ﬁ4-@@3w)e—ﬁm—ﬁémfﬂﬂ, (6.6)
with
o (r) := tho(r) do, (6.7a)
{9(1'7 t) = Z ¢n<r) &n<t)v (6'7b)
n#0

where Wo(r) describes the atoms in the ground state, and 9(r,t) corresponds to
the excited atoms of the Bose gas. The atom creation and annihilation operators,
d:rz and a,, satisfy the canonical commutation relations [a,, djn] = Opm, M denotes
the chemical potential of the gas, and du is the time-dependent energy shift of the
ground state.

The Bose-Einstein condensation is formally performed by making the Bogoliubov
approzrimation, which replaces the operators ag and dg with the complex number
VNG,

o — Uy = /Ny, (6.8)

where N, corresponds to the number of atoms in the ground state of the BEC, and
o = V712,

Then, under the Bogoliubov approximation, the expansion decomposes
the BEC into two parts. The condensed part, which describes the atoms on the
ground state with a classical field Wy(r) satisfying the stationary Gross-Pitaevskii
equation, plus the excited part, which describes the excited atoms in the BEC with
the quantum operator {9(7“, t). Similarly to Section we assume o corresponds
to small-amplitude perturbations, then \il(r, t) can be considered to be very close to
the stationary solution of the Gross-Pitaevskii equation.

Substituting the expansion into the Hamiltonian while applying the

Bogoliubov approximation results in a Hamiltonian composed of three terms

(0) (2) | p(int)

H=H +H” +H", (6.9)
where we have discarded the higher-order terms (’)({93). The first term corresponds

to the ground state energy

. N2
Hwﬁ:E@%:g2a/ﬁm#dn (6.10)
%
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which matches accordingly with the energy of the ideal gas (5.31). The second term

is the Bogoliubov Hamiltonian

~ (2 N h2v2 ~ N, ~12

H( ) = :/ [19T (— —M+QgNa]¢0]2>19+g a(ﬁT Y2 +cc)|dr:, (6.11)
v 2m 2

where : O : denotes the normal ordering of operator and p is the stationary

eigensolution determined by the stationary GP equation, (5.60). The remaining

terms are collected into the interaction Hamiltonian

a™ = Jpo / [ba(t) — Su(t)] ({9+{9T) dr + / I Sat) — op()]ddr,  (6.12)
% %

where pg = N,/V corresponds to the number density of condensed atoms in the

BEC, and defining da(t) := magq sin(Qt)z, which determines the ground state energy

shift via du(t) = [ g da(t) vo dr.

6.3.2 Description of the Perturbations

A Bogoliubov transformation can be applied to the operators of the excited
atoms, a0, which allows us to express the field operator of the perturbations as

the mode decomposition [86]

d(r,t) = Z <un(r)l;ne*i“’"t + vn(r)l;;rlei”"t> , (6.13)
n

where I;L and En are the collective modes creation and annihilation operators fol-
lowing canonical commutation relations [lA)n,lA),Tn] = dpm, and wy, is the mode fre-
quency. The evolution of the mode functions w,(r), v,(r) can be derived by using
the Heisenberg equation ih ;¥ (r,t) = [¥(r,t), H] and the stationary solution of

the GP equation.
We assume the BEC is confined using a box-like uniform trapping potential
[120], where Earth’s gravity is cancelled and the effective potential inside the trap
is approximately zero, Virap = 0. While such traps can provide a nearly uniform

density profile for the condensed atoms, they also introduce problems due to the

!Normal ordering places all creation operators to the left of all annihilation operators whenever
a product between these happens.
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hard-wall boundary conditions. In particular, the condensate density drops abruptly
to zero at the walls, creating strong gradients which invalidate the local density
approximation near the walls. However, this phenomenon is present at length scales
smaller than the healing length [73], discussed in . By working in the phonon
regime, where excitation wavelengths are much larger than the healing length, we
avoid these short-scale features.

Therefore, considering a BEC confined to a uniform trapping potential, the evo-
lution of the mode functions wu,(7), v,(r) is governed by the stationary Bogoliubov-

de Gennes (BdG) equations

ot (1) = % K—v2 + ;) n (1) + 512%(7«)] , (6.14a)
—ovn(7) = % [(—V2 4 ;) on(r) + éun(r)] , (6.14b)

where & corresponds to the BEC’s healing length and the contribution from the
gravitational potential can be discarded as shown in [114].

The mode functions satisfy Neumann boundary conditions at the potential walls
[114]. Since the perturbations describe density fluctuations, this boundary condition
ensures that the atom current flow vanishes at the walls of the box-like trapping

potential. The mode functions are normalized with respect to the inner product

/V[u;';(r)um(r) — Un (7)) (1)) AT = S (6.15)

We assume that the width and height of the BEC are much smaller than its
length L, leading to an effective reduction of the phonon dynamics to one dimension.
This 3D-to-1D transition in the phonon propagation has been previously studied for
BECs in harmonic trapping potentials [121], where radial confinement suppresses the
transverse excitations, leaving only longitudinal phonon modes. This dimensional
reduction occurs when the phonon wavelength becomes larger than the transverse
radius of the condensate.

In a uniform box-like trap, we expect a similar behaviour. As the transverse
BEC dimensions fall below the characteristic phonon wavelength of the system,
the phonons get effectively constrained to propagate along the longitudinal spatial
direction. However, unlike harmonic traps, uniform box traps impose hard-wall
boundary conditions in all directions [120]. To keep a well-defined region in the

condensate where the local density approximation remains valid, the width and
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height of the BEC must be larger than the healing length &.

Under the 3D-to-1D transition, the atom-atom interaction strength g becomes
effectively renormalized due to the restricted transverse motion of the atoms. This
renormalization has been derived for both harmonic [122] and box-like trapping po-
tentials [123], and leads to a modified effective 1D coupling constant gip ~ ¢g1ip/A1,
where A is the transverse cross-sectional area of the BEC. As a consequence, the
healing length £, which depends on the interaction strength, is adjusted. These mod-
ifications must be taken into consideration since this renormalization may influence
the quantum fluctuations of the collective excitations, including phonon number
fluctuations (see Eq. (6.48)).

Assuming the 3D-to-1D transition, we restrict our analysis to excitations along
the x-direction, aligned with the direction of the sphere’s gravitational potential.

Under these conditions, the set of real solutions to the BdG equation is

up(x) = \/]1) <\ﬁlfkrn + 1> cos [ky (z+5)], (6.16a)

1 1
vp(x) = _\/V (\ﬁﬁkn - 1) cos [kn (z + £)], (6.16b)

where k, = nw/L and n is a positive integer number.

Returning to the Hamiltonian of the system, the Bogoliubov Hamiltonian, H (2),
can be diagonalized by the mode decomposition . Discarding the terms of
third and fourth order in BL and Bn, and using the normalization condition of the
mode functions , we obtain that

2% =23 hwnblby - (6.17)

The energy spectrum is given by the dispersion relation
(hwn)? = (cshkp)? + (B2K2 /2m)?, (6.18)

where ¢; = /gpo/m corresponds to the speed of sound in the BEC.
Considering the low-energy (low-momentum) limit hw, < mc?, which can be
rewritten in terms of the healing length as the limit £ k, < 1, can be interpreted

as restricting ourselves to work with the modes of lower energy or the modes with
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wavelength much larger than the healing length. In this limit, the dispersion relation

reads
wy, = coky,. (6.19)

This relation is equivalent to (5.48)), which corresponds to the dispersion relation
associated with phonons travelling at speed c;. Therefore, in the low-energy limit,

the operators BIL and b,, create and annihilate phonons in the BEC.

As discussed in Section and in analogy with ([5.43)), the Hamiltonian (6.17))

tells us that the original system of interacting atoms, associated with the operators
an and af I, can be equivalently described as a system of non-interactive phonons,
associated with the operators é, and &/ L, of energy hw,. In the low-energy limit,

the Bogoliubov transformation that relates them takes the form

an ~ Up (bpe™™nt — b ent), (6.20)

n

Moving back to the interaction Hamiltonian, we substitute on it the mode de-
composition (6.13)), and by using the rotating wave approximation to discard the

fast time-oscillating terms, we obtain

. (lnt ZMOn ( il =t _ I;n z(wn—Q)t>

*'253““4”L(mbne_““"+w"“”-—zJéleﬂwn+wr—Q”>

ln

= (A + Bi) (ISIBne““l—Wn—Q)t - lSlz}Le—i(“l—“’n—mt) , (6.21)

I>n

where the transition amplitudes are given as

L/2
Mon = — mmwNA 2) + vn(2)] da,
L/2

, L2

Min = =222 [ (oo (@) do
2 ~L)2
, L2

A = =222 [ ) din,
2 —L)2
, L/2

B, = _iAmag / zv(z)vp(z) de.
2 —L)2

Using the properties of solutions for the BdG equations and taking the approxima-

104



6.3. Description of a BEC

tion kp& < 1, the amplitudes take the final form

Mon = 6220
imL?(* +n?) !

l 2\/@@2 —n2)2x3¢ (=1)™") aq or [#mn ( )

Mpn = —App = —Bpp = 0. (622C)

where M, =~ —A;, = — By, and aq corresponds to the experimental parameter to be
measured, as will be shown in Section by implementing quantum metrology. In
Chapter [7], this parameter will be explicitly calculated according to the predictions
done by MOND (ap) and Lambda-Gravity (ap).

6.3.3 Time-Evolution Operator

The temporal evolution of the phonons is given by the time-evolution operator
0(t) = exp(—i [ 7™

cillating massive sphere, such that its oscillating frequency 2 matches the frequency

)

dt/h). Considering only processes on resonance with the os-
of the phonons, the temporal dependence of H (int is lost and it also implies the ex-
istence of a mode number ng := LQ/(mcs) which must be an odd integer. Then, the
evolution of the phonons under the influence of the oscillating sphere, considering

only resonant processes, is given by the time evolution operator

ﬁ(t) = exp —CLQM()HQ (l;;rm — Bnﬂ) t/h}
[ At o
x exp | > agMing— (b,bnﬂ,l —b,bm,,) t/h]
-l<ng
X exp Z QCLQMl’l,nQ (Bji)l,ng — B;ffngl;l> t/h], (6.23)
LI>ng

where we defined the quantities

_ LN, _ mLA(I* +n?)
Moy, = 2m, /7( Vo) My, = Vol e (6.24)

Let us discuss and explain the physical meaning of the three exponentials appearing

in the time evolution operator. Their interpretation is closely related to the Gaussian
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transformations described in Chapter

The first exponential, with argument proportional to (lA)jm - l;nQ), corresponds
to the Weyl displacement operator introduced by Eq. . Its resonant condition
requires w, = {2, which is equivalent to taking the mode n = ng. This operator cre-
ates a coherent state when applied to the vacuum state. If we dismiss the rest of the
operators in U (t), the average number of phonons N, created by the displacement
operator is given as N, = |aqMon,, t/h|?, as established by in Appendix

The second exponential, with argument ~ (I;Zrl;nnfl — l;ll;ng,l), corresponds to
the two-mode squeezing operator defined by in Appendix |Al Under the res-
onant condition w; + w, = Q, which is equivalent to taking the modes [ and ng — [
that satisfy [ + n = ngq, this operator generates a pair of squeezed phonons with
frequencies w; and wy. As discussed in Section [3.7.4] a squeezed state corresponds
to a Gaussian state exhibiting entanglement, which minimizes the Heisenberg un-
certainty principle. Suppose we dismiss the rest of the operators in U (t). In that
case, this operator creates squeezed states of phonons thanks to the resonant effect
of gravity created by the oscillating sphere, creating an average number of phonons
corresponding to N, = 2 sinh?(aq M n,—1t/h), as established in Appendix
by, B1),
corresponds to the mode-mixing operator, which acts as a beam-splitter mixing a

The last exponential, whose argument is proportional to (Ezrl;l_nﬂ —

pair of phonons with frequencies w; and w,. This process is resonant given the
condition w; — w, = €2, which is equivalent to taking the modes [ and | — ng that
satisfy [ —n = ng. The mode-mixing operator is a mode-coupling process that does

not change the number of phonons.

6.4 Quantum Metrology

Quantum metrology is now employed to detect the change in the BEC’s phonons
induced by the gravitational influence of the oscillating sphere. The strategy is to
estimate the physical parameter responsible for phonon generation, in this case,
the acceleration amplitude aq of the oscillating gravitational field. This parameter
is imprinted onto the phonon states through the displacing, squeezing, and mode-
mixing operators as established by the time evolution operator U/ (t) derived in the
previous section. By measuring the resulting phonon state, or the BEC’s phonon
content, the value of aq can be estimated.

As discussed in Section to optimize the precision of the estimation, the
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strategy is to find optimal initial states and optimal measurement bases for the
final state. It was shown in [45] 124] that the optimal estimation of a parameter
via Gaussian processes—either for any of the states studied in Chapter [3] including
the evolution driven by U (t)—is obtained when the probe state corresponds to a
squeezed state.

Additionally, a frequency interferometry strategy can be performed with a single
BEC in a pumped-up SU(1, 1) scheme [125], which enhances the estimation precision
[I7]. In this case, the condensate atoms act as the pump, and two phonon modes

can be used as the side modes.

6.4.1 Metrological Scheme

A three-mode frequency interferometry scheme [17] is implemented, involving
the BEC’s ground state and two phonon modes coming from (6.17). We focus on
the modes [, n that satisfy the resonance condition 2 = w; + w, with the oscillation

frequency €2 of the sphere, where [+n is an odd integer. The full scheme is illustrated
in Figure [6.4]

Ground ‘a>
state: EE—
Ph A R
modon: 10— OO~ —Uu-— o~
Ug,(—

Phonon’ >_USQ(T)_ | | Ug A | | q( 7”)_>._
mode [:

(. = 2 ——- N e .,

a) Probe state b) Encoding c) Closure

Figure 6.4: Frequency Interferometry Scheme. a) The probe state is prepared by
applying the transformation U sq(r) on two vacuum phonon modes (green and blue)
to then mix them with the BEC ground state (red) through the tritter Uy, (6). b)
The acceleration amplitude is encoded by Ug (aq). ¢) To close the circuit, the probe
state is reversed. Finally, the number of phonons is counted at the output.

a) Probe State Preparation

The scheme begins with the preparation of the probe state, priorly to the in-

volvement of the oscillating sphere. First, studies show that in general the ground
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state of a BEC is well approximated by a coherent state o) [126, [127], satisfying
ap |y = ag |a), where ag is a complex number related to the number of atoms in
the ground state, N, (see Section [3.7)).

Next, we take two phonon modes [ and n in the vacuum. When working with
Gaussian states, squeezed states are known to be optimal probe states [45] [124].
Therefore, a two-mode squeezing transformation is applied to the phonon modes [
and n,

~In

s itit  ideqi i
Usq(r7 ﬂsq) — er(e Usap, b, —e~ ™ qblbn)’ (625)

where 7 is the squeezing parameter and 54 € R is the squeezing phase. This trans-
formation parametrically populates the modes, and its experimental implementation
can be achieved by the sinusoidal modulation of the trapping potential at a fixed
frequency, i.e., by the periodical change of the BEC’s length [128] 129, [I7]. The
frequency of the trapping potential modulation is selected in accordance with the
frequency of the oscillating sphere that squeezes the phonon modes [ and n.

To further optimize the probe state, the BEC’s ground state gets coupled with
the squeezed phonon state using a tritter transformation U tr(0,7). This transfor-

mation is generated from the Hamiltonian [125]

i WO T I
i e,9) = 7 [af (b + bn) + e~ oo (bt + b1 (6.26)

where 6 € R is the coupling strength and 9 € R is a phase. The explicit form of the
tritter is shown in Appendix Recall that dg is the creation operator associated
with the atoms in the ground state, that is, the condensed atoms of the BEC.
Therefore, the tritter transformation can be understood in analogy to the beam
splitting transformation (see Eq. ) as the mixing of ground-state atoms with

phonon modes [ and n, as depicted in Figure [6.5
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Figure 6.5: Tritter Transformation Diagram. Ground-state atoms (solid red line)
sequentially decay into phonon modes [ and n (dotted blue and green lines, re-
spectively) in a process analogous to the beam-splitting, or mode-mixing, trans-
formation. Simultaneously, phonon modes | and n decay into ground-state atoms,
illustrating both processes given by the two terms in Eq. .

The tritter transformation is inspired by a beam splitter-like coupling between
different modes in the BEC. This could be implemented through a suitable modu-
lation of the trapping potential or by using Bragg diffraction [130} 131}, 132], where
applying two electromagnetic fields tuned to the excitation energies of the phonon
modes could impart the required momentum to excite the ground state, or con-
versely, supply the energy to return excitations to the ground state. The tritter
concludes the preparation of the probe state before the involvement of the gravita-
tional effects of the oscillating sphere.

In the Bogolibov approximation, ag is replaced by /N,. We assume that the
number of condensed atoms is fairly undepleted by the squeezing transformation
and remains in a coherent state |a), implying that N, = |a2|. It is also assumed
that N, will remain reasonably undepleted after the tritter transformation, which

requires that the coupling 8 driving the tritter cannot be too large.

b) Parameter Encoding

After the probe state is ready, the gravitational interaction with the BEC’s
phonon states is started by activating the oscillation of the massive sphere. As
discussed in Section the sphere’s oscillation frequency 2 can be tuned to

resonate with the phonons of the BEC using the relation
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nQmes
L Y
determined by the speed of sound ¢s; in the BEC and its length L. The integer

number ng is a free parameter whose value will determine which phonon modes are

Q= (6.27)

stimulated by the massive sphere, as established by Eq. (6.23)). Focusing exclusively
on the two-mode squeezing induced by the oscillating sphere, resonant when Q =
wn + w; (or equivalently, [ +n = ngq, with ng an odd integer), we find that the

phonon evolution is given by

R Siat s s
Ug(t> — eZl,n rln(t) (bl bn blbn), (628)
with squeezing parameter
agM; nt
Tin(t) = T’”‘ (6.29)

In principle, the operator Ug (t) squeezes all phonon modes pairs satisfying [4+n = nq
an odd integer. However, as we discuss below in Section [6.5.1) we will focus on
low mode numbers, which effectively restrict the dynamics. In particular, selecting
ng = 3 unambiguously squeezes exclusively the phonon modes [ = 1 and n = 2.

The activation of the oscillation of the massive sphere is not expected to stimulate
unwanted phonon modes, given that we are working with resonant processes and
that we are stimulating the lowest phonon modes. First, as the frequency ramps up,
it won’t spend enough time near any resonant mode to induce phonon stimulation.
Second, targeting low-frequency modes avoids stimulating higher-frequency modes,
as this requires a higher frequency than the one being used.

The change produced in the phonon states by the gravitational interaction is
quantified by magnitude of the squeezing parameter 7;,, which depends on the
acceleration amplitude aq exerted on the BEC by the oscillating sphere, the mode
overlap M, as given by Eq. , and the interaction time ¢ as shown in Eq.
. To estimate the amount of squeezing, we use the value ag ~ 2.7 x 10~ m /s?
derived in Eq. considering Newtonian gravity. Anticipating the discussion
in Section on the value of the experimental parameters, we can consider the
parameters listed in Table Considering, for example, a BEC of length L = 1000

pum with speed of sound ¢s = 1.02 mm/s, the squeezing parameter evaluates to
T1n = 0.65, (6.30)
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corresponding to approximately one phonon generated, or a signal strength of
roughly —0.13 dB.

c) Interferometer Closure and Measurement

To close the frequency interferometry scheme, we apply the inverse transfor-
mations U sq(—7) and U tr(—0). Although less commonly examined in the litera-
ture, inverse squeezing (or antisqueezing) has been studied theoretically and imple-
mented experimentally in systems such as spinor Bose-Einstein condensates [133]
and trapped atomic ions [I34]. The inverse squeezing can be achieved by reversing
the nonlinear evolution, thereby effectively recovering the initial state. In the case of
phonons, such a reversal could be implemented by inverting the phase of modulation
of the trapping potential. The inverse tritter could, in principle, be implemented
by applying the same operation but with a 7 phase shift, analogous to reversing a
beam splitter by changing the relative phase. While experimental demonstrations
of mode-mixing operations are available, the inverse operation is less commonly
reported.

The metrological scheme ends by measuring the final phonon state. Since the
scheme can be implemented independently of the specific measuring protocol, we
assume that some feasible protocol exists which can reach or approximate single-
phonon sensitivity. To support this assumption, we consider recent developments in
phonon detection in BECs. For example, in Ref. [12§], single-atom detectors were
used after releasing the trap to estimate the number of phonons by measuring the
momentum distribution of the atoms. To approximate single-phonon detections, one
can adiabatically manipulate the system during the interaction and measurement
stages to ensure a one-to-one correspondence between atoms and phonons, thereby
suppressing unwanted fluctuations. Although current experiments may resolve only
tens of phonons [135] [136], further progress in detection technology may soon enable
single-phonon resolution.

While this is one possible method, alternative measurement strategies may also
achieve comparable sensitivity. For instance, Ref. [114] discusses homodyne and
heterodyne detection schemes, which offer optimal and suboptimal yet practical
measurements that estimate the phonon number, or related observables, with high
precision [137, [13§].

In our metrological scheme, thermal and laser noise are potential sources of

fluctuations in the number of condensed atoms. Previous studies have shown that
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the scheme is robust against thermal noise, and that the presence of initial thermal
fluctuations does not significantly affect the phonon states [69]. However, laser noise
can influence the number of condensed atoms by reducing the cooling efficiency and
trap stability. Therefore, it is crucial to minimize these effects by implementing
laser stabilization techniques to ensure the reliability of precision measurements
[139] 140].

Since the precision of our proposal scales with the total number of condensed
atoms N, (see Eq. ), we must ensure the relative fluctuations dN,/N, to
remain small. The key point relies on preventing fluctuations 0V, from introduc-
ing significant uncertainties in the phonon population that could compromise the

precision for detecting gravitational effects.

6.4.2 Quantum Cramér-Rao Bound & Quantum Fisher
Information

From the material studied in Chapter [d] we know that the optimal precision to
estimate the parameter aq characterizing the gravitational influence on the BEC’s

phonons by the oscillating sphere is given by the quantum Cramér-Rao bound,

introduced in (4.11]),

1
VNmFg(aq)

which depends on the number of measurements N, and on the quantum Fisher
information Fy, defined in (4.16).

The QCRB optimizes all positive-operator-valued measurement schemes and can

Aag > (6.31)

be saturated for N, — co. When the measurement saturating the bound cannot be
experimentally implemented, suboptimal viable measurements, such as heterodyne
detection, can be carried out [70)].

To determine the precision in estimating the gravitational parameter aq, the
quantum Fisher information must be evaluated first. Following the material pre-
sented in Section the probe state of the system (dp,I'g) and the symplectic
transformation S(e) driving its evolution need to be expressed in terms of the co-
variance matrix formalism. The transformation S(e) imprints the parameter € in
the probe state, resulting in the state (d,I"). Considering the metrological scheme

described in the previous subsection, let us determine the probe state, the transfor-
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mation and the resulting state using the covariance matrix formalism languagdﬂ

Initially, the BEC’s ground state is considered to be a coherent state, and we
take two phonon modes, [ and n, which are assumed to be in the vacuum. The
initial state is described by the pair (dcon, ['vac). To prepare the probe state, both
phonon modes are squeezed using the symplectic matrix Sgq(r, ¥sq) associated with
the transformation Usq(r, Usq), and then they are mixed with the BEC’s ground
state using the tritter Sy, (6,9) associated to U (6,9). Then, the probe state can
be expressed by the pair dy = Si;Ssqdcon and I'g = (StrSsq)FvaC(StrSsq)T.

The oscillating sphere interacts gravitationally with the BEC through the sym-
plectic transformation Sy(aq) associated with the two-mode squeezing transfor-
mation U g, which imprints the acceleration amplitude aq on the phonon evolu-
tion. This results in the state given by the pair d = S,dy = 545t Ssqdcon and
T = SgFOST = (SgStrSsq)FvaC(SgS’trSsq)T. Since the QFI is independent of the
measurement performed, the interferometric scheme does not need to be closed to
evaluate the QFI. It is enough to consider the system’s state until gravity starts
acting on the BEC, that is, (d,T).

The explicit evaluation of the quantum Fisher information can be found in Ap-
pendix [C] performed using Wolfram Mathematica for convenience. The result ob-
tained for the quantum Fisher information, , related to the estimation of agq

under the metrological scheme followed reads

Folag) = (M, t/h)? {4 + sin®(20) sinh® r + 2(1 + cos” ) sin®(Ysq) sinh 2r
+]ao? (4 sin® 0 + [cos (29 — ¥gq) sinh 2r + cosh 27| sin? 26)}.
(6.32)

Undepleted Approximation

During the experimental preparation of the probe state, the ground state of the
BEC is assumed to remain reasonably undepleted by the squeezing transformation
and the tritter, thus staying in a coherent state |a).

First, the conservation of the number of atoms after the action of Syq requires
the relation N, = N — Nexe to hold, where N, = |a%] represents the number of

condensed atoms, N = \a\Q is the number of initially condensed atoms and Ny is

2The relationship between symplectic transformations and their associated Gaussian unitary
transformations is derived and enlisted in Appendix @
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the number of atoms excited by the squeezing transformation, which is proportional
but greater than the number of produced phonons, N, = 2sinh?r. The relation
between these two quantities is later provided by Eq. .

To maximize the QFI, the optimal phase values for Syq and Si, can be experi-
mentally implemented, with values corresponding respectively to ¥dsq = 5, ¥ = 7.
Assuming that the ground state remains relatively undepleted under Sy, implying
N > Ny, and additionally considering that N > 1, N > 1 and r > 1, the QFI

simplifies to

Fg(ag) ~ 2(Mj,t/h)?sin?(20) NN,,. (6.33)

To further assume that the BEC’s ground state remains reasonably undepleted
after the tritter transformation, it follows that 8 must be small. After the application

of the tritter, the number of ground-state and excited atoms is:

1
Ny(0) = N, cos® 0 + §Nexc sin’ 0, (6.34a)
1
Nexe(8) = N, sin? 6 + 5 Nexe(1 + cos®6). (6.34b)
Introducing v, € R, the ground state can be assumed to remain fairly undepleted

if we require that Nexe = YN, and Nexe(0) = dN4(0) for v < 1 and 6 < 1. Then, 6

corresponds to a small parameter if it satisfies the relation

1 0 20 — 3y — 2
9§2arccos<7+ 37 >

5y +20+y—2 (6.35)

For instance, setting § = 0.05 and taking the limit when v — 0, results in a value

0 =~ 0.21. Then, in the fully undepleted approximation, the QFI becomes

Fg(ag) = 8(Mjt/h)?6* N, N,. (6.36)

It is interesting to note that the quantum Fisher information for estimating agq is
independent of the parameter itself. This is due to linear dependence on agq of the

squeezing parameter 1y, driving the gravitational-induced phonon evolution, as can

be checked from ([6.29)).
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6.4.3 Measurement Precision Formula

To determine the precision Aag for measuring the acceleration amplitude ag
exerted on the BEC by the oscillating mass, the results from equations (6.24]) and
(6.36]) are substituted into the Cramér-Rao bound (6.31)).

Ado > ahm3v/2nl(1? — n?)?
a .
@ = 16mNa0/LasttN, (1% + n?)

The number of measurements appearing in (6.31)) is determined as N,,, = 7/t, where

7 indicates the integration time of the complete experiment and ¢ is the duration

(6.37)

of a single measurement. Also, the cross-section of the BEC is assumed to be
approximately circular A = 7(aL)?, where the BEC’s radius is determined with
respect to the BEC’s length L by the dimensionless number « that represents the
BEC’s length-to-radius ratio.

The precision for estimating aq depends on several parameters, which contain
information about the geometry and density of the BEC or the experimental capac-
ities related to the realization of Bose-Eintein condensation. The summary of the
set of parameters involved in the expression for the precision is specified in Table
The value of these quantities is discussed in the next section.

6.5 Experimental Parameters

This section is divided into three parts. The first part reviews the current exper-
imental progress on the Bose-Einstein realisation relevant to this work. Following
this review of the experimental state of the art, we determine the potential numeri-
cal values of the experimental parameters involved in estimating ag. In the second
part, the set of constraints that must be fulfilled for the realisation of our proposal
is enlisted and reviewed. Here, we focus on two aspects: first, making sure that the
numerical values of the experimental parameters satisfy all the necessary constraints
required to achieve our experimental proposal, and second, demonstrating that our
proposal is realisable with the current technology and experimental progress. Fi-
nally, in the third part, we explicitly evaluate the precision for measuring aq and
discuss the behaviour of Aaq with respect to the most relevant experimental pa-

rameters, such as the BEC’s length or the number of condensed atoms.

115



6.5. Experimental Parameters

Precision Experimental Parameters

Parameter Symbol
Length L
BEC length-to-radius ratio Qo
Number of condensed atoms N,
Number of phonons N,
Mode numbers l,n

Single-measurement time

Time of experiment T
8TRb mass m
87Rb scattering length as
Tritter coupling 0
BEC density 00
Speed of sound Cs

Table 6.1: Precision Experimental Parameters. Parameter dependence of the preci-
sion considering a 8”Rb BEC and other relevant derived parameters.

6.5.1 State-of-the-art Experimental Parameters

This proposal considers a Bose-Einstein condensate composed of 8’Rb atoms.
Although other atomic species, such as 22Na or "L, could be used to create a BEC,
87TRb has been chosen as a representative example since no atomic species offers a
clear advantage for this work compared to the others. The 8’Rb atoms have a mass
of m = 1.44 x 107%° kg and a reported scattering length of as = 99rp [141], where
rg ~5.29 x 10711 m is the Bohr radius.

First, let us focus on the geometry required for our experiment. Our proposal
assumes a one-dimensional BEC trapped by a uniform potential. This configuration
has been successfully achieved by [120], which created an atomic BEC held in a
uniform three-dimensional potential with cylindrical geometry. Typically, BECs
are created using harmonic trap potentials, which exhibit a cigar-shaped geometry.
Interestingly, the authors of [121] discovered a 3D-to-1D transition in the phonon
dispersion relation for cigar-shaped BECs, where we estimated a length-to-radius
ratio @ ~ 0.1 in their experiment from the ratio of axial to radial frequencies.

This finding is particularly significant since there is no Bose-Einstein condensation
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mechanism for a strictly one-dimensional Bose gas. Instead, 3D-to-1D transitions
can lead to quasi-1D BECs where the Gross—Pitaevskii equation is approximately
one-dimensional. Therefore, a length-to-radius ratio o < 0.1 is assumed for this
work.

Another important parameter related to the BEC’s shape is its size. The typical
lengths reported for BECs have a wide range, going from approximately 50 um to
1000 pm [142] 143].

Next, let us consider the number of condensed atoms N,. Due to the tritter
implementation, the precision for measuring aq scales as 1/ \/m instead of the
1/N,, dependence that would have been obtained had the tritter not been applied,
where N, < N,. Therefore, a larger N, will improve our proposal’s precision.
The reported number of condensed atoms ranges from 1.6 x 10 to 1.1 x 10 atoms
[144), 145, 146].

To determine the duration of a single measurement, we must consider the half-
life of both the BEC and the phonons. It has been demonstrated in [73, [147] that
three-body recombination processes primarily determine the BEC’s half-life, that is,
three-atom collisions occurring within the BEC. These processes result in a decay

rate for the BEC’s density given by

dpo(t)
dt

where D is the decay constant. From this expression, the half-life of the BEC is

= —Dpj(1), (6.38)

determined as

3

= —. 6.39

thi

For 8Rb atoms, it has been reported that D = 5.8 x 1073 ¢cm6s~! [148]. Assuming
a density within the typical order of magnitude for rubidium BEC experiments,
po = 10 cm ™3, leads to a BEC half-life of #,; ~ 10 s.

The phonon’s half-life is governed by two-body decay processes, which include
the Landau and Beliaev dampings [149] [150} 151]. Considering a uniform BEC at
temperatures kT < hw,, the dominant effect is the Beliaev damping, where a
phonon scatters into two lower-energy phonons. Conversely, at temperatures such
that kT > hw,, the dominating process is the Landau damping, corresponding to
a two-phonon interaction that results in a single higher-energy phonon. The relevant

temperature regime for our case is when the thermal energy of the BEC is smaller
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than the BEC’s chemical potential, kT < u, ensuring the thermal energy does
not generate fluctuations in the number of atoms of the BEC. In this temperature
regime, the Landau damping rate for the n phonon mode is given by

La _ 37 (kpT) wn (6.40)

" 40 mpoh3cd’ '
where kp is the Boltzmann constant. Assuming a temperature 7' = 1 nK and the
experimental parameters considered in this work, ’y;;a is of the order of magnitude
of ~ 1079 s71. The Beliaev damping rate is found to be even smaller. In accordance
with previous work, [I52], we notice that the three-body recombination drives the
main decay process and gives an upper bound for the time of the experiment.

Taking into account the phonon’s mode numbers, the functional dependence of
Aagq in indicates that smaller mode numbers enhance the precision. More-
over, larger mode numbers may be challenging to populate and resolve in a single
direct measurement due to the short phonon lifetimes. Therefore, it is convenient
to consider small mode numbers; specifically, the values [ = 2 and n = 1 are chosen.

The number of squeezed phonons is set to N, = 1100, following the analysis
conducted in [I53], which corresponds to a squeezing factor of r ~ 3.8 (~ 30.4 dB).
While squeezing is well-established for photons in quantum optics [70} [154] and for
phonons in quantum optomechanical systems [155, [156], the controlled creation and
precise measurement of squeezed phonons in BECs remains under research [128] [129].
Phonons in BECs can be experimentally generated and squeezed by changing the
atom-atom interactions or by periodically moving the trap boundaries, using an
atomic version of the dynamical Casimir effect [128| [I53] and, theoretically, high
levels of phonon squeezing are possible [153] 157, [158]. Work carried out in [159]
reports achieving a phonon squeezing factor of r ~ 1.33 (~ 8 dB) for spin-squeezed
states in a BEC, therefore, further research is necessary to reproduce these levels
consistently in the laboratory.

A separate comment must be made regarding the experimental parameters of
the oscillating mass, as the precision in estimating the acceleration amplitude is
independent of these parameters. This can be explained by the fact that the BEC
phonons respond to the acceleration they experience, regardless of the details of
the gravitational source that induces such acceleration. Therefore, we defer the
discussion of the value of the oscillating mass’s parameters to the end of Section
0.0,
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6.5.2 Conditions and Constraints

Throughout the derivations for the evolution of the BEC’s phonons, resulting in
(6.23), and for the precision to measure aq, yielding (6.31]), several conditions and
constraints have been assumed and imposed on the system. These have been care-

fully considered when selecting the experimental parameters to ensure Bose-Einstein

condensation and consistency with theoretical and experimental requirements [86].

A summary of these concerns is provided here.

)

To achieve the Bose-Einstein condensation, the Bose gas must remain in the
dilute regime
polas|® < 1, (6.41)

and the Bogoliubov approximation must be satisfied
Nexe < Ng, (6.42)

where the number of excited atoms related to the phonon mode n can be

approximated as
Nexe = (mc? /hw,)Np. (6.43)

The modes [, n must fulfil the relation
hwp < mc?. (6.44)
to guarantee that the excitations are within the phonon regime,

and the sum [+ n must be odd, following the resonance condition w; 4w, = 2.

The condition for the low-temperature regime,
kT < p, (6.45)

should be satisfied. This is the case for typical experiments, where tempera-
tures can reach down to 0.5 nK for 8’Rb BECs [136].

The BEC’s density must be sufficiently low to maximize the BEC’s half-life,

3
~ 2Dpy’

thl (6.46)

119



6.5. Experimental Parameters

7) The length-to-radius ratio o must be sufficiently low, ensuring that the shape

of the BEC remains within the one-dimensional approximation. The ratio can

N,
=] R (6.47)

Taking into account the results in [I12I], values o < 0.1 are considered.

be expressed as

8) The tritter angle must satisfy the inequality

(6.48)

1 ) 20 —3v —2
9§2arccos< i v )

0y 420+ —2

For instance, taking 6 = 0.1 and the limit v — 0, the value § = 0.31 is

obtained.

In this thesis, we do not aim to optimize the values of the experimental parame-
ters to maximize the precision. This is expected to be achieved by using specialized
numerical methods in later works. In the Appendix a Wolfram Mathematica
program is provided, where the precision Aaq is numerically evaluated, and the

conditions and constraints are numerically verified.

6.5.3 Precision: Parameter Dependence and Evaluation

Now that we have established the possible values for the set of parameters de-
termining the precision Aagq, displayed in Table by first considering the current
experimental progress and second the conditions and constraints required by the
assumptions of the proposal, we next turn to analyse the behaviour of the precision
with respect to key parameters such as the length of the BEC or the number of
condensed atoms.

First, let us consider the parameters that cannot be tuned in the experiment.
The mass of the atoms m and the scattering length as are determined by the selection
of the atom species. While the scattering length can be altered through magnetic
and optical tuning of Feshbach resonances [160], this changes the density of the
condensate and involves the manipulation of magnetic and optical fields, which
can affect other properties of the BEC, thereby complicating the control of the
experimental constraints and conditions. This issue lies outside the scope of this
thesis, so we will consider the default scattering length value for ' Rb. Additionally,
the tritter’s coupling constant 8, limited by to a small value that cannot be
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significantly optimized, gets fixed by selecting the value of § in that bound. Finally,
the length-to-radius ratio « gets fixed by the number of condensed atoms and by
the BEC’s density and length, as established by . Therefore, these quantities
contribute negligibly to the final value of Aag.
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Figure 6.6: Precision vs. Mode Number. Precision Aagq as a function of the phonon
mode number /. Lower mode numbers improve the precision. Example presented:
BEC with length L = 500 pum, number of condensed atoms Ny = 102, density
po = 10'* cm™3. The rest of the parameters are fixed accordingly with Table

We now proceed to examine the parameters that make a significant contribu-
tion. The precision is enhanced as the time taken for a single experiment ¢ and the
total duration of the experiment 7 increase. The aim is then to encourage the ex-
perimental improvement of the lifetimes of the BEC and phonons to achieve longer
experimental durations. The precision dependence with respect to the mode number
is displayed in Figure For a BEC of length L = 500pm, number of condensed
atoms N, = 108, and density pg = 10" cm ™3, the plot indicates that the precision
is better for lower phonon mode numbers. Thus, selecting the mode numbers [ = 2

and n = 1 represents the optimal choice.
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Figure 6.7: Precision vs. Number of Condensed Atoms. Precision Aagq as a function
of the number of condensed atoms for three different BEC’s lengths: 150 pm, 500
pm, 1000 gm. The density is set to pg = 10'* cm™3, with the remaining parameters

following Table

The precision of the BEC in measuring the acceleration amplitude aq as a func-
tion of the number of condensed atoms N, is illustrated in Figure In this plot,
we considered three different lengths for the BEC (150 pm, 500 pgm, 1000 gm). The
results indicate that the precision is enhanced for longer BECs, which provide a
larger interaction region. Similarly, the precision improves with a greater number
of condensed atoms. The tritter transformation is crucial for this, as it mixes the
condensed atoms with the phonon states, involving a significantly large number of

atoms in the experiment that strengthens the correlation in the phonon states.
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In Figure we present a logarithmic surface plot of the precision Aagq as
a function of both the BEC’s length and the number of condensed atoms. From
Figure[6.7]and Figure[6.8] we can see that the precision improves simultaneously for
larger BECs and a greater number of condensed atoms in all cases. However, these
two parameters cannot be increased independently due to the various conditions
and constraints previously discussed. This indicates that if we wish to increase the
number of condensed atoms, we must also increase the size of the BEC in accordance
with the constraints required by the system, such as remaining within the dilute

regime or the one-dimensional regime of the BEC.

log,s(das) (mis?)

L (um) 700 100

900 105N

Figure 6.8: Logaritmic 3D plot of precision Aaq as a function of BEC’s length L
and the number of condensed atoms N,. The density is fixed at py = 10 cm™3,
with the rest of the parameters following Table

The degree of freedom exhibited by some of the parameters, along with the rele-
vant conditions and constraints, suggests the existence of an optimal set of values for
these parameters that maximizes the precision. Such optimization, likely requiring
specialized numerical methods, lies beyond the scope of this thesis and is reserved
for future research.

Now we turn to evaluate explicitly the precision to measure the acceleration
amplitude aqn with our proposal for several cases. We can select a conservative
set of values for the parameters that lie within the typical values found in BEC
experiments. Let us consider a BEC with L = 200 ym, N, = 105, py = 10
cm ™3, for an initial phonon number of N, = 100 and a single-expertiment time
of t = 0.1 s, where the rest of the parameters follow Table Explicit evaluation
yields a precision of 6.3 x 10~ m/s?, which already enables our proposal to compete

with current leading experiments like the E6t-Wash WEP torsion balance, reporting
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precisions up to 5 x 1074 m/s? [161], 162, [163].

Conversely, an optimistic set of values can be chosen, which still lies within the
values found in BEC experiments, except for the number of phonons. Consider a
BEC with parameters L = 1000 um, N, = 10°, pg = 10" cm™3, N, = 1100 and
t = 1 s, where the rest of the parameters follow Table Evaluating the precision,
we obtain that Aag = 7.6 x 107'® m/s?, which represents a very promising result
that, if reproduced in the laboratory, would significantly improve current precisions
for measuring accelerations.

In Table we present a broad value range for the experimental parameters
determining the precision of the experiment, showing how the parameter selection
affects the value of the precision. All the results displayed there are consistent with

the conditions and constraints established in Section [6.5.2

Experimental Parameter Ranges

Parameter L N, « t Cs Q Aaq
2

Units pm s mm/s Hz m/s

150 106 0.05 1  1.02 64.6 [1.9x 10~
po=3x108¥ cm™3| 500 107 0.02 1 1.02 194 |55x10716

1000 108 003 1 1.02 9.7 |43 x107Y
150 107 0.097 0.1 1.8 1181 1x10~%
po = 10" cm™3 500 10® 0.05 0.1 1.8 354 | 3x10716
1000 10%® 0.017 0.1 1.8 17.7 |7.6x 1077
150 10% 0.097 0.01 5.9 373.5|3.3x10715
po = 10" cm ™3 500 10%® 0.015 0.01 59 112 | 3 x 10716
1000 10%® 0.005 0.01 5.9 56 | 7.6 x 10717

Table 6.2: Precision Aaq for measuring the acceleration amplitude induced by an
oscillating sphere on a 8”Rb BEC. Fixed parameters: experiment duration 7 = 30
days, mode numbers n = 1, | = 2, number of phonons N, = 1100, tritter angle
6 = 0.31 and a scattering length a = 99rg, where rp is the Bohr radius. The ratio
« is determined by Eq. , and ) = w; + wy, is the resonant frequency between
the phonons and the oscillating sphere.

To better understand the role of the two-mode squeezing and the tritter trans-
formation in the preparation of the probe state (cf. Section for enhancing the
parameter estimation, we compare the resulting precision Aagq for three scenarios:
i) the full protocol including two-mode squeezing and tritter transformation, ii) a

partial protocol dismissing the tritter and considering only the two-mode squeezing
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transformation given by Eq. , and iii) the case where both the tritter and
the two-mode squeezing transformations are dismissed, i.e., considering only two
vacuum phonon modes directly interacting with the gravitational potential.

Let us consider a representative set of parameters from Table for example, a
BEC with density pg = 10 cm™ and length L = 500 pm, for N, = 10® condensed
atoms. We find that i) the full protocol yields a precision of Aag ~ 1076 m/s?,
which follows from Eq. . The precision Aaq can be derived using Appendix
or starting from Eq. for ii) the partial protocol by taking 6 = 0 to take out

the tritter transformation, to obtain

ahm3y/nl(1? — n?)?

(N, + 1)V LasrtNg (I% + n2)’ (6.49)

Aaq >
aQ_4m

yielding Aag ~ 1071* m/s?. In contrast, the case iii) dismisses the squeezing and
the tritter by taking » = 0 and # = 0 in Eq. (6.32]), which subsequently leads to

ahm3y/nl(1? — n?)?

Aag > , 6.50
0= 2m~/LasTtN, (1% + n?) (6.50)

yielding a much less favorable precision of Aag ~ 10710 m/s2.

This comparison
highlights the critical enhancement achieved by the appropriate selection of the
probe state. By incorporating the two-mode squeezing and tritter operations, the
full protocol achieves a six-order-of-magnitude improvement in Aag over the vacuum
phonon modes case.

Before concluding this chapter, let us consider the experimental realization of the
oscillating mass. Notice that the nature of the oscillating sphere does not influence
or affect the precision Aag. It is experimentally possible to accelerate a mass with
an exact sinusoidal dependence on time, similar to that outlined in Section Let
us consider two specific examples to illustrate values that can be found in current
experiments.

First, we refer to the work presented in [164], which discusses a levitating mag-
netic sphere of mass M = 4 mg and radius » = 0.5 mm that oscillates with an
amplitude dp = 0.5 mm and frequency €2 = 30 Hz. Additionally, we can consider
the proposal presented in [I14] for a tungsten or gold sphere of mass M = 200 g,

radius » = 14 mm, and an oscillation amplitude of §g = 2 mm. Related to the ex-
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perimental realization of the oscillating mass, the most important parameter is the
capacity of matching the frequency that resonates with the phonons. From Table
[6.2] we can see that the required frequencies range from a few to hundreds of Hz,
which lie within the typical ranges achieved by oscillating massive spheres.

In the next chapter, we explore the oscillating sphere’s gravitational potential
outside the framework of Newtonian gravity. Instead, we consider two alternative

models that modify gravity in the Newtonian regime: MOND and Lambda gravity.
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Chapter 7

Testing Modified Theories of
Gravity

Having established in Chapter [6] our experimental proposal for estimating
the gravitational potential of the oscillating sphere—encoded in the acceleration
amplitude—employing the phonons in the BEC, this chapter focuses on imple-
menting the experiment to test deviations from Newtonian gravity. Specifically,
we assume that the gravitational potential of the oscillating sphere is fundamen-
tally described by a modified gravity framework, considering two cases: Modified
Newtonian Dynamics (MOND) and Lambda-gravity.

This chapter is organized as follows. In Section we motivate the origin and
exploration of modified theories of gravity, primarily driven by the ‘missing mass
problem’; commonly known as the dark matter problem. Section introduces
Modified Newtonian Dynamics (MOND), a framework that suggests a change to
the Newtonian gravitational force effective for accelerations below the ~ 10710 m/s?
threshold. Following MOND, we derive the gravitational potential of the oscillating
sphere and the theoretical prediction for the value of the acceleration amplitude,
which is then compared to the Newtonian prediction. Section [7.3] presents Lambda-
gravity, an extension to Newtonian gravity that, supported by the Gurzadyan the-
orem, incorporates an additional term that depends on the cosmological constant.
In accordance with Lambda-gravity, the gravitational potential of the oscillating
sphere and the predicted value of the acceleration amplitude are derived. To test
this prediction, we estimate the precision for measuring Newton’s gravitational con-

stant G and the cosmological constant A, both of which determine the strength
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of the two terms in the modified gravitational force. Finally, these precisions are

compared with the current state-of-the-art experimental accuracies.

7.1 Motivation for Modified Theories of Gravity

7.1.1 Dark Matter

Numerous astrophysical and cosmological observations pose an important chal-
lenge to our understanding of the Universe. When the observational data gathered
by our telescopes is compared with the theoretical predictions of General Relativity,
including its Newtonian limit, discrepancies arise. The measurements of the rotation
curves of galaxies [165], [166] and the velocity dispersion profiles of galaxy clusters
[167] exhibit a behaviour that differs from the curves predicted by theoretical mod-
els based on the observed mass distributions. The data collected via gravitational
lensing of galaxies and galaxy clusters, as well as data characterizing the large-scale
structure of the universe [168,[169], assuming General Relativity, imply a matter con-
tent and distribution which differs from the observed one. Additionally, the origin
of the acoustic peaks observed in the cosmic microwave background (CMB) angular
power spectrum [170, [I71] and the baryonic vs non-baryonic matter density—the
baryonic abundance—observed in the universe [I72] cannot be explained without
making extra assumptions. The conflict between these observations and the theo-
retical predictions is broadly known as the ‘missing mass problem’.

The simplest solution to the problem is to postulate the existence of missing mat-
ter: dark matter. Another possible solution is to assume that the current theories
of gravity need to be modified. The answer seems to lie within this non-necessarily
exclusive dichotomy [I73]. The community has favoured the proposal of the exis-
tence of dark matter. However, no conclusive evidence has been found pointing out
its precise nature and features, and “its existence remains hypothetical” [174] [175].

Since its conception, one of the leading proposals for modified gravity at the
non-relativistic, low-velocity limit has been Milgrom’s Modified Newtonian Dynam-
ics (MOND) [I76]. Based on the phenomenology of galaxy rotations, MOND pro-
poses a modification of Newtonian gravity, which is valid for small accelerations
in the regime a < 1071° m/s?. Several astronomical observations are consistent
with MOND and confirm some of its predictions at galactic scales. Such observa-
tions include the details of galactic rotation curves across galactic types and masses,
galactic disk stability, and the Tully-Fisher relation [174], 177, [I78]. Conversely,
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MOND struggles to reproduce the dynamics of galaxy clusters and is not applicable
for cosmological or lensing problems which require a covariant treatment [179] [180].
More recently, the internal dynamics of wide binary stars observed by the Gaia
satellite demonstrate consistency with MOND predictions [I81], [182]. Interestingly,
hybrid theories such as dark matter superfluid have been developed, which match
the ACDM model at cosmological scales and reproduce MOND phenomenology at
galactic scales [183] [184].

The search for empirical evidence of MOND has focused on astronomical and
cosmological scales. However, some Earth-bound tests have also been conducted.
Torsion pendulum experiments have confirmed Newton’s second law down to 10714
m/s? for torque restoring induced accelerations [162] and down to 107!2 m/s? for
gravitational induced accelerations [163]. These results do not contradict MOND,
as the acceleration dependence of the theory implies a violation of the strong equiv-
alence principle. Even for free-falling observers in the presence of an external field,
its behaviour is expected to depend on both the system’s internal acceleration and
any external gravitational field. This effect is known as the external field effect
(EFE). It suggests that when an external field larger than the ag scale is present,
modifications to Newtonian expectations are significantly suppressed, particularly in
Earth-bound experiments [176]. In addition to the torsion pendulum experiments,
recent work proposes to test the isolated system limit of MOND using the gravita-
tional attraction between two levitating magnets [164], expecting to probe MOND
at accelerations as low as 10713 m/s?.

Quantum technologies present a great opportunity for tabletop experiments
thanks to the development of ultra-high-precision quantum sensors [92]. This
progress has significantly impacted the search for dark matter, which has inspired
exploration proposals that take advantage of optomechanical systems [I85], atom
interferometry [I86], and Bose-Einstein Condensates [I7]. Despite these advances,
efforts to test MOND in tabletop experiments remain limited.

Our proposal contributes to filling that gap by proposing a frequency interfero-
metric scheme to test gravity at ag scales with accuracy levels not explored before
and search for evidence of MOND.

7.1.2 Dark Energy

The ACDM model represents the current standard cosmological model due to its

outstanding agreement with the cosmological observations [I87]. One of the main
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components of the model is the cosmological constant A, often associated with the
dark energy content of the universe.

The role of the cosmological constant is well established within the ACDM model.
This model assumes the cosmological principle and describes the universe by con-
sidering a Friedmann-Lemaitre-Robertson—Walker metric. The evolution of the
universe is characterised by an expanding universe whose expansion is driven, in
its simplest form, by the cosmological constant. Observations analysing the rate
of expansion of the universe estimate that the value of the cosmological constant
is A = (1.09 £ 0.028) x 107°2 m~2, as reported by the Planck experiment [I8§].
Although the value of A is well established for astrophysical and cosmological ob-
servations, there are currently no Earth-based experiments aimed at measuring the
value of A in a laboratory setting.

The physical interpretation of A can be extended beyond the role of a parameter
in the ACDM model. In the light of Gurzadyan theorem [189], it can be considered
a fundamental constant of nature. This theorem generalises the Newtonian gravi-
tational force into a model known as Lambda-gravity by adding an extra term to
Newtonian gravity, which is proportional to the cosmological constant. In this way,
the model concludes that two terms determine Newtonian gravity, each proportional
to a fundamental constant, G and A.

We propose to measure the gravitational force established by Lambda-gravity by
estimating the values of the G and A terms. Our proposal represents the first Earth-
based tabletop experiment to bound the value of A. Its measurement would serve
as a confirmation of its role as a fundamental constant and as the main source of
the dark energy driving the expansion of the universe. Additionally, studies indicate
that dark matter could also be explained by using Lambda-gravity [190].

In the following sections, we provide a brief introduction to MOND and Lambda-
gravity and derive the implications these models have on the gravitational potential

of the oscillating sphere based on the experiment proposed in Section

7.2 Modified Newtonian Dynamics

Modified Newtonian dynamics (MOND) [191] is a hypothesis that proposes a
modification of Newtonian gravity at extremely small accelerations, below ~ 10710
m/s?, characteristic of galactic systems and the universe at large scales. Introduced

in 1983 by M. Milgrom [I76], its original motivation was to explain the velocity
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distribution of stars observed in galaxies, which could not be reproduced solely
with Newton’s theory. This discrepancy—which is one of the many included in the

‘missing mass problem’—leads to at least one of the following conclusions:

1) There exist in galaxies large quantities of unseen matter which boost the ve-

locities of the stars.

2) Newton’s laws do not apply to galaxies.

Milgrom noted that the discrepancy could be solved if the gravitational force experi-
enced by a star in the outer regions of a galaxy was proportional to the square of its
centripetal acceleration. In MOND, violation of Newton’s laws occurs at extremely
small accelerations, which is characteristic of galactic systems and the universe at
large.

The basic premise of MOND is that Newton’s laws—extensively tested in high-
acceleration environments on the Earth and in the Solar System—have not been
verified for objects with extremely low accelerations, such as the stars in the outer
part of galaxies. This premise leads to the keystone of MOND: the postulation of
a new phenomenologically oriented effective gravitational law, chosen to reproduce
the Newtonian result at high acceleration but leading to different behaviour at low
acceleration. MOND proposes that, for isolated systems, the force is given by,

Fy =mp <a> a, (7.1)
ao
where FN denotes the Newtonian force, m and a are the object’s (gravitational)
mass and acceleration, and p is an interpolating function. MOND introduces a new
fundamental constant, ag ~ 1.2 x 107'Y m/s?, that marks the transition between
the Newtonian regime (a > ag) and the deep-MOND regime (a < ag) and whose
value is set by astronomical observations.

The interpolating function is required to satisfy

a

L <> —1 for a > ap, (7.2)

ao
to agree with Newtonian mechanics at high accelerations. On the other hand, its

consistency with astronomical observations at low accelerations requires
i <> - — for a < ag. (7.3)
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The functional form of u is not specified by the theory; rather, it is constrained
through fits by observational data. The most common functional forms [192] tested

for the interpolating function are the ‘simple’ form

a 1
— | = 7.4
M(CLQ) 1+%07 ( )

and the ‘standard’ form

K (;;)) = 14—1(‘3’)2’ (7.5)

1/n for an effective index n, which is deter-

often parameterized as pu(z) = 1/(1427")

mined within the acceleration range and external field effect regime of a particular

observation. However, additional alternative functional forms for p exist.
Therefore, in the Newtonian regime, a > a9, Newton’s second law is recovered,

and in the deep-MOND regime, a < ag, we have

a?

Fxn=m—. (7.6)
ao
Since the dynamics established by MOND are non-linear in the acceleration,
in this model, subsystems cannot be decoupled from their environment, leading to
the external field effect (EFE). Let us consider a system with internal acceleration
a < ag, which is embedded in the presence of an external acceleration field a.. If the
external acceleration is considerably larger than ag, then MOND effects are expected
to be suppressed by a factor (ag/a.)" [176, [192]. The isolated MOND limit assumes
the system under study is free from any external acceleration field.
In the following subsection, we derive the predictions for our experiment in the
isolated MOND limit and discuss the direct detection of MOND while considering
the EFE.

7.2.1 Predictions

We propose to experimentally explore MOND by studying the gravitational ef-
fects on the phonons of a BEC produced by a nearby oscillating massive sphere.
In particular, we examine how MOND modifies the gravitational potential of the
oscillating sphere and compare MOND'’s predictions with those made by Newtonian

gravity. By incorporating the tritter operation, we enhance the sensitivity to mea-
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sure accelerations by two orders of magnitude compared to [114]. As demonstrated
in Section this scheme allows us to probe gravity at ag scales with an accuracy
level of 1077 m/s2. Although the EFE might suggest that, for Earth-bound ex-
periments, the leading variants of MOND lie beyond this accuracy, the experiment
would provide constraints on any gravity theory at ag scales, significantly improving
the precision at which this regime has been measured.

In the case of the isolated system limit in MOND, the gravitational force exerted
by the oscillating sphere on the BEC is modified according to Eq. . From it,

we can calculate the MOND gravitational potential ¢y as

v = ;/ﬁ - dF, (7.7)

where m is the mass of the BEC. Recalling the experimental setup established in
Section [6.2] we now derive the oscillating sphere’s gravitational potential predicted
by MOND. Given the small BEC approximation, L < R, and the small oscillation
amplitude approximation, dp < Ry, considered on the experimental setup, the in-
duced acceleration a(t) on the BEC by the oscillating sphere is only a time-dependent
quantity, as shown in . Therefore, under these approximations, we assume that
the interpolating function becomes independent of the position. This implies that
can be simply integrated, yielding that the MOND gravitational potential ¢y
is proportional to the Newtonian gravitational potential, ¢n(x,t) = u(a/ag) ¢(x,t).
For the small BEC approximation, /R < 1, we obtain that

GM GM

¢M(x7t) ~ _,U/(%)R(t)

x (7.8)

where M is the mass of the sphere and G is Newton’s gravitational constant. Recall
the sphere is assumed to move sinusoidally, R(t) = R+ 0g sin(Qt). Then, under the
small oscillation amplitude approximation, 0z/ Ry < 1, the induced acceleration on
the BEC predicted by MOND can be written as

a(t) = GM __ _2GM  or sin(Qt), (7.9)

n(as) RS r(35) RS Ro

where the amplitude of the time-oscillating term of the induced acceleration pre-
dicted by MOND can be identified as
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2GMéR
aM = — oy o3 (7.10)

M(%)Ro
Deviations from standard Newtonian gravity originating from MOND must be re-
flected in the experimental measurement of the acceleration amplitude ag, which

should match the value ay; predicted by MOND.

7.2.2 Results

Consider the experimental setup described in Section To evaluate the per-
formance of our estimation procedure, we generate data that emulate experimen-
tal measurements ag,” of the acceleration amplitude induced on the BEC by the
oscillating mass. For a set of distances Ry, we first compute the theoretical pre-
dictions a}@ for the acceleration amplitude assuming MOND, taking the ‘simple’
form of the interpolating function p in the isolated system limit. Then, we add
Gaussian-distributed noise to each of these theoretical values to mimic the exper-
imental uncertainty. The magnitude of the noise is determined by the theoretical
sensitivity Aag, obtained from our scheme. Specifically, the standard deviation of
the added noise is equal to Aaq, which represents the minimal detectable change in
the acceleration amplitude under our scheme.

These simulated data allow us to evaluate the robustness of our fitting procedure
and to test whether the gravitational signal predicted by MOND could be distin-
guished from a purely Newtonian prediction. For comparison, we also generate
simulated data assuming the dynamics remain Newtonian.

The top panel of Figure presents the results of six independent measurements
of aq at varying distances. Each yellow dot represents a simulated measurement
based on MOND dynamics, while blue dots correspond to Newtonian gravity. To
obtain these simulated measurements, we took into account the theoretical predic-
tions of each gravity model and added noise equal to the experimental precision
Aagq. We interpret the resulting quantity as the measured acceleration amplitude
ag ", The solid lines represent fitted curves to the individual measurements for both
theories.

The middle panel of Figure illustrates the relative deviation of the simulated
measurement, ag’, with respect to the MOND theoretical prediction, a’}(}[, repre-
sented by the yellow dots. This is compared to the relative precision, Aag/ a’j\’}, for
estimating the acceleration amplitude predicted by MOND, indicated by the yel-
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low dashed line. The bottom panel of Figure presents a similar analysis of the

Newtonian prediction of the acceleration amplitude, a'}(}.
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Figure 7.1: Simulated Experiment to Test MOND. Top: Simulated experimental
measurements of ag as a function of Ry following the MOND prediction (yellow
dots) and the Newtonian prediction (blue dots). The solid lines correspond to the
fitted acceleration curves. Middle and Bottom: Relative deviation (dots) of the sim-
ulated experimental acceleration amplitude measurements ag{p from the theoretical
prediction a'®'; and relative precision Aag/a'® (dashed lines) for MOND (yellow)
and Newton (blue). We assume Aag = 3 x 10716 m/s?, and a sphere of mass M = 1

g, with an oscillating amplitude dg = 1 mm.

From these results, we observe that the relative precision Aag/ a&h degrades as

the distance between the BEC and the oscillating sphere increases. This is because
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gravity gets weaker, and the value of a}{l decreases. Across the range of explored
distances, between 10 cm to 30 cm, we achieve relative precisions of the order of
magnitude of ~ 107 to determine MOND and ~ 1072 to determine Newton. These
levels of precision allow us to explore deviations from Newtonian gravity within
acceleration regimes where MOND is expected to depart from standard Newtonian
dynamics. By varying the separation Ry between the BEC and the oscillating sphere,
we can fit the acceleration curves to distinguish between Newtonian gravity and
MOND in the isolated limit.

The results in Figure [7.]] also reveal a difference of approximately two orders
of magnitude between the acceleration amplitudes predicted by MOND and New-
tonian gravity. This difference arises from the nature of the MOND modification.
In the deep-MOND regime, where the acceleration of the system is well below the
characteristic MOND acceleration ag ~ 107!% m/s?, the gravitational force tran-
sitions from a Newtonian scaling oc 1/R3 to a MOND scaling oc 1/Ryg, resulting
in a slower decay with the distanceﬂ Since the experiment operates in the low-
acceleration regime and assumes the ‘simple’ form of the interpolating function, the
gravitational signal gets effectively amplified. Therefore, MOND predicts a larger
value of an compared to Newtonian gravity.

The enhanced gravitational signal predicted by MOND in our setup is concep-
tually analogous to MOND’s explanation for the behaviour observed in galactic
rotation curves. In galaxies, the outer stars rotate faster than expected based on
the visible mass distribution and the assumption of Newtonian gravity. While New-
tonian dynamics predict that the orbital velocities decrease with the distance from
the galactic centre, observations show that these velocities remain roughly constant,
indicating a stronger gravitational pull than what Newtonian predictions suggest.
MOND addresses this by modifying the gravitational force law in regimes below
the MOND characteristic acceleration ag, which results in a stronger gravitational
interaction compared to Newtonian gravity. This effectively provides the additional
gravitational strength required to explain the galactic dynamics without invoking
dark matter. In our laboratory setting, the same theoretical framework applies since
the experiment is designed to operate within the low-acceleration regime. Here,
MOND induces an enhancement of the gravitational strength experienced by the

BEC, analogous to that inferred from stellar motion in galaxies.

!The MOND scaling in the deep-MOND regime can be derived by solving Eq. (7.7) for a, where
on the left-hand side of the equation corresponds to the standard Newtonain gravitational force.
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As discussed in Section the most accurate Earth-based tests of MOND to
date have reached precisions up to 107 m/s? [I62]. In comparison, our proposal
significantly enhances this precision by up to three orders of magnitude by reaching
precisions up to 1077 m/s%. This degree of precision opens up new possibilities for
testing MOND in tabletop experiments.

It was previously noted that in the presence of the EFE, deviations between
Newtonian and MOND dynamics scale as ap(ap/ae)", where the parameter n is
typically constrained by astrophysical observations. Since no definitive theory for
MOND has been developed, there is currently no robust prediction of how the EFE
might operate at the scales of Earth-bound experiments. However, our results indi-
cate that the precision achieved by our setup enables us to detect MOND signatures
even in the presence of external accelerations for values of n < 0.7. Additionally,
alternative interpretations of MOND based on ‘modified inertia’ —as opposed to
the standard modified gravity framework—may further suppress the EFE, making
deviations from Newtonian gravity easier to detect in our setup.

Our analysis demonstrates the great potential of employing BEC phonons as a
high-precision probe for testing MOND in controlled laboratory conditions. The
achieved precisions represent a considerable improvement over current Earth-based
experimental constraints, enabling us to explore MOND predictions in regimes where
deviations from Newtonian gravity become significant. Furthermore, our findings
indicate that even in the presence of external accelerations, the proposed experiment
could still detect MOND effects.

7.3 Lambda-Gravity

Lambda-gravity arises as a natural generalization of the Newtonian gravitational
force based on the Gurzadyan theorem [I89], and its main conclusion is that gravity
is described by two fundamental constants: Newton’s gravitational constant G and
the cosmological constant A.

The Gurzadyan theorem establishes the most general function satisfying the
first statement of Isaac Newton’s shell theorem, the equivalence of the gravitational
forces produced by a spherical mass distribution and a point mass located in its
centre while dismissing the second statement, the absence of gravitational forces
inside a hollowed massive spherical shell. This leads to the appearance of an extra

term in the gravitational force, which involves the cosmological constant A within
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the weak-gravity limit of General Relativity [189]

GMm  EAmr
F=- 7.11
r2 + 3 ’ ( )
corresponding to the metric [193], 194]
2GM  Ar?
=-1 —_— 12
9oo + 2, 3 (7.12)

where G is Newton’s gravitational constant and c is the speed of light. The second
term of the metric is related to the usual Newtonian gravitational potential, and
the third one corresponds to the cosmological constant term from general relativity
and the McCrea-Milne cosmology [195].

Then, from the Gurzadyan theorem, A arises as a second fundamental gravita-
tional constant along with Newton’s gravitational constant, which is not coupled to
matter and is dimension-independent [I194]. The implications of considering A as a
fundamental constant of nature were investigated in [196].

Experimentally, the A term is well supported by cosmological data in the context
of the standard ACDM cosmological model. Additionally, it was shown that it
fits observational data on the local Universe [193, [194], describes the dynamics of
groups and clusters of galaxies [190] 197], and offers an explanation for the Hubble
tension [198| 199, 200] by proving the existence of a local and a global Hubble
flow [197, 201, 202]. The theorem’s prediction of the existence of a force at the
centre of a hollowed spherical distribution of mass also fits the observational data
on determining the structure of spiral galaxy disks by the spherical galactic halos
[203].

Studies have suggested that Lambda-gravity can be used to describe dark matter
in galactic systems, ranging from pairs to clusters of galaxies, finding support in

observations coming from gravitational lensing and the Plack satellite [190].

7.3.1 Predictions

Similarly to the MOND exploration, we propose to study the gravitational ef-
fects on the phonons of a BEC produced by a nearby oscillating massive sphere to
experimentally explore Lambda-gravity. In particular, we propose to measure the
presence of both terms appearing in by estimating the value of G and A from

the experiment.
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7.3. Lambda-Gravity

Considering the experimental setup established in Section the gravitational
potential predicted from Lambda-gravity ¢ associated with the oscillating sphere
can be straightforwardly derived from the basic equation established by Lambda-
gravity, Eq. . In the small BEC approximation, L. < R, the potential ¢

reads

_GM  PAR(t)? GM  *AR(t)

oaE, 1) ~ — 6  |ROZ 3

x, (7.13)

where M is the mass of the sphere, G is Newton’s gravitational constant and A
is the cosmological constant. The sphere is assumed to be moving sinusoidally,
R(t) = Ro+ g sin(€2t). Considering the small oscillation amplitude approximation,
dr/Ro < 1, the induced acceleration on the BEC predicted by Lambda-gravity is

expressed as

GM CQR(]A (ZGM 02R0A> 6R
a(t) = - -

— sin(Qt 7.14

where the amplitude of the time-oscillating term of the induced acceleration is de-

termined as

a _2(5RMG+62(SRA
AT RS 3

(7.15)

By measuring ap, the values for G and A can be estimated. Detecting the
presence of the A term would demonstrate the Gurzadyan theorem. However, the
value of the cosmological constant is minute, of the order of A ~ 10752 m~2 as
determined by the Planck satellite [I88]. Then, in practice, an upper bound can be
placed for the value of A with our experimental proposal. The first estimation of A

from an Earth-based experiment.

7.3.2 Results

Following the approach outlined in Section [7.2.2] for the MOND case, we gen-
erate simulated data to emulate measurements of the acceleration amplitude aq
induced on the BEC by the oscillating mass. As before, we evaluate the theoretical
predictions at a set of distances Ry and add Gaussian-distributed noise with stan-
dard deviation equal to the theoretical sensitivity Aag to mimic the experimental

uncertainty.
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7.3. Lambda-Gravity

However, in this case, we assume the gravitational interaction is governed by
Lambda-gravity and use the simulated data to estimate both Newton’s gravitational
constant G and the cosmological constant A through statistical fitting. Unlike the
MOND analysis, where we compared two competing models, here we focus on testing
whether the experimental setup could determine the presence of a nonzero A. A
successful estimation of A would provide direct evidence supporting the fundamental
nature of Lambda-gravity.

The precision for estimating G and A can be derived by connecting Eq.
with the quantum Cramér-Rao bound , yielding

R} 3
= A AN = ——
20p M @ c20R

Let us consider an oscillating sphere of mass M = 100 g and oscillation ampli-

AG Aag . (7.16)

tude §gp = 1 mm. Assuming a precision Aag = 4.3 x 1077 m/s?, we obtain a relative
precision for measuring Newton’s gravitational constant of AG/G = 3x107%. Com-
pared to the current best measurements of G, which exhibit a relative precision of
AG/G ~ 107° [204], our results suggest that the BEC-based experiment proposed
in this thesis represents a potential improvement over existing G measurements.

This precision can be further enhanced by experimentally probing the functional
dependence of an on the distance Ry and fitting the measurements obtained. We
conduct a set of simulated experiments representing the measurement of aq at vary-
ing distances Ry. Then, the results are fitted using Eq. , which provides the
Lambda-gravity theoretical prediction. The measurements are simulated by adding
noise of size Aaq to the theoretical prediction af\h, resulting in the measured accel-
eration amplitude agzp . Figure illustrates this analysis.

The top panel of Figure displays the results of six independent measurements
of aq, represented by blue circles, with the corresponding fit depicted by the solid
blue line. The estimated value and uncertainty for G, along with the upper limit
on A, are also displayed. The bottom panel displays the relative deviation of the
simulated measurements ag”? from the Lambda-gravity theoretical prediction af’,
indicated by the blue dots. The blue dashed line represents the relative precision
Aagq/ af\h. The experimental error on a®*® is not visible in the top panel since its
relative error is approximately ~ 1076,

After performing the statistical fit, we observe an improvement in the precision
for estimating G, achieving a relative precision of AG/G = 8.3 x 10~7. Additionally,

we establish an upper limit on the cosmological constant A < 1.8 x 1073! m~2.

140



7.3. Lambda-Gravity

These results demonstrate that measuring the acceleration amplitude aq at dif-
ferent values of Ry not only allows us to probe the functional dependence of the
gravitational potential with the distance but also to improve the constraints on G
and A.

4.0
3.5 ® Measurements
o 50 — Fit
‘E ' G=6.6743x107"" Nm? /kg? ]
- 25 AG/G = 83x107 ]
! —31 —2
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Figure 7.2: Simulated Experiment to Test Lambda-gravity. Top: Simulated mea-
surements of aq at different Ry values (blue circles). The fitted curve of the mea-
surements (solid blue line) is used to estimate G, indicating the relative precision
AG/G, and to set an upper bound on A. Bottom: Relative deviation of the sim-
ulated experimental measurements ag’ from the theoretical prediction a}® (blue
circles), along with the relative precision Aag/al' (blue dashed line). The precision
Aag = 4.3 x 10717 m/s? is assumed, along with a massive sphere of mass M = 100
g, with an oscillating amplitude dgp = 1 mm.

To ensure that the uncertainties AG and AA are primarily determined by Aagq,
we assume that the relative experimental precision for measuring dr, Ro, and M is
better than 1076, These precision levels are achievable for the parameters considered
in our experimental setup, as suggested by CODATA information [204], with the

particular caveat that the oscillating mass must be placed in a vacuum to minimize
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7.3. Lambda-Gravity

systematic uncertainties in determining M. Given these conditions, it is reasonable
to assume that the uncertainties in dg, Ry, and M do not introduce significant noise
that could limit the precision set by Aagq.

Regarding the measurement of the cosmological constant, our results indicate

that the expected precision for estimating A is of the order of 103! m—2

, as shown
in Figure It is important to emphasize that this value should be regarded as
an upper limit on A. This limit is approximately 20 orders of magnitude below the
current best estimation from the Planck experiment, A = (1.09 + 0.028) x 1072
m~? [I88]. Nevertheless, setting such a bound represents an unprecedented level of
precision for A in Earth-based experiments.

Our analysis demonstrates that the proposed BEC-based experiment provides
a promising tool for probing gravity through the estimation of fundamental gravi-
tational parameters, enabling precise measurements of G and imposing constraints
on A. The improvement in the precision for determining G by two orders of mag-
nitude compared to current methods suggests that this approach could contribute
to resolving persistent discrepancies in its experimental determination [205]. Addi-
tionally, although our estimated upper limit on A remains far above cosmological
observations, achieving such a constraint in a laboratory setting is an unprecedented
milestone.

These results highlight the potential of quantum systems to improve the pre-
cision for performing gravity tests, opening new avenues not only for conducting
fundamental research but also for implementing this progress in more practical ap-
plications. In the next chapter, we explore how the experimental proposal presented
in this thesis—based on the BEC phonons—could be translated into a technolog-
ical device for gravity measurements, creating new opportunities for commercial

applications.
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Chapter 8

Technological Implementation &

Commercialization Roadmap

The proposal to use the phonons of a Bose-Einstein Condensate to probe gravity,
as extensively discussed in this thesis, is highly promising for fundamental research
and practical applications. Given its potential, it is essential to consider the tech-
nological implementation of this idea and its eventual commercialisation.

Historically, the often unintended impact of theoretical physics research on tech-
nological progress has significantly driven scientific progress. Therefore, the trans-
lation of theoretical and experimental research into the generation of intellectual
property and then into commercially viable technology plays an important role in
scientific endeavour.

In this chapter, we present a patent closely related to the proposal constructed in
this thesis, as both rely on the same physical principles and share the core ideas and
purposes. A Market Analysis of the patent was conducted to explore the transition
from a laboratory-based tabletop experiment to a commercially viable technological
product. Although the market analysis was conducted for a different experimen-
tal setup, the fundamental similarities with the proposal in this thesis allow the

straightforward extrapolation of its conclusions.

8.1 USA Patent

During the period dedicated to creating this thesis, the author collaborated
with Prof. Ivette Fuentes by supporting the submission process of the USA Patent

143
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Application US20220171089A1 [206], which was successfully granted.

The patent describes a method for measuring the acceleration and gravitational
gradient associated with a gravitational field by employing at least two atomic modes
within one or more trapped BECs. The density distribution of one atomic mode
is altered by the gravitational field, whereas the second remains unchanged. This
distinction can be achieved by positioning one BEC along an axis parallel to the
gravitational field and the other BEC along an axis perpendicular to it. By analysing
the different evolutions of each atomic mode under the influence of the gravitational
field, specifically by measuring the difference in the frequencies of the modes, the
acceleration and gravitational gradient can be inferred.

While the method described in the patent differs from the approach proposed in
this thesis, both proposals are founded on the same physical system: the BEC, and
the same physical principle: the phonon evolution under the influence of an external
gravitational field. The main distinction between both approaches lies in the fact
that the patent is based on the comparison of the frequencies of two phonon modes,
one affected by gravity while the other remains unchanged. In contrast, this thesis
explores the resonant processes between the phonons and gravity, which may involve
the analysis of only one phonon mode. Despite these differences, both proposals
share a common path towards developing into a technological product with the
potential for commercialization. The following section outlines the roadmap towards

accomplishing this objective.

8.2 Market Analysis

In conjunction with the patent application, the author of this thesis also con-
tributed to the realization of a market analysis for the patent, which was led by Dr.
Jesus Rogel and Prof. Ivette Fuentes.

This market analysis outlines a commercialization strategy for the patented
method for measuring accelerations and gravitational gradients. It addresses the
key aspects required to accomplish the goal of transitioning from an experimen-
tal proposal—a detector concept—to a commercially available technological device.
The analysis evaluates the key industries, the fabrication scalability of the product,
the regulatory laws involved, the generation and protection of intellectual property,
and the marketing strategy. This section summarizes the findings and conclusions

derived from the market analysis.
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8.2.1 Target Industries and Markets

The patent’s technological application of high-precision gravimetry and gradiometry
covers a broad spectrum across multiple industrial sectors that can benefit from the
enhancement of gravitational and non-inertial motion sensing. The main target
industries, along with the corresponding applications, are summarized below.

Subterranean Exploration. High-resolution gravitational measurements al-
low non-invasive detection and identification of underground resources, including
oil, gas, water, and mineral deposits. This significantly improves the exploration
efficiency and reduces environmental impact.

Automotive and Transportation. Enhanced acceleration sensors improve
safety features such as automatic braking and stability control, contributing to the
development of safer and more reliable transportation systems.

Aerospace. Precise gravimetry provides reliable navigational data in environ-
ments where GPS is unavailable, such as deep-sea exploration and space missions.
This information is essential for trajectory correction and advanced inertial guidance
systems.

Geophysical Research and Environmental Monitoring. Accurate map-
ping of Earth’s gravitational field supports research in tectonics, volcanology, and
seismology, contributing to improved earthquake prediction, for instance. Addition-
ally, gravitational monitoring helps track environmental changes, such as glacier
melting and groundwater levels.

Entertainment. High-precision motion tracking can enhance the responsive-

ness and realism of virtual- and augmented-reality gaming experiences.

8.2.2 Value Proposition

Accelerometers and gradiometers developed from BECs based on the patent offer
significant advantages, making them an appealing and viable technology.
Precision and Sensitivity. The precision for detecting minute variations in
gravitational fields is significantly enhanced by exploiting the quantum properties
of the BEC, which include the advantage of producing entangled phonon states.
Miniaturisation. A beneficial feature of the phonon-based gravimeters is their
ability to maintain precision when miniaturised, which contrasts with the gravime-
ters based on atom interferometry, whose precision is lost when their size is de-

creased.
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Cost-Competitive Production. The production cost is expected to be com-
petitive with respect to the existing atom-interferometry gravimeters by taking ad-
vantage of the materials and manufacturing techniques currently in use by the in-
dustry.

Versatility. The wide range of applications across industries increases the com-
mercial potential of the technology and allows the possibility of tailoring and opti-

mizing it for specific cases.

8.2.3 Regulations and Certifications

Technological inventions are subject to a complex regulatory landscape, which in-
cludes compliance with safety standards, quality certifications, and export controls.
These factors must be considered for the successful commercial exploitation of the
product.

Safety Regulations. Working with BECs involves manipulating atomic sam-
ples, which is generally a safe procedure. However, it is crucial to consider safety
regulations regarding toxicity, flammability, and volatility. Additionally, regulatory
standards for safe BEC operation must be met to prevent accidents in processes
such as cooling systems and vacuum chambers, which are essential for achieving
Bose-Einstein condensation.

Quality Certifications. To ensure that the manufacturing processes and the
final products meet industry standards and perform consistently, it is vital to obtain

ISO certifications and establish rigorous product testing procedures.

8.2.4 Intellectual Property Strategy

The successful commercialisation of a product requires a strong intellectual property
(IP) strategy for protecting the core inventions and expanding the patent portfolio.
IP Protection. For the gravimetry proposed by the patent, it is important to
secure and safeguard the measuring techniques, the application spectrum and any
associated hardware or software innovation involved in the gravimeter implemen-
tation. This can be achieved by proper management and protection of the patent,
ensuring the proper filing, maintenance and enforcement of the initial patent.
Patent Expansion. It is crucial to expand the patent portfolio by filing any im-
provements, innovations, or new applications that emerge as the commercialisation
process progresses. Important areas for further patenting may include miniaturisa-

tion techniques, software algorithms, and innovations for specialised applications.
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Licensing and Monetisation. To increase the commercial impact of the in-
vention, different licensing models can be considered. For instance, exclusive li-
censing could be pursued for highly specialised industries holding the infrastructure
necessary to fully commercialise the technology; non-exclusive licensing may be ad-
vantageous for mass-market applications where several companies could benefit from
the invention.

Revenue Streams. To ensure that the invention is financially sustainable in the
long term, various revenue streams can be explored. These include generating roy-
alties implemented as a percentage of sales, entering joint ventures with established
companies that share both risks and rewards, and facilitating technology transfers
that permit the sale or licensing of the invention’s construction and operational

processes.

8.2.5 Production and Scalability

To accomplish the transition from a laboratory setting to a market product, it is
necessary to address the production scalability process and the technical challenges
involved in manufacturing quantum gravimeters.

Manufacturing Scalability. The continuous BEC technology replaces the
traditional method of using BECS for metrology, which requires interrupting the
Bose-Einstein condensation to take a measurement. This technology enables the
feasible production of BECs for quantum gravimetry. Moreover, maintaining opti-
mal levels of Bose-Einstein condensation necessitates real-time monitoring of atomic
density, temperature stability, vacuum integrity, and trapping potential control.

Ventures with Established Companies. Creating joint ventures with in-
dustry leaders and established companies could provide a great opportunity to take
advantage of their existing infrastructure, production capabilities, and market ac-
cess, thereby minimising the time and costs needed to launch the technology.

Technology Developers. Strategic partnerships with technology developers
specialising in specific procedures can accelerate technological development and con-
tribute to the generation of further intellectual property, thanks to innovations aris-

ing from the manufacturing process or hardware optimizations.

8.2.6 Marketing and Outreach

To establish the invention in the marketplace, it is important to settle an extensive

marketing and outreach strategy.
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Industry Engagement. The most effective way to market the product is by
attending leading quantum technology conferences and summits. This not only
showcases the product to potential partners and industry experts but also enables
the development of a network through strong relationships with key investors and
industry leaders.

Online Presence. Nowadays, the Internet’s impact cannot be underestimated.
Therefore, to expand visibility and engage with broader audiences, it is fundamen-
tal to have a strong social media presence and dedicate a website showcasing the
invention’s features, applications, and impact across industries.

Educational Initiatives. Workshops and webinars help to educate and demon-
strate to potential investors and customers the invention’s applications and impact.
Collaborating with academic institutions on joint research projects is also an effec-

tive strategy for boosting the visibility of the technology.

8.2.7 Risk Analysis and Mitigation

There are inherent risks associated with any cutting-edge technology, ranging
from the technical to the more commercial aspects. It is crucial to identify these
risks and develop strategies for mitigating or avoiding them.

Technical Risks. BECs are highly sensitive to environmental conditions such as
temperature fluctuations, mechanical vibrations and electromagnetic signals, which
can compromise the accuracy and reliability of the inventions in situations outside
the laboratory. The design of environmental controls plays a key role in ensuring
the proper functioning of the invention.

Market Risks. Competing devices from other companies are likely to emerge,
compromising the impact of the invention. To remain at the forefront of the market,
highlighting the advantages of the invention and pursuing continuous innovation will
maintain its competitiveness.

Regulatory Risks. Quantum technologies represent an emerging industry,
and unexpected changes in legislation could affect the commercialisation of this
technology. Therefore, it is a good practice to engage legal and policy advisors and

to keep a continuous watch on legislative developments.

8.2.8 Implementation Plan

Short-Term (0-2 years). The primary objective in the initial phase of de-

velopment is to establish the proof of concept for the invention, which involves the
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experimental validation of the theoretical predictions concerning the precision and
functionality of the gravimeter.

Mid-Term (2-5 years). The next step focuses on developing initial prototypes
for real-world testing and demonstration, in addition to obtaining the required cer-
tifications for safety procedures, environmental compliance, and quality standards.
During this period, it is essential to raise awareness and generate demand for the
product as part of the objectives.

Long-Term (5-10 years). At this stage, as the technology becomes estab-
lished, the objective lies, first, in scaling the manufacturing process to meet market
demands while maintaining the product quality and reliability and, second, in ex-

panding the product into new markets to achieve a global reach.

8.2.9 Conclusion

The market analysis provides a comprehensive roadmap for commercialising
quantum gravimeters based on BEC’s phonons. It addresses and analyses a wide
range of key factors, including targeting potential markets, evaluating regulatory re-
quirements, production scalability, managing risk, and developing a strategic growth
plan. By following the recommendations and steps outlined, quantum gravimeters
possess significant potential to transition from a laboratory environment to an im-

pactful commercial product.
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Chapter 9

Conclusions and Outlook

9.1 Closing Remarks

This thesis presents a novel approach to high-precision gravity measurement,
taking advantage of quantum metrology techniques applied to the phonon states
within a Bose-Einstein condensate (BEC). The proposed quantum interferometry
scheme provides an alternative to standard atom interferometry and offers new op-
portunities to probe gravitational interactions at cutting-edge levels of precision.
We employed this framework in modified gravity models, such as Modified Newto-
nian Dynamics (MOND) and Lambda gravity, to explore its potential for testing
deviations from Newtonian gravity and constraining fundamental gravitational pa-
rameters.

Our experimental proposal combined several research areas. At its core lies the
physics of the BEC, a cloud of trapped bosonic particles cooled to almost abso-
lute zero, where most particles transition into a collective ground state while the
remaining ones behave as collective mode excitations. Under specific conditions,
these collective excitations correspond to phonons, which can be used to prepare
quantum states. In particular, we focused on Gaussian states because they are
easily implemented in the laboratory and have a well-developed theoretical frame-
work. Furthermore, when examining the interaction of the BEC with an external
gravitational field, we demonstrated that gravity drives phonon evolution through
Gaussian transformations. Since gravity changes the quantum state of the phonons,
we employed quantum metrology to quantify these changes and estimate a physical

parameter characterizing the external gravitational field, e.g. the induced acceler-
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ation, thereby achieving gravity measurements. This framework can be naturally
extended for exploring relativistic effects through the study of the relativistic BEC.

The essential material required for constructing this framework was comprehen-
sively reviewed. In Chapter [2, we studied bosonic quantum fields in flat spacetime,
which provided us with insights into quantum fields for later application to the non-
relativistic and relativistic BECs. Next, in Chapter 3, we explored Gaussian states
and Gaussian transformations using the covariance matrix, which helped us to cre-
ate highly sensitive phonon states and to characterize their evolution in the presence
of an external gravitational potential. Chapter [ introduced quantum metrology to
establish a rigorous methodology for estimating the parameters driving changes in
a quantum system such as the BEC. Following this, Chapter [f] offered a thorough
review of the physics of the BEC, including an analysis of the relativistic BEC. In
Chapter [6] this material was finally combined to establish our experimental proposal
of placing an oscillating massive sphere near a BEC to induce a resonant gravita-
tional signal that can be detected using phonon dynamics. Finally, in Chapter [7] we
applied this proposal to test modified theories of gravity, deriving the predictions of
MOND and Lambda-gravity for the gravitational potential of the oscillating mass
and evaluating the feasibility of distinguishing these effects from standard Newto-
nian gravity.

The primary achievement of this thesis is establishing a novel experimental
framework for measuring gravity with high precision. By employing BEC phonons
within a frequency interferometry scheme, we demonstrated the framework’s po-
tential for testing modified theories of gravity motivated by the problems of dark
matter and dark energy. In particular, we examined the MOND and Lambda-gravity
models. Our findings indicate that our proposal enhances the precision for testing
MOND by three orders of magnitude compared to existing Earth-based experiments,
thereby opening new avenues for testing MOND even in the presence of the external
field effect. In the case of Lambda-gravity, our results demonstrate that our method
improves current measurements of Newton’s gravitational constant G by two orders
of magnitude and establishes the first tabletop experiment constraining the value of
the cosmological constant A.

Additionally, this thesis achieves the first implementation of the tritter operator
for measuring the gravitational potential. The inclusion of the tritter enhances the
precision of the experimental setup by two orders of magnitude, reinforcing the fea-

sibility of quantum techniques for high-precision tests of gravity. In this thesis, we
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have also laid the groundwork for extending our experimental proposal to test modi-
fied theories of gravity within the relativistic regime and, more generally, relativistic
effects in the weak-gravity regime. Finally, in addition to fundamental research, we
have also considered the potential generation of new technology by summarizing a
market analysis dedicated to the commercialisation of quantum gravimeters, which
are founded on the exploitation of BEC phonons.

Despite the promising results obtained, we must address certain issues before
proceeding with the practical implementation of our proposal. One of the primary
challenges is the ability to generate squeezed phonon states in the laboratory, which
remains an area of research under development. The squeezing of phonons is a
key ingredient in this proposal, as these states provide the highest sensitivity for
gravitational measurements. Furthermore, since this is a theoretical proposal, an
essential next step is to conduct a proof-of-principle experiment to demonstrate its
feasibility. Such an experiment could confirm the levels of precision predicted by our
derivations and ensure that all the relevant experimental factors have been correctly
considered. Additionally, it would provide valuable feedback to refine the proposal

and enhance our understanding of its implementation.

9.2 Outlook

Several exploration routes remain for future research within this project. A
further refinement of the Lambda-gravity test can be conducted, which involves
modifying the experimental setup to isolate the measurement of the cosmological
constant. By placing a BEC inside a spherical hollow massive shell that oscillates
in resonance with the BEC phonons, we can take advantage of a corollary of the
Gurzadyan theorem that drops he second statement of Newton’s shell theorem. This
corollary implies the existence of a gravitational force inside the shell that originates
exclusively from the A term as the contribution of the G term vanishes. Detecting
a signal in this setup would provide a direct measurement of A through a tabletop
experiment.

Another avenue of exploration is to investigate modifications of gravity induced
by Yukawa interactions. This project is currently under development. Additionally,
our experiment can be adapted to consider BECs trapped in harmonic potentials,
which are commonly used to create BECs in the laboratory, in contrast to the

uniform potential examined in this thesis. This would help us evaluate how different
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trapping potentials affect the precision of BECs in measuring gravity. While BECs in
harmonic potentials also exhibit phononic excitations—which have been observed to
transition into a one-dimensional regime—a systematic study is needed to quantify
their impact on measuring gravity.

Finally, by extending this framework to relativistic regimes, this thesis estab-
lished the foundation for future research aimed at implementing our proposal for
testing modifications of gravity within these regimes and measuring relativistic ef-
fects in the weak-gravity limit, with potential implications for fundamental physics
and high-precision gravimetry.

In conclusion, our findings highlight the remarkable potential of Bose-Einstein
condensates for measuring and testing gravity. Along with the progress of technology
and experimental techniques, we anticipate that BEC-based gravimetry will play an
increasingly significant role in expanding the frontiers of fundamental physics and

the innovation of technology.
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Appendix A

Summary of (Gaussian

Transformations and Gaussian
States in the CMF

Following the covariance matrix formalism introduced in Section [3.3| and Section
where the Phase space description of Gaussian states and Gaussian transfor-
mations was established, we now provide a general characterization of all Gaussian
transformations in terms of the matrix W introduced in Eq. . This is done
for one-mode and two-mode bosonic systems (N =1, 2).

For the sake of clarity, we recall the general form of a Gaussian state in Hilbert

space, expressed as the unitary transformation

s atraL at
_ A WA+A K
U =e2 v,

and its corresponding Phase space representation, determined by the symplectic

matrix S and the displacement vector b

1
S =KW b= (/ eiKWtdt> 7.
0

As previously stated, these two expressions provide the dictionary that translates

Gaussian transformations in Hilbert space to their counterparts in Phase space.
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A.1. One-mode Gaussian Transformations

A.1 One-mode Gaussian Transformations

In Hilbert space, all the single-mode (N = 1) Gaussian transformations can be

conveniently parameterized as

—0 iretx o
W = , , v = , (A.1)
—ire X  —0 o™

where 0,7, x € R and o € C. This leads to the unitary Gaussian transformation:

P —igata —r
Ulimode = € z@aae 2

= R(G) ) Sl-sq(ra X) ’ ﬁ(a) : (A2)

(exat?—e—1x4?) ea&T —a*a

(0) is the phase-shifting or rotation operator,

5y

1-sq(7, X) is the one-mode squeezing operator and

u>

() is the Weyl displacement operator.

A.1.1 Displacement Operator

The displacement operator ﬁ(a) can be singled out by taking
W =0, Y=

e Transformation:

In Hilbert space, the operator ﬁ(a) is given by the unitary transformation
D(a) = i —a’d, (A.3)
In Phase space, the displacement transformation is given by the pair:

by = , Sp =1 (A.4)

e State:

Applying the transformation to the vacuum |0), we generate a coherent state.
|a) = D(«) |0) . (A.5)

155



A.1. One-mode Gaussian Transformations

In Phase space, the state is expressed as

0%
deon = , Feon =L (A.6)

a*

A.1.2 Phase-shifting or Rotation Operator

The phase-shifting operator R(@) can be singled out by taking

W = ) v =0.

e Transformation

In Hilbert space, the operator R(G) is given by the unitary transformation

R(9) = e~i0a'a, (A7)

In Phase space, the phase-shifting transformation is given by the pair:

b; =0, S = . (A.8)

e State:

Applying the transformation to the vacuum |0), we get a trivial transformation.

R()10) = |0). (A.9)

In Phase space, the state is expressed as

d;, =0, T =1

=
The phase-shifting transformation is a passive transformation that does not change
the particle content or energy of the state. Then, if we start with a vacuum state,
we remain in the vacuum.

A.1.3 One-mode Squeezing Operator

The one-mode squeezing operator Sl_sq(r, X) can be singled out by taking
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A.2. Two-mode Gaussian Transformations

0 iretx
W= ) ) v =0.
—re X 0
e Transformation:

In Hilbert space, the operator S 1-sq(7, X) is given by the unitary transformation

S1sq(r,x) = e p(ENa e, (A.10)
In Phase space, the one-mode squeezing transformation is given by the pair:
coshr —eXginhr

bl—sq =0, Sl—sq(r7 X) = . (A.ll)

—e Xsinhr coshr

e State:

Applying the transformation to the vacuum |0), we get a one-mode squeezed state.

|S1-5a(r, X)) = S1:5q(r, %) 10) - (A.12)

In Phase space, the state is expressed as

cosh 2r —eX ginh 2r
dl—sq =0, Fl—sq(ra X) = . . (A'13)
—e~ "X sinh 27 cosh 2r

A.2 Two-mode Gaussian Transformations

In Hilbert space, all the two-mode (N = 2) Gaussian transformations can be

conveniently parameterized as

-0 —ifpe'XB iriexi irpe'XT o
i0peixB —09 irpetXT irgetx2 a9
w=| " R . (A14)
—irie”"X1  —grpeT !XT -0 10pe™"XB o]
. —a . —a . y k
—irpe” " XT  —jroe” X2 —jfge'XB —05 o5

where the different 0,7, x € R and a1, ag € C. This leads to the unitary Gaussian
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A.2. Two-mode Gaussian Transformations

transformation:

~ g st op st 1 (pix1 12 o—ix142)_ T2 (pixaal2_ —ixo 52
Usmode = 67191a1a17192a2a2 . 677(6 la)”—e™"™X1a7)— 5 (e'X2ay" —e™'X243)

oot At i s At v At
e—'rT(eZXTalaz—e XT a1a2) | eQB(e’XBalaz—e "XBayal)

. ea1&1—a1&1+o¢2d;—a§d2
= R(01,602) - S1.5q(71, X1;72, X2) - S25q("T XT)
- B(0p,xB) - D(a1, o). (A.15)

R(-), S1.5q(-) and D(-) keep the same definition from the previous section,

Sg_sq(T‘T, x) is the two-mode squeezing operator and

B(0p, xp) is the mode-mixing operator.

A.2.1 Displacement Operator

The displacement operator l?(oq, ag) can be singled out by taking

a1

e Transformation:

In Hilbert space, the operator D(oq, ag) is given by the unitary transformation

D(a) — eald];faﬁfd1+a2&£7a§d2. (A16)

In Phase space, the displacement transformation is given by the pair:

aq

b;, = : Sy =1. (A.17)

e State:

Applying the transformation to the vacuum |00), we generate a coherent state.
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A.2. Two-mode Gaussian Transformations

~

|041 ()é2> = D(Oél, 042) |O 0> . (A.18)

In Phase space, the state is expressed as

deon = Teon = L. (A.19)

A.2.2 Phase-shifting or Rotation Operator

The phase-shifting operator R(Gl, 2) can be singled out by taking

e Transformation:

In Hilbert space, the operator R(Gl, 02) is given by the unitary transformation

R(e) — 6—1’91&1&1—1'92&;&2' (AQO)
In Phase space, the phase-shifting transformation is given by the pair:
e 0 0 0

b =0, S = _ . (A.21)

e State:

Applying the transformation to the vacuum |00), we get a trivial transformation.

R(61,62)]00) = [00). (A.22)

In Phase space, the state is expressed as
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A.2. Two-mode Gaussian Transformations

d; =0, T, =1

R R

A.2.3 One-mode Squeezing Operator

The one-mode squeezing operator S 1-sq(T1, X1; 72, X2) can be singled out by tak-

ing

0 0 irpetxt 0
0 0 0 irgetx2
W = . ) v =0.
—irie Xt 0 0 0
0 —irge X2 0 0

e Transformation:
In Hilbert space, the operator S 1-sq(T1, X15 72, X2) is given by the unitary transfor-

mation

A T (pix1 4T2 _o—ix1 52)_ T2 (pix2 512 _o—ix2 52
S1-sq(T1, X132, X2) = € 2 (€718 —em P ay) = (eP2ay" —emP2a3) (A.23)

In Phase space, the one-mode squeezing transformation is given by the pair:

bl-sq =0,
(A.24)

S1osq(T1, X1572, X2) =

cosh rq 0 —e™1 sinh ry 0
0 coshry 0 —eiX2 ginh 79
—e~ X1 ginhry 0 coshr 0
0 —e” X2 ginh 1y 0 cosh ro

e State:

Applying the transformation to the vacuum |00), we get a one-mode squeezed state.
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A.2. Two-mode Gaussian Transformations

S1:sq) = S1-sq(71, X15 72, X2) [00) . (A.25)

In Phase space, the state is expressed as

dl—sq = 07
(A.26)

[isq(r1, X1572, X2) =

cosh 2 0 —e®X1 ginh 2r; 0
0 cosh 279 0 —e'X2 sinh 2ry
—e~ ™1 ginh 2y 0 cosh 2rq 0
0 —e X2 ginh 2ry 0 cosh 2r9

A.2.4 Two-mode Squeezing Operator

The two-mode squeezing operator gz_sq(TT, x7) can be singled out by taking

0 0 0 irpe'XT
0 0 irpelXT 0
W = , v=20
0 —irpe  XT 0 0
—irpeiXT 0 0 0

e Transformation:

In Hilbert space, the operator S'Q_Sq(rT, XT) is given by the unitary transformation

Sgaq(rr, x1) = e TT(ETaldh—eT T inay) (A.27)

In Phase space, the two-mode squeezing transformation is given by the pair:
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A.2. Two-mode Gaussian Transformations

b2-sq =0,
(A.28)

So-sq(rT, XT) =

cosh rp 0 0 —e'XT ginh o
0 cosh rp —e'XT ginh rp 0
0 —e XT ginh rp coshrp 0
—e XT ginh rp 0 0 cosh rp

e State:

Applying the transformation to the vacuum |00), we get a two-mode squeezed state.

S2.5q) = Sasq(rr. xr) 00). (A.20)

In Phase space, the state is expressed as

d2-sq =0,
(A.30)

1—‘2—sq(7nT7 XT) =

cosh 2rp 0 0 —e'XT sinh 2rp
0 cosh 2rp —e'XT ginh 27 0
0 —e XT ginh 2rp cosh 2rp 0
—eXT ginh 2rp 0 0 cosh 2rp

A.2.5 Mode-mixing Operator

The mode-mixing operator B (0, xB) can be singled out by taking
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A.2. Two-mode Gaussian Transformations

0 —ifpgeixs 0 0
i0ge~XB 0 0 0

0 0 0 i0pe~XB

0 0 —ifpgeixs 0

e Transformation:

In Hilbert space, the operator B (0B, xB) is given by the unitary transformation

B(0g, x) = fpleBalaa—e XBaal) (A.31)

In Phase space, the mode-mixing transformation is given by the pair:

byiv = 0,
(A.32)
Smm(0B, xB) =
cosblp e'XB gin fp 0 0
—e"XBginfp cosfp 0 0
0 0 cosfp e~ XB gin A
0 0 —e'XB ginfp cosfp

e State:
Applying the transformation to the vacuum |00), in Phase space, the state is

expressed as

dyv =0 I'viv =1

A mode-mixing transformation does not change the number of particles in the sys-
tem. This can be seen clearly from the creation and annihilation operators of the
transformation in Hilbert space. While the mode-mixing operator creates a particle

in one of the modes, it destroys another particle in the other mode.
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Appendix B

Mean Number of Particles

The mean number of particles of a Gaussian state is a useful quantity that can
be straightforwardly calculated using the covariance matrix formalism. We define

the mean number of particles in the mode ¢ as
ni == Tr[ala;pl, (B.1)

where 0 <7 < N. Using the commutation relations (3.15]) and the definitions of the
first and second moments ([3.18), the particle number in the mode i for the state
(d,T") can be expressed as [44],
1 *
n; = §(Fzz + di dz‘ - 1). (B.?)

Thus, the mean total number of particles in the Gaussian state is

ni=>y = % <;tr[F] +d'd - N) : (B.3)

Below, we list the mean total number of particles for some representative Gaussian
states.
a) Coherent state: |«a)

Considering the state , the number of particles in a coherent state is:

n=|al?. (B.4)

b) One-mode squeezed state: |Si_s(7, X))
Considering the state (A.12)), the number of particles in a coherent state is:

164



n = sinh?r. (B.5)

c) Two-mode squeezed state: |Sosq(rr, X7))
Considering the state (A.29)), the number of particles in a coherent state is:

n = 2sinh? rr. (B.6)

d) Mode-mixed state: M(0p,xp)|0)
Considering the state generated by (A.31]), the number of particles in a coherent

state is:
n = 0. (B.7)

e) Displaced squeezed state: D,S1.(r, x)[0)

n = sinh? 7 + |a)?. (B.8)

f) Squeezed displaced state: Sy¢(7,0)D, |0)

n = sinh?r 4 |53, (B.9)

where |3|? = |a* coshr — asinh 7|2
g) Squeezed-squeezed state: S1_gq(7',0)S51.5(r,0)|0)

n = sinh?(r 4 1'). (B.10)
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Appendix C

Quantum Fisher Information’s

Computation

The Mathematica file used to compute the quantum Fisher information in ((6.32))
from Chapter[0]is attached. Some of the calculated matrices are too large to be fully
displayed. However, they can be reproduced readily with the information provided
and access to Wolfram Mathematica software. The file refers the reader to the
relevant equations and sections. While some notation has been changed, every

effort has been made to maintain consistency.
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Quantum Frequency Interferometry

Here, we calculate the Quantum Fisher Information for estimating € = a, associated to the oscillat-
ing sphere’s gravitational influence on the phonons of the BEC.

1. Quantum Fisher Information (QFI)

Consider a probe state (dy, [y) undergoing a change driven by a symplectic transformation S(¢),
which results in the state (d, I"). Then, the QFI for estimating the parameter €is given by:

—kl _

F(e) =%}, 2Re[Q" (6) Q¥/(€)] +20.d"(e) T (€) D dl(e), (D.1) or
see (4.16)
where

R Q R —

P=(6ﬁ), PK+KP' =0, with P=518S, R=a'da-B'88
and Q=atop-Boa. (D.2)
We can split the symplectic transformationas $=S5,S,, such that
P=5,"15."15.Sy:=S,"1P. S, thatis P.:=S.1S..
Also, let usrememberthat d=S.d, + b, . With these ingredients, we can simplify the last term in
QFl as:

0cd' T 0.d = (P.dy+ 5.7 be)T Fo™ (Pedo+ S be).

As we are working with a three-mode scheme, i ={1, 2, 3}, and given that for a two-mode squeezing
b, =0, the QFl reads:

F(€) =532 Re[@" Lok | +2(Pedo)t a6 (Pe o).

We need to calculate: dy, So, To, Sc™%, Se, P, Pe.

2. Interferometric Scheme

We are considering a three-mode system exclusively described by Gaussian states and Gaussian
transformations.

2.1 Initial state

The BEC’s atoms in the ground state are considered to be a coherent state and the phonon modes
and n are assumed to be in the vacuum. In the covariance matrix formalism, the state of the BEC at

this point is given by the pair:
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2 | Fisher Information of Quantum frequency interferometry scheme to measure gravity (thesis).nb

dcoh =

a
(2]
(2]

e denr = .
717 Ceo Conjugate[a] |’
0
(2]

Meoh =

100000
9010000
9001000
Tcoh = H
000100
000010

000001

Cf. Section 3.7.

2.2 Probe state

Cf. Section 6.4.1
- Step 1:
We act on the initial state, first, using a two-mode squeezing unitary transformation

AT A

N tat Aa
UZSq(r) = eXp(XbI bn + X" blbn

to parametrically populate the phonon modes, where x = r e’ (cf. eq. (6.22)). The symplectic
matrix associated to the transformation is:

Squ =
1 0 0 0 0 0
0 Cosh[r] 0 0 [’} -et%aiSinh[r]
0 0 Cosh[r] 0 —ei®iSinh[r] [’}

il Sasa = | g ) ) 1 ) ) 5

0 0 -e 1% sinh[r] ©@ Cosh[r] 0
0 —e 1% Sinh[r] 0 0 0 Cosh[r]

- Step 2:

Next we apply a tritter to mix the two squeezed phonon modes with the atoms in the ground state
(cf. eq. (6.23)). The symplectic matrix associated with the tritter is

Sy =

Printed by Wolfram Mathematica Student Edition



Fisher Information of Quantum frequency interferometry scheme to measure gravity (thesis).nb | 3

iel®sin[e] iel®Sin[e]

Cos[©] vz 2 0 2] 0
ie *°sin[e] 612 . rei2
T COS[;] -Sln[;] (7] (2] 7]
te Pl _sin[2]® cos[2]” 0 ) 0
- Sep = . .
-iet°Sin[o] -iet°Sin[o]
0 0 0 Cos[O] 7 7z
) ) ) 2enlel cos[2]* -sin[g)?
0 0 ° —‘“"‘?;"[e] -sin[2]®  cos[2]?
Then, the complete symplectic transformation of the probe state is
p ymp p
So=
(1= MatrixForm|[FullSimplify[S¢..S2sq] ]
Cos [6] ie”Cos:l/[ir] sin[e] ie”Cos:l/[ir] sin[e] 0
iet°Sin[eo] 012 . 012
5 Cos[;] Cosh[r] -Cosh[r] Sln[;] 0
ie*°Sin[e] . 012 012
S = -Cosh[r] Sln[;] Cos[;] Cosh[r] 0
In[2]:= =
“ ° 0 i e (9+0) 53%[9] sinh[r] i e (9+0x) 53%[91 sinh[r] Cos [6]
o e % sin [—:]2 Sinh[r] -e % Cos [‘—:]2 Sinh[r] —'ieiifs;"[e]
0 e 16 cOs[g]zsinh[r‘] e 1% Sin[—i]zsinh[r‘] ’“B%

Thus, the probe state is described by the displacement vector

do =
MatrixForm[FullSimplify[Se.dcon]]

a Cos[6]
aSin[e] (i Cos[6]+Sin[6])
V2
aSin[e] (i Cos[®]+Sin[6])

V2
Conjugate[a] Cos[6]
Conjugate[a] Sin[6] (-i Cos[®]+Sin[®])
V2
Conjugate[a] Sin[6] (-i Cos[®]+Sin[6])

V2

and covariance matrix

r0=

[-}- MatrixForm [

i et (%+%a) sin[e] ¢

V2

@l s Sin[‘—:]2 Si

-el%s Cos[g]2 s

ie*®Cosh[r] Si

2
Cos[g]2 Cosh

-Cosh[r] Sin

FullSimplify[Se.ConjugateTranspose[So], Assumptions - Element[{6, 6, r, 055}, Reals]]]
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4 | Fisher Information of Quantum frequency interferometry scheme to measure gravity (thesis).nb

Cosh[r]?-Cos[26] Sinh[r]? i 42 et®Cos[0] Sin[6] Sinh[r]?
-1 42 e*°Cos[6] Sin[6] Sinh[r]? —: (1+3Cosh[2r] +2Cos[26] Sinh[r]?)
nl- T = -1 42 e*®Cos[6] Sin[6] Sinh[r]? -sin[e]12Sinh[r]?
@t (204%) gin[e]2Sinh[2 ] i 42 e (®+%q) Cos[o] Cosh[r] Sin[e] Sinh
i 42 e (%) Cos[O] Cosh[r] Sin[6] Sinh[r] e i%a Cosh[r] Sin[6]2 Sinh[r]
i V2 e (%) Cos[e] Cosh[r] Sin[6] Sinh[r] -71‘ e % (3+Cos[26]) Sinh[2r]

2.3 Gravity-induced transformation

The time-evolution operator (cf. eq. (6.20)) involves three transformations on the phonons: displace-
ment, two-mode squeezing and mode-mixing. In particular, we consider the two-mode squeezing
transformation induced by the oscillating sphere under the resonant condition Q = w; + wy,:

A At AT A A
0y(9)= exp(£b b, + & bib),
where £ =se'%s (cf. eq. (6.23)). The associated symplectic transformation, denoted S, , carry the

physical parameter we are interested in measuring: € = aq.

2.4 Interferometric Closure

Subsequently, the 'beams' are 'brought together' making the reverse operations corresponding to
the tritter and the two-mode squeezing. The state of the full interferometer is defined as

d:=S. do
=Str(_6) SZSq(_r) S(E) Str(e) SZSq(r) dO

[ = S.To.S"
= Str(=6) Sysq(=1) S(€) Str(6) Sasq(r) To [Str(=6) S2sq(=r) S(€) Ser(6) Sysq(r) |'

However, since the QFl is independent of the particular measurement scheme used, we only need
to consider:

d=5(€) Str(6) S25q(r) do
= Ss SO do

r= S(E) Str(e) Squ(r) rvac [S(E) Str(e) Squ(r)]Jr
=SSt

3. Preliminary computations

Gravitational-induced two-mode squeezing:
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If the squeezing transformation is chosen, the symplectic matrix of the transformation associated
to the unitary transformation U, is:

1 0 0 0 ] ]
©  Cosh[s] 0 0 0 -e®? Sinh[s]
s - 0 0 Cosh[s] 0 -e® % Sinh[s] 0 .
" o 0 0 1 0 2 ’
[’} [*} -e % Sinh[s] @ Cosh[s] 0
0 —e % Sinh[s] 0 0 0 Cosh[s]

We start by calculating P, =S, S, .

P.=

MatrixForm[FullSimplify[Inverse[S.].D[Se, S11]

o o o o o 0
o o @ 0 0 -ei*
b - o o 0@ 0 -ei* o
€ o o © o o o |’
0 0 -ei% o9 o 0
0 -ei* o9 o o 0

And now, we calculate P=S,71P. S, .

p=
MatrixForm[FullSimplify[Inverse[Sg] .Pc.Se]]

i et (9-9a+%) Cos[0] Sin[6] Sinh[r]

") -
V2
i et (9-%a*%) Cos[6] Sin[6] Sinh[r] 1., . .
- 2 -, i (3+Cos[26]) Sin[0sq - ¢ Sinh[2r]
i et (5-%a*%s) Cos[o] Sin[6] Sinh[r] 1. s 2 et .
.. - e 5 isin[e]?sin [0sq - ¢&] Sinh[2r]
- _i . i et (%*%) Cos[e] Cosh[r] Sin[e]
e i (26+¢g) Sln[e]z _1le
V2
_ i e (°%) Cos[e] Cosh[r] Sin[6] 1 __igs s 2 2 _-2i (0sq-%8) <3 2
7 S e sin[e]? (Cosh[r]’-e Sinh[r]?)
ie® (%) Cos[e] Cosh[r]Sin[0] 1 __i (20,+s) 210, 2, @2i%e gj 2
. 7 i @*%) (3+Cos[26]) (-e’ % Cosh[r]?+e’*% Sinh[r]?)

. QFl computation

Having calculated the state of the phonons under the gravitational influence of the oscillating
sphere, given by the displacement vector d, the covariance matrix I, and the derived matrix P, the
QFl given by (D.1) can be readily computed.
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4.1 First term

We calculate the first term for the QFI
imnf-]= FullSimplify[
2 (P[1, 4] ~ P[4, 1] + P[2, 5] ~ P[5, 2] + P[3, 6] ~ P[6, 3] + P[1, 5] « P[4, 2] + P[2, 4]
P[5, 1] +P[1, 6] ~ P[4, 3] +P[3, 4] -~ P[6, 1] +P[2, 6] < P[5, 3] +P[3, 5] < P[6, 21)1]
Out[«]=

((11+4Cos[26} +Cos[46]) Cosh[r]?+8Sin[6]%+ (11 +4Cos[26] +Cos[46]) Sinh[r]*+

IR

Cosh[r]? (45in[26]%-2 (11+4Cos[26] +Cos[46]) Cos[2 (Osq - ¢s) | Sinh[r]?))

Which can be equivalently re-expressed
as:

=2(1-Cos*[6]) + Sin’[26]Sinh?[r] + 2(1+ Cos*[6]) Sin’[ssq - ] Sinh*[21]
=4-2(1+Cos*[6]) + Sin’[26]Sinh’[r] + 2(1+ Cos*[6]) Sin*[ssq - Ps] Sinh?[2r].

4.2 Second term
Let’s calculate the second term which reads: 2 (P do)' [~ (P¢ dp). We start computing

0= MatrixForm[FullSimplify[P..Sg.dcon]]
Out[20]//MatrixForm=
0
i e! (“*%) Conjugate[a] Sin[6]
V2
i e' (“*%) Conjugate[a] Sin([©]
V2
0
ie (9% oSin[o]
V2
ie? ®%) xSin[o]

V2

n-J= MatrixForm[FullSimplify[Inverse[Tg]]]

Cosh[r]?-Cos[26] Sinh[r]? i 42 et®Cos[e] Sin[6] Sinh[r]? i42e

-1 42 e*®Cos[6] Sin[©] Sinh[r]? i (1+3Cosh[2r] +2Cos[26] Sinh[r]?)
-i 42 e*°Cos[6] Sin[6] Sinh[r]? -Sin[e]%Sinh[r]? i (1+3Cos

In[« ]:= II‘e = i ( )
_ - (20404) <4 2 s _ie? ©+%a) §in[26] Sinh[2r] _ i
e 9’ Sin[©]1“Sinh[2r] 2 vz
_ie*(*%) sin[20] Sinh[2r] _-io, . Py 1 __ie,
2Vz e *%a Cosh[r] Sin[©]“ Sinh[r] i

ied(®%) sin[26] sinh[2r] 1 -io, i 165
- 2 V2 2@ 9 (3+Cos[26]) Sinh[2r] -e a

Settinga = | a | e'®  we get for the second term in the QFI:
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FullSimplify[

-1 (9+95-%) g Sin[6] i e (%%-%) gSsin[e] 0 i el (5*%-%) g sin[e] ie! (®*%-%) qSin[6]

z(e_ie =

0
V2

V2
0

V2

V2

i et (5*%%) g Sin[eo]

i et (5*%-%) g Sin[6]

ie ™ (9*%%) gsin[e]

ie® (9*%-%) gsin[e]

2 2 2 ) -re.

{{40?sin[6]? (Cosh[r]?+Cos[26] Sinh[r]? - Cos[6]%CoS |20 + Bsq -2 (O +¢g) | Sinh[2r])}}

Which can be equivalently re-expressed

as:

= | &g |*{4Sin*[6] - Sinh[2r] Cos[2 &y + 0sq - 2 (0 + )] Sin*[2 6] + Cosh[2r]Sin*[2 6]}.

Putting both results together, we obtain that the QFl is proportional to:

4-2(1+Cos’[6]) + Sin’[26]Sinh[r] + 2(1+ Cos*[6]) Sin*[6sq - P] Sinh?[2r] +
| ao |*{4Sin*[6]-Sinh[2r] Cos[2 0y + 0sq - 2 (0 + ¢)] Sin*[2 6] + Cosh[2r]Sin*[2 6]},

where he have left out the factors involving the e derivative of 09 as here we left the squeezing

parameter s undetermined, but is corresponds to the factor r;, appearing in (6.21).

Printed by Wolfram Mathematica Student Edition

7



Appendix D

Precision Evaluation

The Mathematica file used to calculate the precision for measuring aq in ((6.37))

and to check the consistency with respect to the experimental constraints is attached.
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Precision to measure acceleration amplitude

Numerical evaluation of the precision for measuring the acceleration amplitude ag.

Fundamental constants

nesl= P =5.2917 x 1075 (* Bohr radius, m x)
A = 1.055 x 10734; (*» Reduced Planck's constant, kg.m?.s! )
ks = 1.3806 x 10°23; (% Boltzmann constant, m?.kg.s2.K?! )

Experimental parameters

nes- m=1.44x1072%; (* Rubidium mass, kg *)
a=99r; (* Rubidium scattering length, m =x)
d=5.8x10"%%; (*+ Rubidium decay constant , m®/s &)
L= 500x107%; (*» Length of the BEC, m x)
N, = 4 x 10°; (* Number of atoms =)
p =1x10%; (* BEC density, m™3 %)
Na . .
a = H (» BEC's length-to-radius ratio )
T L3
N, = 1100; (* Number of phonons x)
n=1; (* Phonon's number modes (l+n=odd) *)
1=2;
t=1;
3
texp =0.1x H
2d p?

(*» Single-experiment time (0.1 times the BEC half-life), s x)

T=1079; (* Temperature, K )

6 =0.31; (» Tritter angle =x)

¢ = 2592 000;

(» Total time of estimation (3 153 600 ~ 36 days ), s *)
¥y =107%; (* Damping rate, s %)

Print["a = ", N[a, 4]]
(* N[] avoids value displaying in terms of x x)
Print["Time of experiment: ", texp, " s"]

a = 0.01009

Time of experiment: 2.58621 s
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2 | Precision Acceleration Amplitude.nb

Derived parameters

47h%a N,
Injgel= € = _— (» Speed of sound, m/s =*)
m? wo? L3
T
Rep = —; (* Number of repetitions =x)
t
cr
=— (n+1); (*» Resonant frequency, s™! %)
L
crw
Wp=— N3 (* Modes frequency, s™! x)
L
crw
wy=—1;
Q .
Q=—3; (*» Quality factor =*)
Y

Print["Speed of sound: ", 10°c, " mm/s"

Print ["Frequency: ", Q, " Hz"]

Speed of sound: 1.87979 mm/s

Frequency: 35.4333 Hz

Precision
ahn®42nl (12_n2)2
16N,meo 4/LactN, (1%+n?) ’

Print["Sensitivity: ", Aag, " m/s"]

In[96l=  Adq =

Sensitivity: 4.81378x107% m/s

Constraints

1) Condition for dilute regime, NOV"3 w1

In[102]:=
3

N; a
ra? L3
N, a3
TrueQ[ < 0.1]
mo? L3
out[102]=
0.0000143778
out[103]=

True

2) Condition for Bogoliubov approximation, number of excited atoms << number of atoms in the
condensate (Neyc << Np )

Printed by Wolfram Mathematica Student Edition



In[107]:=

out[107]=

out[108]=

Out[109]=

In[110]:=

Out[110]=

Oout[111]=

Oout[112]=

In[113]:=

Oout[113]=

out[114]=

Out[115]=

In[116]:=

Out[116]=

mc
N,

h (wp +w1)

N,
m c?

Tr-ueQ[ N, < 0.1Na]

h (wh +w1)

149731.

4000000

True

3) Condition for phonon regime, hAw, <<m c?
h w1

m c2

TrueQ[hw; < @.1mc?]

2.49214 x 1073

5.08842 x 10731

True

5) Condition for low-temperature regime, kg T << p=mc?
kg T

mc?

TrueQ[ks T < @.1mc?]

1.3806 x 18732

5.08842 x 1073

True

Precision Acceleration Amplitude.nb

6) We need to bound the density from above to extend the life-time ¢, of the BEC

3

2d p?

25.8621

7) In order to keep the ratio a small, we have to make the density as big as possible.

Printed by Wolfram Mathematica Student Edition
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4 | Precision Acceleration Amplitude.nb

The optimal density is the one that allows us enough time for doing the experiment while keeping a
small.

Dampings

Landau damping (Aw, << kg T << p=mc?):
n[117]:=

373 (kg
PL = X—
40 mp a3 c®

out[117]=

5.02842 x10°°®

Beliaev damping (hw, << kg T << p=mc?):
n[118]:=

3 n(w)®
Tg = X ————
6407 mpcS

out[118]=

3.42555 x 19712

Decoherence time:

(» y corresponds to the dominating damping process, r, is the squeezing parameter =x)

E

1-2Cosh[2 (0.001) ] ]
1-Cosh[0.001]

1
thin = — LOg[
Y 1-Cosh[rg]

1-2Cosh[2rg]

10t Log[

tmin
369.827

Others

Squeezing parameter (linear term, without potential factor):
2m?c*L? (1% + n?)
NZnT (12-n2)7 w2 p2
m AL (12+n?) t

) 24nl (1-n)2a?

50427.7

S

out[« J=

Number of phonons:
o}~ 2Sinh[4.8]7

out[«]=

7381.39

Printed by Wolfram Mathematica Student Edition
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