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The nature of dark matter and dark energy remains an open question in mod-

ern physics. While dark matter is inferred from astrophysical observations and dark

energy accounts for the accelerated expansion of the universe, their fundamental ori-

gins remain unknown. This motivates alternative approaches to explain the observed

behaviour of the universe by modifying our current theory of gravity. This thesis pro-

poses a novel method for testing such modifed theories of gravity by exploiting the

dynamics of quantum phononic excitations present in Bose-Einstein Condensates

(BECs), which can be realized in tabletop experiments with current technology.

Our proposal implements quantum metrology within the physics of the BEC and its

phononic excitations, taking advantage of Gaussian states and the tritter operation

to prepare highly sensitive phonon states for estimating gravitational parameters.

Specifcally, we aim to measure the gravitational potential of an oscillating massive

sphere by estimating the exerted acceleration on a BEC, inferred through phonon

dynamics. We predict an acceleration precision of approximately 10−17 m/s2, allow-

ing us to test deviations from Newtonian gravity. We examine two modifed-gravity

models: Modifed Newtonian Dynamics (MOND) and Lambda-gravity. The preci-

sion of our method enables the distinction between MOND and Newtonian gravity

under experimentally feasible conditions. For Lambda-gravity, our setup allows us

to measure Newton’s gravitational constant G with a relative precision of 10−7,

improving current measurements by two orders of magnitude. Additionally, it pro-
−2vides an upper bound on the cosmological constant of Λ < 10−31 m , representing

the frst laboratory-based experimental constraint on Λ. In conclusion, this thesis

presents a novel, high-precision method for probing Newtonian gravity while paving

the road for future research focused on probing relativistic efects.
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Chapter 1

Introduction

Technological progress has consistently improved our ability to achieve more pre-

cise measurements. Nowadays, relativistic corrections are continually taken into ac-

count for various applications, such is the case of GPS technology [1]. This progress

is also reaching the quantum technologies, exemplifed by current plans aiming to

take tabletop experiments to space-based setups [2, 3]. However, the efects of mo-

tion and gravity on quantum experiments and technologies have remained largely

unexplored [4].

Since a complete theory of quantum gravity has not been achieved, the most reli-

able approach to understanding the interplay between quantum matter and gravity,

based on the current theoretical progress, is through quantum feld theory (QFT).

This theory describes quantum matter within a relativistic framework, respecting

principles from special relativity, such as Lorentz invariance. Furthermore, this

framework can be extended to curved spacetime, allowing the study of quantum

felds in a more general gravitational setting [5].

To understand how motion and gravity afect quantum experiments, we appeal

to quantum metrology, the feld dedicated to measuring physical parameters with

high precision using quantum theory. By employing techniques like laser interferom-

etry, quantum metrology has played a crucial role in achieving major breakthroughs,

including the detection of gravitational waves at LIGO [6]. Recently, it has been

applied to quantum feld theory, leading to the development of a framework for rel-

ativistic quantum metrology. This has allowed the estimation of parameters associ-

ated with quantum felds evolving under relativistic settings, showing that motion

and gravity can enhance or degrade quantum entanglement [7]. It has also been
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demonstrated that quantum metrology can be employed to measure the Unruh ef-

fect [8], estimate the curvature of spacetime [9], and determine the expansion rate

of the universe [10].

In particular, quantum metrology has greatly benefted from cold atom systems,

such as the Bose-Einstein condensate (BEC). Their high degree of control and low

internal noise make them an ideal testing ground [11]. A notable application is

BEC-based gravimetry. Current BEC gravimetry relies on atom interferometry,

where the wave function of each atom in the BEC is split into two paths and then

recombined to measure independent phase diferences. However, if one is interested

in studying the interplay between quantum matter and gravity, atom interferometry

presents certain limitations. On one hand, it is founded in non-relativistic quantum

mechanics [12, 13], dismissing efects typical to QFT, such as particle creation [14,

15] or the mixing of feld modes [16]. On the other hand, its precision scales with the

size of the experiment, requiring larger interferometers to improve the measurement

precision, which restricts the capabilities of this approach.

One can take an alternative approach to BEC gravimetry by considering fre-

quency interferometry [17], which takes advantage of the phononic collective oscil-

lations of the atoms in a BEC. This novel method has been proposed to measure

gravitational waves [18] and develop gravitational gradiometers [19]. These propos-

als apply quantum metrology to bosonic quantum felds, modelling the BEC and

its phonons as a quantum feld evolving over a fxed background spacetime, which

is employed to measure gravitational parameters related to the structure of the un-

derlying spacetime. This framework has also been implemented in non-relativistic

settings to measure Newtonian gravity. In contrast to atom interferometry, fre-

quency interferometry ofers diferent advantages when applied to BEC gravimetry.

Firstly, it allows a relativistic description, which was recently achieved by the the-

oretical description of the relativistic BEC. Secondly, the measurement precision

depends on the lifetimes of the BEC and the phonons, thereby eliminating the need

for larger experiments. Therefore, this approach stands as a promising method for

measuring not only Newtonian gravity but also for probing relativistic efects in

quantum systems.

Beyond the scales of tabletop experiments, important open questions related to

gravity arise when studying astrophysics and cosmology. The observation of the

universe’s accelerated expansion [20, 21] and the anomalous rotation of galaxies [22]

have raised questions regarding our understanding of the universe. This has led us to

2



1.1. Thesis Objectives

propose the existence of dark matter and dark energy. While dark energy is believed

to drive the accelerated expansion of the universe, accounting for approximately

70% of its matter-energy content, dark matter is invoked to explain astronomical

observations, which is considered to constitute around 25% of the universe. However,

their fundamental nature remains unknown.

Several models have been developed to explain and understand the nature of

these phenomena. Dark matter candidates range from weakly interacting massive

particles (WIMPs) to fuzzy dark matter and primordial black holes [23]. Experimen-

tal research has restricted the parameter space for several of these proposed models,

yet no conclusive results or evidence have favoured any of them in particular.

Alternatively, modifed theories of gravity ofer an approach to dark matter that

does not rely on the existence of missing matter to account for astronomical ob-

servations. In some cases, this approach could also account for dark energy. For

instance, f(R)-gravity extends general relativity by generalizing the Einstein-Hilbert

action [24]. At the level of Newtonian gravity, models such as Modifed Newtonian

Dynamics (MOND) and Lambda-gravity change the Newtonian gravitational force.

In this thesis, we take advantage of the progress in quantum metrology to propose

a novel method for high-precision gravimetry using BEC phonons. Our approach

aims to improve current gravimetry accuracies while ofering additional benefts to

existing techniques for testing deviations from Newtonian gravity. By applying this

method to two specifc modifed gravity models, which seek to explain the origins

of dark matter and dark energy, we aim to constrain their parameter space.

1.1 Thesis Objectives

The main objective of this thesis is to establish a novel experimental proposal

for high-precision measurements of gravity by employing BEC phonons within a

frequency interferometry framework. Specifcally, we focus on the frst application

of this method for exploring modifed theories of gravity—motivated by the dark

matter and dark energy problems—by testing deviations from Newtonian gravity.

To this end, we explore two modifed gravity models: Modifed Newtonian Dy-

namics (MOND) and Lambda-gravity. For MOND, the objective is to investigate

whether the proposed experiment is sensitive enough to distinguish between Newto-

nian and MOND-like dynamics, thereby contributing to the currently limited Earth-

based tests of this model. For Lambda-gravity, the goal is to determine how precisely

3



1.2. Thesis Overview

our method can measure Newton’s gravitational constant G and the cosmological

constant Λ, two fundamental constants that characterise this model. Additionally,

we seek to improve the current precision in determining G and to present the frst

tabletop experiment designed for constraining Λ.

To enhance the measurement precision of BEC phonons within the frequency

interferometry scheme, we also propose the frst implementation of the tritter oper-

ation applied to measure Newtonian gravity.

In addition to these primary objectives, this thesis also aims to pave the road

for extending our experimental proposal to test relativistic modifcations of gravity

and, more generally, relativistic efects in the weak-gravity regime. Furthermore,

another goal is to encourage the realization of a proof-of-principle experiment of

our proposal, that is, an initial experimental demonstration of its feasibility, by

providing a comprehensive theoretical framework for employing BEC phonons to

measure gravity.

Finally, we expect that this proposal will not only contribute to fundamental

physics research but also motivate the generation of new technology and lay the

groundwork for its potential commercial implementation in high-precision gravime-

try.

1.2 Thesis Overview

The structure of the thesis is organized as follows. Chapter 2 lays the ground-

work by studying the evolution of bosonic quantum felds confned to a region in

Minkowski spacetime from the perspective of both an inertial observer and an accel-

erated observer. Through the quantization of the feld, the Fock space is constructed,

and the concept of particles or excitations for each observer is introduced. The con-

nection between the inertial and accelerated observers is established by employing

a Bogoliubov transformation. This chapter helps us understand the dynamics of

quantum felds, to which we will later return in the context of Bose-Einstein con-

densation, and prepare the ground for constructing Gaussian states.

In Chapter 3, the focus shifts to describing Gaussian states and Gaussian trans-

formations. We begin by comparing the descriptions of quantum states in Hilbert

space and Phase space. In preparation for the rest of the chapter, the formal con-

struction of Fock space is presented. Then, Gaussian states and Gaussian transfor-

mations are introduced, with their respective descriptions in Phase space provided

4



1.2. Thesis Overview

through the covariance matrix formalism. We review symplectic geometry, which

captures the properties of Gaussian states and transformation in Phase space. Fi-

nally, a list of the basic Gaussian states and their physical interpretation is given.

Chapter 4 introduces quantum metrology, the feld dedicated to performing high-

precision measurements on quantum systems. By employing local estimation theory,

we derive the quantum Cramér-Rao bound, which is the quantity that establishes a

limit on the precision to estimate a physical parameter driving a change in a quantum

state. The quantum Fisher information for Gaussian states, which is required to

evaluate such precision, is introduced using the covariance matrix formalism. Then,

the notion of a metrological scheme is presented, and we discuss its usefulness in

preparing and optimizing parameter estimations. The chapter concludes with a

discussion on the application of quantum metrology to relativistic settings and the

progress achieved in this direction.

In Chapter 5, we provide a comprehensive review of the study of the Bose-

Einstein condensation phenomenon. It frst examines the non-interacting Bose gas,

identifying a phase transition that occurs below a critical temperature, which is esti-

mated. Then, the weakly interacting Bose gas is investigated by introducing the Bo-

goliubov theory. The BEC’s ground-state energy and thermodynamic equation are

derived in the zeroth-order momentum approximation. In the second-order approxi-

mation, the excitation spectrum reveals phonon-like elementary excitations. Finally,

the study of non-uniform BECs leads to the derivation of the Gross-Pitaevskii equa-

tion, which is employed to study small-amplitude perturbations in the BEC. This

chapter also investigates the relativistic BEC (RBEC) in fat space by following a

similar approach to the non-relativistic case. Using the Bogoliubov approximation,

we derive the dispersion relation for small-amplitude perturbations and analyse its

limiting cases. For the gapless branch of the low-momentum limit, we identify the

acoustic metric, an efective metric governing the RBEC phonon evolution. Lastly,

we verify that in the Newtonian limit, the theory consistently recovers the non-

relativistic BEC description.

Chapter 6 integrates the material of previous chapters to establish the core

idea of this thesis: the experimental proposal for employing the BEC phonons to

measure gravity. The chapter begins by discussing the diference between atom

interferometry—the currently employed method for BEC-based gravimetry—and

frequency interferometry, a novel method on which our proposal is based. Then,

the experimental setup proposed for probing gravity using the BEC is detailed.
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This involves placing an oscillating massive sphere near the BEC, which acts as a

source of gravitational potential. Next, we derive the dynamics of the BEC under

the gravitational infuence of the oscillating sphere. Assuming the presence of small-

amplitude perturbations in the BEC, we obtain the equations of motion for both the

condensed atoms and the perturbations, where the dispersion relation allows us to

identify these perturbations as phonons. By implementing quantum metrology, we

can establish a metrological scheme that is enhanced by using a tritter to estimate a

physical parameter related to the induced acceleration on the BEC, which quantifes

the efects of the gravitational potential from the oscillating sphere. We derive a

formula that bounds the measurement precision, which depends on numerous exper-

imental parameters. We provide a review of the state-of-the-art BEC experiments

and discuss the conditions and constraints that the experimental parameters must

satisfy. To conclude, we analyse the precision’s parameter dependence and compute

its explicit value for diferent sets of experimental parameters.

Building upon this experimental framework, Chapter 7 explores its application

for testing deviations from Newtonian gravity. We consider two modifed-gravity

models: Modifed Newtonian Dynamics (MOND), which alters the gravitational

force at accelerations below ∼ 10−10 m/s2, and Lambda-gravity, which extends

Newton’s gravitational force by introducing an additional term dependent on the

cosmological constant. For both cases, we derive the gravitational potential of the

oscillating sphere and the corresponding theoretical prediction for the value of the

acceleration amplitude, comparing it to the Newtonian result. In the case of Lambda

gravity, we estimate the precision for measuring Newton’s gravitational constant G

and the cosmological constant Λ, comparing our results with the current state-of-

the-art precisions.

Taking a broader perspective, Chapter 8 summarizes an extensive market anal-

ysis dedicated to the technological implementation and commercialisation of BEC-

based quantum gravimeters as proposed in this thesis. Finally, Chapter 9 summa-

rizes the main results of the thesis and outlines future directions for research.

As supplementary material, Appendix A presents a complete list of the fun-

damental one-mode and two-mode Gaussian transformations and Gaussian states

described employing the covariance matrix formalism. Appendix B indicates the

number of particles associated with the basic Gaussian states. In Appendix C, the

code used to calculate the expression for the quantum Fisher information in (6.32)

is provided. Appendix D contains the code for evaluating the precision in (6.37).

6



Chapter 2

QFT in Minkowski Space for

Confned Bosonic Fields

Quantum feld theory (QFT) is the natural generalization of quantum mechanics.

It goes beyond the one-particle quantum mechanical description of nature governed

by the Schrödinger equation. Furthermore, QFT is a Lorentz-invariant formulation,

making it a relativistic description. From the study of QFT, important consequences

arise, including the prediction of antimatter’s existence and the fact that the particle

number is no longer conserved [5]. It represents a semiclassical description, meaning

that matter and radiation are quantized and evolve within a fxed classical spacetime.

Usually, QFT is studied assuming fat Minkowski spacetime. However, studying

quantum felds on curved spacetime has yielded interesting outcomes. Among the

most important results obtained, we can fnd the Hawking radiation [25, 26] and the

cosmological particle creation [27, 28]. In practice, one may consider that spacetime

is fat near the Earth, but this is a consequence of our technological limitations in

making high-precision measurements. Recent works have pointed out that quantum

experiments may be sensitive enough to detect small-magnitude diferences in the

parameters describing spacetime or non-inertial motion. It is expected that this will

be tested in the near future [29]. This opens the possibility to experimentally explore

the dynamics of quantum felds under accelerated motion, gravitational felds and

curved spacetime.

Since this thesis focuses on the study of the Bose-Einstein condensate and is in-

terested in examining its relation to relativistic efects, a good starting point before

tackling these subjects is the study of the evolution of a confned bosonic quantum

7



2.1. Inertial Cavity

feld in Minkowski spacetime. This approach is helpful in understanding the de-

scription and evolution of a quantum feld without the complexities associated with

BEC physics while simultaneously learning about the description of quantum felds

in Minkowski spacetime, the natural framework of special relativity.

In this chapter, we restrict ourselves to studying the evolution of bosonic matter,

which is described as a real scalar quantum feld with no spin, such as light or

the excitations created on a BEC. As we are interested in describing real tabletop

experiments, we confne the quantum felds to a cavity. As a frst step, we consider

the feld to be on a fat Minkowski spacetime described from an inertial reference

frame. Then, we describe it from the reference frame of an accelerated observer.

This chapter is organized as follows: Section 2.1 discusses the evolution of a

confned massive quantum feld ϕ in Minkowski spacetime for an inertial observer

with coordinates (t, x). The solutions to the equation of motion are derived and

quantized through canonical quantization. The resulting Hamiltonian corresponds

to an infnite collection of quantum harmonic oscillators, which allow the introduc-

tion of particle creation and annihilation operators, as well as the construction of

a Fock space. In Section 2.2, a similar procedure is followed for an accelerated ob-

server with coordinates (η, χ), yielding a similar construction that results in a Fock

space for a diferent set of particles. Finally, in Section 2.3, the relationship between

the feld’s descriptions by the inertial and accelerated observers is established using

a Bogoliubov transformation. The metric signature (−,+,+,+) is employed, with
Greek indices taking the values: 0, 1, 2, 3 and Latin indices running through the

spatial coordinates. The summation convention is applied for repeated indices, and

natural units where c = ℏ = 1 are assumed for this chapter.

2.1 Inertial Cavity

Consider a real scalar feld ϕ with mass m on a curved spacetime described by

the metric gµν . The classical Lagrangian density of this system is given by( )√ 1 µν∇µ
1 2ϕ2L = −g − g ϕ∇νϕ− m , (2.1)

2 2

where g = det(gµν) and the operator ∇ corresponds to the covariant derivative

[5, 30]. Invoking Hamilton’s principle, the dynamical evolution of the Lagrangian is

set by the Euler-Lagrange equation in curved spacetime [31],
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2.1. Inertial Cavity

∂L ∂L
∂ϕ

−∇µ
∂(∇µϕ)

= 0. (2.2)

For the massive real scalar feld ϕ, this leads to the Klein-Gordon (KG) equation

(□−m2)ϕ = 0, (2.3)

where □ is the d’Alembert operator, which has the general form

1 (√ )
µν∂ν□ = √ ∂µ −gg . (2.4)

−g

Restricting ourselves to the case of fat (1+1)-dimensional Minkowski spacetime,

where the metric ηµν can be read from the line element ds
2 = ηµνdx

µdxν = −dt2 +
dx2, the d’Alembert operator is □ = ηµν∂µ∂ν . Then, the Lagrangian density reduces

to

1 1
ηµν∂µ

2ϕ2L = − ϕ∂νϕ− m , (2.5)
2 2

and the Klein-Gordon equation takes the form

( )
2−∂2 + ∂2 −m ϕ(t, x) = 0. (2.6)t x

The most general solution is obtained by constructing a complete set of orthonor-

mal modes. Following [30], the pseudo-inner product on the space of solutions to

the KG equation in Minkowski spacetime is defned as∫
(ϕ1, ϕ2)KG := −i (ϕ1 ∂tϕ2

∗ − ϕ∗2 ∂tϕ1)dx, (2.7)
Σt

where Σt denotes a constant-time hypersurface and
∗ denotes complex conjugation.

To restrict the feld inside a cavity, Dirichlet boundary conditions are imposed

on the feld,

ϕ(t, xl) = ϕ(t, xr) = 0, (2.8)

where L := xr − xl, is the length of the cavity. The normalized solutions obtained

are

1 [nπ ]
−iωntϕn(t, x) = √ sin (x− xl) e , (2.9)

ωnL L

9



2.1. Inertial Cavity

where √(nπ)2
2 n ∈ Z+ωn = +m , . (2.10)

L

Equation (2.9) describes a single mode solution to the KG equation (2.6) for a

massive scalar feld inside a cavity of length L, inertially moving through Minkowski

spacetime. The modes get a discrete label n, which characterizes the energy of the

eigenstates through the eigenvalues given by (2.10).

The solutions can be classifed into positive-frequency solutions ϕn and negative-

frequency solutions ϕ∗ , where ϕ∗ denotes the complex conjugate of ϕn, accordingn n

to the following criteria:

i∂tϕn = +ωnϕn , (2.11a)

i∂tϕ
∗ = −ωnϕ

∗ . (2.11b)n n

This allows us to defne a notion of a particle by identifying the positive-frequency

excitations of the feld as particles.

The full solution to the KG equation can be expanded as

∑
∗ϕ(t, x) = [anϕn(t, x) + a ϕ∗ (t, x)] , (2.12)n n

n

where the an are arbitrary complex functions.

In order to implement the canonical quantization, we need to calculate the

Hamiltonian density associated with the Lagrangian density (2.5). The canonically

conjugate feld is

π(t, x) =
∂L

∂ϕ̇(t, x)
= ϕ̇(t, x), (2.13)

where the dot represents temporal derivation. As customary, using a Legendre

transformation, the Hamiltonian density is computed as

H = πϕ̇− L = 1
2

(
π2 + (∂xϕ)

2
)

2ϕ2+m . (2.14)

Now, we promote the classical felds ϕ(t, x) and π(t, x), to quantum operators

satisfying equal-time commutation relations
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2.1. Inertial Cavity

[ϕ̂(t, x), π̂(t, x′)] = iδ(x− x′) , (2.15a)

[ϕ̂(t, x), ϕ̂(t, x′)] = [π̂(t, x), π̂(t, x′)] = 0 . (2.15b)

The Hamiltonian operator is then,∫
1 ( )

Ĥ = π̂(t, x)2 + (∂xϕ̂(t, x))
2 +m2ϕ̂(t, x)2 dx. (2.16)

2

Using the commutation relations, we can calculate Hamilton’s equations to obtain

that

∂t ϕ̂ = −i[ϕ̂(t, x), Ĥ] = π̂(t, x), (2.17a)

∂t π̂ = −i[π̂(t, x), Ĥ] = (∂2 −m2)ϕ̂(t, x). (2.17b)x

Therefore, combining the two previous equations, we fnd that the quantized

feld operator keeps satisfying the KG equation,

( )
2−∂2 + ∂2 −m ϕ̂(t, x) = 0. (2.18)t x

Then, the solution to the KG equation obtained for the classical case, Eq. (2.12),
∗can be recovered and quantized by promoting the complex functions an and an to

quantum operators ân and ân
† . The quantum feld operator can be expressed as,

∑[ ]
ϕ̂(t, x) = ânϕn(t, x) + ân

†ϕn
∗ (t, x) . (2.19)

n

Using the commutation relations for the feld operators, as well as the completeness

and orthogonality of the functions (2.9), we can obtain that the operators ân and

â† satisfy the commutation relations [32, 33]n

[âm, â
†
n] = δmn , (2.20a)

[âm, ân] = [â
† , â† ] = 0 . (2.20b)m n

These relations correspond to the ones usually associated with creation and annihi-

lation operators. To make sure of their interpretation, we substitute the expansions

of the feld operators ϕ̂(t, x) and π̂(t, x) in terms of ân and â
† into the Hamiltonian,n

which results in
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2.2. Accelerated Cavity

( )
Ĥ =

∑
ωn â†nân +

1
. (2.21)

2
n

ˆThis Hamiltonian allows us to interpret the feld operator ϕ, defned in Minkowski

spacetime governed by the Klein-Gordon equation, as an infnite collection of de-

coupled harmonic oscillators of bosonic nature. The operators â† and ân, createn

and annihilate particles described by the functions ϕn(t, x). These operators can be

used to defne a basis for the Hilbert space where the basis states correspond to the

eigenstates of the number operator n̂k = â† âk for each k-th mode.k

Restricting ourselves to the k-th mode, we can defne the vacuum state |0⟩k
through the relation

âk |0k⟩ = 0, for all k, (2.22)

as the state which contains no particles. The state containing nk particles can be
†constructed by acting nk times the operator âk on the vacuum state,

1 †|nk⟩ = √
nk!
(âk)

nk |0k⟩ . (2.23)

Considering the rest of the modes and defning the complete vacuum state as

|0⟩ = ⊗k |0i⟩, the most general state up to the k-th mode is given byi=0

1 † † †|n1, n2, · · · , nk⟩ = √ (â )n1(â )n2 · · · (â )nk |0⟩ , (2.24)
n1!n2! · · ·nk! 1 2 i

which contains n1 particles in the frst mode, n2 particles in the second mode, etc.

These states are known as the Fock basis, and they form a basis for the Hilbert

space. When constructed this way, the Hilbert space is often called a Fock space.

2.2 Accelerated Cavity

Let us consider the case of a feld contained inside an accelerated cavity. To de-

scribe the reference frame of a uniformly accelerated observer in a (1+1)-dimensional

Minkowski spacetime, we introduce Radar coordinates (η, χ) [5, 30]. These coordi-

nates are defned for the right Rindler wedge, that is, the region where |t| < x, by

the transformation
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t =
1
eαχ sinh(αη), (2.25a)

α

x =
1
eαχ cosh(αη), (2.25b)

α

where the coordinate domain is 0 < χ < ∞ and −∞ < η < ∞, and α ∈ R is a

parameter related to the observer’s proper acceleration. The inverse transformations

are given by ( )
η =

1
tanh−1

t
, (2.26a)

α x

χ =
1
ln[α2(x2 − t2)]. (2.26b)

2α

Under this change of coordinates, the line element for Minkowski spacetime becomes

ds2 = e2αχ(−dη2 + dχ2). (2.27)

To verify that Radar coordinates describe a uniformly accelerated observer, no-

tice that Eqs. (2.25) imply the relation

2 2αχx2 − t = α−2e . (2.28)

which defnes a family of hyperbolas for each constant value of χ. These curves

represent time-like worldlines and describe the trajectory of point-like observers

experiencing a constant proper acceleration.

From the line element, the proper time along these trajectories is τ = eαχη for a

fxed χ. The corresponding trajectory, xµ = (t, x), is described by Eqs. (2.25) and

its the four-acceleration, aµ, is evaluated as

d2 µxµa = = αe−αχ(sinh(αe−αχτ), cosh(αe−αχτ)), (2.29)
dτ2

whose proper acceleration yields

√
a = aµaµ = αe−αχ. (2.30)

This confrms that an observer described with Radar coordinates for a fxed χ follows

hyperbolic trajectories with constant proper acceleration. Figure 2.1 displays a
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2.2. Accelerated Cavity

Rindler chart where trajectories for constant χ and constant η are shown.

Figure 2.1: Rindler Chart for the Right Rindler Wedge (|t| < x). Trajectories for
χ =constant (dashed red lines) describe a family of uniformly accelerated point-like
observers. Trajectories for η =constant (dashed yellow lines) describe a family of
space-like trajectories that correspond to foliations of simultaneity for an acceler-
ated observer at a fxed own proper time. The Rindler horizons (solid blue lines)
correspond to t = x and t = −x.

Now, let’s consider an accelerated cavity in Minkowski spacetime containing

a scalar feld ψ governed by the KG equation (2.3). In Radar coordinates, the

d’Alembert operator takes the form

−2αχ(−∂2□ = e η + ∂χ
2). (2.31)

Then, the KG equation describing the evolution of a massive scalar feld is

2αχ(−∂η2 + ∂χ2 − e m2)ψ(η, χ) = 0. (2.32)

For simplicity, we restrict ourselves to solutions for the massless scalar feld case.

The accelerated cavity can be constructed by restricting the feld inside a

bounded region. We suppose that the left wall of the cavity follows a uniformly

accelerated worldline of constant χ = χl, while the right wall will follow another

uniformly accelerated worldline given by χ = χr. The length of the cavity as mea-

sured by an observer co-moving with the accelerated reference frame, i.e. the proper

length, is given by l = χr − χl.

To restrict the feld to a cavity following a uniformly accelerated trajectory in
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Minkowski spacetime, we impose Dirichlet conditions on the feld:

ψ(η, χl) = ψ(η, χr) = 0. (2.33)

Restricting ourselves to the case of a massless feld, the mode solutions to the

KG equation in Radar coordinates can be expressed as

1 −iΩnηψn(η, χ) = √ sin[Ωn(χ− χl)]e , (2.34)
Ωnl

where the frequencies of the modes must satisfy the relation

Ωn =
nπ

, n ∈ Z+. (2.35)
l

The solutions can be split into positive frequency solutions ψn and negative fre-

quency solutions ψ∗ according ton

i∂tψn = +Ωnψn , (2.36a)

i∂tψ
∗ = −Ωnψ

∗ . (2.36b)n n

The full solution to the KG equation can be expanded as

∑
ψ(η, χ) = [Anψn(η, χ) +An

∗ψ∗(η, χ)] , (2.37)n
n

where An is an arbitrary complex function.

The canonical quantization can be implemented following the approach taken

for the feld inside the inertial cavity. For that, we need to obtain the Hamiltonian

associated with the feld inside the accelerated cavity. Considering again the general

case of a massive scalar feld, we use the general defnition (2.1) to compute the

Lagrangian density,

1 ( )
2ψ2 2αχL = (∂ηψ)

2 − (∂χψ)2 −m e . (2.38)
2

Then, the canonically conjugate feld corresponds to

∂L
Π(η, χ) = = ∂ηψ(η, χ), (2.39)

∂(∂ηψ(η, χ))

therefore, through the usual Legendre transformation, we get that the Hamiltonian
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density reads

1 ( )
2αχ 2ψ2H = Π2 + (∂χψ)

2 + e m . (2.40)
2

The classical felds ψ(t, x) and Π(t, x) get promoted to quantum operators sat-

isfying equal-time commutation relations

[ψ̂(η, χ), Π̂(η, χ′)] = iδ(χ− χ′) , (2.41a)

[ψ̂(η, χ), ψ̂(η, χ′)] = [Π̂(η, χ), Π̂(η, χ′)] = 0 , (2.41b)

so we can write the Hamiltonian operator as∫ ( )
2αχĤ =

1
Π̂(η, χ)2 + (∂χψ̂(η, χ))

2 + e m2ψ̂(η, χ)2 dχ. (2.42)
2

In analogy with the case of the inertial cavity, calculating Hamilton’s equations
2αχyields ∂ηψ̂(η, χ) = Π̂(η, χ) and ∂ηΠ̂(η, χ) = (∂χ

2 − e m2)ψ̂(η, χ), which together

imply that the quantized feld also fulfls the same KG equation as the classical feld,

2αχ(−∂η2 + ∂χ2 − e m2)ψ̂(η, χ) = 0. (2.43)

Returning the case of a massless quantum feld, we recover the classical solution

for the quantized feld by promoting the complex functions An and A
∗ to quantumn

ˆ ˆ †operators An and A . Then, the quantum feld operator isn ∑[ ]
ψ̂(η, χ) = Ânψn(η, χ) + Â

†
ψ∗(η, χ) , (2.44)n n

n

ˆ ˆ †where we fnd that the operators An and A satisfy the commutation relationsn

ˆ ˆ †[Am, An] = δmn , (2.45a)

ˆ ˆ ˆ † ˆ †[Am, An] = [A ,A ] = 0 . (2.45b)m n

ˆ ˆ †Using the expansion of the quantum feld operator in terms of the An, A oper-n

ators, the Hamiltonian operator for the feld inside the accelerated cavity is( )∑ 1ˆ ˆ † ˆH = A A . (2.46)Ωn n n +
2

n

Again, we have an infnite sum of decoupled harmonic oscillators where the operators
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ˆ † ˆA and An can be related to the creation and annihilation of particles described byn

the functions ψn(η, χ).

The Hilbert space can be constructed from the eigenstates of the number oper-
ˆ ˆ † ˆator Nk = AkAk for the mode k. We can defne the vacuum state |0k′ ⟩ for the k-th

mode, which is the state containing no particles, as

Âk |0k′ ⟩ = 0 for all k, (2.47)

and so on, for the rest of the modes. A Fock state containing N1 particles in the

frst mode, N2 particles in the second mode, etc., can be built as

1 ˆ † ˆ † ˆ †|N1, N2, · · · , Nk⟩ = √ (A1)
N1(A2)

N2 · · · (Ai )
Nk |0′⟩ , (2.48)

N1!N2! · · ·Nk!

where the complete vacuum state is |0′⟩ = ⊗k |0′⟩.These states then constitutei=0 i

the basis for the Fock space of the accelerated cavity containing a quantum feld in

Minkowski spacetime.

2.3 Bogoliubov Transformations

As we can see, the choice of a complete basis of solutions to the Klein-Gordon

equation in fat spacetime is not unique. However, the set of feld mode solutions

detected by the inertial observer {ϕn(t, x), ϕ∗ (t, x)} and those detected by then n∈Z+

accelerated observer {ψn(η, χ), ψ
∗(η, χ)} can be related to each other by a Bo-n n∈Z+

goliubov transformation. A Bogoliubov transformation is a change of basis from

one set of mode solutions to another that preserves the commutation relations of

the feld operators, that is, a unitary transformation. The relation between the feld

solutions measured by the inertial and accelerated observers is given as∑
ψm(t, x) = [αmn ϕn(t, x) + βmn ϕ

∗
n(t, x)] , (2.49a)

n∑
ψ∗ (t, x) = [α∗ ϕ∗ (t, x) + β∗ ϕn(t, x)] . (2.49b)m mn n mn

n

The matrices αij and βij implementing the transformation correspond to the Bo-

goliubov coefcients. Using the orthonormality of the mode functions and the inner
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product (2.7), they can be expressed as

αmn =(ψm, ϕn (2.50a))KG ,

βmn =− (ψm, ϕn
∗ )KG . (2.50b)

We can fnd the relation between the mode solutions that we have obtained.

To achieve this, we parameterize the cavity geometry using the dimensionless small

parameter

h ≡ acL , (2.51)

where ac is the acceleration at the centre of the cavity and L, as before, is the length

of the cavity from the rest frame. Performing a perturbative analysis for h≪ 1, we

get

αnn = 1−
1
π2n2h2 +O(h4) , (2.52a)

240
√ (−1 + (−1)m−n)

αmn = mn h+O(h2) , (2.52b)
π2(m− n)3

√ (1− (−1)m−n)
βmn = mn h+O(h2) . (2.52c)

π2(m+ n)3

These expressions allow us to relate the feld solutions between an inertial and an

accelerated observer.

Overall, Bogoliubov transformations are very important as they can be used

to model the time evolution of quantum felds. Such transformations arise, for

example, when considering changes in coordinate systems (such as Lorentz boosts

or transformations between observers) or as a result of spacetime dynamics [16].

They also arise, for instance, in the evolution of a phonon feld inside a BEC when

it is perturbed by the passing of a gravitational wave, as in [18].

Bogoliubov transformations carry deep physical meaning related to the particle

content in a quantum state as seen by diferent observers [5]. This can be seen by

considering the Bogoliubov transformation in terms of the annihilation and creation

operators:

∑
Âm = (α∗ ân − β∗ â† ) . (2.53)mn mn n

n

A positive frequency excitation, as described by one observer, will be a superposi-

tion of both positive and negative frequencies as described by a diferent observer.
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Therefore, in QFT, there is no such thing as a universal notion of a particle. In par-

ticular, transformations where β = 0, which preserve the number of particles, are

called passive transformations, whereas transformations where β ̸= 0, which create
or annihilate particles, are called active transformations.

It is worth noticing that an important property is satisfed by the Bogoliubov

coefcients. As the Bogoliubov transformation is unitary, it must preserve the feld’s

commutation relations. This forces the coefcients to satisfy the relations

αα† − ββ† = I, (2.54a)

αβT = βαT , (2.54b)

known as the Bogoliubov identities [5, 30].

In conclusion, Chapter 2 has provided the framework for understanding the be-

haviour of bosonic scalar felds confned to a region in Minkowski spacetime from

the perspectives of both an inertial and an accelerated observer. The quantization

of the scalar felds was performed using canonical quantization, which allowed us

to express each feld as an infnite sum of quantum harmonic oscillators. This sub-

sequently led us to the construction of a Fock space for each observer, where the

natural states correspond to the particle states. By employing Bogoliubov trans-

formations, we have demonstrated the relationship between the felds and particle

content for each observer. This chapter laid the groundwork for the study of Gaus-

sian states, a particular family of states that can be generated from the vacuum

state of any Fock space and that will prove to have a useful implementation for

metrology. These states will be the main focus of the next chapter.
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Chapter 3

Gaussian States and the

Covariance Matrix Formalism

In the previous chapter, we studied a quantum feld contained inside a cavity

travelling with an inertial or an accelerated motion through a (1+1)-dimensional

Minkowski spacetime. The analysis allowed us to understand the feld in both cases

as an infnite sum of quantum harmonic oscillators, which, at the same time, can

be viewed as a decomposition of the quantum feld in terms of bosonic quantum

modes. The natural description for this system involves Fock states, which specify

the number of particles in each of the modes of the feld. Using the Fock basis, we

can construct a special family of states known as Gaussian states.

Gaussian states can be identifed because their characteristic function has a

Gaussian form. They originate from Hamiltonians that are at most quadratic in

the canonical operators1, such as the creation and annihilation operators of the

harmonic oscillator or the position and momentum operators in quantum mechanics.

Although the condition of a quadratic Hamiltonian might seem restrictive, it is

commonly satisfed in many experimental settings in areas such as quantum optics,

optomechanics, trapped ions and atomic ensembles [34].

For example, Gaussian states naturally emerge as ground or thermal states of

bosonic systems, such as light felds, the vibrational modes in solids, or Bose-Einstein

condensates [35]. They have been extensively studied in the context of quantum op-

tics and have become a central theme in the area of continuous-variable quantum

information. Moreover, Gaussian transformations—the transformations that pre-

1Operators following canonical commutation relations.
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serve the Gaussianity of a state—are associated with typical experimental opera-

tions such as beam splitters and phase shifters. These features make Gaussian states

rather straightforward to generate and manipulate, making them easy to implement

experimentally [36, 37, 38].

From a theoretical standpoint, it is very convenient to work with Gaussian

states. Despite living in an infnite-dimensional Hilbert space inherited from their

continuous-variable nature, they can be completely described simply by their frst

and second statistical moments using the covariance matrix formalism (CMF) [37].

Briefy speaking, the CMF provides a description for Gaussian states and Gaussian

transformations in Phase space [39], which is equivalent to the conventional descrip-

tion in Hilbert space but benefts from making calculations more tractable. For

instance, it can facilitate the evaluation of the entropy of a quantum state.

The chapter is organized as follows. In Section 3.1, the diference between Hilbert

space and Phase space, along with their implications for quantum states and trans-

formations, is discussed. Section 3.2 reviews the formal construction of Fock space

for a bosonic system. Gaussian states and its Phase space description, known as

the covariance matrix formalism, are introduced in Section 3.3. The description

for Gaussian transformation in Phase space is given in Section 3.4, where the ex-

plicit relation between the Hilbert space and Phase space formalism for Gaussian

states and transformations is provided. Next, Section 3.5 discusses the mathemati-

cal structure followed by Gaussian states and transformations in Phase space, that

is, the symplectic geometry. Section 3.6 presents Williamson’s theorem, which is a

tool that permits the factorization of Gaussian states in terms of symplectic ma-

trices. Finally, Section 3.7 provides a list of the basic Gaussian states expressed in

terms of the covariance matrix formalism.

3.1 Quantum Continuous-Variable Systems:

Hilbert space vs Phase space

Quantum continuous variable systems are quantum systems whose degrees of

freedom are associated with canonical operators that have a continuous spectrum

[37]. The eigenstates of these operators defne an infnite-dimensional basis for the

Hilbert space of the system. A classic example of a quantum continuous variable

system is a quantized bosonic feld, which can be modelled as a collection of non-

interacting quantum harmonic oscillators with diferent frequencies. Continuous

21



3.2. Fock Space of a Bosonic System

variable quantum systems play a relevant role in quantum communication and for

quantum sensing, detection, and imaging techniques [35].

Working with an infnite-dimensional Hilbert space can present some difculties,

for instance, when studying the dynamics of the system. Restricting exclusively to

Gaussian states is a good strategy to make quantum continuous variable systems

more tractable since, in Phase space, Gaussian states can be completely described

by a fnite number of degrees of freedom.

Usually, quantum states are described in Hilbert space by a positive semi-defned

operator known as the density matrix ρ̂. On the contrary, in Phase space, quantum

states are represented by a characteristic function, for example, the Wigner func-

tion. Another comparison arises when considering transformations. In particular,

Gaussian transformations in Hilbert space are driven by unitary transformations,

while in Phase space, they are represented by symplectic matrices.

Continuous variable systems are usually associated with the dynamical degrees

of freedom of non-relativistic particles (frst quantization) or bosonic quantum felds

(second quantization). In any case, the formalism used to describe the Gaussian

states in Phase space is equivalent for both cases. In the next section, we construct

the Fock space for a bosonic system in preparation for defning and describing Gaus-

sian states.

3.2 Fock Space of a Bosonic System

In quantum feld theory, a bosonic feld is a quantum feld composed of bosons.

Bosons are integer-spin particles that are characterized for obeying canonical com-

mutation relations and, consequently, they follow the Bose-Einstein statistics2. A

key property derived from the statistics reveals that bosons are not subject to the

Pauli exclusion principle. Therefore, an arbitrary number of identical bosons can

occupy the same quantum state.

Examples of bosonic felds include scalar felds, which give rise to spin-0 bosons

such as the Higgs boson, and gauge felds, which correspond to spin-1 bosons like the

photon. Bosons can also exist in the form of composite bosons, where bound states of

fermions combine to behave efectively as a boson. Examples include Cooper pairs in

superconductors, atomic bosons like helium-4 atoms or Bose-Einstein condensates.

2In contrast, fermionic systems follow canonical anti-commutation relations and obey the Fermi-
Dirac statistics.
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3.2. Fock Space of a Bosonic System

Fields in the context of quantum feld theory correspond to systems with a

varying number of particles. To mathematically represent such systems, we use the

Fock space, an algebraic structure that is constructed from the single-particle Hilbert

space to represent multi-particle states. The Fock space is the sum of the Hilbert

spaces representing zero-particle states, one-particle states, two-particle states, and

so forth.

More technically, if we denote as H the one-particle Hilbert space, then the

bosonic Fock space F(H) is the direct sum of symmetric tensor powers of H [40]

∞⨁
F(H) = Sym(H⊗n), (3.1)

n=0

where Sym(·) is the symmetrization operator that ensures the tensor product states
are symmetric under particle exchanges and

H⊗n = H⊗ · · · ⊗ H , (3.2)⏞ ⏟⏟ ⏞
n-times

is the n-particle Hilbert space.

The Fock basis can be constructed explicitly as follows. Consider a bosonic sys-

tem composed of a discrete number N of modes described by the following Hamil-

tonian,

N ( )∑ 1†Ĥ = Ĥk, Ĥk = ℏωk âkâk + , (3.3)
2

k=1

which, for instance, could originate from the quantization of the electromagnetic

feld inside a cavity [41]. The infnite sum of quantum harmonic oscillators has a

straightforward interpretation in terms of bosonic particles. The Hamiltonian (3.3)

describes the total energy of a collection of bosonic particles, which are created and
†annihilated by the operators âk and âk, respectively. Each particle has an energy

ℏωk. These operators satisfy the standard canonical commutation relations,

† † †[âk, â ] = δkl, [âk, âl] = [âk, â ] = 0. (3.4)l l

The total particle number operator is defned as

∑ ∑ †n̂tot = n̂k = âkâk, (3.5)
k k

23



3.2. Fock Space of a Bosonic System

where n̂k is the particle number operator for the mode k. It is relevant to notice

that these operators commute with each other for diferent modes

[n̂k, n̂l] = 0, for k ̸= l. (3.6)

ˆTherefore, the operator n̂tot commutes with the Hamiltonian H, implying that it is

possible to fnd a common set of eigenstates for both operators. These eigenstates

can be fully characterized by the action of the operators n̂k on them,

n̂k |n1, n2, . . . , nk, . . .⟩ = nk |n1, n2, . . . , nk, . . .⟩ , (3.7)

yielding the eigenvalues nk that correspond to the number of particles in the mode

k. The eigenstates |n1, n2, . . .⟩ form an orthonormal basis for the Fock space that

is usually called the ‘particle-number representation’. The inner product in Fock

space is defned as

′ ′⟨n1, n2, . . . |n1, n2, . . .⟩ = δ ′ δ ′ · · · . (3.8)n1,n1 n2,n2

The total number of particles n is found by applying the operator n̂tot to the

eigenstates:

∑
n̂tot |n1, n2, . . .⟩ = n̂k |n1, n2, . . .⟩ = n |n1, n2, . . .⟩ . (3.9)

k

†The application of the operators â and âk on the state |n1, n2, . . .⟩ produces a newk

state. The particle number of these new states can be calculated, and it is obtained

that

† †n̂tot â |n1, n2, . . .⟩ = (n+ 1)â |n1, n2, . . .⟩ , (3.10a)k k

n̂tot âk |n1, n2, . . .⟩ = (n− 1)âk |n1, n2, . . .⟩ . (3.10b)

The action of the operators on the Fock basis translates into the increase or decrease

of the particle number by adding or subtracting a particle in the mode k. This

confrms the interpretation of â† and âk as creation and annihilation operators.k

Since the operator n̂tot is a positive operator
3, it must be bounded from below. This⨂Nimplies that a state |0⟩ = |0k⟩ must exist, such thatk=1

3Given a Hilbert space H, a linear operator Â : H → H is called positive semi-defnite Â ≥ 0 if,
for every |x⟩ ∈ H, ⟨x|Âx⟩ ≥ 0, [42].
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âk |0⟩ = 0, (3.11)

for every mode k. The state |0⟩, called the vacuum, is the state that does not
contain any particles. The rest of the Fock states are built by repeatedly applying

the creation operators onto the vacuum state. In this way, the state containing n1

particles in the frst mode, n2 particles in the second mode, and so on, is created as

1 † †|n1, n2, · · ·⟩ = √ (â )n1(â )n2 · · · |0⟩ , (3.12)
n1!n2! · · · 1 2

where the states have already been normalized.

Finally, the explicit action of the creation and annihilation operators on the Fock

states is given by,

√†âk |n1, . . . , nk, . . .⟩ = nk + 1 |n1, . . . , nk + 1, . . .⟩ , for nk ≥ 0, (3.13a)
√

âk |n1, . . . , nk, . . .⟩ = nk |n1, . . . , nk − 1, . . .⟩ , for nk ≥ 1. (3.13b)

In summary, the Fock space representation of the Hilbert space provides a natural

description for bosonic quantum felds, which correspond to systems with a varying

number of particles. The Fock states encapsulate the behaviour of the feld by

specifying the feld’s particle content. An example where this representation is well-

suited is found in Chapter 2, where we describe the motion through spacetime of

a cavity-confned quantum feld. The Fock space will again become relevant in

Chapter 5, where we discuss the phonons of the Bose-Einstein condensate.

3.3 Gaussian States in Phase Space

All the physical information about a quantum system is contained in its quantum

state. In Hilbert space, quantum states are represented by a density matrix ρ̂. The

density matrix is a positive-defnite, self-adjoint operator of trace one that acts on

the Hilbert space of the system. In the case of a bosonic system, we have that

ρ̂ : H⊗n → H⊗n. When the state of the system is pure, which follows whenever

ρ̂2 = ρ̂ is satisfed, the density matrix can be expressed as ρ̂ = |φ⟩⟨φ|, for all
|φ⟩ ∈ H⊗n. Any density matrix has an equivalent representation in Phase space in
terms of a characteristic function.

The defning feature of Gaussian states is that their associated characteristic
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function has a Gaussian form, which is completely determined by the frst and

second statistical moments of the canonical operators. The Phase space description

of Gaussian states and Gaussian transformations is known as the covariance matrix

formalism [36, 37]. Notice that the covariance matrix formalism corresponds to a

subspace of the Phase space description of a quantum system with the restriction

to Gaussian states.

The representation of the covariance matrix formalism, however, is not unique.

The selection of the Hilbert space basis afects the defnition of the statistical mo-

ments, leading us to at least two diferent representations of the covariance matrix

formalism. If the statistical moments are defned in terms of the creation and an-

nihilation operators, â and â†, we obtain the complex representation. However, if

they are defned in terms of the generalized position and momentum operators, x̂

and p̂, we get the real representation [43]. In this work, we will exclusively employ

the complex representation.

To start constructing the covariance matrix formalism, let us consider the bosonic
†creation and annihilation operators âk, âk for a bosonic system of N modes. All the

operators for each of the modes in the N -dimensional Fock space can be collected

into a 2N -dimensional vector

† †Â = (â1, . . . , a ˆ1, . . . , â )T . (3.14)ˆN ; a N

The canonical commutation relations obeyed by the operators can be written com-

pactly by the use of the symplectic form K ⎛ ⎞
0

ˆ † ⎝1ˆ[Ai,Aj ] = Kij , with K = ⎠⊗ IN , (3.15)
0 −1

where IN is the N ×N identity matrix. The symplectic form K is a matrix that is

Hermitian K = K† and unitary K−1 = K†, that additionally satisfes the relation

K2 = I2N .
Given a quantum state described by the density matrix ρ̂, the symmetric char-

acteristic function associated with the state is defned as [34],

χ(ξ) = Tr[ρ̂D̂(ξ)] (3.16)

A Kξwhere D̂(ξ) = e
ˆ †

is the Weyl displacement operator, ξ is a 2N -dimensional

complex vector of the form ξ = (γ,γ∗)T and γ ∈ CN . For Gaussian states, the
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characteristic function becomes [44],

− 1ξ†Γξ−id†Kξχ(ξ) = e 4 , (3.17)

which we can see, is completely determined by the frst statistical moment d, also

called the displacement vector, and the second statistical moment Γ, also called the

covariance matrix. They are respectively defned as:

d = ⟨Â⟩ , (3.18a)

Γij = ⟨ÂiÂj
†
+ Âj

†
Âi⟩ − 2 ⟨Âi⟩ ⟨Âj

†⟩ , (3.18b)

where ⟨Â⟩ denotes the expectation value of Â in the state ρ̂, which is defned as

⟨Â⟩ := Tr(Âρ̂) := (Tr(â1ρ̂),Tr(â2ρ̂), ...)T , (3.19)

with Tr(·) indicating the trace. The covariance matrix Γ is a positive semi-defnite
matrix that carries the most relevant properties of the state. Then, working with

the entire characteristic function is no longer necessary. The state of the system is

completely described by d and Γ.

From their defnition, the displacement vector and the covariance matrix carry

the following structure, ⎛ ⎞ ⎛ ⎞
˜⎝ d⎠d = ,
˜∗d

⎝X
Γ =

Y ∗

Y ⎠ ,
X∗

(3.20)

˜∗where d̃ is an N -dimensional complex vector, d its complex conjugate and X, Y

are N×N matrices with complex entries. The Hermiticity of the covariance matrix,

Γ = Γ†, imply that X† = X and Y T = Y .

In the standard formulation of Hilbert space, the density matrix represents a

physical state if and only if it is a positive semi-defnite operator. That is, it must

fulfl ρ̂ ≥ 0. In Phase space, this condition, along with the canonical commutation
relations (3.15), is refected by the inequality

Γ +K ≥ 0 . (3.21)

This is a necessary and sufcient condition for the covariance matrix to describe a

physical state. The condition considers Gaussian states, but it also must be followed
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by any covariance matrix associated with a more general non-Gaussian, continuous

variable state [34, 37].

3.4 Gaussian Transformations in Phase Space

Gaussian transformations are defned as the set of transformations that map

Gaussian states into Gaussian states. In Hilbert space, Gaussian transformations

are performed by unitary transformations Û that act onto a quantum state as ρ̂′ =
ˆ †Û ρ̂U . These transformations can be generated via an exponential map where the

argument is at most quadratic in the annihilation and creation operators,

ˆ † ˆ †iA W Â+A KγÛ = e 2 , (3.22)

where γ is a 2N - dimensional complex vector and W is a Hermitian matrix, both

possessing the same structure as the displacement vector d and the covariance matrix

Γ, established in (3.20).

In Phase space, Gaussian transformations are carried by symplectic transforma-
ˆtions. Under the transformation represented by U , it can be shown [44, 45] that the

frst and second statistical moments transform according to

d′ = Sd+ b, Γ′ = S ΓS†, (3.23)

with (∫ 1 )
iKW iKWtdtS = e , b = e γ , (3.24)

0

where S corresponds to a 2N -dimensional symplectic matrix and b ∈ C2N . The re-
lationship between the unitary transformations (3.22) and the symplectic transfor-

mations (3.23) mediated through (3.24) is of great relevance for describing Gaussian

states. It constitutes the recipe that allows us to move between the density matrix

formalism in Hilbert space and the covariance matrix formalism in Phase space.

We can obtain diferent Gaussian transformations depending on the specifc se-

lection for W and γ. For instance, setting W = 0 corresponds to the Weyl displace-

ment operator, which is the transformation that generates a coherent state. Setting

γ = 0 can lead us to the phase-changing operator, the squeezing operator, or the

mode-mixing operator, depending on the particular form of W . In Appendix A,
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we give the most general parameterization for the matrix W accounting for all the

1-mode and 2-mode Gaussian transformations.

We mentioned the symplectic nature related to the matrix S and the Gaussian

transformations in Phase space; however, it has not been formally established. In the

next section, we introduce the defnition of the symplectic group, which connects the

Phase space formalism for Gaussian states and transformation with the symplectic

geometry.

3.5 Symplectic Geometry

Symplectic geometry focuses on the study of symplectic manifolds. Its inception

goes back to the Hamiltonian formulation of classical mechanics, where it was found

that the Phase space associated with certain classical systems exhibited the structure

of a symplectic manifold. A symplectic manifold (M,K) corresponds to a smooth

manifold M equipped with a closed, nondegenerate 2-form K, called the symplectic

form [46]. Symplectic geometry provides a natural mathematical framework for

Hamiltonian systems and also has applications to quantum mechanics and quantum

optics [47].

Returning to the transformation matrix S, let us investigate its algebraic prop-

erties. From the results obtained in (3.24), we can notice two properties. First,

the matrix S has the same structure as the covariance matrix and, second, it leaves

invariant the symplectic form K introduced in (3.15), which can be expressed as⎛ ⎞⎝ α ⎠S =
β

, SKS† = K . (3.25)
β∗ α∗

These properties precisely defne the complex representation of the real symplectic

group in 2N dimensions Sp(2N,R). This group corresponds to the set of all 2N×2N
complex matrices that preserve the symplectic form K,

Sp(2N,R) =
{
S|SKS† = K

}
. (3.26)

Therefore, we identify S as a symplectic matrix. An important remark is that this is

not a complexifcation of the group. Rather, it corresponds to a change of basis that

involves a transformation from the set of operators {x̂j , p̂j}, which constitutes the
real representation of the covariance matrix formalism, to the set of mode operators
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†{âj , â }, which constitutes the complex representation [37, 43].j

The symplectic group can alternatively be understood as the set of all real linear

canonical transformations of a 2N -dimensional vector space, where one can fnd that

there exists a one-to-one correspondence between these linear transformations and

the symplectic matrices [43, 47]. Then, the physical interpretation for the symplectic

matrices is that they are transformations that preserve the commutation relations

of the operators.

The Lie algebra associated with the symplectic group will be very useful when

describing quantum metrology on Gaussian states. The symplectic group Sp(2N,R)
is generated through the exponential map of the Lie algebra

{ }†sp(2N,R) = KWj |W =Wj , (3.27)j

where Wj defne a set of Hermitian, 2N × 2N , linearly independent basis matrices.
The matricesKWj are the infnitesimal generators of Sp(2N,R), as can be seen from
Eqs. (3.22) and (3.24), and are associated with Hamiltonians that are quadratic in

the canonical operators [37, 43]. In Appendix A, we set the most general parame-

terization for W that generates all the Gaussian transformations for the one-mode

and two-mode cases.

Before closing this section, an important fnal remark needs to be made. The

defning properties of the symplectic group given by (3.25) can be rewritten as

αα† − ββ† = I, (3.28a)

αβT = βαT . (3.28b)

These relations turn out to coincide exactly with the identities satisfed by the coef-

fcients of a Bogoliubov transformation, as obtained in (2.54). It can be concluded

then that Bogoliubov transformations are, in fact, symplectic matrices and thus

correspond to Gaussian transformations [44].

In general, the symplectic transformations driven by the matrix S can be clas-

sifed in two ways: passive transformations and active transformations. Passive

transformations, characterized by the condition β = 0, correspond to transfor-

mations that preserve the number of particles and the energy of the system, like

phase shiftings or beam splitters. Active transformations, identifed by the condi-

tion β ̸= 0, do not preserve the number of particles or the energy of the system,

such is the case of the squeezing. In the next section, we will introduce the complete
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set of fundamental Gaussian states for one-mode and two-mode systems.

3.6 Williamson’s Theorem

In this section, we introduce a theorem of great relevance for the study of Gaus-

sian states of multimode bosonic systems. Williamson’s theorem [48] provides a

powerful mathematical tool to factorize a Gaussian state.

Williamson’s theorem. For any 2N × 2N positive defnite matrix σ, there

exists a symplectic transformation S ∈ Sp(2N,R) that diagonalises σ as⎛ ⎞
N⨁ 0⎝λkσ = S ⎠S† = SDS†. (3.29)

0k=1 λk

where λk corresponds to the symplectic eigenvalues of the matrix σ, and D =

diag(λ1, . . . , λN , λ1, . . . , λN ) is a 2N × 2N diagonal matrix.

A proof of the theorem can be found on [34]. The relevance of this theorem

relies on its application to the covariance matrices, demonstrating that any covari-

ance matrix can be diagonalized through symplectic transformations. Given their

correspondence to the covariance matrices, this fact directly translates into Gaus-

sian states. That is, every Gaussian state can be decomposed as the product of

symplectic matrices with a diagonal eigenbasis matrix D. In the next section, we

will see that D can be identifed with the thermal and vacuum states of a bosonic

system.

The symplectic eigenvalues λk of the matrix σ are determined by solving the

eigenvalue problem [37, 44]

D = Eig+(Kσ), (3.30)

where K corresponds to the symplectic form used throughout this chapter. If σ rep-

resents a covariance matrix, then it corresponds to a physical state if the eigenvalues

satisfy the condition λk ≥ 1 for all k. This constraint is equivalent to the condition
given by (3.21).

In practical applications, it is often convenient to consider only a subsystem of a

Gaussian state. In Hilbert space, this is done by tracing out all the modes or states

that are not of interest. In Phase space, partial tracing using the covariance matrix
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formalism is very easy to compute. We just need to remove from the covariance

matrix the rows and columns corresponding to the unobserved modes, as well as the

elements from the displacement vector related to those dismissed modes.

3.7 List of Gaussian States in the CMF

In this section, we present the basic Gaussian states. The number of elemen-

tary Gaussian states that can be generated from a quadratic Hamiltonian can be

characterized by a fnite number. These fundamental states can be obtained by

considering only one-mode and two-mode systems, where the generalization to a

higher number of modes is straightforward. Their physical meaning can be easily

understood in analogy with their interpretation within quantum optics [49]. This

section is complemented by Appendix B, which presents the number of particles

associated with each Gaussian state.

3.7.1 Thermal State

Let’s consider a system composed of N non-interacting bosonic modes, each

mode described by a state |ψk⟩ with an energy Ek. Assuming that each mode is

thermally populated, the number of particles per mode follows the thermal distri-

bution: ( )
1 Ek

ˆkρ = exp − n ,th ˆk
Z kBT

[ ( )]
Ek

Z = Tr exp − n̂k ,
kBT

(3.31)

where Z is the partition function, n̂k is the number operator for the mode k and

kB is the Boltzmann constant. In Hilbert space, the complete thermal state of

the system corresponds to the tensor product of the states of each of the modes

ρ = ρ̂1 · · ⊗ ρ̂N In Phase space, the state is represented asˆth th ⊗ · th. ⎛ ⎞
N⨁ 0⎝λk ⎠dth = 0, Γth = , (3.32)
k=1 0 λk

where λk = coth(2k
E
B

k
T ). We fnd that the covariance matrix of a thermal state

corresponds precisely to the diagonal matrix of symplectic eigenvalues introduced in

the previous section [34, 35]. In connection with Williamson’s theorem, we conclude

that every Gaussian state can be generated starting from a thermal state. In this

sense, the most fundamental Gaussian state is the thermal state.
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The symplectic eigenvalues increase with higher temperatures and with lower

energies. In the limit as T → 0, the eigenvalues approach λk → 1, thus satisfying

the constraint λk ≥ 1 required for the covariance matrix to represent a physical

state.

3.7.2 Vacuum State

A special case from the thermal state is the vacuum state |0⟩, corresponding to
the case when T = 0. In this state, where there are no particles, the frst moment

of the system vanishes dvac = 0. Considering an N -mode system, the covariance

matrix representing the vacuum state simply is

Γvac = I2N . (3.33)

Consequently, any state Γ generated by applying a transformation S to the vacuum

state can be calculated simply as Γ = S S†.

Thermal states are mixed states. However, when the temperature of the system

drops to zero, we end with the vacuum state, which is a pure state. The purity µρ

of a Gaussian state ρ̂ can be determined in terms of the covariance matrix as

N

λ−1µρ = √ 1
=

∏
. (3.34)

det(Γ)
k

k=1

3.7.3 Coherent State

The coherent state |α⟩ can be obtained by applying the Weyl displacement op-
ˆerator Dk(α) to the vacuum state,

†−α∗|α⟩ = D̂k(α) |0⟩ = eαâk âk |0⟩ , (3.35)

where α ∈ C and the Weyl displacement operator is an operator generated from

a linear Hamiltonian. Coherent states are eigenstates of the annihilation operator

âk |α⟩ = α |α⟩. In the Heisenberg picture, the annihilation operator gets transformed
as â → â + α. Coherent states constitute an overcomplete basis for the Hilbert

space since they are non-orthogonal states. In terms of the Fock basis, they can be

expanded as
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∞∑
− 1 |α|2 αn

|α⟩ = e 2 √ |n⟩ . (3.36)
n!

n=0

Coherent states are usually described as being the states that most closely re-

semble the behaviour of a classical harmonic oscillator. The expectation values of

the position and momentum operators in a coherent state follow the dynamics of the

classical harmonic oscillator. Furthermore, coherent states minimize the Heisenberg

uncertainty principle in a balanced way:√
ℏ ℏ

∆x̂ = ∆p̂ = ⇒ ∆x̂∆p̂ = . (3.37)
2 2

Physical realizations of coherent states can be found in the light emitted from

lasers and in the ground state of Bose-Einstein condensates, superconductors and

superfuids, which can be approximated by coherent states.

In Phase space, a coherent state is represented by

dα = (α, α
∗)T , Γα = I2N . (3.38)

3.7.4 Squeezed State

Squeezed states |sk⟩ are obtained by applying the squeezing operator to the
vacuum state. The squeezing operator can be classifed into two categories: single-

mode squeezing and two-mode squeezing. In the single-mode case, the squeezing

operator is given by

ˆk − r ˆ†2−â2)S1-sq = e 2
(a , (3.39)

where r ∈ R is known as the squeezing parameter. The two-mode squeezing operator
is introduced in Appendix A. The single-mode squeezed vacuum state is obtained

as

|s1-sq⟩ = Ŝ1-sq
k |0⟩ . (3.40)

The squeezing operators are generated from quadratic Hamiltonians of the form
ˆ†Ĥ ∝ (â†)2 + h.c. in the single-mode case and Ĥ ∝ â†b + h.c. in the two-mode case.

In the Heisenberg picture, the annihilation operator transforms as â→ (cosh r)â−
(sinh r)â†. In Hilbert space, the single-mode squeezed state in terms of the Fock
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basis can be expressed as

∞ √∑1 (2n)!
|s1-sq⟩ = √ (tanh r)n |2n⟩ . (3.41)

2nn!cosh r
n=0

Squeezed states, like coherent states, minimize the Heisenberg uncertainty prin-

ciple. However, the uncertainties for the canonical conjugated variables are not

balanced, that is, ∆x ̸= ∆p; rather, they follow√ √
ℏ ℏ ℏ

∆x̂ = e−r, ∆p̂ = er, ⇒ ∆x̂∆p̂ = . (3.42)
2 2 2

This implies that in squeezed states, the uncertainty of one of the canonical variables

is reduced at the expense of increasing the uncertainty of the other.

The asymmetry of the uncertainties has been conveniently applied to enhance

the measurement precision in diferent experiments. For instance, it has been used

in the LIGO experiment for gravitational wave detection [6] and in spin-squeezed

states of light to improve the precision of atomic clocks [50, 51].

The two-mode squeezed state is the paradigmatic example of entanglement for

Gaussian states and, generally, for continuous-variable quantum systems. This state

can be produced, for example, using non-linear optical crystals via a process known

as parametric down-conversion. Squeezed states have also been achieved on phonon

states in crystal lattices, spin states in neutral atom ensembles, and ion traps.

In Phase space, the frst moment of the state vanishes d1-sq = 0. Consequently,

the state is completely characterized by its covariance matrix⎛ ⎞⎝ cosh 2sk − sinh 2sk
Γ1-sq = ⎠ . (3.43)

− sinh 2sk cosh 2sk

3.7.5 Mode-mixed State

The mode-mixed state arises in the context of multi-mode systems, where at least

two modes are necessary. It is created by the mode-mixing transformation, which is

also famously known as a beam splitter. This transformation is the simplest example

of an interferometer. The transformation is defned by

ˆ†ˆ (θ) = eθ(â
†b̂−âb )B , (3.44)

where θ ∈ R is a parameter that characterizes the transmissivity τ of the beam
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splitter. The transmissivity is defned as τ = cos2 θ ∈ [0, 1], and we say that the
beam splitter is balanced when τ = 1/2. In the Heisenberg picture, the annihilation

operators â and b̂ are transformed as⎛ ⎞ ⎛ ⎞⎛ ⎞√ √
ˆ τ 1− τ ˆ⎝a ⎝a⎠→ ⎝ ⎠ ⎠ . (3.45)√ √ˆ ˆb 1− τ τ b

Before concluding the chapter, two interesting remarks can be made. Firstly,

for Gaussian states, measurements are straightforward to implement in practice and

typically yield precisions close to the optimized bound. Furthermore, the states

themselves can be easily produced in any quantum optics laboratory through op-

tical operations (e.g. coherent states and thermal states or squeezed operations or

mode-mixing operations) and have shown to be experimentally convenient when

working with bosonic felds [38]. The second remark is that phononic excitations in

a BEC can be used for various purposes in analogy to photons, particularly for quan-

tum metrology. For instance, see [18], where Gaussian states constructed with the

phonons of a BEC were employed to develop a strategy for measuring gravitational

waves.

To conclude, this chapter has introduced the covariance matrix formalism and

employed it to establish the description of Gaussian states and Gaussian transfor-

mations in Phase space, which represent the chapter’s core idea. To support this, we

briefy discussed the diferences between Hilbert space and Phase space and derived

the construction of Fock space, which is essential for generating Gaussian states.

Furthermore, we introduced symplectic geometry and Williamson’s theorem, two

crucial mathematical tools for a formal understanding of Gaussian states and Gaus-

sian transformations in Phase space. We ended by enlisting the basic Gaussian

states in terms of the covariance matrix formalism. In the next chapter, we intro-

duce quantum metrology and demonstrate how to implement this tool to Gaussian

states to estimate physical parameters driving the evolution of a quantum state.
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Chapter 4

Quantum Metrology for

Gaussian States

Science relies fundamentally on the measuring process. Without a clear under-

standing of measurements, experiments would not be possible, and science as we

know it would not exist. Metrology is the branch of science dedicated to the study

of measurements, and it plays a fundamental role in ensuring precision, reliability

and consistency across science. Its main objectives include defning measurement

units, establishing standardized methods for reproducing measurements, quantify-

ing measurement uncertainties and improving measuring techniques. By providing

a rigorous study of measurements, metrology establishes an essential link between

basic scientifc research and its practical application.

Quantum mechanics is essential for understanding the dynamics of small sys-

tems, like those at the scale of atoms and elementary particles. As systems become

smaller in size, more precise measurements are required to study their behaviour.

Quantum metrology is the area of physics that focuses on the practical measure-

ments of quantum systems1. In particular, it takes advantage of quantum efects to

facilitate more precise measurements.

A key component of quantum metrology is the quantum phenomenon of entan-

glement. In quantum mechanics, entangled particles exhibit stronger correlations

than those observed in classical systems. This phenomenon has driven the develop-

ment and improvement of high-precision technologies currently in use. Signifcant

examples include the use of entangled photons in optical coherence tomography for

1Do not confuse this with the ‘measurement problem’ in quantum mechanics.
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medical imaging [52], entangled atomic clouds for quantum-enhanced magnetometry

to measure magnetic felds [53], and squeezed states of light in the LIGO experi-

ment for gravitational wave detection [54]. By exploiting the unique properties of

quantum systems, quantum metrology has become one of the most promising areas

of technological development.

Since this thesis aims to propose a quantum tabletop experiment for measur-

ing a gravitational feld—or, more precisely, for estimating a physical parameter

characterizing a gravitational feld—quantum metrology is the appropriate feld of

study.

This chapter is organized as follows. Section 4.1 reviews the fundamental ideas

and concepts of quantum metrology. Following this, Section 4.2 introduces estima-

tion theory to establish the defnition of the quantum Cramér-Rao bound, which

quantifes the parameter estimation precision. In Section 4.3, the quantum Fisher

information for Gaussian states is presented using the covariance matrix formalism.

This quantity is crucial for evaluating the quantum Cramér-Rao bound. Section

4.4 describes the metrological schemes, which summarize the preparation and op-

timization of the estimation process. Finally, Section 4.5 discussed the progress of

quantum metrology when considering relativistic efects.

4.1 Quantum Metrology’s Overview

Quantum metrology focuses on studying high-resolution and high-sensitive mea-

surements of physical quantities using quantum theory, particularly exploiting quan-

tum entanglement and quantum squeezing. The main goal of this research feld is to

provide techniques that enable the precise estimation of physical parameters encoded

within a quantum state. By taking advantage of quantum resources, the application

of quantum metrology can outperform the precision and accuracy of measurements

performed with classical strategies [55, 56].

The study of quantum metrology can be broadly classifed into two main cate-

gories depending on the nature of the degrees of freedom of the quantum system:

discrete and continuous. In discrete-variable systems, the Hilbert space is fnite-

dimensional, and it is spanned by a discrete set of eigenstates. In this context,

quantum metrology focuses on discriminating between states using an appropriate

measurement basis. The paradigmatic example is the qubit, a two-level system

with two distinguishable states. In contrast, continuous-variable systems have an
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infnite-dimensional Hilbert space characterized by a continuous eigenbasis, with

the quantum harmonic oscillator being the classical example. In this case, quantum

metrology aims to estimate parameters encoded in a quantum state.

In the context of quantum metrology for continuous systems, estimation theory

provides the mathematical framework for studying parameter estimation [57, 58].

Estimation theory is the branch of statistics concerned with estimating the value

of a parameter based on the measurement of empirical data that contains random

components. The parameter in question characterizes the underlying physical state

of the system in such a way that its value infuences the measured data distribution.

In general, estimation theory can be divided into two classes: global and local.

Global estimation theory assumes no a priori knowledge about the data distribution

of the parameter’s possible values. Conversely, local estimation theory works under

the assumption that the parameter is approximately located around a certain value.

Assuming that a physical parameter is known to be localized around a cer-

tain approximate value, local estimation theory provides an optimal measurement

that helps us estimate the parameter in the shortest amount of time or with mini-

mal resources. The central fgure of merit when estimating an unknown parameter

corresponds to the quantum Cramér-Rao bound. This bound sets a limit on the

optimal measurement precision and is closely related to another important quantity,

the quantum Fisher information. In the next section, we provide a basic derivation

of these two quantities and elaborate on their physical interpretation.

4.2 Continuous-Variable Quantum Systems and Local

Estimation Theory

Consider a continuous-variable quantum system in a state represented by the

density matrix ρ̂ϵ, which depends on some real physical parameter ϵ. In order to

estimate ϵ, we conduct an experiment involving the measurement of an observable.

Each measurement yields an outcome x that depends on the value of ϵ. Due to

the presence of errors and uncertainties in the measurement process, the relation

between ϵ and the measurement outcome x is governed by an unknown probability

distribution p(ϵ|x).
Since we only have access to the measurement outcomes x, the experiment can

be modelled using the state of the system ρ̂ϵ and a positive operator-valued measure
ˆ(POVM) {Ex}, which characterizes the measurement process on the system.
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The Born rule establishes the connection between the measurement outcomes x

and the parameter ϵ as

[ ]
ˆp(x|ϵ) = Tr Exρ̂ϵ , (4.1)

ˆwhere the POVM {Ex} is defned as a set of positive semi-defnite operators satis-∫
fying the completeness relation dx Êx = Î, with Î denoting the identity operator.
The uncertainties of the measurement process are contained in the POVM, while

the uncertainties related to the state preparation are captured by ρ̂ϵ.

Through Bayes’ theorem, the conditional probability p(ϵ|x) representing the like-
lihood of having the value ϵ given the experimental data x, can be expressed as

p(x|ϵ)p(ϵ)
p(ϵ|x) = , (4.2)

p(x)

where p(ϵ) and p(x) are the unconditional probabilities of observing ϵ and x, respec-

tively, and are assumed to be known or that can be inferred.

To estimate the value of ϵ from the data x, an estimator T (x) is defned. This cor-

responds to a function that maps the measurement data into a value of ϵ. If the ex-

periment is repeated N times, resulting in the measurement outcomes (x1, . . . , xN ),

the estimator T acts as

T : (x1, . . . , xN ) ↦→ T (x1, . . . , xN ), (4.3)

mapping an N -tuple in RN to a real number. For a single measurement outcome x,

the mean value of the estimator is given by∫
⟨T ⟩ϵ = dx p(x|ϵ)T (x). (4.4)

An estimator is consistent if it asymptotically converges to the true value of ϵ as the

number of measurements N tends to infnity. The estimator is unbiased if ⟨T ⟩ϵ = ϵ,

that is, if its mean value coincides with the true value of the parameter [55]. For N

independent measurement outcomes, the mean value for any estimator reads∫
⟨T ⟩ϵ = dx1 . . . dxN p(x1|ϵ) . . . p(xN |ϵ)T (x1, . . . , xN ). (4.5)

A crucial quantity for the analysis of uncertainties in parameter estimation is

the Fisher information [59, 60], defned as

40



4.2. Continuous-Variable Quantum Systems and Local Estimation Theory

∫ ( )2 ∫ ( )2∂ 1 ∂
F (ϵ) ≡ dx p(x|ϵ) ln p(x|ϵ) = dx p(x|ϵ) . (4.6)

∂ϵ p(x|ϵ) ∂ϵ

The Fisher information F (ϵ) measures the amount of information that the experi-

mental setup reveals from the value of ϵ through the probability distribution p(x|ϵ).
ˆSince the experimental setup consists of the state ρ̂ϵ and the POVM {Ex}, the

Fisher information heavily depends on both the state of the system and the choice

of the measurement.

Given that F (ϵ) is proportional to the derivative with respect to ϵ of the outcome

probabilities p(x|ϵ), it quantifes the system’s response to changes in ϵ. Expressed
more intuitively, this means that bigger variations of the outcome probabilities imply

larger amounts of information extracted from the system. This is again discussed

at the end of this section.

To quantify the precision of the estimation process, the mean square error (MSE)

for the parameter ϵ is defned as:∫
⟨(∆ϵ)2⟩ ≡ dx (T (x)− ⟨T ⟩ϵ)

2 p(x|ϵ), (4.7)

where the joint probability distribution for independent measurements can be writ-

ten as

N∏
p(x|ϵ) = p(xi|ϵ), (4.8)

i=1

with x = (x1, . . . , xN ) representing a vector that collects the measurement outcomes.

A lower bound on the mean square error in estimating ϵ can be derived at this

point. The outcome corresponds to the Cramér-Rao bound [61]

⟨(∆ϵ)2⟩ ≥ 1
, (4.9)

NF (ϵ)

valid for any estimator given a fxed number N of independent measurements. This

bound defnes a fundamental limit to the minimal value of the error in estimating

ϵ. The formal derivation of this result can be found in [59, 60]. The precision in the

estimation improves when the Fisher information increases. Therefore, designing ex-

periments that maximize the Fisher information is crucial for an optimal parameter

estimation. This optimization involves the careful construction of quantum states
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ˆρ̂ϵ and the selection of appropriate observables through the POVM {Ex}.
Let us revisit the Fisher information. Previously, it was used to obtain the

Cramér-Rao bound, which sets a limit on the precision of estimating a parameter

by optimizing for all possible estimators. However, we can go a step further and

optimize F (ϵ) also for all possible measurements. The quantum Fisher information

FQ(ϵ) is then defned as the maximum of the classical Fisher information F (ϵ) over
ˆall possible POVM {Ex}

FQ(ϵ) = sup ˆ F (ϵ), (4.10){Ex}

where sup ˆ denotes the supremum over the set of all possible POVMs. By{Ex}
construction, the defnition ensures FQ(ϵ) ≥ F (ϵ). This leads to the defnition

of the quantum Cramér-Rao bound

⟨(∆ϵ)2⟩ ≥ 1
, (4.11)

NFQ(ϵ)

which states that, on average, the estimation for ϵ cannot be closer to its real

value than the inverse of the quantum Fisher information times the number of

measurements N performed. The quantum counterpart of the Cramér-Rao bound

establishes a lower bound to the precision of the estimation that is independent of

the measurement procedure as it is optimized for all quantum measurements [55, 62].

There is an alternative way to understand the quantum Cramér-Rao bound and

the quantum Fisher information that provides valuable insight into their physical

interpretation. Particularly, the quantum Fisher information is closely related to

the Bures distance ds2B, a measure that quantifes the distinguishability between

two quantum states ρ̂1 and ρ̂2. The Bures distance [63] is defned as[ √ ]
ds2B(ρ̂1, ρ̂2) = 2 1− F(ρ̂1, ρ̂2) , (4.12)

where F(ρ̂1, ρ̂2) denotes the Uhlman fdelity [64], given by(√√ )2√
F(ρ̂1, ρ̂2) = Tr ρ̂1 ρ̂2 ρ̂1 . (4.13)

The fdelity measures the overlap between two quantum states. For identical states

the overlap is perfect, F(ρ̂, ρ̂) = 1, and for orthogonal states the overlap is zero,

F(ρ̂, ρ̂⊥) = 0.
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Now consider the state ρ̂ϵ characterized by a parameter ϵ. If the parameter

undergoes an infnitesimal change dϵ, the distinguishability between the states ρ̂ϵ

and ρ̂ϵ+dϵ is related to the quantum Fisher information through [44, 55, 60, 65][ √ ]
8

FQ(ϵ) = 1− F(ρ̂ϵ+dϵ, ρ̂ϵ) . (4.14)
dϵ2

This equation reveals a connection between state distinguishability and parameter

estimation. The right-hand side quantifes the distance between the states ρ̂ϵ and

ρ̂ϵ+dϵ, while in the left-hand side the quantum Fisher information FQ(ϵ) is key to

determine the precision of estimating ϵ. Therefore, the more distinguishable the

states are under a small change in ϵ, the higher the quantum Fisher information

becomes, which means a better precision to estimate ϵ. This geometric perspective

reinforces the importance of optimizing the quantum states ρ̂ϵ to maximize the

Fisher information.

4.3 Quantum Fisher Information for Gaussian States

Quantum metrology can be conveniently applied to Gaussian states, resulting

in a powerful tool. In this section, we take advantage of the covariance matrix

formalism to express the quantum Fisher information in terms of the displacement

vector and the covariance matrix.

Notice from the previous section that the quantum Fisher information was writ-

ten in terms of the density matrix ρ̂. When restricting ourselves exclusively to

Gaussian states, the quantum state ρ̂ can be fully described by the displacement

vector d and the covariance matrix Γ. Therefore, the quantum Fisher information

can be re-expressed in terms of these two quantities. A careful derivation can be

found in [44, 66].

Consider a quantum system described by a Gaussian state with initial displace-

ment vector d0 and covariance matrix Γ0. Suppose the state undergoes an evolution

driven by a symplectic transformation S(ϵ) characterized by a parameter ϵ. The

change in the state will be described according to Eq. (3.23) as

d(ϵ) = S(ϵ)d0, Γ(ϵ) = S(ϵ)Γ0S
†(ϵ). (4.15)

The goal is to estimate the parameter ϵ encoded in the state by the transfor-

mation S(ϵ). For a single-parameter estimation of a multi-mode pure state, the
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quantum Fisher information is given by [44]

N∑
̇ †FQ(ϵ) = 2Re[Qkl

∗ (ϵ)Qkl(ϵ)] + 2d (ϵ)Γ
−1(ϵ)ḋ(ϵ) , (4.16)

k,l=1

where N is the number of modes of the state, Re[·] denotes the real part of the
argument and the matrix Q is defned through

P (ϵ) = S−1(ϵ)∂ϵS(ϵ), (4.17)

where ∂ϵ denotes partial diferentiation with respect to ϵ. The matrix P (ϵ) naturally

follows the algebra (3.25) of the symplectic group,⎛ ⎞⎝ R Q
P = ⎠ , PK +KP † = 0, (4.18)

Q∗ R∗

where K corresponds to the symplectic form. Equation (4.16) will play a central

role in Chapter 6 to determine the precision to estimate gravitational parameters.

In more general cases, we can account for the thermal efects. In particular, we

can consider a special class of thermal states, the isothermal states, whose symplectic

eigenvalues are all identical, λ1 = . . . = λN = λ.2

The single-parameter estimation for a multi-mode isothermal state undergoing

the same symplectic transformation S(ϵ), the quantum Fisher information general-

izes to [67, 68] [( )2]
̇ †1 λ2

FQ(ϵ) = Tr Γ(ϵ)−1Γ̇(ϵ) + 2d (ϵ)Γ−1(ϵ)ḋ(ϵ) , (4.19)
2 1 + λ2

where the dot represents the derivative with respect to ϵ, and λ is the symplectic

eigenvalue of the isothermal state. This expression is particularly relevant consid-

ering that, strictly speaking, it is impossible to generate a perfect vacuum state

and, likewise, to generate perfect pure states where the thermal component is non-

negligible.

Nonetheless, studies such as [69], which explores the efects of fnite tempera-

ture in a BEC-based gravitational wave detector very similar to the proposal in

this thesis, indicate that the thermal contributions have a negligible impact on the

measurement precision, showing the robustness of the BEC-based detector.

2Recall that the symplectic eigenvalues were previously defned in equation (3.29).
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It is worth highlighting that implementing the covariance matrix formalism in

quantum metrology has some advantages from the mathematical perspective. First,

the density matrix of Gaussian states is usually written as a Taylor series in opera-

tors. In the covariance matrix formalism, states are represented only by one vector

and one matrix. Another advantage arises when considering a subsystem, as there

is no need to take infnite-dimensional traces over all the quantum states. The ir-

relevant modes can be traced out from the covariance matrix by simply removing

their rows and columns.

4.4 Metrological Schemes

One of the most promising applications of quantum metrology lies in the de-

velopment of quantum technologies. In the previous sections, we established how

quantum metrology provides a method to determine the precision with which a

parameter can be measured when it is not a direct observable of the system. In

this section, we describe a systematic scheme for implementing quantum metrology.

The main strategy for implementing quantum metrology focuses on fnding optimal

initial states and selecting optimal measurements that maximize the precision of

parameter estimation [70].

The estimation process comprises a number of steps, starting with the selection

and preparation of a convenient initial state for the quantum system, often called

the probe state. The probe state should be selected according to how sensitive it is

to variations of the unknown parameter ϵ. Next, ϵ gets encoded into the probe state

by a unitary transformation, which physically corresponds to the interaction of the

probe state with an external system driving the transformation. The information

about ϵ is then extracted by an appropriately chosen POVM. Finally, an estimator

processes the complete sequence of measurement outcomes to estimate the value of

the parameter. This procedure is known as the metrological scheme.

Figure 4.1 provides a schematic representation of the metrological scheme, which

can be summarized as follows:

1) Selection and preparation of the probe state ρ̂0.

2) Encoding of ϵ into ρ̂0 through the transformation Û(ϵ) representing the inter-

action of the probe with an external system, yielding the state ρ̂ϵ.
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3) Extraction of the parameter information by selecting a suitable measurement

basis given by a POVM.

4) Estimation of the parameter based on the measurement outcomes {xi} after
N independent measurements.

Figure 4.1: Metrological Scheme for the Parameter Estimation Procedure. The
probe state is prepared in a state ρ̂0. Then, the probe state undergoes an evolution
driven by a transformation Û(ϵ) that encodes the parameter ϵ. The resulting state
ρ̂ϵ gets measured by a POVM that generates an outcome xi. After N independent
measurements, an estimator maps the outcomes to an estimation for the value of ϵ.

This procedure applies to any quantum system described by a probe state ρ̂0

undergoing any unitary transformation Û(ϵ). In the case of Gaussian states, the

probe state is fully described by the pair (d0,Γ0), and the parameter ϵ gets encoded

by the symplectic transformation S(ϵ). The resulting state to be measured is given

by (d(ϵ),Γ(ϵ)).

From the metrological scheme, it follows that quantum metrology focuses on

undertaking three main duties to optimize the parameter estimation process. The

frst is to identify an optimal probe state that is the most sensitive to the changes

induced by Û(ϵ), meaning that it maximizes the quantum Fisher information. The

second task is to select optimal measurements that ensure the classical Fisher infor-

mation from the measurement saturates the quantum Fisher information, therefore

minimizing the mean squared estimation error. The third and fnal task is to choose

an appropriate estimator that most efectively generates an estimate for the real

value of ϵ.
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Before concluding this section, let us discuss the scaling limits associated with

the estimation precision ∆ϵ derived from the quantum Crámer-Rao bound.

Consider N identical copies of the state ρ̂ϵ, which depends on the unknown

parameter ϵ. Let’s assume that the state is associated with a single-particle sys-

tem. Then, performing N independent measurements of the state is equivalent to

performing a single measurement of a collection of N classically correlated (non-

entangled) particles in the state ρ̂ϵ. By the central limit theorem, the precision of√
the parameter estimation scales as ∆ϵ ∝ 1/ N . This statistical bound is known as

the standard quantum limit [70].

However, this limit can be improved by considering quantum efects. If the col-

lection ofN particles is entangled, the central limit theorem does not apply anymore,

and the precision of the parameter estimation scales as ∆ϵ ∝ 1/N . This quantum-
enhanced limit is known as the Heisenberg limit and represents the ultimate limit

on the estimation precision.

Hence, the end goal of quantum metrology is to exploit quantum efects, such

as entanglement, to outperform classical methods and achieve the Heisenberg limit,

which is the optimal scaling rate for estimation precision given the energy stored in

a probe state.

4.5 Relativistic Quantum Metrology

Quantum metrology has been successfully applied to design quantum technology

for high-precision measurements. However, typical setups do not consider the efects

of relativity on quantum properties, which is surprising given the fruitful eforts to

combine quantum and relativistic theories.

The prime example is the standard model of particles, formulated in terms of

quantum feld theory, which is a quantum theory that incorporates special relativity.

Another successful instance comes from the study of quantum feld theory in curved

spacetime for predicting particular efects such as Hawking radiation [25, 26] or the

cosmological particle creation [27, 28].

One of the most compelling ideas and recent achievements is the application of

quantum metrology to quantum feld theory. As quantum metrology provides the

limits on the precision for estimating a parameter, it can be employed to validate

predictions in quantum feld theory within curved spacetime and to demonstrate

whether measuring spacetime parameters is achievable with current and future tech-

47



4.5. Relativistic Quantum Metrology

nology.

In this spirit, quantum metrology has recently seen a wide range of theoretical

applications that consider relativistic efects, thereby establishing the feld of rela-

tivistic quantum metrology. A particular relativistic framework for quantum metrol-

ogy has been developed by applying metrology techniques to estimate parameters of

quantum felds that undergo relativistic transformations [4]. These techniques can

be applied to estimate spacetime parameters such as proper times, gravitational feld

strengths, accelerations or small perturbations induced by changes in the spacetime

curvature.

Among the progress made, we can highlight the study of entanglement and

its generation due to either gravity or non-inertial motion [7], the development

of relativistic quantum accelerometers [4], the study of the precision of quantum

clocks [71], the determination of relativistic parameters such as the Schwarzschild

radius [72] or the development of a gravitational wave detector using Bose-Einstein

condensates [18].

In conclusion, this chapter has presented the material required to understand

the fgure of merit in quantum metrology: the quantum Crámer-Rao bound, which

establishes the precision for estimating a physical parameter. To achieve this, a

review of local estimation theory was required. The quantum Fisher information,

essential for evaluating the quantum Crámer-Rao bound, was introduced using the

covariance matrix formalism. Later, we discussed the concept of a metrological

scheme and its importance in establishing and optimizing the estimation process

of a physical parameter. Therefore, implementing the material presented in this

chapter will allow us to link the idea of parameter estimation to a system such as

the BEC.

In the next chapter, a comprehensive study of the physics of Bose-Einstein con-

densates is presented. This represents the fnal piece needed before establishing how

to employ the phonons in the BEC to measure gravity, which will be the focus of

Chapter 6.
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Chapter 5

Bose-Einstein Condensate

A Bose-Einstein condensate (BEC) is a special state of matter that emerges when

a low-density gas of bosonic particles is cooled down to temperatures close to the

absolute zero of temperature. Under these conditions, a large fraction of the bosons

transition into their lowest-energy state, so the gas of bosons is collectively taken

into the same quantum state. In consequence, quantum efects not only determine

the system’s dynamics at the microscopic scale but also determine its macroscopic

behaviour.

Bose-Einstein condensation difers notably from more familiar states of matter

such as gases, liquids and solids. One way to gain some intuition behind the Bose-

Einstein condensation is by illustrating some of these diferences. For instance, the
−3typical atomic density at the centre of a BEC is about 1013–1015 cm . In contrast,

the molecular density of air at room temperature and atmospheric pressure is of the
−3order of 1019 cm , while the atomic density in liquids and solids is approximately

−3 −31022 cm and the nuclear density in the atomic nuclei is around 1038 cm . The

extremely low densities of BECs imply that the temperature required to observe

quantum efects is of the order of 10−5 K or less. In comparison, quantum phe-

nomena manifest below the Fermi temperature for the electrons in metals, which

normally corresponds to 104–105 K, and below the Debye temperature for phonons

in solids, which is typically around 102 K. For liquid helium, quantum efects arise

below 1 K temperatures, while for atomic nuclei they arise for temperatures about

1011 K.

From the experimental perspective, clouds of cold atomic gases represent a highly

convenient venue for studying quantum phenomena. First, BECs can be appropri-
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ately described using mean-feld theory as a frst approximation because almost all

the atoms in the system occupy the same quantum state. Second, the interactions

within a BEC, which play a fundamental role by giving rise to the collective phenom-

ena, can be experimentally fne-tuned by using diferent atomic species, exploiting

the Feshbach resonances, or modifying the strength of the magnetic or electric trap-

ping felds. Finally, given the low densities of the system, the microscopic structure

of the condensate can be directly probed by optical methods [73].

The original idea behind Bose-Einstein condensation dates back to 1924 when

S. N. Bose published a work dedicated to the statistical description of photons

[74]. A year later, based on Bose’s paper, A. Einstein predicted that a gas of non-

interacting bosonic atoms would undergo a phase transition below a specifc critical

temperature. Due to the bosonic quantum statistics, the atoms would condense to

the lowest energy state [75].

Over the next decades, Einstein’s prediction remained experimentally unex-

plored. However, during that time, important theoretical contributions surrounding

his idea were developed. In 1938, F. London conjectured that Bose-Einstein con-

densation was the mechanism responsible for the superfuidity in 4He [76]. Later,

in 1941, L. Landau was responsible for developing the theory of superfuids [77].

In 1947, N. Bogoliubov conceived the frst microscopic theory of weakly inter-

acting Bose gases based on the Bose-Einstein condensation concept [78]. In the

1950s, the concept of nondiagonal long-range order was introduced, revealing how

Bose-Einstein condensation could give rise to quantum coherence over macroscopic

distances [79, 80, 81]. In 1961, the Gross-Pitaevskii equation was derived, which

describes the non-uniform weakly interacting Bose gas [82, 83].

Experimental research on dilute atomic gases was generated much later. Leverag-

ing the technical progress in atomic physics, the 1970s saw the development of mag-

netic and optical trapping techniques and progress in cooling mechanisms. In the

1980s, further improvement was reached in laser-based techniques, such as magneto-

optical trapping and laser cooling, to control neutral atoms. These eforts culmi-

nated in 1995, when the frst gaseous BECs were successfully produced. First, E.

Cornell and C. Wieman achieved Bose-Einstein condensation by cooling a gas of
87Rb atoms down to 170 nK [84]. Shortly after, W. Ketterle produced a BEC using
23Na atoms [85]. For their groundbreaking achievements, they were awarded the

2001 Nobel Prize in Physics. Since then, BECs have been produced using numer-

ous atomic species and, interestingly, other bosonic constituents such as photons,

50



5.1. The Ideal Bose Gas

molecules, polaritons and other quasi-particles.

In this chapter, we provide a thorough overview of the theoretical framework be-

hind Bose-Einstein condensation, following closely the treatment found in Pitaevskii

& Stingari’s textbook [86]. The structure of the chapter is as follows:

Section 5.1 starts by presenting the ideal Bose gas, which captures some of the

fundamental properties of Bose-Einstein condensation, such as the appearence of a

phase transition. Next, Section 5.2 describes the weakly interacting Bose gas by

using the Bogoliubov theory from which the energy spectrum of the system can be

derived. Later, Section 5.3 considers the non-uniform Bose gas and introduces the

basic equation for describing a BEC, the Gross-Pitaevskii equation. Finally, Section

5.4 presents the description of the relativistic BEC in fat spacetime in analogy

to the one presented for the non-relativistic BEC. At the end of the section, the

Newtonian limit of the relativistic BEC is taken to ensure the consistency between

both approaches.

5.1 The Ideal Bose Gas

The ideal Bose gas represents the simplest example of Bose-Einstein conden-

sation, describing a uniform, non-interacting gas of bosonic particles. By studying

this model, one can correctly predict important characteristic properties of an actual

BEC, including the appearance of a critical temperature determining the condensa-

tion of the bosonic gas. This section provides the quantum statistical description of

the Bose gas using the grand canonical ensemble.

The grand canonical ensemble represents the possible states for a collection of

particles in thermodynamic equilibrium with a reservoir that can exchange both

energy and particles. In this ensemble, the probability of fnding a state composed
′of N particles, each in a state |k⟩ with energy Ek is

β(µN ′−Ek)PN ′(Ek) = e , (5.1)

where β = 1/kBT , kB is the Boltzmann constant, and µ corresponds to the chemical

potential of the reservoir in thermal equilibrium with the system.

In statistical mechanics, the description of the system can be completely deter-

mined by knowing the partition function of the ensemble. For the present case, the

grand canonical partition function is given by
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5.1. The Ideal Bose Gas

∑∞ ∑ ∑ ′
∞ ∑

βµN −βEkZ(β, µ) = PN ′(Ek) = e e , (5.2)
N ′=0 k N ′=0 k∑

where the sum k ranges over a complete set of eigenstates of the Hamiltonian with

eigenenergy Ek. The thermodynamic variables of the grand canonical ensemble are

the chemical potential µ and the temperature T . Other variables, like the volume

or the oscillation frequency of a harmonic trap, may be involved in the system only

through the eigenenergies of the Hamiltonian.

From the grand canonical partition function, we can defne the grand canonical

potential,

Ω = −kBT lnZ , (5.3)

from which we can straightforwardly calculate the thermodynamical properties of

the system, such as the entropy, the average energy or the average pressure. For

example, the total number of particles can be expressed as

∂Ω
N = − . (5.4)

∂µ

Let us consider the Hamiltonian of the ideal gas, described by a collection of

non-interacting single particles,

∑
ˆ (1)Ĥ = H , (5.5)i

i

where the eigenstates |k⟩ are defned by the set {ni} of microscopic occupation
numbers ni of the single-particle states, which can be obtained from solving the

Schrödinger equation

ˆ (1)H φi(⃗r) = εiφi(⃗r). (5.6)i

In the Fock representation (see Chapter 3.2), the many-body eigenstate of the Hamil-

tonian is

† †|k⟩ = (â )n0 (â )n1 . . . |0⟩ , (5.7)0 1

†where âi and âi are the creation and annihilation operators for to the i-th single-
†particle state, satisfying bosonic commutation relations [âi, â ] = δij and [âi, âj ] =j
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5.1. The Ideal Bose Gas

† †[âi , â ] = 0. The vacuum is defned as âi |0⟩ = 0 .j

Under fxed energy and particle number, the system can be depicted as a gaseous

system ofN ′ non-interacting indistinguishable particles confned to a volume V , with

total energy Ek. However, in the grand canonical ensemble, the number of particles

and the energy are not constant but are constrained by the following conditions

∑ ∑
′N = ni, Ek = niεi. (5.8)

i i

By inserting these conditions into the grand canonical partition function (5.2) and
′summing over all possible values of N , we obtain

∏∑
β(µ−εi)niZ(T, µ) = e , (5.9)

i ni

where the sum extends over ni = 0, 1, 2, . . . for the case of bosonic particles
1.

Using the grand canonical partition function, the total number of particles (5.4)

can be evaluated via the grand canonical potential, which yields

∑ ∑1
N = ≡ n̄i , (5.10)

β(εi−µ) − 1e
i i

where n̄i is defned as the average occupation number of the single-particle state

with eigenenergy εi. This result implies an important constraint for the chemical
ˆ (1)potential, bounding it from above as µ < ε0 by the lowest eigenvalue of H .

Breaking this inequality would generate unphysical states with a negative occupation

number and energy smaller than µ.

The total number of particles can be separated into the ground-state and excited-

state contributions:

∑
N = n̄0 + n̄i ≡ N0 +NT , (5.11)

i̸=0

with

∞∑1 1
N0(T, µ) = , NT (T, µ) = . (5.12)

β(ε0−µ) − 1 β(εi−µ) − 1e e
i=1

1For fermionic particles, the sum is limited to n = 0, 1 by the Pauli exclusion principle.
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5.1. The Ideal Bose Gas

In the limit when µ → ε0, the number of particles in the lowest-energy state N0

grows arbitrarily large, while the number of particles in the exited statesNT becomes

increasingly smaller.

Precisely, this limit determines the mechanism at the origin of the Bose-Einstein

condensation. We can identify N0 as the number of condensed particles, that is, the

number of particles in the ground state. Meanwhile, NT corresponds to the number

of exited particles, i.e., the particles out of the condensate, which is also called the

thermal component of the gas [86].

Considering a fxed value T for the temperature, Figure 5.1 illustrates the be-

haviour of N0 and NT as a function of the chemical potential. The actual value of

µ is fxed by the normalization condition N = N0 +NT . First, notice that N0 is of

order 1 except when µ gets closer to ε0, where N0 diverges. In contrast, NT has a

smooth behaviour as a function of µ and reaches its maximum, Nc, when µ = ε0.

Figure 5.1: Ideal Gas Model. The number of condensed particles N0 (dashed line)
and the number of particles out of the condensate NT (solid line) as a function of
the chemical potential µ for a fxed temperature T . In the limit µ→ ε0, N0 diverges
and NT reaches a constant value NT (T, ε0) = Nc.

Since Nc is an increasing function of the temperature, Nc(T ) = NT (T, ε0), we

can always look for a temperature in which Nc > N is satisfed. Let us defne the

critical temperature Tc at which

NT (Tc, ε0) = N. (5.13)

For T > Tc, the condition Nc > N is satisfed and implies that µ remains below ε0,
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5.1. The Ideal Bose Gas

meaning that the ground-state occupation N0 is negligible in comparison to N . In

contrast, for T < Tc, the condition Nc < N is followed, the value of µ approaches

ε0, and the contribution of N0 becomes dominant.

Therefore, the critical temperature Tc locates the threshold that determines the

occurrence of the phase transition originating the phenomenon of the Bose-Einstein

condensation.

The Ideal Bose Gas in a Box

Let us consider an ideal Bose gas confned to a box of volume V . In this case,

the single particle Hamiltonian of the system takes the free particle form

ˆ (1) p2
H = . (5.14)

2m

The eigenstates φ of the system, considering the boundary condition φ(x, y, z) =

φ(x+ L, y, z) for L = V 1/3, correspond to plane wave solutions

1 −ip·r/ℏφp = √ e , (5.15)
V

with energy ϵ = p2/2m and the momentum p = 2πℏn/L, where the components
of the vector n correspond to integer numbers. The chemical potential must be

negative since the lowest energy state has eigenvalue ϵ0 = 0.

The number of excited particles NT can be evaluated by making the replace-∑ ∫
ment → V/(2πh3) dp in equation (5.12). Using the change of variablep

p2 = 2mkBTx, we get

∑ 1 V βµ),NT = = g3/2(e (5.16)
β(p2/2m−µ) − 1 λ3e Tp̸=0

where the thermal wavelength λT is given by√
2πℏ2

λT = , (5.17)
mkBT

and ∫ ∞1 1
g3/2(z) = x1/2dx (5.18)

Γ(3/2) z−1ex − 10

is a special case of the Bose functions, where Γ(s) is the factorial function (s− 1)!.
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5.2. Weakly Interacting Bose Gas

Notice that the number of excited atoms NT is independent of the total number

of atoms in the gas but depends on the volume V of confnement. This is an

important fact, implying that if we add more atoms to the system, then the number

of condensed atoms N0 will increase, but the number of excited atoms will remain

the same. This saturation property predicted by the ideal Bose gas trapped in a

box has been experimentally confrmed and is also present in the case of harmonic

trappings [86].

To derive the critical temperature Tc, the condition (5.13) is used, yielding( )2/32πℏ2 n
kBTc = , (5.19)

m g3/2(1)

which is completely determined by the particle density n = N/V and the mass of

the particles of the Bose gas. The critical temperature predicted by the ideal Bose

gas model provides valuable experimental guidance for reaching the Bose-Einstein

condensation in the laboratory.

5.2 Weakly Interacting Bose Gas

While the ideal Bose gas model successfully captures some of the properties of

Bose-Einstein condensation, such as the appearance of a purely quantum-statistical

phase transition, it importantly neglects the interactions between particles. In re-

ality, particle interactions are always present, even for very dilute samples where

interactions are weak. Therefore, even in the weak interaction limit, interactions

play an essential role in the system’s dynamics, being responsible for the collective

behaviour exhibited in BECs.

The theoretical framework used to describe the weakly interacting Bose gas is

given by the Bogoliubov theory [78], and it represents the modern approach to

studying the Bose-Einstein condensation in dilute gases. Established in 1947 by

N. Bogoliubov, the theory allowed the calculation of the excitation spectrum and

the thermodynamic properties of the weakly interacting Bose gas. This section is

dedicated to presenting the basic construction behind the Bogoliubov theory.

5.2.1 Dilute Gases

In a dilute gas, the range r0 of interatomic forces is much smaller than the

average distance d between particles. Consequently, particles only interact when
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5.2. Weakly Interacting Bose Gas

their distance is of the order of r0, which is rarely the case. Then, the condition

r0 ≪ d, (5.20)

constitutes the defning requirement for a dilute gas. This approximation allows us

to consider exclusively interactions between pairs of particles while safely neglecting

the rest of the interactions. The large separation between pairs of particles also

justifes using an asymptotic expression for the two-particle wave function, which is

fxed by the scattering amplitude.

In addition, the temperature T of the dilute gas is assumed to be low enough that

the particle’s momentum distribution for the thermal components p2/2m ∼ kBT

remains much smaller than the particle’s characteristic momentum pc = ℏ/r0. This
yields the condition

ℏ2
T ≪ , (5.21)22mkBr0

where m is the mass of the particles. Similarly, this condition implies that pr0/ℏ≪
1. At such momenta, the scattering amplitude becomes independent of the particle

energy and the scattering angle. Then, in accordance with the standard scattering

theory, the scattering amplitude is completely determined by the s-wave scattering

length as. This means that a single parameter, the scattering length, characterizes

the efects of the interactions on the properties of the gas.

In terms of the scattering length, the requirement for dilute and weakly inter-

acting gases can be expressed as

−1/3|as| ≪ n , (5.22)

where n = N/V is the density of the gas, N is total number of particles and V is the

gas volume. Satisfying this inequality ensures that the Bogoliubov theory remains

valid.

5.2.2 Bogoliubov Theory

The Hamiltonian describing a cloud of bosonic particles is given by∫ ( ) ∫
ℏ2 ˆ † 1 ˆ † ˆ †′ ′

Ĥ = ∇Ψ ∇Ψ̂ dr + Ψ Ψ U(r′ − r)Ψ̂Ψ̂ dr′dr, (5.23)
2m 2

ˆ ′where Ψ corresponds to the quantum feld operator, U(r − r) is the two-body
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5.2. Weakly Interacting Bose Gas

interaction potential and m is the mass of the particles. The frst term corresponds

to the kinetic energy of the particles, and the second term represents the two-particle

interactions, where any external potentials have been left out for the moment.

Considering a uniform gas of volume V , the feld operators can be written as a

plane-wave expansion

∑ 1 ip·r/ℏΨ̂(r) = âp√ e , (5.24)
Vp

where âp and âp are, respectively, the annihilation and creation operators associated

with the single-particle state of a plane wave with momentum p. The operators
†satisfy the commutation relations [âp, âp′ ] = δpp′ .

′If we explicitly consider the potential U(r − r), solving the many-body

Schrodinger equation at the microscopic level represents an arduous challenge. How-

ever, for a sufciently dilute and cold gas, it can be concluded that the precise func-

tional form of the two-particle interaction potential is not required to describe the

macroscopic properties of the system as far as the potential reproduces the correct

value for the scattering length.

Thus, to implement the many-body formalism, we replace the microscopic po-
′tential U(r − r) with an efective, soft potential Uef(r). Since the macroscopic

properties of the system depend only on the scattering length, this method will

represent an appropriate approach to the many-body problem as far as we restrict

ourselves to the study of the macroscopic behaviour. Then, we defne the efective

two-particle interaction potential as ∫
U0 = Uef(r)dr. (5.25)

Inserting the plane wave expansion and the efective potential into (5.23), the

Hamiltonian acquires the form

∑ 2 ∑p 1ˆ ˆ† † †H = apâp + U0 âp1+qâp2−qâp1 âp2 . (5.26)
2m 2V

p p1,p2,q

Bogoliubov Approximation

A crucial step in the Bogoliubov theory is the implementation of the so-called Bogoli-

ubov approximation. The approximation is equivalent to assuming the macroscopic
ˆoccupation of the ground state of the feld operator Ψ, which consequently gets
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treated as a classical feld. In practice, it consists of making the replacement of the

operator â0 with a complex number:

√
â0 → N0. (5.27)

The physical meaning of this strategy can be understood more clearly by explicitly

rewriting the feld operator expansion

⎛ ⎞ ⎛ ⎞∑ √ ∑1 1ip·r/ℏ ip·r/ℏΨ̂(r) = √ ⎝â0 + âpe ⎠ ≈ √ ⎝ N0 + âpe ⎠ .
V V

p̸ p̸=0 =0

The substitution of the ground state operator â0 with the square root of the to-

tal number of condensed particles N0 refects the macroscopical occupation of the

ground state. The substitution is justifed when the ground-state occupation number

N0 is very large because losing or gaining one particle, N0− 1 or N0+1, represents
a negligible fuctuation for the dynamics of the system.

By neglecting the quantum fuctuations of the macroscopically populated ground

state, the frst term of the Ψ̂(r) expansion loses its quantum nature, and the Bo-

goliubov approximation implies that a classical mean-feld ψ(r) will describe the

condensed fraction of particles of the Bose gas, whereas the non-condensed, excited

fraction of particles of the Bose gas will keep being described by a quantum feld
ˆoperator δψ

Ψ̂(r) = ψ(r) + δψ̂(r), (5.28)

where it is assumed by construction that δψ̂ corresponds to a small perturbation.

The Bogoliubov approximation represents an accurate approach for soft poten-

tials whose perturbations remain small at all distances. It will represent a poor

description at short length scales of the same order as the interatomic forces r0 and

smaller than the average distance d between particles, where the potential is strong

and quantum correlations become relevant.
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5.2. Weakly Interacting Bose Gas

5.2.3 Zeroth-Order Approximation

Ground-State Energy

In the ideal gas, when the temperature goes down to T = 0, all the particles

are condensed and N = N0. By contrast, in a dilute Bose gas, the occupation

number of the excited states (p ̸= 0) is fnite but small at T = 0. Therefore, to a
zeroth order approximation, one can neglect in the Hamiltonian (5.26) all the terms

proportional to â†p and âp for p ≠ 0. In this case, given that N0 ∼ N , one can make√
the substitution â0 → N .

At the same order of approximation, the efective two-particle interaction poten-

tial U0 (5.25) can be written in terms of the scattering length by applying the Born

approximation, which yields

4πℏ2as
U0 = . (5.29)

m

The Born approximation assumes that the scattering process with a potential does

not signifcantly modify the total wave function or feld of the system. Let us

introduce the interaction coupling constant

4πℏ2as
g = , (5.30)

m

which captures the role of the interactions through the scattering length as. Under

the taken approximations, the ground-state energy becomes

1
E0 = Nng, (5.31)

2

where n is the density of the gas. The expressions obtained for the ground-state

energy E0 and the coupling constant g are valid for arbitrary interactions, as dis-

cussed in the previous section, as long as the potential reproduces the correct value

for the scattering length. However, the result (5.29) for the efective potential U0

holds as long as the frst-order Born approximation is valid.

Thermodynamic Equation of State

Unlike the ideal gas, whose pressure vanishes when the temperature drops down

to T = 0 when it is confned to a box potential, the weakly interacting Bose gas

possesses a nonzero pressure:
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∂E0 gn2
P = − = . (5.32)

∂V 2

From this, one can evaluate the compressibility of the gas, ∂n/∂P . By invoking the

hydrodynamic relation,

∂n 1
=

2
, (5.33)

∂P mcs

the sound velocity cs, which is an important parameter that characterizes the dy-

namics of the gas, is obtained to be √
gn

cs = . (5.34)
m

The thermodynamic stability of the system requires the compressibility to be posi-

tive. This imposes that the scattering length must be positive, i.e., as > 0. There-

fore, the Bose-Einstein condensation for a dilute uniform gas is only possible for

positive values of the scattering length.

Finally, the chemical potential can be calculated via µ = ∂E0/∂N . In terms of

the sound velocity, the chemical potential reads

µ = mc2. (5.35)s

This result is valid for diluted Bose gases. The relation between µ and the sound

velocity, for a temperature T = 0, is dictated by the formula mc2 = n∂µ/∂n.

5.2.4 Second-Order Approximation

In the Hamiltonian (5.26), the frst-order approximation is missing because there

are no terms containing only one particle operator, âp or â
† . This fact is consistentp

with the momentum conservation principle. Otherwise, the appearance of these

terms would imply that the Hamiltonian creates or annihilates a particle without

conserving the energy of the system.

Moving to the second-order approximation, we retain in the Hamiltonian all the

quadratic terms in the particle operators. Separating the ground-state operators â0
†and â from the excited-states operators a and â† (p ̸= 0), yields0 ˆp p
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∑ 2 ∑p U0 † † U0 † † † †Ĥ = âp
† âp + â0â0â0â0 + (4â0âp

† â0âp + âp
† â−pâ0â0 + â0â0âpâ−p).2m 2V 2V

p p=0̸
(5.36)

Next, the Bogoliubov approximation is again invoked. In the third term of the

Hamiltonian, we can safely replace â0 and â
† with

√
N . However, in the second0

term, the approximation should be taken with higher accuracy, which is achieved

by considering the normalization relation

∑† ˆ†â0â0 + apâp = N. (5.37)
p̸=0

Also the potential U0 has to be considered beyond the lowest-order Born approx-

imation. This correction to U0 can be incorporated using high-order perturbation

theory, which reads [87] ⎛ ⎞∑
U0 = g⎝1 + g m⎠ , (5.38)

V p2
p̸=0

where the relation of g with respect to the scattering length is still given by (5.30).

Substituting the normalization relation and the efective two-particle interaction

potential U0 into (5.36), we get that

∑ 2 ∑( )
ˆ 1 p

ˆ†
1

ˆ† ˆ† †H = gnN + a âp + gn 2a âp + a â + âpâ−p , (5.39)p p p −p2 2m 2
p p=0̸

which, interestingly, is uniquely fxed by the coupling constant g. Reading the terms

in the Hamiltonian, the frst one is a constant term that does not contribute to the

dynamics, the second term corresponds to the kinetic energy of the particles, and the

third one describes the two-particle interactions. Within the interaction term, the

frst sub-term represents the self-energy interaction of the excited states; the other

two sub-terms represent, respectively, the simultaneous creation and annihilation of

excited states of momenta p and −p.
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Diagonalized Hamiltonian and the Bogoliubov Transformation

The Hamiltonian, being quadratic in the particle operators, can be diagonalized

via a Bogoliubov transformation

ˆ ∗ ˆ† ˆ† ∗ˆ† ˆâp = upbp + v−pb−p, ap = upbp + v−pb−p, (5.40)

ˆ ˆ†which introduces a new set of quantum operators bp and bp satisfying bosonic com-

ˆ ˆ†mutation relations [bp, b ′ ] = δpp′ . The parameters up and vp correspond to complexp

coefcients constrained by the condition

|up|2 − |v−p|2 = 1, (5.41)

which guarantees that the commutation relations are satisfed. The condition implies

that the coefcients have the form

up = coshαp, vp = sinhαp. (5.42)

The parameter αp is selected accordingly to cancel the of-diagonal terms of the

Hamiltonian.

After applying the Bogoliubov transformation and determining the coefcients

up and vp, one obtains the diagonalized form of the Hamiltonian:

∑
ˆ†Ĥ = E0 + ϵ(p)b b̂p, (5.43)p

p̸=0

where [ ]
N2 ∑ 21 p m(gn)2

= g + ϵ(p)− gn− + , (5.44)E0 22V 2 2m p
p̸=0

is the higher-order approximation of the ground-state energy and√ ( )22

ϵ(p) =
gn
p2 +

p
, (5.45)

m 2m

is the Bogoliubov dispersion relation for the system’s elementary excitations gener-
ˆ ˆ†ated by the operators bp and b . The explicit form of the coefcients up and vp isp

given by
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√
p2/2m+ gn 1

up, vp = ± ± . (5.46)
2ϵ(p) 2

The conclusions that can be extracted from equations (5.43)-(5.45) carry a deep

physical meaning. The original system consisting of a gas of weakly interacting

particles, associated with the operators âp and âp
† , has an equivalent description in

terms of a system of non-interacting quasi-particles, with creation and annihilation
ˆ ˆ†operators bp and bp, of energy ϵ(p).

Following the Bogoliubov transformation (5.40), in this picture, a real particle

âp
† , e.g. the atoms composing the Bose gas, is described as the mode superposition of

∗ˆ†the forward propagating quasi-particles upbp and the backward propagating quasi-

particles u−pb̂−p.

The ground state of the weakly interacting Bose gas at T = 0, now corresponds

to the vacuum state for the Bogoliubov quasi-particles:

b̂p |0⟩ = 0 for p ̸= 0. (5.47)

Finally, it is worth discussing the experimental validity of the ground states de-

scribed by equations (5.31) and (5.44). In general, the ground state of most physical

systems that present interactions through interatomic potentials corresponds to a

solid rather than a gas. In these systems, the gas phase is a metastable confgura-

tion, and it is expected that three-body collisions will eventually take the system

into the solid confguration. The Bogoliubov theory presented in this section is valid

only for those metastable phases, which may compromise its utility. However, ex-

periments conducted for multiple atomic species have proven that the quantum gas

phase remains stable for a sufciently long time, allowing systematic measurements

to confrm the predictions of the Bogoliubov theory.

5.2.5 Particles and Elementary Excitations

Let us recall the dispersion relation (5.45) followed by the gas of non-interacting

quasi-particles. Analysing its behaviour under diferent momentum regimes ofers

valuable insight into how the system transitions from collective to single-particle

excitations.

For low momenta p≪ mcs, the dispersion relation reduce to a linear form
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ϵ(p) = csp, (5.48)

indicating that the quasi-particles behave as phonons. Therefore, the Bogoliubov

theory predicts that for a weakly interacting Bose gas, the low-momentum (long-

wavelength) excitations are described by travelling sound waves with speed cs. In
∗this regime, the Bogoliubov coefcients satisfy |u | ≃ |v−p| ≫ 1, so the Bogoliubovp

transformation becomes approximately

ˆ† ˆ† ˆap ∼ up(bp + b−p).

Conversely, in the high-momenta (short-wavelength) limit, p≫ mcs, the disper-

sion relation approaches the free particle behaviour

2p
ϵ(p) ≈ + gn, (5.49)

2m

∗and the coefcients satisfy |u | ≃ 1 and |v−p| ≃ 0. Thus, a quasi-particle b̂
†
becomesp p

indistinguishable from a real particle â† , implyingp

ˆ†â†p ∼ bp.

The transition between the phonon regime and the particle regime takes place

roughly when the kinetic energy p2/2m matches the interaction energy gn. Setting

p2/2m = gn and writing p = ℏ/ξ, we can defne the so-called healing length

1 ℏ
ξ = √ , (5.50)

2mcs

that defnes the characteristic interaction length of the weakly interacting bosonic

gas, which also can be interpreted as the shortest distance over which the wave

function changes.

The thermodynamic behaviour of the system can be derived by analogously

following the steps taken for the ideal gas. The energy of the elementary excitations

is given by the dispersion relation (5.45). At sufciently low temperatures, where

the quasi-particles do not interact, the chemical potential for these excitations is

efectively equal to zero. From equation (5.10), the average occupation number Nb

of the quasi-particles of momentum p can be expressed as
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1ˆ†ˆNb = ⟨b bp⟩ = . (5.51)p βϵ(p) − 1e

This quantity should not be confused with the average occupation number of real

particles Na = ⟨â†pâp⟩, for p ̸= 0, which can be easily calculated via the Bogoliubov
transformation relating the particles and the excitations. This yields the useful

relation

ˆ†ˆ ˆ† ˆNa = |v−p|2 + |up|2 ⟨bpbp⟩+ |v−p|2 ⟨b−pb−p⟩ . (5.52)

Validity of Bogoliubov Theory

To conclude Section 5.2, let us briefy review the applicability of the Bogoliubov

theory presented here. The fundamental assumption is that most of the atoms in

the gas are condensed, that is, N0 ≈ N . This clearly follows for low temperatures.

For temperatures of the order of the chemical potential, the condensate depletion
−1/3is also small, which is guaranteed by the diluteness condition, |as| ≪ n . This

condition also represents a fundamental requirement that must be fulflled. Finally,

provided that the temperature of the system lies below the critical temperature,
2 2T ≪ Tc, both the phonon regime kBT ≪ mc and the particle regime kBT ≫ mcs s

are compatible with the Bogoliubov procedure.

5.3 Non-Uniform Bose Gas

The development of the theory for non-uniform dilute Bose gases is crucial for at

least two reasons. First, the experimental realization of Bose-Einstein condensation

almost always involves the presence of external trapping potentials—the most com-

mon of which is the harmonic or quadratic trap—that normally produce spatially

inhomogeneous systems. Second, non-uniformity is the source of new quantum

phenomena and efects that are absent in uniform gases. The theoretical frame-

work used to study non-uniform condensates is well-suited for both stationary and

non-stationary confgurations, allowing the research of a diverse class of physical

problems.
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5.3.1 Gross-Pitaevskii Equation

To study the non-uniform interacting gas, the Bogoliubov theory must be gen-

eralized. One of the key ideas of the theory is to divide the feld operator of the gas

into two terms: the condensed fraction and the excited fraction, as established by

(5.28). This separation remains valid for non-uniform gases. At low temperatures

and to the lowest-order approximation, the Bogoliubov approximation is performed

by replacing the operator Ψ̂(r, t) with the classical feld Ψ0(r, t), which will be

called the order parameter and corresponds to the wave function of the condensate.

This replacement is analogous to the transition from quantum electrodynamics to

classical electromagnetism, and it is justifed by the presence of a large number of

particles in a single state, e.g., a large number of atoms in the ground state of an

atomic gas.

However, we have not yet specifed the equation of motion that describes the

system. This equation can be derived in the Heisenberg picture by employing the

Heisenberg equation iℏ ∂tΨ̂(r, t) = [Ψ̂(r, t), Ĥ]. Using the Hamiltonian (5.23) and
the commutation relations for the feld operator, we obtain

( ∫ )
ˆ † ′ ′ ′iℏ

∂
Ψ̂(r, t) = −ℏ2∇2

+ Vext(r, t) + Ψ (r , t′)U(r′ − r)Ψ̂(r , t)dr Ψ̂(r, t).
∂t 2m

(5.53)

Following the arguments used in the previous section for the uniform Bose gas,

we are allowed to make the replacement Ψ̂(r, t) → Ψ0(r, t) as long as an efective

soft potential Uef is used and the Born approximation is applicable. By assuming

that the function Ψ0(r, t) varies slowly at distances of the order of the interatomic
′force, one can set r to be approximately equal to r in the integrand, yielding the

Gross-Pitaevskii (GP) equation:( )
∂ ℏ2∇2

iℏ Ψ0(r, t) = − + Vext(r, t) + g|Ψ0(r, t)|2 Ψ0(r, t), (5.54)
∂t 2m

where ∫
g = Vext(r)dr,

is the interaction coupling constant. This equation represents the main theoretical

tool for studying non-uniform dilute Bose gases at low temperatures. One of the
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main features of the equation is its non-linearity. The expression (5.30) for the

interaction coupling constant can be recovered by expressing the integral of Vext(r)

in terms of the scattering length as,

4πℏ2as
g = . (5.55)

m

In analogy with the discussion in the previous section, equations (5.54) and (5.55)

are valid for arbitrary forces, not being restricted by the use of soft potentials. The

energy of the system is obtained to be∫ ( )
E =

ℏ2 |∇Ψ|2 + Vext(r)|Ψ|2 +
g |Ψ|4 dr. (5.56)

2m 2

It was mentioned that the feld operator Ψ̂ and the order parameter Ψ0 play an

analogous role in relation to the quantum electrodynamics to classical electrodynam-

ics transition. Unlike Maxwell equations, the Gross-Pitaevskii equation explicitly

contains ℏ. The reason for this diference lies in the fact that the photon’s classi-
cal dispersion relation, ω = ck, does not depend on ℏ, while the atomic dispersion
relation, ω = ℏk2/2m, is ℏ-dependent. The presence of ℏ implies the presence of
coherent phenomena like interference.

Another feature from (5.54) is its nonlinearity due to the particle interactions.

Thus, the Gross-Pitaevskii equation is helpful for studying coherence and interaction

efects, making the physics of Bose-Einstein condensation a rich feld for theoretical

and experimental research.

It is important to establish the conditions of applicability of the GP equation.

1. Large particle number. The condensate must contain many atoms, allowing

Ψ̂ to be approximated by the classical feld Ψ0.

−1/32. Diluteness. The diluteness condition, |as| ≪ n , must be satisfed to keep

the particle collisions weak.

3. Low temperatures. Both quantum and thermal depletion of the condensate

must remain low. In practice, T ≪ Tc ensures the system is mostly condensed.

4. Length Scale. Efects involving distances smaller than the scattering length

as lie outside the applicability of the GP equation.

Under these requirements, the density of the condensed particles |Ψ0(r)|2 coin-
cides with the total density of the gas n(r), which impies the normalization condition
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∫
|Ψ0|2dr = N. (5.57)

Stationary Gross-Pitaevskii equation

The Gross-Pitaevskii equation takes a simple form in the case of stationary

solutions. When the external potential Vext(r, t) does not depend on time, one can

look for stationary solutions of the form

−iµt/ℏΨ0(r, t) = Ψ0(r)e . (5.58)

The temporal dependence is determined by the chemical potential, which can be

calculated via

∂E
µ = . (5.59)

∂N

Substituting the ansatz (5.58) into the GP equation, one obtains its time-

independent version known as the stationary Gross-Pitaevskii equation( )
ℏ2∇2− + Vext(r) + g|Ψ0(r)|2 Ψ0(r) = µΨ0(r), (5.60)
2m ∫

where the value of µ gets fxed by the normalization condition |Ψ0|2dr = N . For

a uniform gas in the absence of an external potential, the chemical potential of the

ideal gas gets recovered µ = g|Ψ0|2 = gn.

5.3.2 Small-Amplitude Perturbations

The Gross-Pitaevskii equation admits an important family of time-dependent

solutions constructed from small-amplitude perturbations around the stationary

confguration of the system. Here, the spatial and temporal changes of the order

parameter are assumed to be small with respect to the stationary solutions, and the

new solutions obtained refect the collective behaviour of the interacting Bose gases.

The small-amplitude perturbations can be interpreted as elementary excitations, or

pseudo-particles, of the system, whose behaviour can admit both a classical or a

quantum description. In this subsection, we focus on the quantum case.

Let Ψ0 be a stationary solution of the Gross-Pitaevskii equation with chemical

potential µ. We consider small deviations from Ψ0 by writing the feld operator as
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iµt/ℏΨ̂(r, t) = [Ψ0(r) + ϑ̂(r, t)]e , (5.61)

where ϑ̂(r, t) is a small quantum perturbation. This perturbation can be expanded

as an infnite sum of elementary modes or excitations

∑
−iωit ∗ ˆ† iωit].ϑ̂(r, t) = [ui(r)b̂ie + vi (r)bie (5.62)

i

Here, the index i labels the discrete modes, ωi is the oscillation frequency of the
ˆ† ˆperturbation and the opertors b and b respectively create and annihilate the i-i i

th elementary excitation. The operators satisfy the bosonic commutation relations

[b̂i, b̂j
†
] = δij . The complex functions ui(r) and vi(r) are determined by solving the

Gross-Pitaevskii equation in the linear limit.

Inserting (5.61) into the Gross-Pitaevskii equation and keeping the terms up to

the frst order in ϑ̂ yields the pair of coupled diferential equations known as the

Bogoliubov-de Gennes (BdG) equations:

ℏωiui(r) = [Ĥ0 − µ+ 2gn(r)]ui(r) + g[Ψ0(r)]2vi(r),

−ℏωivi(r) = [Ĥ0 − µ+ 2gn(r)]vi(r) + g[Ψ0(r)]2ui(r), (5.63)

where

ℏ2∇2
Ĥ0 = + Vext(r). (5.64)

2m

ˆThe operator H0 represents the single-particle Hamiltonian free of particle interac-

tions, and n(r) = |Ψ0(r)|2 is the condensate density where the term gn(r) in the

BdG equations arises from the interactions in the mean-feld approximation.

The solutions of the Bogoliubov-de Gennes equations determine the eigenfre-

quencies ωi and the amplitudes ui and vi of the normal modes of the system gen-
ˆ† ˆerated by the operators b and bi. In general, the solutions must be computedi

numerically. However, analytic expressions exist for collective oscillations around

the ground state of the uniform gas.

For a pair of mode functions (ui, vi) representing a normal mode of the system

associated with an elementary perturbation, the orthonormalization condition of the

solutions is given by
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∫
∗ ∗[ui (r)uj(r)− vi (r)uj(r)]dr = δij . (5.65)

This concludes the review of the study of Bose-Einstein condensation as consid-

ered in the standard setting of a laboratory on Earth, which we will also refer to as

the non-relativistic BEC. The next section focuses on generalising this phenomenon

to a relativistic setting, where the constituents of the BEC are considered to have a

relativistic nature; for instance, we can consider a Bose gas of relativistic particles.

5.4 The Relativistic Bose-Einstein Condensate in

Spacetime

One can consider the phenomenon of Bose-Einstein condensation not only for

non-relativistic bosons but also for their relativistic counterpart. The relativistic

description of a BEC moving over a general spacetime metric has been achieved.

The foundational work behind the development of the relativistic BEC can be found

in [88], where the Bogoliubov theory was successfully applied to a quantum feld in

fat spacetime. Later, the generalization to curved spacetime was accomplished by

the authors in [89].

We are interested in describing a BEC located on a general spacetime metric to

investigate the behaviour of its quantum perturbations in curved spacetime and take

advantage of their dynamics to estimate physical parameters containing information

about the spacetime, such as the strength of the gravitational feld or any parameter

characterizing its curvature. Since BECs are extremely small compared to the scales

found in the theory of relativity, one may think that the infuence of spacetime on

the dynamics of the BEC is too small to be detected. Interestingly, amplifcation

efects produced by the slow propagation of excitations on the BEC make the efects,

in principle, observable [18].

This relativistic formalism will not be implemented in this work. Nevertheless,

the aim is to didactically prepare the stage for generalizing the ideas presented in

this thesis for gravity exploration using BECs in a relativistic setting, which is more

natural for gravity. Furthermore, we want to encourage research in this direction,

both from the theoretical and experimental perspective, by demonstrating the po-

tential and versatility of this proposal. If the reader is not interested in exploring

this direction, this section can be safely skipped to continue reading Chapter 6.
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The relativistic Bose-Einstein condensate (RBEC) presents signifcant diferences

from the non-relativistic BEC. For example, we can highlight the appearance of a

diferent energy spectrum for the perturbations or the presence of relativistic bosons

and anti-bosons.

This section is organized as follows. In Section 5.4.1, the RBEC in fat spacetime

is examined through an analogous analysis to that of the non-relativistic BEC.

First, the ideal Bose gas case is studied to then consider weak interactions between

the particles of the Bose gas. By applying the Bogoliubov approximation to the

weakly interacting Bose gas while considering small-amplitude perturbations, we

derive the equation of motion for the condensate and the perturbations in Section

5.4.2. Section 5.4.3 obtains the perturbation’s dispersion relation and analyses the

high-momentum and low-momentum limiting cases, with the latter subdividing into

gapped and gapless excitations. Section 5.4.4 considers the gapless-excitation case

to analyse the phonon dynamics, fnding out that they evolve over an efective

metric, which is denoted as the acoustic metric. Finally, Section 5.4.5 takes the

Newtonian limit of the RBEC to demonstrate consistency between the relativistic

and non-relativistic BECs and to show how modifcations of general relativity could

be inherited at the Newtonian level.

5.4.1 Condensate’s Non-Linear Klein-Gordon Equation

We begin by considering the Lagrangian density describing an interacting rela-
µtivistic scalar Bose feld Φ̂(xµ) with coordinates x = (t,x) in fat spacetime,

( )ˆ † ˆ 2 21 ∂Φ ∂Φ m cL̂ = −∇Φ̂† · ∇Φ̂− + Vext(x
µ) Φ̂

†
Φ̂− U(Φ̂†Φ̂;λi), (5.66)

c2 ∂t ∂t ℏ2

where m corresponds to the mass of the bosons, V (xµ) is an external potential, and

U is a self-interaction with coupling constants λi(x
µ), which can be expanded as

ˆ † λ2 ˆ † λ3 ˆ †U(Φ Φ̂;λi) = (Φ Φ̂)2 + (Φ Φ̂)3 + · · · . (5.67)
2 6

The frst term of the expansion corresponds to the two-particle interaction with

coupling constant λ2, the second one is the three-particle interaction with coupling

constant λ3, and so forth.

Since the Lagrangian density is invariant under global phases, corresponding to
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a global U(1) symmetry, there exists an associated Noether charge and current that
¯are conserved. The frst corresponds to the quantity N −N , denoting the diference

¯between the number of bosons N and the number of anti-bosons N , which will

appear later.

Ideal Bose Gas

In the ideal Bose gas, the interaction term U and the external potential V vanish.

For an ideal gas of temperature T and chemical potential µ, we have

∑
¯N −N = [nk(T, µ)− n̄k(T, µ)], (5.68)

k

with nk and n̄k respectively denoting the average number of bosons and anti-bosons

in the state of energy |Ek|,

1 1
nk(T, µ) = , n̄k(T, µ) = , (5.69)

β(|Ek|−µ) − 1 β(|Ek|+µ) − 1e e

2 2 4where β = 1/kBT and E2 = ℏ2k2c + m c . Defning the number density n =k

(N − N̄)/Ω, where Ω is the volume of the gas, the relation between the critical

temperature Tc and the density n is∫ ∞1 sinh(βcmc
2)

n = k2dk, (5.70)
4π3/2Γ(3/2) cosh(βc|Ek|)− cosh(βcmc2)0

where Γ(z) is the factorial function (z − 1)! and βc := β(Tc). In the non-relativistic
2limit, kBT ≪ mc , the contribution of the anti-bosons can be neglected, and we

recover the relation (5.19) for the critical temperature for the non-relativistic BEC.

Bogoliubov Approximation

In the low-temperature regime T ≪ Tc, where most relativistic bosons transition

into the ground state and Bose-Einstein condensation is realised, the feld can be

approximated using a classical mean-feld by making the substitution Φ̂→ Φ, in an

analogous fashion as performed in (5.54). The classical mean-feld Φ is regarded as

the order parameter, or wave function, describing the dynamics of the condensate.

The equation of motion for Φ̂ can be derived using the Euler-Lagrange equation

∂L ∂L ∂ ∂L−∇ − = 0, (5.71)
∂Φ ∂(∇Φ) ∂t ∂Φ̇
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where the dot represents derivation with respect to the time coordinate t. Intro-

ducing the d’Alembert operator in fat spacetime □ = ηµν∂µ∂ν , the dynamics of the

system is given by the non-linear Klein-Gordon equation( )
2 2m c

□Φ−
ℏ2

+ V (xµ) Φ− U ′(ρ;λi)Φ = 0, (5.72)

′where ρ = Φ∗Φ corresponds to the density of the condensate, and the prime

denotes derivation with respect to ρ. In the non-relativistic limit c→∞, the Gross-
Pitaevskii equation (5.54) is recovered.

5.4.2 Small-Amplitude Perturbations

Similar to the small-amplitude perturbations analysis carried out for the non-

relativistic BEC in Section 5.3.2, we can study the behaviour followed by quantum

perturbations around the condensate’s wave function Φ. In a similar spirit to (5.28),

we decompose the feld operator Φ̂ as the classical mean-feld Φ describing the con-

densate plus a perturbation of quantum nature:

Φ̂ = Φ(1 + ϑ̂). (5.73)

For convenience, the Mandelung representation for the complex mean-feld ϕ is

adopted. In this representation, Φ is factorized into two real felds corresponding to√
its modulus ρ(xµ) and its phase θ(xµ),

√
Φ = ρeiθ. (5.74)

Additionally, the following quantities are defned:

µ ℏ
u = ηµν∂νθ, (5.75a)

m
ℏ22 ′′(ρ;λi),c =
2
ρU (5.75b)0 2m

ℏ2 ℏ2
[□+ ηµν∂µ ηµν∂µTρ = (ln ρ ∂ν)] = − (ρ∂ν), (5.75c)

2m 2mρ

µwhere u is a four-velocity vector related to the conserved current jµ = ρmuµ/ℏ
associated with the U(1) symmetry, c0 indicates the RBEC’s self-interaction strength

and has units of velocity, and Tρ is the generalized kinetic operator which reduces

to the standard kinetic operator −ℏ2∇2/2m in the non-relativistic limit.

74



5.4. The Relativistic Bose-Einstein Condensate in Spacetime

Condensate’s Equation of Motion

To derive the equations of motion of the system, consisting of the condensate

and the quantum perturbations, the decomposition (5.73) and the Madelung rep-

resentation are implemented in the non-linear Klein-Gordon equation. Then, the

condensate’s classical wave function evolves according to( )
2 21 √ m c 1′√ ρ− ∂µθ∂µθ − + V − U + i ∂µ(ρ∂

µθ) = 0. (5.76)
ρ ℏ2 ρ

Further implementing the quantities defned in (5.75), the equations of motion of

the condensate read

∂µ(ρu
µ) = 0, (5.77a)[ ]

ℏ2 □
√
ρ

− uµuµ = c2 +
2
V (xµ) + U ′(ρ;λi)− √ . (5.77b)

m ρ

The frst equation corresponds to the continuity equation, establishing the conser-

vation of the current jµ. In analogy with the Gross-Pitaevskii equation, the second

equation determines the chemical potential of the condensate, which corresponds to

the temporal component of the four-velocity uµ.

Perturbation’s Equation of Motion

The equation of motion governing the quantum perturbations, considering the

Madelung representation, is obtained to be( )
1

□ϑ̂+ 2ηµν ∂µ ln ρ+ i∂µθ ∂ν ϑ̂− ρU ′′(ρ;λi)(ϑ̂+ ϑ̂
†
) = 0. (5.78)

2

Using the defnitions (5.75), the equation for the perturbations of a relativistic BEC

can be expressed as

( )
2iℏuµ∂µ − Tρ −mc0 ϑ̂ = mc0 ϑ̂

†
. (5.79)

ˆ†This equation involves two perturbation associated feld operators, ϑ̂ and ϑ . Taking

its Hermitian conjugate, we can eliminate one of the felds and get a single equation
ˆfor the other, thus obtaining for ϑ[ ]

1 ℏ2
ηµν∂µ ˆ(iℏuµ∂µ + Tρ) (−iℏuµ∂µ + Tρ)− ρ ∂ν ϑ = 0. (5.80)2c ρ0
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This equation describes the propagation of linearized perturbations over the rela-

tivistic condensate, whose description is given by (5.77), and it represents a gener-

alization to the equations obtained in Section 5.3.2 for the non-relativistic BEC. An

important fact to remark on is that the information of (5.80) is contained in (5.79),

but the opposite implication is not true.

5.4.3 Dispersion Relation

The dispersion relation characterizing the propagation of the RBEC’s pertur-

bations carries important physical insight for understanding their behaviour. For

the derivation of the dispersion relation, let us assume that the speed of the fuid

in the RBEC u, the chemical potential µ, the density of the RBEC ρ and the

self-interaction strength c0 are constant both in space and in time. For simplic-

ity, consider the case when the background fuid is at rest, u = 0. Under these

assumptions, Eq. (5.80) is reduced to[( )( ) ]
0 0u ℏ u ℏ 2 ˆi ∂t − □ −i ∂t − □ − c □ ϑ = 0. (5.81)0c 2m c 2m

The equation can be solved analytically by making the ansatz

−iωt+ik·xϑ̂(t,x) = e , (5.82)

using Fourier modes, which yields

( )( )
0 0 ( )2u ℏ ℏ u ℏ ℏ c0 2ω − ω2 + k2 − ω − ω2 + k2 − ω2 + c0k

2 = 0,
2 2c 2mc 2m c 2mc 2m c

(5.83)

whose solution is fulflled for

⎧ ⎫⎨ ( )2 [ ( )2] ( )√ ( )2 [ ( )2]2⎬0 0 0mu c0 2mu mu c02ω±
2 = c k2 + 2 1 + ± k2 + 1 + .⎩ ℏ u0 ℏ ℏ u0 ⎭

(5.84)

This equation establishes the dispersion relation describing the perturbation prop-

agation in an RBEC and generalizes the Bogoliubov dispersion relation (5.45) from

the non-relativistic BEC.
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Associated with the RBEC dispersion relation, diferent regimes for the pertur-

bations can be found. This depends on the relative strength of the frst two terms

in (5.84), the second of them being absent for the non-relativistic BEC case. Below,

a brief overview of the dispersion relation regimes is presented, to later focus, in the

next subsection, on the one relevant to this work. The complete overview of the

regimes is summarized in Table 5.1. For convenience, we introduce the dimensionless

parameter

( )2
b :=

c0
0

, (5.85)
u

0 µwhere temporal component u of the four-velocity u determines the rate of the

passage of time.

Low-Momentum Regime

The low momentum limit of the dispersion relation is characterized by,

0mu|k| ≪ (1 + b). (5.86)
ℏ

Making a Taylor expansion of (5.84) for small k, up to the fourth order, the disper-

sion relation takes the form

[ ]( )2 ( )2mu0 k2 ℏ k4
ω2 2
± ≈ c k2 + 2(1± 1) (1 + b)±  . (5.87)

0ℏ 1 + b mu 4(1 + b)3

From this expression, several cases bifurcate, which can be broadly separated into

two types of perturbations: gapless excitations and gapped excitations. Let us

analyse these cases.

Gapless Excitations.

Let us focus on the branch associated with the negative sign ω−, for which the

dispersion relation is reduced to[ ]( )2b ℏ 1
ω2 2 k2 k4− ≈ c + . (5.88)

01 + b mu 4(1 + b)3

In this case, the perturbations correspond to massless quasi-particles. Notice that

the dispersion relation has the same functional form as the Bogoliubov dispersion

relation (5.45) of the non-relativistic BEC. A further sub-regime can be obtained by
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RBEC’s Dispersion Relation{ })√( )2 ( ( )20 0 0mu mu muω2 2= c k2 + 2 (1 + b)± 2 k2 + (1 + b)2± ℏ ℏ ℏ

High Momentum Regime
0◦ Condition: |k| ≫ mu

ℏ (1 + b)
⇓

2k2Massless feld propagating at c : ω2 = c±

Low Momentum Regime
0◦ Condition: |k| ≪ mu

ℏ (1 + b) (∗)
⇓{ }( )20 ( )2mu k2 ℏ k4ω2 2

± ≈ c k2 + 2(1± 1) (1 + b)±  ℏ 1+b 0mu 4(1+b)3

Gapless Excitations Gapped Excitations{ }( )2b ℏ 1ω2 2 k2− ≈ c +1+b 0mu 4(1+b)3
k4

[ ]( )2
2 ℏNRL: ω2 k2 k4− ≈ c +0 2mc0

{ ( )20mu 2+bω2 2≈ c 4(1 + b) + k2+ ℏ 1+b}( )2ℏ 1+ 0mu 4(1+b)3
k4

Only allowed case: k2 ≫ k4

⇓
ω2 2 4 2≈ m /ℏ2 + c k2+ efcs,gap s,gap

Sub-regimes Sub-regimes

Phononic (IR) Particle (UV) b≪ 1

⇓
2 4m cs,gapω2 ef≈+ ℏ2

Non-relativistic

massive particle

b≫ 1

⇓
2 4m

ω2 efcs,gap≈+ ℏ2
2+c k2s,gap

2(1+b) ℏ|k|√ ≪ 0 ,1+b mu

ℏ|k|
1+b≫

mu0

⇓
ω2 2≈c k2+ s,gap

◦ Condition:
|k| ≪ 2mc0 (1 + b)ℏ
Always compatible

with (∗)

◦ Condition:
|k| ≫ 2mc0 (1 + b)ℏ

Compatible with (∗) if:
0mc0 ≪ |k| ≪ mu

ℏ ℏ
b≫ 1

⇓
ω2 2≈c k2− s

NRL:

2 2cs→c0

b≪ 1

⇓
ω2 2≈c k2− 0

Already in

NRL

b≫ 1

⇓
Not

compatible

b≪ 1

⇓
(ℏk)2ℏω−=
2µ/c2

NRL:

ℏ2k2ℏω−= 2m

Vanishes at NRL

Non-Relativistic Limit (NRL) ◦ Conditions: 1) c→∞ ⇔ u0 → c, 2) b≪ 1 ⇔ c0 ≪ c.

Table 5.1: Dispersion Relation Diagram. The dispersion relation of an RBEC is
schematically summarized. First, the two main regimes, the high-momentum and
low-momentum regimes, are displayed along with their defning conditions. Then,
in the low momentum regime, the excitations are divided into two diferent classes:
gapless and gapped excitations, each having sub-regimes depending on the behaviour
of b, where b = (c0/u

0)2.
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comparing the relative size of the k2 and k4 terms and studying the cases in which

one term dominates over the other and vice versa.

Phononic Regime (Infrared Relativistic).

The quadratic term k2 dominates whenever the condition

2mc0|k| ≪ (1 + b), (5.89)
ℏ

is satisfed, which is always compatible with the low-momentum condition (5.86).

In this limit, the dispersion relation matches that corresponding to phonon-like

perturbations

ω2 2k2= c , (5.90)− s

travelling at the speed of sound cs, defned by

(c c0/u
0)2 c2b

cs
2 := = . (5.91)

1 + (c0/u0)2 1 + b

In this case, the perturbations correspond to relativistic phonons.

To consider the non-relativistic limit, two conditions are required: frst, the

interactions must be weak and second, we must take the limit c→∞. Recall from
the defnition (5.75) that c0 indicates the self-interaction strength of the RBEC.

Thus, the frst condition requires that c0 ≪ c, which can be equivalently stated
0as b ≪ 1. The second condition can also be established by the limit u → c,

which implies that the BEC fows with a velocity u much smaller than the speed

of light (recall that the four-velocity follows the normalization ηµνu
µuν = −c2).

Therefore, in the non-relativistic limit, we have that cs → c0 and the dispersion

relation becomes

ω2 2= c0k
2, (5.92)−

corresponding to the phononic perturbations present in the non-relativistic BEC,

which matches (5.48). Notice that c0 corresponds to the speed of sound in the

non-relativistic BEC2. Generally, cs will difer from c0, coinciding only in the non-

relativistic limit.

This regime becomes relevant when describing the evolution of phononic pertur-

bations on an RBEC for low-energy gravitational settings and in trying to connect

2Denoted cs throughout Section 5.2.
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this theoretical framework to actual experiments. We will return to it in the next

subsection to derive the acoustic metric.

Particle Regime (Ultraviolet).

The opposite regime, where the k4 term dominates, is determined by the condition

2mc0|k| ≫ (1 + b), (5.93)
ℏ

which is compatible with the condition (5.86) only in the low-coupling case b ≪ 1.

These two conditions together can be summarized as

0mc0 mu≪ |k| ≪ , (5.94)
ℏ ℏ

yielding the dispersion relation

(ℏk)2
ℏω− = . (5.95)

2µ/c2

This implies that the perturbations correspond to massive relativistic particles with

an efective mass mu0/c = µ/c2, and coincides with the non-relativistic BEC’s

result indicating that decreasing the wavelength of the perturbation (or increasing

its momentum) puts in evidence the atomic structure of the condensate, e.g., see

(5.49).

In the non-relativistic limit, when u0 → c, we recover the dispersion relation

corresponding to particles of mass m

ℏ2k2
ℏω− = , (5.96)

2m

revealing the atomic structure in the non-relativistic BEC.

Gapped Excitations.

In the branch associated with the positive sign, the dispersion relation reads

[ ( )2 ( )2 ]
2 mu0 2 + b ℏ 1

ω+
2 ≈ c 4(1 + b) + k2 + k4 . (5.97)

ℏ 1 + b mu0 4(1 + b)3

Depending on the relative weight of the three terms appearing in the dispersion

relation, diferent cases for the perturbations arise. Concerning the k-dependent

terms, given that (5.86) is satisfed, the only allowed regime is when the k2 term

dominates over the k4 term. In such a limit, the dispersion relation simplifes as
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mef
2 cs,

4
gap 2ω2 =

ℏ2
+ c k2, (5.98)+ s,gap

where the speed cs,gap and the efective mass mef are defned as

02 + b (1 + b)3/2 u2cs,gap := c , mef := m. (5.99)
1 + b 2 + b c

In this case, the perturbations result in massive relativistic particles with an efective

mass propagating at a speed cs,gap. In the limit when b ≪ 1, the mass term domi-

nates the k2 term, and the perturbations become non-relativistic particles of mass

mef. In the opposite limit, b ≫ 1, both terms are of the same order of magnitude.

Finally, the k2 term dominates when

mu0 2(1 + b) mu0√ ≪ |k| ≪ (1 + b). (5.100)
ℏ 1 + b ℏ

Let us look closer at what happens in the b ≪ 1 limit. Since the mass term

dominates in this limit, assuming a comoving reference frame where u0 = c and that

b can be neglected, the frequency of the perturbations simplifes to ω+ ≈ ±2mc2/ℏ.
2A gap, ∆ℏω+ ≈ 2mc , arises between the energy levels involving a massive factor of

2m. This mass gap indicates that the lowest energy excitation of this mode requires

the creation of a boson–anti-boson pair. The presence of anti-bosons is one of the

main diferences compared to the non-relativistic BEC.

Finally, in the non-relativistic limit, the dispersion relation of the gapped pertur-

bations vanishes when taking the limit c→∞. This is because the energy required
to excite these modes is much larger than the typical energy scales found in non-

relativistic confgurations. Thus, boson–anti-boson pairs cannot be created, so the

modes cannot be excited.

High-Momentum Regime

The regime where the momenta is high arises when

0mu|k| ≫ (1 + b), (5.101)
ℏ

where it is straightforward to get that the dispersion relation is reduced to ω2 =±
2k2c . This corresponds to the standard dispersion relation of a massless feld travel-

ling at the speed of light c, where the energy of the perturbation has become much
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larger than the chemical potential of the RBEC.

5.4.4 Acoustic Metric

Since the aim is to describe the propagation of phonon-like perturbations in an

RBEC considered in a context close to an actual experiment, the gapless branch ω−

of the low-momentum regime is the appropriate case to consider. Following [88], the

propagation of phonons can be described as a quantum feld evolving over a fxed

curved spacetime background only in the case when the relativistic kinetic operator

Tρ can be neglected. This condition is the relativistic analogue of neglecting the

quantum pressure term in the Gross-Pitaevskii equation in a non-relativistic BEC,

as is done, for instance, when considering the Thomas-Fermi limit.

Neglecting the operator Tρ, similar to the non-relativistic BEC case, involves

making an eikonal approximation. This corresponds to the assumption that the

variation of all the background quantities with respect to space and time is small

compared to the scales set by the wavelength and the period of the perturbations,

respectively. The eikonal approximation mathematically states that⃓ ⃓ ⃓ ⃓ ⃓ ⃓⃓ ⃓ ⃓ ⃓ ⃓ ⃓∂t ρ ∂t c0 ∂t uµ⃓ ⃓ ⃓ ⃓ ⃓ ⃓⃓≪ ω−, ⃓≪ ω−, ⃓≪ ω−, (5.102)⃓ ⃓ ⃓ρ c0 uµ

in addition to the corresponding relations for the spatial variations. Also, recall

that the phononic regime of the gapless excitations requires conditions (5.86) and

(5.89) to be fulflled. Combining these assumptions, the equation describing the

perturbations, (5.80), simplifes to[ ]
ρ ν∂ν)− ηµν∂µuµ∂µ(u (ρ∂ν) ϑ̂ = 0. (5.103)2
0c

Using the continuity equation (5.77a), we notice that ρuµ is a conserved quantity in

the system. Thus, we can rewrite the previous equation as

(fµν∂ν)ϑ̂∂µ = 0, (5.104)

where
ρ

fµν µuν − ρηµν , (5.105):= u2
0c

can be identifed as the metric density fµν =
√
−ggµν associated with a metric gµν .

From the defnition of fµν , it can be obtained that
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[ ( ) ]
σρ uσu uµuν√ ηµν 1− , (5.106)+gµν = 2
0

2
01− uσuσ/c20 c c

where coordinates xµ = (ct,x) were used. Defning the four-velocity

c √
σvµ := uµ, with ∥u∥ = −uσu , (5.107)

∥u∥

the speed of sound cs, defned in (5.91), can be generalised to the case when the

spatial components of uµ are diferent from zero:

2 2
0/∥u∥2c c2 (5.108)c =s ,

22
0/∥u∥1 + c

which can be used to rewrite the metric as[ ( ) ]
vµvν

2c cs= ρ ηµν + 1− (5.109)gµν ,
2 2cs c c

where ηµν is the Minkowski metric in fatspacetime. Finally, recalling the

d’Alembertian operator in curved spacetime

□ =
1 (√ )

µν∂ν√ ∂µ −gg ,
−g

(5.110)

the equation of motion describing the propagation of phonons in an RBEC reduces

to the massless Klein-Gordon equation

□ ϑ̂ = 0 , (5.111)

where the quantum feld ϑ̂ associated with the phononic perturbations evolves over

the so-called acoustic metric gµν , which is composed of two terms. The frst term

corresponds to the real spacetime metric ηµν , while the second term corresponds

to an efective metric originated on the RBEC itself. Notice how the second term

depends on the four-velocity vν of the fuid and on the RBEC’s self-interaction

strength c0. Additionally, notice the presence of the conformal factor that depends

on the density ρ = Φ∗Φ and, again, on c0. The acoustic metric was also derived

in [90] using a diferent approach based on fuid dynamics for the perturbations in

a relativistic, barotropic and irrotational fuid fow. The generalisation to a curved

real spacetime metric was achieved in [89].

As an example, let us consider the acoustic metric experienced by the quantum

83



5.4. The Relativistic Bose-Einstein Condensate in Spacetime

perturbations ϑ̂ when the real background spacetime corresponds to fat Minkowski

spacetime for the case of a comoving reference frame, vµ = (c, 0, 0, 0). Here, the

acoustic metric reads ⎞⎛⎜⎜⎜⎜⎜⎜⎝
2−c /c2 0 0 0s

0 1 0 0

0 0 1 0

0 0 0 1

⎟⎟⎟⎟⎟⎟⎠ . (5.112)gµν
c

= ρ
cs

This means that even though the phononic perturbations ϑ̂ live on a fat Minkowski

spacetime, the presence of the condensed part of the RBEC, given by the wave

function Φ in (5.73), plays a role in the phonon propagation. In this case, it causes

time to fow more slowly.

To summarize, the RBEC can be described by a mean-feld classical background
ˆΦ, describing the condensed part of the system, plus quantum perturbations ϑ. In

the low-momentum regime and whenever the kinetic operator Tρ can be neglected,

these fuctuations behave like a phononic quantum feld evolving over a fxed back-

ground curved spacetime for length scales larger than the so-called healing length,

where the change of the condensate is small compared to spatial and temporal scales

set by the perturbations.

5.4.5 Newtonian Limit

In this subsection, the Newtonian limit of the RBEC Lagrangian is directly taken

without going through the derivation of the equations of motion of the system.

On the one hand, this procedure allows the tracking of corrections coming from

modifcations of gravity at the level of GR that may still be present at a Newtonian

level3, which can be explored using Earth-based experiments. On the other hand,

it shows the consistency and potential of the approach presented in this work. For

instance, under careful consideration and depending on the experiment in mind,

we could stay at the weak-gravity limit and use the BEC to study the relativistic

efects of linearized gravity without making the complete jump to Newtonian gravity.

Examples of this approach can be found in [89], where the acoustic metric was used

3Consider, for example, the geodesic followed by a particle in a Schwarzschild spacetime. There,
an efective gravitational potential at a Newtonian level can be derived, containing three terms:
the Newtonian gravitational potential energy (∝ r−1), the standard centrifugal potential energy
(∝ r−2) and extra contribution coming exclusively from GR (∝ r−3). See Section 5.4 in [30].
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to study the entanglement in BECs, or in [91], where the passage of a gravitational

wave was simulated in a BEC.

As it was established in the previous subsection, the full efects of gravity on a

BEC can be studied through its relativistic formulation [88, 89, 91]. Considering an

arbitrary curved spacetime, the RBEC will be described by the Lagrangian density,

[ ]( 2 2 )√ m c 2m 1L̂ = − −g gµν∂µΦ̂
†
∂νΦ̂ + + Vtr Φ̂

†
Φ̂ + λΦ̂

†
Φ̂
†
Φ̂Φ̂ , (5.113)

ℏ2 ℏ2 2

ˆwhere the BEC’s wavefunction is described by a relativistic scalar feld Φ whose

evolution happens over a fxed background curved spacetime with metric gµν . The

frst term corresponds to the kinetic term. The second one considers an external

trapping potential Vtr and a relativistic correction proportional to the second power

of m, the mass of the atoms in the BEC. The last term corresponds to the two-atom
ˆ4interaction via the potential Φ and the coupling constant λ, which depends on the

scattering length.

To achieve the Newtonian limit from the theory of general relativity, three re-

quirements must be fulflled [30]:

1. Slow particles. Test particles should be moving slowly with respect to the

speed of light.

2. Weak gravity. Gravity should be weak, such that its efects represent just a

perturbation with respect to fat spacetime.

3. Static gravitational felds. The gravitational feld should be static or have

negligible changes with time, such that the spacetime is fxed.

Basically, the Newtonian limit consists of a non-relativistic weak gravity limit of

general relativity. We shall apply these criteria to the BEC’s relativistic formulation.

For this, we must frst consider the consequences imposed by the Newtonian limit

on the spacetime metric.

Consider that the BEC corresponds to an inertial observer. In general relativ-

ity, free-falling particles, or inertial observers, move along trajectories given by the

geodesic equation,
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d2 µx dxα dxβ
+ Γµ = 0, (5.114)

du2 αβ du du

where u is a scalar that parameterizes the particle’s trajectory with coordinates
µx = (ct, xi), and

Γµ =
1
gµρ(∂αgβρ + ∂βgρα − ∂ρgαβ), (5.115)αβ 2

corresponds to the Christofel connection. In the non-relativistic limit, requiring the

particles to move slowly compared to the speed of light is translated into

dxi dx0≪ , (5.116)
dτ dτ

where τ = ct is the proper time of the particle. Under this condition, the geodesic

equation becomes

( )2µd2x cdt
+ Γµ = 0, (5.117)

du2 00 dτ

and the Christofel symbol simplifes as

Γµ = −1gµρ∂ρg00. (5.118)00 2

Now, let us assume the case when the BEC is subjected to weak gravitational

forces. When gravitational forces are weak, the spacetime metric can be linearized

as

gµν = ηµν + hµν , (5.119)

where ηµν is the fat spacetime metric and hµν is a small perturbation such that

|hµν | ≪ 1. From the nondegeneracy condition of the metric, which allows the
µρ δµdefnition of the inverse metric g gρν = ν , we fnd that to frst order in hµν , the

µν ηµν − hµνinverse metric is g = . In this order of approximation, the geodesic

equation becomes
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( )2µd2x 1 dt
= − ηµρ∂ρh00 . (5.120)

dτ2 2 dτ

Further, requiring the gravitational feld to be static implies the condition

∂0gµν = 0. (5.121)

Then, using the coordinate time t, the particle’s acceleration is [30]

d2 ix 1
= ∂ih00. (5.122)

dt2 2

Typically, in the non-relativistic weak-gravity limit of general relativity, the per-

turbation h00 is associated with the Newtonian gravitational potential ϕ of a massive

source of gravity by making the identifcation

h00 = −2ϕ, (5.123)

which constitutes the derivation of Newtonian gravity from general relativity. There-

fore, in the Newtonian limit, the only contribution of the metric to the Lagrangian

density comes from the temporal part of the perturbation

√h00 h00
g00 = −1 + , with −g = 1− . (5.124)

2 2c 2c

The BEC’s Lagrangian density gets reduced to

( )[ ( ) ]
2 2h00 ˆ † m c 2m ˆ † ˆ † ˆ †L =− 1−

2
∂iΦ ∂iΦ̂ + + Vtr Φ Φ̂ + λΦ Φ Φ̂Φ̂

2c ℏ2 ℏ2( )
h00 ˆ †+ 1 + . (5.125)
2

∂0Φ ∂0Φ̂
2c

ˆNow, we must also take the Newtonian limit for the feld operator Φ. The time

dependence of Φ̂ can be factorized into two terms, taking the form

−imc2t/ℏΦ̂(r, t) = √ℏ
Ψ̂(r, t)e , (5.126)

2m
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where Ψ̂ contains the kinetic energy E′ of the feld, and the other factor considers

the rest mass energy. Considering the total energy E of the feld, the kinetic energy
2is written as E′ = E − mc . In the non-relativistic limit, where the feld moves

2slowly compared to c, it is required that E′ ≪ mc . This implies the condition

[88, 91]

2Ψ̂iℏ|∂tΨ̂| ≪ mc , (5.127)

which yields

( )[ ]
ℏ2 ( )h00 ˆ † ˆ † ˆ † ˆ †L =− 1− ∂iΨ ∂iΨ̂ + gΨ Ψ Ψ̂Ψ̂ Ψ̂

2c2 2m
+ VtrΨ( ) ( )iℏ 1

+ 1 +
h00

Ψ̂
†
∂tΨ̂− ∂tΨ̂

†
Ψ̂ + mh00Ψ̂

†
Ψ̂, (5.128)

22c 2 2

where g := ℏ2λ/2m is the self-interaction coupling constant. Taking the limit c →
∞, the BEC’s Lagrangian density in the Newtonian approximation is obtained,
which further simplifes to

( )( ) ℏ2iℏ 1L = Ψ̂
†
∂tΨ̂− ∂tΨ̂

†
Ψ̂ − ∂iΨ̂

†
∂iΨ̂− Vtr − mh00 Ψ̂

†
Ψ̂

2 2m 2

− 1gΨ̂†Ψ̂†Ψ̂Ψ̂. (5.129)
2

Since we have arrived at a non-relativistic system of quantum nature, it is more

convenient to work within the Hamiltonian formalism. The associated Hamiltonian

density can be evaluated using the Legendre transformation

∂L ∂Lˆ †H = ∂tΨ̂ + ∂tΨ − L, (5.130)
∂(∂tΨ̂) ∂(∂tΨ̂

†
)

obtaining that

ℏ2 1 1ˆ † ˆ † ˆ † ˆ † ˆ †H = ∇Ψ ∇Ψ̂ + VtrΨ Ψ̂− mh00Ψ Ψ̂ + gΨ Ψ Ψ̂Ψ̂. (5.131)
2m 2 2

Therefore, the Hamiltonian describing a BEC in the non-relativistic weak gravity
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limit can be written as,

∫ ( )
ℏ2 1 g

Ĥ = Ψ̂
† − ∇2 + Vtr − mh00 + Ψ̂

†
Ψ̂ Ψ̂ dr, (5.132)

2m 2 2V

where V = LA is the volume of the BEC, and the coupling constant can be rewritten
as g = 4πℏ2as/m in terms of the scattering length as. If we dismiss the presence

of the external gravitational force, represented by the term proportional to h00,

we recover the standard textbook BEC Hamiltonian (5.53), under the pertinent

assumptions on the two-body interaction potential.

Connecting this limit to the relativistic description of the BEC highlights the

versatility of our scheme for investigating modifcations of gravity that could be

examined at a low-energy relativistic level, as demonstrated in the examples [89, 91]

mentioned at the beginning of this subsection. In the Newtonian limit, this approach

coincides with the usual treatment for studying BECs.

In summary, this chapter presented a comprehensive overview of the phenomenon

of Bose-Einstein condensation. First, we examined the non-interacting Bose gas,

where we observed the emergence of a phase transition below a critical temperature

whose value was estimated. Next, we investigated the weakly interacting Bose gas,

where the Bogoliubov theory was introduced. We derived the ground-state energy

and the thermodynamic equation for the zeroth-order approximation in the momen-

tum of the gas atoms. In the second-order approximation, we derived the excitation

spectrum, which revealed the presence of phonon-like elementary excitations. Fi-

nally, the study of the non-uniform BEC was established with the derivation of

the Gross-Pitaevskii equation and its application to the analysis of small-amplitude

perturbations.

Additionally, we studied the RBEC in fat space, following a similar analysis

to that conducted for the non-relativistic BEC. By employing the Bogoliubov ap-

proximation, we derived the dispersion relation associated with small-amplitude

perturbations. We analysed the diferent limiting cases of the dispersion relation.

For the gapless branch of the low-momentum limit, we derived the acoustic metric,

an efective metric over which the phonons in the RBEC evolve. Finally, we consid-

ered the Newtonian limit of the RBEC, consistently recovering the non-relativistic

BEC.

In the next chapter, we revisit the description of the BEC, taking into account the
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presence of an external gravitational potential. We will assume an oscillating massive

sphere serves as the source of this external gravitational potential. By combining this

scenario with quantum metrology, we derive the precision for estimating a physical

parameter characterizing the gravitational potential of the oscillating sphere.
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Chapter 6

Testing Gravity with a BEC

In previous chapters, we explored various areas of physics. In Chapter 2, we

studied the theoretical treatment of bosonic quantum felds. Gaussian states and

their description in terms of the covariance matrix formalism were discussed in

Chapter 3, along with quantum metrology and the estimation of physical parameters

in Chapter 4 and the physics of the Bose-Einstein condensate in Chapter 5. Now,

everything can be combined to construct a consistent framework for performing

high-precision measurements with the BEC’s elementary excitations by exploiting

quantum metrology and the benefts of Gaussian states. The aim is to present a

detector concept for measuring gravitational parameters to explore modifed theories

of gravity in the light of dark matter and dark energy problems.

The structure of this chapter is as follows. Section 6.1 discusses the diference

between the conventional implementation of BECs for gravimetry: atom interferom-

etry and the method proposed in this thesis: frequency interferometry. In Section

6.2, we explain the experimental setup proposed for employing the BEC to probe

gravity. This is achieved using the gravitational potential of an oscillating massive

sphere. Next, Section 6.3 provides a detailed description of a BEC infuenced by

the gravitational potential of the oscillating sphere. By assuming the presence of

small-amplitude perturbations in the BEC, we derive the equations of motion for

the condensed atoms and the perturbations. The dispersion relation of the per-

turbations identifes them as phonons, and their temporal evolution is obtained.

In Section 6.4, quantum metrology is implemented for estimating a parameter that

quantifes the gravitational potential of the oscillating sphere, which is related to the

induced acceleration on the BEC. By establishing the metrological scheme, enhanced
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with the implementation of a tritter, we determine the precision for estimating this

parameter. Finally, Section 6.5 discusses the experimental parameters involved in

determining the precision of the experiment. A review of the state-of-the-art BEC

experiments is provided, along with a discussion on the conditions and constraints

that the experimental parameters must follow. To close the chapter, we discuss the

parameter dependence of the precision for estimating the amplitude acceleration

and compute its value for diferent sets of parameters.

6.1 Atom Interferometry vs Frequency Interferometry

Our proposal for employing the phonons of the BEC to measure gravity relies

on the implementation of frequency interferometry. In contrast, the current exper-

imental approach to BEC gravimetry employs atom interferometry. This section

introduces both types of interferometry and provides a comparison between them.

6.1.1 Atom Interferometry

The interesting properties of BECs have been implemented to make high-

precision measurements. Atom interferometry is the most widely used technique

that has exploited Bose-Einstein condensation for metrological purposes [92, 93]. In

general, this technique has become an essential tool for fundamental physics research

and the development of practical applications. Commonly, atom interferometry is

performed by coherently splitting a system of cold atoms into two parts travelling

on diferent spatial trajectories. Later, the trajectories are recombined, making

the atoms interfere. If a parameter of interest interacts diferently for each of the

trajectories followed by the system, a relative phase diference accumulates, which

can be measured to estimate the parameter [94, 95]. BECs have been extensively

implemented for atom interferometry, leading to experiments to make precision mea-

surements of physical quantities that include rotations [96, 97], accelerations [98],

energy diferences [99], and magnetic gradients [100], in addition to the creation of

atomic clocks [101] and proposals for testing the equivalence principle or detecting

gravitational waves [102]. Also, several diferent features of the BEC have been ex-

ploited to perform atom interferometry: BEC’s solitons [103], BEC’s spin-squeezed

states [104], and BEC ring potentials [105].

In particular, BEC-based atom interferometry commonly implements an atomic

Mach-Zehnder (MZ) scheme for gravimetry, which is displayed in Figure 6.1. This
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type of experiment places a BEC in free fall. Then, a sequence of optical pulses

acting as a beam splitter put each atom in the cloud in a superposition of two wave

packets with diferent momenta in analogy with the arms of the MZ interferometer.

The wave packets spatially separate vertically, providing the distance needed for

gravimetry. The wave packets are redirected towards each other with subsequent

optical pulses that act as mirrors. Finally, another beam splitter combines the wave

packets, allowing them to interfere. For N uncorrelated atoms, a relative phase

diference allows the estimation of a uniform gravitational acceleration [102, 106].

Figure 6.1: Mach-Zehnder-type Atom Interferometry. A cloud of cold atoms in free
fall is split into two diferent spatial trajectories at diferent heights using a sequence
of optical pulses, which play the role of a beam-splitter. Subsequent sequences of
optical pulses act, frst, like mirrors that redirect the trajectories of the atoms and,
later, like a second beam-splitter that recombines the atoms, making them interfere.
Finally, a relative phase accounting for any gravitational diference between the two
trajectories is measured.

The special quantum properties of Bose-Einstein condensation present an op-

portunity to enhance the precision of atom interferometers beyond the standard

quantum limit. However, the interatomic interactions occurring in the BEC are re-

garded as an unwanted hindrance that degrades precision. Furthermore, gravimetry

based on atom interferometry exhibits a precision that scales with the space-time

enclosed area, which is proportional to 2nkT 2, where n is an integer number, k is

the wave number of the optical pulses, and T is the interrogation time [98, 102, 106].

Therefore, precision is improved by increasing this area, which implies extending the
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free-falling time of the cloud of atoms or increasing the interferometer size.

This fundamental limit has pushed this research area to consider performing

experiments where BECs are in microgravity to increase the precision [93]. In Earth-

based experiments, the focus has relied on the construction of big towers to increase

the free-falling distance. For instance, we can mention the 146 m tall ZARM drop

tower in Bremen, which has been able to perform microgravity experiments using

BEC-based atom interferometry presenting drop times of 4.7 s [107], and the Einstein

Elevator in Hanover, which provides 4 s of microgravity experiments [108]. Space-

based experiments have been carried out to increase the free-falling time, and there

are plans to keep this research area active. For instance, the MAIUS-I sounding

rocket mission accomplished the frst BEC in space [109], the Cold Atom Laboratory

(CAL) experiment in the International Space Station (ISS) created the frst BEC

on an Earth-orbiting platform [110], and the Bose-Einstein Condensate and Cold

Atom Lab (BECCAL) is the next project planned to expand the experimental and

scientifc capabilities of the CAL experiment in the ISS [93].

Despite the great eforts and progress achieved by BEC-based atom interfer-

ometry experiments, the limitations imposed by the free-falling times on these

types of experiments represent a major challenge that requires further technolog-

ical progress and economic investment in infrastructure. Under this scheme, the

best current precision for determining Earth’s acceleration, for instance, is around

∆g/g = 1.45 × 10−9 [95, 111]. Furthermore, from a theoretical point of view, the

formalism used in atom interferometry fundamentally depends on the Schrödinger

equation, which considers time as an absolute parameter common to all reference

frames. Dismissing the frame-dependence of time prevents the correct description

or prediction of any relativistic efect in the system.

6.1.2 Frequency Interferometry

In contrast, a diferent proposal for using Bose-Einstein condensation for metro-

logical purposes is based on a particular physical feature of BECs: their collective

oscillations. Instead of performing spatial interferometry with the atoms of a BEC,

the idea is to perform interferometry with the frequency modes of the BEC’s collec-

tive oscillations [17]. This method does not require the BEC to free-fall to capture

information about external phenomena. Rather, the BEC’s collective oscillations

are afected by external potentials or efects while they are being held by a trapping

potential. Here, the precision scales with the lifetimes of the BEC and the collective
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oscillations.

The origin of the idea can be traced back to the study of the evolution of con-

fned quantum felds under accelerated motion [112] and the theoretical realization

that acceleration produced observable efects in BECs [89]. Soon, these ideas were

combined to set the foundations for a theoretical framework for relativistic quan-

tum metrology focused on estimating spacetime parameters [4, 113]. Since then, the

framework has consistently been developed and refned, leading to the proposal of

several metrological experiments using the BEC’s collective oscillations. Examples

of such proposals include gravitational-wave detection [18], gravitational potential

measurements [114], screened scalar felds measurements to constrain dark energy

[11, 115], and the development of a patent for gravimetry and gradiometry [19, 116].

Figure 6.2: Quantum Frequency Interferometry. Depiction of a BEC held by a
uniform box potential and its frequency modes, or phonons. The phonon frequencies
are determined by the length of the BEC. In this scheme, phonon states are prepared,
which can later be mixed or squeezed, for instance.

The basis of this framework for relativistic quantum metrology is rooted in quan-

tum feld theory, so it is well-suited for the study of relativistic efects. Moreover,

important progress has been made in this direction. For instance, the authors of

[117, 118] have developed a method for computing the evolution of confned quantum

scalar felds over a general curved spacetime metric restricted to a synchronous frame

of reference. Connecting this with the achievement of the relativistic description of

the BEC from Section 5.4—where the evolution of the BEC’s collective modes, or

perturbations, over spacetime was studied—allows the application of the relativis-

tic quantum metrology framework to the physics of the BEC, therefore taking the

theoretical progress to actual experiments that can be performed with current tech-
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nology.

This thesis aims to prepare the ground for future research into relativistic ap-

proaches that further advance the applications of the relativistic quantum metrology

framework and to encourage the experimental realisation of our proposal by demon-

strating its potential and versatility; thus, the relativistic framework has been intro-

duced. However, in this thesis, we apply the quantum metrology framework to the

BEC at a Newtonian, non-relativistic level, as this treatment is enough to explore

modifcations of Newtonian gravity. Interestingly, it was shown in [119] that the

efect of a gravitational wave passing through a small detector, like a BEC, can be

mimicked with a system of non-relativistic oscillating masses. Therefore, the New-

tonian limit is interesting enough by itself for testing gravity and for gravitational

parameter estimation.

The work presented in [114] demonstrates that changes in an external gravita-

tional potential lead to measurable phonon creation and phonon transitions on a

BEC placed nearby, which implies the BEC’s potential to probe gravitational felds.

In light of these results and motivated by the exploration of dark matter and dark

energy—two important open questions of gravitational nature—in this thesis, we

propose an experiment to carry out high-precision measurements to probe the grav-

itational potential. A further and more in-depth discussion of how dark matter and

dark energy exploration motivated this project is presented in the next chapter.

In the next section, we will describe the experimental setup proposed in this

thesis to test gravity. It comprises a BEC positioned near a massive gravitational

source in the form of an oscillating sphere. The aim of the following sections is to ex-

amine the gravitational infuence of the massive sphere on the collective oscillations

of the BEC.

6.2 Experimental Setup

As a tabletop experiment to test gravity, in this thesis, we propose to study

the interaction between a BEC and an oscillating massive sphere, accounting for a

source of gravity. In particular, we propose to study the evolution of the collective

modes of a BEC in the presence of the massive sphere oscillating in resonance with

the frequency of the BEC’s collective modes, which will turn out to correspond to

phonons. The experimental setup is the following.

Let us consider an oscillating sphere with mass M and frequency Ω, which gen-
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erates a time-dependent gravitational feld. Placed next to it, we fnd a BEC of

length L held by a uniform box trap potential [120], aligned with the direction of

the oscillation, as depicted in 6.3. The length of the BEC is assumed to be much

smaller than the size of the sphere, which allows the restriction to one spatial di-

mension indicated by the x-axis. Let R(t) denote the distance between the BEC’s

centre and the sphere’s centre.

Figure 6.3: Sketch of the Experimental Setup. An oscillating sphere of massM with
frequency Ω and oscillation amplitude δR (on the right) is placed at a distance R(t)
from a BEC of length L (on the left).

The sphere is assumed to have a sinusoidal displacement R(t) = R0+ δR sin(Ωt)

about a fxed position R0, where δR denotes the oscillation’s amplitude. In general,

for sufciently small BECs, L≪ R, and small oscillation amplitudes, δR ≪ R0, we

can expand the sphere’s gravitational potential ϕ inside the BEC up to frst-order

both in x/R and in δR/R0, where x ∈ [−L/2, L/2] is a coordinate denoting the
position inside the BEC. The expansion yields

ϕ(x, t) ≈ ϕ0(t) + a(t)x, (6.1)

where ϕ0(t) and a(t) are, respectively, the gravitational potential and the accelera-

tion exerted by the sphere at the BEC.

6.2.1 Example: Newtonian gravity

To illustrate this expansion explicitly, take the standard case when the gravita-

tional potential of the oscillating sphere is given by Newtonian gravity
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GM
ϕ(r) = − .

r

Using the small BEC approximation x/R ≪ 1, frstly, we expand the gravita-

tional potential around the BEC’s centre at r(t) = R(t)− x, with x ∈ [−L/2, L/2].
A frst-order Taylor expansion in x/R gives,

GM GM
ϕ(x, t) = − − x +O(x2).

R(t) R(t)2

Notice that although the expansion is in the spatial coordinate, the distance between

the BEC and the sphere, R(t), and the gravitational potential itself, are time-

dependent. This does not represent a problem for the expansion since we can expand

the potential as a spatial function around R(t) at each instant t. Then, we can

consider the time evolution of the expansion as R(t) changes.

Now, using the sinusoidal movement of the sphere, R(t) = R0 + δR sin(Ωt), and

taking the small oscillation amplitude approximation δR ≪ R0, we Taylor expand

up to frst order in δR/R0, obtaining

( ) ( )
GM δR GM 2δR

ϕ(x, t) = − 1− sin(Ωt) − 1− sin(Ωt) x +O(x2). (6.2)
R2R0 R0 0 R0⏞ ⏟⏟ ⏞ ⏞ ⏟⏟ ⏞

ϕ0(t) a(t)

The acceleration a(t) thus consists of two components: a static and a time-dependent

term. The amplitude of the time-oscillating term for Newtonian gravity is defned

as

2GMδR
aΩ := . (6.3)

R30

Importantly, it can be shown that in general ϕ0(t) does not contribute to the

dynamics of the BEC’s phonons. Furthermore, as shown in [114], the static part of

the acceleration a(t) has a negligible contribution to the phonon’s dynamics. The

physical interpretation of the latter is connected to the fact that the BEC’s phonons

are afected only by efects that resonate with their frequency. Therefore, only the

time-dependent part of the acceleration plays a relevant role in the dynamics, and,

as we will see in Section 6.4, the value of acceleration amplitude aΩ can be estimated

using quantum metrology techniques applied to the BEC’s phonon states.
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The practical implementation of an oscillating massive sphere will be discussed

in Section 6.5.3. Anticipating that discussion, let us estimate the magnitude of aΩ

for realistic parameters. Consider we perform an experiment using a sphere with

mass M = 200 g, oscillation amplitude δR = 1 mm placed at a distance R0 = 1 cm

from the BEC. These values yield that

aΩ ≈ 2.7× 10−8 m/s2. (6.4)

Naturally, when considering modifcations of Newtonian gravity, the explicit

functional form of the acceleration a(t) exerted on the BEC will be uniquely de-

termined by the specifc gravitational model considered. The goal of the proposed

experiment is to measure aΩ and compare it against the theoretical predictions given

by the diferent gravity models. In Chapter 7, we return to this question by deriving

the functional form of a(t) for the two modifed gravity models considered in this

thesis: MOND and Lambda-gravity.

The following section is dedicated to the description of the BEC and its collective

excitations, considering the presence of an external gravitational feld.

6.3 Description of a BEC

6.3.1 Hamiltonian Formalism and Field Decomposition

The description of the BEC under an external gravitational potential ϕ(x, t)

follows in analogy with the procedure established in Chapter 5. Let us consider the

Hamiltonian (5.23) describing a Bose gas of particles with two-particle interactions∫ ( )
ℏ2 gˆ † ˆ †Ĥ = Ψ − ∇2 + Vtr +mϕ(x, t) + Ψ Ψ̂ Ψ̂ dr, (6.5)
2m 2V

where V = LA is the BEC’s volume with L and A respectively corresponding to

the BEC’s length and cross-section, m is the mass of the BEC’s atoms, Vtrap is

the trapping potential, and the two-particle coupling constant is g = 4πℏ2a/m as

established in (5.30) for an efective interaction potential.

Assuming that the temperature T of the Bose gas is much lower than the critical

temperature for condensation, the ground state becomes macroscopically occupied

by a large collective coherent state populated by a large number of atoms, achieving

the Bose-Einstein condensation. In this case, it is helpful to expand the feld operator
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as ( ) ∫ t− ℏ
i [µt− δµ(t′)dt′]Ψ̂(r, t) = Ψ̂0(r) + ϑ̂(r, t) e 0 , (6.6)

with

Ψ̂0(r) := ψ0(r) â0, (6.7a)∑
ϑ̂(r, t) := ψn(r) ân(t), (6.7b)

n̸=0

where Ψ̂0(r) describes the atoms in the ground state, and ϑ̂(r, t) corresponds to

the excited atoms of the Bose gas. The atom creation and annihilation operators,

â† and ân, satisfy the canonical commutation relations [ân, â
† ] = δnm, µ denotesn m

the chemical potential of the gas, and δµ is the time-dependent energy shift of the

ground state.

The Bose-Einstein condensation is formally performed by making the Bogoliubov
†approximation, which replaces the operators â0 and â0 with the complex number√

Na, √
Ψ̂0 → Ψ0 = Naψ0, (6.8)

where Na corresponds to the number of atoms in the ground state of the BEC, and

= V−1/2ψ0 .

Then, under the Bogoliubov approximation, the expansion (6.6) decomposes

the BEC into two parts. The condensed part, which describes the atoms on the

ground state with a classical feld Ψ0(r) satisfying the stationary Gross-Pitaevskii

equation, plus the excited part, which describes the excited atoms in the BEC with

the quantum operator ϑ̂(r, t). Similarly to Section 5.3.2, we assume ϑ̂ corresponds

to small-amplitude perturbations, then Ψ̂(r, t) can be considered to be very close to

the stationary solution of the Gross-Pitaevskii equation.

Substituting the expansion (6.6) into the Hamiltonian (6.5) while applying the

Bogoliubov approximation results in a Hamiltonian composed of three terms

ˆ (0) ˆ (2) ˆ (int)Ĥ = H +H +H , (6.9)

ˆ3where we have discarded the higher-order terms O(ϑ ). The frst term corresponds
to the ground state energy ∫

ˆ (0) gN2
= E(0) aH = |ψ0|4 dr, (6.10)

2 V
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which matches accordingly with the energy of the ideal gas (5.31). The second term

is the Bogoliubov Hamiltonian

∫ [ ( ) ]
ˆ (2) ˆ† ℏ2∇2 gNa ˆ†2H = : ϑ − − µ+ 2gNa|ψ0|2 ϑ̂+ (ϑ ψ0

2 + c.c.) dr : , (6.11)
2m 2V

where : Ô : denotes the normal ordering of operators1, and µ is the stationary

eigensolution determined by the stationary GP equation, (5.60). The remaining

terms are collected into the interaction Hamiltonian

∫ ( ) ∫
ˆ (int) √ ˆ† ˆ†H = ρ0 [δa(t)− δµ(t)] ϑ̂+ ϑ dr + ϑ [δa(t)− δµ(t)] ϑ̂ dr, (6.12)

V V

where ρ0 = Na/V corresponds to the number density of condensed atoms in the
BEC, and defning δa(t) := maΩ sin(Ωt)x, which determines the ground state energy∫
shift via δµ(t) = ψ0

∗ δa(t)ψ0 dr.

6.3.2 Description of the Perturbations

A Bogoliubov transformation can be applied to the operators of the excited

atoms, ân=0̸ , which allows us to express the feld operator of the perturbations as

the mode decomposition [86]

∑( )
ˆ −iωnt ˆ† iωntϑ̂(r, t) = un(r)bne + vn(r)b e , (6.13)n

n

ˆ† ˆwhere b and bn are the collective modes creation and annihilation operators fol-n

ˆ ˆ†lowing canonical commutation relations [bn, bm] = δnm, and ωn is the mode fre-

quency. The evolution of the mode functions un(r), vn(r) can be derived by using

the Heisenberg equation iℏ ∂tΨ̂(r, t) = [Ψ̂(r, t), Ĥ] and the stationary solution of

the GP equation.

We assume the BEC is confned using a box-like uniform trapping potential

[120], where Earth’s gravity is cancelled and the efective potential inside the trap

is approximately zero, Vtrap = 0. While such traps can provide a nearly uniform

density profle for the condensed atoms, they also introduce problems due to the

1Normal ordering places all creation operators to the left of all annihilation operators whenever
a product between these happens.
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hard-wall boundary conditions. In particular, the condensate density drops abruptly

to zero at the walls, creating strong gradients which invalidate the local density

approximation near the walls. However, this phenomenon is present at length scales

smaller than the healing length [73], discussed in (5.50). By working in the phonon

regime, where excitation wavelengths are much larger than the healing length, we

avoid these short-scale features.

Therefore, considering a BEC confned to a uniform trapping potential, the evo-

lution of the mode functions un(r), vn(r) is governed by the stationary Bogoliubov-

de Gennes (BdG) equations [( ) ]
ℏ 1 1

ωnun(r) = −∇2 + un(r) + vn(r) , (6.14a)
2m ξ2 ξ2[( ) ]
ℏ 1 1−ωnvn(r) = −∇2 + vn(r) + un(r) , (6.14b)
2m ξ2 ξ2

where ξ corresponds to the BEC’s healing length and the contribution from the

gravitational potential can be discarded as shown in [114].

The mode functions satisfy Neumann boundary conditions at the potential walls

[114]. Since the perturbations describe density fuctuations, this boundary condition

ensures that the atom current fow vanishes at the walls of the box-like trapping

potential. The mode functions are normalized with respect to the inner product∫
∗ ∗[u (r)um(r)− v (r)vm(r)] dr = δnm. (6.15)n n

V

We assume that the width and height of the BEC are much smaller than its

length L, leading to an efective reduction of the phonon dynamics to one dimension.

This 3D-to-1D transition in the phonon propagation has been previously studied for

BECs in harmonic trapping potentials [121], where radial confnement suppresses the

transverse excitations, leaving only longitudinal phonon modes. This dimensional

reduction occurs when the phonon wavelength becomes larger than the transverse

radius of the condensate.

In a uniform box-like trap, we expect a similar behaviour. As the transverse

BEC dimensions fall below the characteristic phonon wavelength of the system,

the phonons get efectively constrained to propagate along the longitudinal spatial

direction. However, unlike harmonic traps, uniform box traps impose hard-wall

boundary conditions in all directions [120]. To keep a well-defned region in the

condensate where the local density approximation remains valid, the width and
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height of the BEC must be larger than the healing length ξ.

Under the 3D-to-1D transition, the atom-atom interaction strength g becomes

efectively renormalized due to the restricted transverse motion of the atoms. This

renormalization has been derived for both harmonic [122] and box-like trapping po-

tentials [123], and leads to a modifed efective 1D coupling constant g1D ∼ g1D/A⊥,

where A⊥ is the transverse cross-sectional area of the BEC. As a consequence, the

healing length ξ, which depends on the interaction strength, is adjusted. These mod-

ifcations must be taken into consideration since this renormalization may infuence

the quantum fuctuations of the collective excitations, including phonon number

fuctuations (see Eq. (6.48)).

Assuming the 3D-to-1D transition, we restrict our analysis to excitations along

the x-direction, aligned with the direction of the sphere’s gravitational potential.

Under these conditions, the set of real solutions to the BdG equation is

√ ( )
1 1 [ ( )]

Lun(x) = √ + 1 cos kn x+ , (6.16a)2V 2ξkn√ ( )
1 1 [ ( )]

Lvn(x) = − √ − 1 cos kn x+ , (6.16b)2V 2ξkn

where kn = nπ/L and n is a positive integer number.
ˆ (2)Returning to the Hamiltonian of the system, the Bogoliubov Hamiltonian, H ,

can be diagonalized by the mode decomposition (6.13). Discarding the terms of
ˆ† ˆthird and fourth order in b and bn, and using the normalization condition of then

mode functions (6.15), we obtain that∑
ˆ (2) ˆ†ˆH = : ℏωnb bn : . (6.17)n

n

The energy spectrum is given by the dispersion relation

(ℏωn)
2 = (csℏkn)2 + (ℏ2k2/2m)2, (6.18)n√

where cs = gρ0/m corresponds to the speed of sound in the BEC.
2Considering the low-energy (low-momentum) limit ℏωn ≪ mc , which can bes

rewritten in terms of the healing length as the limit ξ kn ≪ 1, can be interpreted

as restricting ourselves to work with the modes of lower energy or the modes with
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wavelength much larger than the healing length. In this limit, the dispersion relation

reads

ωn = cskn. (6.19)

This relation is equivalent to (5.48), which corresponds to the dispersion relation

associated with phonons travelling at speed cs. Therefore, in the low-energy limit,
ˆ† ˆthe operators b and bn create and annihilate phonons in the BEC.n

As discussed in Section 5.2.4, and in analogy with (5.43), the Hamiltonian (6.17)

tells us that the original system of interacting atoms, associated with the operators

ân and â
†
n, can be equivalently described as a system of non-interactive phonons,

associated with the operators ân and â
† , of energy ℏωn. In the low-energy limit,n

the Bogoliubov transformation that relates them takes the form

ˆ −iωnt − b̂† iωnt).ân ∼ un(bne e (6.20)n

Moving back to the interaction Hamiltonian, we substitute on it the mode de-

composition (6.13), and by using the rotating wave approximation to discard the

fast time-oscillating terms, we obtain∑ ( )
ˆ (int) ˆ −i(ωn−Ω)t − b̂† i(ωn−Ω)tH = M0n bne en

n∑ ( )
ˆ ˆ −i(ωn+ωl−Ω)t − b̂†ˆ† i(ωn+ωl−Ω)t+ Mln blbne l bne

l,n∑ ( )
ˆ†ˆ i(ωl−ωn−Ω)t − b̂ ˆ† −i(ωl−ωn−Ω)t− (Aln + Bln) bl bne lbne , (6.21)

l>n

where the transition amplitudes are given as√ ∫ L/2imaΩ NaAM0n = − x[un(x) + vn(x)] dx,
2 L −L/2∫ L/2iAmaΩMln = − xul(x)vn(x) dx,
2 −L/2∫ L/2iAmaΩAln = − xul(x)un(x) dx,
2 −L/2∫ L/2iAmaΩBln = − x vl(x)vn(x) dx.
2 −L/2

Using the properties of solutions for the BdG equations and taking the approxima-
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tion knξ ≪ 1, the amplitudes take the fnal form

√
LNaξM0n ≈ im √ (1− (−1)n) aΩ, (6.22a)
( 2nπ)3

imL2(l2 + n2)Mln ≈ − √ (1− (−1)l+n) aΩ, for l ̸= n, (6.22b)
2 2nl(l2 − n2)2π3ξ

Mnn ≈ −Ann ≈ −Bnn ≈ 0. (6.22c)

whereMln ≈ −Aln ≈ −Bln and aΩ corresponds to the experimental parameter to be

measured, as will be shown in Section 6.4 by implementing quantum metrology. In

Chapter 7, this parameter will be explicitly calculated according to the predictions

done by MOND (aM) and Lambda-Gravity (aΛ).

6.3.3 Time-Evolution Operator

The temporal evolution of the phonons is given by the time-evolution operator∫
ˆ (int)Û(t) = exp(−i H dt/ℏ). Considering only processes on resonance with the os-

cillating massive sphere, such that its oscillating frequency Ω matches the frequency
ˆ (int)of the phonons, the temporal dependence of H is lost and it also implies the ex-

istence of a mode number nΩ := LΩ/(πcs) which must be an odd integer. Then, the

evolution of the phonons under the infuence of the oscillating sphere, considering

only resonant processes, is given by the time evolution operator[ ( ) ]
ˆ†Û(t) = exp aΩM0nΩ b − b̂ t/ℏnΩ nΩ[ ∑ ( ) ]

ˆ†ˆ†× exp aΩMl,nΩ−l bl bnΩ−l − b̂lb̂nΩ−l t/ℏ
l<nΩ[ ]∑ ( )

ˆ†ˆ ˆ† ˆ× exp 2aΩMl,l−nΩ
bl bl−nΩ

− bl−nΩ
bl t/ℏ , (6.23)

l>nΩ

where we defned the quantities√
LNaξ mL2(l2 + n2)

M0n = 2m √ , Mln = √ . (6.24)
( 2nπ)3 2nl(l2 − n2)2π3ξ

Let us discuss and explain the physical meaning of the three exponentials appearing

in the time evolution operator. Their interpretation is closely related to the Gaussian

105



6.4. Quantum Metrology

transformations described in Chapter 3.
ˆ† ˆThe frst exponential, with argument proportional to (b − b ), correspondsnΩ nΩ

to the Weyl displacement operator introduced by Eq. (3.35). Its resonant condition

requires ωn = Ω, which is equivalent to taking the mode n = nΩ. This operator cre-

ates a coherent state when applied to the vacuum state. If we dismiss the rest of the

operators in Û(t), the average number of phonons Np created by the displacement

operator is given as Np = |aΩM0nΩ t/ℏ|2, as established by (B.4) in Appendix B.
ˆ†ˆ† ˆ ˆThe second exponential, with argument ∼ (bl bnΩ−l − blbnΩ−l), corresponds to

the two-mode squeezing operator defned by (A.27) in Appendix A. Under the res-

onant condition ωl + ωn = Ω, which is equivalent to taking the modes l and nΩ − l
that satisfy l + n = nΩ, this operator generates a pair of squeezed phonons with

frequencies ωl and ωn. As discussed in Section 3.7.4, a squeezed state corresponds

to a Gaussian state exhibiting entanglement, which minimizes the Heisenberg un-

certainty principle. Suppose we dismiss the rest of the operators in Û(t). In that

case, this operator creates squeezed states of phonons thanks to the resonant efect

of gravity created by the oscillating sphere, creating an average number of phonons

corresponding to Np = 2 sinh
2(aΩMl,nΩ−lt/ℏ), as established in Appendix B.

ˆ†ˆ ˆ† ˆThe last exponential, whose argument is proportional to (bl b − b bl),l−nΩ l−nΩ

corresponds to the mode-mixing operator, which acts as a beam-splitter mixing a

pair of phonons with frequencies ωl and ωn. This process is resonant given the

condition ωl − ωn = Ω, which is equivalent to taking the modes l and l − nΩ that

satisfy l−n = nΩ. The mode-mixing operator is a mode-coupling process that does

not change the number of phonons.

6.4 Quantum Metrology

Quantum metrology is now employed to detect the change in the BEC’s phonons

induced by the gravitational infuence of the oscillating sphere. The strategy is to

estimate the physical parameter responsible for phonon generation, in this case,

the acceleration amplitude aΩ of the oscillating gravitational feld. This parameter

is imprinted onto the phonon states through the displacing, squeezing, and mode-

mixing operators as established by the time evolution operator Û(t) derived in the

previous section. By measuring the resulting phonon state, or the BEC’s phonon

content, the value of aΩ can be estimated.

As discussed in Section 4.4, to optimize the precision of the estimation, the
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strategy is to fnd optimal initial states and optimal measurement bases for the

fnal state. It was shown in [45, 124] that the optimal estimation of a parameter

via Gaussian processes—either for any of the states studied in Chapter 3, including

the evolution driven by Û(t)—is obtained when the probe state corresponds to a

squeezed state.

Additionally, a frequency interferometry strategy can be performed with a single

BEC in a pumped-up SU(1, 1) scheme [125], which enhances the estimation precision

[17]. In this case, the condensate atoms act as the pump, and two phonon modes

can be used as the side modes.

6.4.1 Metrological Scheme

A three-mode frequency interferometry scheme [17] is implemented, involving

the BEC’s ground state and two phonon modes coming from (6.17). We focus on

the modes l, n that satisfy the resonance condition Ω = ωl + ωn with the oscillation

frequency Ω of the sphere, where l+n is an odd integer. The full scheme is illustrated

in Figure 6.4.

Figure 6.4: Frequency Interferometry Scheme. a) The probe state is prepared by
applying the transformation Û sq(r) on two vacuum phonon modes (green and blue)

ˆto then mix them with the BEC ground state (red) through the tritter U tr(θ). b)
ˆThe acceleration amplitude is encoded by Ug(aΩ). c) To close the circuit, the probe

state is reversed. Finally, the number of phonons is counted at the output.

a) Probe State Preparation

The scheme begins with the preparation of the probe state, priorly to the in-

volvement of the oscillating sphere. First, studies show that in general the ground
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state of a BEC is well approximated by a coherent state |α⟩ [126, 127], satisfying
â0 |α⟩ = α0 |α⟩, where α0 is a complex number related to the number of atoms in
the ground state, Na (see Section 3.7).

Next, we take two phonon modes l and n in the vacuum. When working with

Gaussian states, squeezed states are known to be optimal probe states [45, 124].

Therefore, a two-mode squeezing transformation is applied to the phonon modes l

and n,
ˆ ln r(eiϑsq b̂

†
l b̂
†−e−iϑsq b̂lb̂n)U (r, ϑsq) = e n , (6.25)sq

where r is the squeezing parameter and ϑsq ∈ R is the squeezing phase. This trans-
formation parametrically populates the modes, and its experimental implementation

can be achieved by the sinusoidal modulation of the trapping potential at a fxed

frequency, i.e., by the periodical change of the BEC’s length [128, 129, 17]. The

frequency of the trapping potential modulation is selected in accordance with the

frequency of the oscillating sphere that squeezes the phonon modes l and n.

To further optimize the probe state, the BEC’s ground state gets coupled with
ˆthe squeezed phonon state using a tritter transformation U tr(θ, ϑ). This transfor-

mation is generated from the Hamiltonian [125]

[ ]
ˆ ln ℏθ iϑ † ˆ ˆ −iϑ ˆ† ˆ†Htr (θ, ϑ) = √ e â (bl + bn) + e â0(bl + bn) , (6.26)0

2

where θ ∈ R is the coupling strength and ϑ ∈ R is a phase. The explicit form of the
tritter is shown in Appendix C. Recall that â† is the creation operator associated0

with the atoms in the ground state, that is, the condensed atoms of the BEC.

Therefore, the tritter transformation can be understood in analogy to the beam

splitting transformation (see Eq. (3.44)) as the mixing of ground-state atoms with

phonon modes l and n, as depicted in Figure 6.5.
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Figure 6.5: Tritter Transformation Diagram. Ground-state atoms (solid red line)
sequentially decay into phonon modes l and n (dotted blue and green lines, re-
spectively) in a process analogous to the beam-splitting, or mode-mixing, trans-
formation. Simultaneously, phonon modes l and n decay into ground-state atoms,
illustrating both processes given by the two terms in Eq. (6.26).

The tritter transformation is inspired by a beam splitter-like coupling between

diferent modes in the BEC. This could be implemented through a suitable modu-

lation of the trapping potential or by using Bragg difraction [130, 131, 132], where

applying two electromagnetic felds tuned to the excitation energies of the phonon

modes could impart the required momentum to excite the ground state, or con-

versely, supply the energy to return excitations to the ground state. The tritter

concludes the preparation of the probe state before the involvement of the gravita-

tional efects of the oscillating sphere.
√

In the Bogolibov approximation, â0 is replaced by Na. We assume that the

number of condensed atoms is fairly undepleted by the squeezing transformation

and remains in a coherent state |α⟩, implying that Na = |α2|. It is also assumed0

that Na will remain reasonably undepleted after the tritter transformation, which

requires that the coupling θ driving the tritter cannot be too large.

b) Parameter Encoding

After the probe state is ready, the gravitational interaction with the BEC’s

phonon states is started by activating the oscillation of the massive sphere. As

discussed in Section 6.3.3, the sphere’s oscillation frequency Ω can be tuned to

resonate with the phonons of the BEC using the relation
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nΩπcs
Ω = , (6.27)

L

determined by the speed of sound cs in the BEC and its length L. The integer

number nΩ is a free parameter whose value will determine which phonon modes are

stimulated by the massive sphere, as established by Eq. (6.23). Focusing exclusively

on the two-mode squeezing induced by the oscillating sphere, resonant when Ω =

ωn + ωl (or equivalently, l + n = nΩ, with nΩ an odd integer), we fnd that the

phonon evolution is given by

( )∑ ˆ†ˆ† ˆ ˆ
ˆ l,n rln(t) bl bn−blbnUg(t) = e , (6.28)

with squeezing parameter

aΩMl,nt
rln(t) = . (6.29)

ℏ

In principle, the operator Ûg(t) squeezes all phonon modes pairs satisfying l+n = nΩ

an odd integer. However, as we discuss below in Section 6.5.1, we will focus on

low mode numbers, which efectively restrict the dynamics. In particular, selecting

nΩ = 3 unambiguously squeezes exclusively the phonon modes l = 1 and n = 2.

The activation of the oscillation of the massive sphere is not expected to stimulate

unwanted phonon modes, given that we are working with resonant processes and

that we are stimulating the lowest phonon modes. First, as the frequency ramps up,

it won’t spend enough time near any resonant mode to induce phonon stimulation.

Second, targeting low-frequency modes avoids stimulating higher-frequency modes,

as this requires a higher frequency than the one being used.

The change produced in the phonon states by the gravitational interaction is

quantifed by magnitude of the squeezing parameter rln, which depends on the

acceleration amplitude aΩ exerted on the BEC by the oscillating sphere, the mode

overlap Ml,n as given by Eq. (6.24), and the interaction time t as shown in Eq.

(6.29). To estimate the amount of squeezing, we use the value aΩ ≈ 2.7×10−8 m/s2

derived in Eq. (6.4) considering Newtonian gravity. Anticipating the discussion

in Section 6.5.1 on the value of the experimental parameters, we can consider the

parameters listed in Table 6.2. Considering, for example, a BEC of length L = 1000

µm with speed of sound cs = 1.02 mm/s, the squeezing parameter evaluates to

rln ≈ 0.65, (6.30)
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corresponding to approximately one phonon generated, or a signal strength of

roughly −0.13 dB.

c) Interferometer Closure and Measurement

To close the frequency interferometry scheme, we apply the inverse transfor-

mations Û sq(−r) and Û tr(−θ). Although less commonly examined in the litera-
ture, inverse squeezing (or antisqueezing) has been studied theoretically and imple-

mented experimentally in systems such as spinor Bose–Einstein condensates [133]

and trapped atomic ions [134]. The inverse squeezing can be achieved by reversing

the nonlinear evolution, thereby efectively recovering the initial state. In the case of

phonons, such a reversal could be implemented by inverting the phase of modulation

of the trapping potential. The inverse tritter could, in principle, be implemented

by applying the same operation but with a π phase shift, analogous to reversing a

beam splitter by changing the relative phase. While experimental demonstrations

of mode-mixing operations are available, the inverse operation is less commonly

reported.

The metrological scheme ends by measuring the fnal phonon state. Since the

scheme can be implemented independently of the specifc measuring protocol, we

assume that some feasible protocol exists which can reach or approximate single-

phonon sensitivity. To support this assumption, we consider recent developments in

phonon detection in BECs. For example, in Ref. [128], single-atom detectors were

used after releasing the trap to estimate the number of phonons by measuring the

momentum distribution of the atoms. To approximate single-phonon detections, one

can adiabatically manipulate the system during the interaction and measurement

stages to ensure a one-to-one correspondence between atoms and phonons, thereby

suppressing unwanted fuctuations. Although current experiments may resolve only

tens of phonons [135, 136], further progress in detection technology may soon enable

single-phonon resolution.

While this is one possible method, alternative measurement strategies may also

achieve comparable sensitivity. For instance, Ref. [114] discusses homodyne and

heterodyne detection schemes, which ofer optimal and suboptimal yet practical

measurements that estimate the phonon number, or related observables, with high

precision [137, 138].

In our metrological scheme, thermal and laser noise are potential sources of

fuctuations in the number of condensed atoms. Previous studies have shown that
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the scheme is robust against thermal noise, and that the presence of initial thermal

fuctuations does not signifcantly afect the phonon states [69]. However, laser noise

can infuence the number of condensed atoms by reducing the cooling efciency and

trap stability. Therefore, it is crucial to minimize these efects by implementing

laser stabilization techniques to ensure the reliability of precision measurements

[139, 140].

Since the precision of our proposal scales with the total number of condensed

atoms Na (see Eq. (6.37)), we must ensure the relative fuctuations δNa/Na to

remain small. The key point relies on preventing fuctuations δNa from introduc-

ing signifcant uncertainties in the phonon population that could compromise the

precision for detecting gravitational efects.

6.4.2 Quantum Cramér-Rao Bound & Quantum Fisher

Information

From the material studied in Chapter 4, we know that the optimal precision to

estimate the parameter aΩ characterizing the gravitational infuence on the BEC’s

phonons by the oscillating sphere is given by the quantum Cramér-Rao bound,

introduced in (4.11),

∆aΩ ≥ √ 1
, (6.31)

NmFQ(aΩ)

which depends on the number of measurements Nm and on the quantum Fisher

information FQ, defned in (4.16).

The QCRB optimizes all positive-operator-valued measurement schemes and can

be saturated for Nm →∞. When the measurement saturating the bound cannot be
experimentally implemented, suboptimal viable measurements, such as heterodyne

detection, can be carried out [70].

To determine the precision in estimating the gravitational parameter aΩ, the

quantum Fisher information must be evaluated frst. Following the material pre-

sented in Section 4.3, the probe state of the system (d0,Γ0) and the symplectic

transformation S(ϵ) driving its evolution need to be expressed in terms of the co-

variance matrix formalism. The transformation S(ϵ) imprints the parameter ϵ in

the probe state, resulting in the state (d,Γ). Considering the metrological scheme

described in the previous subsection, let us determine the probe state, the transfor-
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mation and the resulting state using the covariance matrix formalism language2.

Initially, the BEC’s ground state is considered to be a coherent state, and we

take two phonon modes, l and n, which are assumed to be in the vacuum. The

initial state is described by the pair (dcoh,Γvac). To prepare the probe state, both

phonon modes are squeezed using the symplectic matrix Ssq(r, ϑsq) associated with

the transformation Û sq(r, ϑsq), and then they are mixed with the BEC’s ground
ˆstate using the tritter Str(θ, ϑ) associated to U tr(θ, ϑ). Then, the probe state can

be expressed by the pair d0 = StrSsqdcoh and Γ0 = (StrSsq)Γvac(StrSsq)
†.

The oscillating sphere interacts gravitationally with the BEC through the sym-

plectic transformation Sg(aΩ) associated with the two-mode squeezing transfor-
ˆmation Ug, which imprints the acceleration amplitude aΩ on the phonon evolu-

tion. This results in the state given by the pair d = Sgd0 = SgStrSsqdcoh and
†Γ = SgΓ0Sg = (SgStrSsq)Γvac(SgStrSsq)

†. Since the QFI is independent of the

measurement performed, the interferometric scheme does not need to be closed to

evaluate the QFI. It is enough to consider the system’s state until gravity starts

acting on the BEC, that is, (d,Γ).

The explicit evaluation of the quantum Fisher information can be found in Ap-

pendix C, performed using Wolfram Mathematica for convenience. The result ob-

tained for the quantum Fisher information, (4.16), related to the estimation of aΩ

under the metrological scheme followed reads

{
FQ(aΩ) = (Mln t/ℏ)2 4 + sin2(2θ) sinh2 r + 2(1 + cos4 θ) sin2(ϑsq) sinh 2r( )}

+|α0|2 4 sin4 θ + [cos(2ϑ− ϑsq) sinh 2r + cosh 2r] sin2 2θ .

(6.32)

Undepleted Approximation

During the experimental preparation of the probe state, the ground state of the

BEC is assumed to remain reasonably undepleted by the squeezing transformation

and the tritter, thus staying in a coherent state |α⟩.
First, the conservation of the number of atoms after the action of Ssq requires

the relation Na = N̄ − Nexc to hold, where Na = |α02| represents the number of
¯condensed atoms, N = |α|2 is the number of initially condensed atoms and Nexc is

2The relationship between symplectic transformations and their associated Gaussian unitary
transformations is derived and enlisted in Appendix A.
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the number of atoms excited by the squeezing transformation, which is proportional

but greater than the number of produced phonons, Np = 2 sinh2 r. The relation

between these two quantities is later provided by Eq. (6.43).

To maximize the QFI, the optimal phase values for Ssq and Str can be experi-
π πmentally implemented, with values corresponding respectively to ϑsq = 2 , ϑ = 4 .

Assuming that the ground state remains relatively undepleted under Ssq, implying
¯ ¯N ≫ Nexc, and additionally considering that N ≫ 1, N ≫ 1 and r ≫ 1, the QFI

simplifes to

FQ(aΩ) ≈ 2(Mlnt/ℏ)2 sin2(2θ)N̄Np. (6.33)

To further assume that the BEC’s ground state remains reasonably undepleted

after the tritter transformation, it follows that θ must be small. After the application

of the tritter, the number of ground-state and excited atoms is:

Na(θ) = Na cos
2 θ +

1
Nexc sin

2 θ, (6.34a)
2

Nexc(θ) = Na sin
2 θ +

1
Nexc(1 + cos

2 θ). (6.34b)
2

Introducing γ, δ ∈ R, the ground state can be assumed to remain fairly undepleted
if we require that Nexc = γNa and Nexc(θ) = δNa(θ) for γ ≪ 1 and δ ≪ 1. Then, θ

corresponds to a small parameter if it satisfes the relation( )
1 δγ + 2δ − 3γ − 2

θ ≤ arccos . (6.35)
2 δγ + 2δ + γ − 2

For instance, setting δ = 0.05 and taking the limit when γ → 0, results in a value

θ ≈ 0.21. Then, in the fully undepleted approximation, the QFI becomes

FQ(aΩ) ≈ 8(Mlnt/ℏ)2θ2NaNp. (6.36)

It is interesting to note that the quantum Fisher information for estimating aΩ is

independent of the parameter itself. This is due to linear dependence on aΩ of the

squeezing parameter rln driving the gravitational-induced phonon evolution, as can

be checked from (6.29).
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6.4.3 Measurement Precision Formula

To determine the precision ∆aΩ for measuring the acceleration amplitude aΩ

exerted on the BEC by the oscillating mass, the results from equations (6.24) and

(6.36) are substituted into the Cramér-Rao bound (6.31).

√
αℏπ3 2nl(l2 − n2)2

∆aΩ ≥ √ . (6.37)
16mNaθ LasτtNp(l2 + n2)

The number of measurements appearing in (6.31) is determined as Nm = τ/t, where

τ indicates the integration time of the complete experiment and t is the duration

of a single measurement. Also, the cross-section of the BEC is assumed to be

approximately circular A = π(αL)2, where the BEC’s radius is determined with

respect to the BEC’s length L by the dimensionless number α that represents the

BEC’s length-to-radius ratio.

The precision for estimating aΩ depends on several parameters, which contain

information about the geometry and density of the BEC or the experimental capac-

ities related to the realization of Bose-Eintein condensation. The summary of the

set of parameters involved in the expression for the precision is specifed in Table

6.1. The value of these quantities is discussed in the next section.

6.5 Experimental Parameters

This section is divided into three parts. The frst part reviews the current exper-

imental progress on the Bose-Einstein realisation relevant to this work. Following

this review of the experimental state of the art, we determine the potential numeri-

cal values of the experimental parameters involved in estimating aΩ. In the second

part, the set of constraints that must be fulflled for the realisation of our proposal

is enlisted and reviewed. Here, we focus on two aspects: frst, making sure that the

numerical values of the experimental parameters satisfy all the necessary constraints

required to achieve our experimental proposal, and second, demonstrating that our

proposal is realisable with the current technology and experimental progress. Fi-

nally, in the third part, we explicitly evaluate the precision for measuring aΩ and

discuss the behaviour of ∆aΩ with respect to the most relevant experimental pa-

rameters, such as the BEC’s length or the number of condensed atoms.

115



6.5. Experimental Parameters

Precision Experimental Parameters

Parameter Symbol

Length L

BEC length-to-radius ratio α

Number of condensed atoms Na

Number of phonons Np

Mode numbers l, n

Single-measurement time t

Time of experiment τ
87Rb mass m
87Rb scattering length as

Tritter coupling θ

BEC density ρ0

Speed of sound cs

Table 6.1: Precision Experimental Parameters. Parameter dependence of the preci-
sion considering a 87Rb BEC and other relevant derived parameters.

6.5.1 State-of-the-art Experimental Parameters

This proposal considers a Bose-Einstein condensate composed of 87Rb atoms.

Although other atomic species, such as 23Na or 7L, could be used to create a BEC,
87Rb has been chosen as a representative example since no atomic species ofers a

clear advantage for this work compared to the others. The 87Rb atoms have a mass

of m = 1.44× 10−25 kg and a reported scattering length of as = 99 rB [141], where
rB ≃ 5.29× 10−11 m is the Bohr radius.
First, let us focus on the geometry required for our experiment. Our proposal

assumes a one-dimensional BEC trapped by a uniform potential. This confguration

has been successfully achieved by [120], which created an atomic BEC held in a

uniform three-dimensional potential with cylindrical geometry. Typically, BECs

are created using harmonic trap potentials, which exhibit a cigar-shaped geometry.

Interestingly, the authors of [121] discovered a 3D-to-1D transition in the phonon

dispersion relation for cigar-shaped BECs, where we estimated a length-to-radius

ratio α ≃ 0.1 in their experiment from the ratio of axial to radial frequencies.

This fnding is particularly signifcant since there is no Bose-Einstein condensation
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mechanism for a strictly one-dimensional Bose gas. Instead, 3D-to-1D transitions

can lead to quasi-1D BECs where the Gross–Pitaevskii equation is approximately

one-dimensional. Therefore, a length-to-radius ratio α ≤ 0.1 is assumed for this

work.

Another important parameter related to the BEC’s shape is its size. The typical

lengths reported for BECs have a wide range, going from approximately 50 µm to

1000 µm [142, 143].

Next, let us consider the number of condensed atoms Na. Due to the tritter√
implementation, the precision for measuring aΩ scales as 1/ NpNa instead of the

1/Np dependence that would have been obtained had the tritter not been applied,

where Np ≪ Na. Therefore, a larger Na will improve our proposal’s precision.

The reported number of condensed atoms ranges from 1.6× 103 to 1.1× 109 atoms
[144, 145, 146].

To determine the duration of a single measurement, we must consider the half-

life of both the BEC and the phonons. It has been demonstrated in [73, 147] that

three-body recombination processes primarily determine the BEC’s half-life, that is,

three-atom collisions occurring within the BEC. These processes result in a decay

rate for the BEC’s density given by

dρ0(t)
= −Dρ30(t), (6.38)

dt

where D is the decay constant. From this expression, the half-life of the BEC is

determined as

3
thl = . (6.39)

2Dρ20

6For 87Rb atoms, it has been reported that D = 5.8×10−30 cm s−1 [148]. Assuming

a density within the typical order of magnitude for rubidium BEC experiments,
−3ρ0 = 10

14 cm , leads to a BEC half-life of thl ≈ 10 s.
The phonon’s half-life is governed by two-body decay processes, which include

the Landau and Beliaev dampings [149, 150, 151]. Considering a uniform BEC at

temperatures kBT ≪ ℏωn, the dominant efect is the Beliaev damping, where a

phonon scatters into two lower-energy phonons. Conversely, at temperatures such

that kBT ≫ ℏωn, the dominating process is the Landau damping, corresponding to

a two-phonon interaction that results in a single higher-energy phonon. The relevant

temperature regime for our case is when the thermal energy of the BEC is smaller
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than the BEC’s chemical potential, kBT ≪ µ, ensuring the thermal energy does

not generate fuctuations in the number of atoms of the BEC. In this temperature

regime, the Landau damping rate for the n phonon mode is given by

3π3 (kBT )
4ωn

γLan =
5
, (6.40)

40 mρ0ℏ3cs
where kB is the Boltzmann constant. Assuming a temperature T = 1 nK and the

experimental parameters considered in this work, γLa is of the order of magnituden
−1of ∼ 10−6 s . The Beliaev damping rate is found to be even smaller. In accordance

with previous work, [152], we notice that the three-body recombination drives the

main decay process and gives an upper bound for the time of the experiment.

Taking into account the phonon’s mode numbers, the functional dependence of

∆aΩ in (6.37) indicates that smaller mode numbers enhance the precision. More-

over, larger mode numbers may be challenging to populate and resolve in a single

direct measurement due to the short phonon lifetimes. Therefore, it is convenient

to consider small mode numbers; specifcally, the values l = 2 and n = 1 are chosen.

The number of squeezed phonons is set to Np = 1100, following the analysis

conducted in [153], which corresponds to a squeezing factor of r ≈ 3.8 (∼ 30.4 dB).
While squeezing is well-established for photons in quantum optics [70, 154] and for

phonons in quantum optomechanical systems [155, 156], the controlled creation and

precise measurement of squeezed phonons in BECs remains under research [128, 129].

Phonons in BECs can be experimentally generated and squeezed by changing the

atom-atom interactions or by periodically moving the trap boundaries, using an

atomic version of the dynamical Casimir efect [128, 153] and, theoretically, high

levels of phonon squeezing are possible [153, 157, 158]. Work carried out in [159]

reports achieving a phonon squeezing factor of r ≈ 1.33 (∼ 8 dB) for spin-squeezed
states in a BEC, therefore, further research is necessary to reproduce these levels

consistently in the laboratory.

A separate comment must be made regarding the experimental parameters of

the oscillating mass, as the precision in estimating the acceleration amplitude is

independent of these parameters. This can be explained by the fact that the BEC

phonons respond to the acceleration they experience, regardless of the details of

the gravitational source that induces such acceleration. Therefore, we defer the

discussion of the value of the oscillating mass’s parameters to the end of Section

6.5.3.
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6.5.2 Conditions and Constraints

Throughout the derivations for the evolution of the BEC’s phonons, resulting in

(6.23), and for the precision to measure aΩ, yielding (6.31), several conditions and

constraints have been assumed and imposed on the system. These have been care-

fully considered when selecting the experimental parameters to ensure Bose-Einstein

condensation and consistency with theoretical and experimental requirements [86].

A summary of these concerns is provided here.

1) To achieve the Bose-Einstein condensation, the Bose gas must remain in the

dilute regime

ρ0|as|3 ≪ 1, (6.41)

2) and the Bogoliubov approximation must be satisfed

Nexc ≪ Na, (6.42)

where the number of excited atoms related to the phonon mode n can be

approximated as
2Nexc ≈ (mc /ℏωn)Np. (6.43)s

3) The modes l, n must fulfl the relation

2ℏωl,n ≪ mc . (6.44)s

to guarantee that the excitations are within the phonon regime,

4) and the sum l+n must be odd, following the resonance condition ωl+ωn = Ω.

5) The condition for the low-temperature regime,

kBT ≪ µ, (6.45)

should be satisfed. This is the case for typical experiments, where tempera-

tures can reach down to 0.5 nK for 87Rb BECs [136].

6) The BEC’s density must be sufciently low to maximize the BEC’s half-life,

3
thl = . (6.46)

2Dρ0
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7) The length-to-radius ratio α must be sufciently low, ensuring that the shape

of the BEC remains within the one-dimensional approximation. The ratio can

be expressed as √
Na

α = . (6.47)
πρ0L3

Taking into account the results in [121], values α < 0.1 are considered.

8) The tritter angle must satisfy the inequality( )
1 δγ + 2δ − 3γ − 2

θ ≤ arccos . (6.48)
2 δγ + 2δ + γ − 2

For instance, taking δ = 0.1 and the limit γ → 0, the value θ = 0.31 is

obtained.

In this thesis, we do not aim to optimize the values of the experimental parame-

ters to maximize the precision. This is expected to be achieved by using specialized

numerical methods in later works. In the Appendix D, a Wolfram Mathematica

program is provided, where the precision ∆aΩ is numerically evaluated, and the

conditions and constraints are numerically verifed.

6.5.3 Precision: Parameter Dependence and Evaluation

Now that we have established the possible values for the set of parameters de-

termining the precision ∆aΩ, displayed in Table 6.1, by frst considering the current

experimental progress and second the conditions and constraints required by the

assumptions of the proposal, we next turn to analyse the behaviour of the precision

with respect to key parameters such as the length of the BEC or the number of

condensed atoms.

First, let us consider the parameters that cannot be tuned in the experiment.

The mass of the atomsm and the scattering length as are determined by the selection

of the atom species. While the scattering length can be altered through magnetic

and optical tuning of Feshbach resonances [160], this changes the density of the

condensate and involves the manipulation of magnetic and optical felds, which

can afect other properties of the BEC, thereby complicating the control of the

experimental constraints and conditions. This issue lies outside the scope of this

thesis, so we will consider the default scattering length value for 87Rb. Additionally,

the tritter’s coupling constant θ, limited by (6.48) to a small value that cannot be
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signifcantly optimized, gets fxed by selecting the value of δ in that bound. Finally,

the length-to-radius ratio α gets fxed by the number of condensed atoms and by

the BEC’s density and length, as established by (6.47). Therefore, these quantities

contribute negligibly to the fnal value of ∆aΩ.

Figure 6.6: Precision vs. Mode Number. Precision ∆aΩ as a function of the phonon
mode number l. Lower mode numbers improve the precision. Example presented:
BEC with length L = 500 µm, number of condensed atoms N0 = 108, density
= 1014 −3ρ0 cm . The rest of the parameters are fxed accordingly with Table 6.2.

We now proceed to examine the parameters that make a signifcant contribu-

tion. The precision is enhanced as the time taken for a single experiment t and the

total duration of the experiment τ increase. The aim is then to encourage the ex-

perimental improvement of the lifetimes of the BEC and phonons to achieve longer

experimental durations. The precision dependence with respect to the mode number

is displayed in Figure 6.6. For a BEC of length L = 500µm, number of condensed

= 1014 −3atoms Na = 10
8, and density ρ0 cm , the plot indicates that the precision

is better for lower phonon mode numbers. Thus, selecting the mode numbers l = 2

and n = 1 represents the optimal choice.
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Figure 6.7: Precision vs. Number of Condensed Atoms. Precision ∆aΩ as a function
of the number of condensed atoms for three diferent BEC’s lengths: 150 µm, 500

−3µm, 1000 µm. The density is set to ρ0 = 10
14 cm , with the remaining parameters

following Table 6.2.

The precision of the BEC in measuring the acceleration amplitude aΩ as a func-

tion of the number of condensed atoms Na is illustrated in Figure 6.7. In this plot,

we considered three diferent lengths for the BEC (150 µm, 500 µm, 1000 µm). The

results indicate that the precision is enhanced for longer BECs, which provide a

larger interaction region. Similarly, the precision improves with a greater number

of condensed atoms. The tritter transformation is crucial for this, as it mixes the

condensed atoms with the phonon states, involving a signifcantly large number of

atoms in the experiment that strengthens the correlation in the phonon states.
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In Figure 6.8, we present a logarithmic surface plot of the precision ∆aΩ as

a function of both the BEC’s length and the number of condensed atoms. From

Figure 6.7 and Figure 6.8, we can see that the precision improves simultaneously for

larger BECs and a greater number of condensed atoms in all cases. However, these

two parameters cannot be increased independently due to the various conditions

and constraints previously discussed. This indicates that if we wish to increase the

number of condensed atoms, we must also increase the size of the BEC in accordance

with the constraints required by the system, such as remaining within the dilute

regime or the one-dimensional regime of the BEC.

Figure 6.8: Logaritmic 3D plot of precision ∆aΩ as a function of BEC’s length L
−3and the number of condensed atoms Na. The density is fxed at ρ0 = 10

14 cm ,
with the rest of the parameters following Table 6.2.

The degree of freedom exhibited by some of the parameters, along with the rele-

vant conditions and constraints, suggests the existence of an optimal set of values for

these parameters that maximizes the precision. Such optimization, likely requiring

specialized numerical methods, lies beyond the scope of this thesis and is reserved

for future research.

Now we turn to evaluate explicitly the precision to measure the acceleration

amplitude aΩ with our proposal for several cases. We can select a conservative

set of values for the parameters that lie within the typical values found in BEC

experiments. Let us consider a BEC with L = 200 µm, Na = 106, ρ0 = 1014

−3cm , for an initial phonon number of Np = 100 and a single-expertiment time

of t = 0.1 s, where the rest of the parameters follow Table 6.2. Explicit evaluation

yields a precision of 6.3×10−14 m/s2, which already enables our proposal to compete
with current leading experiments like the Eöt-Wash WEP torsion balance, reporting
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precisions up to 5× 10−14 m/s2 [161, 162, 163].
Conversely, an optimistic set of values can be chosen, which still lies within the

values found in BEC experiments, except for the number of phonons. Consider a
−3BEC with parameters L = 1000 µm, Na = 10

9, ρ0 = 10
14 cm , Np = 1100 and

t = 1 s, where the rest of the parameters follow Table 6.2. Evaluating the precision,

we obtain that ∆aΩ = 7.6 × 10−18 m/s2, which represents a very promising result
that, if reproduced in the laboratory, would signifcantly improve current precisions

for measuring accelerations.

In Table 6.2, we present a broad value range for the experimental parameters

determining the precision of the experiment, showing how the parameter selection

afects the value of the precision. All the results displayed there are consistent with

the conditions and constraints established in Section 6.5.2.

Experimental Parameter Ranges

Parameter L Na α t cs Ω ∆aΩ

Units µm s mm/s Hz m/s2

= 3× 1013 −3ρ0 cm

150

500

1000

106 0.05

107 0.02

108 0.03

1

1

1

1.02

1.02

1.02

64.6

19.4

9.7

1.9× 10−14

5.5× 10−16

4.3× 10−17

= 1014 −3ρ0 cm

150

500

1000

107 0.097

108 0.05

108 0.017

0.1

0.1

0.1

1.8

1.8

1.8

118.1

35.4

17.7

1× 10−14

3× 10−16

7.6× 10−17

= 1015 −3ρ0 cm

150

500

1000

108 0.097

108 0.015

108 0.005

0.01

0.01

0.01

5.9

5.9

5.9

373.5

112

56

3.3× 10−15

3× 10−16

7.6× 10−17

Table 6.2: Precision ∆aΩ for measuring the acceleration amplitude induced by an
oscillating sphere on a 87Rb BEC. Fixed parameters: experiment duration τ = 30
days, mode numbers n = 1, l = 2, number of phonons Np = 1100, tritter angle
θ = 0.31 and a scattering length a = 99rB, where rB is the Bohr radius. The ratio
α is determined by Eq. (6.47), and Ω = ωl + ωn is the resonant frequency between
the phonons and the oscillating sphere.

To better understand the role of the two-mode squeezing and the tritter trans-

formation in the preparation of the probe state (cf. Section 6.4.1) for enhancing the

parameter estimation, we compare the resulting precision ∆aΩ for three scenarios:

i) the full protocol including two-mode squeezing and tritter transformation, ii) a

partial protocol dismissing the tritter and considering only the two-mode squeezing
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transformation given by Eq. (6.25), and iii) the case where both the tritter and

the two-mode squeezing transformations are dismissed, i.e., considering only two

vacuum phonon modes directly interacting with the gravitational potential.

Let us consider a representative set of parameters from Table 6.2, for example, a

BEC with density ρ0 = 10
14 cm−3 and length L = 500 µm, for Na = 10

8 condensed

atoms. We fnd that i) the full protocol yields a precision of ∆aΩ ∼ 10−16 m/s2,

which follows from Eq. (6.37). The precision ∆aΩ can be derived using Appendix

C or starting from Eq. (6.32) for ii) the partial protocol by taking θ = 0 to take out

the tritter transformation, to obtain

√
αℏπ3 nl(l2 − n2)2

∆aΩ ≥ √ , (6.49)
4m(Np + 1) LasτtNa(l2 + n2)

yielding ∆aΩ ∼ 10−14 m/s2. In contrast, the case iii) dismisses the squeezing and
the tritter by taking r = 0 and θ = 0 in Eq. (6.32), which subsequently leads to

√
αℏπ3 nl(l2 − n2)2

∆aΩ ≥ √ , (6.50)
2m LasτtNa(l2 + n2)

yielding a much less favorable precision of ∆aΩ ∼ 10−10 m/s2. This comparison

highlights the critical enhancement achieved by the appropriate selection of the

probe state. By incorporating the two-mode squeezing and tritter operations, the

full protocol achieves a six-order-of-magnitude improvement in ∆aΩ over the vacuum

phonon modes case.

Before concluding this chapter, let us consider the experimental realization of the

oscillating mass. Notice that the nature of the oscillating sphere does not infuence

or afect the precision ∆aΩ. It is experimentally possible to accelerate a mass with

an exact sinusoidal dependence on time, similar to that outlined in Section 6.2. Let

us consider two specifc examples to illustrate values that can be found in current

experiments.

First, we refer to the work presented in [164], which discusses a levitating mag-

netic sphere of mass M = 4 mg and radius r = 0.5 mm that oscillates with an

amplitude δR = 0.5 mm and frequency Ω = 30 Hz. Additionally, we can consider

the proposal presented in [114] for a tungsten or gold sphere of mass M = 200 g,

radius r = 14 mm, and an oscillation amplitude of δR = 2 mm. Related to the ex-
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perimental realization of the oscillating mass, the most important parameter is the

capacity of matching the frequency that resonates with the phonons. From Table

6.2, we can see that the required frequencies range from a few to hundreds of Hz,

which lie within the typical ranges achieved by oscillating massive spheres.

In the next chapter, we explore the oscillating sphere’s gravitational potential

outside the framework of Newtonian gravity. Instead, we consider two alternative

models that modify gravity in the Newtonian regime: MOND and Lambda gravity.
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Chapter 7

Testing Modifed Theories of

Gravity

Having established in Chapter 6 our experimental proposal for estimating

the gravitational potential of the oscillating sphere—encoded in the acceleration

amplitude—employing the phonons in the BEC, this chapter focuses on imple-

menting the experiment to test deviations from Newtonian gravity. Specifcally,

we assume that the gravitational potential of the oscillating sphere is fundamen-

tally described by a modifed gravity framework, considering two cases: Modifed

Newtonian Dynamics (MOND) and Lambda-gravity.

This chapter is organized as follows. In Section 7.1, we motivate the origin and

exploration of modifed theories of gravity, primarily driven by the ‘missing mass

problem’, commonly known as the dark matter problem. Section 7.2 introduces

Modifed Newtonian Dynamics (MOND), a framework that suggests a change to

the Newtonian gravitational force efective for accelerations below the ∼ 10−10 m/s2

threshold. Following MOND, we derive the gravitational potential of the oscillating

sphere and the theoretical prediction for the value of the acceleration amplitude,

which is then compared to the Newtonian prediction. Section 7.3 presents Lambda-

gravity, an extension to Newtonian gravity that, supported by the Gurzadyan the-

orem, incorporates an additional term that depends on the cosmological constant.

In accordance with Lambda-gravity, the gravitational potential of the oscillating

sphere and the predicted value of the acceleration amplitude are derived. To test

this prediction, we estimate the precision for measuring Newton’s gravitational con-

stant G and the cosmological constant Λ, both of which determine the strength
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of the two terms in the modifed gravitational force. Finally, these precisions are

compared with the current state-of-the-art experimental accuracies.

7.1 Motivation for Modifed Theories of Gravity

7.1.1 Dark Matter

Numerous astrophysical and cosmological observations pose an important chal-

lenge to our understanding of the Universe. When the observational data gathered

by our telescopes is compared with the theoretical predictions of General Relativity,

including its Newtonian limit, discrepancies arise. The measurements of the rotation

curves of galaxies [165, 166] and the velocity dispersion profles of galaxy clusters

[167] exhibit a behaviour that difers from the curves predicted by theoretical mod-

els based on the observed mass distributions. The data collected via gravitational

lensing of galaxies and galaxy clusters, as well as data characterizing the large-scale

structure of the universe [168, 169], assuming General Relativity, imply a matter con-

tent and distribution which difers from the observed one. Additionally, the origin

of the acoustic peaks observed in the cosmic microwave background (CMB) angular

power spectrum [170, 171] and the baryonic vs non-baryonic matter density—the

baryonic abundance—observed in the universe [172] cannot be explained without

making extra assumptions. The confict between these observations and the theo-

retical predictions is broadly known as the ‘missing mass problem’.

The simplest solution to the problem is to postulate the existence of missing mat-

ter: dark matter. Another possible solution is to assume that the current theories

of gravity need to be modifed. The answer seems to lie within this non-necessarily

exclusive dichotomy [173]. The community has favoured the proposal of the exis-

tence of dark matter. However, no conclusive evidence has been found pointing out

its precise nature and features, and “its existence remains hypothetical” [174, 175].

Since its conception, one of the leading proposals for modifed gravity at the

non-relativistic, low-velocity limit has been Milgrom’s Modifed Newtonian Dynam-

ics (MOND) [176]. Based on the phenomenology of galaxy rotations, MOND pro-

poses a modifcation of Newtonian gravity, which is valid for small accelerations

in the regime a ≲ 10−10 m/s2. Several astronomical observations are consistent

with MOND and confrm some of its predictions at galactic scales. Such observa-

tions include the details of galactic rotation curves across galactic types and masses,

galactic disk stability, and the Tully-Fisher relation [174, 177, 178]. Conversely,
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MOND struggles to reproduce the dynamics of galaxy clusters and is not applicable

for cosmological or lensing problems which require a covariant treatment [179, 180].

More recently, the internal dynamics of wide binary stars observed by the Gaia

satellite demonstrate consistency with MOND predictions [181, 182]. Interestingly,

hybrid theories such as dark matter superfuid have been developed, which match

the ΛCDM model at cosmological scales and reproduce MOND phenomenology at

galactic scales [183, 184].

The search for empirical evidence of MOND has focused on astronomical and

cosmological scales. However, some Earth-bound tests have also been conducted.

Torsion pendulum experiments have confrmed Newton’s second law down to 10−14

m/s2 for torque restoring induced accelerations [162] and down to 10−12 m/s2 for

gravitational induced accelerations [163]. These results do not contradict MOND,

as the acceleration dependence of the theory implies a violation of the strong equiv-

alence principle. Even for free-falling observers in the presence of an external feld,

its behaviour is expected to depend on both the system’s internal acceleration and

any external gravitational feld. This efect is known as the external feld efect

(EFE). It suggests that when an external feld larger than the a0 scale is present,

modifcations to Newtonian expectations are signifcantly suppressed, particularly in

Earth-bound experiments [176]. In addition to the torsion pendulum experiments,

recent work proposes to test the isolated system limit of MOND using the gravita-

tional attraction between two levitating magnets [164], expecting to probe MOND

at accelerations as low as 10−13 m/s2.

Quantum technologies present a great opportunity for tabletop experiments

thanks to the development of ultra-high-precision quantum sensors [92]. This

progress has signifcantly impacted the search for dark matter, which has inspired

exploration proposals that take advantage of optomechanical systems [185], atom

interferometry [186], and Bose-Einstein Condensates [17]. Despite these advances,

eforts to test MOND in tabletop experiments remain limited.

Our proposal contributes to flling that gap by proposing a frequency interfero-

metric scheme to test gravity at a0 scales with accuracy levels not explored before

and search for evidence of MOND.

7.1.2 Dark Energy

The ΛCDM model represents the current standard cosmological model due to its

outstanding agreement with the cosmological observations [187]. One of the main
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components of the model is the cosmological constant Λ, often associated with the

dark energy content of the universe.

The role of the cosmological constant is well established within the ΛCDMmodel.

This model assumes the cosmological principle and describes the universe by con-

sidering a Friedmann–Lemâıtre–Robertson–Walker metric. The evolution of the

universe is characterised by an expanding universe whose expansion is driven, in

its simplest form, by the cosmological constant. Observations analysing the rate

of expansion of the universe estimate that the value of the cosmological constant
−2is Λ = (1.09 ± 0.028) × 10−52 m , as reported by the Planck experiment [188].

Although the value of Λ is well established for astrophysical and cosmological ob-

servations, there are currently no Earth-based experiments aimed at measuring the

value of Λ in a laboratory setting.

The physical interpretation of Λ can be extended beyond the role of a parameter

in the ΛCDM model. In the light of Gurzadyan theorem [189], it can be considered

a fundamental constant of nature. This theorem generalises the Newtonian gravi-

tational force into a model known as Lambda-gravity by adding an extra term to

Newtonian gravity, which is proportional to the cosmological constant. In this way,

the model concludes that two terms determine Newtonian gravity, each proportional

to a fundamental constant, G and Λ.

We propose to measure the gravitational force established by Lambda-gravity by

estimating the values of the G and Λ terms. Our proposal represents the frst Earth-

based tabletop experiment to bound the value of Λ. Its measurement would serve

as a confrmation of its role as a fundamental constant and as the main source of

the dark energy driving the expansion of the universe. Additionally, studies indicate

that dark matter could also be explained by using Lambda-gravity [190].

In the following sections, we provide a brief introduction to MOND and Lambda-

gravity and derive the implications these models have on the gravitational potential

of the oscillating sphere based on the experiment proposed in Section 6.2.

7.2 Modifed Newtonian Dynamics

Modifed Newtonian dynamics (MOND) [191] is a hypothesis that proposes a

modifcation of Newtonian gravity at extremely small accelerations, below ∼ 10−10

m/s2, characteristic of galactic systems and the universe at large scales. Introduced

in 1983 by M. Milgrom [176], its original motivation was to explain the velocity
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distribution of stars observed in galaxies, which could not be reproduced solely

with Newton’s theory. This discrepancy—which is one of the many included in the

‘missing mass problem’—leads to at least one of the following conclusions:

1) There exist in galaxies large quantities of unseen matter which boost the ve-

locities of the stars.

2) Newton’s laws do not apply to galaxies.

Milgrom noted that the discrepancy could be solved if the gravitational force experi-

enced by a star in the outer regions of a galaxy was proportional to the square of its

centripetal acceleration. In MOND, violation of Newton’s laws occurs at extremely

small accelerations, which is characteristic of galactic systems and the universe at

large.

The basic premise of MOND is that Newton’s laws—extensively tested in high-

acceleration environments on the Earth and in the Solar System—have not been

verifed for objects with extremely low accelerations, such as the stars in the outer

part of galaxies. This premise leads to the keystone of MOND: the postulation of

a new phenomenologically oriented efective gravitational law, chosen to reproduce

the Newtonian result at high acceleration but leading to diferent behaviour at low

acceleration. MOND proposes that, for isolated systems, the force is given by,( )
a

FN = mµ a, (7.1)
a0

where FN denotes the Newtonian force, m and a are the object’s (gravitational)

mass and acceleration, and µ is an interpolating function. MOND introduces a new

fundamental constant, a0 ≈ 1.2 × 10−10 m/s2, that marks the transition between
the Newtonian regime (a ≫ a0) and the deep-MOND regime (a ≪ a0) and whose

value is set by astronomical observations.

The interpolating function is required to satisfy( )
a

µ → 1 for a≫ a0, (7.2)
a0

to agree with Newtonian mechanics at high accelerations. On the other hand, its

consistency with astronomical observations at low accelerations requires( )
a a

µ → for a≪ a0. (7.3)
a0 a0
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The functional form of µ is not specifed by the theory; rather, it is constrained

through fts by observational data. The most common functional forms [192] tested

for the interpolating function are the ‘simple’ form( )
a 1

µ = , (7.4)
1 + a0a0 a

and the ‘standard’ form ( )
µ

a
= √ 1

, (7.5)( )2a0 1 + a0
a

often parameterized as µ(z) = 1/(1+z−n)1/n for an efective index n, which is deter-

mined within the acceleration range and external feld efect regime of a particular

observation. However, additional alternative functional forms for µ exist.

Therefore, in the Newtonian regime, a≫ a0, Newton’s second law is recovered,

and in the deep-MOND regime, a≪ a0, we have

2a
FN = m . (7.6)

a0

Since the dynamics established by MOND are non-linear in the acceleration,

in this model, subsystems cannot be decoupled from their environment, leading to

the external feld efect (EFE). Let us consider a system with internal acceleration

a < a0, which is embedded in the presence of an external acceleration feld ae. If the

external acceleration is considerably larger than a0, then MOND efects are expected

to be suppressed by a factor (a0/ae)
n [176, 192]. The isolated MOND limit assumes

the system under study is free from any external acceleration feld.

In the following subsection, we derive the predictions for our experiment in the

isolated MOND limit and discuss the direct detection of MOND while considering

the EFE.

7.2.1 Predictions

We propose to experimentally explore MOND by studying the gravitational ef-

fects on the phonons of a BEC produced by a nearby oscillating massive sphere.

In particular, we examine how MOND modifes the gravitational potential of the

oscillating sphere and compare MOND’s predictions with those made by Newtonian

gravity. By incorporating the tritter operation, we enhance the sensitivity to mea-
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sure accelerations by two orders of magnitude compared to [114]. As demonstrated

in Section 6.5.3, this scheme allows us to probe gravity at a0 scales with an accuracy

level of 10−17 m/s2. Although the EFE might suggest that, for Earth-bound ex-

periments, the leading variants of MOND lie beyond this accuracy, the experiment

would provide constraints on any gravity theory at a0 scales, signifcantly improving

the precision at which this regime has been measured.

In the case of the isolated system limit in MOND, the gravitational force exerted

by the oscillating sphere on the BEC is modifed according to Eq. (7.1). From it,

we can calculate the MOND gravitational potential ϕM as

∫
1 ⃗ϕM = F · dr⃗, (7.7)
m

where m is the mass of the BEC. Recalling the experimental setup established in

Section 6.2, we now derive the oscillating sphere’s gravitational potential predicted

by MOND. Given the small BEC approximation, L≪ R, and the small oscillation

amplitude approximation, δR ≪ R0, considered on the experimental setup, the in-

duced acceleration a(t) on the BEC by the oscillating sphere is only a time-dependent

quantity, as shown in (6.1). Therefore, under these approximations, we assume that

the interpolating function becomes independent of the position. This implies that

(7.7) can be simply integrated, yielding that the MOND gravitational potential ϕM

is proportional to the Newtonian gravitational potential, ϕM(x, t) = µ(a/a0) ϕ(x, t).

For the small BEC approximation, x/R≪ 1, we obtain that

GM GM
ϕM(x, t) ≈ − ( ) + ( ) x, (7.8)a aµ R(t) µ R(t)2a0 a0

whereM is the mass of the sphere and G is Newton’s gravitational constant. Recall

the sphere is assumed to move sinusoidally, R(t) = R0+δR sin(Ωt). Then, under the

small oscillation amplitude approximation, δR/R0 ≪ 1, the induced acceleration on

the BEC predicted by MOND can be written as

GM 2GM δR
a(t) = ( ) − ( ) · sin(Ωt), (7.9)a aµ R2 µ R20 0 R0a0 a0

where the amplitude of the time-oscillating term of the induced acceleration pre-

dicted by MOND can be identifed as
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2GMδR
aM = ( ) . (7.10)aµ R30a0

Deviations from standard Newtonian gravity originating from MOND must be re-

fected in the experimental measurement of the acceleration amplitude aΩ, which

should match the value aM predicted by MOND.

7.2.2 Results

Consider the experimental setup described in Section 6.2. To evaluate the per-

formance of our estimation procedure, we generate data that emulate experimen-

tal measurements aexp of the acceleration amplitude induced on the BEC by theΩ

oscillating mass. For a set of distances R0, we frst compute the theoretical pre-
thdictions aM for the acceleration amplitude assuming MOND, taking the ‘simple’

form of the interpolating function µ in the isolated system limit. Then, we add

Gaussian-distributed noise to each of these theoretical values to mimic the exper-

imental uncertainty. The magnitude of the noise is determined by the theoretical

sensitivity ∆aΩ, obtained from our scheme. Specifcally, the standard deviation of

the added noise is equal to ∆aΩ, which represents the minimal detectable change in

the acceleration amplitude under our scheme.

These simulated data allow us to evaluate the robustness of our ftting procedure

and to test whether the gravitational signal predicted by MOND could be distin-

guished from a purely Newtonian prediction. For comparison, we also generate

simulated data assuming the dynamics remain Newtonian.

The top panel of Figure 7.1 presents the results of six independent measurements

of aΩ at varying distances. Each yellow dot represents a simulated measurement

based on MOND dynamics, while blue dots correspond to Newtonian gravity. To

obtain these simulated measurements, we took into account the theoretical predic-

tions of each gravity model and added noise equal to the experimental precision

∆aΩ. We interpret the resulting quantity as the measured acceleration amplitude
expaΩ . The solid lines represent ftted curves to the individual measurements for both

theories.

The middle panel of Figure 7.1 illustrates the relative deviation of the simulated
thmeasurement, aexp, with respect to the MOND theoretical prediction, aM , repre-Ω

sented by the yellow dots. This is compared to the relative precision, ∆aΩ/a
th
M , for

estimating the acceleration amplitude predicted by MOND, indicated by the yel-
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low dashed line. The bottom panel of Figure 7.1 presents a similar analysis of the
thNewtonian prediction of the acceleration amplitude, aN .

Figure 7.1: Simulated Experiment to Test MOND. Top: Simulated experimental
measurements of aΩ as a function of R0 following the MOND prediction (yellow
dots) and the Newtonian prediction (blue dots). The solid lines correspond to the
ftted acceleration curves. Middle and Bottom: Relative deviation (dots) of the sim-

expulated experimental acceleration amplitude measurements aΩ from the theoretical
thprediction a , and relative precision ∆aΩ/a

th (dashed lines) for MOND (yellow)
and Newton (blue). We assume ∆aΩ = 3×10−16 m/s2, and a sphere of massM = 1
g, with an oscillating amplitude δR = 1 mm.

From these results, we observe that the relative precision ∆aΩ/a
th degrades asΩ

the distance between the BEC and the oscillating sphere increases. This is because

135



7.2. Modifed Newtonian Dynamics

gravity gets weaker, and the value of ath decreases. Across the range of exploredΩ

distances, between 10 cm to 30 cm, we achieve relative precisions of the order of

magnitude of ∼ 10−4 to determine MOND and ∼ 10−2 to determine Newton. These
levels of precision allow us to explore deviations from Newtonian gravity within

acceleration regimes where MOND is expected to depart from standard Newtonian

dynamics. By varying the separationR0 between the BEC and the oscillating sphere,

we can ft the acceleration curves to distinguish between Newtonian gravity and

MOND in the isolated limit.

The results in Figure 7.1 also reveal a diference of approximately two orders

of magnitude between the acceleration amplitudes predicted by MOND and New-

tonian gravity. This diference arises from the nature of the MOND modifcation.

In the deep-MOND regime, where the acceleration of the system is well below the

characteristic MOND acceleration a0 ∼ 10−10 m/s2, the gravitational force tran-

sitions from a Newtonian scaling ∝ 1/R0
2 to a MOND scaling ∝ 1/R0, resulting

in a slower decay with the distance1. Since the experiment operates in the low-

acceleration regime and assumes the ‘simple’ form of the interpolating function, the

gravitational signal gets efectively amplifed. Therefore, MOND predicts a larger

value of aΩ compared to Newtonian gravity.

The enhanced gravitational signal predicted by MOND in our setup is concep-

tually analogous to MOND’s explanation for the behaviour observed in galactic

rotation curves. In galaxies, the outer stars rotate faster than expected based on

the visible mass distribution and the assumption of Newtonian gravity. While New-

tonian dynamics predict that the orbital velocities decrease with the distance from

the galactic centre, observations show that these velocities remain roughly constant,

indicating a stronger gravitational pull than what Newtonian predictions suggest.

MOND addresses this by modifying the gravitational force law in regimes below

the MOND characteristic acceleration a0, which results in a stronger gravitational

interaction compared to Newtonian gravity. This efectively provides the additional

gravitational strength required to explain the galactic dynamics without invoking

dark matter. In our laboratory setting, the same theoretical framework applies since

the experiment is designed to operate within the low-acceleration regime. Here,

MOND induces an enhancement of the gravitational strength experienced by the

BEC, analogous to that inferred from stellar motion in galaxies.

1The MOND scaling in the deep-MOND regime can be derived by solving Eq. (7.7) for a, where
on the left-hand side of the equation corresponds to the standard Newtonain gravitational force.
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As discussed in Section 7.1.1, the most accurate Earth-based tests of MOND to

date have reached precisions up to 10−14 m/s2 [162]. In comparison, our proposal

signifcantly enhances this precision by up to three orders of magnitude by reaching

precisions up to 10−17 m/s2. This degree of precision opens up new possibilities for

testing MOND in tabletop experiments.

It was previously noted that in the presence of the EFE, deviations between

Newtonian and MOND dynamics scale as a0(a0/ae)
n, where the parameter n is

typically constrained by astrophysical observations. Since no defnitive theory for

MOND has been developed, there is currently no robust prediction of how the EFE

might operate at the scales of Earth-bound experiments. However, our results indi-

cate that the precision achieved by our setup enables us to detect MOND signatures

even in the presence of external accelerations for values of n ≲ 0.7. Additionally,

alternative interpretations of MOND based on ‘modifed inertia’ —as opposed to

the standard modifed gravity framework—may further suppress the EFE, making

deviations from Newtonian gravity easier to detect in our setup.

Our analysis demonstrates the great potential of employing BEC phonons as a

high-precision probe for testing MOND in controlled laboratory conditions. The

achieved precisions represent a considerable improvement over current Earth-based

experimental constraints, enabling us to explore MOND predictions in regimes where

deviations from Newtonian gravity become signifcant. Furthermore, our fndings

indicate that even in the presence of external accelerations, the proposed experiment

could still detect MOND efects.

7.3 Lambda-Gravity

Lambda-gravity arises as a natural generalization of the Newtonian gravitational

force based on the Gurzadyan theorem [189], and its main conclusion is that gravity

is described by two fundamental constants: Newton’s gravitational constant G and

the cosmological constant Λ.

The Gurzadyan theorem establishes the most general function satisfying the

frst statement of Isaac Newton’s shell theorem, the equivalence of the gravitational

forces produced by a spherical mass distribution and a point mass located in its

centre while dismissing the second statement, the absence of gravitational forces

inside a hollowed massive spherical shell. This leads to the appearance of an extra

term in the gravitational force, which involves the cosmological constant Λ within
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the weak-gravity limit of General Relativity [189]

GMm c2Λmr
F = − + , (7.11)

2r 3

corresponding to the metric [193, 194]

22GM Λr
g00 = −1 + + , (7.12)

c2r 3

where G is Newton’s gravitational constant and c is the speed of light. The second

term of the metric is related to the usual Newtonian gravitational potential, and

the third one corresponds to the cosmological constant term from general relativity

and the McCrea-Milne cosmology [195].

Then, from the Gurzadyan theorem, Λ arises as a second fundamental gravita-

tional constant along with Newton’s gravitational constant, which is not coupled to

matter and is dimension-independent [194]. The implications of considering Λ as a

fundamental constant of nature were investigated in [196].

Experimentally, the Λ term is well supported by cosmological data in the context

of the standard ΛCDM cosmological model. Additionally, it was shown that it

fts observational data on the local Universe [193, 194], describes the dynamics of

groups and clusters of galaxies [190, 197], and ofers an explanation for the Hubble

tension [198, 199, 200] by proving the existence of a local and a global Hubble

fow [197, 201, 202]. The theorem’s prediction of the existence of a force at the

centre of a hollowed spherical distribution of mass also fts the observational data

on determining the structure of spiral galaxy disks by the spherical galactic halos

[203].

Studies have suggested that Lambda-gravity can be used to describe dark matter

in galactic systems, ranging from pairs to clusters of galaxies, fnding support in

observations coming from gravitational lensing and the Plack satellite [190].

7.3.1 Predictions

Similarly to the MOND exploration, we propose to study the gravitational ef-

fects on the phonons of a BEC produced by a nearby oscillating massive sphere to

experimentally explore Lambda-gravity. In particular, we propose to measure the

presence of both terms appearing in (7.11) by estimating the value of G and Λ from

the experiment.
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Considering the experimental setup established in Section 6.2, the gravitational

potential predicted from Lambda-gravity ϕΛ associated with the oscillating sphere

can be straightforwardly derived from the basic equation established by Lambda-

gravity, Eq. (7.11). In the small BEC approximation, L ≪ R, the potential ϕΛ

reads

[ ]
GM c2ΛR(t)2 GM c2ΛR(t)

ϕΛ(x, t) ≈ − − + − x, (7.13)
R(t) 6 R(t)2 3

where M is the mass of the sphere, G is Newton’s gravitational constant and Λ

is the cosmological constant. The sphere is assumed to be moving sinusoidally,

R(t) = R0+ δR sin(Ωt). Considering the small oscillation amplitude approximation,

δR/R0 ≪ 1, the induced acceleration on the BEC predicted by Lambda-gravity is

expressed as ( )
GM c2R0Λ 2GM c2R0Λ δR

a(t) = − − + sin(Ωt), (7.14)
R0 3 R0

2 3 R0

where the amplitude of the time-oscillating term of the induced acceleration is de-

termined as

2δRMG c2δRΛ
aΛ = + .

R3 30

(7.15)

By measuring aΛ, the values for G and Λ can be estimated. Detecting the

presence of the Λ term would demonstrate the Gurzadyan theorem. However, the
−2value of the cosmological constant is minute, of the order of Λ ∼ 10−52 m as

determined by the Planck satellite [188]. Then, in practice, an upper bound can be

placed for the value of Λ with our experimental proposal. The frst estimation of Λ

from an Earth-based experiment.

7.3.2 Results

Following the approach outlined in Section 7.2.2 for the MOND case, we gen-

erate simulated data to emulate measurements of the acceleration amplitude aΩ

induced on the BEC by the oscillating mass. As before, we evaluate the theoretical

predictions at a set of distances R0 and add Gaussian-distributed noise with stan-

dard deviation equal to the theoretical sensitivity ∆aΩ to mimic the experimental

uncertainty.
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However, in this case, we assume the gravitational interaction is governed by

Lambda-gravity and use the simulated data to estimate both Newton’s gravitational

constant G and the cosmological constant Λ through statistical ftting. Unlike the

MOND analysis, where we compared two competing models, here we focus on testing

whether the experimental setup could determine the presence of a nonzero Λ. A

successful estimation of Λ would provide direct evidence supporting the fundamental

nature of Lambda-gravity.

The precision for estimating G and Λ can be derived by connecting Eq. (7.15)

with the quantum Cramér-Rao bound (6.37), yielding

R3 3
∆G = 0 ∆aΩ, ∆Λ = ∆aΩ . (7.16)

2δRM c2δR

Let us consider an oscillating sphere of mass M = 100 g and oscillation ampli-

tude δR = 1 mm. Assuming a precision ∆aΩ = 4.3×10−17 m/s2, we obtain a relative
precision for measuring Newton’s gravitational constant of ∆G/G = 3×10−6. Com-
pared to the current best measurements of G, which exhibit a relative precision of

∆G/G ≃ 10−5 [204], our results suggest that the BEC-based experiment proposed
in this thesis represents a potential improvement over existing G measurements.

This precision can be further enhanced by experimentally probing the functional

dependence of aΩ on the distance R0 and ftting the measurements obtained. We

conduct a set of simulated experiments representing the measurement of aΩ at vary-

ing distances R0. Then, the results are ftted using Eq. (7.15), which provides the

Lambda-gravity theoretical prediction. The measurements are simulated by adding
thnoise of size ∆aΩ to the theoretical prediction aΛ , resulting in the measured accel-

eration amplitude aexp. Figure 7.2 illustrates this analysis.Ω

The top panel of Figure 7.2 displays the results of six independent measurements

of aΩ, represented by blue circles, with the corresponding ft depicted by the solid

blue line. The estimated value and uncertainty for G, along with the upper limit

on Λ, are also displayed. The bottom panel displays the relative deviation of the
thsimulated measurements aexp from the Lambda-gravity theoretical prediction aΛ ,Ω

indicated by the blue dots. The blue dashed line represents the relative precision
exp∆aΩ/a

th
Λ . The experimental error on a is not visible in the top panel since its

relative error is approximately ∼ 10−6.
After performing the statistical ft, we observe an improvement in the precision

for estimating G, achieving a relative precision of ∆G/G = 8.3×10−7. Additionally,
−2we establish an upper limit on the cosmological constant Λ < 1.8× 10−31 m .
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These results demonstrate that measuring the acceleration amplitude aΩ at dif-

ferent values of R0 not only allows us to probe the functional dependence of the

gravitational potential with the distance but also to improve the constraints on G

and Λ.

Figure 7.2: Simulated Experiment to Test Lambda-gravity. Top: Simulated mea-
surements of aΩ at diferent R0 values (blue circles). The ftted curve of the mea-
surements (solid blue line) is used to estimate G, indicating the relative precision
∆G/G, and to set an upper bound on Λ. Bottom: Relative deviation of the sim-

expulated experimental measurements a from the theoretical prediction ath (blueΩ Λ

circles), along with the relative precision ∆aΩ/a
th (blue dashed line). The precisionΛ

∆aΩ = 4.3× 10−17 m/s2 is assumed, along with a massive sphere of mass M = 100
g, with an oscillating amplitude δR = 1 mm.

To ensure that the uncertainties ∆G and ∆Λ are primarily determined by ∆aΩ,

we assume that the relative experimental precision for measuring δR, R0, and M is

better than 10−6. These precision levels are achievable for the parameters considered

in our experimental setup, as suggested by CODATA information [204], with the

particular caveat that the oscillating mass must be placed in a vacuum to minimize
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systematic uncertainties in determining M . Given these conditions, it is reasonable

to assume that the uncertainties in δR, R0, andM do not introduce signifcant noise

that could limit the precision set by ∆aΩ.

Regarding the measurement of the cosmological constant, our results indicate
−2that the expected precision for estimating Λ is of the order of 10−31 m , as shown

in Figure 7.2. It is important to emphasize that this value should be regarded as

an upper limit on Λ. This limit is approximately 20 orders of magnitude below the

current best estimation from the Planck experiment, Λ = (1.09 ± 0.028) × 10−52

m−2 [188]. Nevertheless, setting such a bound represents an unprecedented level of

precision for Λ in Earth-based experiments.

Our analysis demonstrates that the proposed BEC-based experiment provides

a promising tool for probing gravity through the estimation of fundamental gravi-

tational parameters, enabling precise measurements of G and imposing constraints

on Λ. The improvement in the precision for determining G by two orders of mag-

nitude compared to current methods suggests that this approach could contribute

to resolving persistent discrepancies in its experimental determination [205]. Addi-

tionally, although our estimated upper limit on Λ remains far above cosmological

observations, achieving such a constraint in a laboratory setting is an unprecedented

milestone.

These results highlight the potential of quantum systems to improve the pre-

cision for performing gravity tests, opening new avenues not only for conducting

fundamental research but also for implementing this progress in more practical ap-

plications. In the next chapter, we explore how the experimental proposal presented

in this thesis—based on the BEC phonons—could be translated into a technolog-

ical device for gravity measurements, creating new opportunities for commercial

applications.
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Chapter 8

Technological Implementation &

Commercialization Roadmap

The proposal to use the phonons of a Bose-Einstein Condensate to probe gravity,

as extensively discussed in this thesis, is highly promising for fundamental research

and practical applications. Given its potential, it is essential to consider the tech-

nological implementation of this idea and its eventual commercialisation.

Historically, the often unintended impact of theoretical physics research on tech-

nological progress has signifcantly driven scientifc progress. Therefore, the trans-

lation of theoretical and experimental research into the generation of intellectual

property and then into commercially viable technology plays an important role in

scientifc endeavour.

In this chapter, we present a patent closely related to the proposal constructed in

this thesis, as both rely on the same physical principles and share the core ideas and

purposes. A Market Analysis of the patent was conducted to explore the transition

from a laboratory-based tabletop experiment to a commercially viable technological

product. Although the market analysis was conducted for a diferent experimen-

tal setup, the fundamental similarities with the proposal in this thesis allow the

straightforward extrapolation of its conclusions.

8.1 USA Patent

During the period dedicated to creating this thesis, the author collaborated

with Prof. Ivette Fuentes by supporting the submission process of the USA Patent
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Application US20220171089A1 [206], which was successfully granted.

The patent describes a method for measuring the acceleration and gravitational

gradient associated with a gravitational feld by employing at least two atomic modes

within one or more trapped BECs. The density distribution of one atomic mode

is altered by the gravitational feld, whereas the second remains unchanged. This

distinction can be achieved by positioning one BEC along an axis parallel to the

gravitational feld and the other BEC along an axis perpendicular to it. By analysing

the diferent evolutions of each atomic mode under the infuence of the gravitational

feld, specifcally by measuring the diference in the frequencies of the modes, the

acceleration and gravitational gradient can be inferred.

While the method described in the patent difers from the approach proposed in

this thesis, both proposals are founded on the same physical system: the BEC, and

the same physical principle: the phonon evolution under the infuence of an external

gravitational feld. The main distinction between both approaches lies in the fact

that the patent is based on the comparison of the frequencies of two phonon modes,

one afected by gravity while the other remains unchanged. In contrast, this thesis

explores the resonant processes between the phonons and gravity, which may involve

the analysis of only one phonon mode. Despite these diferences, both proposals

share a common path towards developing into a technological product with the

potential for commercialization. The following section outlines the roadmap towards

accomplishing this objective.

8.2 Market Analysis

In conjunction with the patent application, the author of this thesis also con-

tributed to the realization of a market analysis for the patent, which was led by Dr.

Jesus Rogel and Prof. Ivette Fuentes.

This market analysis outlines a commercialization strategy for the patented

method for measuring accelerations and gravitational gradients. It addresses the

key aspects required to accomplish the goal of transitioning from an experimen-

tal proposal—a detector concept—to a commercially available technological device.

The analysis evaluates the key industries, the fabrication scalability of the product,

the regulatory laws involved, the generation and protection of intellectual property,

and the marketing strategy. This section summarizes the fndings and conclusions

derived from the market analysis.
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8.2.1 Target Industries and Markets

The patent’s technological application of high-precision gravimetry and gradiometry

covers a broad spectrum across multiple industrial sectors that can beneft from the

enhancement of gravitational and non-inertial motion sensing. The main target

industries, along with the corresponding applications, are summarized below.

Subterranean Exploration. High-resolution gravitational measurements al-

low non-invasive detection and identifcation of underground resources, including

oil, gas, water, and mineral deposits. This signifcantly improves the exploration

efciency and reduces environmental impact.

Automotive and Transportation. Enhanced acceleration sensors improve

safety features such as automatic braking and stability control, contributing to the

development of safer and more reliable transportation systems.

Aerospace. Precise gravimetry provides reliable navigational data in environ-

ments where GPS is unavailable, such as deep-sea exploration and space missions.

This information is essential for trajectory correction and advanced inertial guidance

systems.

Geophysical Research and Environmental Monitoring. Accurate map-

ping of Earth’s gravitational feld supports research in tectonics, volcanology, and

seismology, contributing to improved earthquake prediction, for instance. Addition-

ally, gravitational monitoring helps track environmental changes, such as glacier

melting and groundwater levels.

Entertainment. High-precision motion tracking can enhance the responsive-

ness and realism of virtual- and augmented-reality gaming experiences.

8.2.2 Value Proposition

Accelerometers and gradiometers developed from BECs based on the patent ofer

signifcant advantages, making them an appealing and viable technology.

Precision and Sensitivity. The precision for detecting minute variations in

gravitational felds is signifcantly enhanced by exploiting the quantum properties

of the BEC, which include the advantage of producing entangled phonon states.

Miniaturisation. A benefcial feature of the phonon-based gravimeters is their

ability to maintain precision when miniaturised, which contrasts with the gravime-

ters based on atom interferometry, whose precision is lost when their size is de-

creased.
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Cost-Competitive Production. The production cost is expected to be com-

petitive with respect to the existing atom-interferometry gravimeters by taking ad-

vantage of the materials and manufacturing techniques currently in use by the in-

dustry.

Versatility. The wide range of applications across industries increases the com-

mercial potential of the technology and allows the possibility of tailoring and opti-

mizing it for specifc cases.

8.2.3 Regulations and Certifcations

Technological inventions are subject to a complex regulatory landscape, which in-

cludes compliance with safety standards, quality certifcations, and export controls.

These factors must be considered for the successful commercial exploitation of the

product.

Safety Regulations. Working with BECs involves manipulating atomic sam-

ples, which is generally a safe procedure. However, it is crucial to consider safety

regulations regarding toxicity, fammability, and volatility. Additionally, regulatory

standards for safe BEC operation must be met to prevent accidents in processes

such as cooling systems and vacuum chambers, which are essential for achieving

Bose-Einstein condensation.

Quality Certifcations. To ensure that the manufacturing processes and the

fnal products meet industry standards and perform consistently, it is vital to obtain

ISO certifcations and establish rigorous product testing procedures.

8.2.4 Intellectual Property Strategy

The successful commercialisation of a product requires a strong intellectual property

(IP) strategy for protecting the core inventions and expanding the patent portfolio.

IP Protection. For the gravimetry proposed by the patent, it is important to

secure and safeguard the measuring techniques, the application spectrum and any

associated hardware or software innovation involved in the gravimeter implemen-

tation. This can be achieved by proper management and protection of the patent,

ensuring the proper fling, maintenance and enforcement of the initial patent.

Patent Expansion. It is crucial to expand the patent portfolio by fling any im-

provements, innovations, or new applications that emerge as the commercialisation

process progresses. Important areas for further patenting may include miniaturisa-

tion techniques, software algorithms, and innovations for specialised applications.

146



8.2. Market Analysis

Licensing and Monetisation. To increase the commercial impact of the in-

vention, diferent licensing models can be considered. For instance, exclusive li-

censing could be pursued for highly specialised industries holding the infrastructure

necessary to fully commercialise the technology; non-exclusive licensing may be ad-

vantageous for mass-market applications where several companies could beneft from

the invention.

Revenue Streams. To ensure that the invention is fnancially sustainable in the

long term, various revenue streams can be explored. These include generating roy-

alties implemented as a percentage of sales, entering joint ventures with established

companies that share both risks and rewards, and facilitating technology transfers

that permit the sale or licensing of the invention’s construction and operational

processes.

8.2.5 Production and Scalability

To accomplish the transition from a laboratory setting to a market product, it is

necessary to address the production scalability process and the technical challenges

involved in manufacturing quantum gravimeters.

Manufacturing Scalability. The continuous BEC technology replaces the

traditional method of using BECS for metrology, which requires interrupting the

Bose-Einstein condensation to take a measurement. This technology enables the

feasible production of BECs for quantum gravimetry. Moreover, maintaining opti-

mal levels of Bose-Einstein condensation necessitates real-time monitoring of atomic

density, temperature stability, vacuum integrity, and trapping potential control.

Ventures with Established Companies. Creating joint ventures with in-

dustry leaders and established companies could provide a great opportunity to take

advantage of their existing infrastructure, production capabilities, and market ac-

cess, thereby minimising the time and costs needed to launch the technology.

Technology Developers. Strategic partnerships with technology developers

specialising in specifc procedures can accelerate technological development and con-

tribute to the generation of further intellectual property, thanks to innovations aris-

ing from the manufacturing process or hardware optimizations.

8.2.6 Marketing and Outreach

To establish the invention in the marketplace, it is important to settle an extensive

marketing and outreach strategy.
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Industry Engagement. The most efective way to market the product is by

attending leading quantum technology conferences and summits. This not only

showcases the product to potential partners and industry experts but also enables

the development of a network through strong relationships with key investors and

industry leaders.

Online Presence. Nowadays, the Internet’s impact cannot be underestimated.

Therefore, to expand visibility and engage with broader audiences, it is fundamen-

tal to have a strong social media presence and dedicate a website showcasing the

invention’s features, applications, and impact across industries.

Educational Initiatives. Workshops and webinars help to educate and demon-

strate to potential investors and customers the invention’s applications and impact.

Collaborating with academic institutions on joint research projects is also an efec-

tive strategy for boosting the visibility of the technology.

8.2.7 Risk Analysis and Mitigation

There are inherent risks associated with any cutting-edge technology, ranging

from the technical to the more commercial aspects. It is crucial to identify these

risks and develop strategies for mitigating or avoiding them.

Technical Risks. BECs are highly sensitive to environmental conditions such as

temperature fuctuations, mechanical vibrations and electromagnetic signals, which

can compromise the accuracy and reliability of the inventions in situations outside

the laboratory. The design of environmental controls plays a key role in ensuring

the proper functioning of the invention.

Market Risks. Competing devices from other companies are likely to emerge,

compromising the impact of the invention. To remain at the forefront of the market,

highlighting the advantages of the invention and pursuing continuous innovation will

maintain its competitiveness.

Regulatory Risks. Quantum technologies represent an emerging industry,

and unexpected changes in legislation could afect the commercialisation of this

technology. Therefore, it is a good practice to engage legal and policy advisors and

to keep a continuous watch on legislative developments.

8.2.8 Implementation Plan

Short-Term (0-2 years). The primary objective in the initial phase of de-

velopment is to establish the proof of concept for the invention, which involves the

148



8.2. Market Analysis

experimental validation of the theoretical predictions concerning the precision and

functionality of the gravimeter.

Mid-Term (2-5 years). The next step focuses on developing initial prototypes

for real-world testing and demonstration, in addition to obtaining the required cer-

tifcations for safety procedures, environmental compliance, and quality standards.

During this period, it is essential to raise awareness and generate demand for the

product as part of the objectives.

Long-Term (5-10 years). At this stage, as the technology becomes estab-

lished, the objective lies, frst, in scaling the manufacturing process to meet market

demands while maintaining the product quality and reliability and, second, in ex-

panding the product into new markets to achieve a global reach.

8.2.9 Conclusion

The market analysis provides a comprehensive roadmap for commercialising

quantum gravimeters based on BEC’s phonons. It addresses and analyses a wide

range of key factors, including targeting potential markets, evaluating regulatory re-

quirements, production scalability, managing risk, and developing a strategic growth

plan. By following the recommendations and steps outlined, quantum gravimeters

possess signifcant potential to transition from a laboratory environment to an im-

pactful commercial product.
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Chapter 9

Conclusions and Outlook

9.1 Closing Remarks

This thesis presents a novel approach to high-precision gravity measurement,

taking advantage of quantum metrology techniques applied to the phonon states

within a Bose-Einstein condensate (BEC). The proposed quantum interferometry

scheme provides an alternative to standard atom interferometry and ofers new op-

portunities to probe gravitational interactions at cutting-edge levels of precision.

We employed this framework in modifed gravity models, such as Modifed Newto-

nian Dynamics (MOND) and Lambda gravity, to explore its potential for testing

deviations from Newtonian gravity and constraining fundamental gravitational pa-

rameters.

Our experimental proposal combined several research areas. At its core lies the

physics of the BEC, a cloud of trapped bosonic particles cooled to almost abso-

lute zero, where most particles transition into a collective ground state while the

remaining ones behave as collective mode excitations. Under specifc conditions,

these collective excitations correspond to phonons, which can be used to prepare

quantum states. In particular, we focused on Gaussian states because they are

easily implemented in the laboratory and have a well-developed theoretical frame-

work. Furthermore, when examining the interaction of the BEC with an external

gravitational feld, we demonstrated that gravity drives phonon evolution through

Gaussian transformations. Since gravity changes the quantum state of the phonons,

we employed quantum metrology to quantify these changes and estimate a physical

parameter characterizing the external gravitational feld, e.g. the induced acceler-
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ation, thereby achieving gravity measurements. This framework can be naturally

extended for exploring relativistic efects through the study of the relativistic BEC.

The essential material required for constructing this framework was comprehen-

sively reviewed. In Chapter 2, we studied bosonic quantum felds in fat spacetime,

which provided us with insights into quantum felds for later application to the non-

relativistic and relativistic BECs. Next, in Chapter 3, we explored Gaussian states

and Gaussian transformations using the covariance matrix, which helped us to cre-

ate highly sensitive phonon states and to characterize their evolution in the presence

of an external gravitational potential. Chapter 4 introduced quantum metrology to

establish a rigorous methodology for estimating the parameters driving changes in

a quantum system such as the BEC. Following this, Chapter 5 ofered a thorough

review of the physics of the BEC, including an analysis of the relativistic BEC. In

Chapter 6, this material was fnally combined to establish our experimental proposal

of placing an oscillating massive sphere near a BEC to induce a resonant gravita-

tional signal that can be detected using phonon dynamics. Finally, in Chapter 7, we

applied this proposal to test modifed theories of gravity, deriving the predictions of

MOND and Lambda-gravity for the gravitational potential of the oscillating mass

and evaluating the feasibility of distinguishing these efects from standard Newto-

nian gravity.

The primary achievement of this thesis is establishing a novel experimental

framework for measuring gravity with high precision. By employing BEC phonons

within a frequency interferometry scheme, we demonstrated the framework’s po-

tential for testing modifed theories of gravity motivated by the problems of dark

matter and dark energy. In particular, we examined the MOND and Lambda-gravity

models. Our fndings indicate that our proposal enhances the precision for testing

MOND by three orders of magnitude compared to existing Earth-based experiments,

thereby opening new avenues for testing MOND even in the presence of the external

feld efect. In the case of Lambda-gravity, our results demonstrate that our method

improves current measurements of Newton’s gravitational constant G by two orders

of magnitude and establishes the frst tabletop experiment constraining the value of

the cosmological constant Λ.

Additionally, this thesis achieves the frst implementation of the tritter operator

for measuring the gravitational potential. The inclusion of the tritter enhances the

precision of the experimental setup by two orders of magnitude, reinforcing the fea-

sibility of quantum techniques for high-precision tests of gravity. In this thesis, we
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9.2. Outlook

have also laid the groundwork for extending our experimental proposal to test modi-

fed theories of gravity within the relativistic regime and, more generally, relativistic

efects in the weak-gravity regime. Finally, in addition to fundamental research, we

have also considered the potential generation of new technology by summarizing a

market analysis dedicated to the commercialisation of quantum gravimeters, which

are founded on the exploitation of BEC phonons.

Despite the promising results obtained, we must address certain issues before

proceeding with the practical implementation of our proposal. One of the primary

challenges is the ability to generate squeezed phonon states in the laboratory, which

remains an area of research under development. The squeezing of phonons is a

key ingredient in this proposal, as these states provide the highest sensitivity for

gravitational measurements. Furthermore, since this is a theoretical proposal, an

essential next step is to conduct a proof-of-principle experiment to demonstrate its

feasibility. Such an experiment could confrm the levels of precision predicted by our

derivations and ensure that all the relevant experimental factors have been correctly

considered. Additionally, it would provide valuable feedback to refne the proposal

and enhance our understanding of its implementation.

9.2 Outlook

Several exploration routes remain for future research within this project. A

further refnement of the Lambda-gravity test can be conducted, which involves

modifying the experimental setup to isolate the measurement of the cosmological

constant. By placing a BEC inside a spherical hollow massive shell that oscillates

in resonance with the BEC phonons, we can take advantage of a corollary of the

Gurzadyan theorem that drops he second statement of Newton’s shell theorem. This

corollary implies the existence of a gravitational force inside the shell that originates

exclusively from the Λ term as the contribution of the G term vanishes. Detecting

a signal in this setup would provide a direct measurement of Λ through a tabletop

experiment.

Another avenue of exploration is to investigate modifcations of gravity induced

by Yukawa interactions. This project is currently under development. Additionally,

our experiment can be adapted to consider BECs trapped in harmonic potentials,

which are commonly used to create BECs in the laboratory, in contrast to the

uniform potential examined in this thesis. This would help us evaluate how diferent
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9.2. Outlook

trapping potentials afect the precision of BECs in measuring gravity. While BECs in

harmonic potentials also exhibit phononic excitations—which have been observed to

transition into a one-dimensional regime—a systematic study is needed to quantify

their impact on measuring gravity.

Finally, by extending this framework to relativistic regimes, this thesis estab-

lished the foundation for future research aimed at implementing our proposal for

testing modifcations of gravity within these regimes and measuring relativistic ef-

fects in the weak-gravity limit, with potential implications for fundamental physics

and high-precision gravimetry.

In conclusion, our fndings highlight the remarkable potential of Bose-Einstein

condensates for measuring and testing gravity. Along with the progress of technology

and experimental techniques, we anticipate that BEC-based gravimetry will play an

increasingly signifcant role in expanding the frontiers of fundamental physics and

the innovation of technology.
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Appendix A

Summary of Gaussian

Transformations and Gaussian

States in the CMF

Following the covariance matrix formalism introduced in Section 3.3 and Section

3.4, where the Phase space description of Gaussian states and Gaussian transfor-

mations was established, we now provide a general characterization of all Gaussian

transformations in terms of the matrix W introduced in Eq. (3.22). This is done

for one-mode and two-mode bosonic systems (N = 1, 2).

For the sake of clarity, we recall the general form of a Gaussian state in Hilbert

space, expressed as the unitary transformation

i ˆ † ˆ †A W Â+A KγÛ = e 2 ,

and its corresponding Phase space representation, determined by the symplectic

matrix S and the displacement vector b (∫ 1 )
iKW iKWtdtS = e , b = e γ .

0

As previously stated, these two expressions provide the dictionary that translates

Gaussian transformations in Hilbert space to their counterparts in Phase space.
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A.1. One-mode Gaussian Transformations

A.1 One-mode Gaussian Transformations

In Hilbert space, all the single-mode (N = 1) Gaussian transformations can be

conveniently parameterized as⎛ ⎞ ⎛ ⎞
−θ ireiχ ⎝ α⎝ ⎠ ⎠W = , γ = , (A.1)

−ire−iχ −θ α∗

where θ, r, χ ∈ R and α ∈ C. This leads to the unitary Gaussian transformation:

iχ −iχˆ −iθâ†â − r (e â†2−e â2) αâ†−α∗âU = e e 2 e

ˆ

1-mode

≡ R̂(θ) · S1-sq(r, χ) · D̂(α) . (A.2)

R̂(θ) is the phase-shifting or rotation operator,

Ŝ1-sq(r, χ) is the one-mode squeezing operator and

D̂(α) is the Weyl displacement operator.

A.1.1 Displacement Operator

The displacement operator D̂(α) can be singled out by taking⎛ ⎞⎝ α⎠W = 0, γ = .
α∗

• Transformation:

In Hilbert space, the operator D̂(α) is given by the unitary transformation

αâ†−α∗âD̂(α) = e . (A.3)

In Phase space, the displacement transformation is given by the pair:⎛ ⎞⎝ α
b ˆ = ⎠ , S ˆ = I. (A.4)D

α∗
D

• State:

Applying the transformation to the vacuum |0⟩, we generate a coherent state.

|α⟩ = D̂(α) |0⟩ . (A.5)
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A.1. One-mode Gaussian Transformations

In Phase space, the state is expressed as⎛ ⎞⎝ α
dcoh = ⎠ , Γcoh = I. (A.6)

α∗

A.1.2 Phase-shifting or Rotation Operator

The phase-shifting operator R̂(θ) can be singled out by taking⎛ ⎞
W ⎝−θ=

0 ⎠ , γ = 0.
0 −θ

• Transformation

In Hilbert space, the operator R̂(θ) is given by the unitary transformation

−iθâ†âR̂(θ) = e . (A.7)

In Phase space, the phase-shifting transformation is given by the pair:⎛ ⎞
−iθ⎝e 0

bR̂ = 0, SR̂ =
⎠ . (A.8)

iθ0 e

• State:

Applying the transformation to the vacuum |0⟩, we get a trivial transformation.

R̂(θ) |0⟩ = |0⟩ . (A.9)

In Phase space, the state is expressed as

dˆ = 0, Γˆ = I.R R

The phase-shifting transformation is a passive transformation that does not change

the particle content or energy of the state. Then, if we start with a vacuum state,

we remain in the vacuum.

A.1.3 One-mode Squeezing Operator

The one-mode squeezing operator Ŝ1-sq(r, χ) can be singled out by taking
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A.2. Two-mode Gaussian Transformations

⎞⎛
0 ireiχ⎝ ⎠W = , γ = 0.

−ire−iχ 0

• Transformation:

In Hilbert space, the operator Ŝ1-sq(r, χ) is given by the unitary transformation

iχ −iχ− r (e â†2−e â2)Ŝ1-sq(r, χ) = e 2 . (A.10)

In Phase space, the one-mode squeezing transformation is given by the pair:

⎞⎛
cosh r −eiχ sinh r⎝ ⎠b1-sq = 0, S1-sq(r, χ) = . (A.11)

−e−iχ sinh r cosh r

• State:

Applying the transformation to the vacuum |0⟩, we get a one-mode squeezed state.

ˆ|S1-sq(r, χ)⟩ = S1-sq(r, χ) |0⟩ . (A.12)

In Phase space, the state is expressed as

⎞⎛
cosh 2r −eiχ sinh 2r⎝ ⎠d1-sq = 0, Γ1-sq(r, χ) = . (A.13)

−e−iχ sinh 2r cosh 2r

A.2 Two-mode Gaussian Transformations

In Hilbert space, all the two-mode (N = 2) Gaussian transformations can be

conveniently parameterized as

⎞⎛⎞⎛
iχB iχ1 iχT−θ1 −iθBe ir1e irT e

−iχB iχT iχ2iθBe −θ2 irT e ir2e

⎟⎟⎟⎟⎟⎟⎠ , γ =

⎜⎜⎜⎜⎜⎜⎝
α1

α2

α∗1

⎟⎟⎟⎟⎟⎟⎠ , (A.14)W =

⎜⎜⎜⎜⎜⎜⎝ −iχ1 −iχT −iχB−ir1e −irT e −θ1 iθBe

−iχT −iχ2 iχB α∗−irT e −ir2e −iθBe −θ2 2

where the diferent θ, r, χ ∈ R and α1, α2 ∈ C. This leads to the unitary Gaussian
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A.2. Two-mode Gaussian Transformations

transformation:

† † r1 iχ1a†2 −iχ1 â2
r2 iχ2a†2 −iχ2 â2ˆ −iθ1â1â1−iθ2â2â2 − (e ˆ −e 1)− (e ˆ −e 2)2 1 2 2U = e · e2-mode

iχT a† † −iχT a iχBa† −iχBa †−rT (e ˆ ˆ −e ˆ1â2) θB(e ˆ ˆ2−e ˆ1â )1a2 1a 2· e · e
† †α1â −α∗1â1+α2â −α∗2â21 2· e

ˆ ˆ≡ R̂(θ1, θ2) · S1-sq(r1, χ1; r2, χ2) · S2-sq(rT , χT )

· B̂(θB, χB) · D̂(α1, α2) . (A.15)

R̂(·), Ŝ1-sq(·) and D̂(·) keep the same defnition from the previous section,
Ŝ2-sq(rT , χT ) is the two-mode squeezing operator and

B̂(θB, χB) is the mode-mixing operator.

A.2.1 Displacement Operator

The displacement operator D̂(α1, α2) can be singled out by taking⎞⎛
W = 0, γ =

⎜⎜⎜⎜⎜⎜⎝
α1

α2

α∗1

α∗2

⎟⎟⎟⎟⎟⎟⎠ .

• Transformation:

In Hilbert space, the operator D̂(α1, α2) is given by the unitary transformation

α1â −α∗1â1+α2â −α∗2â2D̂(α) = e 1
†

2
†

. (A.16)

In Phase space, the displacement transformation is given by the pair:⎞⎛
b ˆ =D

⎜⎜⎜⎜⎜⎜⎝
α1

α2

α∗1

α∗2

⎟⎟⎟⎟⎟⎟⎠ , SD̂ = I. (A.17)

• State:

Applying the transformation to the vacuum |0 0⟩, we generate a coherent state.
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A.2. Two-mode Gaussian Transformations

|α1 α2⟩ = D̂(α1, α2) |0 0⟩ . (A.18)

In Phase space, the state is expressed as⎞⎛
dcoh =

⎜⎜⎜⎜⎜⎜⎝
α1

α2

α∗1

α∗2

⎟⎟⎟⎟⎟⎟⎠ Γcoh = I. (A.19)

A.2.2 Phase-shifting or Rotation Operator

The phase-shifting operator R̂(θ1, θ2) can be singled out by taking⎞⎛
W =

⎜⎜⎜⎜⎜⎜⎝
−θ1 0 0 0

0 −θ2 0 0

0 0 −θ1 0

0 0 0 −θ2

⎟⎟⎟⎟⎟⎟⎠ , γ = 0.

• Transformation:

In Hilbert space, the operator R̂(θ1, θ2) is given by the unitary transformation

−iθ1â†1â1−iθ2â
†
2â2R̂(θ) = e . (A.20)

In Phase space, the phase-shifting transformation is given by the pair:⎞⎛
bR̂ = 0, SR̂ =

⎜⎜⎜⎜⎜⎜⎝
−iθ1e 0 0 0

−iθ20 e 0 0

iθ10 0 e 0

iθ20 0 0 e

⎟⎟⎟⎟⎟⎟⎠ . (A.21)

• State:

Applying the transformation to the vacuum |0 0⟩, we get a trivial transformation.

R̂(θ1, θ2) |0 0⟩ = |0 0⟩ . (A.22)

In Phase space, the state is expressed as
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A.2. Two-mode Gaussian Transformations

dˆ = 0, Γˆ = I.R R

A.2.3 One-mode Squeezing Operator

The one-mode squeezing operator Ŝ1-sq(r1, χ1; r2, χ2) can be singled out by tak-

ing ⎞⎛
W =

⎜⎜⎜⎜⎜⎜⎝
iχ10 0 ir1e 0

iχ20 0 0 ir2e

−iχ1−ir1e 0 0 0

−iχ20 −ir2e 0 0

⎟⎟⎟⎟⎟⎟⎠ , γ = 0.

• Transformation:

In Hilbert space, the operator Ŝ1-sq(r1, χ1; r2, χ2) is given by the unitary transfor-

mation

r1 iχ1a†2 −iχ1 â2
r2 iχ2a†2 −iχ2 â2− (e ˆ −e )− (e ˆ −e )Ŝ1-sq(r1, χ1; r2, χ2) = e 2 1 1 2 2 2 . (A.23)

In Phase space, the one-mode squeezing transformation is given by the pair:

b1-sq = 0,

(A.24)

S1-sq(r1, χ1; r2, χ2) =

⎞⎛⎜⎜⎜⎜⎜⎜⎝
cosh r1 0 −eiχ1 sinh r1 0

0 cosh r2 0 −eiχ2 sinh r2

−e−iχ1 sinh r1 0 cosh r1 0

0 −e−iχ2 sinh r2 0 cosh r2

⎟⎟⎟⎟⎟⎟⎠ .

• State:

Applying the transformation to the vacuum |0 0⟩, we get a one-mode squeezed state.
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A.2. Two-mode Gaussian Transformations

ˆ|S1-sq⟩ = S1-sq(r1, χ1; r2, χ2) |0 0⟩ . (A.25)

In Phase space, the state is expressed as

d1-sq = 0,

(A.26)

Γ1-sq(r1, χ1; r2, χ2) =

⎞⎛⎜⎜⎜⎜⎜⎜⎝
cosh 2r1 0 −eiχ1 sinh 2r1 0

0 cosh 2r2 0 −eiχ2 sinh 2r2

−e−iχ1 sinh 2r1 0 cosh 2r1 0

0 −e−iχ2 sinh 2r2 0 cosh 2r2

⎟⎟⎟⎟⎟⎟⎠ .

A.2.4 Two-mode Squeezing Operator

The two-mode squeezing operator Ŝ2-sq(rT , χT ) can be singled out by taking

⎞⎛
W =

⎜⎜⎜⎜⎜⎜⎝
iχT0 0 0 irT e

iχT0 0 irT e 0

−iχT0 −irT e 0 0

−iχT−irT e 0 0 0

⎟⎟⎟⎟⎟⎟⎠ , γ = 0.

• Transformation:

In Hilbert space, the operator Ŝ2-sq(rT , χT ) is given by the unitary transformation

iχT a† † −iχT a−rT (e ˆ ˆ −e ˆ1â2)ˆ 1a2S2-sq(rT , χT ) = e . (A.27)

In Phase space, the two-mode squeezing transformation is given by the pair:
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A.2. Two-mode Gaussian Transformations

b2-sq = 0,

(A.28)

S2-sq(rT , χT ) =

⎞⎛⎜⎜⎜⎜⎜⎜⎝
iχTcosh rT 0 0 −e sinh rT

iχT0 cosh rT −e sinh rT 0

−iχT0 −e sinh rT cosh rT 0

−iχT−e sinh rT 0 0 cosh rT

⎟⎟⎟⎟⎟⎟⎠ .

• State:

Applying the transformation to the vacuum |0 0⟩, we get a two-mode squeezed state.

ˆ|S2-sq⟩ = S2-sq(rT , χT ) |0 0⟩ . (A.29)

In Phase space, the state is expressed as

d2-sq = 0,

(A.30)

Γ2-sq(rT , χT ) =

⎞⎛⎜⎜⎜⎜⎜⎜⎝
iχTcosh 2rT 0 0 −e sinh 2rT

iχT0 cosh 2rT −e sinh 2rT 0

−iχT0 −e sinh 2rT cosh 2rT 0

−iχT−e sinh 2rT 0 0 cosh 2rT

⎟⎟⎟⎟⎟⎟⎠ .

A.2.5 Mode-mixing Operator

The mode-mixing operator B̂(θB, χB) can be singled out by taking
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A.2. Two-mode Gaussian Transformations

⎞⎛
W =

⎜⎜⎜⎜⎜⎜⎝
iχB0 −iθBe 0 0

−iχBiθBe 0 0 0

−iχB0 0 0 iθBe

iχB0 0 −iθBe 0

⎟⎟⎟⎟⎟⎟⎠ , γ = 0.

• Transformation:

In Hilbert space, the operator B̂(θB, χB) is given by the unitary transformation

iχBa† −iχBa †θB(e ˆ ˆ2−e ˆ1â )B̂(θB, χB) = e 1a 2 . (A.31)

In Phase space, the mode-mixing transformation is given by the pair:

bM-M = 0,

(A.32)

SM-M(θB, χB) =

⎞⎛⎜⎜⎜⎜⎜⎜⎝
cos θB eiχB sin θB 0 0

−e−iχB sin θB cos θB 0 0

0 0 cos θB e−iχB sin θB

0 0 −eiχB sin θB cos θB

⎟⎟⎟⎟⎟⎟⎠ .

• State:

Applying the transformation to the vacuum |0 0⟩, in Phase space, the state is
expressed as

dM-M = 0 ΓM-M = I.

A mode-mixing transformation does not change the number of particles in the sys-

tem. This can be seen clearly from the creation and annihilation operators of the

transformation in Hilbert space. While the mode-mixing operator creates a particle

in one of the modes, it destroys another particle in the other mode.
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Appendix B

Mean Number of Particles

The mean number of particles of a Gaussian state is a useful quantity that can

be straightforwardly calculated using the covariance matrix formalism. We defne

the mean number of particles in the mode i as

ni := Tr[â
†
i âiρ̂], (B.1)

where 0 ≤ i ≤ N . Using the commutation relations (3.15) and the defnitions of the

frst and second moments (3.18), the particle number in the mode i for the state

(d,Γ) can be expressed as [44],

ni =
1
(Γii + d

∗
i di − 1). (B.2)

2

Thus, the mean total number of particles in the Gaussian state is

N ( )∑
n := =

1 1
tr[Γ] + d†d−N . (B.3)

2 2
i=1

Below, we list the mean total number of particles for some representative Gaussian

states.

a) Coherent state: |α⟩
Considering the state (A.5), the number of particles in a coherent state is:

n = |α|2. (B.4)

b) One-mode squeezed state: |S1-sq(r, χ)⟩
Considering the state (A.12), the number of particles in a coherent state is:
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n = sinh2 r. (B.5)

c) Two-mode squeezed state: |S2-sq(rT , χT )⟩
Considering the state (A.29), the number of particles in a coherent state is:

n = 2 sinh2 rT . (B.6)

d) Mode-mixed state: M̂(θB, χB) |0⟩
Considering the state generated by (A.31), the number of particles in a coherent

state is:

n = 0. (B.7)

ˆ ˆe) Displaced squeezed state: DαS1-sq(r, χ) |0⟩

n = sinh2 r + |α|2. (B.8)

ˆ ˆf) Squeezed displaced state: S1-sq(r, 0)Dα |0⟩

n = sinh2 r + |β|2, (B.9)

where |β|2 = |α∗ cosh r − α sinh r|2.

ˆ ′ ˆg) Squeezed-squeezed state: S1-sq(r , 0)S1-sq(r, 0) |0⟩

n = sinh2(r + r′). (B.10)
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Appendix C

Quantum Fisher Information’s

Computation

The Mathematica fle used to compute the quantum Fisher information in (6.32)

from Chapter 6 is attached. Some of the calculated matrices are too large to be fully

displayed. However, they can be reproduced readily with the information provided

and access to Wolfram Mathematica software. The fle refers the reader to the

relevant equations and sections. While some notation has been changed, every

efort has been made to maintain consistency.
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Quantum Frequency Interferometry
Here, we calculate the Quantum Fisher Information for estimating ϵ = aΩ associated to the oscillat-
ing sphere’s gravitational influence on the phonons of the BEC. 

1. Quantum Fisher Information (QFI)

Consider a probe state (d0, Γ0) undergoing a change driven by a symplectic transformation S(ϵ), 
which results in the state (d, Γ). Then, the QFI for estimating the parameter ϵ is given by:
 

 F (ϵ) = ∑k,l=1
N 2 ReQk l(ϵ)Qk l(ϵ)+ 2 ∂ϵd†(ϵ) Γ -1(ϵ) ∂ϵd(ϵ), (D.1) or 

see (4.16)
where

P =
R Q

Q R
, PK + K P† = 0, with  P = S-1 ∂S, R = α† ∂α - β† ∂β

and Q = α† ∂β - β† ∂α . (D.2)

We can split the symplectic transformation as S = Sϵ S0, such that 
P = S0

-1 Sϵ-1 S

ϵ S0 := S0

-1 Pϵ S0 that is Pϵ := Sϵ-1 S

ϵ  . 

Also, let us remember that d = Sϵ d0 + bϵ  . With these ingredients, we can simplify the last term in 
QFI as: 

∂ϵd† Γ -1 ∂ϵd = Pϵ d0 + Sϵ-1 b

ϵ

†
Γ0

-1 Pϵ d0 + Sϵ-1 b

ϵ.

As we are working with a three-mode scheme, i = {1, 2, 3}, and given that for a two-mode squeezing 
bϵ = 0, the QFI reads:

 F (ϵ) = ∑k,l=1
3 2 ReQk l Qk l+ 2 Pϵ d0

† σ0
-1 Pϵ d0.

 
We need to calculate: d0,  S0,  Γ0,  Sϵ-1,  S


ϵ,  P,  Pϵ.

2. Interferometric Scheme

We are considering a three-mode system exclusively described by Gaussian states and Gaussian 
transformations. 

2.1 Initial state

The BEC’s atoms in the ground state are considered to be a coherent state and the phonon modes l 
and n are assumed to be in the vacuum. In the covariance matrix formalism, the state of the BEC at 
this point is given by the pair:
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dcoh =

In[1]:= dcoh =

α

0

0

Conjugate[α]

0

0

;

Γcoh =

Γcoh =

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

;

Cf. Section 3.7.

2.2 Probe state

Cf. Section 6.4.1
- Step 1: 
We act on the initial state, first, using a two-mode squeezing unitary transformation

U2 sq(r) = expχ bl
†

bn
†

+ χ* bl b

n

to parametrically populate the phonon modes, where χ = r eiϑsq (cf. eq. (6.22)). The symplectic 
matrix associated to the transformation is:

S2 sq =

In[ ]:= S2 sq =

1 0 0 0 0 0

0 Cosh[r] 0 0 0 -
 ϑsq Sinh[r]

0 0 Cosh[r] 0 -
 ϑsq Sinh[r] 0

0 0 0 1 0 0

0 0 -
- ϑsq Sinh[r] 0 Cosh[r] 0

0 -
- ϑsq Sinh[r] 0 0 0 Cosh[r]

;

- Step 2:
 Next we apply a tritter to mix the two squeezed phonon modes with the atoms in the ground state 
(cf. eq. (6.23)). The symplectic matrix associated with the tritter is
 
 Str =
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In[ ]:= Str =

Cos[θ]
 

 ϑ Sin[θ]

2

 
 ϑ Sin[θ]

2
0 0 0

 
-  ϑ Sin[θ]

2
Cos

θ

2

2

-Sin
θ

2

2

0 0 0

 
- ϑ Sin[θ]

2
-Sin

θ

2

2

Cos
θ

2

2

0 0 0

0 0 0 Cos[θ]
- 

- ϑ Sin[θ]

2

- 
- ϑ Sin[θ]

2

0 0 0
- 

 ϑ Sin[θ]

2
Cos

θ

2

2

-Sin
θ

2

2

0 0 0
- 

 ϑ Sin[θ]

2
-Sin

θ

2

2

Cos
θ

2

2

;

Then, the complete symplectic transformation of the probe state is

S0 =

In[ ]:= MatrixFormFullSimplifyStr.S2 sq

In[2]:= S0 =

Cos[θ]
 

 ϑ Cosh[r] Sin[θ]

2

 
 ϑ Cosh[r] Sin[θ]

2
0 -

 
 ϑ+ϑsq Sin[θ] Sinh

2

 
- ϑ Sin[θ]

2
Cos

θ

2

2
Cosh[r] -Cosh[r] Sin

θ

2

2

0 
 ϑsq Sin

θ

2

2
Sinh

 
- ϑ Sin[θ]

2
-Cosh[r] Sin

θ

2

2

Cos
θ

2

2
Cosh[r] 0 -

 ϑsq Cos
θ

2

2
Sinh

0
 

- ϑ+ϑsq Sin[θ] Sinh[r]

2

 
- ϑ+ϑsq Sin[θ] Sinh[r]

2
Cos[θ] -

 
- ϑ Cosh[r] Sin

2

0 
- ϑsq Sin

θ

2

2
Sinh[r] -

- ϑsq Cos
θ

2

2
Sinh[r]

- 
 ϑ Sin[θ]

2
Cos

θ

2

2
Cosh

0 -
- ϑsq Cos

θ

2

2
Sinh[r] 

- ϑsq Sin
θ

2

2
Sinh[r]

- 
 ϑ Sin[θ]

2
-Cosh[r] Sin

Thus, the probe state is described by the displacement vector

d0 =

In[5]:= MatrixForm[FullSimplify[S0.dcoh]]

In[7]:= d0 =

α Cos[θ]
α Sin[θ] ( Cos[ϑ]+Sin[ϑ])

2

α Sin[θ] ( Cos[ϑ]+Sin[ϑ])

2

Conjugate[α] Cos[θ]
Conjugate[α] Sin[θ] (- Cos[ϑ]+Sin[ϑ])

2

Conjugate[α] Sin[θ] (- Cos[ϑ]+Sin[ϑ])

2

;

and covariance matrix

Γ0 =

In[ ]:= MatrixForm

FullSimplifyS0.ConjugateTranspose[S0], Assumptions  Elementθ, ϑ, r, ϑsq, Reals
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In[ ]:= Γ0 =

Cosh[r]2 - Cos[2 θ] Sinh[r]2  2 
 ϑ Cos[θ] Sin[θ] Sinh[r]2

- 2 
- ϑ Cos[θ] Sin[θ] Sinh[r]2

1

4
1 + 3 Cosh[2 r] + 2 Cos[2 θ] Sinh[r]2



- 2 
- ϑ Cos[θ] Sin[θ] Sinh[r]2 -Sin[θ]2 Sinh[r]2


- (2 ϑ+ϑsq) Sin[θ]2 Sinh[2 r]  2 

- (ϑ+ϑsq) Cos[θ] Cosh[r] Sin[θ] Sinh

 2 
- (ϑ+ϑsq) Cos[θ] Cosh[r] Sin[θ] Sinh[r] 

- ϑsq Cosh[r] Sin[θ]2 Sinh[r]

 2 
- (ϑ+ϑsq) Cos[θ] Cosh[r] Sin[θ] Sinh[r] -

1

4

- ϑsq (3 + Cos[2 θ]) Sinh[2 r]

2.3 Gravity-induced transformation

The time-evolution operator (cf. eq. (6.20)) involves three transformations on the phonons: displace-
ment, two-mode squeezing and mode-mixing. In particular, we consider the two-mode squeezing 
transformation induced  by the oscillating sphere under the resonant condition Ω =ωl +ωn:

Ug(ξ) = expξ bl
†

bn
†

+ ξ* bl b

n,

where ξ = s eiϕB  (cf. eq. (6.23)). The associated symplectic transformation, denoted Sϵ  , carry the 
physical parameter we are interested in measuring: ϵ = aΩ. 

2.4 Interferometric Closure

Subsequently, the 'beams' are 'brought together' making the reverse operations corresponding to 
the tritter and the two-mode squeezing. The state of the full interferometer is defined as

d := S. d0

= Str(-θ) S2 sq(-r) S(ϵ) Str(θ) S2 sq(r) d0

Γ := S.Γ0.S†

= Str(-θ) S2 sq(-r) S(ϵ) Str(θ) S2 sq(r) Γ0 Str(-θ) S2 sq(-r) S(ϵ) Str(θ) S2 sq(r) 
†

However, since the QFI is independent of the particular measurement scheme used, we only need 
to consider:

d = S(ϵ) Str(θ) S2 sq(r) d0

= Sϵ S0 d0

Γ = S(ϵ) Str(θ) S2 sq(r) Γvac  S(ϵ) Str(θ) S2 sq(r)
†

= Sϵ Γ0 Sϵ†

3. Preliminary computations

Gravitational-induced two-mode squeezing:
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If the squeezing transformation is chosen, the symplectic matrix of the transformation associated 

to the unitary transformation Ug is: 

In[ ]:= Sϵ =

1 0 0 0 0 0

0 Cosh[s] 0 0 0 -
 ϕB Sinh[s]

0 0 Cosh[s] 0 -
 ϕB Sinh[s] 0

0 0 0 1 0 0

0 0 -
- ϕB Sinh[s] 0 Cosh[s] 0

0 -
- ϕB Sinh[s] 0 0 0 Cosh[s]

;

We start by calculating   Pϵ = Sϵ-1 S

ϵ  .

Pϵ =

In[ ]:= MatrixForm[FullSimplify[Inverse[Sϵ].D[Sϵ, s]]]

In[6]:= Pϵ =

0 0 0 0 0 0

0 0 0 0 0 -
 ϕB

0 0 0 0 -
 ϕB 0

0 0 0 0 0 0

0 0 -
- ϕB 0 0 0

0 -
- ϕB 0 0 0 0

;

And now, we calculate  P = S0
-1 Pϵ S0 .

P =

In[ ]:= MatrixForm[FullSimplify[Inverse[S0].Pϵ.S0]]

In[ ]:= P =

0 -
 

 ϑ-ϑsq+ϕB Cos[θ] Sin[θ] Sinh[r]

2

-
 

- ϑ-ϑsq+ϕB Cos[θ] Sin[θ] Sinh[r]

2
-

1

4
 (3 + Cos[2 θ]) Sinϑsq - ϕB Sinh[2 r]

-
 

- ϑ-ϑsq+ϕB Cos[θ] Sin[θ] Sinh[r]

2

1

2
 Sin[θ]2 Sinϑsq - ϕB Sinh[2 r]


- (2 ϑ+ϕB) Sin[θ]2 -

 
- (ϑ+ϕB) Cos[θ] Cosh[r] Sin[θ]

2

-
 

- (ϑ+ϕB) Cos[θ] Cosh[r] Sin[θ]

2

1

2

- ϕB Sin[θ]2 Cosh[r]2 - 

-2  (ϑsq-ϕB) Sinh[r]2

-
 

- (ϑ+ϕB) Cos[θ] Cosh[r] Sin[θ]

2

1

4

- (2 ϑsq+ϕB) (3 + Cos[2 θ]) -

2  ϑsq Cosh[r]2 + 
2  ϕB Sinh[r]2

4. QFI computation

Having calculated the state of the phonons under the gravitational influence of the oscillating 
sphere, given by the displacement vector d, the covariance matrix Γ, and the derived matrix P, the 
QFI given by (D.1) can be readily computed.
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4.1 First term

We calculate the first term for the QFI

In[ ]:= FullSimplify[

2 (P〚1, 4〛 × P〚4, 1〛 + P〚2, 5〛 × P〚5, 2〛 + P〚3, 6〛 × P〚6, 3〛 + P〚1, 5〛 × P〚4, 2〛 + P〚2, 4〛 ×

P〚5, 1〛 + P〚1, 6〛 × P〚4, 3〛 + P〚3, 4〛 × P〚6, 1〛 + P〚2, 6〛 × P〚5, 3〛 + P〚3, 5〛 × P〚6, 2〛)]

Out[ ]=

1

4
(11 + 4 Cos[2 θ] + Cos[4 θ]) Cosh[r]4

+ 8 Sin[θ]4 + (11 + 4 Cos[2 θ] + Cos[4 θ]) Sinh[r]4
+

Cosh[r]2 4 Sin[2 θ]
2
- 2 (11 + 4 Cos[2 θ] + Cos[4 θ]) Cos2 ϑsq - ϕB Sinh[r]2

Which can be equivalently re-expressed 
as:

= 2 1 - Cos4[θ] + Sin2[2θ] Sinh2[r] + 2 1 + Cos4[θ] Sin2ϑsq -ϕB Sinh2[2 r]

= 4-2 1 + Cos4[θ] + Sin2[2θ] Sinh2[r] + 2 1 + Cos4[θ] Sin2ϑsq -ϕB Sinh2[2 r] .

4.2 Second term

Let’s calculate the second term which reads:  2 (Pϵ d0)
† Γ0

-1 (Pϵ d0). We start computing

In[20]:= MatrixForm[FullSimplify[Pϵ.S0.dcoh]]

Out[20]//MatrixForm=

0

  (ϑ+ϕB) Conjugate[α] Sin[θ]

2

  (ϑ+ϕB) Conjugate[α] Sin[θ]

2

0

-
 - (ϑ+ϕB) α Sin[θ]

2

-
 - (ϑ+ϕB) α Sin[θ]

2

In[ ]:= MatrixForm[FullSimplify[Inverse[Γ0]]]

In[ ]:= IΓ0 =

Cosh[r]2 - Cos[2 θ] Sinh[r]2  2 
 ϑ Cos[θ] Sin[θ] Sinh[r]2  2 



- 2 
- ϑ Cos[θ] Sin[θ] Sinh[r]2

1

4
1 + 3 Cosh[2 r] + 2 Cos[2 θ] Sinh[r]2



- 2 
- ϑ Cos[θ] Sin[θ] Sinh[r]2 -Sin[θ]2 Sinh[r]2

1

4
1 + 3 Cosh

-
- (2 ϑ+ϑsq) Sin[θ]2 Sinh[2 r] -

 
- ϑ+ϑsq Sin[2 θ] Sinh[2 r]

2 2
-



-
 

- ϑ+ϑsq Sin[2 θ] Sinh[2 r]

2 2
-

- ϑsq Cosh[r] Sin[θ]2 Sinh[r]
1

4

- ϑsq

-
 

- ϑ+ϑsq Sin[2 θ] Sinh[2 r]

2 2

1

4

- ϑsq (3 + Cos[2 θ]) Sinh[2 r] -

- ϑsq

Setting α = α eiϑ0 , we get for the second term in the QFI:
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In[ ]:= FullSimplify

2  0 -
 

- (ϑ+ϕB-ϑ0) α Sin[θ]

2
-

 
- (ϑ+ϕB-ϑ0) α Sin[θ]

2
0

 
 (ϑ+ϕB-ϑ0) α Sin[θ]

2

 
 (ϑ+ϕB-ϑ0) α Sin[θ]

2
.IΓ0.

0

 
 (ϑ+ϕB-ϑ0) α Sin[θ]

2

 
 (ϑ+ϕB-ϑ0) α Sin[θ]

2

0

-
 

- (ϑ+ϕB-ϑ0) α Sin[θ]

2

-
 

- (ϑ+ϕB-ϑ0) α Sin[θ]

2



Out[ ]=

4 α
2 Sin[θ]2 Cosh[r]2 + Cos[2 θ] Sinh[r]2 - Cos[θ]2 Cos2 ϑ0 + ϑsq - 2 (ϑ + ϕB) Sinh[2 r]

Which can be equivalently re-expressed 
as:

= α0
2  4 Sin4[θ] - Sinh[2 r]Cos2 ϑ0 + ϑsq - 2 (ϑ +ϕB) Sin2[2θ] + Cosh[2 r] Sin2[2θ] .

Putting both results together, we obtain that the QFI is proportional to:

4-2 1 + Cos4[θ] + Sin2[2θ] Sinh2[r] + 2 1 + Cos4[θ] Sin2ϑsq -ϕB Sinh2[2 r] + 

α0
2  4 Sin4[θ] - Sinh[2 r]Cos2 ϑ0 + ϑsq - 2 (ϑ +ϕB) Sin2[2θ] + Cosh[2 r] Sin2[2θ] , 

where he have left out the factors involving the ϵ derivative of Ug as here we left the squeezing 

parameter s  undetermined, but is corresponds to the factor rl n appearing in (6.21).
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Appendix D

Precision Evaluation

The Mathematica fle used to calculate the precision for measuring aΩ in (6.37)

and to check the consistency with respect to the experimental constraints is attached.
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Precision to measure acceleration amplitude
Numerical evaluation of the precision for measuring the acceleration amplitude aΩ.

Fundamental constants

In[65]:= r = 5.2917 × 10-11; (* Bohr radius, m *)

ℏ = 1.055 × 10-34; (* Reduced Planck's constant, kg.m2.s-1 *)

kB = 1.3806 × 10-23; (* Boltzmann constant, m2.kg.s-2.K-1 *)

Experimental parameters

In[68]:= m = 1.44 × 10-25; (* Rubidium mass, kg *)

a = 99 r; (* Rubidium scattering length, m *)

d = 5.8 × 10-42; (* Rubidium decay constant , m6s *)

L = 500 × 10-6; (* Length of the BEC, m *)

Na = 4 × 106; (* Number of atoms *)

ρ = 1 × 1020; (* BEC density, m-3 *)

α =
Na

π ρ L3
; (* BEC's length-to-radius ratio *)

Np = 1100; (* Number of phonons *)

n = 1; (* Phonon's number modes (l+n=odd) *)

l = 2;

t = 1;

texp = 0.1 ×
3

2 d ρ
2
;

(* Single-experiment time (0.1 times the BEC half-life), s *)

T = 10-9; (* Temperature, K *)

θ = 0.31; (* Tritter angle *)

τ = 2 592 000;

(* Total time of estimation (3 153 600 ~ 36 days ), s *)

γ = 10-2; (* Damping rate, s-1 *)

Print["α = ", N[α, 4]]

(* N[] avoids value displaying in terms of π *)

Print["Time of experiment: ", texp, " s"]

α = 0.01009

Time of experiment: 2.58621 s
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Derived parameters

In[86]:= c =
4 π ℏ

2 a

m2
×

Na

π α
2 L3

; (* Speed of sound, m/s *)

Rep =
τ

t
; (* Number of repetitions *)

Ω =
c π

L
(n + l); (* Resonant frequency, s-1 *)

ωn =
c π

L
n ; (* Modes frequency, s-1 *)

ωl =
c π

L
l ;

Q =
Ω

γ

; (* Quality factor *)

Print"Speed of sound: ", 103 c, " mm/s"

Print["Frequency: ", Ω, " Hz"]

Speed of sound: 1.87979 mm/s

Frequency: 35.4333 Hz

Precision

In[96]:= ΔaΩ =

α ℏ π
3 2 n l l2 - n2

2

16 Na m θ L a τ t Np l2 + n2
;

Print["Sensitivity: ", ΔaΩ, " m/s"]

Sensitivity: 4.81378×10-16 m/s

Constraints

1) Condition for dilute regime,   N0 a3

V
<< 1

In[102]:=

Na a
3

π α
2 L3

TrueQ
Na a

3

π α
2 L3

≤ 0.1

Out[102]=

0.0000143778

Out[103]=

True

2) Condition for Bogoliubov approximation,   number of excited atoms  << number of atoms in the 
condensate (Nexc << N0 )
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In[107]:=

m c2

ℏ (ωn + ωl)

Np

Na

TrueQ
m c2

ℏ (ωn + ωl)

Np ≤ 0.1 Na

Out[107]=

149 731.

Out[108]=

4 000 000

Out[109]=

True

3) Condition for phonon regime,   ℏωn << m c2 
In[110]:=

ℏ ωl

m c2

TrueQℏ ωl ≤ 0.1 m c2

Out[110]=

2.49214 × 10-33

Out[111]=

5.08842 × 10-31

Out[112]=

True

5) Condition for low-temperature regime,   kB T << μ =mc2

In[113]:=

kB T

m c2

TrueQkB T ≤ 0.1 m c2

Out[113]=

1.3806 × 10-32

Out[114]=

5.08842 × 10-31

Out[115]=

True

6) We need to bound the density from above to extend the life-time thl of the BEC
In[116]:=

3

2 d ρ
2

Out[116]=

25.8621

7) In order to keep the ratio α small, we have to make the density as big as possible. 

α =
N0

π ρ L3
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The optimal density is the one that allows us enough time for doing the experiment while keeping α 
small.

Dampings

Landau damping (ℏωn << kB T << μ =mc2):
In[117]:=

ΓL =
3 π

3

40
×
(kB T)

4
ωl

m ρ ℏ
3 c5

Out[117]=

5.02842 × 10-6

Beliaev damping (ℏωn << kB T << μ =mc2):
In[118]:=

ΓB =
3

640 π

×
ℏ (ωl)

5

m ρ c5

Out[118]=

3.42555 × 10-12

Decoherence time:

(* γ corresponds to the dominating damping process, r0 is the squeezing parameter *)

tmin =
1

γ

Log
1 - 2 Cosh[2 r0]

1 - Cosh[r0]
;

tmin = 10 t Log
1 - 2 Cosh[2 (0.001)]

1 - Cosh[0.001]


Out[ ]=

369.827

Others

Squeezing parameter (linear term, without potential factor):

2 m2 c2 L2 l2 + n2

2 n l l2 - n2
2
π
2
ℏ
2

s =

m2 c3 L l2 + n2 t

2 n l (l - n)2 ℏ2

Out[ ]=

50 427.7

Number of phonons:

In[ ]:= 2 Sinh[4.8]2

Out[ ]=

7381.39
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[105] Pelegŕı, G.; Mompart, J. and Ahufnger, V. (2018) ‘Quantum sensing using

imbalanced counter-rotating Bose-Einstein condensate modes’ New J. Phys. 20,

103001.



Bibliography

[106] Szigeti, S.; Nolan, S.; Close, J. and Haine, S. (2020) ‘High-Precision Quantum-

Enhanced Gravimetry with a Bose-Einstein Condensate’ Phys. Rev. Lett. 125,

100402.

[107] Müntinga, H. et al. (2013) ‘Interferometry with Bose-Einstein Condensates in

Microgravity’ Phys. Rev. Lett. 110, 093602.

[108] Lotz, C.; Piest, B.; Rasel, E. and Overmeyer, L. (2023) ‘The Einstein Elevator

- Space Experiments at the new Hannover Center for Microgravity Research’

Europhys. News 54, 9.

[109] Becker, D. et al. (2018) ‘Space-borne Bose-Einstein condensation for precision

interferometry’ Nature 562, 391.

[110] Aveline, D. et al. (2020) ‘Observation of Bose-Einstein condensates in an

Earth-orbiting research lab’ Nature 582, 193.

[111] Hardman, K. et al. (2016) ‘Simultaneous Precision Gravimetry and Magnetic

Gradiometry with a Bose-Einstein Condensate: A High Precision, Quantum

Sensor’ Phys. Rev. Lett. 117, 138501.

[112] Bruschi, D.; Fuentes, I. and Louko, J. (2012) ‘Voyage to Alpha Centauri:

Entanglement degradation of cavity modes due to motion’ Phys. Rev. D 85,

061701.

[113] Ahmadi, M; Bruschi, D. and Fuentes, I. (2014) ‘Quantum metrology for rela-

tivistic quantum felds’ Phys. Rev. D 89, 065028.

[114] Rätzel, D.; Howl, R.; Lindkvist, J. and Fuentes, I. (2018) ‘Dynamical response

of Bose-Einstein condensates to oscillating gravitational felds’ New J. Phys. 20,

073044.
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