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ABSTRACT

The analysis of spatial and statistical properties of a cap-
tured sound field is of significant interest in various fields,
including room acoustics, spatial sound capture and re-
production. In this paper, we investigate these properties
based on higher-order Ambisonic (HOA) signals. A cross-
spectral matrix is constructed, where the diagonal and off-
diagonal entries respectively represent the power spectral
densities and the cross-spectral densities of the HOA sig-
nals. Through theoretical development, we demonstrate
that the numerical properties of the cross-spectral matrix,
such as its rank and eigenvalue distribution, are deter-
mined by the spatial distribution of incident sound waves
and the correlation between source signals. The analysis
is performed for simulated and real sound fields, consid-
ering various source distributions and Ambisonic orders.

Keywords: cross-spectral analysis, covariance matrix,
higher-order Ambisonics, B-format signals

1. INTRODUCTION

Microphone array techniques are widely used in vari-
ous acoustical applications, such as room acoustics anal-
ysis [1, 2], echo cancellation [3], and spatial sound cap-
ture [4, 5]. Recent advances in microphone arrays with
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higher-order directivity, combined with sophisticated sig-
nal processing techniques, have significantly enhanced the
spatial resolution of such analyses. Spherical microphone
arrays have gained particular attention due to their uni-
form spatial resolution [5]. The sound fields captured by
these arrays are typically represented using spherical har-
monic coefficients, which are inherently compatible with
higher-order Ambisonics [4, 6]. A range of signal pro-
cessing methods have been developed in the spherical har-
monic domain. Notably, subspace-based techniques, such
as those relying on singular value decomposition or eigen-
value decomposition, have been applied for tasks such as
direction-of-arrival (DOA) estimation [7] and diffuseness
estimation [8-10].

Quantifying the diffuseness of a sound field is of par-
ticular interest in applications where the estimated diffuse-
ness is further used for the subsequent processing stages,
e.g. echo cancellation and spatial encoding of captured
sound fields [3, 11]. A sound field with directional dif-
fuseness is typically characterised by two main properties:
the isotropy of the incoming waves and the incoherence
of their phases [12-15]. Spatial sound reproduction sys-
tems attempt to recreate these conditions and can even en-
hance the perceived diffuseness by manipulating the inter-
channel correlation of the source signals, a process known
as decorrelation [16—-18]. In [8], the eigenvalue distribu-
tion of the covariance matrix in the Ambisonic domain
was used to quantify the degree of diffuseness in a sound
field. The spatial coherence was investigated in [19-21]
for non-coincident microphones with first- and higher-
order directivity patterns.

In this paper, we further investigate the eigenvalue
distribution of the covariance matrix for sound fields with
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different source correlation and source distributions. Our
approach closely resembles that of [8], but the analysis is
conducted in the short-time Fourier transform (STFT) do-
main rather than in the time domain. This paper is struc-
tured as follows. Section 2 reviews the Ambisonic encod-
ing of plane waves in a free field and sound fields captured
by microphone arrays. The covariance matrix of HOA sig-
nals is introduced in Sec. 3, where the influence of source
correlation and the source positions are investigated for
various scenarios. It is demonstrated that the eigenvalue
behaviours of the source covariance matrices can be pre-
dicted by using the Marchenko-Pastur law. Section 4 then
reports a case study where the presented analysis frame-
work is applied to sound field reproduction scenarios with
different loudspeaker arrangements. The paper concludes
with potential directions for future studies in Sec. 5.

2. AMBISONIC ENCODING

We consider a sound field which comprises of Q plane
waves whose propagation directions are denoted by unit
vectors,

k, = [sin v, cos ¢ , sind, sin p,, cos I, ]" (1)

forg=1,...,Q, where ¥, € [0, 7] and ¢, € [—7, ) de-
note the colatitude and azimuth angles, respectively. Each
plane wave carries source signal with Fourier transform
of Sy(w). The angular frequency in rad/s is denoted by
w = 27 f where f is the frequency in Hz.

By using the plane wave expansion, the sound field
can be parametrised by plane wave direction, kE =
[sin 6 cos ¢, sin O sin ¢, cos 0] T, defined similarly as (1).
In a free-field, the plane wave density function reads [4]

Q
S(k,w) =Y "ok —ky), 2)
q=1

where d(k —k,) = 6(¢—p,)8(cos §—cos¥,). The plane
wave density function can be approximated by a truncated
spherical harmonic expansion [6],

N n
Sk,w) =Y > Sum(w) Yam(k). 3
n=0m=-—n
We consider real-valued spherical harmonics, denoted by
Yom (k) == Yom (60, ¢) with n and m denoting the order
and degree, respectively. In 3-dimensional Ambisonics,
the expansion coefficients Sy, (w) are referred to as the

B-format signals, and the truncation order N as the Am-
bisonic order. For a given order /N, the number of B-
format channels are £ = (N + 1)2. Following the Am-
bisonic channel number (ACN) convention, the B-format
channel index [ = 0,1,... is related to n and m by
l=n?>+n+ml4].

The spatial encoding of the Q plane waves in a free
field into B-format reads

Q
Snm(w) = Z Sq(CU) Ynm(kq), (4)

which can be expressed in matrix form as
s§=Ys, (5)

where § is the B-format signal vector (£ x 1),

_ . . ~ - ~ T
5=[%,0 Si-1 Sio Sii Snn] . (©)
Y the matrix of spherical harmonics (£ x Q),
Yo,0(k1) Yoo(ko)
Y = : : ) @)
Y (k1) Yy (ko)
and s the source signal vector (Q x 1),
T
s = [Si(w) So(w)] " . (8)

The vectors s and s are defined for each frequency. The
frequency-dependency is suppressed for brevity.

The B-format signals can also be obtained from a cap-
tured sound field. For spherical microphone arrays, the
encoding process can be expressed as [5]

5=B(YL..) Hs. )
The transfer functions H, ,(w) from the sources to M
microphones are represented by H (M x Q),

Hy(w) Ho:(w)

H = : : . (10)
Hipm(w) Ho m(w)

(YL )T is the pseudo-inverse of Y. which has the size

of M x L and defined as

Yo,0(21) Yy n(Z1)

Yyl = : : ECE))
Yo.0(Zm) Yn N (Zam)
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where &, u = 1,..., M represent the angular positions
of the microphones. Finally, an equalisation (called radial
filtering) is performed by the diagonal matrix B, [4, Ch. 6]

B = diag (bo(%7) by (£7)), (12)

where b, (%) denotes the respective filters that depend on
the order n and the array radius r.

Note from (5) and (9) that the spatial encoding from
source signals to B-format signals is described by a ma-
trix multiplication, Anegel = Y for model-based encod-
ing and A4y, = B(Y L)V H for data-based encoding.
The B-format signals obtained from a microphone array
exhibit a limited Ambisonic order mainly because of the
finite number of microphones. A regularisation is typi-
cally used in the radial filter design, cf. (11), in order to
avoid excessive boost at high orders. These limit the oper-
ating frequency range in which all Ambisonic orders can
be fully used. The components outside this range exhibit
reduced Ambisonic order and spatial aliasing artefacts.

3. COVARIANCE MATRIX OF HOA SIGNALS

The covariance matrix of B-format signals s is defined as
Css =E{(3—E(3))(5—E(3)"}, (13)

where E(-) denotes the statistical expectation and (-)! the
Hermitian transpose. The diagonal terms in C'z; repre-
sent the auto-spectra of the individual B-format signals,
whereas the off-diagonal terms represent the cross-spectra
of B-format signal pairs. An eigenvalue decomposition of
the covariance matrix is performed

C:: = Q:A:Q:' = Q: A:QY, (14)

where the columns of @ are the eigenvectors and the di-
agonal entries of A are the corresponding eigenvalues,
A = diag (A A9 (15)
The second equality in (14) follows from the fact that C'; 5
is positive semi-definite, which leads to le = Q? [22].
The covariance matrix can also be expressed in terms
of the spatial encoding matrix Y and the source signals s.
Substituting (5) into (13) yields

Cs; =YE{(s—E(s))(s—E(s)"}Y" (16

=vYC,Y!" (17)
=YQ.A.Q;'Y" (18)
=YQ,A.QIY". (19)

The deterministic matrices, Y and Y™ are factored out
from E(-) in the first equality (16). Eigenvalue decom-
position of the source covariance matrix is performed in
(17), Css = E{(s — E(s))(s — E(s))"}. Q, and A,
denote the eigenvector matrix and the eigenvalue matrix,
respectively, with

A, = diag (A% A9). 20)
The fourth equality (19) again follows from the fact that
Cs; is positive semi-definite.

The numerical properties of Cz; are determined by
the correlation between the source signals and the spatial
distribution of the plane wave directions. While the co-
variance matrix of a single plane wave will be rank-one,
and exhibits a wide spread in eigenvalues, the covariance
matrix for a larger number of isotropic and uncorrelated
plane waves with equal power will be full-rank and have
equal eigenvalues [8]. In the following, we investigate the
influence of source signals and source distribution on the
resulting covariance matrix.

3.1 Source covariance matrix

In the case of an ideally diffuse field, the source directions
are isotropic, and the source signals are uncorrelated and
have equal power. The source signal covariance matrix
Cs, cf. (18), thus will be an identity matrix scaled by
the signal power, and the eigenvalues will be equal, i.e.,
AV = =A@ =

In practice, however, the covariance matrix is com-
monly obtained by approximating the statistical expec-
tation E(-) by a sample average under the ergodicity as-
sumption [23],

[y

‘77

LS (50, ) = () (50, ) — (),

C’SSN
J-1=

<

21

where the entries of the vector [s(j, k)], = S4(j, k) are
the short-time Fourier spectra of the source signals at time
step j and frequency index . The expected value of the
spectrum at each frequency is also approximated by the
sample mean,

Q

_ 1
ST -

J

w (k) s(j, k). (22)

Il
=]

Since the estimated source signal covariance matrix (21)
is based on a short-time spectral analysis, the covariance
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Figure 1: Eigenvalues (filled circles) of the source signal covariance matrices C's5 for 16 uncorrelated white
noise signals ~ A/(0,1) with length of 2!6 samples (=~ 1.37s) at a sampling frequency of f; = 48kHz.
Different frame lengths (128, 256, and 512 samples) and analysis windows are considered: (a) rectangular
window without overlap and (b) Hanning window with 50 % overlap. The covariance matrix is computed from
the short-time Fourier transforms, cf. (21). The results for 1 kHz are shown. The shaded area depicts the range
of the eigenvalues [Amin, Amax], €stimated by the Marchenko-Pastur law (23). The ratio v = % and the variance

of the short-time spectra o2 are shown on the top of each figure.

of any signal pair is generally non-zero and the eigen-
values are no longer equal. Moreover, the distribution
of the eigenvalues is largely dependent on the short-time
Fourier analysis parameters, such as the frame length and
the number of frames for averaging.

The Marchenko-Pastur law describes the properties of
the eigenvalues of a covariance matrix for signals with
independent and identical distributions [24]. Let us de-
note the power of each signal at a given frequency bin
as 03, and the ratio between the number of sources Q
and the number of samples 7 for averaging, cf. (21), as
v = % The empirical eigenvalues are known to follow
the Marchenko-Pastur distribution as Q, 7 — oo. The
mean and variance of the distribution are o2 and o2 - 7,
respectively. Additionally, the eigenvalues cluster within
a finite support,

AP € o2 (1— )% 02 (1+ V37l

As the sample size (number of frames) increases (J —
00), the variance of the distribution tends to zero and the
eigenvalue distribution becomes asymptotically uniform.

Numerical simulations are performed for 16 uncorre-
lated noise signals. The signals are generated in the time
domain, from a normal distribution of zero mean and unit
variance A'(0,1). The length of the signals are 2!6 sam-
ples (= 1.37s) at a sampling frequency of f, = 48 kHz.
A short-time Fourier transform was performed with vary-
ing parameters:

(23)

e Frame length: 128, 256, 512 samples

e Rectangular window (0 % overlap) and
Hann window (50 % overlap)

The FFT length is fixed to 1536 samples in order to have
the same frequency resolution. The frame length and the
overlap length determine the number of frames 7 and thus
the ratio v = %

The eigenvalues of the empirical source covariance
matrix at the frequency of 1 kHz are shown in Fig. 1. The
results for other frequencies are similar in nature, and are
not shown here. It can be seen that the magnitude and the
spread of the eigenvalues are dependent of the short-time
Fourier analysis parameters. The eigenvalue range pre-
dicted by the Marchenko-Pastur law (23) is indicated by
shaded gray area. The results are in good agreement with
the predictions irrespective of the frame length, overlap
length, and the window type.

The lower and upper bounds of the eigenvalues can
potentially be used to predict the correlation of the source
signals for given short-time Fourier domain signals. The
more the signals are correlated, the more eigenvalues will
lie beyond the limits. This is particularly useful when the
covariance matrix needs to be estimated within a shorter
time frame which typically leads to a wider spread in
eigenvalues and the uniform assumption does not hold.

3.2 Spatial covariance matrix

The distribution of source positions affects the B-format
covariance matrix C'zz through the spatial encoding ma-
trix Y, cf. (5). In this section, we investigate the proper-
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Figure 2: Spatial covariance matrices and their eigenvalues for different source distributions: (a)—(b) Nearly
uniform distributions using ¢-design; (c)—(d) Random distributions; (e)—(f) Uniform circular distribution on the
xy-plane. For each distribution type, 12 and 36 source positions are generated. Spatial encoding matrices with
different Ambisonic orders N = 1,2, 3,4 are considered. The spatial covariance matrices are scaled with é

and the eigenvalues with %. The eigenvalues are sorted in descending order.

ties of the spatial covariance matrix, defined as Cyy = The matrix C'yy resembles the orthogonality matrix
YY", Note that the model-based encoding (5) is inde- for spatial sampling schemes on a sphere [5, Ch. 3]. The
pendent to frequency. The presented results thus align entries of the matrix can be regarded as the numerical inte-
with the observations in [8], where time-domain signals gration of two spherical harmonics sampled at the source
were considered. directions with unit quadrature weights,
The spatial covariance matrix is diagonalised by using o
the eigenvalue decomposition as [ CYY] = Z Yoo () Yo (), 25)
Cyy = QyAyQy, 24) a=1

where Q- and Ay denote the eigenvector matrix and the where { = n?+n+m+1land ¢’ = n+n'+m’+1are
eigenvalue matrix, respectively. The eigenvalues are de- the row and column indices, respectively. A uniform (or

nearly uniform) distribution can achieve orthogonality of
spherical harmonic pairs up to a given order. The covari-
ance matrix then reads Cyy = %I with equal eigenval-

noted by /\gf) forn = 1,...,rank(Cyy). The rank of
Cyvy, i.e. the number of non-zero eigenvalues, is deter-
mined by the number of source directions O, the spatial

distribution of the sources, and the number of B-format ues of )\gﬁ ) — %, vn.
channels L. The structure of the spatial covariance matrices and
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the eigenvalues are depicted in Fig. 2 for different source
distributions:

e Spatial distribution type: ¢-design [25], circular
distribution on the zy-plane, and random distribu-
tion

e Number of sources Q@ = 12,36 (corresponding to
degrees 5 and 8 for the ¢-design)

e Ambisonic order N = 1,2, 3,4 (corresponding to
B-format channels of £ = 4,9, 16, 25)

For a given source distribution, the entries of the spatial
covariance matrix are uniquely determined independent to
the Ambisonic order N. The covariance matrix for lower
orders (e.g. N = 1,2,3) are sub-matrices of the covari-
ance matrix for N = 4. However, the resulting eigenval-
ues generally change with the Ambisonic order.

For nearly uniform source distributions, Figs. 2(a) and
2(b), the covariance matrices are diagonal up to [ = 9
and | = 25 corresponding to Ambisonic orders N = 2
and N = 4, respectively. The eigenvalues have discrete
values and exhibit structured distributions. The ¢-design
with degree 8 ensures the orthogonality of the spherical
harmonics up to order N = 4. The spatial covariance
matrix is thus a diagonal matrix, and all the eigenvalues
are equal to % irrespective of the Ambisonic order IV,
cf. Fig. 2(b). For the t-design of degree 5, this is only the
case up to N = 2. At higher orders, e.g. N = 3,4, the
covariance matrix exhibit off-diagonal entries, resulting in
unequal eigenvalues.

For randomly distributed source directions, Figs. 2(c)
and 2(d), the covariance matrices exhibit non-zero off-
diagonal entries for all considered spherical harmonics.
No clear structured distribution can be observed in the
eigenvalues. The rank of the covariance matrices stays the
same as for the nearly uniform distributions. However, the
spread of the eigenvalues is considerably larger.

When the sources have a circular distribution,
Figs. 2(e) and 2(f), the covariance matrices have rows and
columns that have only zero entries. These correspond to
the spherical harmonics that have nulls on the zy-plane.
This results in a rank deficiency of the matrix, as can be
seen by the number of non-zero eigenvalues. For both
Q = 12 and 16 sources, the rank of the covariance matrix
is 2N + 1. This corresponds to the number of B-format
channels in 2-dimensional Ambisonics [4].

It is worth mentioning that the normalisation of the
spherical harmonics, e.g. N3D or SN3D [26, Ch. 3], has
a significant impact on the distribution of the eigenvalues.

If the SN3D normalisation is used, the difference between
the diagonal entries of C'yy increases and eigenvalues
have a wider spread (not shown) compared to the N3D
normalisation. Since the purpose of the current work is to
examine the spatial isotropy of the sound field, we employ
the N3D normalisation, which yields a tighter distribution
of the eigenvalues for isotropic source distributions.

4. REPRODUCED SOUND FIELDS

In this section, we consider sound reproduction scenarios,
where multiple loudspeakers produce uncorrelated sig-
nals. Three different loudspeaker layouts are considered
that are compliant with ITU-R BS.2051-3 [27]:

e 5-channel (0+5+0)
e 9-channel (4+5+0)
e 22-channel (9+10+3)

The digits in parentheses indicate the number of loud-
speakers distributed across three vertical layers (upper +
middle + lower). The exact positions of the loudspeakers
follow the layout of the system installed in the Audio Lab-
oratory at the University of Southampton, cf. Fig. 3(a).
For each configuration, the loudspeakers are driven with
uncorrelated white noise signals. The signals are gener-
ated in the time domain from a normal distribution with
zero mean and unit variance. The length of the signals is
216 samples for a sampling frequency of f, = 48 kHz.

Fourth-order Ambisonic encoding is performed both
for simulated and real sound fields. A free-field is as-
sumed for the simulated case and the Ambisonic signals
are obtained by using (5). The angular positions (azimuth
and colatitude) of the loudspeakers are set as the plane
wave directions. For the real sound field, a data-based en-
coding is carried out. The room impulse responses mea-
sured by a rigid spherical microphone array (mh acoustics
em32) are converted into B-format signals as described
by (9). A regularised radial filter (maximum magnitude
boost of 30dB) is used to equalise the effect of the mi-
crophone array [28]. Finally, a short-time Fourier analysis
of the B-format signals is performed with frame length of
256 samples, Hann window with the same length, overlap
length of 128 samples, and FFT length of 1536 samples.
The results for 2 kHz are presented in this section.

The covariance matrices are computed for the source
signals, spatial encoding, and the B-format signals as de-
scribed in Sec, 2. The respective eigenvalues (denoted
by As, Ay, and A;) for simulated and real sound fields
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are shown in Figs. 3(b) and 3(c), respectively. It can be
seen that the eigenvalues of the source signal covariance
matrices follow similar distribution as observed in Fig. 1.
Since the same set of uncorrelated source signals are used
for simulated and real cases, the eigenvalues of the sig-
nal covariance matrices are identical. The eigenvalues of
the spatial covariance matrices exhibit properties some-
what between nearly uniform and random distributions,
cf. Fig. 2. The rank of C'yy are the same as the number of
loudspeakers (i.e. 5, 9, and 22). The condition number for
the 22-channel layout is considerably larger than the other
layouts. This is presumably due to the dense arrangement
of the sources on the horizontal plane, cf. Fig. 3(a), which
almost leads to a rank deficiency similar to the circular
distributions, cf. Figs. 2(e) and 2(f). Incorporating the
room acoustics affects the eigenvalue distribution signifi-
cantly.

For the considered scenarios, the eigenvalue distribu-
tion of the B-format signals is dominated by that of the
spatial encoding matrix. This is primarily because the
source signals are uncorrelated and the eigenvalues of the
source covariance matrix exhibit minimal spread. The im-
pact of the source signals could be demonstrated by in-
creasing the correlation of the source signals, which would
increase the spread of the eigenvalues \¢. Further investi-
gations for more diverse scenarios are left as future work.

5. CONCLUSION

A cross-spectral analysis was performed on higher-order
Ambisonic signals. The numerical properties of the B-
format covariance matrices are determined by the statisti-
cal relationship between the source signals and the spatial
distribution of the source positions. The signal-dependent
and spatially-dependent parts were explored in terms of
the eigenvalues of the respective covariance matrices. It
was shown that, the eigenvalue distribution of the source
signal covariance matrix is very sensitive to short-time
Fourier analysis parameters. Nevertheless, by exploiting
the Marchenko-Pastur law, it is possible to reliably pre-
dict the spread of the eigenvalues in the case of uncorre-
lated signals. The influence of the spatial isotropy is rep-
resented by the spatial covariance matrix. The distribution
of the corresponding eigenvalues is found to be dependent
on the number of sources and the Ambisonic order. It was
also demonstrated that certain source arrangements cause
rank deficiency of the spatial covariance matrix.

The presented work is still exploratory in nature, but
bears the potential to be extended towards the estimation
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Figure 3: Eigenvalue analysis for reproduced sound
fields. The considered loudspeaker layouts are
shown in (a). The eigenvalue distributions are shown
for (b) simulated free-field and (c) real sound field.

of sound field’s diffuseness, which is still an on-going
research topic. It is of considerable interest to enable
the prediction of associated perceptual attributes such as
listener envelopment. The relationship between time in-
tegration of the auditory processing and the short-time
Fourier analysis can be further explored. Incorporating the
directional-dependent resolution of human spatial hearing
into the model is also a possible extension of the current
study.
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