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Abstract: Belt conveyors are commonly used for the transportation of bulk materials. The most
characteristic design feature is the fact that thousands of idlers are supporting the moving belt. One
of the critical elements of the idler is the rolling element bearing, which requires monitoring and
diagnostics to prevent potential failure. Due to the number of idlers to be monitored, the size of the
conveyor, and the risk of accident when dealing with rotating elements and moving belts, monitoring
of all idlers (i.e., using vibration sensors) is impractical regarding scale and connectivity. Hence,
an inspection robot is proposed to capture acoustic signals instead of vibrations commonly used in
condition monitoring. Then, signal processing techniques are used for signal pre-processing and
analysis to check the condition of the idler. It has been found that even if the damage signature is
identifiable in the captured signal, it is hard to automatically detect the fault in some cases due to
sound disturbances caused by contact of the belt joint and idler coating. Classical techniques based
on impulsiveness may fail in such a case, moreover, they indicate damage even if idlers are in good
condition. The application of the inspection robot can “replace” the classical measurement done by
maintenance staff, which can improve the safety during the inspection. In this paper, the authors
show that damage detection in bearings installed in belt conveyor idlers using acoustic signals is
possible, even in the presence of a significant amount of background noise. Influence of the sound
disturbance due to the belt joint can be minimized by appropriate signal processing methods.

Keywords: rolling element bearing; damage; idler; belt conveyor; sound; signal processing; inspec-
tion robot

1. Introduction

Belt conveyors are widely recognized as interesting objects for condition monitor-
ing [1]. There are plenty of articles focused on the diagnostics of drive units (gearboxes,
pulleys) using vibration analysis or infrared thermography [2–6] or temperature [7]. The
conveyor belt has been defined as one of the most expensive component in conveyor, thus
various NDT techniques (image analysis, laser scanning, magnetic field measurement)
have been applied [8–13].

Researches on idlers were rather focused on rolling resistance, their energy consump-
tion, load distribution, and failure analysis until now [14–18], however, some infrared
thermography applications can be found in [5,8,9], among others.

There are also other interesting research problems regarding conveyors, including
destructive testing of steel-core belts, modeling of material stream behavior in a transfer
point (between two conveyors), or detection of humans in harsh conditions (for the case
when they are using conveyors as transport means for miners) [19–21]. However, these
topics have no direct link to the predictive maintenance of such systems.

Rolling element bearings have been widely discussed in the literature [22–24]. In
the case of conveyors, bearings are used in electric motors, gearboxes, pulleys, and, on a
massive scale, in idlers. Mostly, vibration signals are used for fault detection [22,23,25].
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Acoustic emission or just acoustic (sound) signals are rarely explored [26–31]. Delgado-
Arredondo at all [32], introduced methodology-based sound and vibration signals to fault
detection on an induction motor. They used Ensemble Empirical Mode Decomposition
to decompose the signal. Afterward, Gabor transform was utilized to calculate the spec-
tral content of signals in the frequency domain. Their method could detect two broken
rotor bars and mechanical unbalance defects. In [33] data driven methodology to detect
fault in the combustion motor were introduced based on the Wavelet Packet Transform
(WPT), Principle Component Analysis (PCA), and Bayesian optimization by using the
acoustic signal.

A very interesting application of acoustic-based condition monitoring using a mobile
phone has been proposed in [26,27].

Bearings used in idlers are not very often discussed in the literature. The reason
for that is likely the fact that vibration measurements are very difficult to perform for so
many idlers. Therefore, it might be the best solution (or rather one of the most feasible
solutions) to use a sound signal. Unfortunately, there are additional sources of noise and
fault detection in such conditions that may be complicated to distinguish, especially if one
can consider impulsive (what we will discuss later) disturbances in the acoustic signal.

An impulsive noise in signal processing procedures developed for local damage
detection has been recognized as a critical challenge [34–48]. It is well known that faulty
bearings produce a cyclic impulsive signal and the properties of the Signal of Interest
depend on the bearing geometry, rotational speed, and fault size. There are two commonly
used approaches for damage detection: searching for impulsiveness and periodicity. In the
presence of impulsive disturbance, the first approach fails completely. To identify signatures
in the spectrum with so-called fault frequency, one needs some preprocessing, which in
practice is prefiltering used to select an informative frequency band. Again, prefiltering
is mostly based on the search of impulsive behavior, which is hardly acceptable in this
case. Moreover, even a classical envelope spectrum analysis or very advanced bi-frequency
maps related to cyclostationary signal analysis may fail if the impulsive disturbance is
really high [39–42,44,46].

As mentioned, due to the number of idlers located along the conveyor, there is
a need to have a method for quick and automatic acoustic measurement and analysis.
Thus, there are intensive works on inspection robots equipped with various sensors and
data acquisition systems, including sound recording [5,6,8,9,49–51]. In the paper, we
propose a combination of robotics inspection, acoustic data measurement, and finally
signal processing for fault detection in idlers. The novel approach lies in proposing
multidimensional data structure called spectral autocorrelation, which is an extension of
the ordinary autocorrelation function calculated for the subsignals decomposed in the
carrier frequency domain. The advantages of using such map are laid out at the final stage
of result demonstration.

The acoustic signals acquired from mining machines are commonly mixed with high-
energy environmental noise and interfaces from other neighboring devices. Furthermore,
mining machines commonly work under time-varying speed, uncertain load conditions,
and noncyclic impulsive noise that lead signals to have a complicated structure. Therefore,
it is necessary to reduce this effect on the original signal by applying preprocessing methods.
Adaptive mode decomposition approaches are well known and effective methods for
dealing with such complex signals. They can identify the local properties of a signal
with great confidence of separability. Adaptive mode decomposition approaches are well
known and are effective methods for dealing with such complex signals. They can identify
the local properties of a signal with great confidence of separability. Empirical mode
decomposition (EMD) is a well-known adaptive mode decomposition method proposed
to analyze non-stationary signals [52,53]. However, this method is suffering from mode
mixing, endpoint effect, pseudo pulses, and other phenomena. Therefore, the local mean
decomposition (LMD) was developed to determine the mode mixing problem in EMD.
LMD utilized smoothed local means to evoke intrinsic modes from a signal instead of
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Hilbert transform used in the EMD algorithm [54–56]. Consequently, the information loss
prompted by the Hilbert transform can be minimized.

The paper is structured as follows: after the introduction, the experiment is described
and the most problematic aspects of the data processing are indicated. After that, the key
aspects of the processing methods are described in theory. Finally, the results are presented
with an indication of all intermediate steps and the conclusions are formed.

2. Experiments and Data Description

Idlers are rotating elements of the belt conveyor installed to support a moving belt.
It consists of a shaft, two bearings, and coating. As the number of idlers is massive in
practice (see Figure 1), a quick contactless method for bearing condition evaluation is
required. The experiment discussed in this paper has been done on a real industrial object
during regular operation. The conveyor itself is installed in a hall encapsulating the final
process of the material extraction. In this hall, the final stage of belt conveyors is operated
in order to discharge the material transported from the mining pit to the appropriate
compartments that are storing the material temporarily. Hence, in this hall some sections
of the conveyors are transporting the material to be dropped to the silos, and some of them
perform a function of the final stage of conveyor series, where the belt is finalizing the
loop and returning towards the excavation area. Until now, the inspection is done in a
classical way, i.e., the expert is checking the condition using their own senses, i.e., sight
and hearing (see Figure 2). However, the ultimate goal of the project is to replace such
“human-based inspection” with a mobile inspection robot, as shown in (see Figure 3). In
this figure one can see two belt conveyors installed in parallel. At the moment of the
experiment, the right conveyor was stationary, while the left one was in operation and it
was a subject of the inspection. While laser scanner was configured in a way to scan both of
them, the headpiece containing other measurement devices, such as cameras, was directed
towards the left conveyor.

Figure 1. A general view of the belt conveyor.
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Figure 2. Traditional idler inspection.

Figure 3. View of the robot during inspection.

During the experiments, a sound from each idler has been recorded, among others.
The duration of the signal is c.a. 10 s, with a sampling frequency of 48 kHz. Several
interesting examples have been noticed, i.e., some idlers generated a cyclic impulsive
signal, which is a clear signature of faulty bearings (see exemplary signals in Figure 4).
However, it has been found that for some measurements, strong impulsive disturbances
appeared (see exemplary signals in Figure 5).
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Figure 4. Selected examples of cyclic impulsive signals corresponding to faulty idlers.

Figure 5. Selected examples of noncyclic impulsive signals corresponding to signal disturbances.

It may be concluded that several classes of signals can be distinguished in such a
scenario, namely: non-impulsive signals (healthy case), cyclic impulsive signals (faulty
case), noncyclic impulsive signals (or more precisely, impulsive signals that are not related
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to damage), and finally a mixture of cyclic and noncyclic signals. It is obvious that signals
with different properties require more general, i.e., more advanced analysis. The two
last cases are difficult to deal with, indeed. Such high energy impulse are represented in
the frequency domain as wide-band excitation (see time-frequency representation of the
exemplary signal in the Figure 6) and complicate the procedure of so-called informative
frequency band detection. A similar effect can be observed in the time domain on the fourth
subplot of Figure 5. The source of these noncyclic impulses (not related to damage) is a
metal clip connecting two pieces of belt, which moves over the idlers and hits them with
a force much stronger than a typical interaction between the belt and idler, see Figure 7.
In this context it is important to know that the belt is never a single consistent loop. It is
manufactured as a linear strip, which is then installed as a loop by making a connection of
the ends. There are many ways to make such connection, which depends on the type of
belt used in a given conveyor (steel-core belt, textile belt, etc.) and on the preferred method
of making a joint in a given application (sawtooth gluing, layered gluing, multilayer gluing,
thermal vulcanization of several types, various types of mechanical connections, etc.).

Figure 6. Time-frequency representation of the signal with impulsive disturbance.

Figure 7. Belt joint using a metal clip.

3. Methodology

In this section, the key elements of the methodology are described. A general flowchart
of the procedure is presented in Figure 8.
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Firstly, local mode decomposition (LMD) is used as a way to denoise the input signal
in a data-driven manner. Then, a spectral autocorrelation (SAC) map is calculated for
the denoised signal. It allows to observe cyclic behavior in the signal with respect to the
carrier frequency spectrum. In the final stage of the result section, it is shown how the
usage of such an approach provides better results than using ordinary autocorrelation
function (ACF). In the next step, the SAC map is spatially denoised to further enhance its
quality. Finally, such an enhanced map is integrated along the frequency dimension, which
provides enhanced autocorrelation function (EACF), which operates with the same concept
as enhanced envelope spectrum produced when cyclostationarity maps are integrated after
enhancements. In the end, EACF allows to confirm the frequency of the idler rotation,
which indicates the bearing fault.

Figure 8. Flowchart of the procedure.

3.1. Preprocessing

LMD decomposes a complicated signal into a series of product functions (PFs) and a
residue. Every PF is a mono-component that is produced from an envelope signal and a
frequency modulated signal. In addition, A two-lever excursion algorithm is utilized to
integrate the decomposition. The first step, a precise calculation of the PF, is augmented
through the inner cycle. Second, in the outer cycle, the decomposition process of the signal
is performed based on iterations. For implementing LMD on the signal x(t), eight steps
are required.

Step 1: Extract all local extrema ni from the raw signal x(t). Compute the local
envelope estimate ai and local value mi of two consecutive extrema ni and n(i+1) by
utilizing (1) and (2), respectively.

mi =
ni+1 + ni

2
(1)

ai =
|ni+1 − ni|

2
(2)

Step 2: Make connections using direct lines between the local envelope estimate ai
and local mean values mi.
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Step 3: By applying the moving average method to smooth the local mean and
envelope estimate, create the amplitude function a11(t) and local mean function m11(t).

Step 4: Calculate residue signal h11(t) by subtracting local mean function m11(t) from
the raw signal.

h11(t) = x(t)−m11(t) (3)

Afterward, calculate the frequency modulated signal s11(t) as follows

s11(t) =
h11(t)
a11(t)

. (4)

Step 5: To extract the envelope estimate a12(t) of s11(t), replicate steps 1–3. If the
envelope function a11(t) = 1, interrupt the process and select s12(t) as the first frequency
modulated (FM). Otherwise, select s11(t) instead of the raw signal and repeat Steps 1–4 n
times until the envelope function a1(n+1)(t) of s1n(t) convince a1(n+1)(t). The first iterative
procedure can be defined as.

h11(t) = x(t)−m11(t)
h12(t) = s11(t)−m12(t)
...
h11(t) = s1(n−1)(t)−m11(t)

(5)

where 

s11(t) =
h11(t)
a11(t)

s12(t) =
h12(t)
a12(t)

...
s1n(t) =

h1n(t)
a1n(t)

(6)

Step 6: The corresponding instantaneous amplitude of the product function can be
computed as follows.

a1(t) = a11(t)a11(t) . . . a1n(t) =
n

∏
q=1

a1q(t). (7)

Step 7: Create the first product function PF1(t), utilizing.

PF1(t) = a1(t)s1n(t). (8)

In theory, PF1(t) consists of the main signal x(t) oscillation information. The IA of
PF1(t) is a1(t), and the IF can be computed as.

f1(t) =
1

2π

d[arccos(s1n(t))]
dt

. (9)

Step 8: Calculate the residue signal u1(t). Consider u1(t) as a new signal and perform
the described process k times until uk(t) does not consist of oscillation. The second iterative
process can be represented as follows.

u1(t) = x(t)− PF1(t)
...
uk(t) = uk−1(t)− PFk(t)

(10)

Therefore, the primary signal can be reconstructed by utilizing it as follows

x(t) =
k

∑
p=1

PFk(t) + uk(t) (11)
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where k is shown the number of PFs and uk(t) is the residue signal.
The LMD methods flowchart is demonstrated in the Figure 9.

Figure 9. LMD flowchart.

3.2. Spectral Autocorrelation

To detect the cyclic component present in the signal, the authors propose the use
of the spectral autocorrelation method. Firstly, the signal is decomposed in terms of its
carrier frequency domain. In practice, this is realized by using a filter array FA of type-1
linear-phase FIR filters with Kaiser window, and filtering the signal using the FFT-based
overlap-add method [57,58].

The number of filters in the array can be set as a parameter nB and the filters have equal
passband width with respect to −3 dB cutoff frequencies with the width d f = f s/(2 ∗ nB).
−3 dB frequencies of the respective filters are also the crossover points between the neigh-
boring filters. In practice, it means that the array consists of one lowpass filter for the fre-
quency band [0, d f ], one highpass filter for the frequency band [ f s/2− d f , f s/2], and nB− 2
bandpass filter for the remaining part of the Nyquist band. After filtering the input signal
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with this filter array, one can obtain an array of subsignals YnB×T where T is the length of a
time series, which is calculated as:

Yi = f ilter(x, FAi), f or i ∈ 1 : nB, (12)

where the usage of operator FAi stands for filtering the same input signal x with consecutive
filters from the FA array.

In the next step, for each of the obtained subsignals, the sample autocorrelation
function (ACF) is calculated. The autocorrelation itself measures the correlation between
samples y[t] and y[t + k] of the signal y where k = 0, ..., K and K is a range of the calculated
autocorrelation function.

According to [59] the autocorrelation for lag k is defined as:

ACF[k] =
c[k]
c[0]

, (13)

where c0 is the sample variance of a time series and

c[k] =
1
T

T−k

∑
t=1

(y[t]− y)(y[t + k]− y). (14)

The full set of obtained ACFs is then arranged in the form of matrix SACnB×K accord-
ing to the respective frequency bands of the filter that were used to obtain a given subsignal:

SACi = ACF(yi), f or i ∈ 1 : nB (15)

3.3. Spatial Noise Modeling

To enhance the quality of the SAC map, the authors decided to introduce a precondi-
tioning step before the actual identification step, in order for noise levels across the map to
be spatially modeled and subtracted from the data for each ∆ f .

The spatial context is created by the analysis of each carrier frequency bin f = [ f1, . . . , fnB]
along the lag dimension α = [α1, . . . , αn]. Each vector is modeled specifically to describe
the energy of the noise within this frequency band.

Considering the described modeling conditions, each vector SAC( fi, α) is modeled
with a dual-term exponential function using the nonlinear least squares method. The
obtained parameters ai ∈ A, bi ∈ B, ci ∈ C, di ∈ D (where A, B, C, D are vectors of the
parameters for the entire f domain) of the exponential function are then allowed to obtain
the noise model over the entire domain α for the given fi. Such modeled noise components
are arranged into a spatial noise map N, defined as follows:

N(i, α) = ai exp(biα) + ci exp(diα), (16)

which can be subtracted from the SAC map, effectively causing its denoising:

SACd = SAC− N, (17)

where SACd denotes the denoised SAC map.

4. Results

The raw input signal used in this paper is presented in Figure 10. In the first step,
the signal has been denoised using the LMD method. The result of this operation is
presented in Figure 11. One can notice that both the cyclic impulsive component as well as
three noncyclic disturbances are more clearly visible. In general, the level of noise has been
greatly reduced. To perform the analysis of cyclic behavior in the presence of large impacts
originating from the mechanical joint passing over idlers, a spectral autocorrelation map
has been calculated with the range parameter K = 1 s. Authors found out that it is not
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needed to set a high resolution in the frequency domain and this representation works
better with much lower resolutions than one would set, i.e., for a spectrogram. Hence,
the parameter nB = 40 turned out to be sufficient and the SAC map quality was satisfying,
which can be seen in Figure 12.

Figure 10. Raw input signal.

Figure 11. Signal denoised with LMD.

Figure 12. Spectral autocorrelation map.
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In the next step, the SAC map has been cleaned up by removing the background noise
profile that contains high values around the lag values of 0. To visualize this, Figure 13
presents the SAC map integrated along the frequency dimension, which displays the
“equivalent autocorrelation function” with respect to the quality of the SAC map that we
have at this point.

Figure 13. Integrated spectral autocorrelation map.

As expected, it is visible that the highest values are concentrated around zero lag,
which interferes with thresholding or other simple detection methods. In order to remove
this problem, a spatial noise model has been constructed (Figure 14) and removed from
the map, which significantly improved the quality and highly simplified the subsequent
steps (see Figure 15). One can notice that the vectors corresponding to the frequency bins
are different from each other, which means that the unwanted background information
is affecting different frequency bands with different strength. This indicates that it is
reasonable to construct the model in the multidimensional domain instead of fitting a
single model to the function in Figure 13. The model has been displayed in logarithmic
scale to better emphasize the differences between the individual vectors.

Figure 14. Spatial noise model.
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Figure 15. Spatially denoised spectral autocorrelation map.

Vectors of the denoised map have been averaged along the frequency axis, which
forms a single enhanced autocorrelation function (EACF) (see Figure 16). The maximum
value of this function (the value at the first peak) indicates the fundamental period of the
cyclic component equal to 0.18 s, which translates to the fault frequency of 5.46 Hz.

Figure 16. Enhanced autocorrelation function.

Figure 17 presents the classical autocorrelation function of the signal processed with
LMD (which is the same signal that the analysis leading to EACF has been performed
on). Comparison of the obtained EACF (see Figure 16) with classic ACF shows how much
clarity one can achieve by choosing to perform multidimensional analysis, and how such an
approach creates an opportunity to enhance the intermediate data representations leading
to a better result.
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Figure 17. Classic sample autocorrelation function.

5. Conclusions

In this paper, the authors present a very promising method for damage detection
in belt conveyor idlers. Based on the audio recording acquired by the mobile inspection
robot, it was possible to automatically detect cyclic modulations indicating the mechanical
fault of the idler. The method is especially useful because of its ability to ignore the
information about random noncyclic wideband events such as mechanical connection
of the belt. To achieve that, the spectral autocorrelation map was introduced as a base
data structure for the analysis. Additionally, noise of the SAC map has been modeled
individually with respect to the frequency domain and removed from the map. Finally, it
is shown how the usage of SAC map leading to EACF provides better results than using
ordinary autocorrelation function. In such scenarios, it is crucial to emphasize how simple it
is to acquire data for such analysis. In our case, the mobile robot was used, but theoretically
the audio signal could be recorded well enough with a simple voice recorder, or even
a smartphone.
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