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We consider laminar forced convection in a shrouded longitudinal-fin heat sink (LFHS)
with tip clearance, as described by the pioneering study of (Sparrow, Baliga & Patankar
1978 J. Heat Trans. 100). The base of the LFHS is isothermal but the fins, while thin, are
not isothermal, i.e. the conjugate heat transfer problem is of interest. Whereas Sparrow
et al. numerically solved the fully developed flow and thermal problems for a range of
geometries and fin conductivities, we consider the physically realistic asymptotic limit
where the fins are closely spaced, i.e. the spacing is small relative to their height and the
clearance above them. The flow problem in this limit was considered by (Miyoshi et al.
2024, J. Fluid Mech. 991, A2), and we consider the corresponding thermal problem. Using
matched asymptotic expansions, we find explicit solutions for the temperature field (in both
the fluid and fins) and conjugate Nusselt numbers (local and average). The structure of the
asymptotic solutions provides further insight into the results of Sparrow et al.: the flow is
highest in the gap above the fins, hence heat transfer predominantly occurs close to the fin
tips. The new formulas are compared with numerical solutions and are found to be accurate
for practical LFHSs. Significantly, existing analytical results for ducts are for boundaries
that are either wholly isothermal, wholly isoflux or with one of these conditions on each
wall. Consequently, this study provides the first analytical results for conjugate Nusselt
numbers for flow through ducts.
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Figure 1. Schematic cross-section of the periodic fin array (a) considered here and by Sparrow et al. (1978);
and the dimensionless single period domain D (b).

1. Introduction
Heat sinks are ubiquitous in modern computing and telecommunications hardware. More
generally, they are an enabling technology in the thermal management of all electronics
and elsewhere. When the flow is unidirectional, generally the fins on them are nearly
rectangular in cross-section, in which case the heat sink is referred to as a longitudinal-
fin heat sink (LFHS). LFHSs are manufactured by various methods (extrusion, skiving,
machining, etc.), each imposing constraints on, e.g. minimum fin spacing and thickness,
maximum fin height-to-spacing ratio, materials and cost (Iyengar & Bar-Cohen 2007).
Both air-cooled LFHSs (say, in a laptop) and water-cooled ones (say, in a ‘cold plate’
attached to a central processing unit, CPU, in a server blade) are common. The materials
of LFHSs are most commonly aluminium or copper, although the former is incompatible
with water.

The foundational study on laminar (forced) convection in an LFHS was published by
Sparrow, Baliga & Patankar (1978). They considered fully developed flow and heat transfer
and allowed for tip clearance between the top of the fins and an adiabatic shroud, but not
for bypass flow around the sides of the LFHS. Viscous dissipation was assumed negligible
and thermophysical properties were considered to be constant. Their key results pertained
to an isothermal base, a valid assumption in modern applications when, as is common, the
fins are attached to a vapour chamber. A key assumption invoked by Sparrow et al. (1978)
was that, geometrically, the fins were considered to be vanishingly thin, and they neglected
heat sink edge effects. Consequently, the fluid domain in one period was rectangular and,
due to symmetry, its width was half the fin spacing as per figure 1. The dimensional fin
spacing was S∗, the fin height H∗ and the clearance C∗. Their hydrodynamic results were
provided via tabulations of the Poiseuille number (Po, or product of the friction factor and
Reynolds number) as a function of the ratio of the fin-spacing-to-height ratio (ε = S∗/H∗)
and fin-clearance-to-height ratio (c = C∗/H∗).

In the thermal problem, Sparrow et al. (1978) assumed that the Biot number based on
the thickness of the fins was small; therefore, temperature varied only along its height.
Importantly, the conjugate thermal problem (where the convection problem is coupled to
a conduction problem in the fin) was solved by matching temperature and balancing the
net heat conduction rate along a differential height of the fin with the heat rate into the
fluid along the fin–fluid interface. In addition, heat transfer between the prime surface
(between fins) and the fluid was captured. The local Nusselt numbers (Nu) along the fin
and prime surface were provided as a function of non-dimensional distance x (along the
prime surface) or y (along the fin), ε, c and a dimensionless fin conduction parameter Ω
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defined as

Ω = kf

k

t∗

2H∗ , (1.1)

where kf is the thermal conductivity of the fin and k is that of the fluid, with t∗ the
thickness of the fin. The fin becomes isothermal as Ω → ∞. They further provide a
Nusselt number averaged over the prime surface and fin, Nu, that is independent of x
and y, and a key engineering parameter. A key conclusion of Sparrow et al. (1978) was that
the ubiquitous assumption of a constant heat transfer coefficient along the prime surface
and fin is generally invalid. Alas, it remains common today. In a subsequent and related
study, Sparrow & Hsu (1981) relaxed the assumptions of the fins being vanishingly thin in
the hydrodynamic problem and the fin temperature being constant across its width. (Axial
conduction remains neglected in the fin and the fluid as in our own analysis to follow).
The effects on the Poiseuille number were modest in the parametric ranges considered for
realistic heat sink geometries. Moreover, it was shown that the adiabatic fin tip assumption
compares well with the case where convection from the fin tip is captured because this
assumption causes a marked increase in heat transfer near the tip.

Karamanis & Hodes (2016), albeit restricting their attention to fully shrouded LFHSs
(i.e. c = 0), discuss relevant studies subsequent to those by Sparrow et al. (1978), including
representative ones pertaining to the conjugate problem. Additionally, they provide a
procedure using the formulation by Sparrow et al. (1978) to find the unique combination
of fin spacing, thickness and length which minimise the thermal resistance of an LFHS
for a prescribed pressure drop driving the flow through it, fin height and fluid-to-solid
thermal conductivity ratio. The engineering parameters Po and Nu suffice for this.
Dense tabulations of them relevant to the optimisation of the geometry of LFHSs when
the fluid-to-solid thermal conductivity ratio is that of air-to-copper, air-to-aluminium,
water-to-copper and water-to-silicon are provided by Karamanis (2015).

Subsequent research by Karamanis & Hodes (2019a), again for the fully shrouded case
(C∗ = 0), considered simultaneously developing flow through an LFHS and relaxed the
low Biot number assumption, thereby accounting for temperature variation also across
the fin’s thickness. Then, the Poiseuille number depends explicitly on the fin thickness-
to-height ratio (t = t∗/H∗), as well as an additional parameter, i.e. L+ = L∗/(Dh ReDh )

as per numerical results by Curr, Sharma & Tatchell (1972) and, subsequently, many
others (Shah & London 1978). Here L∗ is the streamwise channel length, and ReDh is the
Reynolds number based on the hydraulic diameter Dh . Thus, Karamanis & Hodes (2019a)
provide Nu as a function of ε, t , k/kf , L+, ReDh and Pr (the Prandtl number). Finally,
Karamanis & Hodes (2019b) combined the results for Po and Nu from the foregoing
studies with flow network modelling and multi-variable optimisation to find the optimal
fin thickness, spacing, height and length for an array of heat sinks in a circuit pack
such as a blade server, laptop or rack-mountable electronics or optoelectronics. Since
then, there have been other numerical studies reporting optimal heat sink geometries.
Representatively, Martin et al. (2022) and Sun, Ismail & Mustaffa (2025) optimised the
aspect ratio of the ducts by a brute-force numerical method over a limited parameter space,
with Sun et al. (2025) employing machine learning optimisation techniques.

More recently, the hydrodynamic problem with (c > 0) or without clearance (c = 0)
was revisited by Miyoshi et al. (2024). They considered the limit of small fin spacing
ε � 1, which is typical in practice – see table 1. For example, Iyengar & Bar-Cohen
(2007) report the minimum values to range from 1/60 (bonding) up to 1/6 (die casting),
or approximately ε ≈ 0.015−0.15. Although no clearance is ideal (c = 0), finite clearance
(c > 0) is common, with the range of c being highly variable. It may be as low as,

1016 A32-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
41

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10417


T.L. Kirk and M. Hodes

Parameter Values Range

ε 1/60 (bonding), 1/50 (forging, machining), ≈0.015−0.15
1/25 (skiving), 1/8 (extruding)

c 0 (fully shrouded), 0.01 (allowing for thermal expansion), (highly variable)
�1 (for low-power components)

Ω 1.6−11.7 (Copper–water), 22−150 (Aluminium–air) ≈1−150
Re 400−2600 (water, microchannel heat sink), >5000 (air) (highly variable)

Table 1. Typical parameter values possible in practical LFHSs. The ε values are the minimum for different
manufacturing methods as reported by Iyengar & Bar–Cohen (2007). We also used corresponding fin
thicknesses (t∗) therein to estimate Ω . Re ranges from experiments Reyes et al. (2011) (water), Sparrow &
Kadle (1986) (air).

say, 0.01, when a small gap is left between fin tips and an adjacent circuit board to
accommodate thermal expansion. On the other hand, for lower power components, flow
bypass is common and the clearance may exceed the fin height (c > 1). In the small ε

limit, Miyoshi et al. (2024) presented new flow solutions and Po formulas for a range of
clearances, using complex conformal maps and matched asymptotic expansions.

The analysis of Miyoshi et al. (2024) was limited to the hydrodynamic problem. In this
companion paper we consider the corresponding conjugate thermal problem (i.e. precisely
the one numerically solved by Sparrow et al. 1978) in the limit of small fin spacing (ε � 1)
with finite clearance (c > 0). We derive explicit formulas for the coupled temperature fields
in the fluid and the fin, and the local and overall heat transfer quantities as a function of
ε, c and Ω , thereby replacing many of the numerical results of Sparrow et al. (1978).
To validate these formulas, we compare them with our numerical solutions of the full
model, as well as the (equivalently) results of Sparrow et al. (1978). Two approximations
(leading order and higher order, respectively) for the average Nusselt number are found to
take the simple forms

Nu
(0) = 2.4304 ε

c(2 + ε)
+ O(ε2), (1.2)

Nu
(1) = ε

c(2 + ε)

[
2.4304 − ε

c

(
0.5362 + 2.6449

Ω

)]
+ O(ε3), (1.3)

and their comparisons with numerical solutions are summarised in figures 9, 10 and 11.
The numerical constants in the above, shown to 4 decimal places, are readily calculated to
arbitrary precision.

We note that, in practice, heat sinks on low-power components in circuit packs, such
as voltage regulators, metal–oxide–semiconductor field-effect transistors (MOSFETs) and
memory, are not fully shrouded, i.e. c in figure 1 is finite. Minimising the cost, weight, size,
etc. of them, albeit a secondary consideration in an overall thermal management solution,
requires knowledge of how the conjugate Nusselt numbers depend upon the solid–fluid
combination and the geometry of the heat sink via Ω , ε and c. Moreover, it further depends
upon the corresponding Poiseuille numbers, which in turn, depend upon ε and c, as per our
companion study (Miyoshi et al. 2024). Indeed, the caloric resistance of a heat sink, i.e.
that associated with the bulk temperature rise of the fluid, is also important (Karamanis &
Hodes 2016). Furthermore, the inlet fluid velocity and temperature profiles to the heat sinks
on the high-power components (where c is normally 0), such as central processing units
(CPUs), are affected by the pressure drops and temperature rises as fluid flows through the
heat sinks on low-power ones.
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Another practical consideration is whether or not the flow is hydrodynamically
and thermally fully developed as assumed here. The values of L+ corresponding to
hydrodynamically fully developed flow in rectangular ducts (c = 0) are well known, as per
the aforementioned study by Curr et al. (1972). Moreover, since the Prandtl numbers for
air and water are approximately 0.7 and 7, respectively, when the flow is hydrodynamically
fully developed, it may be assumed to be thermally fully developed. However, to our
knowledge, development lengths for the problem when c > 0 have not been considered
and is beyond the scope of the present study. In the case of c = 0, it is very common for
hydrodynamically and thermally fully developed flow to be a valid assumption as per, e.g.
in the direct liquid cooling of a CPU (Zhang et al. 2015). Further, the Reynolds number
Re (based on the hydraulic diameter) is commonly low enough for laminar flow, e.g.
in the range 400−2600 in water microchannel heat sinks (Reyes et al. 2011), but it can
also be transitional or turbulent for air (Sparrow & Kadle 1986). Nonetheless, for fully
developed laminar flow (which we provide formulas for in this paper), the conclusions
of Sparrow et al. (1978), that tip clearance results in a significant reduction in heat
transfer, have been qualitatively borne out by experimental works in subsequent decades
(Reyes et al. 2011).

The paper is structured as follows. The mathematical problem is formulated in § 2.
A summary of the solutions to the flow and thermal problems in the narrow-fin-spacing
limit (ε � 1) is presented in § 3. The Nusselt number definitions and formulas are given
in § 4, and they are compared with numerical solutions in § 5, followed by conclusions
in § 6.

2. Problem formulation
In this section we formulate the problem as given in Sparrow et al. (1978). A schematic
of the shrouded heat sink is shown in figure 1, including all dimensional lengths (and
their non-dimensional ratios). The fin array is periodic and aligned longitudinally with the
flow direction. The fin thickness is assumed to be negligible compared with other lengths,
except for the purpose of heat conduction along it. Throughout, an asterisk will denote that
a variable or length is dimensional (thermophysical properties are always dimensional).
We assume that the flow is hydrodynamically and thermally fully developed, and consider
the coupled (conjugate) thermal problems in the fluid and fins simultaneously.

The flow is unidirectional in the z∗ direction. The velocity field, w∗(x∗, y∗), is
governed by

∂2w∗

∂x∗2 + ∂2w∗

∂y∗2 = 1
μ

dp∗

dz∗ in D, (2.1)

where μ is the dynamic viscosity and dp∗/dz∗ is the constant pressure gradient. By
periodicity, we restrict attention to a single fin period, D = {0 � x∗ � S∗, 0 � y∗ �
H∗ + C∗}. The flow satisfies no slip (w∗ = 0) on the fin (x∗ = 0 and 0 < y∗ < H∗),
base (y∗ = 0) and shroud (y∗ = H∗), and symmetry (∂w∗/∂x∗ = 0) along the centreline
between adjacent fins (x∗ = S∗/2) and above each fin (x∗ = 0 and H∗ < y∗ < H∗ + C∗).

The thermal energy equation in the fluid takes the form

w∗ ∂T ∗

∂z∗ = α

(
∂2T ∗

∂x∗2 + ∂2T ∗

∂y∗2

)
in D, (2.2)

where T ∗(x∗, y∗, z∗) is the fluid temperature and α is its thermal diffusivity. We assume
that the base is isothermal, at temperature T ∗

base; hence, the fully developed assumption
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implies

∂T ∗

∂z∗ = T ∗(x∗, y∗, z∗) − T ∗
base

T ∗
b (z∗) − T ∗

base

dT ∗
b

dz∗ , (2.3)

where

T ∗
b =

∫
D w∗T ∗ dA∗∫
D w∗ dA∗ , (2.4)

is the bulk fluid temperature. Boundary conditions specifying an isothermal base, adiabatic
shroud, and symmetry above the fins (x∗ = 0) and between them (x∗ = S∗/2) are
given by

T ∗ = T ∗
base on y∗ = 0, (2.5)

∂T ∗

∂y∗ = 0 on y∗ = H∗ + C∗, (2.6)

∂T ∗

∂x∗ = 0 on x∗ = 0, H∗ < y∗ < H∗ + C∗, (2.7)

∂T ∗

∂x∗ = 0 on x∗ = S∗/2, 0 < y∗ < H∗ + C∗, (2.8)

respectively. On the fin surface, we have continuity of temperature and heat flux with the
conduction problem within the fin. The Biot number based on fin thickness is assumed
to be small enough that the temperature across its width is approximately constant, with
significant temperature variations occurring only along its height. Performing an energy
balance across half the width, t∗, of the fin (only half is relevant to the domain considered),
conduction up the fin is governed by the one-dimensional equation

kf t∗

2

d2T ∗
f

dy∗2 = −k
∂T ∗

∂x∗

∣∣∣∣
x∗=0

, for 0 < y∗ < H∗, (2.9)

where T ∗
f is the fin temperature. The sink term on the right-hand side corresponds to

heat conducting (at each y∗ location) out of the fin and into the fluid. We remark that
the ‘small Biot number’ assumption can be translated explicitly into an assumption on
the conductivity ratio kf /k. Typically kf /k will be large (e.g. O(104) for aluminium
and air) and, mathematically, to allow conduction up the fin when taking the limit of
small thickness (t∗/H∗ � 1) we must have kf /k = O((t∗/H∗)−1) or larger. (This can be
shown rigorously by considering the limit t∗/H∗ → 0 of the two-dimensional conduction
problem in the fin, while taking the distinguished limit kf /k = O((t∗/H∗)−1) so that the
product kf t∗/(2k H∗) = Ω stays fixed) Or in terms of Ω (given by (1.1)), this is equivalent
to Ω = O(1) or larger. This assumption allows the temperature variations up the fin to be
comparable to the temperature variations in the fluid.

There is also temperature continuity between the fin and fluid

T ∗
f = T ∗∣∣

x∗=0 , for 0 < y∗ < H∗. (2.10)

(Note, axial conduction in z∗ in the fin is also neglected for fully developed flow, as is
typical for axially constant temperature boundary conditions – see (Shah & London 1978,
Chapter 2) – because the ratio of axial conduction to transverse conduction scales the same
way in both the fin and fluid, and so both are negligible if the axial Péclet number is large).
Of course, there is another identical fin at x∗ = S∗ with the same temperature T ∗

f , but in
practice we enforce symmetry down the centreline at x∗ = S∗/2 instead.
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Finally, the isothermal condition at the base and adiabatic condition at the tip (due to its
negligible surface area) are, respectively,

T ∗
f = T ∗

base, at y∗ = 0, (2.11)
dT ∗

f

dy∗ = 0, at y∗ = H∗. (2.12)

2.1. Non-dimensional equations
The flow problem (2.1) is non-dimensionalised by scaling x∗ and y∗ with H∗ and the
velocity with (−∂p∗/∂z∗)H∗2/μ, i.e. introducing

x = x∗/H∗, y = y∗/H∗, w = μ

(−dp∗/dz∗)H∗2 w∗, (2.13)

resulting in a non-dimensional streamwise momentum (Poisson) equation of the form

∂2w

∂x2 + ∂2w

∂y2 = −1 in D. (2.14)

It is subjected to the boundary conditions

w = 0 on y = 0, 1 + c, (2.15)
w = 0 on x = 0, ε, 0 < y < 1, (2.16)

∂w

∂x
= 0 on x = 0, ε, 1 < y < 1 + c, (2.17)

where the non-dimensional geometric parameters are then ε = S∗/H∗, the ratio of fin
spacing to fin height, and c = C∗/H∗, the ratio of clearance to fin height.

As in Sparrow et al. (1978), we define a non-dimensional temperature field in the fluid
as

T = T ∗ − T ∗
base

T ∗
b − T ∗

base
, (2.18)

and a non-dimensional streamwise coordinate as

z = αz∗

w∗H∗2 , (2.19)

where w∗ is the average velocity

w∗ = 1
S∗(H∗ + C∗)

∫
D

w∗dA∗. (2.20)

Expressing (2.2) in non-dimensional form, we have

λWT = ∂2T

∂x2 + ∂2T

∂y2 in D, (2.21)

where we have defined W = w/w, and

λ= 1
T ∗

b − T ∗
base

dT ∗
b

dz
, (2.22)

is the non-dimensional exponential decay rate of T ∗
b − T ∗

base, which is a negative constant
due to the fully developed assumption. This constant is fixed by enforcing the definition of
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the bulk temperature, which in non-dimensional terms must be equal to one, i.e.

1
ε(1 + c)

∫
D

WT dA = 1. (2.23)

The corresponding boundary conditions (2.5)–(2.8) become

T = 0 on y = 0, (2.24)
∂T

∂y
= 0 on y = 1 + c, (2.25)

∂T

∂x
= 0 on x = 0, 1 < y < 1 + c, (2.26)

∂T

∂x
= 0 on x = ε/2, 0 < y < 1 + c. (2.27)

Defining the non-dimensional fin temperature Tf as in (2.18), where T and T ∗ are
replaced by Tf and T ∗

f , the thermal problem in the fin, (2.9)–(2.12), becomes

Ω
d2Tf

dy2 = − ∂T

∂x

∣∣∣∣
x=0

, for 0 < y < 1, (2.28)

Tf = T |x=0 , for 0 < y < 1, (2.29)

Tf = 0, at y = 0, (2.30)

dTf

dy
= 0, at y = 1, (2.31)

where Ω (given by 1.1) is the product of the fin-to-fluid conductivity ratio and the fin’s
(small) thickness-to-height ratio. The limit Ω → ∞ corresponds to an isothermal fin,
where T = 0 along the entire fin surface.

The above non-dimensional system of equations can be solved in their current form,
but for consistency with the literature and to yield a more convenient equation for λ, we
instead solve for the scaled temperatures

φ = T

λ
, φf = Tf

λ
. (2.32)

Under this transformation, all equations and boundary conditions remain unchanged
(T and Tf replaced with φ and φf , respectively), except for the integral condition (2.23)
which becomes

λ= ε(1 + c)∫
D

Wφ dA
, (2.33)

with λ now appearing explicitly.

3. Solutions in the small-fin-spacing limit
We consider the flow and conjugate thermal problems, i.e. (2.14)–(2.17) and (2.21)–(2.33),
respectively, in the geometric limit where the fin spacing is small in comparison with the
fin height, i.e. ε = S∗/H∗ � 1. This is typical of real heat sinks by design, to increase the
total surface area for heat transfer; see table 1 and, e.g. the photographs of heat sinks used
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y = 1 + c

ε � y – 1 ≤ c

y – 1 = εY
         = O (ε)

1 – y � ε
      y � ε

Gap

region

d2w/dy2 = –1 + exp. small

d2φ̃ /dy2 = d2φ̃f /dy2 = O (ε3) φ̃ = φ̃f  = (εΔ1 + ε2Δ2) y + ...

d2w̃/dX2 = –ε2 + exp. small w̃ = ε2 (1/2) X (1 – X ) + ...

d2φ/dy2 = λ (w/w–) φ + exp. small

∂2W/∂X2 + ∂2W/∂Y2 = O (ε2)

∂2Φ/∂X2 + ∂2Φ/∂Y2 = O (ε4)

w ( y) = w0 ( y) + εw1 ( y) + …

φ ( y) = φ0 (y) + εφ1 ( y) + …

Matching

W (X,Y )

Φ(X,Y )

Tip

region

Fin

region

y = 0
ε

y = 1

y = O (ε)

(neglected)

φ̃
f 

(
y)

Φ
f 

(Y
)

φ (y)

w (y)

φ̃ (X, y)

w̃ (X )

W = εW1
 (X, Y ) + …

Φ = εΦ1
 (X, Y ) + …

Φf = εΔ1
 + …

Gap region

Tip region

Fin region

Matching

Figure 2. Asymptotic structure of the domain showing the gap, tip and fin regions, and the behaviour of the
velocity and temperature expansions in each region (the region close to the base, y = O(ε), is not considered
here).

in the thermal management of electronics in Iyengar & Bar-Cohen (2007). Importantly,
we will further assume that the non-dimensional tip clearance, c = C∗/H∗, will remain
of order 1 as we take ε → 0. This is common for lower-power components on a printed
wiring board (say, voltage regulators) which use smaller heat sinks than higher-power ones
(say, a central processing unit). The hydrodynamic problem in this limit has already been
considered by Miyoshi et al. (2024), and we present here corresponding solutions for the
thermal problem. It is instructive to summarise the hydrodynamic solution first, before
presenting a summary of the temperature solution. The full derivation of the temperature
solution can be found in Appendix A.

3.1. Summary of hydrodynamic solution
It is convenient to rescale the x coordinate by defining X = x/ε, so that the problem
domain is independent of ε. Then, (2.14)–(2.17) become

1
ε2

∂2w

∂ X2 + ∂2w

∂y2 = −1 in D = {0 < X < 1, 0 < y < 1 + c}, (3.1)

w = 0 on y = 0, 1 + c, (3.2)
w = 0 on X = 0, 1, 0 < y < 1, (3.3)

∂w

∂ X
= 0 on X = 0, 1, 1 < y < 1 + c. (3.4)

Considering now ε → 0, the asymptotic solution takes a different form depending on the
region in the domain. Employing matched asymptotic expansions, the domain decomposes
into a gap region (1 < y < 1 + c) above the fins, a fin region (0 < y < 1) between the
fins (but at least a distance O(ε) away from their base or tips) and a short tip region
near the fin tips (y − 1 = O(ε)) that transitions between them. There is also a small base
region, (y = O(ε)) but it is not relevant to the thermal analysis (see Miyoshi et al. 2024
for more details). A schematic of the different regions and the resulting problems within
each, is shown in figure 2.
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3.1.1. Gap region: 1 < y � 1 + c
In the gap region above the fins, a regular expansion w = w0 + εw1 + · · · for ε � 1 leads
to the result that w is independent of X (i.e. only a function of y) to all algebraic orders.
Thus the unit pressure gradient, and the no-slip condition on the shroud (y = 1 + c) lead
to a Poiseuille-type parabolic flow profile. The leading-order flow is

w0(y) = − 1
2(y − 1)(y − 1 − c), (3.5)

and the O(ε) correction is a shear flow

w1(y) = − log 2
2π

(y − 1 − c), (3.6)

that is induced by the non-parabolic flow in the tip region, which is discussed after we
present the solution in the fin region.

3.1.2. Fin region: 0 < y < 1
Denoting the solution in this region by w̃, a regular expansion w̃ = w̃0 + εw̃1 + · · · leads
this time to a Poiseuille flow but with variation in the X direction. This is because
the flow must satisfy no-slip conditions on the fins at X = 0 and 1. The result is
that

w̃ = 1
2ε

2 X (1 − X) + · · · , (3.7)

where any higher orders are beyond all algebraic powers, and thus are exponentially small
in ε.

Interestingly, the flow in both the gap and fin regions is parabolic, but with
variations oriented perpendicularly to one another. The transition between the two
solutions takes place in the tip region, where the solution varies in both the X and y
directions.

The no-slip condition at the bottom of the domain, y = 0, can be easily satisfied by the
inclusion of a simple series, which is exponentially small unless y = O(ε), i.e. close to the
domain bottom. The modified solution is (Miyoshi et al. 2024)

w̃(X, y) = 1
2
ε2 X (1 − X) − 4ε2

∑
n=1,3,...

e−nπy/ε sin nπ X

n3π3 . (3.8)

This is typically only relevant for visualising the flow field, since the effect of the base
region on the average velocity is negligible.

3.1.3. Tip region: y − 1 = O(ε)

Near the fin tips, i.e. an O(ε) distance away, the variation in X becomes important;
therefore, we introduce the inner variable Y = (y − 1)/ε which is O(1) in this region,
and we denote the solution here by w = W (X, Y ).

It turns out that asymptotic matching with the gap region above (Y → +∞) implies that
the solution is O(ε) here at leading order

W = εW1(X, Y ) + O(ε2), (3.9)
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and W1(X, Y ) (from (3.1), (3.3) and (3.4)) satisfies in the infinite strip Dti p =
{0 < X < 1, −∞ < Y < ∞}

∇2
XY W1 = 0 in Dti p, (3.10)

W1 = 0 on X = 0, 1, Y < 0, (3.11)
∂W1

∂ X
= 0 on X = 0, 1, 0 < Y, (3.12)

where ∇2
XY = ∂2/∂ X2 + ∂2/∂Y 2, and the asymptotic matching conditions

W1 ∼ 1
2 cY as Y → ∞, (3.13)

W1 → 0 as Y → −∞. (3.14)

This has the convenient solution in terms of a complex variable (Miyoshi et al. 2024)

W1 = − c

2π
log

∣∣∣∣eiπ/4 − tan1/2(π Z/2)

eiπ/4 + tan1/2(π Z/2)

∣∣∣∣ , where Z = X + iY. (3.15)

Notably, a constant term c log 2/(2π) that perturbs the shear term Y in the limit Y → ∞
follows from this solution, since

W1 ∼ 1
2

c

[
Y + log 2

π
+ O(e−πY )

]
as Y → ∞, (3.16)

and matching at O(ε) with the gap region solution leads to the response w1, given by (3.6).

3.1.4. Composite flow solutions
A pair of composite flow solutions valid through larger regions of the domain can be
constructed by adding solutions in adjacent regions and subtracting the solution in the
overlap region between them. When patched together in a piece-wise fashion, these can be
used to construct a single global flow field if desired. We do so by splitting the domain into
y � 1 and y < 1 (i.e. at the fin tips), and then constructing a composite solution in each
region separately.

A gap–tip composite (restricted to 1 � y � 1 + c) is given by

wgap-tip = w0(y) + εw1(y)︸ ︷︷ ︸
gap region

+ εW1

(
X,

y − 1
ε

)
︸ ︷︷ ︸

tip region

− c

2

(
y − 1 + ε log 2

π

)
︸ ︷︷ ︸

gap-tip overlap

,

= −1
2
(y − 1 − c)

(
y − 1 + ε log 2

π

)
+ εW1

(
X,

y − 1
ε

)
, 0 < X < 1.

(3.17)
On the other hand, a one-term composite (say restricted to 0 � y < 1) between the

tip and fin regions is given simply by the tip solution εW1, since it matches with ‘zero’
appearing at that order in the fin region. Strictly, to bring in the O(ε2) parabolic flow from
the fin region one would require a two-term composite, but we do not possess a second
term (of O(ε2)) in the tip region. However, we can form an ad hoc composite with an
O(ε2) error in the tip region, by simply superimposing the tip and fin region solutions

wtip-fin = εW1

(
X,

y − 1
ε

)
︸ ︷︷ ︸

tip region

+ w̃(X, y)︸ ︷︷ ︸
fin region

, 0 < X < 1. (3.18)

1016 A32-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
41

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10417


T.L. Kirk and M. Hodes

0

0.005

0.010

0.015

0.020

0.025

0.030

0.0351.5

Composite

w (x, y)

Numerical

wnum (x, y)

Relative

error

1.0

0.5

1.5

1.0

0.5

1.5

1.0

0.5

0

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.02

0.04

0.06

0.08

0.10

0.12

x
0 0.05 0.10

y

x
0 0.05 0.10

x
0 0.05 0.10

(a) (b) (c)

Figure 3. The asymptotic piece-wise composite solution (3.17)–(3.18) for the velocity field w(x, y) in
one period (a), compared with the numerical velocity wnum (b), with the local relative error |w(x, y) −
wnum(x, y)|/|wnum | (c). Geometric parameters are ε = 0.15 and c = 0.5. The asymptotic solution consists of
two composites: one valid for y � 1, and one for y < 1, and the separating line (y = 1) is shown as a dashed
blue line. The fins (at 0 � y � 1, x = 0, 1) and base are shown in black.

This is used here purely to allow visualisation of the flow field in figures (i.e. Figure 3),
and not for further detailed calculations. Here, W1(X, Y ) is (3.15) and w̃(X, y) is (3.8).
Even though it has an O(ε2) error in the tip region, the correct leading-order behaviour is
exhibited in each of the (tip and fin) regions, and so the main flow features are retained.

3.1.5. Poiseuille number
The mean velocity is given by

w = 1
1 + c

∫ 1

0

∫ 1+c

0
w dydX = c3

12(1 + c)

[
1 + ε log 8

πc

]
+ O(ε2), (3.19)

where the contributions from the tip region (velocity of O(ε) over a region of area O(ε))
and fin region (velocity of O(ε2) over a region of area O(1)) are both O(ε2), so w up to
O(ε) follows only from the gap solution (3.5), (3.6).

The friction factor is defined as (Sparrow et al. 1978)

f = (−dp∗/dz∗)D∗
e

1
2ρw∗2 , D∗

e = 4(H∗ + C∗)S∗

2(H∗ + S∗)
, (3.20)
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and the Poiseuille number is then Po = f Re where Re = ρw∗D∗
e /μ is the Reynolds

number and ρ is the fluid density. In terms of non-dimensional quantities,

Po = f Re = 8(1 + c)2ε2

w(1 + ε)2 . (3.21)

Substituting the asymptotic solution (3.19) for w results in the elementary expression
(Miyoshi et al. 2024)

Po = 96(1 + c)3ε2

c2
(

c + ε log 8
π

)
(1 + ε)2

+ O(ε4), as ε → 0. (3.22)

This expression was compared with an exact solution valid for arbitrary ε in Miyoshi
et al. (2024), and shown to be accurate to within 15 % if ε � 0.3c. As expected, the
approximation breaks down when c becomes small (i.e. comparable to ε). Thus, for a
given accuracy, the range of ε must shrink to maintain validity.

3.2. Summary of temperature solution
Here, we provide a summary of the temperature solution in the limit ε → 0, which has a
similar asymptotic domain decomposition as for the hydrodynamic problem – see figure 2
for a schematic summary of the domain regions. Indeed, the hydrodynamic solution plays
an important role in the temperature one. It is important to note here at the outset that λ, the
constant given by the integral formula (2.33), will be mostly determined by the behaviour
in the gap region above the fins since the flow there dominates the integral. This leads to
λ= O(1), and φ = O(1) in the gap. A full derivation of the following solution is given in
Appendix A.

3.2.1. Fin region (0 � y < 1, 1 − y 	 ε)
In the fin region, since the flow is relatively small, i.e. W = w/w = O(ε2) compared with
O(1) in the gap region (1 < y < 1 + c), advection is negligible and therefore the heat
transfer is purely conductive (until O(ε3)). Furthermore, the narrow fin spacing leads to
the temperature here (denoted by φ̃ in the fluid, and φf in the fin), to be uniform in X
and only depend on y. It varies linearly in y since the conduction is one dimensional
and predominantly due to conduction up the fins. The solution (to the first two orders
in ε) is

φf = φ̃ = εφ̃1(y) + ε2φ̃2(y) + O(ε3) = −(1 + c)

(
ε

2Ω
− ε2

4Ω2

)
y + O(ε3). (3.23)

In the case where the fins have infinite conductivity Ω = ∞ (i.e. are isothermal), then
φ̃ ≡ φf = 0 to the order considered.

3.2.2. Tip region (y − 1 = εY , Y = O(1))
Here, close to the fin tips, the temperature field (denoted by Φ(X, Y ) in the fluid and
Φf (Y ) in the fin) becomes two-dimensional but the heat transfer is still purely conductive
since advection is still negligible. This is because the flow field here has W = w/w =
O(ε), leading to advective terms being three orders higher than the diffusive terms, which
dominate. To the order considered, the entirety of the heat transfer from the fin to fluid
occurs here in the tip region.
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The temperature in the fin near the tip is simply constant at leading order

Φf = εΦ f 1 + O(ε2) = −ε(1 + c)

2Ω
+ O(ε2), (3.24)

and the O(ε2) correction is given by the simple integral (C14). The temperature in the
fluid at leading order

Φ = εΦ1(X, Y ) + O(ε2) in Dti p = {0 < X < 1, −∞ < Y < ∞}, (3.25)

is governed by the same problem as the velocity field W1(X, Y ) (up to an additive constant
and scaling factor) and hence, conveniently, the same complex variable solution can be
employed again, giving

Φ1 = −1 + c

2Ω
− 2(1 + c)

c
W1(X, Y ), (3.26)

where W1 is (3.15). The far-field behaviours (matching with the gap region above, and fin
region below) are

Φ1 ∼ −(1 + c)

[
Y + log 2

π
+ 1

2Ω
+ O(e−2πY )

]
as Y → ∞, (3.27)

Φ1 → −1 + c

2Ω
as Y → −∞. (3.28)

3.2.3. Gap region (1 < y � 1 + c, y − 1 	 ε)
Finally, in this region above the fins, advection is now important and balances conduction.
Further, the problem depends only on y to all orders in ε, e.g. φ = φ0(y) + εφ1(y) +
O(ε2) (just as for the velocity field) and the constant λ, with expansion λ= λ0 + ελ1 +
O(ε2), is now relevant and can be determined. The leading-order problem for (φ0, λ0) is
the classical problem with an isothermal, no-slip ‘lower boundary’ (which here is at y = 1)
and an adiabatic, no-slip upper wall at y = 1 + c. The equations ((A14)–(A16) and (A40))
can be transformed to the usual scaling, independent of the gap thickness (clearance c),
if we define

ŷ = (y − 1)/c, Ŵ0(ŷ) = W0(y)c/(1 + c), (3.29)

φ̂0 = φ0/[c(1 + c)], λ̂0 = c(1 + c)λ0, (3.30)

resulting in the problem

λ̂0Ŵ0(ŷ)φ̂0 = d2φ̂0

dŷ2 in 0 < ŷ < 1, (3.31)

dφ̂0

dŷ
= 0 on ŷ = 1, (3.32)

φ̂0 = 0 on ŷ = 0, (3.33)

λ̂0 = 1∫ 1

0
Ŵ0(ŷ)φ̂0(ŷ) dŷ

, (3.34)

with normalised velocity Ŵ0(ŷ) = 6ŷ(1 − ŷ). This problem for (φ̂0, λ̂0) has no parameters
and is easily solved numerically. We do so using Chebyshev collocation methods to
discretise space (Trefethen 2000) and employing an iterative procedure similar to that of
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(Sparrow et al. 1978; Karamanis & Hodes 2016) (and a simpler version of that discussed
in § 5.1). We compute the value of λ̂0 (to 4 decimal places)

λ̂0 ≈ −2.4304. (3.35)

The first-order problem for (φ1, λ1) (given by (A17)–(A19) and (A57)) may be transformed
in a similar way

ŷ = (y − 1)/c, Ŵ1(ŷ) = W1(y)c2/(1 + c), (3.36)

φ̂1 = φ1/(1 + c), λ̂1 = c2(1 + c)λ1, (3.37)

resulting in

(λ̂1Ŵ0 + λ̂0Ŵ1)φ̂0 + λ̂0Ŵ0φ̂1 = d2φ̂1

dŷ2 in 0 < ŷ < 1, (3.38)

dφ̂1

dŷ
= 0 on ŷ = 1, (3.39)

φ̂1 = −
(

log 2
π

+ 1
2Ω

)
on ŷ = 0, (3.40)

λ̂1 = −λ̂2
0

∫ 1

0
(Ŵ0φ̂1 + Ŵ1φ̂0) dŷ, (3.41)

where Ŵ1 = 6(1 − ŷ)(1 − 3ŷ) log 2/π . This problem only depends on the fin
conductivity Ω , but since it is linear, it can be shown (Appendix D) that the solution
takes the form

λ̂1 = b0 + b1

2Ω
, (3.42)

where b0, b1 are numerical constants. Using similar numerical methods to those we
employed to find λ̂0, although even simpler since no iteration is needed, we find that they
evaluate to (4 decimal places)

b0 ≈ 0.5362, b1 ≈ 5.2898. (3.43)

Consequently, the solution for λ and its dependence on all the parameters (ε, c and Ω)
is completely determined. It will be useful to consider two levels of approximation,
given by

λ(0) = λ0 = λ̂0

c(1 + c)
, (one term) (3.44)

λ(1) = λ0 + ελ1 = 1
c(1 + c)

[
λ̂0 + ε

c

(
b0 + b1

2Ω

)]
, (two terms) (3.45)

where λ(0) is a leading-order approximation (keeping only the O(ε0) term) and λ(1) is a
higher-order approximation (keeping terms up to O(ε1)).

Finally, to transform back to the non-dimensional temperature T anywhere in the
domain, you take the product

T = λφ. (3.46)
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3.2.4. Composite temperature field
A composite temperature field, valid throughout the entire domain, can be constructed
in the same way as that for the flow field, i.e. by forming composites between adjacent
asymptotic regions. Splitting the domain (at the fin tips) into y � 1 and y < 1, then we can
construct a composite up to O(ε) in each subdomain.

A gap–tip composite (restricted to 1 � y � 1 + c) is given by

φgap-tip = φ0(y) + εφ1(y)︸ ︷︷ ︸
gap region

+ εΦ1

(
X,

y − 1
ε

)
︸ ︷︷ ︸

tip region

− (1 + c)

(
−(y − 1) − ε log 2

π
− ε

2Ω

)
︸ ︷︷ ︸

gap-tip overlap

,

0 < X < 1, (3.47)
bearing in mind that the gap solutions φ0(y) and φ1(y) are only known numerically.

A tip–fin composite (restricted to 0 � y < 1) between the tip and fin regions up to O(ε)

is given by

φtip-fin = εΦ1

(
X,

y − 1
ε

)
︸ ︷︷ ︸

tip region

+ εφ̃1(y)︸ ︷︷ ︸
fin region

+ ε(1 + c)

2Ω︸ ︷︷ ︸
overlap

,

= εΦ1

(
X,

y − 1
ε

)
− ε(1 + c)

2Ω
(y − 1), 0 < X < 1. (3.48)

Also, in the fin itself, a second-order composite solution (for 0 � y � 1) can be found
and is given by (C18).

4. Nusselt numbers
In this section we present expressions for various Nusselt numbers as described in
Sparrow et al. (1978), and approximations for each in the narrow-fin-spacing limit
ε → 0.

First, the local Nusselt number on the fin is defined as

Nuf = q∗
f H∗

k(T ∗
f − T ∗

b )
= 1

1 − λφf

λ

ε

∂φ

∂ X

∣∣∣∣
X=0

for 0 < y < 1. (4.1)

From the solution in the fin region, ∂φ/∂ X = O(ε3) at most, hence Nu f is only significant
close to the fin tips. Substituting the solution there to O(ε), we find,

Nuf (Y ) = λ0
∂Φ1

∂ X

∣∣∣∣
X=0

+ O(ε) (4.2)

= − λ̂0

c
√

e−2πY − 1
+ O(ε), for Y < 0. (4.3)

Notice that this leading-order expression does not depend on the fin conductivity Ω ,
and it is singular (with negative square root behaviour) and integrable at the fin tip,
Y → 0.

Second, the overall heat transfer is captured by the overall Nusselt number

Nu = q̄∗H∗

k(T ∗
base − T ∗

b )
, (4.4)

where q̄∗ = 2
∫ H∗

0 q∗
f dy∗ + ∫ S∗

0 q∗
basedx∗

2H∗ + S∗ , (4.5)
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or in terms of non-dimensional quantities

Nu = −λq̄, (4.6)

where

q̄ = 1
2 + ε

(
2
∫ 1

0
− ∂φ

∂x

∣∣∣∣
x=0

dy +
∫ 1

0
− ∂φ

∂y

∣∣∣∣
y=0

dx

)
. (4.7)

Here, q̄ is the non-dimensional (with q̄∗ the dimensional) average heat flux, in terms of
φ, out of the entire heat transfer surface available per period, i.e. two fins (height 1) and
the base (width ε). This can be conveniently calculated from the problem statement for φ.
Integrating (2.21) (with T replaced by φ) over the period domain D and applying the
divergence theorem∫

D
λWφ dA = 2

∫ 1

0
− ∂φ

∂x

∣∣∣∣
x=0

dy +
∫ 1

0
− ∂φ

∂y

∣∣∣∣
y=0

dx . (4.8)

The left-hand side reduces to simply ε(1 + c) by the definition (2.33) of the constant λ,
and the right-hand side equals (2 + ε)q̄ . Hence, q̄ = ε(1 + c)/(2 + ε), and substituting
into (4.6) gives

Nu = −λε(1 + c)

2 + ε
. (4.9)

Substituting the approximation (3.45) for λ in the limit ε � 1 leads to (at least) two
levels of approximation for Nu, depending on the number of terms kept

Nu
(0) = −ε

c

λ̂0

(2 + ε)
+ O(ε2), (leading-order approx). (4.10)

Nu
(1) = −ε

c

(
λ̂0 + ε

c
λ̂1

)
2 + ε

+ O(ε3), (higher-order approx). (4.11)

where Nu
(0)

is a leading-order approximation (i.e. only the leading term of λ is kept), and
Nu

(1)
a higher-order approximation (where both terms in λ are kept). Note that we do not

expand the denominator. We will show later that both of these approximations will have
their advantages in practice, even though Nu

(1)
is strictly of a higher order. Notably, these

approximations (4.10)–(4.11) account for heat transfer from both the fin and the base, to the
orders considered.

Third, one can define a local Nusselt number on the base as

Nubase = q∗
base H∗

k(T ∗
base − T ∗

b )
= λ ∂φ

∂y

∣∣∣∣
y=0

for 0 < X < 1. (4.12)

Substituting the solution (3.23) for φ in the fin region, and (3.45) for λ, and retaining
different orders in ε leads to the approximations

Nu(0)
base = − ελ̂0

2cΩ
+ O(ε2), (leading-order approx). (4.13)

Nu(1)
base = − ε

2cΩ

(
λ̂0 + ε

c
λ̂1

) (
1 − ε

2Ω

)
+ O(ε3). (higher-order approx). (4.14)
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This is constant in X to the orders given, and hence the base-averaged Nusselt number
Nubase takes the same value.

5. Comparison with numerical solution
To assess the validity of the solutions derived throughout the paper, we compare with
numerical solutions of the full hydrodynamic and thermal problems for arbitrary values
of the parameters (in particular, arbitrary fin spacing-to-height ratio ε). For a detailed
discussion of the impact of ε on the general heat transfer behaviour, we refer to Sparrow
et al. (1978). Here, we focus on the new asymptotic results, and what we can learn from
them.

5.1. Numerical methodology
To solve the full nonlinear two-dimensional problem we employ a domain decomposition
and pseudospectral (Chebyshev) collocation methods suited to boundary value problems.
The approach is similar to that used by Game et al. (2018) and Mayer, Kadoko & Hodes
(2021) in a different flow context (superhydrophobic surfaces), and so we give a brief
description here with further details given in Supplementary Material.

One half-period is split into 3 subdomains: two fluid (two-dimensional) domains and
one fin (one-dimensional) domain, and each are discretised into N + 1 points in x
(excluding the fin domain) and M + 1 points in y using the Gauss–Lobatto spacing for
spectral accuracy (Trefethen 2000). This clusters grid points close to domain boundaries
(hence even more so for domain corners), and since the fluid domain is subdivided at
y = 1, many points are clustered close to the singular point ((x, y) = (0, 1)) as it sits at
the corner of two domains. This helps ensure numerical resolution of the large gradients
close to this point where the boundary conditions change type. Continuity of velocity,
temperature, shear stress and heat flux were imposed at common boundaries between the
fluid subdomains.

The velocity problem discretises into a linear system that is inverted in MATLAB.
This is fed into the thermal problem, employing the same mesh (with the addition of the
one-dimensional fin domain), which is nonlinear and solved in an iterative fashion. The
iteration method is similar to that of Sparrow et al. (1978) and Karamanis & Hodes (2016),
whereby the advection (left-hand side) in (2.21) is assumed known from the previous
iteration. In this way, the problem to update φ is linear and decoupled from λ, which is
subsequently updated using (2.33). Convergence is very rapid, with less than 10 iterations
required to achieve a relative change in λ of less than 0.01 %.

Convergence of the spatial discretisation was confirmed by doubling N and M until λ
changed by less than 0.5 %. For all of the results shown, typically N = 20 was sufficient,
with M chosen as follows. Since we are concerned with small spacing-to-height ratios ε,
we found it important to increase M (vertical grid points per subdomain) as ε decreases.
Indeed, we related M to N via the scaling M = N/(2ε), until a maximum value of
M = 100. This led to good results down to an ε value of 0.025. To decrease ε further
without unreasonable computational effort, one could introduce additional subdomains
(e.g. close to the fin tip) to cluster the grid points more efficiently, or instead subtract the
local form of the singularity at (x, y) = (0, 1) (as in Game et al. 2018). However, this was
not the focus of our study.

The numerical results for Nu were compared (see figure 9) with those of Sparrow et al.
(1978), with differences of the order of one per cent or less – the discrepancies likely due
to the coarser mesh of Sparrow et al. (1978) (who took at most 50 equally spaced points in
the y direction).
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Figure 4. The asymptotic piece-wise composite solution (3.47)–(3.48) for the scaled temperature field
φ(x, y) = T/λ in one period (a), compared with the numerical temperature (b), with the local relative error
|φ(x, y) − φnum(x, y)|/|φnum | (c). Here, ε = 0.15, c = 0.5, and Ω = 1. See caption for figure 3.

5.2. Velocity and temperature fields: w(x, y), φ(x, y)

We begin by comparing the asymptotic composite solutions for w(x, y) ((3.17)–(3.18))
and φ(x, y) ((3.47)–(3.48)) with the numerical solutions. Figure 3 compares w(x, y) for
the case ε = 0.15 (on the upper end of the practical range) and c = 0.5. The structure of
the flow is captured excellently by the asymptotic solution: the bulk of the flow occurs
above the fins in an almost parabolic profile, and only weakly penetrates down into the
space between the fins (where the velocity is an order of magnitude lower). The composite
is actually discontinuous on the line y = 1, due to there being O(ε2) terms in y < 1 and
not in y � 1, but this discontinuity is still small, as expected.

Figure 4 compares φ(x, y) for the same geometry, and for a fin conductivity parameter
Ω = 1. We show here the scaled temperature φ, not the ‘non-dimensional temperature’ T ,
which is related via T = λφ. This was done in an attempt to compare the temperature
distributions. The overall magnitude is affected greatly by the approximation to λ, which
we assess separately. (Note that T is positive but λ is negative and so φ is negative).
As per figure 4, the field structure is captured, where the heat transfer is predominantly
one-dimensional (1-D) conduction from the base until close to the fin tips where the
conduction becomes two-dimensional (from the fin to the fluid), followed by a 1-D
convection behaviour (and nonlinear temperature profile) above the fins. The relatively low
value of the fin conductivity parameter, Ω = 1, was chosen to exhibit the 1-D conduction
clearly, but in practice Ω will generally be larger (Karamanis & Hodes 2019a). There is a
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Figure 5. The solution constant λ, comparing the asymptotic solutions for ε � 1 to the numerical solution.
Dashed lines are using only the leading order (3.44) and solid lines are the full (two term) approximation
(3.45). Shaded region shows the realistic range 0.015 < ε < 0.15 of fin spacings applicable to manufacturable
heat sinks (Iyengar & Bar-Cohen 2007). Inset in (a) shows a zoom in close to ε = 0.

rather uniform relative error throughout the fin region, reflecting a small error (order ε2)
in the heat flux up the fin. The error is overall small (typically �7 %), and is greatest in the
tip region due to error in the fin tip temperature combined with error due to neglected
advection. Unlike the velocity composite, the temperature composite is continuous at
y = 1.

5.3. The constant λ
In this section we compare the asymptotic approximation(s) for the solution constant λ
with the numerical solution. Recall that λ can be interpreted as the exponential decay
rate in the streamwise direction (z) of the (self-similar) temperature profile towards the
isothermal base temperature. It also directly gives the overall Nusselt number (4.9).
Figure 5 compares two approximations for λ against numerical solutions for a range of
ε (down to ε = 0.025), and selected c and Ω values. In all cases, the approximation λ(0)

captures the limiting value of λnum as ε → 0 (as it should), and λ(1) captures the value
and slope (as it should). However, even though the slope is captured, as c decreases it
is clear that the range of ε for which λ(1) is a good approximation also decreases. This
is expected, since the asymptotic approximation requires ε � 1 but also ε � c, i.e. that
the fin spacing is small compared with the clearance. Hence the assumption breaks down
if, e.g. c = O(ε) (as seen for f Re in Miyoshi et al. 2024), as is clear from (3.45) since
the correction is proportional to ε/c. Additionally, the accuracy of λ(1) decreases as Ω

decreases, also seen from the correction.
Indeed, from the expansion (3.45) one can summarise the validity requirements as

ε/c � 1 and ε/(cΩ) � 1, since otherwise the correction is comparable to the leading
term. The first condition, ε/c � 1, is purely a geometric requirement necessary for there
to be a gap region above the fins where the flow and temperature depends only on y.
The second condition, ε/(cΩ) � 1, is a further constraint that applies to the conductivity
of the fin. The leading-order temperature in the fin is Tf = −λ̂0εy/(cΩ) + · · · , implying
that the dimensionless temperature drop 
Tf across the height of the fin is 
Tf ∼ ε/(cΩ).
Hence the constraint above implies 
Tf � 1, or in dimensional terms,

T ∗
base − T ∗

f, tip � T ∗
base − T ∗

b , (5.1)
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Figure 6. Absolute error of the asymptotic approximations for the constant λ, compared with the numerical
solution. The error is shown for two levels of approximation, λ(0) = λ0 and λ(1) = λ0 + ελ1. Values of c and Ω

are indicated.

i.e. the temperature drop from the base to the fin tip is small compared with the drop
from the base to the fluid bulk. If the dimensionless fin conductivity is not high enough
(due to solid/fluid conductivity or fin thickness) then the temperature at the tip of the fin
becomes comparable to the bulk temperature T ∗

b . Then the heat transfer between the fin
and the bulk cannot predominantly occur near the tip: a significant portion must also occur
further down the fin – and thus advection there (not just in the gap region above) would
need to be considered. To summarise, the condition 
Tf = ε/(cΩ) � 1 can be viewed as
a refinement on the initial assumption (which was that Ω = O(1) or larger) to the extended
range Ω 	 ε/c. When this is violated, advection between the fins is not negligible.

Moving on, a surprising result is the accuracy of the leading-order solution λ(0).
When the fins are highly conductive (say Ω = ∞, figure 5a), λ(0) and λ(1) are similar
approximations, but λ(0) is slightly closer (for larger ε) to the numerics as c is decreased.
This is further exaggerated as the fins become less conductive (figure 5b). Mathematically,
it is clear that this is due to the strong non-monotonic dependence of λ on ε: the better
accuracy of λ(1) for small ε results in worse accuracy for larger ε. However, this significant
advantage of λ(0) over λ(1) seems to occur mainly outside of the realistic range of fin
spacings (0.015 < ε < 0.15), shown in grey.

The above points are made more apparent by looking at the absolute error of λ(0) and λ(1)

in figure 6. The errors of λ(0) and λ(1) show slopes of 1 (indicating O(ε)) and 2 (indicating
O(ε2)), respectively, as ε → 0. For moderately large ε, λ(0) typically shows the smaller
error, but below some critical value of ε (which increases with c), λ(1) always becomes
more accurate. This has consequences for the Nu approximations, discussed in § 5.5.

5.4. Local Nusselt number on the fin surface
In this section we assess the approximation of local quantities along the surface of the fin.
We begin with the local Nusselt number Nuf , given numerically by definition (4.1), and
approximated by (4.3). Figure 7 compares (the absolute value of) Nuf for a range of ε, c
and Ω values. It is plotted in terms of the tip variable Y , and the behaviour is reminiscent
of that in Sparrow et al. (1978). Our formula shows that it is singular (Nuf = O(|Y |−1/2))
as Y → 0, and decays very quickly (Nuf = O(e−π |Y |)) as you move away from the tip,
Y → −∞. The singularity is expected from the change of thermal boundary condition
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Figure 7. The (magnitude of) local Nusselt number on the fin surface, Nuf (Y ) as a function of the tip variable
Y = (y − 1)/ε, comparing asymptotic (given by 4.3) and numerical solutions. The values of c, ε and Ω are
indicated. Different solutions are only distinguishable in (b), (c).

there from a Dirichlet one (T = Tf , y < 1) to a Neumann one (∂T/∂x = 0, y > 1), and the
asymptotic solution captures the behaviour excellently. Indeed, the shape barely changes
as the parameters are varied (its magnitude scales with c), only when the asymptotic
assumption breaks down, i.e. the case c = 0.25 < ε = 0.5. As remarked by Sparrow et al.
(1978), this behaviour is very far from the common assumption of a ‘constant heat transfer
coefficient’ along the fin surface, and it is consistent across parameters, even when the fin
conductivity is low (Ω = 1). In fact, Nuf often becomes negative close to the tip (see the
case Ω = 1 in figure 7(c), but note that only the magnitude is plotted), and increasing Ω

(by increasing fin thickness) might not be optimal for a heat sink since overall surface area
is lost.

The non-dimensional temperature Tf = (T ∗
f − T ∗

base)/(T
∗

b − T ∗
base), for the same

parameter cases, is shown in figure 8. The linear 1-D conduction behaviour in y, exhibited
by the asymptotic solution (3.23), is observed in most cases. It departs from linear close to
the tip (y = 1), in a small region that widens with ε. The agreement worsens as ε increases,
and c or Ω decreases. Note that we used the leading-order approximation for λ= λ0 + . . .

here, since moderate accuracy for a wider range of ε was necessary for illustration.

5.5. Overall Nusselt number Nu

Finally, we compare the approximations for the overall Nusselt number Nu, which gives a
measure of the overall efficacy of the heat transfer to the fluid. We note that Nu and f Re
(provided by Miyoshi et al. 2024), are necessary to calculate the thermal resistance of the
heat sink (Karamanis & Hodes 2016). Figure 9 compares (4.10)–(4.11) with the numerical
solutions for the same parameters as in figure 5. Since Nu follows directly from λ,
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Figure 8. The temperature along the fin Tf (y) comparing the numerical solution (spectral collocation), and
the asymptotic solution Tf ∼ λ0φ̃f in the fin region (0 � y and 1 − y 	 ε), where φ̃f is (3.23). The values of
c, ε and Ω are indicated.

the approximations exhibit similar behaviour and regions of validity as those for λ, but
most notably Nu contains an additional factor of ε and thus Nu → 0 as ε → 0. Similar
to λ, both approximations show good agreement with the numerics, but Nu

(1)
shows

excellent agreement for smaller values of ε, and Nu
(0)

shows moderate agreement over a
larger range of ε. Notably, Nu

(0)
remains positive whereas Nu

(1)
can erroneously become

negative far outside its range of validity.
The values of Nu here in the realistic ε range are remarkably low compared with the

typical values without tip clearance (c = 0), where Nu ≈ 2 − 34 (Sparrow et al. 1978).
Thus, to avoid gross overestimation, it is crucial to not use such values when there is tip
clearance, but the formulas provided here instead.

The accuracy of Nu
(1)

is perhaps better shown in figure 10 where the relative error is
plotted in the (c, ε)-plane for ε ∈ [0.025, 0.5], c ∈ [0.025, 1]. Error is lowest when ε is
small and c and Ω are large, consistent with the asymptotic requirements that ε/c � 1 and
ε/(cΩ) � 1. Also shown are black marginal lines, to the left of which, the relative error
is less than 5 % or 15 %. For the range plotted, the error of Nu

(1)
was found to be < 15 %

in the following approximate region (provided Ω � 1):

c � 4.2ε + 0.06. (5.2)

For completeness, we also plot the error of Nu
(0)

in figure 11. The behaviour is far less
predictable, but the regions where the error is < 15 % are generally larger than for Nu

(1)
.
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Figure 9. The overall average Nusselt number Nu, comparing the asymptotic solutions (4.10)–(4.11) for ε � 1
with the numerical solution. Values from Sparrow et al. (1978) are also shown, where available. Shaded region
shows the realistic range 0.015 < ε < 0.15 applicable to manufacturable heat sinks.

Ω = ∞ Ω = 1

ε
0.1 0.2 0.40.3

ε
0.1 0.2 0.40.3

0.2

0.4

0.6

0.8

1.0

(a) (b)

c

0.2

0.4

0.6

0.8

1.0

0

0.1

0.2

0.3

0.4

0

0.1

0.2

0.3

0.4

c

0
.0

5

0.1
5

0.
15

0
.0

5

0.
15

c = 4.2ε + 0.06

Figure 10. Relative error of approximation Nu
(1)

(see (4.11)), compared with the numerical solution,
i.e. contours of |Nu

(1) − Nunum |/Nunum for ε ∈ [0.025, 0.5], c ∈ [0.025, 1]. The marginal boundaries where
the error is 0.05 and 0.15 (5 % and 15 %) are shown as black lines and labelled. The magenta line indicates a
boundary, above which Nu

(1)
is more accurate than Nu

(0)
.

In particular, when Ω = 1 and 0.2 < c < 0.4, this region extends up to ε < 0.45. Hence,
Nu

(0)
can have particular use cases over Nu

(1)
, but these cases may be difficult to predict

and require trial and error to determine. It may be useful to know when one should use
Nu

(1)
over Nu

(0)
, and this is indicated by the magenta line in figures 10 and 11, above

which Nu
(1)

is more accurate and should be used.

6. Conclusions
In this paper, we considered the convective heat transfer problem for a LFHS (isothermal
base) with tip clearance – a classic and ubiquitous problem in the thermal management of
electronics. We considered an analytical approach to the mathematical problem formulated
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Figure 11. Relative error of approximation Nu
(0)

(4.10). See caption for figure 10.

and solved numerically by Sparrow et al. (1978). In particular, we presented a detailed
asymptotic solution for the flow and (coupled, i.e. conjugate) temperature fields in the
fluid and the fins, in the limit of small fin spacing, ε � 1.

We used the method of matched asymptotic expansions, and decomposed the flow
domain into regions where different transport processes are important: (i) a gap region
(above the fins) where the flow is the fastest but one-dimensional, driving a 1-D convection
profile; (ii) a tip region (close to the fin tips) where the flow and temperature fields are
two-dimensional (and purely diffusive); (iii) a fin region (down between the fins) where
the flow is almost stagnant, and so the thermal problem is purely 1-D conduction and
governed by relative conductivity of the fin. The structure elaborates on the insights of
Sparrow et al. (1978) on why the heat transfer suffers when there is clearance. Because the
heat transfer predominantly occurs close to the fin tips, the use of uniform heat transfer
coefficients is wholly inappropriate: instead, the local coefficient is singular at the tip
and decays to a negligible value after approximately 1 fin spacing from the tip. This has
practical implications on the design of unshrouded heat sinks for low-power components
in circuit packs. First, the fins need not be much taller than the spacing between them – a
maximum height of 2 times the fin spacing would be sufficient due to the lack of flow close
to the base. Secondly, the fins may be extremely thin but maintain very high fin efficiency
as their tips are so close to their base.

The 1-D convection problems in the gap region at each order only need to be solved
once, and this is trivially done numerically. Remarkably, explicit solutions are found for
the local heat transfer coefficient (or Nusselt number Nuf ); the fin and fluid temperature
throughout the entire fin and tip regions; the heat flux along the length of the fin; and the
overall Nusselt number (Nu). Therefore, one does not have to rely purely on numerical
solutions, or crude (and inaccurate) uniform assumptions, for this relevant heat transfer
problem anymore. These solutions are compared with numerical solutions of the full
coupled problem for arbitrary ε and are found to agree well for small ε in the realistic
range (0.015 � ε � 0.15). In general, they are valid under the parametric assumptions
ε � 1, ε/c � 1 and ε/(cΩ) � 1. The first two are geometric assumptions, and the third
ensures that the temperature drop along the fin is small compared with the overall driving
temperature difference between the base (T ∗

base) and the fluid bulk (T ∗
b ). Thus, accuracy

decreases if ε increases, c decreases, or Ω decreases.
The leading-order formula for the overall heat transfer (Nu) shows good accuracy for a

moderate range of ε. The higher-order formula gives better accuracy when ε is small (i.e. in
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the realistic range), but at the expense of worse accuracy for moderate ε. Nonetheless, the
error of the higher-order formula was found to be < 15 % for all ε we considered, provided
the modest conditions c � 4.2ε + 0.06 and Ω � 1.

We focused here on the scenario with tip clearance (c > 0). The case where the heat
sink is fully shrouded, without tip clearance (c = 0) is another very relevant one. The
transport structure is significantly different since the location of highest flow velocity
occurs between the fins, and hence advection there appears at leading order and cannot
be neglected. The solution is thus not simply the limit c → 0 of the solution presented
here. The c = 0 case will be published in future work.

In summary, our companion paper by Miyoshi et al. (2024) provided analytical results
for the Poiseuille number through rectangular ducts with two (facing) surfaces having
mixed (no-slip and shear-free) boundary conditions, which previously had not been
done. Extending this configuration to a diabatic problem, the present study provides
analytical results for conjugate Nusselt numbers through such ducts having (facing)
surfaces where the conjugate heat transfer problem has been resolved. These analytical
formulas (Poiseuille numbers from Miyoshi et al. (2024) and Nusselt numbers from
the present study) could enable the thermal resistance optimisation of a LFHS, done
numerically in Karamanis & Hodes (2016), to be performed more easily.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2025.10417.

Funding. T.L.K. was supported in part by a Chapman Fellowship in the Department of Mathematics, Imperial
College London.
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Appendix A. Derivation of the temperature solution in the small-fin-spacing limit
ε → 0
In this appendix, we give the derivation of the temperature solution presented in § 3.2.

Rescaling x = X/ε, the problem for φ is

λWφ = 1
ε2

∂2φ

∂ X2 + ∂2φ

∂y2 in D, (A1)

φ = 0 on y = 0, (A2)

∂φ

∂y
= 0 on y = 1 + c, (A3)

∂φ

∂ X
= 0 on X = 0, 1 < y < 1 + c, (A4)

∂φ

∂ X
= 0 on X = 1/2, 0 < y < 1 + c, (A5)

in the fluid, and

εΩ
d2φf

dy2 = − ∂φ

∂ X

∣∣∣∣
X=0

, for 0 < y < 1, (A6)

φf = φ|X=0 , for 0 < y < 1, (A7)

φf = 0, at y = 0, (A8)

dφf

dy
= 0, at y = 1, (A9)
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in the fin, with decay constant

λ= 1 + c∫ 1

0

∫ 1+c

0
Wφ dydX

. (A10)

A.1. Gap region: 1 < y � 1 + c

Given φ = 0 on the base, we expect φ to have the largest magnitude in the gap region,
furthest from the heat transport surfaces. If we anticipate a balance between conduction
in the y-direction and streamwise advection, then ∂2φ/∂y2 ∼ λWφ. But W = O(1) in the
gap region and λ= O(1/φ) from (A10), and thus ∂2φ/∂y2 = O(1). This gives the leading
order estimate that φ = O(1) and λ= O(1) as ε → 0. Considering expansions

φ = φ0 + εφ1 + O(ε2), (A11)

λ= λ0 + ελ1 + O(ε2), (A12)

W = W0(y) + εW1(y) + O(ε2), (A13)

similar arguments to those for the velocity field in the gap region follow here and we find
that φ0(y), φ1(y) depend on y only. At leading order, φ0(y) satisfies the one-dimensional
problem

λ0W0(y)φ0 = d2φ0

dy2 in 1 < y < 1 + c, (A14)

dφ0

dy
= 0 on y = 1 + c, (A15)

λ0 = 1 + c∫ 1+c

1
W0(y)φ0(y) dy

, (A16)

and at first order, φ1(y) satisfies

(λ1W0 + λ0W1)φ0 + λ0W0φ1 = d2φ1

dy2 in 1 < y < 1 + c, (A17)

dφ1

dy
= 0 on y = 1 + c, (A18)

λ1 = − λ2
0

1 + c

∫ 1+c

1
(W0φ1 + W1φ0) dy. (A19)

Note, since the velocity W = O(ε) and O(ε2) in the tip (y − 1 = O(ε)) and fin regions
(0 < y < 1), the contributions of those regions to the integral for λ appear at O(ε2) and
hence are ignored.

These problems for φ0 and φ1 also have a matching condition with the tip region as
y → 1+, which are yet to be determined. The problems for φ0 and φ1 with these conditions
included are detailed in the summary, § 3.2.
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A.2. Fin region: 0 � y < 1
In the fin region, we must solve for the fluid temperature but also the fin temperature φf (y).
Denoting the fluid temperature here by φ̃, and expanding both temperatures as

φ̃ = φ̃0 + εφ̃1 + O(ε2), (A20)

φf = φ f 0 + εφ f 1 + O(ε2), (A21)

and noting that the advection terms are O(ε2) at most (since W = O(ε2) here), at leading
order in (A1), (A5) and (A6) we find (where (A6) gives the condition at X = 0).

∂2φ̃0

∂ X2 = 0 (A22)

∂φ̃0

∂ X
= 0, at X = 0, 1/2 (A23)

and so integrating the former and applying the latter gives that φ̃0(y) is a function of y
only, and matches the fin temperature by continuity, φ f 0(y) = φ̃0(y). At the next order,
O(ε−1) in (A1) and O(ε) in (A6), we have

∂2φ̃1

∂ X2 = 0, (A24)

Ω
d2φ f 0

dy2 = − ∂φ̃1

∂ X

∣∣∣∣∣
X=0

, for 0 < y < 1. (A25)

Integrating (A24), and applying symmetry about the midline X = 1/2 then φ̃1(y) is also
only a function of y, with φ f 1(y) = φ̃1(y) by continuity. Then the right-hand side of (A25)
vanishes; no heat is conducting out of the fin at this order in this region. Integrating (A25)
and applying the isothermal condition φ f 0 = 0 at the base y = 0, we get

φ f 0(y) = φ̃0(y) = Δ0 y, (A26)

where Δ0 is a constant to be determined. Going to the next order, O(ε0) in (A1) and O(ε2)
in (A6), similar arguments give that

φ f 1(y) = φ̃1(y) = Δ1 y, (A27)

for a constant Δ1. We cannot apply the boundary condition (A9) at the ridge tip y = 1 at
each order since the assumption that the fluid temperature (φ̃0 and φ̃1) is independent of X
breaks down there. Hence, we must match with a solution in the tip region. Nonetheless,
it is surprising that there is no conduction out of (the majority of) the fin into the fluid at
the first two orders of the expansion; conduction is purely one-dimensional and in the y
direction.

A.3. Tip region: y − 1 = O(ε)

Estimates from the gap and fin region solutions as y → 1 are that the temperatures, denoted
here by φ = Φ and φf = Φf , are O(1). Substituting y = 1 + εY into (A1)–(A9), and noting
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that W ∼ εW1/w = O(ε) here, we find

∇2
XY Φ = O(ε3) in Dti p = {0 < X < 1/2, −∞ < Y < ∞}, (A28)

∂Φ

∂ X
= 0 on X = 0, 0 < Y, (A29)

∂Φ

∂ X
= 0 on X = 1/2, −∞ < Y < ∞, (A30)

in the fluid, and

Ω
d2Φf

dY 2 = −ε
∂Φ

∂ X

∣∣∣∣
X=0

, for Y < 0, (A31)

Φf = Φ|X=0 , for Y < 0, (A32)
dΦf

dY
= 0, at Y = 0, (A33)

in the fin. Expanding as per

Φ = Φ0 + εΦ1 + O(ε2), (A34)

Φf = Φ f 0 + εΦ f 1 + O(ε2), (A35)

then Φ f 0 satisfies d2Φ f 0/dY 2 = 0, which integrated with the application of boundary
condition (A33) implies that Φ f 0 is a constant. Matching (as Y → −∞) with the fin region
solution (as y → 1−) at leading order means

Φ f 0 → Δ0, as Y → −∞, (A36)

and hence Φ f 0 ≡ Δ0. With the fin isothermal, the fluid temperature Φ0 satisfies
∇2

XY Φ0 = 0 in the strip, with Φ0 = Δ0 on the fin (Y < 0), symmetry above the fins (Y > 0),
and matching conditions

Φ0 → φ0(y = 1+), as Y → ∞, (A37)

Φ0 → Δ0, as Y → −∞, (A38)

with the gap and fin regions, respectively. However, the problem for Φ0 − Δ0 is identical
in form to the velocity problem W0 in this region, which was found to be identically zero
(Miyoshi et al. 2024). Therefore, Φ0 ≡ Δ0 and φ0(y = 1+) = Δ0, with Δ0 still unknown.

Proceeding to the next order, the fin temperature correction Φ f 1 satisfies
d2Φ f 1/dY 2 = 0. Integrating and applying (A33) implies that Φ f 1 is also a constant. The
matching condition with the fin region solution at O(ε) means

Φ f 1 ∼ Δ0Y + Δ1 as Y → −∞, (A39)

but as Φ f 1 is constant, this is possible only if Δ0 = 0, giving Φ f 1 ≡ Δ1. The leading-
order fin and fluid temperatures are thus actually O(ε). Also, since Δ0 = 0, the matching
condition for the gap solution is now

φ0 = 0 at y = 1+. (A40)
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The problem for Φ1 follows from (A28)–(A30), (A32) as

∇2
XY Φ1 = 0 in Dti p, (A41)

∂Φ1

∂ X
= 0 on X = 0, 1, 0 < Y, (A42)

Φ1 = Δ1 on X = 0, 1, Y < 0, (A43)

with matching condition to the fin region

Φ1 → Δ1 as Y → −∞. (A44)

For the matching condition (as Y → +∞) with the gap region, it is convenient to derive
one for the heat flux. Integrating the leading-order gap equation (A14) across the gap
1 < y < 1 + c and using (A15), (A16), we find

dφ0

dy
= −(1 + c), at y = 1+. (A45)

Doing the same for the first-order equation (A17), we find

dφ1

dy
= 0, at y = 1+. (A46)

Transforming to the tip variable Y = (y − 1)/ε, this gives the matching condition on Φ1

∂Φ1

∂Y
→ −(1 + c) as Y → ∞, (A47)

or Φ1 ∼ −(1 + c)Y as Y → ∞. (A48)

Notice now that the problem (A41)–(A44), (A48), when considered as a problem for the
difference Φ1 − Δ1, is identical to the problem for W1 (see (3.10)–(3.14)), but with a ‘shear
rate’ of −(1 + c) as Y → ∞ instead of c/2. Therefore, remarkably, the same solution can
be used here for the thermal problem, and it is given by

Φ1 = Δ1 − 2(1 + c)

c
W1(X, Y ), (A49)

= Δ1 + 1 + c

π
log

∣∣∣∣eiπ/4 − tan1/2(π Z/2)

eiπ/4 + tan1/2(π Z/2)

∣∣∣∣ , where Z = X + iY, (A50)

with far-field behaviour

Φ1 ∼ −(1 + c)

[
Y + log 2

π
− Δ1

1 + c
+ O(e−πY )

]
as Y → ∞. (A51)

We have yet to determine the constant Δ1. To do so, we must proceed to O(ε2) in the fin
(A31), where

Ω
d2Φ f 2

dY 2 = − ∂Φ1

∂ X

∣∣∣∣
X=0

, for Y < 0. (A52)

The flux on the right-hand side can be evaluated exactly (see Appendix B) given the
solution (A50) to give

− ∂Φ1

∂ X

∣∣∣∣
X=0

= 1 + c√
e−2πY − 1

, for Y < 0. (A53)
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Substituting, and integrating (A52) from Y = 0 to Y < 0 applying (A33), we find the heat
flux within the fin

−Ω
dΦ f 2

dY
= 1 + c

π
tan−1

(√
e−2πY − 1

)
, for Y < 0. (A54)

In the limit Y → −∞, this gives

−Ω
dΦ f 2

dY
→ 1 + c

2
, as Y → −∞, (A55)

which states that the heat flux ((1 + c)/2) entering the tip region via conduction up a fin
is equal to the heat flux leaving (one half of) the tip region via the fluid ((1 + c)/2). This
is because all the heat transfer between the fin and fluid occurs in the tip region. Recall
that the solution in the fin region is φ̃ = φ̃f = εΔ1 y + · · · , and substituting y = 1 + εY ,
the heat flux along the fin must match with (A55) at O(ε2), implying that

Δ1 = −1 + c

2Ω
. (A56)

With Δ1 determined, the final necessary condition on φ1 in the gap region comes from
matching with the constant term in (A51), giving

φ1 = −(1 + c)

(
log 2
π

+ 1
2Ω

)
at y = 1+, (A57)

which closes the problem for φ1 – we discuss its solution in § 3.2. This finishes the
determination of the temperature field to O(ε) throughout the whole domain.

A.4. Second order in the fin region
The heat flux leaving the tip can also be determined at the next order, O(ε2), and so can the
corresponding temperature correction throughout the entire fin. Although Φ2 throughout
the tip region is difficult to find, from a global energy balance in that region one can
determine the total heat flux leaving the fin,

∫ 0
−∞ −∂Φ2/∂ X dY . Then the fin equation

(A31) at third order can be integrated and matched with the correction in the fin region.
The analysis is given in Appendix C, and the O(ε2) term in the fin region (0 � y < 1,
1 − y 	 ε) is

φ̃2(y) = φ f 2(y) = 1 + c

4Ω2 y, (A58)

which is linear in y, similar to leading order.

Appendix B. Leading-order heat flux on the fin surface
Calculation of the normal derivative ∂W1/∂ X on the fin surface X = 0, Y < 0, is of interest
to the thermal problem in the tip region. In particular, we are interested in the local heat
flux out of the fin

− ∂Φ1

∂ X

∣∣∣∣
X=0

= 2(1 + c)

c

∂W1

∂ X

∣∣∣∣
X=0

. (B1)

The solution for W1 is determined as the imaginary part of a function h(Z), given by

h(Z) = c

2π i
log

[
eiπ/4 − tan1/2(π Z/2)

eiπ/4 + tan1/2(π Z/2)

]
. (B2)
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Note that, by the Cauchy–Riemann relations
∂W1

∂ X
= ∂

∂ X
Im[h(Z)] = − ∂

∂Y
Re[h(Z)], (B3)

but

−Re[h(Z)] = − c

2π
Arg

[− tan1/2(π Z/2) + eiπ/4

tan1/2(π Z/2) + eiπ/4

]
, (B4)

where Arg(z) ∈ (−π, π] is the principal argument. Restricting ourselves to the fin surface,
Z = −iỸ with Ỹ < 0

−Re[h(Z)]|X=0 = − c

2π
Arg

[
1 − tanh(π Ỹ /2) + 2i tanh1/2(π Ỹ/2)

tanh(π Ỹ/2) + 1

]
. (B5)

To evaluate the argument, we note that the term in square brackets always lies in the first
quadrant, and hence

−Re[h(Z)]|X=0 = − c

2π
tan−1

(
2 tanh1/2(π Ỹ/2)

1 − tanh(π Ỹ /2)

)
. (B6)

Taking ∂/∂Y = −∂/∂Ỹ of the above, we arrive at

∂W1

∂ X

∣∣∣∣
X=0

= c/2√
e2π Ỹ − 1

= c/2√
e−2πY − 1

for Y < 0. (B7)

Finally, from (A50), the O(ε) heat flux out of the fin follows via

− ∂Φ1

∂ X

∣∣∣∣
X=0

= 2(1 + c)

c

∂W1

∂ X

∣∣∣∣
X=0

= 1 + c√
e−2πY − 1

for Y < 0. (B8)

Appendix C. Second order in the tip and fin regions

C.1. Second-order heat flux from the fin tips
The second-order temperature Φ2 in the tip region, although useful, is likely significantly
more difficult to find than Φ1. This is due to a non-uniform Dirichlet condition appearing
on the fin surface (see below). Consequently, we do not attempt to calculate here the local
heat flux correction on the fin, (∂Φ2/∂ X)|X=0. However, the total heat flux leaving the
fin in the tip region, i.e.

∫ 0
−∞(∂Φ2/∂ X)|X=0 dY , is desirable and can be easily extracted

without detailed knowledge of Φ2 (For the case of infinitely conducting fins, Ω = ∞, the
Φ2 problem reduces to one similar to that of W0, and hence can be shown to be identically
zero, Φ2 ≡ 0). The problem for Φ2 follows from (A28), (A29), (A32) as

∇2
XY Φ2 = 0 in Dti p, (C1)
∂Φ2

∂ X
= 0 on X = 0, 1, 0 < Y, (C2)

Φ2 = Φ f 2 on X = 0, 1, Y < 0, (C3)

along with (A54) determining Φ f 2. We express the matching conditions in terms of heat
fluxes. The heat flux entering the gap region is completely satisfied at leading order, (A45),
hence all higher orders must have no heat flux, giving

∂Φ2

∂Y
→ 0 as Y → ∞. (C4)
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The heat flux in the fluid leaving the top of the fin region (y → 1−) is given by ∂φ̃/∂y =
εΔ1 + · · · , resulting in the matching condition for Φ2

∂Φ2

∂Y
→ Δ1 as Y → −∞. (C5)

As Φ2 is harmonic with known Neumann conditions along the entire boundary of Dti p
except the fins, we may integrate (C1) over Dti p and apply the divergence theorem. The
only non-zero contributions from the boundary are from the fins, and the fluid as Y → −∞

2
∫ −∞

0

∂Φ2

∂ X

∣∣∣∣
X=0

dY +
∫ 1

0
−∂Φ2

∂Y

∣∣∣∣
Y→−∞

dX = 0. (C6)

The second term is known from (C5), thus the total heat flux correction from the fin in the
tip region is

−
∫ 0

−∞
∂Φ2

∂ X

∣∣∣∣
X=0

dY = Δ1

2
= −1 + c

4Ω
. (C7)

C.2 Second order temperature in the fin region: 0 < y < 1

We have found the leading order solution φ̃ = εΔ1 y + · · · in the fin region (0 < y < 1),
but it is now straightforward to calculate the correction to this at O(ε2). Looking at O(ε1)

in (A1) and O(ε3) in (A6), identical arguments to at lower orders gives that φ̃3(y) depends
only on y, and φ̃2(y) is linear in y:

φ̃2(y) = φ f 2(y) = Δ2 y, for 0 < y < 1, (C8)

where Δ2 is a constant, which we determine via an integration argument in the tip region,
similar to how Δ1 was determined at the previous order. First, substituting y = 1 + εY into
the fin temperature φ f = εΔ1 y + ε2Δ2y + · · · and taking d/dY , we find

dφ f

dY
= ε2Δ1 + ε3Δ2 + · · · , (C9)

which, matching with the fin temperature in the tip region as Y → −∞, gives the condition
at third order

dΦ f 3

dY
→ Δ2 as Y → −∞. (C10)

The equation for Φ f 3 is given by (A31) at O(ε2), and integrating it from Y = 0 to Y = −∞,
applying the no-flux condition at the tip Y = 0,

lim
Y→−∞ Ω

dΦ f 3

dY
=
∫ 0

−∞
∂Φ2

∂ X

∣∣∣∣
X=0

dY. (C11)

But the limit on the left hand side equals Δ2 from matching, (C10), and the right hand side
was already determined to be −Δ1/2 in ( C7). Hence,

Δ2 = − Δ1

2Ω
= 1 + c

4Ω2 , (C12)

and the correction in the fin region is finally

φ̃2(y) = φ f 2(y) = 1 + c

4Ω2 y. (C13)
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Figure 12. Comparison of the composite solution for the (scaled) temperature in the fin, given by (C18), with
the numerical solution.

C.3. Second-order composite fin temperature
We can now determine a composite solution for the temperature throughout the fin,
accurate to O(ε2). Integrating (A54) from Y = 0 (the tip) to Y < 0

Φ f 2(Y ) = Φ f 2(0) + (1 + c)

πΩ

∫ 0

Y
tan−1

(√
e−2πY ′ − 1

)
dY ′, (C14)

which can be shown to have asymptotic behaviour as Y → −∞

Φ f 2(Y ) ∼ Φ f 2(0) − (1 + c)

2Ω

(
Y + log 2

π

)
+ o(1). (C15)

Matching with the fin region solution φf = εΔ1 + ε2(Δ1Y + Δ2) + · · · as Y → 0 implies

Φ f 2(0) − (1 + c)

2Ω

log 2
π

= 1 + c

4Ω2 , (C16)

determining Φ f 2(0). Then a second-order tip–fin composite (0 � y � 1) is given by

φ f,comp = εΦ f 1 + ε2Φ f 2(Y ) + εφ f 1(y) + ε2φ f 2(y) + ε(1 + c)

2Ω
(1 + εY ) − ε2(1 + c)

4Ω2︸ ︷︷ ︸
−overlap

,

(C17)

= −(1 + c)

[
ε

2Ω
− ε2 y

4Ω2 − ε2

2Ω

(
log 2
π

+ 2
π

∫ 0

(y−1)/ε

tan−1
√

e−2πY ′ − 1 dY ′
)]

.

(C18)

A comparison of φ f,comp and the numerical solution is shown in figure 12, and the
deviation of the temperature from linear is captured well.
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Appendix D. Solution method for λ̂1 and φ̂1

The problem for the correction in the gap region, 1 < y < 1 + c (or 0 < ŷ < 1 in
transformed coordinates) is given by (3.38)–(3.41). After substituting λ̂1, given by (3.41),
into the φ̂1 equation (3.38), and rearranging slightly, the problem can be written in the
form

L1[φ̂1] = λ̂0Ŵ1φ̂0 − λ̂2
0Ŵ0φ̂0

∫ 1

0
Ŵ1φ̂0 dŷ in 0 < ŷ < 1, (D1)

dφ̂1

dŷ
= 0 on ŷ = 1, (D2)

φ̂1 = −
(

log 2
π

+ 1
2Ω

)
on ŷ = 0, (D3)

where the linear (integro-differential) operator L1 operating on φ̂1 is

L1[φ] = d2φ

dŷ2 − λ̂0Ŵ0φ + λ̂2
0Ŵ0φ̂0

∫ 1

0
Ŵ0φ dŷ, (D4)

and the forcing appearing on the right-hand side of (D1) is known. This linear problem
has two inhomogeneities: one in the governing equation (D1) and one in the boundary
condition (D3) on ŷ = 0. Hence, we can satisfy each inhomogeneity separately and
linearly superimpose the corresponding solutions. In particular, if we find a φA that
satisfies the inhomogeneous (normalised) boundary condition but homogeneous equation,
given by

L1[φA] = 0, in 0 < ŷ < 1, (D5)

dφA

dŷ
= 0 on ŷ = 1, (D6)

φA = −1 on ŷ = 0, (D7)

and a φB that satisfies the homogeneous boundary condition but inhomogeneous equation,
given by

L1[φB] = λ̂0Ŵ1φ̂0 − λ̂2
0Ŵ0φ̂0

∫ 1

0
Ŵ1φ̂0 dŷ, in 0 < ŷ < 1, (D8)

dφB

dŷ
= 0 on ŷ = 1, (D9)

φB = 0 on ŷ = 0, (D10)

then the solution for φ̂1 we desire is

φ̂1 =
(

log 2
π

+ 1
2Ω

)
φA + φB . (D11)

The solution for λ̂1 follows from (3.41)

λ̂1 = −λ̂2
0

[(
log 2
π

+ 1
2Ω

) ∫ 1

0
Ŵ0φ

A dŷ +
∫ 1

0
Ŵ0φ

B dŷ +
∫ 1

0
Ŵ1φ̂0 dŷ

]
, (D12)
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or after rearranging

λ̂1 = b0 + b1

2Ω
, (D13)

where

b0 = −λ̂2
0

[
log 2
π

∫ 1

0
Ŵ0φ

A dŷ +
∫ 1

0
Ŵ0φ

B dŷ +
∫ 1

0
Ŵ1φ̂0 dŷ

]
, (D14)

b1 = −λ̂2
0

∫ 1

0
Ŵ0φ

A dŷ. (D15)

Given the solutions φA, φB and the leading-order solution λ̂0, φ̂0, the above quantities
b0, b1 are easily computed and have no parameters, therefore they are simply numerical
constants that only need to be computed once. To do so, we use the same Chebyshev
collocation methods used to compute λ̂0, but here note that the problems for φA and φB are
both linear and iteration is unnecessary, with b0, b1 computed afterwards. Mesh refinement
was performed by doubling the number of grid points until the relative change in b0 and
b1 were both less than 10−4. The final values are given by (3.43).

Appendix E. Problem in the tip region when c ∼ ε

Here, we briefly describe the thermal problem when c becomes comparable to ε and the
asymptotic solutions in the main body of the paper break down. The chief modifications
occur in the tip region, y − 1 = O(ε), where now the top wall is only a distance c = O(ε)

away. Define ĉ = c/ε = O(1) as ε → 0. Then Miyoshi et al. (2024) considered the
hydrodynamic problem for this case.

E.1. Flow problem
In the hydrodynamic problem, the fin region (0 < y, 1 − y 	 ε) is unaffected, and the
flow is O(ε2) and takes the form w̃ = ε2 X (1 − X)/2 + · · · . However, in the tip region,
(y − 1)/ε = Y = O(1), we now have a semi-infinite strip, Dti p = {0 < X < 1, −∞ <

Y � ĉ}, in which the flow problem w = W (X, Y ) is

∇2
XY W = −ε2 in Dti p, (E1)

W = 0 on X = 0, 1, Y < 0, (E2)
∂W

∂ X
= 0 on X = 0, 1, 0 < Y < ĉ, (E3)

with now no slip at Y = ĉ, and matching with Poiseuille flow as Y → −∞
W = 0 on Y = ĉ, (E4)

W → 1
2ε

2 X (1 − X) + · · · as Y → −∞. (E5)

Notice that the flow in this tip region is now O(ε2) (compared with ε), and thus is
comparable to the flow in the fin region; indeed the flow is the same order in each region.
Writing W = ε2W2 + · · · , then a form of the problem for W2 was solved by Miyoshi et al.
(2024) (in different coordinates) with considerable difficulty, employing a conformal map
to an annulus. Although, a simpler solution was found in the sub-limit ĉ � 1.
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E.2. Thermal problem
Moving to the thermal problem in the limit ĉ = c/ε = O(1), we now attempt to give
estimates for the various terms in the thermal energy equation in the aforementioned
regions. First, from the leading-order result (3.44) for λ, if we now consider c = O(ε)

in that expression we get λ= O(ε−1). Then from (A10) we estimate φ = O(ε) throughout
the fluid.

With these estimates, the problem in the fin region (0 < y, 1 − y 	 ε) gives ∂φ/∂ X ≡ 0
to leading order, i.e. φ ∼ εφ1(y) + ε2φ2(X, y) + · · · . Then the leading-order balance in
(A1) occurs at O(1), which includes advection and conduction in X

λWφ︸ ︷︷ ︸
O(1)

= 1
ε2

∂2φ

∂ X2︸ ︷︷ ︸
O(1)

+ ∂2φ

∂y2︸︷︷︸
O(ε)

, (E6)

but not conduction in y, which is of higher order. Hence, there is a local 1-D convection
problem, coupled to a conduction problem in the fin.

In the tip region ((y − 1)/ε = Y = O(1)), the problem will be similar, but with φ

being constant at leading order, φ = εC + ε2φ2(X, Y ). This would lead to a leading-order
balance at O(1) again, between advection and conduction in both directions (X and Y )

λWφ︸ ︷︷ ︸
O(1)

= 1
ε2

∂2φ

∂ X2︸ ︷︷ ︸
O(1)

+ 1
ε2

∂2φ

∂Y 2︸ ︷︷ ︸
O(1)

. (E7)

It would also apply in a semi-strip, as one would also need to enforce the adiabatic
condition at Y = ĉ. The problem in the tip region would be analytically intractible,
as the flow there depends on (X, Y ).

From the above estimates, we see that advection becomes important (appearing at
leading order) throughout the fluid, i.e. in both the fin and tip regions. The main difference
between the regions then is only whether conduction is one- or two-dimensional. In our
asymptotics for c = O(1) (the main limit of the paper), advection is negligible in both of
these regions, instead only appearing in the ‘gap region’ above. Clearly the breakdown
of the solution as c is decreased is largely due to this neglect of advection, which can no
longer be avoided when c becomes comparable to ε.
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