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We investigate the impact of chemical equilibration and the resulting bulk viscosity on non-radial
oscillation modes of warm neutron stars at temperatures up to 7' ~ 5 MeV, relevant for protoneutron
stars and neutron-star post-merger remnants. In this regime, the relaxation rate of weak interactions
becomes comparable to the characteristic frequencies of composition g-modes in the core, resulting
in resonant damping. To capture this effect, we introduce the dynamic sound speed, a complex,
frequency-dependent generalization of the adiabatic sound speed that encodes both the restoring
force and the dissipative effects of bulk compression. Using realistic weak reaction rates and three
representative equations of state, we compute the complex frequencies of composition g-modes with
finite-temperature profiles. We find that bulk viscous damping becomes increasingly significant with
temperature and can completely suppress composition g-modes. In contrast, the f-mode remains
largely unaffected by bulk viscosity due to its nearly divergence-free character. Our results highlight
the sensitivity of g-mode behavior to thermal structure, weak reaction rates, and the equation of
state, and establish the dynamic sound speed as a valuable descriptor characterizing oscillation

properties in dissipative neutron star matter.

I. INTRODUCTION

Asteroseismology is a key probe of stellar interiors, and
when applied to neutron stars (NSs) can be used to pro-
vide information on their chemical composition and the
dense matter equation of state (EOS) [1, 2]. Chem-
ical composition is most sensitively probed by the g-
modes, which are supported by gravity and a chemical
composition gradient-driven buoyancy. These oscillation
modes have frequencies in the tens to hundreds of Hz
range, much higher than the thermal (entropy gradient-
supported) g-modes in neutron stars, which have typical
frequencies of a few Hz at temperatures of order 108 K [3].
The gradients of various particle species have been con-
sidered as the source of neutron star g-modes, starting
with the proton fraction of total baryons [4]. Later, g-
modes due to the muon fraction of total leptons (usually
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in superfluid neutron stars) [5-9], hyperons [6, 10], and
quarks in the inner core [11-14] were studied.

Recently, large modifications to g-modes at T" > 10
MeV have been shown due to the effect of finite temper-
ature on the EOS [15]. At these temperatures, thermal
contributions to g-modes are comparable to the compo-
sition gradient-driven buoyancy [16, 17]. However, most
calculations of NS g-modes that focused on the chemi-
cal composition-driven modes have assumed cold (zero-
temperature) neutron stars, though calculations consid-
ering the effects of superfluidity often compute the oscil-
lation modes assuming a fixed temperature profile, with
sufficiently high temperatures destroying superfluidity in
the core of the star and hence modifying the mode spec-
trum. Zero temperature is a reasonable assumption for
most of a neutron star’s lifetime, since thermal effects
on the mode spectrum for 7' < 10° K are generally very
small and neutron stars cool below this within a few years
after their birth [18]. The aforementioned references, in-
cluding those that have included finite-temperature ef-
fects, thus typically assumed infinitely slow chemical re-
action rates, a good approximation for cold neutron stars
as long as the weak reactions in standard nuclear matter
responsible for restoring beta equilibrium in perturbed
fluid elements are much slower than the oscillation fre-
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quency at these temperatures.

However, at temperatures in the MeV (~ 10 K)
range, reaction rates are comparable to g-mode oscil-
lation frequencies. These temperatures are unlikely to
be reached in inspiraling binary neutron stars [19], since
tidal excitation of oscillation modes are only expected to
heat the stars to a fewx10® K prior to merger [20, 21].
MeV-range temperatures are thus relevant at two stages
of a neutron star’s lifetime: i) in young stars immedi-
ately after their birth in core-collapse supernova, and ii)
in post-merger remnant neutron stars formed in binary
mergers. For instance, the g-modes identified in numeri-
cal simulations as contributing to the gravitational-wave
signal from protoneutron stars produced by core-collapse
supernovae [22-26] will be modified by finite nuclear reac-
tion rates, which was not considered in previous studies.
These reactions are a manifestation of bulk viscosity [27],
which has impacts across neutron star physics, including
in damping radial oscillation modes [28], r-modes [29],
and as an energy dissipation mechanism in neutron star
mergers [30]. Bulk viscosity can be accounted for by ex-
plicitly examining or including via a reaction network of
the underlying weak interaction rates (e.g., in radially os-
cillating neutron stars [28], in neutron stars at the edge of
stability [31, 32], for inspiral neutron stars [21] or in neu-
tron star merger simulations [33, 34]), or through direct
calculation of the bulk viscosity coefficient and imple-
mentation of dissipative relativistic hydrodynamics (e.g.,
in radially oscillating neutron stars [35, 36] or in neutron
star merger simulations [37]).

The main modification to the dynamics of neutron star
oscillations due to nuclear reactions is to damp the com-
position g-modes. In an early investigation, Andersson
et al. [38] performed a local plane-wave analysis of the
Brunt—Viisila frequency, showing how arbitrary nuclear
reaction rates can introduce a complex component to the
g-mode frequency, effectively damping the oscillations.
Building on this, Counsell et al. [39] extended the study
by computing global g-modes in cold neutron stars using
the BSk21 EOS. They showed that the real part of the
g-mode frequency decreases while the imaginary part in-
creases as the reaction rate is increased. Here, also, the
g-modes properties were calculated as a function of the
nuclear reaction rate - disconnected from its actual value
in dense matter. In realistic NS matter, these rates de-
pend sensitively on the local temperature and composi-
tion profiles, when a specific EOS like BSk21 is assumed.

To address this, we compute the g-modes of hot neu-
tron stars, incorporating microphysically-calculated nu-
clear reaction rates consistent with the underlying EOS
we use to compute the background stellar models and
the oscillation modes. The physically grounded reaction
rates lead to well-defined damping through bulk viscos-
ity, moving beyond parametrized viscosity as in previ-
ous studies. By linking realistic microphysical inputs to
global mode calculations, our approach enables a more
accurate and self-consistent assessment of bulk viscous
damping mechanisms in NSs under various thermal con-

ditions. These rates have also been applied to exam-
ine the role of bulk viscosity in neutron star mergers
through analyses of local density oscillations [40-42], and
numerical simulations [33, 37]. To clarify, we only con-
sider the chemical composition gradient g-modes at fi-
nite temperatures, and not the thermal g-mode contri-
bution, since while we consider ~ MeV temperatures,
we do not consider the T 2 10 MeV temperatures at
which the thermal contribution to g-modes is compa-
rable to the chemical composition. Our quasinormal
mode calculations use the zero-temperature EOS; only
the calculation of the weak interaction rates includes
(as it must) temperature. We also ignore the effects of
nucleonic superfluidity-superconductivity, assuming that
Cooper pairing between nucleons is destroyed at the tem-
peratures of interest, which are generally well above the
critical temperatures for the p-wave paired neutron su-
perfluidity (7., ~ 10° K) and s-wave paired proton su-
perconductivity (Tt, ~ 7 x 10° K) expected to be found
in neutron star cores [43].

In Section II we discuss the origin of bulk viscosity in
neutron stars and introduce the concept of the dynamic
sound speed, which directly encodes the effects of bulk
viscosity. This formalism can be naturally incorporated
into the eigenvalue problem for calculating g-mode fre-
quencies in hot neutron stars, which we summarize in
Section ITI. We discuss the resulting changes to the g-
and f-mode spectra of hot neutron stars due to bulk
viscosity in Section IV, considering both isothermal and
isentropic temperature profiles. Our conclusions and pos-
sible extensions of this work are presented in Section V.
We work in ¢ = h = 1 units.

II. BULK VISCOSITY AND DYNAMIC SOUND
SPEED

Finite temperature, neutrinoless npe matter out of
chemical equilibrium is described by specifying the pres-
sure p(ng, o, T), where np is the baryon number density,
T is the temperature, and the degree to which the mat-
ter is out of beta equilibrium (used interchangeably with
“chemical equilibrium” in this work), is

Op = fin — pp — e (1)
At sufficiently high temperatures, the neutrino mean free
path shrinks [44, 45] and neutrinos become trapped and
the definition of beta equilibrium is modified [40, 46].
Neutrino-trapping effects are likely present at the higher
end of the temperature range we consider here, but we
neglect neutrino trapping, for simplicity. Instead of spec-
ifying the temperature, it is sometimes convenient to in-
stead specify the entropy per baryon S = s/ngp, so that
the pressure becomes the function p(ng,du,S). A lo-
cal, adiabatic, perturbation to the pressure p(ng,du, S)
is given by

Adp. (2)

ng,S



The proton fraction, x = n,/np, in beta equilibrium be-
comes a function of density and temperature zeq(ng,T).
This can be calculated for various EOSs. When the pro-
ton fraction is away from its beta equilibrium value by an
amount 5 = T — Teq, the system is out of chemical equi-
librium by an amount du. Considering a perturbation of
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At fixed density, a fluid element of npe matter that is
out of beta equilibrium by a small amount §u adjusts its
proton fraction back to its beta equilibrium value accord-
ingly, to first order in du,

aSUJ )\n<—>p

ors _ 5 4
B o M (4)

where

Oy —Tpn
)\an(T’nB) = < ( Hgdﬂl p— )

)@_o' 5)

The decay rates (number of decays per volume per time)
I'y—p and I'y,,, are of the flavor-changing processes that
inter-convert neutrons and protons, which in npe matter
are the Urca processes, namely neutron decay and elec-
tron capture [47]. For small deviations from beta equi-
librium, taking the time derivative of Eq. (3) and then
plugging in Eq. (4), yields
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where we have recast A,«,, as the beta equilibration re-
laxation rate v, which is defined as
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which has a dimension of frequency and can be directly
compared to the oscillation mode angular frequency w.
The calculation of the susceptibility (0dp/0%s)|ng,s from
the EOS tables, using ng, x and T as input variables, is
detailed in Appendix A.

The calculation of the rates in Eq. (7) requires a micro-
scopic model of nuclear matter that provides us not just
with the EOS, but also with the dispersion relations of
the nucleons. We calculate our results for three different
EOSs, described below, in order to properly consider the
range of possible g-mode physics.

In Fig. 1, we plot the beta equilibration rate v as a
function of the baryon density. We include both the di-
rect Urca processes (n — p+e~ + U, and e~ +p —
n+v,) as well as the modified Urca processes (n+ N —
p+e +v.+Nande +p+ N — n+v.+ N, where
N is a neutron or proton). For simplicity, we calculate
the rates of these processes in the Fermi surface approx-
imation, which is valid for strongly degenerate nuclear
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FIG. 1. Left (main) panel shows the beta equilibration relax-
ation rate <y defined in Eq. (7) for QMC-RMF3, IUFSU and
IOPB-I EOSs at temperatures T'= 1 MeV (dot-dashed) and
T = 3 MeV (dashed). The solid (dashed) lines in the top
right panel represent the g-mode (f-mode) frequency of cold
NSs with various central baryon densities ng.

matter (typically, T < 1 MeV) [44, 48]. In this limit,
only particles on the Fermi surface participate in the re-
actions. This constraint on the phase space gives rise to
a direct Urca threshold density: below this density, di-
rect Urca is kinematically forbidden because the neutron
Fermi momentum is too big relative to the proton and
electron Fermi momenta (equivalently, the proton frac-
tion is too small). Modified Urca does not have such
a density threshold and has a rate that is only weakly
dependent on the baryon density [47]. While, for conve-
nience, we use the Fermi surface approximation in this
work, as the temperature rises, contributions from parti-
cles away from the Fermi surface begin to dominate the
reaction rates, causing a blurring (in density) of the direct
Urca threshold [44, 48]. The formulas for the Fermi sur-
face approximation of the Urca rates are given in App. A
and B of Ref. [33].

The rates shown in Fig. 1 were calculated in matter
described by three different EOSs, each built from a rela-
tivistic mean-field theory (RMFT), QMC-RMF3 [49, 50],
IUFSU [51], and IOPB-I [52]. All of them agree with
current astrophysical and theoretical constraints on the
EOS [53], but differ in their predictions of the composi-
tion of npe matter, which leads to significantly different
predictions of the Urca rates. Critically, they have dif-
ferent predictions for the direct Urca threshold. While
QMC-RMF3 does not have a direct Urca threshold at all,
IOPB-I has a threshold density of npthr. = 0.414 fm_3,
and IUFSU a threshold density of ng ¢thy. = 0.655 fm 3.

At low density, in Fig. 1, direct Urca is forbidden for
all EOSs and the rates are entirely due to modified Urca.
As the density increases, the rates for two of the EOSs,
IUFSU and IOPB-I, increase dramatically as the direct



Urca threshold is passed. The QMC-RMF3 EOS always
forbids direct Urca, as the proton fraction never rises
above 1/9 (c.f. [54]). Equilibration rates at two differ-
ent temperatures (T’ =1 and 3 MeV) are shown: clearly,
the equilibration rate is a strong function of temperature
(see e.g., Fig. 8 in [27]). To the right of the main plot,
we attached a plot of the oscillation frequencies of the
f-mode and g-mode as a function of the central density
of the neutron star (different from the x-axis of the left
plot). This presentation allows us to compare the fre-
quency of the density change of the matter w with the
rate at which beta equilibrium is restored . This ra-
tio is the key quantity in determining the bulk-viscous
damping of the oscillation modes and the disappearance
of the g-mode at high temperature. Evidently, tempera-
tures of a few MeV will make the beta equilibration rate
comparable to the density oscillation frequency.

Applying the harmonic oscillation ansatz ¢! for all
perturbations in Eq. (7), we obtain
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We substitute Eq. (8) into Eq. (2), yielding

r
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where the complex-valued effective adiabatic index for a
damped oscillation of frequency w is given by
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This expression can be recast in a more transparent form:

Fa *Fc
r = Feq+d77q, (11)
1+ —
w
ng Op
lyg = — =—— , 12
d p 8nB 25,8 ( )
ng Op
leg = — =— , 13
q D anB 5.8 ( )

where I'nq and I'eq characterize the compressibility of
matter in the slow and fast limits of beta equilibration,
respectively. The computation of these derivatives from
the EOS tables, using ng, x and T as input variables, is
described in detail in Appendix A.
The dynamic sound speed squared C<21y which incorpo-

rates finite-temperature viscous effects, is defined as
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FIG. 2. Real (left panels) and imaginary (right panels) part of
the dynamic sound speed squared for the QMC-RMF3 EOS.
For the real part, the equilibrium sound speed squared is used
as a reference. The black dashed line represents the differ-
ence between adiabatic and equilibrium squared sound speeds.
The upper two panels correspond to fixed temperature T' = 5
MeV while varying frequency w/2m = [20, 50,100, 200] Hz;
the bottom two panels represent fixed frequency w/27 = 100
Hz while varying temperature from 2 to 8 MeV. Note the dif-
ferent scales of y-axes in real and imaginary parts.

where the equilibrium and adiabatic sound speed squared
cgq and cﬁy are given by

2_PP 2 _ P
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(15)

The real and imaginary parts of the dynamic sound speed
squared are then given by

2
Re [Cﬁy] = ng + (Cid - ng) m ) (16)
Im [cﬁy] = (czd — cgq) wzw*_:/,yQ (17)

The imaginary part, Im [cﬁy}, is directly related to the
bulk viscosity coefficient ¢, which is defined via the en-
ergy dissipation rate de /dt = —((V - v)?, since the bulk
viscosity coefficient is also equal to the EOS-related fac-
tor times the resonance expression v/ (v 4+ w?) [27]. Us-
ing thermodynamic identities and the definitions of the
adiabatic indices [Egs. (12) and (13)], the bulk viscosity
can be expressed as
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FIG. 3. Same as Fig. 2, but for the IOPB-I EOS.
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For neutron star matter, the adiabatic sound speed
is usually very close to the equilibrium sound speed
(¢2q — €2, $0.01), and therefore the second term on the
right-hand side of Eq. (14) is small. As a result, the imag-
inary part of the dynamic sound speed squared is small,
while the real part lies between the adiabatic and equilib-
rium squared sound speeds. The source of the difference
between 2, and cgq in our paper is the gradient in the
proton fraction x, not a gradient in the entropy per parti-
cle S. To demonstrate the dynamic sound speed squared
C?ly’ we plot the real and imaginary part of cgy versus
ng for various temperatures T and frequencies w for the
QMC-RMF3 EOS in Fig. 2 and for the IOPB-I EOS in
Fig. 3. QMC-RMF3 shows double peaks in ¢, — cgq due
to a plateau in the equilibrium composition x.q around
ng = 0.2 fm~3. The IOPB-I curve only has one peak and
terminates at ng = 0.414 fm~—3, beyond which cﬁy = cgq
due to the onset of the direct Urca process.

The real part of the dynamic sound speed is the adi-
abatic sound speed at low temperatures (or in the high-
frequency limit), and as temperature is increased (or fre-
quency is lowered), it decreases to the equilibrium sound
speed. The imaginary part of the dynamic sound speed
is non-monotonic with respect to temperature — it starts
from zero at low temperatures and then increases un-
til reaching a peak at the resonant temperature where
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FIG. 4. The dashed contour shows the maximum (across all
densities) of the imaginary part of the dynamic sound speed
squared for QMC-RMF3 (top) and IOPB-I (bottom). The
dark blue region corresponds to the resonant peak, where bulk
viscosity is most effective at damping oscillations. The hor-
izontal brown and red bands represent typical f-mode and
g-mode frequencies (at zero temperature) for NSs of various
masses, with the central line corresponding to a 1.4 Mg NS.

v = w. As the temperature (and thus +) further in-
creases, the imaginary part of the dynamic sound speed
drops to zero. This resonant behavior is, naturally, just
like the resonant behavior of bulk viscosity [27].

In Fig. 4, we show the maximum value (across all den-
sities) of the imaginary part of the dynamic sound speed
squared in the temperature-frequency plane. This plot
depicts the resonant behavior described above. There is
only one resonant peak for QMC-RMF3, while for [OPB-
I, there exist two distinct resonant bands corresponding
to the direct and modified Urca processes, respectively.
These peaks are unrelated to the double-peak structure



discussed in the context of Fig. 2. The direct Urca pro-
cess, with a higher reaction rate, has a resonant peak at
a higher frequency or a lower temperature compared to
the modified Urca process peak. Typical f-mode and g-
mode frequencies at zero temperature are shown in Fig. 4.

In this work, the crust EOSs in beta equilibrium are
constructed with the compressible liquid droplet model
with fixed surface tension parameters o, = 1.2 MeV
fm=2 Sg = 48 MeV [55]. Below the crust-core tran-
sition density, the adiabatic sound speed is set equal to
the equilibrium sound speed, as our focus is on core g-
modes following Ref. [56]. This is justified because the
adiabatic sound speed in the crust has only a limited
impact on the properties of core g-modes [57].

III. MODE EQUATIONS

The components of the interior metric tensor for a
spherically symmetric, non-rotating star are defined by

ds? = —e"Mdt? + A dr? 4 r2(d6? + sin® 6dp?). (20)

Following e.g., Ref. [56], we solve the general relativis-
tic non-radial mode equations in the relativistic Cowling
approximation, which ignores perturbations of the metric
tensor. The mode equations are

d oe+1 2
V_Syienr (Me” - 2) v, (1)

dr iy w? Cay
VW= N? 11

R A — - v, (2
¢ m Ul g 2|V (22)

where U and V are related to the radial component of
the Lagrangian displacement field &, and the Eulerian
perturbation of the pressure dp by

op
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U =r2e™?¢,, 1% o (23)

£ is the degree of the vector spherical harmonic repre-
senting the angular dependence of the displacement field,
which we restrict to £ = 2. The gravitational acceleration

g is
L1
e+pdr  2dr’

9= (24)
The two sound speeds squared cgq and cgy are given by
Eq. (14) and Eq. (15). Note that c?iy replaces cZ; from
the original formulation of the mode equations, which are
recovered in the limit that v — 0. Finally, the Brunt—
Viisili frequency squared N2 is

11\
N2:92 <C203>e /\. (25)
eq y

Note that N? is now complex due to the inclusion of cﬁy.

The boundary conditions at r = 0 are

1

—0) — 041
U(r=0) = YortH, (26)
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(r=0)=—=¥or, (27)

where Yj is a constant that shifts the overall amplitude of
the oscillation mode, which is itself unconstrained. The
r = R boundary condition is the vanishing of the La-
grangian pressure perturbation at Ap(r = R) = 0, which
is equivalent to

1 A(r=R)/2 IV
_ = — . (2
SR U(r = R)e ar|_, (28)

0=V(r=R)
Since cﬁy is complex, the solutions to the mode equations
are also complex, therefore Egs. (21) and (22) can be
solved by splitting them into real and imaginary parts.
This is presented in Appendix B. We performed inde-
pendent calculations of the oscillation modes using com-
plex equations and then splitting into real and imaginary
parts, obtaining identical results in each case.

To assess the validity of the relativistic Cowling ap-
proximation, we also carried out linearized full general
relativity (GR) calculations of non-radial f-mode and g-
modes, following the formalism outlined in the appendix
of Ref. [58]. The system of differential equations gov-
erning linear non-radial oscillations in full GR reduces to
Egs. (21) and (22) of the relativistic Cowling approxi-
mation when the metric perturbations are neglected, as
shown explicitly in Ref. [13].

IV. RESULTS

To examine the effect of weak interactions on the
damping of g-modes, we computed the complex g-
mode frequencies of 1.4 My NSs at various temperatures
for the three selected EOSs. Fig. 5 shows the real and
imaginary parts of the g-mode frequency as a function
of temperature for the QMC-RMF3 EOS, with the re-
sults compared between using and not using the Cowling
approximation.

The Cowling approximation introduces only a very
small error compared to the full GR calculation for the
g-modes. Therefore, for the remainder of the paper we
only consider results obtained using the Cowling approx-
imation. As the temperature increases and thus the bulk
viscosity increases, the real part of g-mode frequency de-
creases while the imaginary part increases. The real parts
of the even harmonic g-modes vanish at lower tempera-
tures compared to the odd g-modes because of the dou-
ble peaks in the sound speed squared difference shown in
Fig. 2. This leads to an interchange in the temperature at
which these modes vanish, such that the g; and g3-modes
vanish at higher temperatures than the gy and go-modes.
In comparison, Fig. 6 shows the g-mode frequencies for
the TUFSU and IOPB-I EOSs. Since these two EOSs
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FIG. 5. Real and imaginary parts of the frequencies of the fun-
damental and the first three harmonic g-modes for a 1.4 Mg
neutron star versus varying temperature for the QMC-RMF3
EOS. The imaginary part of the full GR calculation (dotted)
largely overlaps with that of the calculation with Cowling
approximation (dashed), and the real parts of the full GR
calculation (dash-dotted) and Cowling approximation (solid)
are also very similar. We define the ordering of g-modes by
their smooth asymptotic eigenmode at zero temperature.

have only one peak in their squared sound speed dif-
ferences, they do not display a characteristic difference
between the even and odd g-modes like that shown for
the QMC-RMF3 EOS.

We also calculated the f-mode of a 1.4 Mg NS at var-
ious temperatures as shown in Fig. 7, and found that the
f-mode frequency is extremely insensitive to tempera-
ture. The real part of the frequency calculated with the
Cowling approximation is 26% larger than that with the
full GR calculation. The imaginary part is much smaller,
so the damping time 7 = 1/Imwy] is plotted instead.
Since the Cowling approximation calculation ignores the
damping due to gravitational waves completely, it results
in a damping time ~ 10 seconds, much larger than the
gravitational-wave damping time of the f-mode, = 0.1
seconds. Therefore, the damping introduced by bulk vis-
cosity is much weaker than the damping from gravita-
tional waves even at the resonant peak shown in Fig. 4.
This is not surprising given that f-mode is known to be
very close to the Kelvin mode, a divergence-free oscilla-
tion mode. The analytical solution for the Kelvin mode
is very close to f-mode calculated with full GR. There-
fore, the fluid goes through compression and expansion
only in the Eulerian frame but remains largely uncom-
pressed in the Lagrangian frame. This provides a direct
validation that the bulk viscosity is not important for the
linear f-mode oscillation regardless of temperature.

When the bulk viscosity is included in the mode cal-
culation, the resulting mode frequencies are no longer
purely real numbers, so Sturm—Liouville theory does not
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FIG. 6. Same as Fig. 5 but for the IUFSU EOS (panel (a))
and the IOPB-I EOS (panel (b)).
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FIG. 7. Frequency (solid and dot-dashed) and damping time
(dashed and dotted) of the f-mode calculated with and with-
out Cowling approximation. The damping time of g-modes in
Fig. 5 is plotted as the blue region for comparison. The bot-
tom of the blue region corresponds to the lowest order g-mode.
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of the color bar.

strictly apply. This means that the displacement fields
for the modes no longer follow the expected pattern
whereby the number of internal modes of the nth har-
monic mode is n, with the fundamental mode having zero
internal nodes, the first harmonic mode having one inter-
nal node, etc. Instead, as the temperature increases and
the bulk viscosity plays an increasingly important role,
with the imaginary part of the mode frequency increas-
ing, we observe that the number of internal nodes of the
mode displacement field can change compared to the ex-
pectation from Sturm—Liouville theory.

We demonstrate this in Fig. 8 that shows the evolution

in the displacement field for the fundamental and first
harmonic g-modes as a function of the temperature for
the QMC-RMF3 EOS. First, examining the fundamental
mode in panel (a), one finds that for low temperatures
T < 3.5 MeV, the displacement field takes an expected
form for a fundamental mode with zero internal nodes,
but the displacement field below r ~ 6 km moves closer
to the Re[¢,] = 0 axis. As T' =4 MeV is approached, the
displacement field then crosses this axis close to r = 0,
with this node moving to higher r as the temperature in-
creases, thus giving first a single internal node and then
three internal nodes. At the highest temperatures exam-
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FIG. 9. Temperature profiles at fixed entropy per baryon for
three (QMC-RMF3, IUFSU, IOPB-I) EOSs. These profiles
are obtained by solving the equations of motion numerically
in weak chemical equilibrium and at finite temperatures. At
each density point, the entropy is calculated for several tem-
perature points and then linearly interpolated in order to ap-
ply a root-finding algorithm to determine the desired constant
entropy profile.

ined, when the real part of the mode frequency becomes
much smaller than the imaginary part, the displacement
field has two internal nodes. The behavior of the first
harmonic mode displacement field in panel (b) also vio-
lates the typical behavior expected from Sturm-Liouville
theory: as the temperature approaches towards 7' = 4
MeV, the mode first becomes nodeless, with its node near
r ~ 11 km vanishing, then a new node develops at r = 0,
moving to larger r as T increases before vanishing again
at the highest temperature examined. The IUFSU and
IOPB-I EOSs show similar behavior, respectively, with
nodes appearing or disappearing as the temperature in-
creases toward the limit where the imaginary part of w,
exceeds the real part.

To investigate the impact of bulk viscosity on neutron
stars with varying thermal structures [59, 60], we first
compute temperature profiles at fixed entropy per baryon
values, S = s/np = {0.1,0.2,0.3,0.4} k, for three differ-
ent EOSs as shown in Fig. 9. In the degenerate limit of a
neutron gas, the entropy per baryon follows the relation
S = 72 k3Tmy,/kE, where kg = (372np)'/? is the Fermi
momentum, and the Landau effective mass is defined as
my, = kr (dkr/der), which reduces to my, = \/k& + m%,
where mp is the Dirac effective mass m* in the RMF
model. Consequently, at fixed entropy per baryon, the
temperature scales as T n% 3 /my,, where the Landau
effective mass my, exhibits different density dependencies
across the three EOSs. At subnuclear densities, where
kr < mp, the Landau mass approaches my, ~ mp,
yielding the scaling T' nQB/ 3/mD. At several times
nuclear saturation density, where kg > mp, one finds
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FIG. 10. g-mode frequency as a function of NS mass at fixed
entropy per baryon S = 0.2kg (top), S = 0.3kp (middle),
and S = 0.4kp (bottom). The real (thick solid lines) and
imaginary (dot-dashed lines) parts of the frequency are shown,
and the thin solid line refer to the cold adiabatic g-mode fre-
quency in the absence of viscosity, which has no imaginary
part. Results for three different EOSs are shown, and the cal-
culations were performed within the Cowling approximation.

1/3 1/3
mr, ~ kg nB/ , and the temperature scales as T" nB/ .

This trend of the power-law index decreasing from 2/3
to 1/3 appears in Fig. 9.

Using these temperature profiles, we compute the go-
mode frequencies as a function of the stellar mass, shown
in Fig. 10. For comparison, the zero entropy (T' = 0)
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FIG. 11. Real (solid) and imaginary (dashed) parts of the
difference between the dynamic and equilibrium sound speed
squared, Re[cd, — cZ,] and Im|c3,], as functions of the baryon
number density ng at fixed values of the entropy per baryon,
S = 0.3kp (thin) and S = 0.4 kp (thick). Results are shown
for the QMC-RMF3 EOS at an oscillation frequency f = 100
Hz (blue) and for the IUFSU EOS at f = 30 Hz (orange).
The density regions where Re[c3, — c¢Z,] > Imc3,] can sup-
port local g-mode oscillations, whereas regions dominated by
the imaginary part indicate strong damping and therefore the
mode propagation is suppressed.

go-modes, which are purely real, are also shown as thin
lines. The most notable feature is that the real part of
the frequency for the go-mode with the IUFSU EOS de-
creases much more with increasing S than for the other
two EOSs, such that it vanishes at S = 0.4 kp. This can
be explained by examining the temperature dependence
of the sound speed squared difference ¢, — cZ, for the
IUFSU EOS and then comparing it to those obtained for
the other two EOSs. At the crust-core transition den-
sity ng ~ 0.08 fm~3, the constant entropy S = 0.4kp
profile corresponds to a temperature 7'~ 3 MeV accord-
ing to Fig. 9. From Figs. 2-3, for the QMC-RMF3 and
IOPB-I EOSs, the real part of cﬁy — cgq is larger than the
imaginary part at this temperature and density. Though
the density increases and temperature for fixed S corre-
spondingly increases deeper inside the star, the real part
of cﬁy — cgq being larger than the imaginary part near
the crust-core transition is sufficient for the gg-mode to
be supported. However, for the IUFSU EOS, the real and
imaginary parts of cﬁy — cgq at T' =~ 3 MeV are already
nearly the same, and since the imaginary part only be-
comes greater and the real part smaller as the density in-
creases and the temperature simultaneously increases for
fixed S, the go-mode vanishes for this and larger values
of S. This is shown explicitly in Fig. 11, which compares
the real and imaginary parts of the sound speed squared
difference for S = 0.3 kg and 0.4 kg for the QMC-RMF3
and ITUFSU EOSs as functions of the density, computed
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at values of w approximating the ggp-mode frequency. For
both values of S for the QMC-RMF3 EOS, there is a
region of the star where Re[c, — c3,] > Im(c],], which
is also the case for the IUFSU EOS when S = 0.3kg.
However, Tml[cj | > Re[cj, — cZ,] for the TUFSU EOS at
S = 0.4kp, indicating that there is no gg-mode for this

EOS at this value of S.

V. CONCLUSIONS AND OUTLOOK

Thermal effects on the g-modes of neutron stars are
of increasing interest because these modes will be ex-
cited in protoneutron stars and post-merger remmnant
neutron stars. In this work, we introduce the concept
of the dynamic sound speed squared, cgy, which captures
the impact of bulk viscous effects in hot neutron star
matter at temperatures of a few MeV. Unlike conven-
tional adiabatic and equilibrium sound speeds, the dy-
namic sound speed incorporates the frequency-dependent
damping effects of weak interaction equilibration, leading

to a complex-valued expression. The real part of cﬁy lies

between the equilibrium sound speed squared cgq and the
adiabatic sound speed squared cid, while its imaginary
part encodes dissipative effects associated with the bulk

viscosity, ¢ = Im {cgy} (e + P)/w. We demonstrate that

the imaginary part Im[cﬁy] exhibits a resonant peak when
the beta equilibration rate v becomes comparable to the
oscillation frequency w. To further characterize this be-
havior, we identify the resonant region by mapping the
peak values of Im[c3 ] (across varying densities) in the T-
w plane and then compare it to the characteristic frequen-
cies of neutron star oscillation modes. For EOSs where
direct Urca is kinematically forbidden on the Fermi sur-
face (e.g., QMC-RMF3), we find a single resonance band
that starts at zero frequency around 7' =~ 2 MeV and ex-
tends to w = 100 Hz at T' =~ 4.5 MeV, continuing beyond.
In contrast, EOSs with a direct Urca threshold exhibit
significantly faster beta equilibration rates v at densities
above the threshold, leading to an additional resonance
band at lower temperatures or higher frequencies, as seen
in the right panel of Fig. 4 for IOPB-I.

The relativistic Cowling approximation which ignores
metric perturbations is widely used in the calculations of
g-modes due to its simplicity and accuracy. Our results
confirm that even with the inclusion of bulk viscosity,
the Cowling approximation remains a reliable method for
computing g-modes, introducing only a small error com-
pared to the full GR calculations. Nevertheless, for the f-
mode, we confirm that the Cowling approximation over-
estimates the frequency by approximately 26%, making it
less accurate for studying f-mode oscillations [58, 61, 62].

We investigate the effects of weak interactions and bulk
viscosity on the g-modes and f-mode of neutron stars by
computing their complex frequencies at different temper-
atures. As the temperature increases, bulk viscosity be-
comes more significant, leading to a decrease in the real



part of the g-mode frequency as well as an increase in its
imaginary part, indicating stronger damping. We observe
that for EOSs with a double-peak structure in the sound
speed squared difference (e.g., QMC-RMF3), the even
and odd g-modes behave differently, whereas EOSs with
a single peak (e.g., IUFSU, IOPB-I) do not exhibit this
distinction. Additionally, we find that at sufficiently high
temperatures, bulk viscosity alters the nodal structure of
the displacement field, deviating from the expectations
of Sturm—Liouville theory, as modes develop additional
nodes.

We find that the f-mode frequency remains largely in-
sensitive to temperature and that the bulk viscosity has a
negligible effect on its damping compared to gravitational
wave emission. This is consistent with the fact that the
f-mode is very close to the Kelvin mode, which is nearly
divergence-free. In the Lagrangian frame, fluid elements
undergo minimal compression, significantly reducing the
impact of bulk viscosity on the mode’s dissipation.

The stark contrast between the effects of bulk viscos-
ity on the f- and g-modes is crucial for understanding its
role in shaping the peak gravitational-wave frequency ob-
served in post-merger remnants. Since the f-mode emits
gravitational waves far more efficiently than g-modes, the
gravitational-wave peak frequency is often dominated by
f-mode oscillations [63], and in such cases, the bulk vis-
cosity is expected to have only a minor impact on the
gravitational-wave signal, as suggested in Refs. [64, 65].
However, if the peak frequency contains significant con-
tributions from other modes, e.g. g-modes, then the bulk
viscosity may substantially alter both the post-merger
dynamics and the emitted gravitational waves [33, 66].
In our linearized general relativistic analysis, the f- and
g-modes are treated as a linearly independent basis in the
Hilbert space of fluid perturbations. Nonetheless, non-
linear coupling between these modes may become signif-
icant in the highly dynamic environment of post-merger
simulations. In such scenarios, the bulk viscous damping
of g-modes might indirectly influence the gravitational-
wave signal via energy transfer or mode mixing with the
dominant f-mode.

Our analysis shows that at temperatures of a few MeV,
beta equilibration becomes rapid enough to significantly
affect the frequency and damping time of g-modes. In ad-
dition to examining g-modes at constant temperature, we
also computed g-modes for neutron stars with constant
entropy per baryon profiles. This approach provides a
more realistic representation of the thermal structures in
newly formed or merging neutron stars. We find that
increasing the entropy per baryon generally leads to a
decrease in the real part of the g-mode frequency, with
the effect being most pronounced for the IUFSU EOS,
where the frequency vanishes at S = 0.4 kg, due to strong
bulk viscous effects. This behavior is directly linked to
the temperature dependence of the sound speed squared
difference ciy — 2., which determines the strength of
For EOSs like QMC-

eq?
the restoring force for g-modes.
RMF3 and IOPB-I, where the real part of cﬁy — cgq re-
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mains larger than the imaginary part at relevant densi-
ties, the g-mode persists even at high entropy. However,
for the IUFSU EOS, where the imaginary part domi-
nates at all densities when the entropy per baryon reaches
S = 0.4kp, the restoring force weakens, leading to the
disappearance of the gp-mode. These results highlight
that both the g-mode frequency and its damping are
highly sensitive to the thermal profile and the EOS when
the temperature or entropy reaches the resonant peak of
the bulk viscosity.

In the future, it is important to improve on the Fermi
surface approximation of the Urca rates used in this work.
Finite-temperature effects blur the direct Urca thresh-
old, eliminating the sharp jump in the beta equilibration
rate that occurs at the threshold density [44, 48]. This
would modify the dynamic speed of sound and thus the g-
modes. In addition, a new method that consistently takes
the in-medium collisions of the decaying nucleons into ac-
count, called the “Nucleon Width Approximation” [67],
would further improve the calculation of the beta equi-
libration rate 7. On a different front, as the temper-
ature rises above a few MeV, neutrino-trapping effects
become important, and these should be taken into ac-
count. Matter at high densities is likely to include other
degrees of freedom, including muons [56, 68], pions [69-
72|, hyperons [10, 73-75], deconfined quarks [76-80], and
perhaps dark matter [81-84]. These particles have their
own reaction channels that will contribute to chemical
equilibration and will modify the bulk viscosity. Never-
theless, the dynamic sound speed introduced in this work
provides a flexible framework that can incorporate such
viscous effects in both radial and non-radial oscillation
analyses [85]. Finally, to properly study the effects of
weak interactions on g-modes in a physical context like
a core-collapse supernova or a binary NS merger, one
must incorporate realistic, time-dependent thermal and
density profiles from supernova and NS merger simula-
tions [16, 61, 86]. The thermal structure of a protoneu-
tron star evolves dynamically, with significant changes in
temperature, composition, and neutrino transport over
short timescales. Using numerical supernova profiles will
allow for a more accurate assessment of how bulk viscos-
ity affects oscillation modes in astrophysical scenarios.
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Appendix A: Thermodynamic derivatives

In this section, we rewrite the thermodynamic deriva-
tives in the main text to a basis of independent variables
{zp,nB, T} which are most convenient to calculate for a
particular EOS. Recall, again, that S = s/ng. With the
use of thermodynamic Jacobians, the derivatives can be
written as

oou| oS
o6u ] I L PN
Oy ng,S B Oy ng,T % ’
oT S
o oS
@ — @ _ or nB,Tp BnB zp, T (A2>
anB Tp,S anB zp,T @ ’
oT S
a0 _gop
@ - @ . 8xp ng,T or nB,Tp
87’LB 5,8 8’1’LB xp,T C '
(A3)
where
b oS b oS
R R - A
877,]3 me(‘)T ng,Tp 6T ng,Tp 6’/7,]3 wa’( )
g Ou| 0S| o 0S|
~ Ong zp,T Oz ng,T Oy ng,T ong zp,T’
oS oS o oS
= — — - — —_— (A
¢ Oxyp nB,T@T S oT S O0zp nB’T( 6)

The susceptibility (A1) and the compressibilities
(Egs. (A2) and (A3)) turn out to exhibit minimal tem-
perature dependence in the NS core for temperatures
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FIG. 12. Left panel: the differences between the adiabatic and
equilibrium sound speed squared ¢, —cgq around beta equilib-
rium xp, = Tpeq (nB), as a function of the baryon density for
various fixed-temperature profiles T' = [0, 3, 5, 7] MeV. Right
panel: the beta equilibration relaxation rate v as a function of
ng for fixed-temperature profiles 7" = [3, 5, 7] MeV. The dot-
ted lines follow the exact definition in Eq. (7). The solid lines
include finite-temperature effects in the beta reaction rate
Anep, but approximate the susceptibility (064/02s) |ng,s us-
ing its zero-temperature value.

T < 10 MeV. Fig. 12 illustrates the finite-temperature
effects on these thermodynamic derivatives. The left
panel shows the temperature-induced variation in the
sound speed squared difference, Cid — cgq, which de-
pends on the compressibilities. This variation is small
compared to its zero-temperature reference value (black
solid line), and is even smaller relative to the sound
speed squared themselves, particularly at high densities.
Nevertheless, the difference at lower densities may have
a more significant impact on crustal g-modes [17]. The
right panel displays the beta equilibration relaxation
rate v, which depends on the susceptibility and the net
decay rate as defined in Eq. (5). The solid lines represent
the full computation of v from its definition in Eq. (7),
whereas the dashed lines correspond to calculations that
neglect the temperature dependence of the susceptibility.
The main finite-temperature contribution to - arises
from the net decay rates rather than the susceptibility.
Therefore, in this work, we neglect the temperature
dependence of the susceptibility and compressibilities,
and retain only the finite-temperature effects in the
net decay rate. This approximation is employed in our
calculations of both f-mode and g-modes.

Appendix B: Real and imaginary parts splitting of
mode equations

To solve Egs. (21) and (22) by splitting into real and
imaginary parts, we take U = U, +1U;, V =V, +1V;



and w = w, + tw;. We also write Eq. (11) as
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where v is defined in Eq. (7). Also defining the real and
imaginary parts of N2 as
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The boundary conditions for the complex U and V cases V boundary conditions. At r = 0 we have
are simply the real and imaginary parts of the real U and
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