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Nationally representative household surveys collect geocoded data that are
vital to tackling health and other development challenges in sub-Saharan
Africa. Scholars and practitioners generally assume uniform data quality but
subnational variation of errors in household data has never been investigated
at high spatial resolution. Here, we explore within-country variation in the
quality of most recent household surveys for 35 African countries at 5x 5km
resolution and district levels. Findings show a striking heterogeneity in the
subnational distribution of sampling and measurement errors. Data quality
degrades with greater distance from settlements, and missing data as well as
imprecision of estimates add to quality problems that can result in vulnerable
remote populations receiving less than optimal services and needed resour-
ces. Our easy-to-access geospatial estimates of survey data quality highlight
the need to invest in better targeting of household surveys in remote areas.

The absence of dependable data on age, fertility, mortality, health,
wealth, education, and nutrition in many low-income countries has
been along-standing concern for scientists and practitioners of human
development'”. Lacking reliable and representative census data, public
health information, and/or birth registration systems, most African
countries rely on multi-purpose household surveys for information on
their citizen’s well-being®>. The most widely used sources of
nationally-representative data by practitioners and the research com-
munity are the Demographic and Health Surveys (DHS), Multiple
Indicator Cluster Surveys (MICS), and Living Standards Measurement
Surveys (LSMS). DHS data, the main example used in this study, have
been used in about 6000 publications since 2010 (a conservative
estimate)®.

Today, independent researchers and the DHS program routinely
use geocoded household survey data to produce high-resolution
modelled surfaces of health and development indicators’* often in
conjunction with spatial data from satellite images and other second-
ary data sources, such as data on armed conflict®® or disease

distribution data®. Other household survey programs are now fol-
lowing their lead, e.g., MICS. Since policy decisions can take place at
national or subnational levels, and the assessment of impacts is usually
pursued at district level or lower, there is an increasing demand for
small area estimates®. For example, the World Health Organization
(WHO) frequently uses estimates from the Malaria Atlas Project
(MAP)"*?2, which constructs modelled surfaces of malaria prevalence
from geocoded household survey data”. Moreover, GAVI, the Vaccine
Alliance, and the Nigerian government are making use of such high-
resolution modelled estimates to guide strategies around reaching
zero-dose children**, while the Children’s Investment Fund Founda-
tion (CIFF) are utilizing these approaches for monitoring, evaluation
and learning applications®.

The spatial dimension of policymaking critically depends on the
quality of underlying sub-national and regional data. However, the
quality of household survey data across sub-national regions cannot be
assumed to be uniform. Nutrition and public health professionals as
well as government ministers have called for fixing data gaps and
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improving data quality’”. Illness and malnutrition are defined as
quantified conditions lying outside ‘healthy’ thresholds. Thus even
modest inaccuracies, such as errors and artifacts in the measurement
of age can give a false picture of, for example, child stunting (low
height for age)**'. Robust subnational information, on the other hand,
enables health authorities to target and better fund health
interventions®.

We define high quality data as having low statistical uncertainty
and little systematic measurement bias and systematically missing
data. Statistical uncertainty is mainly determined by sampling strategy
(determining for example sample sizes) and can occur independently
of systematic measurement error and missing data. While high statis-
tical uncertainty typically implies decreasing predictive power by
widening prediction intervals, taking into account statistical uncer-
tainty is readily achieved in standard statistical frameworks for
empirical analysis, for example using stochastic error terms. Sys-
tematic measurement error and missingness are more serious threats
to the derivation of empirical conclusions. These data errors cannot be
accounted for because their magnitude and spatial distribution are
very often not known>?***7*5, The DHS program and independent
researchers have examined measurement errors and missing data in
household survey data on aggregate levels only - across countries and
across survey teams within countries®®*¢™*!, This is unsatisfying as no
quantification of spatial variation in household survey data quality
exists for a large number of countries at highly granular levels such as
the village level. As a result, even those practitioners and researchers
who work extensively with national household surveys and who are
aware of the potential for spatial variation in data quality, may not
know the precise spatial distribution and the magnitude of measure-
ment errors and missing data.

These data errors can occur despite rigorous efforts and enu-
merator training*>**. Errors may be introduced at any stage of the
household survey beginning with survey design*, during data collec-
tion or data processing®®. Existing studies point to a number of vari-
ables such as the age of respondents*®, low numeracy and literacy or
lack of birth registration®® that may be less reliable in remote areas
relative to urban areas, but we lack spatial estimates of data errors for
specific locations, which in turn adds to the already greater vulner-
ability of the so-called last-mile populations in low-income countries
(defined by The World Bank as having less than $1145 gross national
income per capita in 2023)**. Beyond the fields of health and
demography, which are the focus of this study, development and
agricultural economists have been working towards high-quality eco-
nomic and health data from low- and middle-income countries
(defined by The World Bank as having less than $4515 in gross national
income per capita in 2023), and have improved data quality through
several strategies, including by incorporating spatial and community-
level data, using GPS technology, or engaging with local communities
(Supplementary Note 1)**', Similarly, the DHS program and interna-
tional donors made significant efforts to ensure high data quality by
identifying potential sources of data errors®®*>**>° and by making
continuous improvements**¢%,

The precise spatial distribution of measurement errors and
missing data has not been quantified before at subnational level for a
large group of countries*****-%2, Not knowing the spatial variation in
these data errors is unsatisfactory, because decisions are increasingly
made locally, for example at the level of districts, and because so many
decisions are made on the assumption that local data are reliable. In
addition, researchers and other data users who do not frequently
working with household data may not be aware of, or simply ignore,
the potential for spatial variation in the quality of data with which they
are working®. Even researchers and practitioners who work exten-
sively with DHS data, and who are aware of the potential for data
errors, can improve causal inference with knowledge of the extent of
variation in data quality in a particular region. Finally, the DHS program

has highlighted the need for greater attention to spatial variation in
data quality. Their goal is to improve the performance of survey teams
working in locations prone to high data errors by providing them with,
for example, better training or more resources”.

In this paper, we provide a high-resolution geospatial analysis of
DHS data quality taken from surveys of central, eastern, western, and
southern Africa between 2006 and 2022. Among large household
surveys in Africa, the DHS program offered the most complete data
covering 35 of Africa’s 46 countries. The number of DHS survey rounds
varies across nations. In countries with more than one survey round
since 2006, the most recent survey was used (Supplementary Table 9).

From this set of household surveys, we derived three data quality
indicators which are widely used by practitioners and researchers
(Supplementary Note 2). ‘Incomplete age’ refers to the share of inter-
viewed women (15-49 years) with either the year or the month of birth
missing relative to all interviewed women. ‘Age heaping’ refers to the
proportion of reported ages ending in 5 or O of all adults between 23
and 62. This is based on Whipple’s index definition, a value above 20%
indicates age heaping. Finally, ‘flagged HAZ' refers to missing or bio-
logically implausible values for the measured heights of children
(height-for-age z-scores) according to WHO (World Health Organiza-
tion) standards.

In this work, we map predictions of data errors beyond data
points in the analyzed DHS datasets. To do this, we employ Bayesian
model-based geostatistics that combine spatially explicit data and
covariates from gridded high-resolution datasets to produce
5x5km gridded estimates of the three data quality indicators - a
level of detail that is roughly equivalent to the size of villages in rural
areas. We aggregate our estimates to districts and to national levels
using population weights. We provide an online data visualization
tool to provide easy access to our estimates for data users (https://
apps.worldpop.org/SSA/data_quality/). Next, we combine original
DHS data with freely available data on settlements and nighttime
light emissions to explore non-random distribution patterns of data
errors and chart the deterioration of DHS data quality with
increasing distance to settlements. Finally, we contrast the spatial
distribution of our predictions of data errors with the statistical
uncertainties associated with related public health indicators in the
DHS data, which may collectively threaten the quality of insights
and decisions that can be drawn from DHS data.

Results

Subnational variability in data quality

Predictions of data quality varied substantially across 5x5km cell
levels and across district levels throughout the 35 included African
countries. Within-country variation was apparent with all three data
quality indicators for all 35 included countries (Fig. 1) and it was higher
than what would be the product of chance. Our data quality predic-
tions were obtained from a geostatistical model trained on age heap-
ing, incomplete age and flagged HAZ derived from DHS data (see
Methods for details). We provide a description of these three data
quality indicators in the Supplementary Note 2. 5 x 5km cell levels of
geographical resolution are commonly used in studies using DHS data
and by the DHS program®01131464,

The Moran’s | statistic, a measure of spatial autocorrelation that
we computed using raw DHS data at the district level, was recognizable
and varied in value across countries and across our three indicators.
Spatial autocorrelation at the district level was more identifiable for
incomplete information on women'’s age while the subnational varia-
tion in age heaping and flagged HAZ values appeared closer to random
(Supplementary Tables 10-12).

Within-country variation in predictions of data quality was of
larger magnitude in countries with lower average data quality (Sup-
plementary Fig. 2). For example, our estimates of age heaping in
Nigeria (national mean 39.8%) ranged from 62.1% (standard deviation-
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Fig. 1| Distribution of measurement errors in Demographic and Health Surveys
(DHS) data 2009-2022. a-i Proportion of reported ages ending in 5 or O of all
adults between 23 and 62 (‘age heaping’) at (a) 5x 5 km grid-cell level; (b) district
level (admin-2); (c) country level. Share of interviewed women (15-49 years) with
either the year or month of birth missing relative to all interviewed women
(incomplete age’) at (d) 5 x 5 km grid-cell level; (e) district level (admin-2); (f)
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(admin-2); (i) country level. Countries in dark grey are not in the sample. Grid cells
with fewer than 10 people per 1 x 1 km and classified as barren or sparsely vegetated
or grid cells with population data not available are colored light grey®”+°,

sd, 2.2%) in Danmusa district in Katsina state in northwest Nigeria to
25.4% (sd 5.6%) in Agege in Lagos State, where the terminal digit pre-
ference for O or 5 was just 5.4 percentage points above the expected
natural occurrence of 20%. Estimates of the share of incomplete
information on women'’s age in Chad (national mean 67.3%) ranged
from 91.6% (sd 2.7%) in Loug Chari in the south of Chad to only 8.1% (sd
2.4%) in Dar Tama, on the eastern border with Sudan. Flagged HAZ
values in Madagascar (national mean 7.58%) ranged from 14.8% (sd
1.9%) in Bongolava to 4.5% (sd 0.95%) in Haute Matsiatra, two regions in
the center of the island. These estimates demonstrate that analyzing

systematic measurement errors at the country-level alone masks
important local and regional patterns

There was little to moderately positive correlation between the
three data quality indicators. The correlation coefficients between
pairs of indicators ranged from 0.35 between age heaping and
incomplete age to 0.71 between the two age-related indicators, age
heaping and flagged HAZ (Supplementary Fig. 3). Data quality chal-
lenges are not uniform across the indicators we employed, and dif-
ferent correlation coefficients reflected different underlying potentials
for systematic measurement error and missing data.

Nature Communications | (2025)16:3771


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-58776-5

-

00

AO - MR AO - MR
BF -~ MW BF MW
06 Bl - MZ Bl -~ MZ
BJ -~ NA BJ -~ NA
CD -- NE CD -- NE
CG -- NG CG -- NG
cl RwW 0.75 Cl RwW

o
@

% of heaped ages
2
o2A
B

% of women's ages with incomplete information
o
3

o

0
m
ul
1%
z

% of implausible HAZ measurements
=
A

00 200 300

10 50 10
Distance to closest DN15 light pixel in km

Fig. 2 | Predicted data quality by distance to closest Digital Number (DN) 15
nighttime light emitting source in km (logarithmic scale). a-c Predictions
obtained from regional binomial logistic regressions on distance (in km) to closest
DN 15 light pixel of (a) share of reported ages ending in 5 or O of all adults between
23 and 62 (‘age heaping’), (b) share of interviewed women (15-49 years) with either
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the year or month of birth reported missing ('incomplete age’), and (c) implausible
or missing values for the attained height-for-age z-scores (HAZ) of children under
five according to World Health Organization (WHO) standards ('flagged HAZ). All
models include country fixed effects.

The only moderate and low correlation between the three data
quality indicators reflected a distinctive subnational spatial pattern for
eachindicator. This suggests varying degrees of difficulty encountered
in collecting the different types of measurements across localities and
across DHS data collection teams®”. For example, incomplete age
records reported from Wajir West (53.3%, sd 5.9%) in northern Kenya
were considerably worse than the national mean of 13.4% while in the
same district flagged HAZ values (4.0%, sd 0.94%) were closer to the
Kenyan national mean of 2.2%.

Deteriorating data quality in remote areas

To explore the potential of a collection bias in the spatial distribution
of measurement and missing data, we combined the prevalence of
errors by survey location in the raw DHS household data with distance
to the nearest settlements. We conducted the analysis for each of the
three data quality indicators to determine the extent to which they
were subject to a remoteness penalty, that is, an increase in the pre-
valence of measurement errors, artifacts, and missingness with dis-
tance to settlements. Remoteness captures a mix of potential factors
such as respondent literacy and numeracy, or more challenging con-
ditions for survey collection teams. We did not intend to study these
underlying causes. Our aim was to explore the magnitude of this
problem and whether it affected the three data quality indicators to a
similar extent. In terms of further empirical analysis, the data chal-
lenges systematically increasing with remoteness could threaten the
insights drawn from the data in two ways. In the best case, measure-
ment errors and missingness are random, leading to more noisy esti-
mates; in the worst case, errors and missingness are systematic,
leading to systematic bias in parameter estimates. Data users will need
to assess on a case-by-case basis which of these two threats is more
relevant to their study based on geographic location, point in time, and
variables of interest.

The predictions underlying Fig. 2 were based on nighttime light
(NTL) emissions of a specific luminosity (Digital Number, DN 15), which
lies above the threshold of the luminosity of public streetlights indi-
cating a settlement with sufficient infrastructure for survey teams to
restock equipment and rest®*’. However, the differences in data
quality were similarly apparent with lower and brighter light emissions
threshold levels (Supplementary Figs. 5, 6). The deterioration in data
quality was also discernible with distance to settlements using two
alternative high-resolution settlement data sets built from daylight and
radar satellite imagery and electoral records. These alternative data
sets include smaller and unlit settlements with shorter geographical
distances between them, which made this approach less informative
relative to using NTL emissions but displayed similar trends across all

three data quality indicators (Supplementary Figs. 7, 8)°®. Finally, we
found little evidence that the observed bias was based on one-time
effects for the majority of the included countries with multiple survey
rounds (Supplementary Fig. 9-11). Data from countries with more than
one survey round since 2006 indicate that the spatial bias is a long-
term problem for the large majority of the 24 countries with multiple
survey rounds.

In the 35 included African countries, increasing distance from
electrified settlements emitting NTL of DN 15 was associated with
decreasing data quality across all regions. The differences in quality were
relatively worse across West Africa, and relatively better in Central and
Southern Africa (Supplementary Fig. 4). The bias affected all three data
quality indicators. The bias was relatively stronger with age heaping
(Fig. 2a) and incomplete age records of women (Fig. 2b). It is relatively
less apparent for flagged HAZ values (Fig. 2c) which was consistent with
cross-sectional studies specifically examining stunting*. For age heaping
and incomplete age of women in particular, this association grew
stronger within countries of medium to high overall levels of measure-
ment errors (Supplementary Figs. 12-14). For example, the estimated
share of mothers (15-49 years) with either the year or month of their
infant’s birth missing (‘incomplete age’) in Togo (national mean 22.3%)
was 20.4% at 50 km distance, increasing to 24.8% at 100 km and was
35.3% at 200 km. The estimated proportion of adult ages ending in 5 or O
(‘age heaping’) increased within Kenya (national mean 26.7%) from 26.2%
at 50 km from the nearest town or nighttime light emitting area to 26.7%
at 100 km and 27.9% at 200 km distance. The differences in data quality
were smallest within countries that had overall higher quality DHS data.
For example, age heaping within South Africa (national mean 20.2%) was
at 20.0% at 50 km distance to the nearest point of nighttime light of DN
15 value. It was 20.3% at 100 km distance and 21.0% at 200 km.

Data errors and sampling uncertainty

Figure 3 shows the spatial distribution of two of our estimates for data
quality: ‘incomplete age’ and ‘flagged HAZ’ (in shades of blue), and it
pairs them with the standard deviations of predicted estimates of
related public health indicators: ‘contraceptive use’ and ‘stunted chil-
dren’ (in shades of green). These indicators are related because con-
traceptive use is an important health indicator for women, as it relates
to their overall health and ability to achieve their desired fertility. In
addition, maternal health status is a major determinant of stunting.
Standard deviations indicate statistical uncertainty, for example
regarding the precision of estimates for the prevalence of contra-
ceptive use among sexually active women (‘contraceptive use’) or
stunting prevalence among children (‘stunted children’). High stan-
dard deviations are mainly the result of small sample sizes at the survey
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Fig. 3 | Distribution of measurement errors and uncertainty of predicted esti-
mates of public health indicators in Demographic and Health Surveys (DHS)
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cluster level or from a distribution of survey locations that does not
take into account geostatistical design considerations™. High uncer-
tainties may even be consistent with the DHS sampling strategy, for
example, to make economical use of resources. In terms of data
quality, high uncertainties arising from small samples can for example
reduce the predictive power of fitted models, but they are generally
considered a lesser threat compared to systematic measurement bias
and systematically missing data because they are typically directly
accounted for in statistical modelling frameworks'>**”"". With only
information on statistical uncertainty - i.e., without spatial quantifica-
tions of data errors such as those provided by our study - users of DHS
data may be inclined to limit their assessment of data quality to easy-
to-measure statistical imprecision and neglect the threat of measure-
ment errors because they lack subnational information on the extent
to which these two types of data problems overlap in the geographic
area of their interest. By pairing for example, the sampling uncertainty
of ‘stunted children” with our estimates of missing or biologically
implausible data (‘flagged HAZ’), we inform DHS data users in which
localities these two types of data problems overlap. Our findings can
also help inform the DHS program where resources could be allocated
to maximize data quality. This includes for example training enu-
merators, improving tools and procedures, or considering a larger
sample size or new sampling strategy.

We estimated correlation coefficients at the district level (Sup-
plementary Fig. 15). Missing data for women’s age was moderately
negatively correlated with the standard deviation of the estimated
share of contraception users (p=-0.402, p<0.0001). Flagged HAZ
values were slightly negatively correlated with the standard deviation
of the estimated prevalence of stunting (p=-0.109, p <0.0001).

Some regions were challenged with either high standard devia-
tions of both ‘contraceptive use’ and ‘stunting’ (for example in Nami-
bia, Nigeria, parts of the Democratic Republic of Congo, Malawi, parts
of South Africa and parts of Tanzania) or with high estimates of both
‘incomplete age’ and ‘flagged HAZ’ values (for example in Angola, parts
of Democratic Republic of the Congo, parts of Ethiopia, parts of Kenya,

and Chad). On the country level, measurement errors paired with large
sampling uncertainty were widely present only in Madagascar
(national mean ‘incomplete age’ 16.3%, national mean ‘flagged HAZ’'
7.6%) and in Niger (national mean ‘incomplete age’ 84.6%, national
mean ‘flagged HAZ' 13.9%). On the local level, single districts were
challenged by both high error estimates and large standard deviations
of estimates. N'gauma district in north-western Mozambique reported
estimates for ‘incomplete age’ of 21.5% and a standard deviation of
‘contraceptive use’ at 2.7% (mean 14.6%). In the same district, the
estimate of ‘flagged HAZ' was 6.6% and the standard deviation of
‘stunted children’ was 3.5% (mean 45.6%). The Mozambiquan national
means of ‘incomplete age’ and ‘flagged HAZ' were 6.7% and 5.8%,
respectively. No single country exhibited low rates of errors and high
statistical certainty nationwide. However, districts with high data
quality appeared in clusters across the subcontinent. One example was
several districts in Uige Province in Northwest Angola (national mean
of ‘incomplete age’ 4.4%), including Songo (incomplete age’ 0.5%,
standard deviation of ‘contraceptive use’ 1.63), Buengas (‘incomplete
age’ 0.6%, standard deviation of ‘contraceptive use’ 1.3), and Damba
(‘incomplete age’ 0.6%, standard deviation of ‘contraceptive use’ 1.4).
Similarly, near error-free HAZ values and high statistical certainty
concentrated in districts surrounding Thiés such as Mbour (‘flagged
HAZ’ 2.8%, standard deviation of ‘stunted children’ 1.02% (mean 15.3%)
in western Senegal (national mean of ‘flagged HAZ' 3.4%).

Discussion

This study provides a quantification of household survey data quality
at a 5 x5 km spatial resolution in 35 countries in Africa for household
surveys conducted between 2006 and 2022. Geocoded household
survey data are increasingly used by researchers and practitioners.
They also serve to track the achievement of a wide range of the United
Nations (UN) development goals™. Identifying subnational localities
with poor data quality could enable household survey data users to
leverage additional tools and data when operating in these regions or
when making causal inferences related to them. It also contributes to
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ongoing efforts by the DHS program to improve data quality in these
areas, such as reducing non-response for example by providing local
survey teams with better training or more resources”.

Our estimates highlighted a striking variation in data quality at
district and local levels, which so far have been masked in cross-country
or cross-survey studies. We also found that the prevalence of data errors
by survey location was systematically increasing with distance from
settlements, resulting in worse data quality for populations that live in
remote rural areas. Systematically distributed measurement errors have
potentially major negative implications for research, particularly if the
direction and the magnitude of the bias are unknown. The spatial bias
did not substantially change between surveys for most of the included
countries with multiple surveys, which indicates a potentially persistent
problem beyond potential one-off effects of single survey rounds. Fig-
ure 3 identifies geographical areas where high statistical uncertainty
overlaps with systematic measurement and missing data, which together
threaten the quality of the insights that can be drawn from household
survey data. Across and within the 35 African countries, we found little
correlation between standard deviations and systematic data errors,
suggesting that these follow relatively independent spatial patterns that
are obscured by looking at national measures alone.

The DHS program is considered to be a gold standard among
periodic household surveys and is widely trusted. Survey experts or
field enumerators who have studied measurement errors in DHS data
have created awareness for the potential of systematic measurement
errors and missing data using cross-country and cross-survey analysis
to assess the variation in measurement errors, their magnitude, as well
as potential factors and consequences®?°*%4 However, the spatial
dimension of systematic measurement errors at fine-grained local
levels, where decisions and planning take place, has been unknown.
There is alarge community of data users who rely on household survey
data for conducting research or planning health interventions, but
who lack the specific knowledge of experts involved in enumeration.
Unaware of the magnitude of this problem, scientists or funding
agencies alike have so far assumed either sufficiently high survey data
quality or a relatively innocuous, random distribution of errors. High-
resolution mapping studies may or may not statistically account for
randomly distributed measurement errors. Accounting for non-
randomly distributed errors that this study reports will be difficult
without additional data, because the direction and the magnitude of
the biases are often unknowable”. For applied researchers in parti-
cular, the main implication is that data quality needs to be considered
and addressed when analyzing data from remote populations.

Health and development efforts are typically implemented on
community and district levels. Our estimates highlight districts and
regions across Africa in which survey-based anthropometric and
demographic information may be too uncertain or biased to support
inference, conduct policymaking or inform intervention’. Even
though researchers and funding bodies have a professional obligation
to effectively communicate the uncertainty around estimates, data
errors often fail to catch the attention of policymakers, government
agents or fellow researchers. Mapping estimates of measurement
errors can improve the awareness of these users in their work with
underlying anthropometric, health, and demographic data. Identifying
data quality issues on national levels alone may not be adequate,
because data quality varies by location (Fig. 2) as do standard devia-
tions, and there is little apparent correlation between them (Fig. 3).

Our findings corroborate and expand the details needed to
understand data quality challenges of the “last mile” problem in global
public health and development more broadly”. Many researchers
work with these data without knowing how large the variation in data
quality really is, and how data quality issues can include uncertainty as
well as non-random missing data which varies by remoteness. Our
analysis is based on a twofold empirical approach. For one, we directly
document the increase in the prevalence of errors for sampled areas in

more remote locations using raw DHS data. Because the remoteness
penalty varies across countries and across DHS variables, with HAZ
being the least affected, DHS data users studying remote populations
are advised to assess, on a case-by-case basis, the potential for sys-
tematic missingness and measurement error to affect the conclusions
they wish to draw form the data. For another, we predict data errors for
the non-sampled locations to better illustrate the extent of data quality
challenges and to compare statistical uncertainty with low data quality
which are two distinct problems. With better access to information
about data quality, researchers will be better equipped to use the data
and address any limitations of the data if they can do so, or else at least
adjust their data interpretations as needed.

Our modeling framework is, like any statistical model, an abstrac-
tion of reality and subject to several limiting simplifications. Spatial data
gaps between DHS survey locations may introduce varying degrees of
uncertainty in our estimates. These considerations also apply - to alesser
extent - to the aggregated analyses and are relevant to any geolocated
household-survey based data set. Also, survey locations are randomly
displaced in space for data confidentiality reasons, further increasing the
level of spatial uncertainty. However, the covariate layers we use to
extract external information for each DHS cluster do not vary sub-
stantially at this high resolution and we expect that our overall findings
will remain essentially unchanged. Another potentially limiting factor is
the volatile and unpredictable nature of armed conflict and local unrest,
population movements, and the impacts of local political instability on
the work of survey teams. Conflicts limit the reliability of coverage from
household-based surveys due to an inability to sample in unsafe and
insecure areas”", Further limitations include that we choose one model
specification out of many, which holds potential influence on the pre-
dictions. Our estimates include uncertainty which we do not show, as the
maps are merely point estimates.

Our intent is to illustrate the magnitude of this problem, not dis-
cuss underlying causes, even though our measures, such as nighttime
light emissions, include an economic and an accessibility dimension.
Following recent studies that have revealed considerable hetero-
geneity in important health and nutrition indicators of human well-
being at the subnational level, which had previously been masked by
country-wide measures'®’*”’, we hope to motivate more research into
the causes of the subnational heterogeneity in data quality, including
low birth registration, low access to education*’, migration’®, or high
levels of poverty”. Remote communities, which are more likely to
suffer from these problems, may also be more difficult for enumerators
to work in. Local languages may differ from those native to enumera-
tors or travel to remote communities is relatively more demanding and
resource intensive. Error type-specific interventions and more research
will be needed to sufficiently address these concerns. In practice, the
drawbacks of reforms in survey design and fieldwork practices such as
increased financial burden will need to be weighed against the benefits
on a case-by-case basis. Given that many health practitioners and
governments use DHS data directly to inform policy and interventions,
improving understanding of data quality within local contexts is
essential for human development. Our estimates of the magnitudes of
the errors will allow governments and agencies to plan for the next
rounds of data collection with better targeted resources.

Methods

DHS data

We compiled a database of publicly available geocoded DHS data for
35 African countries. DHS data are best suited for the scope of the
study, because they are publicly available, geocoded, and more com-
prehensive in time and space than data from other large survey pro-
grams such as MICS or LSMS*%®., To demonstrate the deteriorating
data quality in remote areas we directly calculated the prevalence of
data errors in the most recent DHS survey round to avoid reporting a
purely artificial, mechanical relationship arising from regressing
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predictions generated by a geostatistical model, which are a function
of distance to nightlight, on distance to nightlight. To illustrate within-
country variation in data quality as well as the relationship between
data errors and sampling uncertainty, we moved beyond the DHS
survey locations and employed Bayesian model-based geostatistics,
using covariates from gridded high-resolution datasets to predict data
quality beyond surveyed areas. The geostatistical model (see below)
produced 5 x 5 km gridded estimates (roughly equivalent to villages in
rural areas) of three widely used data quality indicators, which we
aggregated to district (‘admin-2’) levels and national levels using
population weights. The number of DHS survey rounds varied across
African countries. In 24 countries with more than one survey round
since 2006, we used the most recent survey (Supplementary Table 10).
We extracted relevant variables from the DHS children file, from the
individual women'’s file and the household roster file. In DHS data, the
individual and household survey questionnaires are linked to a survey
location (termed ‘cluster’ or ‘primary sampling unit’) that represents a
set of neighboring households or a village structure. The data we
derived from the most recent surveys came from 20,077 DHS clusters.
For most clusters, geolocation information in the form of GPS coor-
dinates were available. For the data from the Republic of the Congo
(equivalent to 1.6% of the sample size), no geoinformation were
available. To impute likely locations for these primary sampling units,
we sampled 1000 candidate locations for each ‘latent’ survey location,
based on population density rasters for each sub-national unit. The
resulting candidate positions were then clustered using a k-means
procedure and the centroids of the resulting clusters were used as
pseudo-location. For each of these pseudo-locations, the sub-national
average value of the indicator of interest was assigned. This procedure
closely followed the imputation strategy that has been used for similar

problems in recent literature'.

Covariate data

The modeling framework includes the following geospatial covariates
which we constructed from freely available gridded datasets: popula-
tion density (1), malaria incidence (2), terrain ruggedness (3), nightlight
intensity (NTL) and settlement data (4). We believe a larger set of
covariates would add no substantial explanatory power or change the
argument of the study. For all covariates, data from the closest grid cell
and matching the respective survey year were used for estimation.
Where these were unavailable, data from the year closest to the
respective survey year were included in the modeling framework. For
prediction, covariates closest to the year 2013 were used. Prior to
introducing the variables in our statistical modeling framework, stan-
dard temporal and spatial pre-processing steps have been conducted
(Supplementary Tables 1 and 2).

Spatial processing. Both malaria incidence and population density
are available at a resolution finer than the resolution of the nightlight
data. To align the resolution covariate rasters, the input covariates
‘ruggedness’, ‘malaria incidence’ and ‘population density’ were
resampled from their native resolution to match the native resolution
of the nightlight intensity rasters (roughly 5 x 5 km at the equator line).
Bilinear interpolation was used as resampling technique in all cases.

Administrative boundaries: We used GADM shape files in version
4.1 to define the national and sub-national boundaries used for spatial
analysis®’. In general, we used the smallest subdivisions available,
which were equivalent to admin-2 for most countries and to admin-1
for Lesotho.

Gridded population density: We obtained the gridded data on
population density from the Gridded Population of the World (GPW)
database, version 4%, The data are available in steps of five years. In
general, we selected the year closest to the relevant year (e.g., survey
year or year of predictions) for the analysis.

Malaria Incidence: We used a standard data set on malaria inci-
dence, obtained from the Malaria Atlas Project (MAP)". Specifically, we

used data on the incidence of Plasmodium falciparum. We included
the closest available year to the respective survey round in the analysis.
The year 2013 was used for predictions.

Ruggedness: Terrain ruggedness (3) was extracted from a data set
assembled and collected by Nathan Nunn and Diego Puga in 2012. The
raw data are available from the personal website of Diego Puga®. The
data come in form of a 30 arc-second grid covering the globe. We
assumed that terrain ruggedness is time-invariant.

Nighttime light emissions: Satellite images recording nighttime
light (NTL) emissions are frequently used to estimate economic
activity". We used the temporally NTL dataset generated by Li, Zhou,
Zhao & Zhao (2020) which harmonizes inter-calibrated NTL data from
the Defense Meteorological Satellite Program Defense Operational
Line Scanner (DMSP-OLS) and simulated DMSP-OLS like NTL obser-
vations from the newer Visible Infrared Imaging Radiometer (VIIRS)
data®. DMSP-OLS data are composite images in which each 30 arc
second pixel (about 1km at the equator) gives the annual average
brightness level in units of digital numbers (DN) ranging from O (no
light) to 63 (maximum reported light). For model estimation, we used
the corrected DMSP NTL data covering observations from 1992 to 2013
across different satellites (F10, F12, F14, F15, F16, and F18), falling in the
closest year that was available to the respective year closest to each
survey year. For prediction, we used the DMSP NTL data for the year
2013. The improved data provided by Li and co-authors are temporally
consistent correcting for varied atmospheric conditions, satellite shift
or sensor degradation. In the analysis our ‘distance to nightlight’
variable measures the distance from the nearest NTL emissions of DN
15. We built binomial regression models with logistic link, regressing
the respective data quality indicators computed from raw DHS data on
distance to nightlight and fixed effects. We used raw DHS data to avoid
reporting a purely artificial, mechanical relationship arising from
regressing the predictions of data quality generated by a geostatistical
model. Across 35 African countries, the average distance to the nearest
settlement emitting NTL of DN 15 or higher was 64.8 km and 90% of
clusters were located within 163.1km from a settlement of DN 15 or
higher. Thresholds delineating rural from urban areas vary across
space and time®. Large rural settlements may remain dark on NTL
maps for lack of access to electricity®®. NTL emissions of DN 15, our
main threshold, lie well above the lowest identified NTL thresholds of
about DN 5 emitted from villages in Senegal and Mali with more than
40 streetlights®’. DN 15 is below DN 20 assumed for urban, built
environments such as in smaller cities®. In line with this literature, we
concluded that in most of sub-Saharan Africa thresholds above DN 15
very likely include settlements with public streetlights and electrified
buildings indicating a minimum degree of urban infrastructure and
economic activity®.

Settlement data: We replaced NTL emissions with other measures
of human settlements to see if our findings remained robust. The bias
in the distribution of the errors remained apparent with auxiliary a)
high-resolution settlement data and b) data on urban African
agglomerations. Satellite-based high-resolution settlement data were
taken from Marconcini et al.?®, These data do not distinguish in the
geographic extension of settlements and include tiny hamlets and
suburbs. The average distance to the nearest settlement was 2.5 km.
90% of clusters were located within 5.1km from a settlement. The
deterioration of data quality was apparent in most sub-Saharan African
countries even for these short distances. In contrast, Africapolis data
collect larger urban agglomerations of at least 10,000 inhabitants®’.
The average distance to the nearest urban agglomeration of at least
10,000 inhabitants was 61.6 km. 90% of clusters were located within a
distance of 167.1km. Data from the Africapolis dataset are partly
constructed from census data or population records which may be
outdated or of varying reliability.

Covariate analysis: All covariates were examined for multi-
collinearity in a non-spatial modelling framework for each indicator.
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We calculated the variance inflation factor (VIF) for each covariate in
each case and concluded that there was no evidence of multi-
collinearity when the VIF value is <4.0. This was done for each mod-
elling region, namely Central Africa (CA), East Africa (EA), Southern
Africa (SA) and West Africa (WA). Where covariate information was
missing at the cluster and grid level, we imputed using kriging inter-
polation based on covariate information from nearby locations. This
was done for Lesotho, for which malaria prevalence data are not
available. Both cluster and grid level data for this country were impu-
ted using cluster level data from neighboring countries.

Geostatistical model

Each of our three data quality indicators was modelled in each of the
four geographic regions, and the outputs of the regional models were
combined to form a continuous map for each indicator. We describe
each indicator in detail in the Supplementary Note 2. Countries were
assigned to one of the four regions (Supplementary Fig. 16). This sped
up computation and leverages regional relationships between the
indicators and the geospatial covariates. Our INLA-SPDE approach,
which we explain in the exploratory data analysis, requires the speci-
fication of a fine triangulation mesh to approximate the spatial random
effect. An example of a spherical mesh for West Africa is shown in
Supplementary Fig. 1.

Exploratory data analysis

To examine the relationships between the covariates and each of the
indicators, we used the empirical logit transformation of the indicators
given by Eq. (1):

fe Y(si) +05 .
y(Si)—log<W),l—l, ..., n, @)

where y(s;) denotes the number of individuals possessing the attribute
being modelled at spatial location s; (represented using the longitude
and latitude coordinates) and m(s;) is the number of individuals sampled
from that location. For example, for ‘incomplete age’, y(s;) is the number
of individuals with missing age out of m(s;) individuals sampled from
location s;. To improve the linear associations between the covariates and
the logit-transformed indicators as is assumed in a binomial regression
context, we log-transform the covariates, considering that these have
heavily skewed distributions. We fit non-spatial binomial regression
models and compute the Variance Inflation Factor (VIF) to check for
(multi)collinearity®. A VIF value greater than 4.0 is indicative of the
presence of (multi)collinearity among the covariates. Also, using the
residuals from the non-spatial models, we calculate the empirical
variograms of the indicators to check for the presence of residual spatial
correlation. Assuming the presence of considerable spatial correlation in
the residuals, we specified a spatial model for the analysis, described in
the next section. All the covariates were standardized to have a mean of
zero and variance of one prior to model-fitting.

Geostatistical model, model-fitting and prediction

To predict the data quality indicators at 5x 5 km resolution and the
district level, we fitted a Bayesian geostatistical model with a binomial
likelihood. Using similar notation as before, the first level of the model
can be expressed as Eq. (2):

Y (s;)|m(s;) ~ Binomial(m(s;), p(s;)) )
where p(s;) is the underlying true proportion of individuals possessing

the attribute being modelled, e.g., incomplete age, at location s;. We
model p(s;) using the logistic regression model expressed as Eq. (3):

logit(p(s;)) = X(8;)" B+ w(s;) +€(s;) ©)

where X(s;) is a vector of covariate data associated with location s;, B
are the corresponding regression coefficients, e(s;) is an independent
and identically distributed (iid) Gaussian random effect with variance
o used to model non-spatial residual variation, and w(s;) is a Gaussian
spatial random effect used to capture residual spatial correlation in the
model; i.e. 0= (w(sy), ..., w(s,)) ~ N(O, £,). X, is assumed to follow
the Matérn covariance function® given by

2
32 (5081) = 3y (IS = s K, (Kl = 531 “)

[

where || -|| denotes the distance between cluster locations s; and s;, 0°
is the marginal variance of the spatial process, k is a scaling parameter
related to the range r(r= @) - the distance at which spatial correla-
tion is close to 0.1, and K, is the modified Bessel function of the second
kind and order v> 0. Further, for identifiability reasons, we set v=1%.
We fit model (1) for each region (Supplementary Fig. 16). A Bayesian
approach is adopted for the analysis, which is implemented using the
integrated nested Laplace approximation - stochastic partial differ-
ential equation (INLA-SPDE) approach®?°. To complete the model
specification, we place a non-informative N(0,10°I) prior on the
regression coefficients, . A penalized complexity (PC) prior intro-
duced in Simpson et al. 2017 is set on g, such that p(o, > 3) = 0.01°"°%,
Similarly, following Fuglstad et al. 2018, a joint PC prior is placed on the
covariance parameters of the spatial random effect, w”. These are:
p(r<ro)=0.01and p(o>3) = 0.01, with ro chosen to be 5% of the size of
the region. The SPDE approach involves a triangulation of the spatial
domain to approximate w. A spherical mesh was constructed for this
approximation using the boundary points and the data locations
falling within each region. The maximum triangle edge length is set to
15 km in the inner mesh and 100 km (50 km in Southern Africa) in the
outer mesh, with an offset of 500 km in each case. With the spherical
mesh, the distance matrix needed to fit the Matérn covariance function
is calculated as the great circle distance along the surface of the Earth.
To implement this in practice, the data locations and boundary points
for each region are first converted to three-dimensional coordinates
on the unit sphere. These are then used to construct a mesh on a
spherical manifold, $?, on which the SPDE is defined. From each of the
fitted models, we generate 1000 samples from the posterior distribu-
tions of the parameters of the model, as well as from the posterior
predictive distributions of the indicators for each of the prediction
locations, i.e., the 5 x 5-km grid cells. The latter are then used to
calculate the district level estimates as population-weighted averages
taken over all the grid cells falling within each district.

Model validation

To assess the performance of the fitted models for out-of-sample
prediction, we adopted k-fold cross-validation, setting k=10. The
cross-validation folds were created as random splits of all the data
locations falling within each region. The following model evaluation
metrics were computed using the observed (p(s;)) and predicted
values (p(s;)) of the indicators (on the probability scale) fori=1, ..., m
validation locations and averaged over the 10 subsets:

m m

Percentage bias (%Bias=100*» " (p(s;) — p(s))/ >_(p(si)) (5
-1

i=1 i

root mean square error (RMSE = \/ Zi(i)(si) —p(s)?/m)  (6)

mean absolute error (MAE = Zi\ﬁ(si) —p(s;)l/m) @)
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and the Pearson correlation coefficient. The closer the values of % Bias,
RMSE and MAE are to zero, the better the predictions. Correlation
values close to one indicate better predictive ability.

We found no substantial non-linear associations between the
covariates and the indicators in each region (Supplementary Fig. 17 for
‘age heaping”). There was also no evidence of (multi)collinearity in the
data as the VIF values of the covariates are estimated below 4.0 in each
case. For all the indicators, we found evidence of significant residual
spatial correlation in the non-spatial regression models fitted using all
four covariates (Supplementary Fig. 18), justifying the use of geosta-
tistical models for prediction.

Predictive performance: Our primary goal was to provide pre-
dictions of data quality indicators and associated uncertainties across
sub-Sahara Africa at a high resolution. This means that we focused on
the predictive performance of the fitted models rather than causal
interpretability. Based on the correlations between observed and
predicted values (Supplementary Table 3) the best predictive perfor-
mance was observed in Central Africa, where the estimated correla-
tions were greater than 0.58 for all the indicators (except ‘flagged
HAZ’) and the worst predictive performance was observed in Southern
Africa (SA). Other validation metrics indicate that the fitted models
produced reasonably accurate predictions. The RMSE values were
<0.18 in most cases while the MAE were <0.15 in most cases. The
maximum RMSE was 0.24 (‘stunting prevalence’ - SA and ‘incomplete
age’ - WA), the maximum MAE was 0.20 (‘stunting prevalence’; SA) and
the maximum % Bias (in absolute value) was 2.97 (‘stunting
prevalence’; SA).

Interpretation of Estimated Parameters: The covariates were more
frequently significant predictors of ‘incomplete age’, ‘stunting pre-
valence’ and ‘flagged HAZ', compared to other indicators and were
hence most informative for these indicators (Supplementary
Tables 4-8). In terms of the relative magnitudes of the estimated
regression coefficients, no covariate uniformly has the largest coefficient
(in absolute value) in all the regions for any of the indicators. We note
that while most of the estimated relationships between the covariates
and the outcome indicators are intuitively in the expected direction,
others are not. There are a number of reasons for this, including unde-
tected collinearity or measurement error in the covariates. However, as
noted earlier, this is not a concern as this study focuses on prediction. In
all cases the estimates of the spatial range (7), the spatial variance )
and the iid error variance (6?) were all significant, confirming the con-
tributions of the spatial term ® and the non-spatial errors
€(sy), ..., €(s,) to explaining residual variation in the fitted models.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The findings of this study are supported by DHS datasets that are
publicly available online at https://dhsprogram.com/. A detailed
description of the selected DHS datasets and completed DHS rounds
per country can be found in Supplementary Table 9. Other referenced
data used for covariates are taken from freely available gridded data-
sets. (1) The Gridded Population of the World, Version 4 (GPWv4):
Population Count. https://doi.org/10.7927/H4X63JVC. (2) The Malaria
Atlas Project (MAP) https://data.malariaatlas.org/. (3) Terrain rugged-
ness was extracted from a data set assembled and collected by Nathan
Nunn and Diego Puga in 2012 https://diegopuga.org/data/rugged/. (4)
The nighttime light emissions dataset was generated by Li, Zhou, Zhao
& Zhao https://doi.org/10.6084/m9.figshare.9828827.v2. (5) Settle-
ments in the study were delineated by using both the satellite-based
high-resolution settlement data from Marconcini et al. https://doi.org/
10.6084/m9.figshare.c.4712852 and the Africapolis dataset at https://

africapolis.org/en/data. The primary generated in this study and the
data to replicate all findings are available at https://data.worldpop.org/
repo/prj/dhs/SSA/data_quality.zip.

Code availability

All computer code used in the analyses is available at https://doi.org/
10.5281/zenodo.14892010. All maps and figures in the manuscript were
generated by the authors using R v. 4.1.1 and ArcGIS Desktop v10.6.
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