Euclid preparation. LXVIII. Extracting physical parameters from galaxies with machine learning
Euclid preparation. LXVIII. Extracting physical parameters from galaxies with machine learning
The Euclid mission is generating a vast amount of imaging data in four broadband filters at a high angular resolution. This data will allow for the detailed study of mass, metallicity, and stellar populations across galaxies that will constrain their formation and evolutionary pathways. Transforming the Euclid imaging for large samples of galaxies into maps of physical parameters in an efficient and reliable manner is an outstanding challenge. Here, we investigate the power and reliability of machine learning techniques to extract the distribution of physical parameters within well-resolved galaxies. We focus on estimating stellar mass surface density, mass-averaged stellar metallicity, and age. We generated noise-free synthetic high-resolution (100 pc × 100 pc) imaging data in the Euclid photometric bands for a set of 1154 galaxies from the TNG50 cosmological simulation. The images were generated with the SKIRT radiative transfer code, taking into account the complex 3D distribution of stellar populations and interstellar dust attenuation. We used a machine learning framework to map the idealised mock observational data to the physical parameters on a pixel-by-pixel basis. We find that stellar mass surface density can be accurately recovered with a ≤0.130 dex scatter. Conversely, stellar metallicity and age estimates are, as expected, less robust, but they still contain significant information that originates from underlying correlations at a sub-kiloparsec scales between stellar mass surface density and stellar population properties. As a corollary, we show that TNG50 follows a spatially resolved mass-metallicity relation that is consistent with observations. Due to its relatively low computational and time requirements, which has a time-frame of minutes without dedicated high performance computing infrastructure once it has been trained, our method allows for fast and robust estimates of the stellar mass surface density distributions of nearby galaxies from four-filter Euclid imaging data. Equivalent estimates of stellar population properties (stellar metallicity and age) are less robust but still hold value as first-order approximations across large samples.
astro-ph.GA, Methods: statistical, Galaxies: photometry, Galaxies: general
Kovačić, I.
0cc9489a-2da3-418d-8908-6a902809ef3b
Baes, M.
14cec84c-567b-4975-a689-9a7077d347d0
Nersesian, A.
59cc93b4-a977-4c1e-a260-e0ea7e0f85e5
Andreadis, N.
5fcb9946-ba0f-4af0-9d10-35863f8e0c83
Nemani, L.
f6e8a47f-5966-4379-af84-a224305bf5dd
Abdurro'uf,
380a00f9-e4e1-4e66-a2c2-7afff366644e
Bisigello, L.
9fa80bf4-1076-4f65-a687-d99b3916b1a2
Bolzonella, M.
08d68ed3-5f78-486a-a3d4-8758513a1f4e
Tortora, C.
36a54c17-c354-4852-b4ca-39f9cfdcfb42
van der Wel, A.
09fc6132-9c8b-4ae3-91f2-e01f306e7822
Cavuoti, S.
39f23810-63c9-4f81-aee2-c045df2c1a12
Conselice, C.J.
ddb44e19-7133-4ec3-b39d-28502f2f8e5a
Enia, A.
11c8faee-d287-45db-87bf-6a3a9521e64e
Hunt, L.K.
0a028d67-0c76-4035-a0f1-a0820addf7ce
Iglesias-Navarro, P.
14139d1c-0174-4b14-918a-9698f176567c
Iodice, E.
a7d301c3-190d-44e3-b0dc-3ae74f479765
Knapen, J.H.
f6855033-73b6-4ae8-aee9-5f37cdb8b511
Marleau, F.R.
084fe085-3399-4302-bc91-ceee4f64eba2
Müller, O.
8f163681-9d18-4cb6-bbe8-95f9c4c3bdbf
Peletier, R.F.
260109df-31ad-4a12-8306-3d7a68e0f580
Román, J.
063408d0-635b-490d-a9c5-afa86023a4d7
Ragusa, R.
fc01d11f-c887-4217-971a-f7d408f31e78
Salucci, P.
d09b251a-58cd-4ba6-8b51-d85edfdc5abf
Saifollahi, T.
9a841078-1992-4890-9016-673390fc9f0d
Scodeggio, M.
00030039-aa58-4e15-bbfb-a7a8cdbac50d
Siudek, M.
f79f3f22-d82c-4b8c-bd12-acedd522b2fe
Waele, T. De
ff11c68f-d901-4954-a33c-2d58d961c18d
Amara, A.
8d8bc455-162a-4156-8e6d-ef75e4801f00
Andreon, S.
6ae4288e-2655-48bc-af01-806272b12c6b
Auricchio, N.
dca3b05e-c308-4bf9-9115-0d484c088333
Baccigalupi, C.
812f8ac8-ae31-49dc-abfe-4ecc5fce8966
Baldi, M.
780dfb31-66d3-4c34-a5fc-3a6bfe98f978
Bardelli, S.
d7eed1d7-df1b-471e-b213-6e9cb06d6213
Battaglia, P.
68651654-b8e0-4672-b88f-1eaae145779c
Bender, R.
86488c5f-206b-4770-aae8-123154bc1c7d
Bodendorf, C.
dc3d72c4-cbf5-4d6c-961f-8d8e7331db5c
Bonino, D.
9f25a90d-8fce-4a3d-8147-9e7a5b801b0e
Bon, W.
c14c8c4f-3d5a-409e-a967-6ef406740d7f
Branchini, E.
6ef3ffc8-cc6f-43f1-a3e9-b221afd5c4ca
Brescia, M.
afefa233-5867-490c-933b-bd0c32711845
Brinchmann, J.
ca298440-8b05-4c02-941e-80a7d1ae00da
Camera, S.
fd4f850b-2a05-4ac0-b13d-b20397a499ae
Capobianco, V.
7b2ba729-4682-4d71-b3f4-040baaf46aa7
Carbone, C.
d72c807a-c7bc-4c21-96c9-e4e24ca533ce
Carretero, J.
081b0f5d-7e69-469c-a22d-5b851f9b8d1d
Casas, S.
0eae44cb-929b-4fd5-a0a4-83bbf23a6d19
Castander, F.J.
b61356c2-f7f5-4da7-9322-b9eda0b0081a
Castellano, M.
a42064b9-0b21-4aec-99be-67a150c6c876
Shankar, F.
b10c91e4-85cd-4394-a18a-d4f049fd9cdb
1 March 2025
Kovačić, I.
0cc9489a-2da3-418d-8908-6a902809ef3b
Baes, M.
14cec84c-567b-4975-a689-9a7077d347d0
Nersesian, A.
59cc93b4-a977-4c1e-a260-e0ea7e0f85e5
Andreadis, N.
5fcb9946-ba0f-4af0-9d10-35863f8e0c83
Nemani, L.
f6e8a47f-5966-4379-af84-a224305bf5dd
Abdurro'uf,
380a00f9-e4e1-4e66-a2c2-7afff366644e
Bisigello, L.
9fa80bf4-1076-4f65-a687-d99b3916b1a2
Bolzonella, M.
08d68ed3-5f78-486a-a3d4-8758513a1f4e
Tortora, C.
36a54c17-c354-4852-b4ca-39f9cfdcfb42
van der Wel, A.
09fc6132-9c8b-4ae3-91f2-e01f306e7822
Cavuoti, S.
39f23810-63c9-4f81-aee2-c045df2c1a12
Conselice, C.J.
ddb44e19-7133-4ec3-b39d-28502f2f8e5a
Enia, A.
11c8faee-d287-45db-87bf-6a3a9521e64e
Hunt, L.K.
0a028d67-0c76-4035-a0f1-a0820addf7ce
Iglesias-Navarro, P.
14139d1c-0174-4b14-918a-9698f176567c
Iodice, E.
a7d301c3-190d-44e3-b0dc-3ae74f479765
Knapen, J.H.
f6855033-73b6-4ae8-aee9-5f37cdb8b511
Marleau, F.R.
084fe085-3399-4302-bc91-ceee4f64eba2
Müller, O.
8f163681-9d18-4cb6-bbe8-95f9c4c3bdbf
Peletier, R.F.
260109df-31ad-4a12-8306-3d7a68e0f580
Román, J.
063408d0-635b-490d-a9c5-afa86023a4d7
Ragusa, R.
fc01d11f-c887-4217-971a-f7d408f31e78
Salucci, P.
d09b251a-58cd-4ba6-8b51-d85edfdc5abf
Saifollahi, T.
9a841078-1992-4890-9016-673390fc9f0d
Scodeggio, M.
00030039-aa58-4e15-bbfb-a7a8cdbac50d
Siudek, M.
f79f3f22-d82c-4b8c-bd12-acedd522b2fe
Waele, T. De
ff11c68f-d901-4954-a33c-2d58d961c18d
Amara, A.
8d8bc455-162a-4156-8e6d-ef75e4801f00
Andreon, S.
6ae4288e-2655-48bc-af01-806272b12c6b
Auricchio, N.
dca3b05e-c308-4bf9-9115-0d484c088333
Baccigalupi, C.
812f8ac8-ae31-49dc-abfe-4ecc5fce8966
Baldi, M.
780dfb31-66d3-4c34-a5fc-3a6bfe98f978
Bardelli, S.
d7eed1d7-df1b-471e-b213-6e9cb06d6213
Battaglia, P.
68651654-b8e0-4672-b88f-1eaae145779c
Bender, R.
86488c5f-206b-4770-aae8-123154bc1c7d
Bodendorf, C.
dc3d72c4-cbf5-4d6c-961f-8d8e7331db5c
Bonino, D.
9f25a90d-8fce-4a3d-8147-9e7a5b801b0e
Bon, W.
c14c8c4f-3d5a-409e-a967-6ef406740d7f
Branchini, E.
6ef3ffc8-cc6f-43f1-a3e9-b221afd5c4ca
Brescia, M.
afefa233-5867-490c-933b-bd0c32711845
Brinchmann, J.
ca298440-8b05-4c02-941e-80a7d1ae00da
Camera, S.
fd4f850b-2a05-4ac0-b13d-b20397a499ae
Capobianco, V.
7b2ba729-4682-4d71-b3f4-040baaf46aa7
Carbone, C.
d72c807a-c7bc-4c21-96c9-e4e24ca533ce
Carretero, J.
081b0f5d-7e69-469c-a22d-5b851f9b8d1d
Casas, S.
0eae44cb-929b-4fd5-a0a4-83bbf23a6d19
Castander, F.J.
b61356c2-f7f5-4da7-9322-b9eda0b0081a
Castellano, M.
a42064b9-0b21-4aec-99be-67a150c6c876
Shankar, F.
b10c91e4-85cd-4394-a18a-d4f049fd9cdb