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Abstract
When the lower-level optimal solution set-valued mapping of a bilevel optimization problem
is not single-valued, we are faced with an ill-posed problem, which gives rise to the opti-
mistic and pessimistic bilevel optimization problems, as tractable algorithmic frameworks.
However, solving the pessimistic bilevel optimization problem is far more challenging than
the optimistic one; hence, the literature has mostly been dedicated to the latter class of the
problem. The Scholtes relaxation has appeared to be one of the simplest and most efficient
ways to solve the optimistic bilevel optimization problem in its Karush-Kuhn-Tucker (KKT)
reformulation or the corresponding more general mathematical program with complemen-
tarity constraints (MPCC). Inspired by such a success, this paper studies the potential of
the Scholtes relaxation in the context of the pessimistic bilevel optimization problem. To
proceed, we consider a pessimistic bilevel optimization problem, where all the functions in-
volved are at least continuously differentiable. Then assuming that the lower-level problem
is convex, the KKT reformulation of the problem is considered under the Slater constraint
qualification. Based on this KKT reformulation, we introduce the corresponding version of
the Scholtes relaxation algorithm. We then construct theoretical results ensuring that the
limit of a sequence of global/local optimal solutions (resp. stationary points) of the afore-
mentioned Scholtes relaxation is a global/local optimal solution (resp. stationary point) of
the KKT reformulation of the pessimistic bilevel program. The results are accompanied by
technical constructions ensuring that the Scholtes relaxation algorithm is well-defined or
that the corresponding parametric optimization problem is more tractable. Furthermore, we
perform some numerical experiments to assess the performance of the Scholtes relaxation
algorithm using various examples. In particular, we study the effectiveness of the algorithm
in obtaining solutions that can satisfy the corresponding C-stationarity concept.
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1 Introduction

We consider the pessimistic bilevel optimization problem

min
x∈X

φp(x) := max
y∈S(x)

F (x, y), (Pp)

where X := {x ∈ℝ
n | G(x) ≤ 0 } and F : ℝn × ℝ

m → ℝ represent the upper-level/leader’s
feasible set and objective function, respectively. The upper-level constraint function G is
defined from ℝ

n to ℝ
p . As for the set-valued mapping S : ℝn ⇉ ℝ

m, it collects the optimal
solutions of the lower-level/follower’s problem for selections of the leader; i.e., for all x ∈ X,

S(x) := arg min
y∈K(x)

f (x, y) (1.1)

and assume throughout that S(x) ≠ ∅ if x ∈ X and S(x) = ∅ otherwise. Note that in (1.1), the
function f : ℝn × ℝ

m → ℝ represents the lower-level/follower’s objective function, while
the set-valued mapping K : ℝn ⇉ ℝ

m describes the lower-level/follower’s feasible points
defined by

K(x) := {y ∈ℝ
m| g(x, y) ≤ 0}

with g : ℝn × ℝ
m → ℝ

q . We assume that F , f , G, and g are twice continuously diffe-
rentiable. More general functions and feasible sets can be considered for our analysis. But
to focus our attention on the main ideas, we let these differentiability assumptions hold
throughout the paper.

Although problem (Pp) is more difficult to solve [1, 7, 12, 13, 23, 38], it has only scantly
been addressed in the literature, in comparison to its optimistic counterpart, which is at the
centre of almost all the attention; see, e.g., the books [7, 11, 30] and references therein.
However, problem (Pp) is more realistic from the practical modelling perspective, given that
it assumes that there is no cooperation between the leader and the follower, in contrary to the
situation in the optimistic version of the problem. For a more detailed analysis of the pes-
simistic and optimistic bilevel optimization problems and the related structural challenges
and differences between them, interested readers are referred to the latter references.

In this paper, we consider the Karush-Kuhn-Tucker (KKT) reformulation

min
x∈X

ψp(x) := max
(y,u)∈𝒟(x)

F (x, y) (KKT)

of problem (Pp), where the set-valued mapping 𝒟 :ℝn ⇉ℝ
m ×ℝ

q is given by

𝒟(x) := {︁ (y,u) ∈ℝ
m+q
⃓⃓ ℒ(x, y,u) = 0, u ≥ 0, g(x, y) ≤ 0, u⊤g(x, y) = 0

}︁
(1.2)

with ℒ(x, y,u) := ∇yL(x, y,u) for the Lagrangian function L : (x, y,u) → L(x, y,u) :=
f (x, y)+uT g(x, y) associated to the parametric optimization problem describing the lower-
level optimal solution set-valued mapping (1.1). Of course, as it is the case for any KKT
reformulation in bilevel optimization [1, 8–10], we will assume throughout the paper that
the lower-level problem (1.1) is convex (i.e., the functions f and gi , i = 1, . . . , q are convex
w.r.t. y) and a constraint qualification (CQ) is satisfied. In particular, we assume that the
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following parametric Slater CQ is satisfied throughout this article (see, e.g., [2, 8]):

∀x ∈ X, ∃y(x) ∈ℝ
m : gi(x, y(x)) < 0, ∀i = 1, . . . , q. (SCQ)

Obviously, problem (KKT) is a special class of the minmax optimization problem with
parametric complementarity or equilibrium constraints in the lower-level problem. In the
sequel, we will refer to it as the KKT reformulation of the pessimistic bilevel optimization
problem (Pp).

The KKT reformulation for the optimistic counterpart of problem (Pp) is one of the
standard approaches in the process of solving the problem. In the context of the KKT re-
formulation of the optimistic bilevel program, one of the most popular class of solution
techniques is represented by relaxation methods, which enables a mitigation of the difficul-
ties caused by the presence of the complementarity constraints present in the inner feasible
set of problem (KKT). Various relaxation methods have been proposed in the literature (see,
e.g., [21]) to address the KKT reformulation of the optimistic bilevel optimization or more
precisely, for the corresponding more general mathematical program with complementary
constraints (MPCC). The latter publication provides a comparison of these relaxations and
shows that the Scholtes relaxation introduced in [34] is not only simpler, from its con-
struction, but it is also superior in terms of its numerical efficiency. Motivated by this, we
introduce the Scholtes relaxation for the pessimistic bilevel program (Pp) via its KKT refor-
mulation (KKT):

min
x∈X

ψt
p(x) := max

(y,u)∈𝒟t (x)
F (x, y), (KKTt )

where, for all t>0,𝒟t represents the Scholtes perturbation of the set-valued mapping 𝒟 (1.2):

𝒟t (x) := {︁(y,u) ∈ℝ
m+q | ℒ(x, y,u) = 0, u ≥ 0, g(x, y) ≤ 0,

− uigi(x, y) ≤ t, i = 1, . . . , q
}︁
,

(1.3)

which is assumed to be nonempty throughout the paper.
We then introduce Algorithm 1, which can be seen as the Scholtes relaxation algorithm

for the KKT reformulation (KKT) of the pessimistic bilevel optimization problem (Pp). Our
primary goal in this paper is to provide a theoretical framework ensuring that the limit of
a sequence of global/local optimal solutions (xk) for (KKTt ) for t := tk , computed through
Algorithm 1, is a global/local optimal solution of problem (KKT) as tk ↓ 0. Considering the
fact that problems (KKTt ) and (KKT) are both nonconvex, it will typically be more realistic
to aim at computing their stationary points. Hence, we also carefully address the case where
the sequence of points computed in Step 1 of Algorithm 1 are only stationary points (ζ k) of
(KKTt ) for t := tk . And therefore, we establish that the limit of this sequence is a stationary
point of (KKT) as tk ↓ 0, under suitable assumptions. As we study these questions, we
also provide technical conditions ensuring that the problem solved in Step 1 (i.e., solving
problem (KKTt ) directly or computing its stationary points) remains tractably solvable as

Algorithm 1 Scholtes relaxation method for pessimistic bilevel optimization

Step 0: Choose t0 > 0 and set k := 0.
Step 1: Solve problem (KKTt ) for t := tk .
Step 2: Select 0 < tk+1 < tk , set k := k + 1, and go to Step 1.
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we get close to a limit point of interest. It is important to note that a global/local optimal
solution of the KKT reformulation (KKT) is equivalent to a global/local optimal solution of
(Pp) under mild assumptions [1].

Also note that only a very small number of papers have investigated solution algorithms
to solve problem (Pp). As to the few works that we are aware of, we can mention [13], which
provides necessary optimality conditions for various scenarios of the problem; the results
there are extended to nonsmooth functions in [14]. Various papers, including [24, 25], from
the same authors and their collaborators, propose approximations and stability results based
on perturbations in the value function constraint of the lower-level value function reformu-
lation of problem (Pp), in the case where the lower-level feasible set is independent from x.
In [36], a semi-infinite programming-based algorithm is developed for a slightly general
version of problem (Pp), also in the case where the lower-level feasible set is independent
from x. The article [4] proposes a two step process to compute a special class of equilib-
rium for (Pp), which consists of solving the problem with an off-the-shelf solver while for
fixed values of x, the parametric optimization problem defining φp is solved with a certain
BFO (Brute-Force Optimizer). Drawing inspiration from the optimistic bilevel optimization
literature, the paper [23] proposes a standard-type approximation model for problem (Pp),
where F(x, y) is minimized w.r.t. (x, y) over a feasible set described in part by the opti-
mal solution set of the problem to minimize F(x, y) w.r.t. y subject to an approximation of
the lower-level optimal solution set-valued mapping S (1.1). And finally, as already men-
tioned above, [1] studies the relationship between problem (Pp) and (KKT). Clearly, we are
not aware of any attempt to solve problem (Pp) from a perspective that is close to the one
considered in this paper.

In summary, the main contributions of this paper are as follows:

1. We introduce the KKT reformulation (KKT) of the pessimistic bilevel optimization prob-
lem (Pp) and the corresponding Sholtes relaxation problem (KKTt ), with relaxation pa-
rameter t > 0, and study some of its basic structural properties; cf. Sect. 2.

2. We introduce a Scholtes relaxation method tailored to the KKT reformulation of the pes-
simistic bilevel program (Pp) and prove its convergence to local/global optimal solutions
for problem (KKT) under tractable assumptions; see Sect. 3 for the corresponding details.

3. We construct a suitable framework to ensure the convergence of our Scholtes relaxation
method to a C-stationary point tailored to problem (KKT); cf. Sect. 4.

4. Numerical experiments are conducted to show how the Scholtes relaxation method intro-
duced in this paper can be applied to compute stationary for problem (KKT); cf. Sect. 5.

The remainder of the paper is organized as follows. In the next section, we introduce ba-
sic concepts from variational analysis that will be useful in the subsequent sections, and also
conduct a preliminary analysis of (KKTt ). Section 3 develops a framework to ensure that a
global (resp. local) optimal solution for (KKT) can be obtained from a converging sequence
of global (resp. local) optimal solutions of (KKTt ). In Sect. 4, we study the situation where
Step 1 of Algorithm 1 instead computes a special class of stationary points for (KKTt ) and
show how the limit of the corresponding converging sequence of points is a C-stationary
point for (KKT). As we develop the theoretical results in Sects. 2–4, illustrative examples
and discussions are provided to show that the required assumptions are tractable. In Sect. 5,
we conduct some numerical experiments to assess the performance of our Scholtes relax-
ation algorithm and compare its behavior on different forms of the optimality conditions of
(KKTt ). Conclusions and some ideas for future investigations are provided in Sect. 6.
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2 Basic Mathematical Tools and Preliminary Analysis

In this section, we briefly present some basic properties, mostly related to variational anal-
ysis, which will be used throughout the paper; for more detail on the main concepts, see
[28, 33], for instance.

We start with some notation. First, we denote by B(a, r) the open ball in ℝ
n with center

the point a ∈ℝ
n and radus r > 0 and we use 𝔹n to denote the unit ball centered at the origin

of the space. Given two subsets A and B of ℝn, their Hausdorff distance dH (A,B) is given
as

dH (A,B) := max {e(A,B), e(B,A)},

where the excess e(A,B) of A over B is defined by the formula

e(A,B) := sup
x∈A

d(x,B)

with d(x,B) := inf
y∈B

d(x, y) representing the distance from x to the set B , while considering

the usual conventions e(∅,B) = 0 and e(A,∅) = +∞ if A ≠ ∅. Furthermore, let

domΨ := {x ∈ℝ
n| Ψ (x) ≠ ∅} and gphΨ := {(x, y) ∈ ℝ

n+m| y ∈ Ψ (x)}

denote the domain and graph of the set-valued mapping Ψ :ℝn ⇉ℝ
m, respectively.

Definition 2.1 A set-valued mapping Ψ : ℝn ⇉ℝ
m is said to be

(i) inner semicompact at x̄ ∈ domΨ if for any sequence (xk)k such that xk → x̄ there
exists a sequence (yk)k with yk ∈ Ψ (xk) such that (yk)k admits a convergent subse-
quence;

(ii) inner semicontinuous at (x̄, ȳ) ∈ gph Ψ if for any sequence (xk)k such that xk → x̄,
there exists a sequence (yk)k such that yk ∈ Ψ (xk) and yk → ȳ or equivalently, if
d(ȳ,Ψ (x)) → 0 whenever x → x̄;

(iii) lower semicontinuous in the sense of Hausdorff (i.e., H-lower semicontinuous, for
short) at x̄ ∈ domΨ if, for every ε > 0, there exists a neighborhood U of x̄ such that
for any x ∈ U ,

e(Ψ (x̄), Ψ (x)) < ε or equivalently Ψ (x̄) ⊂ Ψ (x) + ε𝔹m;

(iv) upper semicontinuous in the sense of Hausdorff (i.e., H-upper semicontinuous, for
short) at x̄ ∈ domΨ if for every ε > 0, there exists a neighborhood U of x̄ such that
for any x ∈ U ,

e(Ψ (x), Ψ (x̄)) < ε or equivalently Ψ (x) ⊂ Ψ (x̄) + ε𝔹m;

(v) upper semicontinuous in the sense of Berge (i.e., B-upper semicontinuous, for short)
at x̄ if for each open set V such that Ψ (x̄) ⊂ V , there exists a neighbourhood U of x̄

such that Ψ (U) ⊂ V ;
(vi) lower semicontinuous in the sense of Berge (i.e., B-lower semicontinuous, for short)

at x̄ if for each open set V such that V ∩ Ψ (x̄) ≠ ∅, there is a neighbourhood U of x̄

such that for all x ∈ U , V ∩ Ψ (x) ≠ ∅;
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(vii) Aubin continuous (or Lipschitz-like) around (x̄, ȳ) ∈ gph Ψ if there is a constant τ > 0
and there exist a neighborhood U × V of (x̄, ȳ) such that for any x, x ′ ∈ U ,

e(Ψ (x) ∩ V, Ψ (x ′)) ≤ τ
⃦
⃦x − x ′⃦⃦ ; (2.1)

i.e., for any y ∈ Ψ (x) ∩ V , there exists y ′ ∈ Ψ (x ′) such that
⃦⃦
y − y ′⃦⃦ ≤ τ

⃦⃦
x − x ′⃦⃦.

If inequality (2.1) is satisfied with V = ℝ
m, Ψ is said to be Lipschitz continuous

around x̄.

There are various interconnections between these concepts. Let us summarize a few key
ones relevant to this paper. First, we have the following relationships between the Hausdorff
and Berge semicontinuity:

Theorem 2.1 (see Lemma 2.2.3 in [3]) Consider the set-valued mapping Ψ : ℝn ⇉ ℝ
m and

let x̄ ∈ domΨ :

(i) If Ψ is H-lower semicontiuous at x̄, then Ψ is B-lower semicontinuous at x̄. The con-
verse holds true if we assume that the set clΨ (x̄) is compact.

(ii) If Ψ is B-upper semicontiuous at x̄, then Ψ is H-upper semicontinuous at x̄ and the
converse holds when one assumes that the set Ψ (x̄) is compact.

Observe that the H-lower semicontinuity of Ψ : ℝn ⇉ ℝ
m at x̄ implies the inner semi-

continuity of Ψ at (x̄, ȳ) for every ȳ ∈ Ψ (x̄). The Lipschitz-likeness of Ψ around (x̄, ȳ)

clearly implies the inner semicontinuity of Ψ at (x̄, ȳ), which obviously implies the inner
semicompactness of Ψ at x̄. Moreover, any nonempty set-valued mapping that is uniformly
bounded around x̄ is obviously inner semicompact at this point. It is important to recall that
the Lipschitz-likeness of a set-valued mapping Ψ :ℝn ⇉ℝ

m around a point (x̄, ȳ) is ensured
by the Mordukhovich criterion [27] (see also Theorem 9.40 in [33]); i.e., Ψ is Lipschitz-like
around (x̄, ȳ) if and only if

D∗Ψ (x̄, ȳ)(0) = {0} ,

provided that the graph of Ψ is closed. Here, D∗Ψ (x̄, ȳ) : ℝm ⇉ℝ
n denotes the coderivative

of Ψ at (x̄, ȳ), defined by w ∈ D∗Ψ (x̄, ȳ)(v) if and only if (w,−v) ∈ NgphΨ (x̄, ȳ) with
NgphΨ (x̄, ȳ) being the limiting normal cone to gphΨ at (x̄, ȳ); see relevant details in the
latter references.

In the sequel, we will also use the concept of Painlevé–Kuratowski outer/upper and in-
ner/lower limit for a set-valued mapping Ψ : ℝn ⇉ ℝ

m at a point x̄ ∈ domΨ , which are
respectively defined by

lim sup
x−→x̄

Ψ (x) := {y ∈ℝ
m| ∃xk → x̄, , yk → y with yk ∈ Ψ (xk) for all k} ,

lim inf
x−→x̄

Ψ (x) := {y ∈ℝ
m| ∀xk → x̄, ∃yk → y with yk ∈ Ψ (xk) for all k} .

Recall that if lim sup
x−→x̄

Ψ (x) = lim inf
x−→x̄

Ψ (x), then the Painlevé–Kuratowski limit is said to

exist at x̄ and can simply be denoted by lim
x−→x̄

Ψ (x) = lim sup
x−→x̄

Ψ (x) = lim inf
x−→x̄

Ψ (x).

Next, we collect some basic properties on the mappings defined in (1.2) and (1.3).

Proposition 2.1 For any x ∈ℝ
n, it holds that:
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(i) 𝒟(x) and 𝒟t (x) are closed (t > 0);
(ii) 𝒟t1(x) ⊂ 𝒟t2(x) for any t2 > t1 > 0;

(iii) 𝒟(x) = ∩
t>0

𝒟t (x) and so for all t > 0, e(𝒟(x),𝒟t (x)) = 0 and ψp(x) ≤ ψt
p(x);

(iv) 𝒟(x) = lim
t↓0

𝒟t (x) in the Painlevé-Kuratowski sense.

Proof For (i), note by continuity of the functions describing the sets 𝒟(x) and 𝒟t (x), they
are obviously closed. Assertions (ii) is also obvious and so is assertion (iii) given that 𝒟(x) ⊂
𝒟t (x) for all t > 0. Let us prove the Painlevé-Kuratowski convergence (assertion (iv)); i.e.,

lim inf
t↓0

𝒟t (x) = 𝒟(x) = lim sup
t↓0

𝒟t (x).

Note that from assertion (iii), it holds that 𝒟(x) ⊂ lim inf
t→0+ 𝒟t (x) ⊂ lim sup

t→0+
𝒟t (x).

Conversely, taking (y,u) ∈ lim sup
t↓0

𝒟t (x), it follows that for a sequence (tk)k converging

to 0, the point (y,u) is a cluster point of a sequence in 𝒟tk (x); i.e., there exists a sequence
(yk, uk)k with (yk, uk) ∈ 𝒟tk (x) which converges (up to a subsequence) to (y,u). Thus, for
any k, we have

ℒ(x, yk, uk) = 0, uk
i ≥ 0, gi(x, yk) ≤ 0, −uk

i gi(x, yk) ≤ tk, i = 1, . . . , q.

Applying the limit to this system, we get (y,u) ∈ 𝒟(x). Hence, lim sup
t→0+

𝒟t (x) ⊂ 𝒟(x). □

Next, we show that for a fixed point x, a sequence of objective function values of problem
(KKTt ) for t := tk can converge to that of problem (KKT) as the sequence (tk)k converges
to 0 as k → ∞.

Proposition 2.2 Let t ↦→ ψt
p(x) be upper semicontinuous at 0+, for any x ∈ℝ

n and let tk ↓ 0.

Then for any x ∈ℝ
n, we have ψ

tk
p (x) → ψp(x) as k → ∞.

Proof It is obvious that for any x ∈ ℝ
n, the sequence (ψ

tk
p (x)) converges for any sequence

(tk)k converging to 0. Indeed, since tk+1 ≤ tk , 𝒟tk+1(x) ⊂ 𝒟tk (x) so that ψ
tk+1
p (x) ≤ ψ

tk
p (x)

for any k and since the sequence is bounded from below by ψp(x), it converges. Hence,

ψp(x) ≤ lim
k→∞

ψtk
p (x) = lim supψtk

p (x) ≤ ψp(x) for every x ∈ ℝ
n. □

We conclude this section with an illustrative example showing how the feasible set and
objective function of problem (KKT) change under the Scholtes-type relaxation.

Example 2.1 Consider an example of the pessimistic bilevel problem (Pp) with

F(x, y) := x + y, X := [−1, 1], f (x, y) := xy, and K(x) := [0, 1]. (2.2)

We can easily check that

S(x) =
⎧
⎨

⎩

{0} if 0 < x ≤ 1,

{1} if − 1 ≤ x < 0,

[0,1] if x = 0,

and φp(x) =
{︃

x if 0 < x ≤ 1,

x + 1 if − 1 ≤ x ≤ 0.
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Clearly, x̄ = −1 is the global optimal solution for problem (2.2). Taking into account
that the Lagrangian function L(x, y,u) = xy + u1g1(x, y) + u2g2(x, y) with g1(x, y) :=
−y and g2(x, y) := y − 1, the conditions

ℒ(x, y,u) = 0, ui ≥ 0, and gi(x, y) ≤ 0 for i = 1, 2

are equivalent to

u1 ≥ 0, u2 = u1 − x ≥ 0, and 0 ≤ y ≤ 1. (2.3)

Thus, the corresponding version of problem (KKT) can be obtained with

𝒟(0) = [0, 1] × {(0,0)} and 𝒟(x) =
{︄ {(0, x,0)} if 0 < x ≤ 1,

{(1, 0, −x)} if −1 ≤ x < 0,

so that ψp = φp , which is continuous at any x ≠ 0. Moreover, since for (y,u) satisfying
(2.3), one has

(−uigi(x, y) ≤ t for i = 1, 2) ⇐⇒ (u1y ≤ t and (u2 − x)(y − 1) ≥ −t)

so that the regularized version (KKTt ) of the problem can be written with 𝒟t (x) for 0 < t ≤
x ≤ 1 as

𝒟t (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(y, (u1, u1 − x))

⃓⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓

(︃
x ≤ u1 < t + x ∧ 0 ≤ y ≤ t

u1

)︃

∨(︃
t + x ≤ u1 ≤ ūt (x) ∧ − t

u1 − x
+ 1 ≤ y ≤ t

u1

)︃

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

where ūt (x) is the root of the equation 1 − t

z − x
= t

z
(for fixed t and x) that satisfies

ūt (x) > max(0, x), namely, ūt (x) = 2t + x + √
4t2 + x2

2
. And for 0 ≤ x < t ≤ 1,

𝒟t (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(y, (u1, u1 − x))

⃓⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓

(x ≤ u1 ≤ t ∧ 0 ≤ y ≤ 1)

∨(︃
t < u1 ≤ t + x ∧ 0 ≤ y ≤ t

u1

)︃

∨(︃
t + x ≤ u1 ≤ ūt (x) ∧ − t

u1 − x
+ 1 ≤ y ≤ t

u1

)︃

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

On the other hand, for −1 ≤ x ≤ −t < 0, we obtain

𝒟t (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(y, (u1, u1 − x))

⃓⃓⃓
⃓⃓
⃓⃓
⃓⃓⃓

(︃
0 ≤ u1 < t ∧ − t

u1 − x
+ 1 ≤ y ≤ 1

)︃

∨(︃
t ≤ u1 ≤ ūt (x) ∧ − t

u1 − x
+ 1 ≤ y ≤ t

u1

)︃

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭
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Fig. 1 Graphical representation of the functions ψp (KKT) and ψt
p (KKTt ), for the scenarios

t = 1
2 , 1

4 , 1
8 , 1

16 , and 1
32 , in the context of the problem in Example 2.1

and for −1 ≤ −t ≤ x < 0, we get

𝒟t (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(y, (u1, u1 − x))

⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓

(0 ≤ u1 ≤ t + x ∧ 0 ≤ y ≤ 1)

∨(︃
t + x < u1 ≤ t ∧ − t

u1 − x
+ 1 ≤ y ≤ 1

)︃

∨(︃
t ≤ u1 ≤ ūt (x) ∧ − t

u1 − x
+ 1 ≤ y ≤ t

u1

)︃

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

And subsequently, we have

ψt
p(x) =

{︄
x + t

x
if t ≤ x,

x + 1 if x < t.

Observe that for each t > 0, the regularized function ψt
p is continuous everywhere on the

feasible set, in contrary to the function ψp which is everywhere continuous except at 0;
see the graphically illustrations in Fig. 1. Furthermore, one can check that all the properties
given in Proposition 2.1 are fulfilled.
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3 Computing Global and Local Optimal Solutions

In this section, we assume that in Step 1 of Algorithm 1, we compute a global or local
optimal solution of problem (KKTt ) for t := tk in the process of solving problem (KKT).
Recall that a point x̄ ∈ X is a local optimal solution for (Pp) (resp. (KKT)) if there exists a
neighborhood U of x̄ such that condition

∀x ∈ X ∩ U : φp(x̄) ≤ φp(x) (resp. ψp(x̄) ≤ ψp(x)) (3.1)

is satisfied. Similarly, x̄ ∈ X will be said to be a global optimal solution for (Pp) (resp.
(KKT)) if condition (3.1) holds with U =ℝ

n. We now state the convergence of Algorithm 1
when (KKTt ) is solved globally as t ↓ 0.

Theorem 3.1 Let the function x ↦→ ψp(x) be lower semicontinuous at x̄ and t ↦→ ψt
p(x) be

upper semicontinuous at 0+ for all x ∈ℝ
n. Furthermore, let tk ↓ 0 and (xk)k be a sequence

such that the point xk is a global optimal solution of (KKTt ) for t := tk . If the sequence
(xk)k admits a subsequence converging to the point x̄ as k → ∞, then the point x̄ is a
global optimal solution of (KKT).

Proof Based on the definitions of ψt
p and ψp , as well as the fact that xk is a global optimal

solution of problem (KKTt ) for t := tk , we have

ψp(xk) ≤ ψtk
p (xk) ≤ ψtk

p (x) for all x ∈ X

with xk ∈ X and the first inequality resulting from Proposition 2.1(iii). Since the subse-
quence xk → x̄ as k → ∞, x̄ ∈ X (X being closed by continuity of G). Given that ψp is
lower semicontinuous at x̄ and t ↦→ ψt

p(x) is upper semicontinuous at 0, for all x ∈ ℝ
n, we

have the string of inequalities

ψp(x̄) ≤ lim inf
k→∞

ψp(xk) ≤ lim inf
k→∞

ψtk
p (x) ≤ lim sup

k→∞
ψtk

p (x) ≤ ψp(x). □

Considering the fact that problems (KKT) and (KKTt ) are both nonconvex, it is more
likely that in practice, a scheme to solve either problem would only compute local optimal
solutions. Hence, we next provide a result where iteratively solving (KKTt ) can ensure that
a local optimal solution for (KKT) is obtained.

Theorem 3.2 Let the function x ↦→ ψp(x) be lower semicontinuous x̄, and r̄ > 0 be such
that (t, u) ↦→ ψt

p(u) is upper semicontinuous at (0, x) for any x ∈ B(x̄, r̄). Furthermore, let
tk ↓ 0, rk > 0, and (xk)k be a sequence of optimal solutions of problem (KKTt ) for t := tk

in X ∩ B(xk, rk); i.e.,

ψtk
p (xk) ≤ ψtk

p (x) ∀x ∈ X ∩ B(xk, rk).

If x̄ is a cluster point of the sequence (xk)k and lim inf
k→∞

rk > 0, then x̄ is a local optimal

solution of (KKT).

Proof Take 0 < r̄ < lim inf
k→∞

rk such that for k large enough, rk > r̄ . Let x ∈ X ∩ B

(︃
x̄,

r̄

2

)︃
.

Since there exists a subsequence of (xk) (denoted for simplicity also by (xk)) such that
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xk → x̄ as k → +∞, xk ∈ B

(︃
x̄,

r̄

2

)︃
for any k large enough, x ∈ B(xk, rk) given that

⃦
⃦x − xk

⃦
⃦≤ ∥x − x̄∥ + ⃦⃦x̄ − xk

⃦
⃦< r̄ < rk.

Thus, x ∈ X ∩ B(xk, rk) and ψ
tk
p (xk) ≤ ψ

tk
p (x) for any k sufficiently large. We can then

conclude the proof by proceeding as in the proof of Theorem 3.1. □

In Proposition 2.2, Theorem 3.1, and Theorem 3.2, some continuity assumptions are im-
posed on the function ψt

p (t ≥ 0). More precisely, in these results, we require the following
assumptions:

(A1) x ↦→ ψp(x) is lower semicontinuous at x̄ (see Theorem 3.1 and Theorem 3.2);
(A2) t ↦→ ψt

p(x) is upper semicontinuous at 0+ for all x ∈ ℝ
n (see Proposition 2.2 and

Theorem 3.1);
(A3) (t, u) ↦→ ψt

p(u) is upper semicontinuous at (0+, x) for any x ∈ B(x̄, r̄) (see Theo-
rem 3.2).

Moreover, in Theorem 3.1 and Theorem 3.2, we require the existence of a sequence (xk)k

such that the point xk is an optimal solution of problem (KKTt ) for t := tk . For a fixed value
of t > 0, problem (KKTt ) has an optimal solution if the set X is compact and it holds that

(A4) the function x ↦→ ψt
p(x) is lower semicontinuous on X.

However, in practice, to solve problem (KKTt ), for a fixed value of t > 0, as a nonsmooth
minimization problem, we might need a stronger assumption on ψt

p . In particular, if we want
to extend the gradient descent method to Step 1 of Algorithm 1, for example, we will need
the following assumption to calculate the generalized gradient (or subdifferential) of this
function in the sense of Clarke ([5]):

(A5) the function x ↦→ ψt
p(x) is Lipschitz continuous around the point xt .

Overall, this means that assumptions (A1)–(A5) are important for a nice interaction between
problems (KKT) and (KKTt ), as well as for practically solving the latter problem (with
certain types of methods), for a fixed value of t > 0, as required in Step 1 of Algorithm 1.
Based on [3, Theorem 4.2.3] and [29, Theorem 5.3], we next summarize some key results
ensuring that these assumptions are satisfied. To proceed, let

𝒮p(x) := {︁(y,u) ∈ 𝒟(x)
⃓⃓ F(x, y) ≥ ψp(x)

}︁
and

𝒮 t
p(x) := {︁(y,u) ∈ 𝒟t (x)

⃓⃓
F(x, y) ≥ ψt

p(x)
}︁

describe the optimal solution set-valued mappings of the parametric optimization problems
associated to the optimal value functions ψp and ψt

p , respectively.

Theorem 3.3 The following assertions are satisfied:

(i) The function x ↦→ ψp(x) is lower semicontinuous at the point x̄ if the set-valued map-
ping 𝒟(·) is B-lower semicontinuous at the point x̄.

(ii) For any x ∈ ℝ
n, the function t → ψt

p(x) is upper semicontinuous at t̄ if the set-valued

mapping t ⇉𝒟t (x) is H-upper semicontinuous at t̄ and the set 𝒟t̄ (x) is compact.
(iii) The function (t, x) → ψt

p(x) is lower (resp. upper) semicontinuous at the point (t̄ , x̄)

if the set-valued mapping (t, x)⇉𝒟t (x) is B-lower (resp. H-upper) semicontinuous at
(t̄ , x̄) (resp. and 𝒟t̄ (x̄) is compact).
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(iv) For t > 0, the function x ↦→ ψt
p(x) is lower semicontinuous at the point x̄ if the set-

valued mapping 𝒟t (·) is B-lower semicontinuous x̄.
(v) For t > 0, the function x ↦→ ψt

p(x) is Lipschitz continuous around x̄ if condition (a) or
(b) below holds:
(a) 𝒮 t

p(·) is inner semicontinuous at (x̄, ȳ, ū) ∈ gphΨ t
p and 𝒟t (·) is Lipschitz-like

around (x̄, ȳ, ū).
(b) 𝒮 t

p(·) is inner semicompact at x̄ and 𝒟t (·) is Lipschitz-like around (x̄, y, u) for all
(y,u) ∈ 𝒮 t

p(x̄).

Clearly, in this order, the assumptions in Theorem 3.3(i), (ii), (iii), (iv), and (v) ensure
the fulfillment of assumptions (A1), (A2), (A3), (A4), and (A5), respectively, at appropri-
ately chosen points. Considering the importance of Step 1 in a practical implementation of
Algorithm 1, the framework for guaranteeing the existence of optimal solutions and/or for
solving problem (KKTt ), for a fixed value of t > 0, as a Lipschitz optimization problem
(see, e.g., [28, 33] and references therein), is crucial. Hence, for the remainder of this sec-
tion, we dive deeper into the analysis of the conditions ensuring that suitable versions of
assumptions (A4) and (A5) can hold; a similar analysis can be done for (A1)–(A3). In par-
ticular, mainly for illustrative purposes, we focus our attention on the requirements for the
assumptions needed in Theorem 3.3(iv) and Theorem 3.3(v)(a) to hold; namely, for a fixed
value of t > 0, these assumptions are precisely:

(B1) set-valued mapping 𝒟t (·) is B-lower semicontinuous at x̄;
(B2) the set-valued mapping 𝒟t (·) is Lipschitz-like around (x̄, ȳ, ū);
(B3) the set-valued mapping 𝒮 t

p(·) is inner semicontinuous at (x̄, ȳ, ū) ∈ gphΨ t
p .

An important question that we are interested in is to know what assumptions can be imposed
on the data of our problem (KKT) to ensure the satisfaction of these properties in relevant
neighborhoods as t ↓ 0? Some answers to this question are provided in the next result. To
proceed, let us consider the set-valued mappings 𝒟(·, x) : t ⇉𝒟t (x) for x ∈ℝ

n and 𝒟(·, ·) :
(t, x) ⇉ 𝒟(t, x) := 𝒟t (x), where 𝒟t (x) is defined in (1.3) for t > 0 and 𝒟0(x) = 𝒟(x) is
given in equation (1.2).

Theorem 3.4 The following statements hold:

(i) Let the set-valued mapping 𝒟(·) be H-lower semicontinuous at x̄ and 𝒟(·, ·) be H-
upper semicontinuous at (0+, x̄). Then, there exists a neighborhood U of the point
x̄ such that for t ↓ 0, the set-valued mapping 𝒟t (·) is H-lower semicontinuous at all
x ∈ U .

(ii) Let 𝒟(·) be Lipschitz-like around (x̄, ȳ, ū) ∈ gph𝒟 and 𝒟(·, x) be H-upper semicontin-
uous at 0+ for any x around x̄. Then, there exists a neighborhood U × V of (x̄, ȳ, ū)

such that for t ↓ 0, 𝒟t is Lipschitz-like around all points (x, y,u) with x ∈ U and
(y,u) ∈ V ∩𝒟t (x).

(iii) Let 𝒮p(·) be inner semicontinuous at (x̄, ȳ, ū) ∈ gph𝒮p and t ⇉ 𝒮 t
p(x) be H-lower

semicontinuous at 0+ for any x close to x̄. Then, there exists a neighborhood U ×V of
(x̄, ȳ, ū) such that for t ↓ 0, 𝒮 t

p(·) is inner semicontinuous at all points (x, y,u) with
x ∈ U and (y,u) ∈ V ∩ 𝒮 t

p(x).

Proof For (i), let ε > 0. Since 𝒟(·, ·) is H-upper semicontinuous at (0+, x̄), there exist α > 0
and r1 > 0 such that for any t ∈ (0, α) and x ∈ B(x̄, r1), one has

𝒟t (x) ⊂ D(x̄) + ε

2
𝔹m+q
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and since 𝒟(·) is H-lower semicontinuous at x̄, there exists r2 > 0 such that for any x ′ in
B(x̄, r2),

𝒟(x̄) ⊂ 𝒟(x ′) + ε

2
𝔹m+q ⊂ 𝒟t (x ′) + ε

2
𝔹m+q for all t > 0.

Hence, there exists a neighborhood U of x̄ such that for any x, x ′ ∈ U and for any t ∈ (0, α),

𝒟t (x) ⊂ 𝒟t (x ′) + ε𝔹m+q .

This means that 𝒟t (·) is H-lower semicontinuous at any x ∈ U .
For (ii), note that as the set-valued mapping 𝒟 is Lipschitz-like around (x̄, ȳ, ū) ∈

gph𝒟(·), there exist τ, δ1, r > 0 such that for any x, x ′ ∈ B(x̄, δ1), we have

𝒟(x) ∩ B((ȳ, ū), r) ⊂ 𝒟(x ′) + τ
⃦⃦
x − x ′⃦⃦

𝔹m+q

and so

𝒟(x) ∩ B((ȳ, ū), r) ⊂ 𝒟t (x ′) + τ
⃦⃦x − x ′⃦⃦𝔹m+q (3.2)

for all t > 0. On the other hand, as t ⇉ 𝒟t (x) is H-upper semicontinuous at 0+ for all x

around x̄, then there exists δ2 > 0 so that for any x ∈ B(x̄, δ2) and ε > 0 there is a constant
α > 0 such that

𝒟t (x) ⊂ 𝒟(x) + ε𝔹m+q for all t ∈ (0, α). (3.3)

Take U := B

(︃
x̄,

δ

2

)︃
with δ = min(δ1, δ2) and V := B

(︂
(ȳ, ū),

r

3

)︂
. Fix x ∈ U and (y,u) ∈

V ∩𝒟t (x). Let Ũ be a neighborhood of x such that Ũ ⊂ B(x̄, δ) and w,w′ ∈ Ũ with w ≠ w′.
Given 0 < ε < min(

r

3
,
⃦⃦
w − w′⃦⃦), there exists some α > 0 such that (3.3) holds. Taking

t ∈ (0, α) as well as (z, v) ∈ 𝒟t (w) ∩ B
(︂
(y,u),

r

3

)︂
, one can pick (ŷ, û) ∈ 𝒟(w) such that

⃦⃦
(z, v) − (ŷ, û)

⃦⃦
< ε,

so that (ŷ, û) ∈ 𝒟(w) ∩ B((ȳ, ū), r). Now, from (3.2), it holds that

(ŷ, û) ∈ 𝒟(w) ∩ B((ȳ, ū), r) ⊂ 𝒟t (w′) + τ
⃦⃦w − w′⃦⃦𝔹m+q .

Therefore, there exists
(︁
z′, v′) ∈ 𝒟t (w′)︁ such that the inequality

⃦⃦
(ŷ, û) − (z′, v′)

⃦⃦≤ τ
⃦⃦
w − w′⃦⃦

is satisfied. Hence, we have

⃦⃦(z, v) − (z′, v′)
⃦⃦≤ ⃦⃦(z, v) − (ŷ, û)

⃦⃦+ ⃦⃦(ŷ, û) − (z′, v′)
⃦⃦

< ε + τ
⃦⃦
w − w′⃦⃦< (1 + τ)

⃦⃦
w − w′⃦⃦

and so

d((z, v),𝒟t (w′)) ≤ ⃦⃦(z, v) − (z′, v′)
⃦⃦< (1 + τ)

⃦⃦w − w′⃦⃦ .
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Taking the supremum over 𝒟t (w) ∩ B
(︂
(y,u),

r

3

)︂
, it yields

e
(︂
𝒟t (w) ∩ B

(︂
(y,u),

r

3

)︂
, 𝒟t (w′)

)︂
≤ (1 + τ)

⃦⃦
w − w′⃦⃦ for all t ∈ (0, α).

Finally, for (iii), consider ε > 0 and γ > 0 arbitrarily such that γ <
ε

3
. Since 𝒮p is inner

semicontinuous at (x̄, ȳ, ū) with (ȳ, ū) ∈ 𝒮p(x̄), there exists r1 > 0 such that

d
(︁
(ȳ, ū), 𝒮p(x)

)︁
< γ for all x ∈ B(x̄, r1).

From the H-lower semicontinuity of t ⇉ 𝒮 t
p(x) at 0+ for any x in B(x̄, r2) (for some r2 > 0),

we have

e(𝒮p(x), 𝒮 t
p(x)) < γ.

Fix now x ∈ B(x̄, r) with 0 < r < min(r1, r2) and (y,u) ∈ V ∩ 𝒮 t
p(x) where V :=

B((ȳ, ū), γ ). Let x ′ ∈ B(x, r ′) with 0 < r ′ < r − ∥x − x̄∥ so that x ′ ∈ B(x̄, r) and thus

d
(︁
(y,u), 𝒮 t

p(x ′)
)︁ ≤ ∥(y,u) − (ȳ, ū)∥ + d((ȳ, ū), 𝒮p(x ′)) + e(𝒮p(x ′), 𝒮 t

p(x ′))

< 3 γ < ε

and the conclusion follows. □

Corollary 3.1 The following assertions are satisfied:

(i) Let the set-valued mapping 𝒟(·) be H-lower semicontinuous at x̄, while the set-valued
mapping 𝒟(·, ·) be H-upper semicontinuous at (0+, x̄). Then, there exists a neighbor-
hood U of the point x̄ such that for t ↓ 0, the function x ↦→ ψt

p(x) is lower semicontin-
uous at all x ∈ U .

(ii) Suppose that the set-valued mapping 𝒟(·) is Lipschitz-like around (x̄, ȳ, ū) ∈ gph𝒟
and 𝒟(·, x) is H-upper semicontinuous at 0+ for any x around x̄. Furthermore, let
𝒮p(·) be inner semicontinuous at the point (x̄, ȳ, ū) ∈ gph𝒮p and t ⇉ 𝒮 t

p(x) be H-lower
semicontinuous at 0+ for any x close to x̄. Then, there exists a neighborhood U of x̄

such that for t ↓ 0, the function x ↦→ ψt
p(x) is Lipschitz continuous around all x ∈ U .

Proof Assertion (i) follows from a combination of Theorem 3.4(i), Theorem 3.3(iv), and
Theorem 2.1(i), while (ii) results from combining Theorem 3.3(v)(a), Theorem 3.4(ii), and
Theorem 3.4(iii). □

Example 3.1 Let us show that all the assumptions in Theorem 3.4 (i.e., in Corollary 3.1
as well) hold for the problem in Example 2.1. First, one can check that all hypotheses are
fulfilled at the optimal solution x̄ = −1. Clearly, the set-valued mapping 𝒟(·) is Lipschitz
continuous around x̄ since for any x, x ′ around x̄, one has

e(𝒟(x),𝒟(x ′)) = ⃓⃓x − x ′ ⃓⃓ .

Hence, the set-valued mapping 𝒟(·) is H-lower semicontinuous at x̄. Next, let us show that
𝒟(·, ·) is H-upper semicontinuous at (0+, x̄). Given ε > 0, choose δ > 0 such that U :=
[−1, δ − 1[ ⊂ [−1,0[. Taking x ∈ U and (y,u) ∈ 𝒟t (x) with t > 0 such that x < −t ,

(y,u) := (y, (u1, u1 − x)) = (1, (0,−x)) + (y − 1, (u1, u1))
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with the string of conditions

(︃
0 ≤ u1 < t ∧ − t

u1 − x
≤ y − 1 ≤ 0

)︃
∨
(︃

t ≤ u1 ≤ ūt (x) ∧ − t

u1 − x
≤ y − 1 ≤ t

u1
− 1

)︃
.

Since ūt (x) ≤ 2t and u1 − x ≥ −x > 1 − δ, it follows that

|u1| ≤ 2t ∧ |y − 1| ≤ t

1 − δ
.

Thus for 0 < t < min
(︂
(1 − δ)ε,

ε

2

)︂
, (y − 1, u1, u1) ∈ ε𝔹3 so that

(y − 1, u1, u1 − x) ∈ 𝒟(−1) + ε𝔹3.

Hence for any t in a neighborhood of 0+ and x ∈ U ,

𝒟t (x) ⊂ 𝒟(−1) + ε𝔹3.

This means that the set-valued mapping 𝒟(·, ·) : (t, x) ⇉𝒟t (x) is H-upper semicontinuous
at (0+, x̄) and so is for the set-valued mapping 𝒟(·, x) : t ⇉𝒟t (x) at 0+. Thus, the properties
(i) and (ii) in Theorem 3.4 hold.

Now for Theorem 3.4(iii), we have 𝒮p(0) = {(1,0,0)} and for x ≠ 0,

𝒮p(x) = 𝒟(x) =
{︄ {(0, x, 0)} if 0 < x ≤ 1,

{(1, 0, −x)} if −1 ≤ x < 0.

Obviously, 𝒮p(·) is Lipschitz continuous around x̄ and thus it is inner semicontinuous at any
(x̄, ȳ, ū) ∈ gph𝒮p . On the other hand, for x ∈ [−1,0],

𝒮 t
p(x) = {(1, u1, u1 − x) | 0 ≤ u1 ≤ t } ,

while for 0 < x ≤ 1, we have

𝒮 t
p(x) =

⎧
⎨

⎩

{︃(︃
t

x
, x, 0

)︃}︃
if 0 < t ≤ x,

{(1, u1, u1 − x)| x ≤ u1 ≤ t} if x ≤ t.

So the set-valued mapping t ⇉ 𝒮 t
p(x) is H-lower semicontinuous at 0+ for any x close to x̄.

Indeed, since for any x ∈ [−1,0[ and 0 < t < −x, we have

(1, 0, −x) = (1, t, t − x) − (0, t, t) ∈ 𝒮 t
p(x) + t𝔹3,

it follows that for all ε > 0 and 0 < t < ε, 𝒮p(x) ⊂ 𝒮 t
p(x) + ε𝔹3.

To conclude this section, let us have a general look at specific problem data requirements
for (KKT) to ensure the fulfillment of the assumptions imposed in Corollary 3.1. This will
give (see remark below) specific frameworks based on problem data in (KKT) such that the
following assumptions are satisfied:

(C1) 𝒟(·) is H-lower semicontinuous at x̄;
(C2) 𝒟(·, ·) is H-upper semicontinuous at (0+, x̄);
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(C3) 𝒟(·) is Lipschitz-like around (x̄, ȳ, ū) ∈ gph𝒟;
(C4) 𝒟(·, x) is H-upper semicontinuous at 0+ for any x around x̄;
(C5) 𝒮p(·) is inner semicontinuous at the point (x̄, ȳ, ū) ∈ gph𝒮p ;
(C6) t ⇉ 𝒮 t

p(x) is H-lower semicontinuous at 0+ for any x close to x̄.

Remark 3.1 We have the following scenarios for the fulfillment of assumptions (C1), . . . ,
(C6):

(C1) and (C3): Observe that (y,u) ∈ 𝒟(x) if and only if 0 ∈ Φ(x,y,u) with

Φ(x,y,u) := ϕ(x, y,u) +𝕂 with ϕ(x, y,u) :=
⎛

⎝
ℒ(x, y,u)

−u

g(x, y)

⎞

⎠ and 𝕂 := {0m} × Λ,

where Λ := {︁(a, b) ∈ℝ
2q
⃓⃓ a ≥ 0, b ≥ 0, a⊤b = 0

}︁
. From [33, Theorem 9.43 and Exam-

ple 9.44], if the condition

∇ϕ(x̄, ȳ, ū)⊤v = 0, v ∈ N𝕂(−ϕ(x̄, ȳ, ū)) =⇒ v = 0

holds at (x̄, ȳ, ū) for any (ȳ, ū) ∈ 𝒟(x̄), where N𝕂 denotes the limiting normal cone to 𝕂,
then there exist τ ≥ 0, r > 0, and δ > 0 such that for any x ∈ B(x̄, r) and any (y,u) ∈
B((ȳ, ū), δ), one has

d((y,u),𝒟(x)) ≤ τd(0,Φ(x, y,u)).

Hence, for all x ∈ B(r̄, r), it holds that

d((ȳ, ū),𝒟(x)) ≤ τd(−ϕ(x, ȳ, ū),𝕂)

≤ τ ∥ϕ(x̄, ȳ, ū) − ϕ(x, ȳ, ū)∥
and as ϕ is Lipschiz continuous around (x̄, ȳ, ū) (since it is continuously differentiable),

d((ȳ, ū),𝒟(x)) ≤ τ l ∥x − x̄∥ .

We conclude that 𝒟(·) is H-lower semicontinuous at x̄. Indeed, let ε > 0, then for all
x ∈ B(x̄, r) such that lτ ∥x − x̄∥ < ε, one has d((ȳ, ū),𝒟(x)) ≤ ε for any arbitrary (ȳ, ū) ∈
𝒟(x̄). The conclusion follows by taking the upper bound over 𝒟(x̄). Moreover, Φ is ob-
viously inner semicontinuous at (x̄, ȳ, ū,0) and Lipschitz-like with respect to x uniformly
in (y,u) around (x̄, ȳ, ū,0) (ϕ being Lipschitz continuous with respect to x uniformly in
(y,u)) then from Theorem 3.6 in [16], the set-valued mapping 𝒟(·) is Lipschitz-like around
the point (x̄, ȳ, ū).

(C2) and (C4): Recall that in order to prove that a set-valued mapping Ψ : ℝn ⇉ ℝ
m

defined by inequalities is B (H)-upper semicontinuous at a point w0 ∈ domΨ , in general we
assume that there exists a compact set C ⊂ ℝ

n such that for all parameters w in a certain
neighborhood W of w0, the sets Ψ (w) are contained in C. In our case, all subsets 𝒟(t, x)

are closed so that, assuming the fulfillment of the uniform boundedness around (0+, x̄), i.e.,
the existence of r , α, and γ > 0 such that

∀(t, x) ∈ [0, α[ × B(x̄, r) : 𝒟(t, x) ⊂ γ𝔹m+q, (3.4)

the set-valued mapping t ⇉ 𝒟(t, x) is H-upper semicontinuous at 0+ for any x around x̄

and the set-valued mapping (t, x) ⇉𝒟(t, x) is H-upper semicontinuous at (0+, x̄). Indeed,
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by continuity of all functions data, the set-valued mapping 𝒟(·, x) (resp. 𝒟(·, ·)) is outer
semicontinuous at 0+ (resp. (0+, x̄)) for any x. Hence by assumption (3.4), 𝒟(·, x) (resp.
𝒟(·, ·)) is B-upper semicontinuous at 0+ (resp. (0+, x̄)) for any x (see [33, Theorem 5.19])
and so it is H-upper semicontinuous too from Theorem 2.1(ii).

(C5): Among the most important conditions ensuring the property of inner semicontinu-
ity of 𝒮p at (x̄, ȳ, ū), let us first mention the Robinson condition [32] for the lower-level
problem (1.1). Note that the Robinson condition will be said to hold at (x̄, ȳ, ū) if a strong
second order sufficient condition is satisfied at this point and the linear independence con-
straint qualification holds at ȳ for the lower-level feasible set for x := x̄. Clearly, if the
Robinson condition holds at (x̄, ȳ, ū), then 𝒮p(x̄) = 𝒟(x̄) = {(ȳ, ū)}. As second option,
𝒮p is inner semicontinuous at (x̄, ȳ, ū) if this set-valued mapping is Lipschitz-like around
(x̄, ȳ, ū). Results ensuring Lipschitz-like behavior of solution maps based on the coderiva-
tive criterion and the appropriate second-order subdifferential of nonsmooth functions can
be found in the book by Mordukhovich [28, Chap. 4] and the references therein.

(C6): In general it is difficult to check the H-lower semicontinuity of an optimal solution
set-valued mapping, i.e., that for any x around x̄ and any ε > 0 there exists α > 0, such that
for all t ∈ (0, α), one has

𝒮p(x) ⊂ 𝒮 t
p(x) + ε𝔹m+q,

without knowing the analytical description of the set-valued mapping 𝒮p(x). However, this
property is satisfied (see [40, Theorem 1] and [22, Theorem 2.1]) whenever the set-valued
mapping 𝒟(·, x) is H-lower semicontinuous at 0+ around x̄ (which is satisfied since for
any x, 𝒟(0, x) = 𝒟(x) ⊂ 𝒟(t, x) for all t > 0) and the set-valued mapping t ⇉ 𝒮 t

p(x) is
uniformly closed and bounded (nonempty) near t = 0+ around x̄ as well as the following
condition holds for any x around x̄: for any ε > 0, there exist α, δ > 0 such that for all
t ∈ (0, α) and any (y,u) ∈ 𝒟t (x) satisfying d((y,u),𝒮 t

p(x)) > ε, F(x, y) ≤ ψt
p(x) − δ.

4 Computing C-Stationary Points

Our basic assumption in this section is that at Step 1 of Algorithm 1, we are computing
stationary points of (KKTt ) for t := tk , with the aim to construct a framework ensuring that
the resulting sequence converges to a C-stationary point of (KKT). To proceed, we first
introduce the C-stationarity concept of the latter problem.

Definition 4.1 A point x̄ will be said to be C-stationary point for (Pp) if there exists a vector
(ȳ, ū, α,β, γ ) such that we have the relationships

(x̄, ȳ, ū) ∈ gph𝒮p, (4.1)

∇xF (x̄, ȳ) +
p∑︂

i=1

αi∇Gi(x̄) +
m∑︂

l=1

βl∇xℒl (x̄, ȳ, ū) +
q∑︂

i=1

γi∇xgi(x̄, ȳ) = 0, (4.2)

∇yF (x̄, ȳ) +
m∑︂

l=1

βl∇yℒl (x̄, ȳ, ū) +
q∑︂

i=1

γi∇ygi(x̄, ȳ) = 0, (4.3)

∀j = 1, . . . , p : αj ≥ 0, Gj (x̄) ≤ 0, αjGj (x̄) = 0, (4.4)
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∀i ∈ ν :
m∑︂

l=1

βl∇yl
gi(x̄, ȳ) = 0, ∀i ∈ η : γi = 0, (4.5)

∀i ∈ θ : γi

m∑︂

l=1

βl∇yl
gi(x̄, ȳ) ≥ 0, (4.6)

where the index sets η, θ , and ν are respectively defined as follows:

η := η(x̄, ȳ, ū) := {i ∈ {1, . . . , q} | ūi = 0, gi(x̄, ȳ) < 0 } ,

θ := θ(x̄, ȳ, ū) := {i ∈ {1, . . . , q} | ūi = 0, gi(x̄, ȳ) = 0 } ,

ν := ν(x̄, ȳ, ū) := {i ∈ {1, . . . , q} | ūi > 0, gi(x̄, ȳ) = 0 } .

Similarly, we can define the M- and S-stationarity by replacing condition (4.6) by

∀i ∈ θ : (γi < 0 ∧
m∑︁

l=1
βl∇yl

gi(x̄, ȳ) < 0) ∨ γi

m∑︁

l=1
βl∇yl

gi(x̄, ȳ) = 0
(︃

resp. ∀i ∈ θ : γi ≤ 0 ∧
m∑︁

l=1
βl∇yl

gi(x̄, ȳ) ≤ 0

)︃
.

Obviously, the following string of implications is obtained directly from these definitions:

S-stationarity =⇒ M-stationarity =⇒ C-stationarity.

These concepts were introduced in [13] in the context of (Pp). Further stationarity concepts
for pessimistic bilevel optimization and relevant details can be found in the latter reference.
As for optimistic bilevel programs and the closely related MPCCs, see [9, 10, 21] and refer-
ences therein.

Next, we recall a result, which provides a framework ensuring that a local optimal solu-
tion of problem (Pp) satisfies the C-stationarity conditions. To proceed, we need to introduce
some assumptions. First, the upper-level regularity condition will be said to hold at x̄ if

[︁
α ≥ 0, α⊤G(x̄) = 0, ∇G(x̄)⊤α = 0

]︁ =⇒ α = 0. (4.7)

Obviously, this regularity concept corresponds to the Mangasarian–Fromovitz constraint
qualification for the upper-level constraint. For the remaining qualification conditions, we
introduce the C-qualification conditions at the point (x̄, ȳ, ū), which are defined by

(β, γ ) ∈ Λec(x̄, ȳ, ū,0) =⇒ β = 0, γ = 0, (Ac
1)

(β, γ ) ∈ Λec
y (x̄, ȳ, ū,0) =⇒ ∇xℒ(x̄, ȳ, ū)T β + ∇xg(x̄, ȳ)T γ = 0, (Ac

2)

(β, γ ) ∈ Λec
y (x̄, ȳ, ū,0) =⇒ β = 0, γ = 0, (Ac

3)

with the C-multiplier set Λec(x̄, ȳ, ū,0) resulting from setting v = 0 in

Λec(x̄, ȳ, ū, v) :=
⎧
⎨

⎩
(β, γ ) ∈ℝ

m+q

⃓⃓⃓
⃓⃓
⃓

∇ygν(x̄, ȳ)β = 0, γη = 0
∀i ∈ θ : γi

(︁∇ygi(x̄, ȳ)
)︁
β ≥ 0

v + ∇x,yℒ(x̄, ȳ, ū)⊤β + ∇g(x̄, ȳ)⊤γ = 0

⎫
⎬

⎭
, (4.8)

while Λec
y (x̄, ȳ, ū,0) can be obtained by replacing the derivatives w.r.t. (x, y) in the last

equation in the set (4.8) by the derivatives of the same functions w.r.t. y only. Obviously,

(Ac
1) ⇐= (Ac

3) =⇒ (Ac
2).
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Similarly to the M- and S-stationarity concepts introduced at the beginning of this section,
we can define M- and S-qualification conditions.

Theorem 4.1 ([13]) Let x̄ be a local optimal solution for problem (Pp). Suppose that x̄ is
upper-level regular and 𝒮p is inner semicontinuous at (x̄, ȳ, ū), where the conditions (Ac

1)

and (Ac
2) are also assumed to hold. Then there exists (α,β, γ ) such that the optimality

conditions (4.1)–(4.6) are satisfied.

Note that both the convexity of the lower-level problem and the fulfillment of the regular-
ity condition (SCQ) are needed here to ensure that the result holds. However, it is assumed
that both conditions are satisfied throughout the paper. Hence, they are not explicitly stated
in the result.

Next, we introduce the necessary optimality conditions for the regularized problem
(KKTt ). For a fixed number t > 0, a point xt will be said to satisfy the necessary opti-
mality conditions (or be a stationary point) for problem (KKTt ) if there exists a vector
(yt , ut , αt , βt , γ t ,μt , δt ) such that

(xt , yt , ut ) ∈ gph 𝒮 t
p, (4.9)

∇xF (xt , yt ) + ∇G(xt )⊤αt + ∇xℒ(xt , yt , ut )⊤βt −
q∑︂

i=1

(︁
γ t

i − δt
i u

t
i

)︁∇xgi(x
t , yt ) = 0,

(4.10)

∇yF (xt , yt ) + ∇yℒ(xt , yt , ut )⊤βt −
q∑︂

i=1

(︁
γ t

i − δt
i u

t
i

)︁∇ygi(x
t , yt ) = 0, (4.11)

∀i = 1, . . . , q : ∇ygi(x
t , yt )βt + μt

i + δt
i gi(x

t , yt ) = 0, (4.12)

∀j = 1, . . . , p : αt
j ≥ 0, Gj (x

t ) ≤ 0, αt
jGj (x

t ) = 0, (4.13)

∀i = 1, . . . , q : γ t
i ≥ 0, gi(x

t , yt ) ≤ 0, γ t
i gi(x

t , yt ) = 0, (4.14)

∀i = 1, . . . , q : μt
i ≥ 0, ut

i ≥ 0, μt
iu

t
i = 0, (4.15)

∀i = 1, . . . , q : δt
i ≥ 0, −ut

igi(x
t , yt ) ≤ t, δt

i

(︁
ut

igi(x
t , yt ) + t

)︁= 0. (4.16)

Theorem 4.2 ([37]) For a given t > 0, let xt be an upper-level regular local optimal solu-
tion for problem (KKTt ). Assume that the set-valued mapping 𝒮 t

p is inner semicontinous at
(xt , yt , ut ) ∈ gph𝒮 t

p and the following qualification condition holds at the point (xt , yt , ut ):

∇yℒ(xt , yt , ut )⊤βt −
q∑︁

i=1
∇ygi(x

t , yt )
(︁
γ t

i − δt
i u

t
i

)︁= 0

∇ygi(x
t , yt )βt + μt

i + δt
i gi(x

t , yt ) = 0
γ t ≥ 0, δt ≥ 0, μt ≥ 0

μt
iu

t
i = 0, γ t

i gi(x
t , yt ) = 0, δt

i

(︁
ut

igi(x
t , yt ) + t

)︁= 0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=⇒
{︃

βt = 0m,

δt = γ t = μt = 0q .

(4.17)
Then xt is a stationary point for problem (KKTt ); i.e., there exists a vector (yt , ut , αt , βt , γ t ,

μt , δt ) such that the optimality conditions (4.9)–(4.16) are satisfied.
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To establish the convergence result of Algorithm 1 in this context, the following index
sets, defined for (x, (y,u)) ∈ X ×𝒟t (x) with t > 0, are needed:

IG(x) := {i ∈ {1, . . . , p}| Gi(x) = 0} ,

Iu(x, y,u) := {i ∈ {1, . . . , q}| ui = 0} ,

Ig(x, y,u) := {i ∈ {1, . . . , q}| gi(x, y) = 0} ,

Iug(x, y,u) := {i ∈ {1, . . . , q}| uigi(x, y) + t = 0} .

Clearly, Ig(x, y,u) ∩ Iug(x, y,u) = ∅ and Iu(x, y,u) ∩ Iug(x, y,u) = ∅. Also, for the con-
vergence result, we will use the m–counterparts, (Am

1 ) and (Am
2 ), of assumptions (Ac

1) and
(Ac

2), which can be obtained by simply replacing the C-multipliers set (4.8) by the corre-
sponding M-multipliers set. One can easily check that (Am

1 ) and (Am
2 ) are weaker than (Ac

1)

and (Ac
2), respectively.

Theorem 4.3 Let tk ↓ 0 and (xk)k be a sequence such that xk is a stationary point of problem
(KKTt ) for t := tk with xk → x̄ as k → ∞ such that 𝒮p(x̄) is nonempty and compact.
Assume that x̄ is upper-level regular, and (Am

1 ) and (Am
2 ) hold at all (x̄, y, u) with (y,u) ∈

𝒮p(x̄). Furthermore, let

lim
k→∞

e
(︁𝒮 tk

p (xk), 𝒮p(x̄)
)︁= 0. (4.18)

Then x̄ is a C-stationary point.

Proof Since xk is a stationary point of (KKTt ) for t := tk , there exist a vector (yk, uk) ∈
𝒮 tk

p (xk) and multipliers (αk,βk,μk, γ k, δk) such that the relationships

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∇xF (xk, yk) + ∇GT (xk)αk + ∇xℒ(xk, yk, uk)T βk −
q∑︁

i=1
(γ k

i − δk
i u

k
i )∇xgi(x

k, yk) = 0,

∇yF (xk, yk) + ∇yℒ(xk, yk, uk)T βk −
q∑︁

i=1
(γ k

i − δk
i u

k
i )∇ygi(x

k, yk) = 0,

∇ygi(x
k, yk)βk + μk

i + δk
i gi(x

k, yk) = 0, i = 1, . . . , q

(4.19)
hold together with the following complementarity conditions:

⎧
⎪⎨

⎪⎩

αk
i ≥ 0, Gi(x

k) ≤ 0, αk
i Gi(x

k) = 0, , i = 1, . . . , p,

μk
i ≥ 0, γ k

i ≥ 0, δk
i ≥ 0, i = 1, . . . , q,

μk
i u

k
i = 0, γ k

i gi(x
k, yk) = 0, δk

i (u
k
i gi(x

k, yk) + tk) = 0, i = 1, . . . , q.

Hence, it follows that

∇ygi(x
k, yk)βk =

⎧
⎪⎨

⎪⎩

−μk
i if i ∈ suppμk,

−δk
i gi(x

k, yk) if i ∈ suppδk,

0 if i /∈ (suppμk ∪ suppδk),

and

αk
i ≥ 0, suppαk ⊂ IG(xk), (4.20)

μk
i ≥ 0, suppμk ⊂ Iu(x

k, yk, uk), (4.21)
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γ k
i ≥ 0, suppγ k ⊂ Ig(x

k, yk, uk), (4.22)

δk
i ≥ 0, suppδk ⊂ Iug(x

k, yk, uk), (4.23)

where suppz := {i| zi ≠ 0} is the support of a vector z ∈ℝ
n.

Next, observe that the continuity of the constraint functions G and g leads to

IG(xk) ⊆ IG, Iu(x
k, yk, uk) ⊆ θ ∪ η, Ig(x

k, yk, uk) ⊆ θ ∪ ν, (4.24)

for k sufficiently large; here IG := {i ∈ {1, . . . , p} | Gi(x̄) = 0}. Now, we can introduce
some new Lagrange multipliers by setting

γ̃ k
i :=

⎧
⎨

⎩

γ k
i if i ∈ suppγ k,

−δk
i u

k
i if i ∈ suppδk\η,

0 otherwise,
and μ̃k

i :=
⎧
⎨

⎩

μk
i if i ∈ suppμk,

δk
i gi(x

k, yk) if i ∈ suppδk\ν,

0 otherwise.
(4.25)

Hence, from the optimality conditions in (4.19), we have the system of equations
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∇xF (xk, yk) + ∇G(xk)T αk + ∇xℒ(xk, yk, uk)T βk

−
q∑︁

i=1
γ̃ k

i ∇xgi(x
k, yk) +∑︁

i∈η

δk
i u

k
i ∇xgi(x

k, yk) = 0,

∇yF (xk, yk) + ∇yℒ(xk, yk, uk)T βk −
q∑︁

i=1
γ̃ k

i ∇ygi(x
k, yk) +∑︁

i∈η

δk
i u

k
i ∇ygi(x

k, yk) = 0,

(4.26)
which is accompanied by the conditions

∇ygi(x
k, yk)βk =

⎧
⎨

⎩

−μ̃k
i if i ∈ suppμk ∪ suppδk\ν,

−δk
i gi(x

k, yk) if i ∈ ν,

0 if i /∈ (suppμk ∪ suppδk).

(4.27)

On the other hand, from (4.18), there exists (zk,wk) ∈ 𝒮p(x̄) such that

⃦⃦
yk − zk

⃦⃦ →
k→∞

0 and
⃦⃦
uk − wk

⃦⃦ →
k→∞

0,

and since 𝒮p(x̄) is compact, the sequence (yk, uk)k (up to a subsequence) converges
to some point (ȳ, ū) ∈ 𝒮p(x̄). Next, we are going to show that the sequence (χk) :=(︁
αk,βk, μ̃k, γ̃ k, δk

η∪ν

)︁
k

is bounded. Assume that this is not the case and consider the se-

quence

(︃
χk

∥χk∥
)︃

k

converging to a nonvanishing vector χ := (α,β, μ̃, γ̃ , δη∪ν) (otherwise, a

suitable subsequence is chosen). Dividing (4.26) by ∥χk∥ and taking the limit k → ∞ while
taking into account the continuous differentiability of all involved functions and the fact that
ūi = 0 for i ∈ η,

∇G(x̄)T α + ∇xℒ(x̄, ȳ, ū)T β − ∇xg
T (x̄, ȳ)γ̃ = 0 and ∇yℒ(x̄, ȳ, ū)T β − ∇yg

T (x̄, ȳ)γ̃ = 0.

(4.28)
Let us show now that we have the following inclusions for any k sufficiently large:

suppα ⊂ IG(xk) ⊂ IG, (4.29)

suppμ̃ ⊂ Iu(x
k, yk, uk) ∪ Iug(x

k, yk, uk)\ν ⊂ θ ∪ η, (4.30)
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suppγ̃ ⊂ Ig(x
k, yk, uk) ∪ Iug(x

k, yk, uk)\η ⊂ θ ∪ ν. (4.31)

Indeed, for (4.29), let i ∈ suppα so that αi > 0. Then for any k large enough, αk
i > 0; i.e.,

i ∈ suppαk ⊂ IG(xk) by (4.20). Given now i ∈ IG(xk) for any k sufficiently large so that,
there exists k0 ∈ ℕ such that for any k ≥ k0, Gi(x

k) = 0. Passing to the limit as k → ∞,
Gi(x̄) = 0 (Gi being continuous) and so i ∈ IG(x̄). For (4.30): take i ∈ suppμ̃ thus for such
k, μ̃k

i > 0 i.e., i ∈ suppμ̃k . Then for all k sufficiently large, i ∈ suppμk ∪suppδk\ν. Hence by
properties (4.21) and (4.23), i ∈ Iu(x

k, yk, uk)∪Iug(x
k, yk, uk)\ν. And from (4.24), we have

Iu(x
k, yk, uk) ⊂ θ ∪ η. Now if uk

i gi(x
k, yk) + tk = 0 for k large enough and i /∈ ν, taking the

limit leads to ūigi(x̄, ȳ) = 0 and thus i ∈ θ ∪ η. Similarly, we get (4.31). On the other hand,

αj ≥ 0, Gj (x̄) ≤ 0, αjGj (x̄) = 0 for j = 1, . . . , p,

δη∪ν = lim δk
η∪ν ≥ 0,

γ̃i = lim γ̃ k
i = 0 ∀i ∈ η,

∇ygν(x̄, ȳ)β = lim∇ygν(x
k, yk)

βk

∥χk∥ = − lim
δk
ν

∥χk∥gν(x
k, yk) = −δνgν(x̄, ȳ) = 0.

Let us now prove that for all i ∈ θ , it holds that

(γ̃i > 0 ∧ ∇ygi(x̄, ȳ)β < 0) ∨ γ̃i∇ygi(x̄, ȳ)β = 0.

Assume that γ̃i < 0 or ∇ygi(x̄, ȳ)β > 0 for some i ∈ θ with γ̃i∇ygi(x̄, ȳ)β ≠ 0. If
γ̃i < 0 then for any k large enough, γ̃ k

i < 0 and so from (4.25), i ∈ suppδk . Moreover,
as suppδk ∩ suppμk = ∅, i /∈ suppμk and it follows from equation (4.27) that we have

∇ygi

(︁
xk, yk

)︁ βk

∥χk∥ = − δk
i

∥χk∥gi

(︁
xk, yk

)︁
.

Hence, at the limit, we get ∇ygi(x̄, ȳ)β = 0 since gi(x
k, yk) converges to gi(x̄, ȳ) = 0 (i ∈ θ )

and the sequence

(︃
δk
i

∥χk∥
)︃

is bounded. This leads to a contradiction since γ̃i∇ygi(x̄, ȳ)β ≠ 0

by assumption. Similarly, if ∇ygi(x̄, ȳ)β > 0, for all k large enough, ∇ygi(x
k, yk)βk > 0 so

from (4.27), i ∈ suppδk . Then
γ̃ k

i

∥χk∥ = − δk
i

∥χk∥uk
i converges to γ̃i = 0 (ūi = 0), which leads

to a contradiction too. Consequently, we have
⎧
⎨

⎩

∇yℒ(x̄, ȳ, ū)T β − ∇yg
T (x̄, ȳ)γ̃ = 0,

∇ygν(x̄, ȳ)β = 0, γ̃η = 0,

(γ̃i > 0 ∧ ∇ygi(x̄, ȳ)β < 0) ∨ γ̃i∇ygi(x̄, ȳ)β = 0 for i ∈ θ,

so that (−β, γ̃ ) ∈ Λem
y (x̄, ȳ, ū,0) and by condition (Am

2 ), we get

∇xℒ(x̄, ȳ, ū)T β − ∇xg
T (x̄, ȳ)γ̃ = 0

using (4.28), which yields ∇G(x̄)T α = 0; this implies that α = 0 (x̄ being upper-level reg-
ular). Thus,

⎧
⎨

⎩

∇x,yℒ(x̄, ȳ, ū)T β − ∇gT (x̄, ȳ)γ̃ = 0,

∇ygν(x̄, ȳ)β = 0, γ̃η = 0,

(γ̃i > 0 ∧ ∇ygi(x̄, ȳ)β < 0) ∨ γ̃i∇ygi(x̄, ȳ)β = 0 for i ∈ θ;
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that is, (−β, γ̃ ) ∈ Λem(x̄, ȳ, ū,0) and by the condition (Am
1 ), we get (β, γ̃ ) = 0. Hence

(α,β, μ̃, γ̃ ) = 0 (observe that μ̃ = 0 from (4.27)) and we conclude that δη∪ν ≠ 0. Assume
without loss of generality that there exists i ∈ η such that δi > 0. Thus for k large enough,

i ∈ suppδk
i \ν and from (4.25), μ̃k

i := δk
i gi(x

k, yk) so
μ̃k

i

∥χk∥ converges to μ̃i = δigi(x̄, ȳ) < 0

(since i ∈ η) and the contradiction follows (with the fact that μ̃i = 0). Similary, having
δν ≠ 0 implies that we get a contradiction.

Consequently, the sequence (αk,βk, μ̃k, γ̃ k, δk
η∪ν)k is bounded. Consider (ᾱ, β̄, μ̃,

γ̃ , δ̄η∪ν) its limit (up to a subsequence) so that we have clearly

suppᾱ ⊂ IG, suppμ̃ ⊂ θ ∪ η, suppγ̃ ⊂ θ ∪ ν.

Taking the limit in (4.26), we obtain

⎧
⎪⎪⎨

⎪⎪⎩

∇xF (x̄, ȳ) + ∇G(x̄)T ᾱ + ∇xℒ(x̄, ȳ, ū)T β̄ −
q∑︁

i=1
γ̃ i∇xgi(x̄, ȳ) = 0,

∇yF (x̄, ȳ) + ∇yℒ(x̄, ȳ, ū)T β̄ −
q∑︁

i=1
γ̃ i∇ygi(x̄, ȳ) = 0,

with ᾱ ≥ 0, ᾱ⊤G(x̄) = 0, γ̃ η = 0, and ∇ygν(x̄, ȳ)β̄ = 0.

It remains to prove that γ̃ i∇ygi(x̄, ȳ)β̄ ≤ 0 for i ∈ θ . Let us assume that for some i ∈ θ ,

γ̃ i > 0 and ∇ygi(x̄, ȳ)β̄ > 0.

From (4.25) and the fact that γ̃ i > 0, i ∈ suppγ k and gi(x
k, yk) = 0 for all k large enough,

∇ygi(x
k, yk)βk =

⎧
⎨

⎩

−μk
i if i ∈ suppμk,

0 otherwise.

Thus, ∇ygi(x̄, ȳ)β̄ ≤ 0, which is a contradiction to our assumption that ∇ygi(x̄, ȳ)β̄ > 0.
Similarly, if γ̃ i < 0 and ∇ygi(x̄, ȳ)β̄ < 0. Thus, γ̃ k < 0 for all k large enough and by (4.25),
i ∈ suppδk\η for all k large enough with i /∈ suppμk . Hence, for all k large enough,

∇ygi(x
k, yk)

βk

∥χk∥ = − δk
i

∥χk∥gi(x
k, yk) > 0,

and the limit leads to the inequality ∇ygi(x̄, ȳ)β̄ ≥ 0, which is a contradiction. Hence, we
have the inequality γ̃ i (∇ygi(x̄, ȳ)β̄) ≤ 0 for i ∈ θ and the conclusion follows. □

To illustrate this result, we apply it to the problem from Example 2.1.

Example 4.1 Observe that for the optimal solution x̄ = −1 of Example 2.1, 𝒮p(x̄) is
(nonempty) compact and the conditions (Am

1 ) and (Am
2 ) are trivially satisfied at all

(x̄, y, u) ∈ gph𝒮p . Observe also that xk = −1 and xk =√
tk are the stationary points of

(KKTt ) for t := tk . Evidently, property (4.18) is satisfied for xk = −1. In fact, we have for
any sequence (xk)k in [−1,0[ such that xk → x̄ = −1,

𝒮 tk
p (xk) = {(1, (uk, uk − xk)) | 0 ≤ uk ≤ tk } for all k.
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Hence, giving (uk) such that 0 ≤ uk ≤ tk with tk → 0+, we get

d((1, (uk, uk − xk)), 𝒮p(x̄)) = ∥(1, (uk, uk − xk)) − (1, (0,1))∥ ≤ 2uk + |xk + 1| −→ 0

and thus e
(︁𝒮 tk

p (xk), 𝒮p(x̄)
)︁−→ 0 as k −→ ∞.

However, for the stationary point xk =√
tk , the property (4.18) does not hold since

e
(︁𝒮 tk

p (
√

tk), 𝒮p(0)
)︁=

⃦⃦
⃦⃦
(︃

tk√
tk

,
√

tk, 0

)︃
− (1, 0, 0)

⃦⃦
⃦⃦= ⃓√⃓tk − 1

⃓⃓+√
tk −→ 1.

Note that condition (4.18) is satisfied if the set-valued mapping (t, x) ⇉ 𝒮 t
p(x) is H-

upper semicontinuous at (0, x̄); i.e., e(𝒮 t
p(x), 𝒮0

p(x̄)) −→ 0 as (t, x) −→ (0, x̄), taking into
account the equality 𝒮0

p(x̄) = 𝒮p(x̄). The following example shows that the condition (4.18)
can be satisfied in the absence of the H-upper semicontinuity of the set-valued mapping
(t, x) ⇉ 𝒮 t

p(x).

Example 4.2 Consider a scenario of problem (Pp) defined by

F(x, y) := lnx − |y| for x ∈]0,1], F (0, y) := −|y| , K(x) := ]−∞,1] and

f (x, y) := −xy.
(4.32)

Then we obtain ψp(0) = 0 while for x ≠ 0, ψp(x) = lnx − 1 given that

𝒮p(x) =
{︄ {(1, x)} if x ≠ 0,

{(0, 0)} if x = 0.

On the other hand, we get for t > 0 sufficiently small,

𝒮 t
p(x) =

⎧
⎨

⎩

{︃(︃
1 − t

x
, x

)︃}︃
if x ≠ 0,

{(0,0)} if x = 0.

Here, ψt
p(0) = 0 while for x ≠ 0, ψt

p(x) = lnx−1+ t

x
. Hence one can check that xk = tk

is the unique stationary point of (KKTt ) for t := tk and the property (4.18) holds since

e
(︁𝒮 tk

p (xk), 𝒮p(0)
)︁= ∥(0, tk) − (0,0)∥ = tk −→ 0.

However for uk = √
tk , we have limk→∞ e(𝒮 tk

p (uk),𝒮p(0)) = 1. That is, the set-valued map-
ping (t, x) ⇉ 𝒮 t

p(x) is not H-upper semicontinuous at (0,0).

The next result gives a framework that instead relies on semicontinuity properties of the
set-valued mapping 𝒟 and 𝒟t to ensure that condition (4.18) is satisfied.

Proposition 4.1 Let (tk) ↓ 0 and let (xk) −→
k→∞

x̄ such that 𝒟(x̄) is nonempty and compact.

Assume that the set-valued mapping x ⇉ 𝒟(x) (resp. (t, x) ⇉ 𝒟t (x)) is H-lower semi-
continuous at any (x̄, y, u) ∈ gph𝒟 (resp. H-upper semicontinuous at (0+, x̄)). Then the
property (4.18) holds.
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Proof Assuming that the statement is not true, that is, (4.18) does not hold, then there exist
δ > 0 and a sequence (yk, uk)k such that (yk, uk) ∈ 𝒮 tk

p (xk) and

d((yk, uk), 𝒮p(x̄)) ≥ δ for all k. (4.33)

Therefore, since (yk, uk) ∈ 𝒟tk (xk), it holds that

d((yk, uk), 𝒟(x̄)) ≤ e(𝒟tk (xk),𝒟(x̄))

with e(𝒟tk (xk),𝒟(x̄)) −→ 0 as k −→ ∞, since the set-valued mapping (t, x) ⇉ 𝒟t (x) is
H-upper semicontinuous at (0+, x̄). Hence, there exists a sequence (zk,wk) in 𝒟(x̄) such
that

⃦⃦yk − zk
⃦⃦−→ 0 and

⃦⃦uk − wk
⃦⃦−→ 0

and due to the compactness of the set 𝒟(x̄), the sequence (zk,wk) (up to a subsequence)
converges to a point (ȳ, ū) ∈ 𝒟(x̄) and so does the subsequence (yk, uk)k .

Let us prove now that (ȳ, ū) ∈ 𝒮p(x̄). Indeed, from assertion (iii) in Proposition 2.1,

F(xk, yk) − ψp(xk) ≥ F(xk, yk) − ψtk
p (xk) ≥ 0

as (yk, uk) ∈ 𝒮 tk
p (xk). On the other hand, since F(·, ·) is continuous and 𝒟(·) is H-lower

semicontinuous, the function ψp(·) is lower semicontinuous at x̄. Hence,

F(x̄, ȳ) − ψp(x̄) ≥ F(x̄, ȳ) − lim inf
k→∞

ψp(xk) = lim sup
k→∞

(F (xk, yk) − ψp(xk)) ≥ 0.

Consequently, (ȳ, ū) ∈ 𝒮p(x̄) and from the following equality

d((yk, uk), 𝒮p(x̄)) ≤ ⃦⃦(yk, uk) − (ȳ, ū)
⃦⃦

we get lim
k−→∞

d((yk, uk), 𝒮p(x̄)) = 0, which is a contradiction to (4.33). □

In Theorem 4.3, the requirement that the sequence (xk)k be such that each xk is
a stationary point of problem (KKTt ) for t := tk assumes the existence of a vector
(yt , ut , αt , βt , γ t ,μt , δt ) such that the optimality conditions (4.9)–(4.16) are satisfied. A pri-
ori, it is not clear whether such a vector actually exists. According to Theorem 4.2, such a
vector can exist if the point xk is an upper-level regular local optimal solution for (KKTt )
for t := tk , the set-valued mapping 𝒮 tk

p is inner semicontinuous at (xk, yk, uk) for some
(yk, uk) ∈ 𝒮 tk

p (xk), and the CQ (4.17) holds at (xk, yk, uk). The question is, how can we en-
sure that these three conditions are automatically satisfied as our sequence gets close to the
point of interest. Theorem 3.4(iii) has already given some conditions ensuring that we can
find a neighborhood U × V of some reference point (x̄, (ȳ, ū)) such that for all t ↓ 0, 𝒮 t

p is
inner semicontinuous at all points (x, y,u) with x ∈ U and (y,u) ∈ V ∩ 𝒮 t

p(x).
Theorem 4.4 below, which is a variant of [31, Proposition 2.2], establishes sufficient

conditions for conditions (4.7) and (4.17) to hold at all points in a neighborhood of our
reference point. Since the challenging part of this result relies on the satisfaction of the
qualification conditions (Am

1 ) and (Am
2 ) at our reference point, we first state the stability of

(Am
1 ) and (Am

2 ), in the sense that if they hold at a given point, they also hold at all points in
some neighborhood of the point.
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Proposition 4.2 Assume that conditions (Am
1 ) and (Am

2 ) hold at (x̄, ȳ, ū). Then there exists
a neighborhood U × V of (x̄, (ȳ, ū)) such that (Am

1 ) and (Am
2 ) hold at any (x, y,u) with

x ∈ U and (y,u) ∈ V ∩𝒟(x).

Theorem 4.4 Let x̄ be upper-level regular and suppose that (Am
1 ) and (Am

2 ) hold at (x̄, ȳ, ū)

with (ȳ, ū) ∈ 𝒟(x̄). Then there exist neighborhoods U and V of x̄ and (ȳ, ū), respectively,
such that for all t close to 0+, the CQs (4.7) and (4.17) for (KKTt ) are satisfied at all points
(x, y,u) with x ∈ U ∩ X and (y,u) ∈ V ∩𝒟t (x).

The proofs of these two results are given in Appendix A.1 and Appendix A.2, respec-
tively.

5 Practical Implementation and Numerical Experiments

Based on the convergence results from Sects. 3 and 4, we can consider two possible ways
to solve problem (KKT) by means of the Scholtes relaxation. For the first option, we need
a solver for the minmax problem (KKTt ) for a fixed value of t > 0. Given the complicated
nature of the coupled inner feasible set of the problem, this is a very challenging problem,
and we are not aware of a handy tool to efficiently solve it. However, we can easily have ac-
cess to tractable solvers for systems of equations. Hence, we are going to focus our attention
here at computing C-stationary points for problem (KKT) based on a completely detailed
form of (4.9)–(4.16). Clearly, it suffices to provide a detailed form for condition (4.9). From
the definition of 𝒮 t

p , we have the equivalence

(xt , yt , ut ) ∈ gph𝒮 t
p ⇐⇒ [︁

(yt , ut ) ∈ 𝒟t (xt ) and F(xt , yt ) − ψt
p(xt ) ≥ 0

]︁
, (5.1)

which corresponds to the optimal value reformulation of the underlying parametric optimi-
zation problem. Considering the challenge in dealing with the optimal value function in the
process of solving bilevel optimization problems (see, e.g., [18, 19, 35, 39]), we will instead
consider the KKT-type approach here, which ensures that if (xt , yt , ut ) ∈ gph𝒮 t

p ,

∇y,uF (xt , yt ) ∈ N𝒟t (xt )(y
t , ut ). (5.2)

If the point (xt , yt , ut ) satisfies a certain CQ for the conditions defining the set Dt(xt )

in (1.3), then we can find some (βt , δt , γ t ) such that the conditions (4.11)–(4.12) and
(4.14)–(4.16) hold. This clearly means that if some form of sufficient condition is satis-
fied, then a point satisfying (4.11)–(4.12) and (4.14)–(4.16) could also satisfy condition
(4.9). CQs to ensure that a point satisfying the latter condition implies the fulfilment of
(4.11)–(4.12) and (4.14)–(4.16) and sufficient conditions to guarantee the equivalence be-
tween the two is out of the scope of this paper and will be analyzed with more care in a
separate piece of work.

The main point to take from these observations is that solving the system (4.10)–(4.16)
can be a sensible proxy to compute stationary points for (KKTt ) for each fixed t > 0. This
is what we are going to do here, just to give a flavour of the potential for the Scholtes relax-
ation method in the context of the pessimistic bilevel optimization problem. And numerical
examples presented later in this section show that solving (4.10)–(4.16) as t ↓ 0 presents a
good potential in computing optimal solutions and/or C-stationary points for problem (Pp).
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Clearly, the focus of the numerical calculations in this section will be to solve the system
of optimality conditions in (4.10)–(4.16) by means of the well-known Fischer-Burmeister
function [17]. Denoting by ζ t := (︁xt , yt , ut , αt , βt , γ t , δt ,μt

)︁
, this can be reformulated into

ΦS
t (ζ t ) = 0, (5.3)

which is a square n+2m+p+3q +1 by n+2m+p+3q +1 system of equations. The size
of this system can be reduced by substituting −μt = ∇yg(xt , yt )βt +δtg(xt , yt ) from (4.12)
into (4.15). With this transformation, the corresponding version of (5.3) will be a square
n+2m+p +2q +1 by n+2m+p +2q +1 system of equations. As part of the analysis in
this section, we will compare the behavior of Algorithm 1 in these two scenarios. In Step 1,
we will solve the corresponding version of the system in (5.3). However, to be able to use an
off-the-shelf solver for smooth equations, we consider the following smooth approximation
ϕϵ : ℝ2 → ℝ of the Fischer-Burmeister function to deal with the corresponding version of
the complementarity conditions (4.13)–(4.16):

ϕϵ(a, b) :=
√︁

a2 + b2 + 2ϵ − a + b. (5.4)

The smoothing parameter ϵ > 0 helps to guarantee the differentiability of the function at the
point (a, b) = (0,0). Note that it is well known that

ϕϵ(a, b) = 0 ⇐⇒ [a > 0, b < 0, ab = −ϵ] . (5.5)

Hence, the corresponding detailed and compact smooth approximation of equation (5.3)
become

Φ
Sd
t (ζ )

:=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∇xF (xt , yt ) + ∇G(xt)⊤αt + ∇xℒ(xt , yt , ut )⊤βt + ∇xg(xt , yt )⊤ (︁δtut − γ t
)︁

∇yF (xt , yt ) + ∇yℒ(xt , yt , ut )⊤βt + ∇yg(xtyt )⊤ (︁δtut − γ t
)︁

−∇yg(xt , yt )βt + μt + δtg(xt , yt )

ϕϵ(αt
j ,Gj (x

t ))j=1,...p

ϕϵ(γ t
i , gi(x

t , yt ))i=1,...q

ϕϵ(μt
i ,−ut

i)i=1,...q

ϕϵ(δt
i ,−ut

igi(x
t , yt ) − t)i=1,...q

ℒ(xt , yt , ut )

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 0
(5.6)

and

ΦSc
t (ζ )

:=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∇xF (xt , yt ) + ∇G(xt)⊤αt + ∇xℒ(xt , yt , ut )⊤βt + ∇xg(xt , yt )⊤ (︁δtut − γ t
)︁

∇yF (xt , yt ) + ∇yℒ(xt , yt , ut )⊤βt + ∇yg(xt , yt )⊤ (︁δtut − γ t
)︁

ϕϵ(αt
j ,Gj (x

t ))j=1,...p

ϕϵ(γ t
i , gi(x

t , yt ))i=1,...q

ϕϵ(ut
i ,∇ygi(x

t , yt )βt − δt
i gi(x

t , yt ))i=1,...q

ϕϵ(δt
i ,−ut

igi(x
t , yt ) − t)i=1,...q

ℒ(xt , yt , ut )

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 0,

(5.7)
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respectively. Here, Φ
Sd
t and Φ

Sc
t denote the detailed and compact form of the necessary

optimality conditions from the Scholtes relaxation, respectively.
We now illustrate the numerical performance of Algorithm 1 using MATLAB (R2022a)

on some test problems from [26]. We choose the default starting point ζ o = (xo, yo, uo,αo,

βo, δo, γ o,μo) in the following way: the pair (xo, yo) are generated randomly while we set
uo = (|g1(x

o, yo)|, . . . , |gp(xo, yo)|), αo = (|G1(x
o)|, . . . , |Gm(xo)|), βo = yo, uo = δo =

γ o = μo. For every subsequent iteration, the starting point for Step 1 is the solution obtained
from the previous iteration. The algorithm is stopped if the stopping criterion ∥ΦS

t (ζ k)∥ <

10−6 is reached or the maximum iteration limit of 104 is exceeded. In the case when this is
not satisfied, we update the iterate of the algorithm by setting tk+1 = θtk , where θ = 0.05.

The performance of the algorithm is measured using the profile by Dolan and Móre [15],
which has widely been used to compare numerical methods. We denote by ti,s the metric of
comparison for a solver s ∈ 𝒮 to solve problem i ∈ ℐ and defined the performance ratio by

ri,s = ti,s

min{ti,s′ : s ′ ∈ 𝒮} , ∀s ∈ 𝒮, i ∈ ℐ,

where 𝒮 is the set of all solvers and ℐ is the set of all problems used in the experiment. Note
that ri,s is the ratio of the performance of solver s ∈ 𝒮 to solve problem i ∈ ℐ compared
to the best performance of any other solver in 𝒮 to solve i. The cumulative function Ps :
[1,∞) → [0,1] of the current performance profile index associated with solver s is defined
by

Ps(t) := |{i ∈ ℐ|ri,s ≤ t}|
|ℐ| , (5.8)

where |ℐ| is the cardinality of ℐ . By (5.8), the performance profile index is counting the
number of problems for which the performance ratio of the solver s is better than τ . Note
that ωs is a non-decreasing function, where Ps(1) represents the fraction of problems for
which solver s ∈ 𝒮 shows the best performance.

From [26], we consider the problems whose optimal pessimistic solutions are described
in [36] that consists of 18 test examples. Out of these examples, we identify three examples,
namely, mb_1_1_06, mb_1_1_10, and mb_1_1_17, where the lower-level problem is
convex and has linear lower-level constraints, both w.r.t. y. This ensures that this set of ex-
amples satisfy the basic assumptions ensuring from problem (KKT) is well-defined. Also,
we identify another set of examples whose upper-level constraint function is independent
from y, thus conforming with the type of pessimistic problem described in (Pp), but with
problem (KKT) not well-defined, as the lower-level problem is either nonconvex or does
not necessarily satisfy the MFCQ w.r.t. y. For each of these 10 examples, mb_1_1_03,
mb_1_1_04, mb_1_1_05, mb_1_1_07, mb_1_1_08, mb_1_1_09, mb_1_1_11,
mb_1_1_12, mb_1_1_13, and mb_1_1_14 of the form (Pp), we know a true optimal
solution. We divide the numerical computations into Experiment I (with the three examples
for which the KKT reformulation problem (KKT) is well-defined) and Experiment II for
the remaining seven problems. Each example is tested with 10 randomly generated starting
points as described above and the result in each instance is recorded for comparison.

In Table 1, the first column contains the names of the example as labelled in [26] and [36].
The second column indicates if the problem satisfies both lower-level convexity and linear-
ity of the constraints (Y) or otherwise (N). The column Fopt (known) contains the known
upper-level objective function value of the optimal solution for the optimistic version of the
problem as obtained in [36], column Fpes (known) contains the upper-level objective func-
tion value of the optimal solution for the pessimistic version of the problem as obtained in
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Table 1 Comparison of objective function value F(x, y) obtained by algorithm with the known F(x, y) in
[36]. The number in the parenthesis indicates the number of instances the optimal value is obtained out of 10
instances

Problem Status Fopt (known) Fpes (known) F(x, y) (detailed) F(x, y) (compact)

mb_1_1_03 N 0.5 0.5 0.5 (6) 0.5 (8)

mb_1_1_04 N −0.8 0.5 0.5 (8) 0.5 (7)

mb_1_1_05 N 0 0 0.02 (4) 0.02 (6)

mb_1_1_06 Y −1 0 0 (6) 0 (6)

mb_1_1_07 N 0.25 0.2507 0.062 (10) 0.063 (10)

mb_1_1_08 N 0 0 −1.0217 (10) −1.0161 (9)

mb_1_1_09 N −2 −2 −2 (8) −2 (8)

mb_1_1_10 Y 0.1875 0.1875 0.1875 (8) 0.1875 (8)

mb_1_1_11 N 0.25 0.251 −0.03 (5) −0.03 (5)

mb_1_1_12 N −0.258 0 −0.2581 (7) −0.258 (9)

mb_1_1_13 N 0.3125 0.3135 0.3095 (10) 0.3012 (10)

mb_1_1_14 N 0.2095 0.2095 0.2095 (5) 0.2095 (5)

mb_1_1_17 Y −1.7550 −0.2929 −1.7550 (7)/−0.2929 (2) −1.7550 (7)/−0.2929 (2)

[36]. The column F(x, y) (detailed) is the obtained/computed upper-level objective func-
tion value by the Scholtes Algorithm with (5.6) and the column F(x, y) (compact) is the
computed upper-level objective function value by the Scholtes Algorithm using (5.7). We
also compare the performance of the methods in terms of the number of outer iterations,
time of execution, number of inner iterations (i.e., the number of iterations for MATLAB’s
fsolve to solve the system), the experimental order of convergence (EOC), and the num-
ber of instances for which the algorithm obtains a C-stationary point. Note that the EOC is
defined by

EOC = max

{︄
log∥Φ𝒮

tk
(ζK−1)∥

log∥Φ𝒮
tk
(ζK−2)∥ ,

log∥Φ𝒮
tk
(ζK)∥

log∥Φ𝒮
tk
(ζK−1)∥

}︄

.

In order to check the feasibility of the point obtained by the algorithm, from (1.2), we
checked that the point obtained by the algorithm satisfied uj ≥ 0, −gj (x, y) ≥ 0, j =
1, . . . , q using 10−4 as tolerance level, noting that ℒ(x, y,u) is already included in the sys-
tems (5.6) and (5.7).

Based on our numerical experiments, we observed that the compact form of the reformu-
lation of the Scholtes method demonstrates better numerical performance compared to its
detailed form. Figure 2 illustrates the performance profile of the first experiment, using the
number of outer iterations and execution time. Additionally, the bar chart in Fig. 3 shows
the performance of both detailed and compact formulations regarding feasibility checks and
C-stationarity checks for each example. Specifically, the compact Scholtes method achieved
the least outer iterations numbers in approximately 90% of the instances while the detailed
Scholtes method has the least outer iteration numbers in approximately 10% instances. Sim-
ilarly, the compact Scholtes method has the least execution time in approximately 60% in-
stances while the detailed Scholtes form has the least execution time in approximately 40%
instances. This behavior is corroborated with the average values presented in Table 2, where
the compact form consistently exhibits the lowest numbers of iterations and execution time.
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Fig. 2 Performance profile (PP) and feasibility and C-stationary check for detailed versus compact form with
examples satisfying the lower-level convexity and regularity conditions (Experiment I)

Furthermore, we can compare the solutions obtained by both detailed and compact
Scholtes methods with the solutions reported in [36] (which are referred to as the known
solution) for each of the problems in the experiments. The optimal function value for the
pessimistic problem of mb_1_1_06 as reported in [36] is 0 which match the results ob-
tained by both the detailed and compact Scholtes forms in 6 out of 10 instances. Also, the
known optimal functional value for both optimistic and pessimistic for problem mb_1_1_10
is 0.1875. The detailed and compact forms of the Scholtes method both obtained this value
in 8 out of 10 instances. Additionally, 5 out of 10 instances satisfies the C-stationarity check.
For problem mb_1_1_17, the known optimal objective value reported in [36] is −1.7550 for
the optimistic case of the problem and −0.2929 for the pessimistic case of the problem. In
our experiment, both the detailed and compact Scholtes forms obtained the optimistic solu-
tion (−1.7550) in 7 out of 10 instances and the pessimistic value (−0.2929) in 2 out of 10
instances. However, none of the 10 instances satisfied the C-stationarity check in the exper-
iment. Similarly in experiment II, the compact form of the Scholtes method demonstrated
better perfomance compared to the detailed form. Specifically, the compact system attained
the least number of iterations in approximately 75% of the test problems, whereas the de-
tailed form managed this in about 60% of the test problems. Note that this result include the
instances where both methods have the same number of iterations. Although the detailed
form had a slightly better performance in terms of execution time, with 52% compared to
48% for the compact form, the average execution time was smaller for the compact Scholtes
form (0.49) than the detailed Scholtes form (0.56). This indicates that the values of the exe-
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Fig. 3 Performance profile of detailed versus compact form for with examples not satisfying convexity and
regularity conditions (Experiment II)

Table 2 Computational result for Scholtes relaxation

Experiment I Experiment II

Detailed Compact Detailed Compact

Av. outer iter 6.9 4.7 6.12 5.56

Av. time 0.64 0.22 0.56 0.49

Av inner iter 505.23 189.27 370.9 368.4

Av. accuracy 0.40 0.43 0.48 0.48

C-stationarity (%) 20 43.3 8 40

Feasibility (%) 43.3 83.3 18 51

EOC ≤ 1 (%) 73.3 96.67 85 86

EOC > 1 (%) 26.7 3.33 15 14

cution time at instances where the detailed form has an advantage are very large compared
to the values of the execution time at instances where the compact form has an advantage.

We also assessed whether the solutions computed by the Scholtes methods are the same
with the known solutions in [36] for the problems. For problem mb_1_1_03, the known
optimal solution for both the optimistic and pessimistic cases of the problem is 0.5. This
value was obtained by the detailed form in 6 out of 4 instances and by the compact form



10 Page 32 of 37 I. Benchouk et al.

in 8 out of 10 instances. Additionally, the feasibility condition was met in 4 instances by
the detailed form and in all 10 instances by the compact form. However, the C-stationarity
condition was not met in any of the 10 instances by either form. More so, neither the detailed
nor the compact form was able to compute the optimal function value for the problems
mb_1_1_05, mb_1_1_07, mb_1_1_08, mb_1_1_11, and mb_1_1_13 in the 10 instances
tested. For the problem mb_1_1_12, the solution for the optimistic problem was obtained
in 7 instances by the detailed form and 9 instances out of 10 by the compact form, but the
solution for the pessimistic case of the problem was not obtained. On the other hand, both
methods performed very well for the problems mb_1_1_09 and mb_1_1_14 obtaining both
the optimistic and pessimistic cases of the problems in 8 and 5 instances, respectively. The
compact form of the Scholtes method also excelled in satisfying the C-stationarity condition
more frequently than the detailed form in each example. Overall, these results underscore
the numerical advantages of the compact form of the Scholtes method over the detailed
form, particularly in terms of iteration count, execution time, ability to meet feasibility and
C-stationarity conditions across a range of test problems. It also support the optimal solution
for the test problems as reported in [36].

6 Conclusion and Topics for Future Work

We have considered the KKT reformulation of the pessimistic bilevel optimization problem
(KKT) and built a theoretical framework to solve it by iteratively computing a sequence of
solutions of the relaxation problem (KKTt ) for t := tk as tk ↓ 0. Then, considering the fact
that problem (Pp) is globally/locally equivalent to problem (KKT), under mild assumptions,
solving the corresponding class of the pessimistic bilevel program boils down to solving a
special class of min-max optimization problems. Solving min-max optimization problems
of the type in (KKTt ) is not an easy task, especially as the inner constraints there are param-
eterized by (y,u) even as we fix t > 0; a detailed analysis of the complexity of solving such
problems is conducted in the recent paper [6]. Hence, we also pay attention to the conver-
gence of the Scholtes relaxation in the case where the stationary points of problem (KKTt )
are computed and show that the limit of the corresponding sequence is a C-stationary points
problem (KKT) under suitable assumptions.

Considering techniques from [18, 19, 35, 39], for example, our numerical experiments
to compute C-stationary points for (KKT) reveal that the compact form of the Scholtes
relaxation leads to more practical solutions than the detailed form. It in fact comes out that
the compact form of the method takes lesser number of iterations and time of execution
to obtain a solution than the detailed form of the Scholtes relaxation algorithm. Moreover,
the dimension of the compact form is smaller than that of the detailed form because of the
substitution of variables. In the future, instead of using MATLAB’s fsolve function to
solve the system of equations, we can explore the use of the semismooth Newton method
to solve the system of equations. Another way to extend our discussion from the present
paper is to use the concept of Newton-differentiability [20] instead of the semismooth as the
underlying tool of generalized differentiation in the algorithm.

Sufficient conditions ensuring that a point satisfying (4.11)–(4.12) and (4.14)–(4.16)
could lead to a point that satisfies condition (4.9) will also be studied in the future.
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Appendix

A.1 Proof of Proposition 4.2

If such a neighborhood does not exist, then we can find a sequence of (xk, yk, uk)k , which
converges to (x̄, ȳ, ū) as k → ∞ as k → ∞ with (yk, uk) ∈ 𝒟(xk) and such that con-
dition (Am

1 ) or (Am
2 ) does not hold at (xk, yk, uk). Assuming that (Am

1 ) is not satisfied,
there exists a sequence (βk, γ k)k with

⃦⃦
(βk, γ k)

⃦⃦ = 1 such that we have the inclusion
(βk, γ k) ∈ Λem(xk, yk, uk,0); i.e.,

⎧
⎪⎨

⎪⎩

∇x,yℒ(xk, yk, uk)⊤βk + ∇g(xk, yk)⊤γ k = 0,

∇ygνk (xk, yk)βk = 0, γ k

ηk = 0,
(︁
γ k

i > 0 ∧ ∇ygi(x
k, yk)βk > 0

)︁∨ γ k
i ∇ygi(x

k, yk)βk = 0 for all i ∈ θk,

(A.1)

where θk := θ(xk, yk, uk), ηk := η(xk, yk, uk), and νk := ν(xk, yk, uk). Clearly,

θk ⊂ θ, ηk ⊂ θ ∪ η, and νk ⊂ θ ∪ ν for all k sufficiently large. (A.2)

As i ∈ ηk for all i ∈ η, i ∈ νk for all i ∈ ν whenever k is sufficiently large, and by setting

γ̄ k
i :=

{︄
γ k

i if i ∈ θ ∪ ν,

0 otherwise,
(A.3)

the system of equations (A.1) becomes the following one:

⎧
⎪⎨

⎪⎩

∇x,yℒ(xk, yk, uk)⊤βk + ∇g(xk, yk)⊤γ̄ k = 0,

∇ygν(x
k, yk)βk = 0, γ̄ k

η = 0,

(γ̄ k
i > 0 ∧ ∇ygi(x

k, yk)βk > 0) ∨ γ̄ k
i (∇ygi(x

k, yk)βk) = 0 for all i ∈ θ.

(A.4)

Now without loss of generality, we may assume that the sequence (βk, γ̄ k) converges to
(β, γ̄ ) as k → +∞ with ∥(β, γ̄ )∥ = 1. Consequently, as all functions in (A.4) are continu-
ous, we get

⎧
⎪⎨

⎪⎩

∇x,yℒ(x̄, ȳ, ū)⊤β + ∇g(x̄, ȳ)⊤γ̄ = 0,

∇ygν(x̄, ȳ)β = 0, γ̄η = 0,

(γ̄i ≥ 0 ∧ ∇ygi(x̄, ȳ)β ≥ 0) ∨ γ̄i (∇ygi(x̄, ȳ)β) = 0 for all i ∈ θ.

Now if for some i ∈ θ , γ̄i (∇ygi(x̄, ȳ)β) ≠ 0 then γ̄i > 0 and ∇ygi(x̄, ȳ)β > 0 and so

(γ̄i > 0 ∧ ∇ygi(x̄, ȳ)β > 0) ∨ γ̄i (∇ygi(x̄, ȳ)β) = 0 for all i ∈ θ.

Hence (Am
1 ) is not satisfied at (x̄, ȳ, ū) since 0 ≠ (β, γ̄ ) ∈ Λem(x̄, ȳ, ū,0).

Similarly, if (Am
2 ) is not satisfied, we can find a nonvanishing sequence (βk, γ k)k such

that

∇xℒ(xk, yk, uk)⊤βk + ∇xg(xk, yk)⊤γ k ≠ 0
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and (βk, γ k) ∈ Λem
y (xk, yk, uk,0) so that,

⎧
⎪⎨

⎪⎩

∇yℒ(xk, yk, uk)⊤βk + ∇yg(xk, yk)⊤γ k = 0,

∇ygvk (xk, yk)βk = 0, γ k

ηk = 0,
(︁
γ k

i > 0 ∧ ∇ygi(x
k, yk)βk > 0

)︁∨ γ k
i ∇ygi(x

k, yk)βk = 0 for all i ∈ θk.

Taking the sequence (γ̄ k)k as in (A.3), we obtain
⎧
⎪⎨

⎪⎩

∇yℒ(xk, yk, uk)⊤βk + ∇yg(xk, yk)⊤γ̄ k = 0,

∇ygν(x
k, yk)βk = 0, γ̄ k

η = 0,

(γ̄ k
i > 0 ∧ ∇ygi(x

k, yk)βk > 0) ∨ γ̄ k
i (∇ygi(x

k, yk)βk) = 0 for all i ∈ θ,

and assuming that the sequence (βk, γ̄ k)k (up to a subsequence) converges to the vector
(β, γ̄ ) as k → +∞ with ∥(β, γ̄ )∥ = 1, we clearly arrive at

⎧
⎪⎨

⎪⎩

∇yℒ(x̄, ȳ, ū)⊤β + ∇yg(x̄, ȳ)⊤γ̄ = 0,

∇ygν(x̄, ȳ)β = 0, γ̄η = 0,

(γ̄i ≥ 0 ∧ ∇ygi(x̄, ȳ)β ≥ 0) ∨ γ̄i (∇ygi(x̄, ȳ)β) = 0 for all i ∈ θ,

so that (β, γ̄ ) ∈ Λem
y (x̄, ȳ, ū,0); this implies, by (Am

2 ), that

∇xℒ(x̄, ȳ, ū)T β + ∇xg(x̄, ȳ)T γ̄ = 0.

Hence (β, γ̄ ) ∈ Λem(x̄, ȳ, ū,0), leading to (β, γ̄ ) = 0, by (Am
1 ) at (x̄, ȳ, ū).

A.2 Proof of Theorem 4.4

Since x̄ is upper-level regular, by continuity of G, the upper-level regularity condition
(4.7) is satisfied at all points x ∈ X, which are sufficiently close to x̄. Now from Propo-
sition 4.2, there is a neighborhood U × V of (x̄, (ȳ, ū)) such that (Am

1 ) and (Am
2 ) hold at

any (x, (y,u)) ∈ U × V . Consider now t close to 0 and (x, (y,u)) sufficiently close to
(x̄, (ȳ, ū)), namely, x ∈ U ∩ X and (y,u) ∈ V ∩𝒟t (x). Let (β, γ, δ,μ) ∈ℝ

m+3q such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∇yℒT (x, y,u)β +
q∑︁

i=1
(γi − δiui)∇ygi(x, y) = 0,

∇ygi(x, y)β − μi − δigi(x, y) = 0, i = 1, . . . , q,

γi ≥ 0, δi ≥ 0, μi ≥ 0, i = 1, . . . , q,

μiui = 0, γigi(x, y) = 0, δi(uigi(x, y) + t) = 0, i = 1, . . . , q.

Hence, it follows that we have

∇ygi(x, y)β = 0 for i ∈ ν(x, y,u), γi = 0 for i ∈ η(x, y,u), and

∇ygi(x, y)β = μi for i ∈ θ(x, y,u).

Now setting

γ̃i :=
⎧
⎨

⎩

γi if i ∈ suppγ,

−δiui if i ∈ suppδ,

0 if otherwise,
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leads to the conditions

∇yℒT (x, y,u)β +
q∑︂

i=1

γ̃ i∇ygi(x, y) = 0 and

⎧
⎨

⎩

∇ygi(x, y)β = 0 for i ∈ ν(x, y,u),

γ̃i = 0 for i ∈ η(x, y,u),

γ̃i∇ygi(x, y)β = γ̃iμi for i ∈ θ(x, y,u),

and as i /∈ suppδ whenever i ∈ θ(x, y,u) so that for all i ∈ θ(x, y,u),

0 ≤ γ̃i∇ygi(x, y)β =
{︃

γiμi if i ∈ suppγ ∩ suppμ,

0 otherwise.

Thus, for any i ∈ θ(x, y,u), we have

(γ̃i = γi > 0 ∧ ∇ygi(x, y)β = μi > 0) ∨ γ̃i∇ygi(x, y)β = 0

so that (β, γ̃ ) ∈ Λem
y (x, y,u,0). Applying (Am

2 ), we get ∇xℒ(x, y,u)T β +∇xg(x, y)T γ̃ = 0
and thus, we have (β, γ̃ ) ∈ Λem(x, y,u,0), which implies, by (Am

1 ), that β = 0 and γ̃ = 0.
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