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Computational modelling of the cardiovascular
system is a promising future direction for patient-
specific healthcare. However, the computational
cost of these simulators is a bottleneck for
their practical use in clinic for real-time digital
twins. Emulation can overcome this, yet an
extensive investigation into cardiovascular emulators
is warranted. In this study, we emulate two
one-dimensional haemodynamics models of the
pulmonary circulation and compare two common
emulation strategies: Gaussian processes (GPs) and
polynomial chaos expansions (PCEs). We start
by reducing the parameter space of the models
through global sensitivity analysis, and then compare
both emulation strategies using a multivariate,
time-series output quantity of interest and a
reduced representation using principal component
analysis. We compare the emulators in both forward
emulation on test data, as well as in their ability
to infer parameters in the inverse problem. Our
results indicate that GPs slightly outperform PCEs
consistently across every comparison, and that a
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similar performance is obtained for the emulators of the time-dependent output and reduced
output.

This article is part of the theme issue ‘Uncertainty quantification for healthcare and
biological systems (Part 1)".

1. Introduction

Computational modelling and simulation is a useful tool for understanding complex physical
processes. These tools have been developed and adapted to handle cardiovascular physiology
with a hope of developing a cardiovascular ‘digital twin’ [1]. Models that simulate in vivo
haemodynamics are complex, and should account for both the structure and function of the
vascular system. A notable example is the image-based simulation platform Heartflow©, which
uses a combination of image analysis, computational haemodynamics and machine learning to
predict coronary artery disease risk factors [2]. The clinical success of these techniques is due
in part to reliable, robust simulation techniques (i.e. computational fluid dynamics), but also
because of their computational speed-up using emulation.

Several studies in the literature compare emulation strategies [3—6]. For example, the study
by Laloy ef al. [3] compared Gaussian processes (GPs), polynomial chaos expansions (PCEs)
and deep learning neural network (NN) emulation of reactive transport models. The authors
compared output predictive accuracy, global sensitivity analysis results and probabilistic model
calibration, and found that the GP was the most robust, being the only method that performed
well across all considered tasks. The study by Pratola et al. [4] compared a Bayesian Additive
Regression Tree model of a multivariate output response with GP emulators using a principal
component analysis (PCA) reduction of the output space with respect to model calibration in
a CO; emission model. The study found no significant difference between the two emulation
approaches with respect to most model parameters inferred, with the former method having
the advantage of not requiring a dimension-reduction step. Other studies [7-9] have implemen-
ted PCE in combination with proper orthogonal decomposition (POD), similar to PCA, which
relies on the leading eigenpairs for dynamic outputs. Though POD can be used to reduce the
computational cost of expensive cardiovascular simulation [8], it is rarely used for the purpose
of solving inverse problems. In cardiovascular applications, both GPs and PCEs are commonly
used [10-13], but are rarely compared, and the trade-offs in how these emulation strategies
perform in forward emulation or in solving inverse problems are unknown.

To address this gap in the literature, our study provides a detailed comparison of GPs and
PCEs for the emulation of pulmonary blood pressure in a pulse-wave propagation model.
We compare emulation strategies using two different representations of the training data: a
multivariate output (time series) generated by a forward simulation using the simulator, and
training data described by a PCA representation of the multivariate output. We begin by
conducting a global, variance-based sensitivity analysis to establish an influential set of model
parameters for two distinct sets of boundary conditions. Besides using the GPs and PCEs for
direct emulation, we also investigate their use in the context of parameter estimation (or model
calibration). Our study shows that GPs consistently, but slightly, outperform PCEs across all
error metrics, training data representations and simulator boundary conditions.

2. Haemodynamics model

The haemodynamics model is similar to our previous studies [14-16], and simulates arterial
pulse-wave propagation in both time, ¢ (s), and axial space, x, throughout a bifurcating,
murine network of 21 blood vessels. Pulmonary arterial blood pressure (p(x, t), mmHg), area
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(A(x, t), cm2) and flow (q(x, ), ml s™) are predicted using a system of nonlinear, hyperbolic,
partial differential equations. The system includes a mass conservation and momentum balance
equation:
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respectively. We assume the blood density is p =1.055 (g ml™), that the blood viscosity is
1 =0.049 (cm2 s) [14] and that the blood vessel velocity profile is blunt, with the power
coefficient y =9 [17]. We assume a linear pressure-area relationship [16], where the blood
vessel material properties, Eh/ry, incorporate the Young’s modulus, E (mmHg), the wall
thickness, h (cm) and the reference radius, ry (cm). As in previous studies [15,18], we assume
that the term Eh/r; increases exponentially with small vessel radii, and use the relationship
Eh/ry = kiexp (- karo) + k3, where k; (mmHg) and k, (cm-1) control the exponential increase and
k; (mmHg) is a baseline measure of the material properties. A measured main pulmonary
artery flow is used as the inflow boundary condition. We enforce flow conservation and
pressure continuity at vessel junctions (see Section 1 in the electronic supplementary material,
for more details).

Terminal Boundary Conditions: We consider two distinct boundary conditions at the end of the
21-vessel network, which are linked to 11 terminal vessels. The first is the Windkessel (WK)
model [19], which is an electrical circuit with a proximal resistor in series with a distal resistor
and capacitor (representing compliance) in parallel. As described elsewhere [14,20] and in the
electronic supplementary material, Section 1.1, we infer global scaling factors that adjust each
proximal resistance, distal resistance and total compliance by r,, r; and cr, respectively. Hence,
the six parameters for sensitivity analyses are Gywx = {kl, ko, ks, rp, 74, cr}.

The second boundary condition is the structured tree (ST) model [18]. The ST assumes
that the vasculature attached to the image-based domain is an asymmetric, bifurcating tree,
geometrically described by four parameters: a large daughter radii scaling factor, @, a small
daughter radii scaling factor, 8, a length-to-radius ratio, ¢,,, and a minimum radius for the
ST, Tmin (cm) (see the electronic supplementary material, Section 1.2, for more details). The ST
has its own set of stiffness parameters, as well as the four structure tree parameters, giving
6t = k1, ko ks, k1% 5% 16, @, B, €, -

3.Data

Training data for forward emulation: Both GPs and PCEs use a common, fixed design. We evaluate
the simulator f( - ) at the biophysical parameters 8 using n design points ® = (6, ..., 6,), sampled
from a space filling, Sobol sequence [21]. We consider two choices for the design size: n =100
and n=1000. The model output, f(6,t), is a multivariate time series of the main pulmonary
arterial blood pressure composed of m =32 points, that is, £(6,t) = (f(6,t1), ..., f(6, t,))', where
the superscript T indicates transposition. We combine the model outputs into an m x n training
dataset:

F(O,t) = (£(6, 1), ..., £(6, 1)) . 3.1)

Validation data for hyperparameter selection: To select optimal hyperparameters for GPs (ker-
nel type and jitter value) and PCEs (polynomial order), we continue the Sobol sequence

and generate ny,jq = 100 simulator outputs, Fyaiq = (f(6¥ahd, t), ...,f(@Xf:i‘j, t)), corresponding to

parameter vectors @valid - (9¥ahd, . Qxf:;‘dd) Validation data help avoid overfitting and bias, as

well as over-optimistic results, which could be obtained if the same test data were used for
hyperparameter selection. While overfitting is not due to noise (since we use noise-free data),
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it may be because of an imperfect space-filling design due to a clustering of points in certain
regions of the parameter configuration space (see fig. 7.12 in [22] for details).

Testing data: We further continue the Sobol sequence and generate s =100 simulator
outputs, Fiest = (f(@%eSt, t), ...,f(e;etj;, t)), corresponding to parameter vectors @' = (&%, ..., Gfﬁ:;)
for out-of-sample emulator testing evaluation. For inference, we use the same testing datasets,
Fiest, which are noise-free, allowing us to explicitly quantify the emulation error, which would

otherwise be difficult to disentangle from signal noise in the case of real data.

4. Emulation strategies

We consider emulation strategies based on GPs and PCEs, starting with a common and fixed
design, defined in §3. We use two different model output representations, as described below,
and summarized in figure 1.

(I) Emulator in simulator output space: We train the emulators for the multivariate simulator
output:

£(6,6)=(f(6,t1), . .., f(6,tm))- (4.1)

A GP for the multivariate output, f(6,t) in (4.1) is constructed by introducing time as an
additional input besides 6, and assuming separability in the joint covariance function of
parameters and time. This leads to a GP model with a Kronecker product structure over the
input parameters, that captures the correlation between time points besides the correlation
between biophysical parameters [23]. We denote this approach as GP.time.

We also create a PCE emulator for the multivariate output using independent PCE coeffi-
cients for each output point, f(6,t;),i=1...m [24,25], and denote this by PCE.time. The PCE
polynomials are the same across the individual time points while the coefficients of the
polynomials are unique for each polynomial and each time point. This methodology does not
explicitly account for the coefficient correlations, that is, the relationships between coefficients
at t,t;,i# j, nor does it consider more intrusive approaches to time-dependent PCE [26].
However, it is a common approach in applications with multivariate or vector responses [24,25]
and is readily available in open-source software (e.g. UQlab [27]). The coefficients are deter-
mined through a regression approach, as discussed more later.

(II) Emulator in PCA-reduced space: We build an emulator on a reduced representation of the
multivariate simulator output in (4.1) using PCA [28]. PCA retains most of the information from
the original output, and captures correlations between outputs at different time points. The
simulator output is decomposed into a linear combination of basis vectors y;:

q
£(6,) = p(t)+ ) (6, t)y;+e(6, 1), “2)

j=1

where gq< <m, u(t) is the mean of the training simulator runs F in (3.1); basis
Lq=(r1,...,7q) comes from the singular value decomposition of the covariance matrix
%((F(G), 1)~ u() (F(O, t) - u(1))); (6, t) = (c1(6, 1), ..., ¢g(6, t)) are the principal component scores
and ¢(6, t) is the part of f(8, t) unexplained by the basis term.

We perform PCA based on 1900 training points, that is, n = 1900 in (3.1), and select five PCs,
that is, ¢ = 5 in (4.2), which ensures that more than 99% of the variability in f(6, t) is explained.
Independent GP or PCE emulators are subsequently fitted to the principal component scores
cj(6,t), j=1...q. These approaches are denoted by GP.PCA and PCE.PCA, respectively. Below
we give a brief overview about GPs and PCEs. Further details can be found in Sections 2, 3 and
5 of the electronic supplementary material.
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Figure 1. Workflow for the study. The one-dimensional model, with either WK or ST boundary conditions, is subjected to a
variance-based sensitivity analysis and parameter subset reduction. Emulators (Gaussian processes (GPs) or polynomial chaos
expansions (PCEs)) are then trained on the two models using r2 = 100 or 72 = 1000 training sets, which include either an
m = 32 time-series output or reduced PCA data representation (q = 5 principal components). We carry out a validation
study to select the optimal hyperparameters (kernel type and jitter term for the GPs; polynomial order for the PCEs). Finally,
we assess the emulators with the optimal hyperparameters on test data based on forward emulation accuracy, and on
parameter and output error from solving the inverse problem.

(a) Gaussian processes

GPs [29-32] originate from the Kriging methodology in geostatistics [33], and have become one
of the most widely used approaches for emulation. This is due to their flexibility (a form of
Bayesian non-parametric regression) and their ability to perform exact interpolation at training
points. GPs also give a measure of uncertainty at test points due to the distributional assump-
tions.

GPs with Principal Component Analysis—We fit independent GP emulators for each principal
component score:

c(©)|n ~GP(O,K|n), j=1,...,q (4.3)

where for simplicity of notation we have dropped the fixed index t from c;(-). Here, we
have assumed zero mean (after data standardization to zero mean), and K =[k(8,, 6,)]p-1 is
a covariance matrix, with the kernel k( - |%) being a function of hyperparameters 7, which are
optimized through maximum likelihood. The kernel gives the smoothness and variability of the
function ¢;( - ). We explore the following kernels: squared exponential, Matérn v (with v = 3/2
and 5/2) and neural network (see Chapter 4 in [29] for details), and include an automatic
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relevance determination option to allow each individual parameter in 6 have its own length
scale. Though principal component scores are deterministic, we add a low-variance noise (jitter,
also known as nugget [29,34,35]), a2, to the diagonal of the covariance matrix, K, for numerical
stability during GP training and evaluation. We consider several values for the jitter, that is,
o®={10"107,10",107,107%,107%}.

GP-predicted values for PCA scores at unseen parameter vectors 6 given training data
D, cj(5)|D are obtained using the GP predictive mean' (see equation (15) in the electronic
supplementary material), and are inserted in (4.2) to reconstruct the multivariate signal,
f=M(@,1).

Multioutput GPs for time series: Rather than implement an onerous multi-output GP for the
multivariate output in (4.1), we instead introduce time as an additional input to the GP besides
0 [23], and the 1-1 simulator output function becomes f(6, t;), which defines a univariate output,
and on which we place a GP, as follows:

f(©6,)17 ~ GP(0,K|7), (4.4)

where @y, = U'-1 (UjL1 (6, t})) denotes the matrix of training points for physiological parame-
ters @ and m accompanying indexing training time points (here m = 32). The dataset ®g, has
size n - m, as opposed to n of the original dataset, ®. To avoid inverting a possibly very large
matrix K, separability in the covariance function can be imposed between inputs € and ¢,
k((t; 6), (t;, €))) = ky(t;, t)ke(6;, 0;), which allows representing the full covariance matrix as the
Kronecker product between two smaller matrices, IN((GG, v 9g,) = Ki(t, t) ® Ko(0, ©). Computa-
tional time reductions may be achieved by making use of special properties of Kronecker
products, see details in Section 3 of the electronic supplementary material. The GP kernels for &
are the same as those explored for the GPPCA approach, and for the time input we consider the
periodic and Matern v (with v = 3/2 and 5/2) kernels. Similar to the GP.PCA approach, we add
the same jitter values to the diagonal of the covariance matrices, K (t, t) and K¢(©, ©).

Predictions for the multivariate signal f- M(G t) at unseen parameter vectors 6 and time
t are obtained using the GP predictive mean defined in equation (25) of the electronic supple-
mentary material.

(b) Polynomial chaos expansion

PCE emulators are widely successful in multiple engineering applications [24,36] in their ability
to quantify parameter importance and output uncertainty. The PCE approximates the true
simulator, f(6,t), by a truncated polynomial representation. The PCE polynomials are chosen
to be orthogonal with respect to the prior distribution of the parameters. We assume uniform
priors on all our parameters (after mapping them to the interval [-1,1] [36]) corresponding
to Legendre polynomials. The polynomial coefficients, Z, are determined using a regression,
ordinary least squares (OLS) approach [12]. The total number of PCE coefficients (per output)
is J = ((d k’c) ), where d is the number of parameters and /C is the polynomial order. Using F as
defined in (3.1), the coefficients of the PCE are calculated as Z = (‘PT‘P)_I‘PTF, where ¥ is the
matrix of polynomials at each parameter value. The size of both the polynomial matrix ¥ and
the coefficient matrix Z is dictated by the size of the solution space in F. Details regarding the
PCE method and emulation training are relegated to the electronic supplementary material, in
Section 5.

PCE with Principal Component Analysis: For q =5 principal components, the PCE requires
W e R7*C*" and W € R . The assumption of independent outputs in the PCA representa-
tion parallels the assumption of independent PCE coefficients. We consider polynomial orders

'The GP predictive variance could be used to allow uncertainty quantification; however, this is beyond the remit of this
work.
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K =1,2,34,5,6. For the PCA representation, this only requires five sets of polynomial coeffi-
cients, which are computed by regressing on the PCA scores, that is, for the k™ principal
component score:

J-1
€)= ) zyW(6), 4.5)
j=0

similar to the GP description in (4.3). PCE predictions map the parameter vector 6, using
the polynomial bases and coefficients defined in (4.5) to the PCA scores, which can then be
transformed into the time domain using (4.2).

PCE for time series: When using the m =32 time-series output from the model, the PCE
method assumes that the polynomial coefficients at each t are independent, and thus
requires a polynomial matrix and coefficient matrix ¥ € R7*™ " and We R7*™, with
n=100 or n=1000, as described earlier. PCE coefficients are determined using the OLS
formulation. We consider PCEs with polynomial orders K =1, 2, 3, 4, 5, 6, corresponding to
J =5, 15, 35, 70, 126, 210 PCE coefficients for d = 4 parameters, and J = 6, 21, 56, 126, 252, 464
PCE coefficients for d =5 parameters. The polynomial coefficients are determined for each time
point, and hence the coefficients themselves are time-dependent, that is,

J-1

f6 )= Z zj(t)W;(6) . (4.6)

j=0

This is a typical approach to handling time-dependent outputs with PCE [12,24], and is
available in software packages [27]. Unseen parameter vectors 6 are mapped to the [-1,1]
interval, and provide a time-dependent response for each polynomial basis-coefficient pair
defined in (4.5).

5. Simulation set-up and performance assessment

(a) Sensitivity analysis

We first perform a global sensitivity analysis using variance-based Sobol’ indices (through the
PCE coefficients, z [12]) to identify influential parameters by the first- and total-order general-
ized Sobol” indices [25], S; and Sr, respectively. These indices measure parameter importance,
and we use the difference in magnitude to quantify parameter interactions that may cause
identifiability issues [12]. Details regarding methodology, analysis and sensitivity results are in
the electronic supplementary material, Section 6.2. This results in the reduced parameter subset
for the WK and ST models:

inflgr = {kll k2/ rp/ rq, CT}; e‘isr}rfer = {klr k2/ a, €rr} . (5'1)

(b) Error metrics

We examine the effects of different assumptions on the training, validation, calibration and
prediction for the four emulator options. After training the emulators with different training
sizes (n=100 and n=1000), we perform validation to select the optimal hyperparameters
(i.e. jitter value and kernel type for GPs and polynomial order for PCEs). We then fix these
hyperparameters, and use them for testing data; see figure 1 for a summary. We investigate the
effect of including two distinct representations of the model output (m = 32 time points versus
q =5 principal components) and the assumption of the emulator (GPs versus PCEs), as well as
the effect of using training sizes of 100 and 1000. We assess the accuracy and robustness of each
emulation approach for forward and inverse problems on testing data, and below we define the
error metrics used (figure 1).

!
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Forward problem: For both output representations (multivariate and PCA), we quantify the
emulation error in full output space (i.e. m = 32 points time series) by calculating the mean square
error (MSE) between the simulator and the emulator at the validation or testing parameters
through

m 2
MSE(} sty % 3 Fopanest 1y pqqgtianest ) (5.2)
i=1
for each validation or testing parameter Gyalid/ st j=1,2,...100 using the emulator, either
MPCE( -) or MGP( -). For the PCA representation of the output, we transform the emulator
predictions of the PCA scores back to the original time-dependent output space, see §4a,b for
details.

Inverse problem: For the optimization of model parameters, 6, we implement a gradient-based
optimization algorithm (sequential quadratic programming [37]) using the emulator. To reduce
the risk of entrapment in local optima, we use 20 initial parameter values to minimize the MSE
between the test data and emulator predictions. The inferred parameter vector, é, obtained from
the optimization is used for simulator prediction, £ (5, t), to compute the simulator-based MSE,
given by the first equation in (5.3). The relative square error (RSE) (middle equation in (5.3)) and
absolute relative error (ARE) (last equation in (5.3)) measure the relative and absolute relative
errors for each parameter:

2

MSE(6)) = — Z (f(et“‘, t)-f©6,t)|;

i,

test A
ees 91

Q}est

RSE(9) Z ; ARE@©)=

—~ etest

d test
( : ej l

where MSE(@ j) and RSE(@ j) are computed for jth test (out-of-sample) dataset, and d in the
expression for RSE denotes the cardinality of the parameter vector 6 (d =5 for the WK model
and d = 4 for the ST model (5.1)).

(c) Software

All simulations were run in Matlab (Mathworks, Natick, MA, USA). The GPstuff toolbox [35]
was used to construct the GP models. A modification of the toolbox was needed for the GP time
approach to accommodate the Kronecker product approximation. The UQlab toolbox [27] was
used for PCE construction and evaluation.

6. Results

(a) Hyperparameter selection

We train both GP and PCE emulators on the models using the parameters defined in (5.1). We
inspect errors in output space based on validation data, computed with (5.2) for all simulation
scenarios. The validation study allows us to select the optimal hyperparameters that give the
lowest median MSE (5.2) over all validation datasets.

GP jitter effect: Our investigation (as supported through figures S2 and S3 in the electronic
supplementary material) reveals that in general there is great overlap between MSE distribu-
tions of different jitters. The largest jitter value (10™) tends to produce the largest errors for
the GP.time approach, but this does not hold for GP.PCA. Generally, GP.PCA seems to be less
affected by the jitter value than GP.time. There is no universal ‘best’ jitter value, and for the
analysis that follows next, we use the ‘best” kernel-specific jitter value.

In figure 2, we plot the distribution of log(MSE) (equation 5.2) over all 100 validation
datasets for the ST (panel a) and WK model (panel b) under all simulation scenarios considered.
We single out the ‘best’ kernel (GPs) for every simulation scenario, which we mark with a black

(5.3)
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asterisk (for n =100 training points) and grey triangle (for n=1000). The median values and
interquartile range for each GP kernel, PCE order, sample size and formulation of the output
signals are provided in electronic supplementary material, Tables S1-54.

GP kernel effect: Generally, there is great overlap between MSE distributions of different
kernels. There is no universal ‘best” kernel. For the ST model (figure 2(a)), for the PCA approach
(top row, right column), the Matérn 5/2 (M5/2) kernel is best for both n =100 (white-filled
boxplots) and n=1000 training points (grey-shaded boxplots). For the time approach, the
combination of squared exponential (SE) kernel for parameters and Matern 3/2 (M3/2) for
time input, (SE, M3/2), is best for n =100 training points, while the combination of M5/2 for
parameters and for time input, (M5/2, M5/2), is best for n=1000 training points. For the WK
model (figure 2(b)), for both time and PCA approaches (top row), for n =100 training points,
MB5/2 is best for the biophysical parameters (and periodic kernel for time input, (M5/2, P)), and
for n=1000 training points, the NN kernel is best for parameters (and periodic kernel for time,
(NN, P)).

PCE polynomial order effect: The polynomial order, I, affects emulator accuracy for both
n =100 and n =1000 training size. For both the ST and WK model (figure 2(a,b), respectively),
polynomial order K =3 provides the most accurate emulator for n=100 training points—
marked with a black asterisk—for both time and PCA approaches (bottom row). The best
emulator for n =1000—marked with a grey triangle—is provided by K = 6. Polynomial orders
K =4,5,6 are substantially worse with n =100 training points, a result of the overdetermined
coefficient matrix. By contrast, the PCE accuracy steadily increases with K for n=1000 training
points.

(b) Out-of-sample evaluation

After selecting the optimal hyperparameters, we utilize the emulators for forward and inverse
problems on test data. This procedure could be followed in the clinical practice prior to clinical
data acquisition.

(i) Forward problem: direct emulation

We inspect prediction (emulation) errors in output space, that is, log (MSE) (equation 5.2) on
test data, which we show in figure 3 (top row in panels (a) and (b)). We mark the best emulator
with symbols (black asterisks for n =100 training points and grey triangles for n = 1000 training
points). To ease a visual direct comparison with the other emulators, we draw a horizontal
(reference) line corresponding to the median MSE across all 100 test datasets of the best
emulator.

Training size and data representation: For both GP and PCE emulators, the errors are system-
atically lower for the largest training size of n=1000 (grey-shaded boxplots) compared with
n =100 (white-filled boxplots), and this effect is more pronounced for the WK model than the
ST model. A larger training size ensures a denser coverage of the parameter space, which
increases the emulator predictive accuracy. While for PCE there is a clear reduction in accuracy
for the n =100 training size as KC increases, attributed to an overdetermined system for the PCE
coefficients, larger training sizes enable higher order PCE models to be accurately trained. For
both GP and PCE, there is no strong evidence of either (time series, PCA) approach being better
than the other, as there is great overlap in error distributions.

GP versus PCE: Here, we compare GPPCA with PCE.PCA, and GP.time with PCE.time. We
observe that the PCE errors tend to be slightly higher than the GP errors. GP.time and GP.PCA
are consistently at least one order of magnitude smaller than the PCE.time and PCE.PCA
models. This is clear for the WK model, where GP.time.100 and GP.PCA.100 are of the order
of 1072, whereas PCE.time.100 and PCE.PCA.100 are 10' and 10° respectively. This finding
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Figure 2. Emulation results based on validation data to select optimal hyperparameters (GP kernel type and PCE polynomial
order). We show results from GPs (top row of panels (a) and (b) and PCEs (bottom row of panels (a) and (b) on the ST (panel
(a)) and WK (panel (b)) boundary conditions with two output representations (time series -- first column -- and reduced
PCA output - second column --). GP kernels are: squared exponential (SE), Matérn 3/2 (M3/2), Matérn 5/2 (M5/2), neural
network (NN) and periodic (P), for example, for GP.time, (M5/2, P) means Matérn 5/2 kernel for biophysical parameters and
periodic kernel for time input. We consider polynomial orders, /C from 1 to 6. Boxplots show the log MSE (equation 5.2)
from all 100 validation datasets. We consider n = 100 (white-filled boxplots) and r2 = 1000 training points (grey-shaded
boxplots). We mark (black asterisks for = = 100 and grey triangles for 7 = 1000) the “best’ emulator hyperparameters for
the lowest median MSE over the validation data.

suggests that GP emulators have a slightly larger predictive accuracy than PCE emulators given
the fixed emulator design constructed based on a Sobol sequence.

We conclude that with respect to the out-of-sample predictive accuracy in output space
(forward problem), the two best methods are GP.time and GP.PCA with 1000 training points.
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Figure 3. Results from forward and inverse problems using GP and PCE emulators for the ST (panel (a)) and WK (panel
(b)) boundary conditions. Results are shown for both the time-series data representation (left column) and the PCA
representation of the time-series data (right column). For the forward problem, we show boxplots based on the log of the
MSE from all 100 test datasets, computed using equation (5.2). For the inverse problem, we show boxplots based on the
log of the RSE in parameter space, and MSE in output space from all 100 test datasets, calculated using the first and second
equations in (5.3). The black asterisks mark the superior emulator with 7 = 100 training points, while the grey triangles
mark the best emulator with n = 1000 training points. The dotted lines in each plot correspond to the median of the best
emulator for each metric.

(ii) Inverse problem: parameter estimation

We inspect errors after performing parameter estimation on test data, as described in §5. In
figure 3, we display the errors in both output (middle row in panels (a) and (b)) and parameter
space (bottom row in panels (a) and (b)), obtained with the first and second equations in (5.3).
Training size and data representation: As with the forward problem, emulators with the larger
training size of 1000 systematically produce more accurate parameter estimates and corre-
sponding predicted outputs than the 100 training points counterparts. This effect is slightly
more pronounced for the WK model than the ST model. When comparing GP.PCA with
GP.time, and PCE.PCA with PCE.time in parameter and output space, we notice great overlap
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in error distributions. Hence, all emulators exhibit similar performance, which aligns with
findings from the forward problem.

GP versus PCE: When comparing GPPCA with PCE.PCA and GP.time with PCE.time, we
observe that, as with the forward problem, GPs tend to have a slight advantage over PCEs. The
inverse problem RSE values (5.3) for n =100 are of the order of 102 and 107! for ST and WK
models, respectively. The RSE for GPs and PCEs with n=1000 are of the order of 10 for the
ST model. The GPs achieve a notable improvement in RSE for n = 1000 in the WK model (GP
RSEs of 107" and 107 for n = 100 and n = 1000, PCE RSEs 10™" and 107 for n = 100 and # = 1000).
The ST RSE is slightly smaller for PCE.PCA.1000 (3.0 x 10~ for PCE versus 4.7 x 10 for GPs);
however, PCE.PCA.1000 has a wider distribution of AREs, and subsequently accrues a larger
MSE in output space. These additional results can be found in the electronic supplementary
material, Section 8.

Both GPs and PCEs record similar MSE errors (5.3) for both the ST and WK models (107
and 107, respectively) for n = 100. By contrast, GPs achieve a smaller MSE model for n = 1000 in
both the ST and WK models (10™) than the PCEs (107%).

In summary, our finding is that GP.time and GP.PCA with 1000 training points are generally
the two best methods by both output and input space metrics. These were the two best methods
with respect to the forward problem too, implying consistency in results between the forward
and inverse problems. While GPs outperform PCEs in nearly every metric, we note that the
qualitative differences, especially in output space, are less obvious. We subsequently identified
the largest RSE out of all 100 test datasets for each model after solving the inverse problem,
and used these parameters to run the true simulator. The results from this are presented in
figure 4. Note that, with the exception of PCE.time.100 in the WK model, the solutions are
nearly identical visually, with indistinguishable differences between the prediction with the
emulator-inferred parameter values and the true data. The difference between the data and the
emulator is noticeably smaller than the expected error obtained from clinical measurements
[20].

7. Discussion

Surrogate models are necessary to develop digital twins that not only simulate patient-specific
dynamics but can also be calibrated to patient data in real time (e.g. within the time resolution
of a single heartbeat). While the GP and PCE emulation strategies are not new in the field of
engineering, their use in biological and medical applications is relatively novel and requires
detailed investigations, as presented here. Moreover, we provide results suggesting that GPs
slightly outperform PCEs, and find no difference in accuracy metrics when using PCA for
dimension reduction.

(a) Direct emulation

Numerous articles use GPs [13,38] and PCEs [10,36,39] to speed up expensive simulators, many
for the calculation of sensitivity indices. Other studies [40] leverage information from lower-
fidelity (but more computationally efficient) simulations to increase emulation accuracy. The
multi-fidelity modelling approach reduces computational cost compared with using a single
high-fidelity model with a limited number of simulations.

Regardless of purpose, investigating which emulators are most accurate is paramount, and
testing the emulator predictions against out-of-sample ‘test’ data is a necessary step. Here, we
first optimized emulator hyperparameters (kernel type and jitter term for GPs or polynomial
order for PCEs) in a validation study, and then evaluated the emulator performance with fixed
hyperparameters on test data. We investigated the effect of (i) representations of the model
output (time-series output, or PCA representation) and two emulators (GPs or PCEs), and (ii)
different training sizes.
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Figure 4. Optimum simulator solution using the model with the worst performance on the test data, for which the
parameter optimization returned the largest error in parameter space, RSE (middle equation in (5.3)) out of all 100 test
datasets. Data are shown in solid black lines while emulator-determined simulator predictions are shown as dash-dot red
lines.

We show that the choice of GP kernel and jitter does not have a drastic effect on emula-
tor accuracy. However, the effect of the PCE polynomial order is significant (figure 2). In
addition, our evaluation on test data revealed that the emulation accuracy is similar for the
two types of output representations, multivariate output (time series) and PCA. We find that
GPs outperform PCEs slightly, but consistently, for ST and WK models (figure 3). We found
that the predictive accuracy is improved when a larger training size is used, due to a denser
coverage of the parameter space (figure 3). Our conclusion is that with respect to emulation
accuracy, the two best methods are GP.time and GP.PCA with the larger training size, and
this applies to both fluid-dynamics models. We also note that emulating the model with ST
boundary conditions was less sensitive to changes in sample size. We attribute this to both
the smaller dimensionality of the problem (four-dimensional versus five-dimensional), as well
as the relatively lower variance of the ST model as calculated in the electronic supplementary
material, figure S6.

(b) Parameter estimation using emulators

Most emulation studies have an end goal of parameter estimation and/or uncertainty quantifi-
cation [6,11]. In our study, we focus on parameter estimation on test data using the emulators
with optimal hyperparameters based on a validation study. This mimics clinical practice, in
which the “best’ emulator is identified prior to new patient data becoming available and is
immediately utilized for real-time patient-specific inference.

Our analysis focuses on a pulse-wave propagation model of the pulmonary circulation,
which has been used in multiple prior studies [15,16,20,39]. The studies by Qureshi et al.
[20] and Colebank et al. [14] calibrated their one-dimensional haemodynamics models with
WK boundary conditions to measured haemodynamic data using the full simulator. These
studies required a significant amount of computation time for the calibration step. For instance,
Colebank et al. [14] reported that optimization took in the order of hours, whereas optimiza-
tion in the present study using the emulator took less than a minute. Paun & Husmeier
[11] used GPs as a surrogate for the log-likelihood for the fluids model presented here with
WK boundary conditions. The authors showed a drastic increase in computation time and
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performance across multiple methods for Bayesian inference. In contrast to these prior studies,
relatively few papers have performed parameter estimation using the ST boundary condition.

The inverse problem results in figure 3 illustrate that the inference accuracy in both output
and input (parameter) space is similar between the two types of output representations, and
that GPs tend to have a slight advantage over PCEs. The figure also shows that there is
an improvement in both parameter estimates and, subsequently, fit in output space when
using larger training sets. In summary, we have found that with respect to inference accuracy,
generally the two best methods are GP.time and GP.PCA with the larger training size for both
fluid-dynamics models, which aligns with emulation accuracy results.

(c) Emulators for PCA versus time representation

Our study is one of the very few that comparatively evaluates the performance between PCA
emulators and emulators for multivariate outputs, and to the best of our knowledge, it is the
first study that compares GP.PCA with the particular GP.time strategy adopted here, that is,
treating time as an additional input to the GP model. Additionally, the comparison between
PCA and time series in a PCE emulation context is novel.

Our results indicate similar performance in output predictive accuracy and parameter
inference accuracy between PCA and time-series emulators (figure 3) for both GPs and PCEs.
It therefore appears that the information loss incurred from the finite truncation of the PCA
decomposition of the simulator output is on a par with the information loss from the Kronecker
product approximation of the GP.time approach, or the independence assumption between the
time points for the PCE.time approach.

Both PCA and time approaches are comparable in computation time provided the training of
independent emulators (e.g. for principal component scores) is done in parallel, and the same
holds for prediction. For reference, training requires 1 min, prediction at one sample test point
requires a few milliseconds, while the entire optimization takes approximately 1-2 minutes for
both GPs and PCEs.

(d) Gaussian processes versus polynomial chaos expansions

Our findings indicate that GP emulators have a slightly higher predictive and inference
accuracy than PCE emulators. As noted earlier, both emulators have similar orders of magni-
tude with the exception of the WK model and 100 training points, where GPs outperform
PCEs by one to two orders of magnitude in output error on the test set. This finding holds
for the fixed space-filling design constructed based on a Sobol sequence. We have used the
Sobol sequence as a standard textbook design for convenience, as this was sufficient for the
purpose of our study. Sobol sequences have their limitations in terms of idiosyncratic cluster-
ing of design points, but that only comes to the fore in higher dimensions than studied in
our paper (e.g. figs 7.11 and 7.12 in [22]). Optimal sequential design can potentially lead to
design improvements. However, this requires more complex modelling, which is beyond the
remit of the current work, while simpler “intuitive’ approaches, based, for example, on mutual
information, can lead to suboptimal configurations with an accumulation of design points at
the margins of the compact design space; see, for example, Chapter 6 in [41]. The interested
reader is referred to [22] (Chapter 7) and [42] for a review on optimal experimental designs
for emulators of computerized simulation models. Some studies have investigated the effect of
changing the experimental design on sensitivity analysis and model calibration [6,43]. Investi-
gating the effect of changing the experimental design is beyond the remit of this work.

We also note here that there is a direct (and fair) comparison between GPPCA with
PCE.PCA, both of which capture output correlations at different time points through PCA
decomposition. By contrast, the comparison of GP.time with PCE.time is confounded by the
way in which the correlation between time points is captured, and comparative results should
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be interpreted with caution. The GP.time approach captures the correlation between time points
by the inclusion of time as an emulator input with its own covariance function, whereas
PCE.time considers independent coefficients (using the same polynomial basis functions) for
each time point through time-dependent coefficients (4.5). Approaches that explicitly capture
the correlation between polynomial coefficients at different time points are an active area of
research [26,44]. In particular, we believe explicitly accounting for these correlations through
varying coefficient models [45] is of interest moving forward.

While the current study has considered GPs and PCEs as two separate emulation meth-
ods, the two could be married in a polynomial chaos-based GP approach, in which PCE
describes the mean function of the GP [46,47]. In this approach, adopted by several studies
in the literature [46,47], the PCE models the global behaviour, while the GP captures the local
variability of the simulator output. For example, the study in [47] showed that while this
approach comes at increased computational costs, it tends to perform at least as well as, or
in certain situations better than GP or PCE emulators on their own, rendering this approach
worthy of future investigations.

We also emphasize that, while PCEs are often used as a surrogate to speed up computation
for global sensitivity analysis, they are less often used for additional forward solutions and in
parameter estimation problems. Though GPs are superior by our reported metrics, PCEs are
reasonably accurate in both forward and inverse problems. Hence, we recommend that those
using PCEs for sensitivity analysis consider using their PCE surrogate to overcome computa-
tion time when conducting parameter estimation.

(e) Limitations and future work

In the current study, we have considered an idealized case of noise-free, simulator-generated
data for inference. To focus on emulation error in itself and eliminate potentially confounding
factors we have deliberately ignored model discrepancy, as well as noise. Additionally, using
simulated data has allowed us to compare parameter estimates to ‘ground-truth’ (data-gener-
ating) parameter values. In future simulation studies, we will use noisy data, representative
of clinical patient data. The noise model needs to be physiologically realistic (not Gaussian
independent and identically distributed), which is not readily available ‘off the shelf’, and
so this is beyond the remit of the present work. We will then perform inverse uncertainty
quantification in a Bayesian framework, similar to other recent studies [3], and investigate how
the posterior densities compare. Any Bayesian analysis performed on patient data will capture
the uncertainty due to (i) data measurement error, and (ii) model discrepancy due to model
simplifications [16]. Model mismatch is particularly important during model calibration against
real patient data, as failing to account for the mismatch will lead to biased parameter estimates
and predictions, and an uncertainty underestimation, as shown in several studies [16,48]. To
incorporate model mismatch into the analysis, the Kennedy & O’Hagan approach [32] could be
taken to jointly learn the model parameters and model mismatch term from data, while ideally
incorporating system knowledge [48], or the problem could be formulated as a decoupled
inference problem, by adopting methods such as Bayesian History Matching [49]. Given that
addressing model mismatch is highly relevant for the clinical translation of cardiovascular
modelling, incorporating it into our model calibration within an emulation framework will
certainly be pursued in future studies when clinical data are made available. What is more,
while beyond the remit of the present work, additional comparisons using gradient-informed
emulators, such as gradient-enhanced Kriging [50], are warranted, especially when solving
inverse problems through gradient-based methods.

Additionally, it will be interesting to extend the emulation method comparison and
investigate whether our findings generalize to other biological systems besides the pulmonary
blood circulation application considered here, such as the systemic blood circulation [2]. The
systemic vasculature (e.g. the coronary circulation around the heart or the cerebrovascular in
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the brain) contribute to two major causes of death, heart attack and stroke. An extension of
our analysis to these distinct vasculature with patient-specific data would provide evidence of
whether a robust and efficient digital twin could be used for treatment planning and diagnos-
tics in these common diseases. Moreover, we believe our methods should be tested against
multi-component models, such as those with models of the heart [51] and venous system
[39,51], which will likely be more challenging due to higher parameter dimensionality. These
are necessary next steps as models and emulators are used in practice clinically.

8. Conclusions

Our study has investigated the use of emulation as a key enabler of real-time personalized
healthcare in a computational modelling framework of the cardiovascular system. We have
comparatively assessed several emulation strategies based on GPs and PCEs applied to two
computational fluid-dynamics models of the pulmonary blood circulation. After reducing the
parameter space of the models through global sensitivity analysis, we have created emulators of
the time-series model output, and of a PCA-reduced representation of the original, multivariate
output. We have assessed the emulators’ out-of-sample predictive accuracy, as well as their
inference accuracy in inverse problems for parameter estimation tasks. We have found that GPs
outperform slightly, but consistently, polynomial chaos expansions across every comparison,
and that a similar performance is obtained for the emulators of multivariate output and reduced
output.
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