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A B S T R A C T

The coupled motion of liquid with an elastic plate or membrane cover in a cylindrical container 
under external excitation is investigated. Unlike self-oscillation problem at a natural frequency, 
the problem is fully transient, and it is first converted from the time domain to the s-domain 
through the Laplace transform. For each given s, velocity potential for the fluid flow and cover 
deflection are obtained through the Bessel-Fourier series. The solution in the time domain is then 
obtained through the inverse Laplace transform with respect to s. When doing so analytically, it is 
necessary to find singularities of the integrand in the entire complex plane s. It is shown that these 
singularities are only on the imaginary axis, corresponding precisely to the natural frequencies of 
the system and the excitation frequencies. This allows that the final solution to be obtained 
explicitly, which gives insight how the motion behaves. Extensive results are presented for the 
time history of the cover deflection and the energy components under various external excitation, 
including tank motion and external pressure on the cover. The frequency components of the 
solutions are analysed both at resonance and off-resonance. The energy transfer into the system 
from external forcings and its redistribution during vibration within the system are analysed.

1. Introduction

The study of sloshing dynamics of liquids in containers has important applications across various fields, such as marine, civil, 
coastal, building and space engineering. Therefore, research in this area has been undertaken extensively. When the liquid surface in a 
rigid container is free and the amplitude of the sloshing wave is small compared with the dimension of the container, linear velocity 
potential theory is commonly used. Various analytical and numerical procedures have been developed to obtain solutions for a variety 
of container shapes [1–4]. The effect of the viscous fluid has also been examined based on the continuity and linearised Navier-Stokes 
equations [5], and it has been found that it decreases quickly as the viscosity reduces. When the amplitude of the sloshing wave is not 
small, velocity potential theory with nonlinear free surface boundary conditions is commonly used. Various numerical methods have 
been adopted. These include works based on boundary element method [6], finite element method [7,8], and finite difference method 
[9]. When viscosity does have a major effect, Navier-Stokes equations are then used [10,11]. In addition, extensive experimental work 
was also conducted [12,13].

When some components of the container are no longer rigid, or there is an elastic cover on the upper surface of the liquid, the 
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vibration of elastic structures is coupled with the liquid sloshing. The coupled motion may significantly differ from that in a rigid 
container. Typical works on the two-dimensional problem include free vibration problem in a rectangular tank with rigid side and 
bottom walls, where the liquid surface is fully covered by an elastic membrane or plate [14], based on a horizontal mode expansion 
method. Bauer and Eidel [15] extended this analysis to cases where the liquid surface was partly covered by an elastic structure, with 
one end clamped to the side wall and the other end is free. They investigated the natural frequencies of the coupled system. The liquid 
motion in the container undergoing the forced motion was also considered by them in the work, but it included only the frequency 
component at the excitation frequency, and all the natural modes were ignored. Other studies have focused on containers with elastic 
side walls, with a notable example being that in [16]. In that work, the solution obtained was an approximation, as the pressure of the 
liquid flow obtained from the Bernoulli equation for the wetted part of the side wall was extended to the dry part. Bauer [17] 
investigated the natural frequencies of liquid motion with an elastic cover in a vertical circular container, through a Bessel-Fourier 
series expansion approach. Amabili [18] studied the case where the inner part of the liquid surface was covered by an elastic plate 
circular plate, while the external part remains free. The Rayleigh-Ritz method was used. Kim and Lee [19] further considered the 
scenario where a doughnut-shaped plate partially covered the liquid surface in a vertical circular container based on the Rayleigh-Ritz 
method. Recently, Ren et al. [20] further considered the free vibration problem in a vertical circular cylinder with an elastic plate. Two 
approaches different from that in [17] were used, based on horizontal mode through Bessel-Fourier series expansion and vertical mode 
expansion, respectively. Two sets of explicit equations were derived for natural frequencies of the coupling system, and they were 
found to be identical through the residue theorem. A more recent and relevant study by Shen et al. [21] examined the coupled free 
motion in a tank equipped with plate baffles, while Kim and Kwak [22] investigated the coupled motion of a circular plate resting on 
the free surface of liquid in a circular cylindrical container. The analysis for free motion of liquid in a three-dimensional vertical 
rectangular (or cubic) container with an elastic cover was undertaken by Bauer et al. [23] and Ren et al. [24]. It is worth noting that in 
[23], the double series expansion used for the elastic plate is valid only for the simply supported edge condition, while in [24] the 
expansion can be applied to any edge conditions.

Much of the work above has mainly considered self-oscillation caused by some initial disturbance, or oscillation at the excitation 
frequency only and the motion at the natural modes are ignored. In such a case, the solution is obtained for motion at each individual 
frequency and the time factor can be taken out. In many practical problems, the container is under persistent excitation, and the 
excitation may be fully transient. Even when the excitation consists of just periodic components, the sloshing motion will have 
components not just at all the excitation frequencies but also at the natural frequencies of the tank. All these components are coupled 
through initial conditions and the time factor cannot be simply taken out. As a result, the problem will be fully time dependent. This 
makes the problem completely different from that of self-oscillation. In this work, we present an analytical scheme for liquid motion in 
a vertical circular container with an elastic cover subject to external excitation. The present work is based on assumptions of ideal 
liquid and small amplitude oscillations. The former ignores the viscosity as its effect is usually small unless the oscillation is over a long 
time relative to the typical period of the motion (Wu et al. [5]), or the excitation is at one of the natural frequencies. The latter ignores 
the nonlinear terms in the equations of the cover, as the linear term is dominant at the small amplitude. The forced horizontal motion of 
the container and external pressure applied on the cover are used as examples and other excitations can be considered similarly. It is 
also worth mentioning that parametric resonance may occur in reality when a vertical oscillation is present. To model that in the free 
surface problem, the product term is included and hence modes at sum and difference frequencies occur. To consider this in the case 
with an elastic cover, some important nonlinear terms in the dynamic and kinematic equations need to be included. However, the focus 
of the present work is on the motions at the prime frequencies, and therefore, linear theory is used for the cover. In addition, the 
temporal variation of the external excitation can be arbitrary. The Laplace transform method is used for the transient problem. The 
velocity potential for the fluid flow is then expanded into Bessel-Fourier series [20] in the horizontal plane and the expansion in the 
vertical direction is obtained from the Laplace equation. This potential then satisfies all the equations apart from that on the cover. The 
cover is treated as an elastic plate or membrane and the linear equation of motion is used. The deflection of the cover is also expanded 
into Bessel-Fourier series. By matching the pressures and the normal velocities of the fluid flow and the cover, the unknown coefficients 
in both expansions can be obtained. Inverse Laplace transform is then performed to obtain the solution of the problem. This may be 
straightforward for the free surface problem as its boundary conditions are much simpler and there are no edge conditions. When there 
is a cover, it becomes less straightforward and there seems little work on the problem. Here this becomes a crucial part of the present 
work. To perform inverse transform explicitly, all the singularities of the integrand have to be found. As it has to be done in the complex 
plane, it is usually not a trivial task. In this work we are able to show that singularities are only on the imaginary axis, and they 
completely match the natural frequencies of the tank, plus those at the excitation frequencies. This makes it possible to perform the 
inverse Laplace transform explicitly. The result obtained analytically then confirms that the motion has components at all the natural 
frequencies and at the excitation frequencies. When the excitation frequency is equal to one of natural frequencies, the motion will 
become larger and larger as time increases, or resonance will occur, as expected. Extensive results are presented for the cover 
deflection and the energy components of the system, both at resonance and off-resonance over time. For the energy analysis, the results 
clearly illustrated how the energy transfer from external forcing to the system and its transition among different components during 
vibration.

K. Ren and G.X. Wu                                                                                                                                                                                                  Journal of Sound and Vibration 614 (2025) 119156 

2 



The work is organised as follows. The mathematical model and formulations are introduced in Section 2, followed by the energy 
analysis in Section 3 and results and analysis in Section 4. Conclusions are presented in Section 5.

2. Mathematical model and formulations

2.1. Mathematical modelling

We consider liquid sloshing in a circular cylindrical tank due to some external excitation, as shown in Fig. 1. The tank wall is 
assumed to be rigid, while an elastic cover, which may be a plate or a membrane, is placed on the top of the liquid surface, where there 
is an external pressure. Cartesian and cylindrical coordinate systems, O-xyz and O-rθz, are established. Their origins are both located on 
the mean upper surface of the liquid, and z-axes point vertically upwards along the mean position of the centre line of the tank. The 
liquid is assumed to be inviscid and incompressible, and its motion is irrotational. Therefore, the velocity potential Φ can be adopted to 
describe the motion of the liquid domain, which satisfies the Laplace equation as 

∇2Φ +
∂2Φ
∂z2 =

∂2Φ
∂x2 +

∂2Φ
∂y2 +

∂2Φ
∂z2 =

∂2Φ
∂r2 +

1
r

∂Φ
∂r

+
1
r2

∂2Φ
∂θ2 +

∂2Φ
∂z2 = 0, (1) 

where ∇2 refers to the two-dimensional Laplacian.
When the motion amplitude is small compared with the tank dimensions, the boundary conditions may be linearised. In such a case, 

the deflection W of the elastic cover and the velocity potential satisfy the dynamic condition on z = 0 as follows: for a plate, 

me
∂2W
∂t2 + L∇4W = − ρΦt − ρgW + P, (2a) 

and for a membrane, 

me
∂2W
∂t2 − T∇2W = − ρΦt − ρgW + P. (2b) 

Specifically, the governing equation for the plate cover involves a biharmonic term L∇4W, and it resists deformation primarily 
through bending. The governing equation for the membrane involves a term − T∇2W, and it resists deformation mainly through the 
tension in the membrane. The transversal or in-plane displacements can typically be neglected when the plate is thin and undergoes 
small deflections, following the works such as Timoshenko and Woinowsky-Krieger [25].

In both cases, the impermeable kinematic condition on z = 0 yields 

∂W
∂t

=
∂Φ
∂z

. (3) 

In (2), L, T and me are the flexural rigidity, the membrane tension, and the mass per unit area of the elastic cover, respectively. ρ is 
the density of the liquid and g is the acceleration due to gravity. P(x, y, t) is an arbitrary external pressure, which can be both spatial and 
temporal dependent.

Without loss of generality, we may assume that the tank undergoes horizontal oscillation in the direction of θ = 0 with velocity U(t), 
as motion in any other directions can be considered similarly by redefining θ. The impermeable surface condition on the tank wall can 
then be expressed as 

∂Φ
∂r

⃒
⃒
⃒
⃒
r=r0

= U(t)cosθ. (4) 

On the tank bottom, we have 

Fig. 1. Sketch of the problem.
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∂Φ
∂z

⃒
⃒
⃒
⃒
z=− H

= 0. (5) 

In Eqs. (4) and (5), r0 is the radius of the tank and H is the depth of the liquid. The cover is assumed to extend to the tank wall. For a 
plate cover, we may consider three types of commonly used edge conditions (Timoshenko & Woinowsky-Krieger [25]), or for clamped 
edge: 

W|r=r0
= 0,

∂W
∂r

⃒
⃒
⃒
⃒
r=r0

= 0, (6ab) 

for free edge: 

∇2W
⃒
⃒
r=r0

=
1 − ν

r0

[(
1
r0

∂2

∂θ2 +
∂
∂r

)

W
]

r=r0

, (7a) 

[
∂
∂r
∇2W

]

r=r0

= −
1 − ν

r2
0

[(
∂3

∂θ2∂r
−

1
r0

∂2

∂θ2

)

W
]

r=r0

, (7b) 

and for simply supported edge: 

W|r=r0
= 0, ∇2W

⃒
⃒
r=r0

=
1 − ν

r0

[(
1
r0

∂2

∂θ2 +
∂
∂r

)

W
]

r=r0

. (8ab) 

For a membrane cover, the edge condition may be assumed as that in Eq. (6a).
The initial conditions may be obtained from the dynamic and kinematic boundary conditions, or (2) and (3). Assuming that there is 

no motion when t < 0. Integrating (2) from t = 0− to t = 0+, and assuming that there is no impulse, we have 

Φ|z=0 = −
me

ρ Wt = −
me

ρ
∂Φ
∂z

⃒
⃒
⃒
⃒
z=0

, t = 0+. (9) 

The other initial condition can be written as 

W = 0, t = 0. (10) 

2.2. Laplace transform method for the transient motion analysis

Laplace transform L is applied to investigate the liquid sloshing due to the forced motion of the container and the external pressure 
on the elastic cover. Applying L to Eqs. (2a) for an elastic plate and (3), denoting W (s) = L{W(t)}, F (s) = L{Φ(t)} and P (s) = L[P(t)]
together with initial conditions in (9) and (10), we have 

L∇4W (s) +
(
mes2 + ρg

)
W (s) = − ρsF (s)|z=0 + P (s), (11) 

sW (s) = F z(s)|z=0. (12) 

Similarly, L is also performed on the other boundary conditions, which yields 

∂F (s)
∂r

= U (s)cosθ, (13a) 

and 

∂F (s)
∂z

⃒
⃒
⃒
⃒
z=− H

= 0, (13b) 

where U (s) = L{U(t)}.
As P(r, θ, t) can be arbitrarily chosen, without loss of generality, we can write 

P(r, θ, t) =
∑∞

n=0
Pn(r, t)cosnθ, (14) 

K. Ren and G.X. Wu                                                                                                                                                                                                  Journal of Sound and Vibration 614 (2025) 119156 

4 



where Pn(r, t) are prescribed. The functions F (r, θ, s) and W (r, θ, s) can be expanded into the following Bessel-Fourier series [20] 

F (r, θ, z, s) = U (s) rcosθ +
∑∞

n=0

∑∞

m=1
Jn(αnmr) anm(s)cosnθ

coshαnm(z + H)

coshαnmH
, (15) 

while W (r, θ, s) is first expanded into Fourier series 

W (r, θ, s) =
∑∞

n=0
W n(r, s)cosnθ, (16) 

where αnmr0 are the zeros of the first-order derivative of Bessel function, or Jʹ
n(αnmr0) = 0.

Due to the orthogonality of trigonometric functions, Eqs. (11) and (12) can be written in terms of W n as 

L
(

∂2

∂r2 +
1
r

∂
∂r

−
n2

r2

)2

W n(r, s) +
(
mes2 + ρg

)
W n(r, s) = −

∑∞

m=1
ρsanm(s)Jn(αnmr) − ρsU (s) rδn1 + P n(r, s), (17) 

and 

sW n(r, s) =
∑∞

m=1
αnmtanhαnmH Jn(αnmr) anm(s). (18) 

We further expand W n as 

W n(r, s) =
∑∞

m=1
enm(s) Jn(αnmr). (19) 

Multiplying both sides of Eq. (17) by rJn(αnmr), using the orthogonality of the Bessel functions, following the procedure leading to 
Eqs. (28) and (29) in [20], Eqs. (17) and (18) can lead to the equations below 

LKm

Ωnm
+
(
mes2 + ρg

)
enm(s) + ρsanm(s) =

H nm

Ωnm
−

ρsU (s)δn1

Ωnm
×

r2
0 J2(α1mr0)

α1m
, (20) 

and 

anm(s) =
senm(s)

αnmtanhαnmH
, (21) 

where 

H nm(s) =
∫r0

0

P n(r, s)rJn(αnmr)dr, (22) 

Ωnm =

(
α2

nmr2
0 − n2

)
J2

n(αnmr0)

2α2
nm

, (23) 

Km = r0Jn(αnmr0)
∂L n

∂r

⃒
⃒
⃒
⃒
r=r0

− r0α2
nmJn(αnmr0)

∂W n

∂r

⃒
⃒
⃒
⃒
r=r0

+ α4
nmenmΩnm, (24) 

and ∂L n
∂r |r=r0

=

[(
∂2

∂r2 +
1
r

∂
∂r −

n2

r2

)
∂W n

∂r

]

r=r0 

and ∂W n
∂r |r=r0 

are two unknowns to be determined by the edge conditions. Here it is important 

to note that the derivatives of W n in Eq. (17) is treated by integration by parts first and (19) is used only for W n but not its derivatives 
directly. The reason for this is similar to that in Eq. (2.11) of Ren et al [26].

Using (21) to eliminate anm(s) in (20), we have 

Lr0

(
∂L n

∂r

⃒
⃒
⃒
⃒
r=r0

− α2
nm

∂W n

∂r

⃒
⃒
⃒
⃒
r=r0

)

Jn(αnmr0) +

[

Lα4
nm + ρg+mes2 +

ρs2

αnmtanhαnmH

]

Ωnmenm(s) = H nm(s) −
ρsU (s)r2

0J2(α1mr0)δn1

α1m
, (25) 
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which gives 

enm(s) =

{

H nm(s) −
ρsU (s) r2

0J2(α1mr0)δn1
α1m

− Lr0Jn(αnmr0)

(
∂L n

∂r

⃒
⃒
⃒
⃒
r=r0

− α2
nm

∂W n
∂r

⃒
⃒
⃒
⃒
r=r0

)}

K (s, αnm) Ωnm
, (26) 

where 

K (s, αnm) = Lα4
nm + ρg + s2

(

me +
ρ

αnmtanhαnmH

)

. (27) 

By applying the Laplace transform to the edge conditions and further using the expansion from Eq. (19), we obtain the following 
clamped edge conditions 

∂W n

∂r

⃒
⃒
⃒
⃒
r=r0

= 0, W n(r= r0) = 0. (28a,b) 

From (28b), we have 

∂L n

∂r

⃒
⃒
⃒
⃒
r=r0

=
Yn

Zn
, (29) 

where Yn = Y(U )
n + Y(P )

n , 

Y(U )
n (s) = −

ρsr0U (s)δn1

L
∑∞

m*=1

J2(α1m* r0)J1(α1m* r0)

K (s,α1m* ) Ω1m* α1m*
= −

ρsU (s)δn1

L
∑∞

m*=1

J2
1(α1m* r0)

K (s,α1m* ) Ω1m* α2
1m*

, (30a) 

Y(P )
n (s) =

1
Lr0

∑∞

m*=1

H nm* (s)Jn(αnm* r0)

K (s,αnm* ) Ωnm*
, (30b) 

due to U (s) and P (s), respectively, and 

Zn(s) =
∑∞

m*=1

J2
n(αnm* r0)

Ωnm* K (s, αnm* )
. (31) 

In (30a), the recurrence relation of Bessel functions (Eq. (9.1.27) in Abramowitz & Stegun [27]), together with Jʹ
1(α1m* r0) = 0 has 

been used.
Therefore, from (19), we have 

W n(r, s) =
1
Zn

∑∞

m=1

Jn(αnmr)
K (s, αnm) Ωnm

(

X(P )
nm (s) −

ρsr0U (s)δn1J1(α1mr0)

α2
1m

X(U )
m (s)

)

, (32) 

where 

X(P )
nm (s) =

∑∞

m*=1

Jn(αnm* r0)

Ωnm* K (s,αnm* )
[H nm(s)Jn(αnm* r0) − H nm* (s)Jn(αnmr0)], (33) 

and 

X(U )
m (s) =

∑∞

m*=1

J2
1(α1m* r0)

K (s,α1m* ) Ω1m*

(

1 −
α2

1m
α2

1m*

)

. (34) 

Before we perform the inverse Laplace transform to (32), attention may be needed when K (s, αnm) tends to zero. Assume that it 
happens when m = mʹ, or 

Δn = K (s, αnmʹ)→0. (35) 

In such a case, the corresponding term K (s, αnm* ) in X(P )
nm , X(U )

m and Zn also tend to zero at m* = mʹ. Therefore, we have 
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W n(r, s) = lim
Δn→0

1
ZnΔn

∑∞

m=1

ΔnX(P )
nm Jn(αnmr)

ΩnmK (s, αnm)
− δn1 lim

Δ1→0

ρsr0U (s)
Z1Δ1

∑∞

m=1

Δ1X(U )
m J1(α1mr0) J1(α1mr)
K (s, α1m) α2

1m Ω1m

=
X(P )

nmʹ (s)Jn(αnmʹr)
J2

n(αnmʹr0)
+

∑∞

m=1,m∕=mʹ

Jn(αnmr) [H nm(s)Jn(αnmʹr0) − H nmʹ(s)Jn(αnmr0)]

ΩnmJn(αnmʹr0)K (s, αnm)

− δn1ρsr0U (s)

[
X(U )

mʹ J1(α1mʹr)
α2

1mʹ J1(α1mʹr0)
+

∑∞

m=1,m∕=mʹ

J1(α1mr0) J1(α1mr)
K (s,α1m) α2

1m Ω1m

(

1 −
α2

1m
α2

1mʹ

)]

,

(36) 

which is finite. Here, the Δn term at m* = mʹ in X(U )

mʹ and X(P )

nmʹ will not cause problem because 1 − α2
1mʹ/α2

1m* = 0, and H nmʹ(s)Jn(αnm* r0)

− H nm* (s)Jn(αnmʹr0) = 0.
From (16) and (32), we have 

W (r, θ, s) =
∑∞

n=0
W n(r, s)cosnθ =

∑∞

n=0

[
1
Zn

∑∞

m=1

Jn(αnmr)X(P )
nm

K (s, αnm) Ωnm

]

cosnθ + U (s)X (r, s)cosθ, (37) 

where 

X (r, s) = −
ρsr0

Z1

∑∞

m=1

J1(α1mr) J1(α1mr0) X(U )
m

K (s,α1m) α2
1mΩ1m

. (38) 

The deflection of the plate W(r, θ, t) can be obtained by performing the inverse Laplace transform L− 1 to W (r,θ, s), as 

W(r, θ, t) = L
− 1
[W (r, θ, s)] = cosθ × L

− 1
[U (s)X (r, s)] +

∑∞

n=0
cosnθ × L

− 1

[
1
Zn

∑∞

m=1

Jn(αnmr)X(P )
nm

K (s,αnm) Ωnm

]

. (39) 

For the term related to U (s), we may first consider 

L
− 1
[X (r, s)] =

1
2πi

∫γ+i∞

γ− i∞

estX (r, s) ds, (40) 

and all the singularities are on the left-hand side of the real number γ.
From (37), it is apparent when 

Zn(s) =
∑∞

m*=1

J2
1(αnm* r0)

K (s,αnm* ) Ωnm*
= 0, (41) 

the summation term and X (r, s) are singular. Equation (41) is equivalent to the expression of the natural frequencies of the tank, as 
presented in Eq. (39) in [20]. Therefore, Zn = 0 at s = ±iωn,m, where ωn,m denote the natural frequencies of the tank, with subscripts n 
and m referring to the numbers of nodal diameters and circles, respectively. These roots lie on the imaginary axis of complex plane s 
and are symmetrically distributed with respect to the origin.

To check whether there are other roots in Eq. (41), we may write s = sR + isI, and substitute it into (41). We have 

Zn(s) =
∑∞

m*=1

J2
n(αnm* r0)(Anm − iBnm)
(
A2

nm + B2
nm
)
Ωnm*

= 0, (42) 

where 

Anm = Lα4
nm* + ρg +

(
s2
R − s2

I
)
(

me +
ρ

αnm* tanhαnm* H

)

, (43) 

Bnm = 2sRsI

(

me +
ρ

αnm* tanhαnm* H

)

. (44) 

We may split (42) as 
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑∞

m*=1

J2
n(αnm* r0)Anm

(
A2

nm + B2
nm
)
Ωnm*

= 0

2sRsI

∑∞

m*=1

J2
n(αnm* r0)

(

me +
ρ

αnm* tanhαnm* H

)

(
A2

nm + B2
nm
)
Ωnm*

= 0

. (45ab) 

As α2
nm* r2

0 − n2 > 0 (i.e., Table 9.5 in [27]) and from Eq. (23), Ωnm* > 0. This means that each term in the series in Eq. (45b) is 
positive and its left-hand side can be zero only if sI = 0 or sR = 0. For the former, each term in (45a) will be positive and the summation 
cannot be zero. This means that only the latter is possible or Zn(s) = 0 has solutions only on the imaginary axis, or s =±iωn,m. Thus, we 
use the residual theorem on the left-hand side of γ. From (40), we have 

L
− 1
[X (r, s)] =

∑∞

m=1
Res
(
estX (r, s), s= ± iω1,m

)
=
∑∞

m=1
− ρr0

±iω1,me±iω1,mt

Zʹ
1
(
±ω1,m

)
∑∞

m*=1

J1(α1m* r) J1(α1m* r0)X(U )

m*

(
±ω1,m

)

K
(
± ω1,m,α1m*

)
α2

1m* Ω1m*
, (46) 

where Zń refers to taking derivative with respect to s, Zn
(
±ωn,m

)
=Zn

(
s=±iωn,m

)
, K

(
±ωn,m,αnm*

)
=K

(
s=±iωn,m,αnm*

)
, X(U )

m*

(
±ω1,m

)

=X(U )

m*

(
s=±iω1,m

)
and ± means that both positive and negative values should be included in the summation. Using the convolution 

theorem, we have 

L
− 1
[U (s)X (s)] =

∫t

0

U(t − τ)
∑∞

m=1
Res
(
esτX (s), s= ± iω1,m

)
dτ. (47) 

We may also use the convolution theorem to treat the inverse Laplace transform for the rest term in (39), as 

L
− 1

[
1
Zn

∑∞

m*=1

Jn(αnm* r)X(P )

nm*

K (s, αnm* ) Ωnm*

]

=
∑∞

m*=1

L
− 1

[

H nm* (s) ×
1
Zn

Jn(αnm* r)
K (s,αnm* ) Ωnm*

∑∞

mʹ=1

J2
n(αnmʹr0)

ΩnmʹK (s, αnmʹ)

]

−
∑∞

mʹ=1

L
− 1

[

H nmʹ(s) ×
1
Zn

Jn(αnmʹr0)

K (s, αnmʹ) Ωnmʹ

∑∞

m*=1

Jn(αnm* r)Jn(αnm* r0)

Ωnm* K (s,αnm* )

]

=
∑∞

m*=1

∫t

0

Hnm* (t − τ)

×
∑∞

m=1
Res

(
esτ

Zn

Jn(αnm* r)
K (s,αnm* ) Ωnm*

∑∞

mʹ=1

J2
n(αnmʹr0)

ΩnmʹK (s, αnmʹ)
, s = ±iωn,m

)

dτ

−
∑∞

mʹ=1

∫t

0

Hnmʹ(t − τ)

×
∑∞

m=1
Res

(
esτ

Zn

Jn(αnmʹr0)

K (s,αnmʹ) Ωnmʹ

∑∞

m*=1

Jn(αnm* r)Jn(αnm* r0)

Ωnm* K (s,αnm* )
, s = ±iωn,m

)

dτ

(48) 

where 

Hnm(t) =
∫r0

0

Pn(r, t) r Jn(αnmr) dr. (49) 

From (39), we have 
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W(r, θ, t)

= − 2iρr0cosθ ×
∑∞

m=1

[
ω1,m

Zʹ
1
(
ω1,m

)
∑∞

m*=1

J1(α1m* r)J1(α1m* r0)X(U )

m*

(
ω1,m

)

K
(
ω1,m, α1m*

)
α2

1m* Ω1m*

]

×

∫t

0

U(t − τ)cosω1,mτdτ

+
∑∞

n=0
cosnθ

×

⎧
⎨

⎩

∑∞

m*=1

∫t

0

Hnm* (t − τ)

×
∑∞

m=1

(
2isinωn,mτ
Zń
(
ωn,m

)
Jn(αnm* r)

K
(
ωn,m, αnm*

)
Ωnm*

∑∞

mʹ=1

J2
n(αnmʹr0)

ΩnmʹK
(
ωn,m, αnmʹ

)

)

dτ

−
∑∞

mʹ=1

∫t

0

Hnmʹ(t − τ)

×
∑∞

m=1

(
2isinωn,mτ
Zń
(
ωn,m

)
Jn(αnmʹr0)

K
(
ωn,m, αnmʹ

)
Ωnmʹ

∑∞

m*=1

Jn(αnm* r)Jn(αnm* r0)

Ωnm* K
(
ωn,m, αnm*

)

)

dτ
}

,

(50) 

where the features that K
(
− ωn,m, αn,m

)
= K

(
ωn,m, αn,m

)
and Zń

(
− ωn,m

)
= − Zń

(
ωn,m

)
have been used. In addition, an alternative 

form of Eq. (50) may be derived to check numerical results, which is displayed in Appendix A.
To understand the distribution of the natural frequencies better, we may inspect the roots of Zn(ω) = 0 more carefully, where 

Zn(ω) = Zn(s= iω) =
∑∞

m*=1

J2
n(αnm* r0)

K (ω, αnm* )Ωnm*
. (51) 

We notice that K n,m* (ω) = K (ω,αnm* ) = 0 has two roots and we may denote them as ±ϖn,m* and ϖn,m* increases with m*. We then 

notice Zn

(
ϖ+

n,m*

)
→ − ∞ as K n,m*

(
ϖ+

n,m*

)
→0− , and Zn

(
ϖ−

n,m*+1

)
→∞ as K n,m*+1

(
ϖ−

n,m*+1

)
→0+. Thus, Zn(ω) = 0 has at least one root 

between ϖn,m* and ϖn,m*+1. Also, as it is obvious from (51) that Zʹ
n(ω) > 0, Zn(ω) = 0 will have only one solution within this range.

We may also consider the limit h→0 in a way similar that in [28] and [29]. For the free surface flow problem, the thickness of the 
plate cover h = 0, which gives L = 0 and me = 0. The natural frequency will be ϖ2

n,m* = gαnm* tanhαnm* H ([30,13]). Here if we take L 
= 0 and me = 0 directly in (31), the series becomes divergent, or Zn(ω) = + ∞. Therefore, we may consider a very small h. We expect 
that in such a case Zn(ω) generally is very large and is positive. Also, based on the above discussion, we still expect that Zn(ω) = 0 has a 

root between ϖn,m* and ϖn,m*+1. This is possible only if ω is sufficiently close to ϖ+
n,m* where a large negative value of J2

n (αnm* r0)

K n,m* (ω) Ωnm* 
can 

cancel the large positive value from the rest of the summation. We then expect h→0, or L→0, me→0, ω→ϖn,m* =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
gαnm* tanhαnm* H

√
, 

which is the same as that of the free surface flow problem. We therefore can conclude that as h→0, the result tends to that of the free 
surface flow.

The derivation procedure above is for a plate cover, but it can be readily adapted to deal with cases involving a membrane cover. In 
fact, we can replace L∇4W (s) with − T∇2W (s) in Eq. (11). Equation (20) then becomes 

−
TIm
Ωnm

+
(
mes2 + ρg

)
enm(s) + ρsanm(s) =

H nm

Ωnm
−

ρsU (s)δn1

Ωnm
×

r2
0 J2(α1mr0)

α1m
, (52) 

where 

Im = r0Jn(αnmr0)
∂W n

∂r

⃒
⃒
⃒
⃒
r=r0

− α2
nmenmΩnm, (53) 

while Eq. (21) remains the same. This gives 

enm(s) =

{

H nm −
ρsU (s)r2

0 J2(α1mr0)δn1
α1m

+ Tr0Jn(αnmr0)
∂W n

∂r

⃒
⃒
⃒
⃒
r=r0

}

K M(s, αnm) Ωnm
, (54) 

where 
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K M(s,αnm) = Tα2
nm + ρg + s2

(

me +
ρ

αnmtanhαnmH

)

, (55) 

with subscript M referring to membrane.
Imposing edge condition W n(r= r0) = 0 through Eq. (19), we have 

∂W n

∂r

⃒
⃒
⃒
⃒
r=r0

=
YM,n

ZM,n
, (56) 

where 

YM,n = Y(P )

M,n + Y(U )

M,n = −
1

Tr0

∑∞

m=1

H nm(s)Jn(αnmr0)

K M(s,αnm) Ωnm
+

ρsU (s)δn1

T
∑∞

m=1

J2
1(α1mr0)

K M(s,α1m) Ω1mα2
1m

(57) 

and 

ZM,n =
∑∞

m=1

J2
n(αnmr0)

K M(s, αnm) Ωnm
. (58) 

The final solution can then be obtained through the inverse Laplace transform, which can be written as 

W(r, θ, t)

= − 2iρr0cosθ ×
∑∞

m=1

[
ω1,m

Zʹ
M,1
(
ω1,m

)
∑∞

m*=1

J1(α1m* r)J1(α1m* r0)X(U )

M,m*

(
ω1,m

)

K M
(
ω1,m, α1m*

)
α2

1m* Ω1m*

]

×

∫t

0

U(t − τ)cosω1,mτdτ

+
∑∞

n=0
cosnθ

×

⎧
⎨

⎩

∑∞

m*=1

∫t

0

Hnm* (t − τ)

×
∑∞

m=1

(
2isinωn,mτ
ZḾ,n

(
ωn,m

)
Jn(αnm* r)

K M
(
ωn,m, αnm*

)
Ωnm*

∑∞

mʹ=1

J2
n(αnmʹr0)

ΩnmʹK M
(
ωn,m,αnmʹ

)

)

dτ

−
∑∞

mʹ=1

∫t

0

Hnmʹ(t − τ)

×
∑∞

m=1

(
2isinωn,mτ
ZḾ,n

(
ωn,m

)
Jn(αnmʹr0)

K M
(
ωn,m, αnmʹ

)
Ωnmʹ

∑∞

m*=1

Jn(αnm* r)Jn(αnm* r0)

Ωnm* K M
(
ωn,m,αnm*

)

)

dτ
}

,

(59) 

where 

X(U )

M,m*

(
ω1,m

)
=
∑∞

mʹ=1

J2
1(α1mʹr0)

K M
(
ω1,m, α1mʹ

)
Ω1mʹ

(

1 −
α2

1m*

α2
1mʹ

)

, (60) 

with ZM,n
(
ωn,m

)
= ZM,n

(
s= iωn,m

)
, K M

(
ωn,m,αnm*

)
= K M

(
s= iωn,m, αnm*

)
and ωn,m are the natural frequencies of the tank, which are 

the roots of the equation ZM,n(ω) = 0.
The velocity potential can be also obtained. From (15) and (21), we have 

F (r, θ, z, s) = U (s) rcosθ +
∑∞

n=0
cosnθ

∑∞

m=1

Jn(αnmr) senm(s)
αnmsinhαnmH

coshαnm(z+H), (61) 

throughout the fluid domain. Next, we perform the inverse Laplace transform to (61) directly to get Φ(r, θ, z, t) for the plate cover case 
as 

Φ(r, θ, z, t) = L
− 1
[F (r, θ, z, s)]

= rcosθL
− 1
[U (s)] +

∑∞

n=0
cosnθ

∑∞

m*=1

Jn(αnm* r)coshαnm* (z + H)

αnm* sinhαnm* H
L

− 1
[senm* (s)].

(62) 
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Here we may work out the inverse Laplace transform to senm(s) by directly using the kinematic condition (3), (50) and (62), and 
comparing the coefficients of J1(α1mr) on both sides, which yields 

L
− 1
[senm* (s)]

= − 2iρr0δn1 ×
∑∞

m=1

[
ω1,m

Zʹ
1
(
ω1,m

)
J1(α1m* r0)X(U )

m*

(
ω1,m

)

K
(
ω1,m,α1m*

)
α2

1m* Ω1m*

]
dFm

dt

+
∑∞

m=1

(
2i

Zń
(
ωn,m

)
1

K
(
ωn,m, αnm*

)
Ωnm*

∑∞

mʹ=1

J2
n(αnmʹr0)

ΩnmʹK
(
ωn,m, αnmʹ

)

)

×
d
dt

∫t

0

Hnm* (t − τ)sinωn,mτdτ

−
∑∞

mʹ=1

∑∞

m=1

(
2i

Zń
(
ωn,m

)
Jn(αnmʹr0)

K
(
ωn,m,αnmʹ

)
Ωnmʹ

Jn(αnm* r0)

Ωnm* K
(
ωn,m,αnm*

)

)

×
d
dt

∫t

0

Hnmʹ(t − τ) sinωn,mτdτ,

(63) 

where Fm =

∫t

0

U(t − τ)cosω1,mτdτ.

3. Energy analysis

Energy of the coupled system is also of interest to investigate. The total energy, denoted as Etotal, of this sloshing system contains 
four parts, which can be written as 

Etotal = Kl + Ke + Tl + Te, (64) 

where K and T refer to the potential and kinetic energies respectively, and subscripts l and e refer to the fluid and elastic cover 
respectively. Tl can be written as [1] 

Tl = −
ρ
2

∯
S

ΦΦndS =
ρ
2

∫2π

0

∫r0

0

Φ|z=0Φz|z=0rdθdr +
ρ
2

∫2π

0

∫0

− H

Φ|r=r0
Φr|r=r0

r0dθdz, (65) 

where S denotes the entire boundary surface of fluid domain and Φn denotes the inward normal derivative. In addition, as the 
deflection of the fluid is the same with that of the cover, the potential energy of the liquid can be therefore expressed as 

Kl =
ρg
2

∫2π

0

∫r0

0

W2(r, θ, t)rdθdr. (66) 

The kinetic energy of the cover is 

Te =
me

2

∫2π

0

∫r0

0

(
∂W
∂t

)2

rdθdr. (67) 

The potential energy of the cover consists of two parts: one from the variation of vertical deflection, similar to that of the wave 
elevation, and the other from bending strain energy. Therefore, we may write it as 

Ke = K(1)
e + K(2)

e , (68) 

where 

K(1)
e =

meg
2

∫2π

0

∫r0

0

W2(r, θ, t)rdθdr, (69) 

and 
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K(2)
e =

∫∫

S

L
2

{(
∂2W
∂x2 +

∂2W
∂y2

)2

− 2(1 − ν)
[

∂2W
∂x2

∂2W
∂y2 −

(
∂2W
∂x∂y

)2]}

dxdy

=
L
2

∫∫

S

{
(
∇2W

)2
− 2(1 − ν)

[
WrrWr

r
+

WrrWθθ

r2 −

(
Wθ

r2 −
1
r
Wrθ

)2]}

rdrdθ. (70) 

For the tank with motion U(t), Kl can be obtained by substituting the first term of (50) into (66), as 

Kl = − 2πρ3r2
0g
∑∞

m*=1

J2
1(α1m* r0) α4

1m* Ω1m* T
2
m* , (71) 

where 

Tm* =
∑∞

m=1

ω1,mFm(t)
Zʹ

1
(
ω1,m

)
X(U )

m*

(
ω1,m

)

K
(
ω1,m,α1m*

), (72) 

while Tl can be similarly obtained from (65) as 

Tl =
ρπr2

0HU2(t)
2

− 2iπρ2r2
0U(t)

∑∞

m*=1

J2
1(α1m* r0)

α4
1m* Ω1m*

dTm*

dt
− 2πρ3r2

0

∑∞

m*=1

J2
1(α1m* r0)

α5
1m* Ω1m* tanhα1m* H

(
dTm*

dt

)2

. (73) 

In addition, from (67) and (69), we have 

Te =
me

2

∫2π

0

∫r0

0

(
∂W
∂t

)2

rdθdr = − 2ρ2r2
0meπ

∑∞

m*=1

J2
1(α1m* r0)

α4
1m* Ω1m*

(
dTm*

dt

)2

, (74) 

and 

K(1)
e =

meg
2

∫2π

0

∫r0

0

W2(r, θ, t)rdθdr =
meKl

ρ . (75) 

For K(2)
e , we consider the second integral in K(2)

e , by using Green’s theorem, we have 

I2 =

∫∫

S

[
∂2W
∂x2

∂2W
∂y2 −

(
∂2W
∂x∂y

)2]

dxdy =

∫∫

S

[
∂

∂x

(
∂W
∂x

∂2W
∂y2

)

−
∂
∂y

(
∂W
∂x

∂2W
∂x∂y

)]

dxdy =

∮

C

[(
∂W
∂x

∂2W
∂y2

)

nx −

(
∂W
∂x

∂2W
∂x∂y

)

ny

]

ds.

(76) 

Specifically, for a circle with radius of r0, (76) can be transformed to the polar coordinate system as 

I2 =

∫2π

0

[
sin2θ

2r
WrWrθ +

cos2θ
r

W2
r +

cos2θ
r2 WrWθθ −

sin2θ
r2 WθWr −

sin2θ
r2 WθWrθ −

sin2θ
2r3 WθWθθ +

sin2θ
r3 W2

θ

]

r=r0

r0dθ =

∫2π

0

[

−
sin2θ
2r3 WθWθθ +

sin2θ
r3 W2

θ

]

r=r0

r0dθ = − 2πρ2

[
∑∞

m*=1

J2
1(α1m* r0)

α2
1m* Ω1m*

Tm*

]2

,

(77) 

where the edge condition has been used.
For the first integral, we have 

I1 =

∫∫

S

(
∇2W

)2dS =

∫∫

S

∇
(
∇W ∇2W − W∇3W

)
dS +

∫∫

S

W∇4WrdS =

∫2π

0

(
∂W
∂n

∇2W − W
∂∇2W

∂n

)

ds +
∫∫

S

W∇4WrdS. (78) 

Specifically, for clamped edge case, the first term of (78) reduces to zero. Using the dynamic equation, or (2a), to replace ∇4W, we 
have 

I1 =

∫ ∫

S

W∇4WrdS = −
ρg
L

∫ ∫

S

W2rdθdr −
ρ
L

∫ ∫

S

WΦtrdθdr −
me

L

∫ ∫

S

WWttrdθdr

= −
2Kl

L
+

2πiρ2r3
0

L
dU
dt
∑∞

m*=1

J1(α1m* r0)J2(α1m* r0)

α3
1m* Ω1m*

Tm* +
4πρ2r2

0
L

∑∞

m*=1

J2
1(α1m* r0)

α4
1m* Ω1m*

Tm*
d2

Tm*

dt2

(
ρ

α1m* tanhα1m* H
+me

)

. (79) 
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4. Results and analysis

Based on the linear assumption, the excitation due to tank motion U(t) and external pressure P(r, θ, t) can be considered separately.

4.1. Excitation due to tank motion

The effect of a given U(t) is considered in this section, and the resultant deflection of the flexible plate and membrane cover can be 
respectively obtained from the first term of Eqs. (50) and (59). Here, we may let U(t) = sinω0t as an example, and therefore 

Fm =

∫t

0

sinω0(t − τ)cosω1,mτdτ =
ω0
(
cosω1,mt − cosω0t

)

ω2
0 − ω2

1,m
. (80) 

In general, Eq. (80) shows that under sinusoidal excitation with frequency ω, the motion will have a sinusoidal component at the 
same frequency. In addition to that, the motion will have the sinusoidal modes at the natural frequencies. When the excitation fre
quency approaches to one of the natural frequencies, or ω0→ω1,m, (80) will approach 

lim
ω0→ω1,m

Fm = lim
ω0→ω1,m

ω0
(
cosω1,mt − cosω0t

)

ω2
0 − ω2

1,m
=

t
2

sinω1,mt. (81) 

This means that the motion will tend to infinity as time increases, which is a common feature at resonance without damping.
In the following calculation, we utilise dimensionless parameters based on the acceleration due to gravity g, the radius of the 

circular cylindrical tank r0, and the density of liquid ρ. The Poisson’s ratio is set to 0.3. For the case study, we may select parameters 
with H* = H/r0 = 1, m*

e = me/(ρr0) = 5 × 10− 4and L* = L/
(
ρgr4

0
)
= 1 × 10− 3, as in [20]. From Eq. (50), it can be seen as m increases 

the term decays at a rate of 1/m4 as the leading of α1m is proportional of m (Eq. 9.5.13 of [27]). We obtain the first ten natural fre
quencies ω1,m (m = 1,2,…10) from Eq. (41), which are displayed in Table 1 for the clamped edge case. To obtain the defection, the 
series in the first term of Eq. (50) regarding m* is truncated at M* = 10, as terms beyond that is of order 10− 4. Numerical results from 
larger M* are found to make no visual difference, as expected from the above asymptotic analysis.

We may choose three locations on the elastic cover along the radial direction of the tank, aligned with the direction of oscillation (in 
the first term of Eq. (50), cosθ can be taken out as a factor), namely, (r,θ) = (0.25,0), (0.50,0) and (0.75,0), to display the time series 
results of cover deflection in Fig. 2. Eight excitation frequencies are chosen, namely, ω0 = 1.0, 1.8, 1.9, 1.9512

(
ω1,1

)
, 2.0, 2.1, 4.0 

and 5.1672
(
ω1,2

)
. The first ten natural modes have been included and inclusion of additional natural modes will not alter the results 

visibly. At the same excitation frequency, the time-series curves of different locations show similar oscillatory features due to same 
harmonic elements they have, but with different amplitudes.

In the first term of Eq. (50), the mth term in the summation contains two harmonic oscillations at ω1,m and ω0, respectively. At a 
given ω0, the magnitude of the mth term decays at a rate of 1/ω2

1,m. Thus, unless ω1,m is close to ω0, its contribution is small when m is 
large. In general, when ω0 is away from all the natural frequencies ω1,m (m = 1,2,3…), the variation of W with t has many frequency 
components, and the curves may look like irregular, as can be seen from Fig. 2(a). When ω0 is near one of the natural frequencies, say 
ω0 ≈ ω1,1, the first term in the first series of (50) will become far more significant than the others, the reason of which can be clearly 
seen from (80). The term has two components: (i). ω1,m or ω0 (as they are very close) and (ii). the envelope wave with frequency |ω1,1 −

ω0|/2. This can be clearly seen in Fig. 2(b) and becomes even more evident in Fig. 2(c). When ω0 = ω1,1, there is only one component 
at ω0 but the amplitude keeps increasing with time, the reason of which can be seen from Eq. (81). When ω0 is close to one of the other 
natural frequencies, similar behaviour can be expected. In addition, Fig. 2(h) shows the result at ω0 = ω1,2, which is similar to that in 
Fig. 2(d). It is worth mentioning that in the case of an ideal fluid, resonance leads to unbounded oscillation amplitudes due to the 
absence of dissipative forces. In such a case, the effect of the fluid viscosity is important, due to which the motion will not tend to 
infinity. Also, nonlinearity may become important when the motion amplitude is large.

The time histories of the kinetic energy and potential energy of elastic cover and liquid are respectively plotted in Fig.s 3 and 4
against different ω0. From the graphs, we can observe that all energy components oscillate cyclically over time, demonstrating 
repeated energy transfers among these four energy components within the system. Regarding the peak magnitudes, Tl > Kl > Ke ≫ 
Te is consistently observed across all study cases. This illustrates that the liquid is the primary energy carrier in the system, with its 

kinetic energy dominating the overall system dynamics, while the elastic cover stores energy through its deformation. When the tank is 
undergoing forced motion, the energy from external forcing is first transformed into the liquid. The elastic cover plays an important 
role in constraining the liquid motion and absorbs part of the energy in the forms of its own potential and kinetic energy. When 
resonance occurs, we can see though all the energy components oscillate over time, but their peaks keep growing with time, as the 

Table 1 
Natural frequencies ωn,m at L* = 1 × 10− 3, m*

e = 5 × 10− 4 and H* = 1 for clamped edge.

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10

n = 1 1.95119 5.16721 11.5683 21.8401 36.4541 55.8465 80.422 110.557 146.604 188.893
n = 2 3.08284 7.69070 15.9067 28.2407 45.1437 67.0351 94.304 127.315 166.406 211.901
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entire system continuously obtains energy from external forces.

4.2. Motion due to external pressure excitation on the cover

Next, we consider the motion due to the external pressure. In (14), we may further define Pn(r, t) as 

Pn(r, t) = cosω0t
∑∞

mʹ=1

pnmʹ Jn(αnmʹr). (82) 

From (49) and (82), we have 

Hnm(t) = pnmΩnm cosω0t, (83) 

and the second term of (50), defined as Wep, becomes 

Fig. 2. . Time series of plate deflections at three locations (r,θ) = (0.25, 0), (0.50,0) and (0.75, 0) for the clamped edge case at different excitation 
frequencies. (L* = 1× 10− 3, m*

e = 5 × 10− 4 and H* = 1).
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Fig. 3. Time histories of kinetic energy of the elastic plate cover and liquid at different frequencies.
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Fig. 4. Time histories of potential energy of the elastic plate cover and liquid at different frequencies.
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Fig. 5. Time series of W(ep)
n,m* at the location of (r, θ) = (0.50,0) for the clamped edge case at different excitation frequencies. (L* = 1 × 10− 3, m*

e 

= 5 × 10− 4 and H* = 1).
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Fig. 5. (continued).

Fig. 6. Surface plot of the resultant plate deflection W(ep)
n,m* .
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Wep =
∑∞

n=0
cosnθ

{
∑∞

m*=1

pnm* Jn(αnm* r)
∑∞

m=1

(
2iGn,m(t)

Zń
(
ωn,m

)
K
(
ωn,m,αnm*

)
∑∞

mʹ=1

J2
n(αnmʹr0)

ΩnmʹK
(
ωn,m, αnmʹ

)

)

−
∑∞

mʹ=1

pnmʹJn(αnmʹr0)
∑∞

m=1

(
2iGn,m(t)

Zń
(
ωn,m

)
K
(
ωn,m,αnmʹ

)
∑∞

m*=1

Jn(αnm* r)Jn(αnm* r0)

Ωnm* K
(
ωn,m, αnm*

)

)}

=
∑∞

n=0
cosnθ

{
∑∞

m*=1

pnm*

∑∞

m=1

(
2iGn,m(t)

Zń
(
ωn,m

)
K
(
ωn,m,αnm*

)

×
∑∞

mʹ=1

Jn(αnmʹr0)[Jn(αnmʹr0)Jn(αnm* r) − Jn(αnmʹr)Jn(αnm* r0)]

ΩnmʹK
(
ωn,m, αnmʹ

)

)}

,

(84) 

where 

Gn,m(t) =
∫t

0

sinωn,mτcosω0(t − τ)dτ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ωn,m
(
cosωn,mt − cosω0t

)

ω2
0 − ω2

n,m
, ω0 ∕= ωn,m

t
2

sinωn,mt, ω0→ωn,m

. (85) 

Because of linearity, the term related to each pnm* can be considered separately, or 

Wnm* (r, θ) = cosnθ
∑∞

m=1

(
2iGn,m(t)

Zń
(
ωn,m

)
K
(
ωn,m,αnm*

)×
∑∞

mʹ=1

Jn(αnmʹr0)[Jn(αnmʹr0)Jn(αnm* r) − Jn(αnmʹr)Jn(αnm* r0)]

ΩnmʹK
(
ωn,m,αnmʹ

)

)

. (86) 

For the results due to an arbitrary external pressure, they can be obtained by superposition. Similar to Fig. 2, we display the 
resultant deflections W(ep)

n,m* at the position (r, θ) = (0.50, 0) for cases of different excitation frequencies in Fig. 5. For n = 1, the am
plitudes of the curves corresponding to m* = 1 are significantly larger than these for m* = 2, as observed in the graphs on the left-hand 
side of the figure. For n = 2, the amplitudes of the curves for m* = 1 become comparable to those for m* = 2. When the external 
frequencies approach ωn,m* , the envelope becomes apparent in the curves of W(ep)

n,m* . In addition, resonance occurs at ω0 = ωn,m* , with the 

amplitudes of the curves for W(ep)
n,m* continuously increasing.

In addition, surface plots are also provided to show the entire plate deflection at certain time instants. In Fig. 6, the graphs for W(ep)
n,m* 

(n,m* = 1,2) at ω0 = 1.8 at t = 20.94 are displayed. The variation of these graphs along the circumferential direction and its rotational 
symmetry depends on the term cosnθ, where n refers to the number of the nodal diameters. We can expect that with the increase of n, 
there will be more oscillations in the circumferential direction.

5. Conclusions

The transient liquid motion coupled with an elastic membrane or plate cover, in a cylindrical container, under forced horizontal 
motion and external pressure applied to the elastic cover, is investigated. An analytical solution scheme is developed based on the 
Laplace transform and the Bessel-Fourier series expansion, allowing the calculation of the time-varying variables in the coupled vi
bration system. Explicit solutions for the deflection of elastic cover and energy components in the system have been derived. An 
alternative form of expression based on the residual theorem has also been provided for verification.

When the tank undergoes forced motion, the frequency components of the time history of the upper surface deflection are 
determined by the excitation frequency and the natural frequencies of the system. This can lead to three different scenarios: the 
presence of multiple frequency components, two dominant components, or a single frequency component at resonance. In addition, the 
cyclical oscillation of energy components within the vibrating system highlights the dynamic energy transfer among them. Energy 
from external forces is primarily transferred into the liquid, with the elastic cover constraining the motion of the liquid and storing part 
of the energy mainly through deformation. The liquid serves as the primary energy carrier. At resonance, the energy peaks contin
uously grow.

With external pressure on the cover, the motion response of the upper surface can be analysed for each component, enabling the 
study of any arbitrary pressure distributions. The circumferential variation and rotational symmetry depend on the term cosnθ, with 
higher nodal diameters leading to increased angular oscillations.
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Appendix A. Alternative forms of the summations in Eq. (50)

For the summation with respect to m*, or 

S1 =
∑∞

m*=1

J1(α1m* r)J1(α1m* r0)X(U )

m*

(
ω1,m

)

K
(
ω1,m,α1m*

)
α2

1m* Ω1m*
(A0) 

in (50), we define a complex function below 

f1(α) =
2J1(αr)X(ω,α)

r0K (ω,α) Jʹ
1(αr0)α2, (A1) 

where 

X(ω, α) =
∑∞

m=1

J2
1(α1mr0)

K (ω,α1m) Ω1m

(

1 −
α2

α2
1m

)

. (A2) 

We can integrate f1(α) along a circle of infinite radius R centred at the origin in the complex plane α and use residue theorem at 
K (ω, kmʹ) = 0 and Jʹ

1(α1m* r0) = 0. The roots of K (ω, kmʹ) = 0 involve four fully complex roots denoted as ±k− 2, ±k− 1, two real roots 
denoted as ±k0, and infinite pure imaginary roots denoted as ±kmʹ (mʹ = 1,2,3…), e.g., [20]. Therefore, we have 

I1 =
1

2πi

∮

c

f1(α)dα = 2

(
∑∞

mʹ=− 2

2J1(kmʹr)X(ω, kmʹ)

r0K
ʹ
(ω, kmʹ) Jʹ

1(kmʹr0)k2
mʹ
+
∑∞

m*=1

2J1(α1m* r)X(ω, α1m* )

r2
0K (ω,α1m* ) Jʹ́

1(α1m* r0)α2
1m*

)

= 0. (A3) 

Here, 

K
ʹ
(ω, kmʹ) =

∂K (ω, α = kmʹ)

∂α =
2ρω2Smʹ

kmʹtanh2kmʹH
, (A4) 

where 

Smʹ =
2Lk4

mʹtanh2kmʹH
ρω2 +

sinh2kmʹH + 2Hkmʹ

4kmʹcosh2kmʹH
, (A5) 

as defined in Eq. (45) in [20].
With (A3), and also notice that Ωnm* = − r2

0Jʹ́
n(αnm* r0)Jn(αnm* r0)/2 after the recurrence relations (Eq. 9.1.27, [27]) and Jń(αnm* r0)

= 0 are used, we have 

∑∞

m*=1

J1(α1m* r)J1(α1m* r0)X(U )

m*

(
ω1,m

)

K
(
ω1,m, α1m*

)
α2

1m* Ω1m*
= −

∑∞

m*=1

2 J1(α1m* r) X
(
ω1,m, α1m*

)

r2
0K

(
ω1,m,α1m*

)
α2

1m* Jʹ́
1(α1m* r0)

=
∑∞

mʹ=− 2

2J1(kmʹr)X
(
ω1,m, kmʹ

)

r0K
ʹ(ω1,m, kmʹ

)
Jʹ

1(kmʹr0)k2
mʹ
. (A6) 

For Zʹ
n
(
ωn,m

)
in (50), from (51), we have 

Zʹ
n(ω) = −

∑∞

m*=1

J2
n(αnm* r0)

K
2
(ω, αnm* )Ωnm*

dK (ω,αnm* )

dω =
∑∞

m*=1

2Jn(αnm* r0)

r2
0K

2
(ω,αnm* )Jʹ́

n(αnm* r0)

dK (ω,αnm* )

dω . (A7) 

We may apply the residue theorem first to transform Z(ω). To do this, we may define a complex function as 

f2(α) =
2Jn(αr0)

r0K (ω,α) Jń(αr0)
. (A8) 

Then, 

I2 =
1

2πi

∮

c

f2(α)dα = 2

(
∑∞

mʹ=− 2

2Jn(kmʹr0)

r0K
ʹ
(ω, kmʹ) Jń(kmʹr0)

+
∑∞

m*=1

2Jn(αnm* r0)

r2
0K (ω, αnm* ) Jʹ́

n(αnm* r0)

)

= 0. (A9) 
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This gives 

Z(ω) =
∑∞

m*=1

J2
n(αnm* r0)

K (ω,αnm* ) Ωnm*
= −

∑∞

m*=1

2Jn(αnm* r0)

K (ω, αnm* ) r2
0Jʹ́

n(αnm* r0)
=
∑∞

mʹ=− 2

2Jn(kmʹr0)

r0K
ʹ
(ω, kmʹ) Jń(kmʹr0)

, (A10) 

where K ʹ means derivative with respect to α, as displayed in (A4). We then have 

Zʹ =
dZ
dω =

d
dω

∑∞

mʹ=− 2

2Jn(kmʹr0)

r0K
ʹ
(ω, kmʹ) Jń(kmʹr0)

=
2
r0

∑∞

mʹ=− 2

d
dω

{
Jn(kmʹr0)

K
ʹ
(ω, kmʹ) Jń(kmʹr0)

}

=
2
r0

∑∞

mʹ=− 2

⎧
⎪⎪⎨

⎪⎪⎩

r0Jʹ
n(kmʹr0)

dkmʹ

dω × K
ʹ Jʹ

n(kmʹr0)

− Jn(kmʹr0)

[
dK

ʹ

dω Jʹ
n(kmʹr0) + K

ʹ r0Jʹ́
n(kmʹr0)

dkmʹ

dω

]

⎫
⎪⎪⎬

⎪⎪⎭

[
K

ʹ Jń(kmʹr0)
]2 . (A11) 

We notice that kmʹ is a solution of K (ω,α) = 0 and is therefore function of ω. From dK = 0 we have 

dkmʹ

dω = −

(
∂K
∂ω

)

(
∂K
∂kmʹ

) =

(
Lk4

mʹ + ρg
)
kmʹtanh2kmʹH

ρω3Smʹ
. (A12) 

In (A11), dK
ʹ
/dω can be obtained by applying d/dω to (A4), as 

Γmʹ =
dK

ʹ

dω =
∂K ʹ

∂ω +
∂K ʹ

∂kmʹ

dkmʹ

dω =
4ρωSmʹ

kmʹtanh2kmʹH
−

12Lk3
mʹ

ω −
4ρg
ωkmʹ

+

4
(
Lk4

mʹ + ρg
)
(

5Lk3
mʹtanh2kmʹH − ρω2H2

sinh2kmʹH

)

ρω3Smʹ
. (A13) 

Therefore, (A11) can be further written as 

Zʹ(ω=ω1,m
)
=

1
r0

∑∞

mʹ=− 2

k2
mʹtanh4kmʹH
2ρ2ω4S2

mʹ
×

[
2r0
(
Lk4

mʹ + ρg
)

ω

(

1 −
Jn(kmʹr0)Jʹ́

n(kmʹr0)
(
Jń(kmʹr0)

)2

)

−
ΓmʹJn(kmʹr0)

Jń(kmʹr0)

]

. (A14) 
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Data will be made available on request.
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