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Abstract
Misinformation about climate science is a001
serious challenge for our society. This pa-002
per introduces CPIQA (Climate Paper Image003
Question-Answering), a new question-answer004
dataset featuring 4,551 full-text open-source005
academic papers in the area of climate science006
with 54,612 GPT-4o generated question-answer007
pairs. CPIQA contains four question types008
(numeric, figure-based, non-figure-based, rea-009
soning), each generated using three user roles010
(expert, non-expert, climate sceptic). CPIQA011
is multimodal, incorporating information from012
figures and graphs with GPT-4o descriptive an-013
notations. We describe Context-RAG, a novel014
method for RAG prompt decomposition and015
augmentation involving extracting distinct con-016
texts for the question. Evaluation results for017
Context-RAG on the benchmark SPIQA dataset018
outperforms the previous best state of the art019
model in two out of three test cases. For our020
CPIQA dataset, Context-RAG outperforms our021
standard RAG baseline on all five base LLMs022
we tested, showing our novel contextual decom-023
position method can generalize to any LLM024
architecture. Expert evaluation of our best per-025
forming model (GPT-4o with Context-RAG) by026
climate science experts highlights strengths in027
precision and provenance tracking, particularly028
for figure-based and reasoning questions.029

1 Introduction030

Misinformation about climate science continues031

to pose a challenge for our society. This poses a032

serious challenge for public understanding, poli-033

cymaking and even experts (Lewandowsky, 2020).034

At the same time, large language models (LLMs)035

have become powerful tools for information re-036

trieval and evidence synthesis, but they are also037

highly prone to hallucination—generating incorrect038

or fabricated facts, references, and claims. Given 039

the high stakes of climate communication, there is 040

a pressing need for a reliable question-answering 041

(QA) system that grounds responses in authorita- 042

tive scientific sources. 043

In this work, we introduce CPIQA, a new dataset 044

for climate science QA that incorporates both text 045

and visual data from academic papers. CPIQA con- 046

sists of 4,551 papers from twelve sources, with 047

extracted figures and their descriptions used as 048

additional evidence in question-answering. The 049

dataset supports three role variations and four ques- 050

tion categories designed to reflect different types 051

of real-world climate questions. 052

Building on CPIQA, we develop a retrieval- 053

augmented generation (RAG)-based chatbot for 054

climate QA. Our system follows a two-stage re- 055

trieval process: it first retrieves full papers based on 056

the user’s query, then extracts relevant text chunks 057

from the most relevant papers. This approach im- 058

proves both chunk similarity and cross-relevance 059

of chunks. Further, we introduce Context-RAG, a 060

novel prompting method that enhances retrieval by 061

decomposing a given question into distinct contex- 062

tual variations before searching for relevant doc- 063

uments. Rather than relying on a single query, 064

our method anticipates different ways the ques- 065

tion might be framed—such as a scientific expla- 066

nation, a policy-related perspective, or a public 067

concern—allowing for more diverse and targeted 068

retrieval. This ensures that retrieved documents 069

are not biased toward a single interpretation of the 070

question. 071

To evaluate the effectiveness of our method, we 072

test it on SPIQA, a dataset for scientific QA in the 073

computer science domain, in addition to CPIQA. 074

This allows us to assess how well our QA pipeline 075
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generalizes beyond climate science. Finally, we076

validate the system’s outputs through qualitative077

climate scientist expert evaluation, ensuring that re-078

sponses are accurate, relevant, concise and aligned079

with scientific consensus.080

By combining structured retrieval with expert-081

informed question generation, this work con-082

tributes a robust, transparent approach to cli-083

mate QA, helping to bridge the gap between AI-084

generated answers and reliable scientific communi-085

cation.086

More specifically, our contributions in this work087

include the following:088

• A new multimodal QA dataset resource089

(CPIQA dataset) for the NLP community090

based on 4,551 academic climate research091

paper documents. This dataset is large,092

annotated with 54,612 question-answer093

pairs generated by GPT-4o and includes094

text summaries of all images, graphs and095

figures within the full text documents.096

Questions are broken down into figure-based,097

numeric-based, non-numeric, and reasoning-098

based types to allow for a finer-grained099

evaluation of QA performance than most100

existing QA datasets allow. Our dataset101

and code is open source and available at102

GITHUB_URI_REDACTED_PREPRINT103

and ZENODO_URI_REDACTED_PREPRINT.104

• Description of a novel context-based query105

expansion method for RAG, comprehensively106

evaluated on both the benchmark SPIQA107

dataset and our new CPIQA dataset. Context-108

based query expansion provides a 7.2% im-109

provement over baseline RAG methods across110

various question types and roles. We include a111

detailed breakdown of performance across dif-112

ferent question types which future researchers113

can benchmark their models against.114

2 Related Work115

2.1 Scientific QA Datasets116

Table 1 sets out notable QA datasets that have been117

designed to support scientific domains such as cli-118

mate science.119

A significant number of existing QA datasets120

come from the biomedical and computer science121

domains, reflecting the heavy use of document-122

based QA in these fields. While these datasets123

offer strong benchmarks for scientific QA, they124

are typically unimodal, focusing exclusively on 125

textual information. Multimodal datasets—those 126

incorporating both text and figures—are far less 127

common, with SPIQA (Pramanick et al., 2024) 128

being the most comprehensive multimodal dataset 129

designed for scientific applications. 130

Among multimodal datasets, FigureQA (Ka- 131

hou et al., 2017) is a notable example, containing 132

question-answer pairs for synthetic graphs, figures, 133

and tables. However, it lacks contextual informa- 134

tion from accompanying text, making it unsuitable 135

for tasks that require a deeper understanding of 136

scientific literature. 137

Compared to biomedical and computer science 138

domains, climate science QA datasets are less com- 139

mon. One of the most relevant efforts is ClimaQA 140

(Manivannan et al., 2024), which includes both 141

a 502 question "gold" dataset curated by experts 142

and a larger LLM-generated 3000 question “sil- 143

ver” dataset. ClimaQA is unique in that it supports 144

three types of questions: multiple-choice, cloze- 145

style, and free-form, allowing for a broader range 146

of QA applications. Our CIPQA is significantly 147

larger with 54,612 questions, and unlike ClimaQA 148

which relies on textbook sources our dataset relies 149

on academic paper sources making it suitable for 150

research-driven climate QA. 151

2.2 Climate Science LLMs 152

Recent efforts have been made to fine-tune LLMs 153

specifically for climate-related tasks such as fact- 154

grounded QA, ambiguous policy analysis, and mis- 155

information debunking. One such example is Cli- 156

mateBERT (Webersinke et al., 2022), a model 157

trained on climate-focused text sources to improve 158

NLP performance in this domain. ChatClimate 159

(Vaghefi et al., 2023) grounds GPT-4 responses in 160

IPCC AR6 reports, showing that retrieval signifi- 161

cantly improves accuracy. Hallucinations are iden- 162

tified, however, when queries extend beyond the 163

IPCC’s coverage. ChatNetZero (Hsu et al., 2024) 164

applies a similar approach to net-zero policies, re- 165

trieving structured data on corporate and govern- 166

mental pledges. While this helps ground responses, 167

the model struggles with policy ambiguity. 168

Beyond policy analysis, LLMs are being ex- 169

plored for misinformation debunking. Generative 170

Debunking of Climate Misinformation (Zanartu 171

et al., 2024) introduces claim classification and fal- 172

lacy detection, structuring responses using a fact- 173

myth-fallacy-fact framework. While this improves 174
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Question basis

Dataset Question
generation

Num QA
pairs

Num
documents Paper Source Domain Full

text
Figs &

tabs

FigureQA Schema based 1.8M 140k Synthetic General N Y
BioAsq Human experts 3.2K – PubMed Biomedical N N
PubMedQA Human experts 1K 120K abstracts PubMed Biomedical Y N
BioASQ-QA Human experts 4.7K – PubMed Biomedical N N
ArgSciChat Human experts 41 dialogues 20 papers arXiv NLP Y N
ScienceQA Human experts 21K - School curriculum General Y Y
QASPER Human experts 5K 1.5K papers S2ORC NLP N N
QASA Human experts 1.8K 112 papers S2ORC AI/ML Y N

SPIQA LLMs +
Human experts 270K 25.5K papers arXiv Computer Science Y Y

ClimaQA-Gold Human Experts 502 23 Textbooks Climate Science Y N
ClimaQA-Silver LLMs 3000 23 Textbooks Climate Science Y N
CPIQA (ours) LLMs 55.8k 4650 papers core.ac.uk Climate Science Y Y

Table 1: Comparison of relevant QA datasets over scientific literature: (Kahou et al., 2017), (Tsatsaronis et al.,
2015), (Jin et al., 2019), (Krithara et al., 2023), (Ruggeri et al., 2023), (Lu et al., 2022), (Dasigi et al., 2021), (Lee
et al., 2023), (Manivannan et al., 2024) (2)

coherence, LLMs sometimes fail to select the most175

relevant counterarguments, leading to misdirected176

rebuttals.177

My Climate Advisor (Nguyen et al., 2024) tar-178

gets the specific domain climate adaptation in agri-179

culture, retrieving information from peer-reviewed180

research, grey literature, and climate projection181

data. It tailors responses to regional climate risks,182

offering actionable insights for farmers. A key con-183

tribution is its expert-driven evaluation framework,184

which assesses responses across seven domain-185

specific criteria. Initial results highlight gaps in186

retrieval precision and the difficulty of adapting to187

evolving climate knowledge.188

2.3 Retrieval-Augmented Generation189

Effective retrieval-augmented generation (RAG)190

depends on retrieval quality, query formulation, and191

model alignment with retrieved knowledge. Tradi-192

tional RAG pipelines perform a single retrieval step,193

which can fail when initial queries are too vague194

or incomplete (He et al., 2024). Recent research195

has explored iterative retrieval, query reformula-196

tion, and domain-specific adaptations to improve197

response accuracy.198

CoRAG (Chain-of-Retrieval Augmented Gen-199

eration) (Wang et al., 2025) introduces stepwise200

retrieval reasoning, allowing the model to dynam-201

ically reformulate queries based on retrieved evi-202

dence, significantly improving multi-hop QA. Simi-203

larly, RICHES (Retrieval Interlaced with Sequence204

Generation) (Jain et al., 2024) integrates retrieval205

within the decoding process, eliminating the need206

for a separate retriever module. This improves re-207

sponse fluency but can introduce hallucinations if 208

retrieval is inconsistent. 209

Ensuring alignment between retrieved knowl- 210

edge and generated responses is another key chal- 211

lenge. CoV-RAG (Chain-of-Verification RAG) (He 212

et al., 2024) introduces a verification step that evalu- 213

ates and refines retrieved documents before answer 214

generation, reducing retrieval errors and halluci- 215

nations. RAGAR (RAG-Augmented Reasoning) 216

(Khaliq et al., 2024) extends this further with hier- 217

archical retrieval techniques (CoRAG and ToRAG - 218

Tree-of-RAG) that decompose complex claims into 219

sub-questions, retrieving evidence iteratively for 220

fact-checking in multimodal political discourse. 221

Beyond reasoning techniques, RAG-Studio 222

(Mao et al., 2024) focuses on domain-specific adap- 223

tation, addressing a major limitation of general- 224

purpose RAG models. It introduces a self- 225

alignment framework, where the retriever and gen- 226

erator co-train on synthetic domain-specific data, 227

improving retrieval precision and factual grounding 228

without requiring manually labeled examples. This 229

approach outperforms traditional RAG fine-tuning 230

in specialized domains such as law, finance, and 231

biomedicine. 232

Our Context-RAG approach is motivated by pre- 233

vious work on multi-step query reformulation, but 234

extending it to novelly focus on extracting distinct 235

contexts in which the question can be re-framed 236

to provide more diverse and user role-targeted re- 237

trieval. 238
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3 Methods239

3.1 CPIQA Dataset240

To develop CPIQA, we curated a dataset of climate-241

related academic papers, integrating both textual242

and visual information for the RAG QA task.243

We sourced papers from relevant open source cli-244

mate science journals, identified by climate science245

expert recommendations. Using CrossRef, we re-246

trieved the DOIs of all available articles from these247

journals published between 2020 and 2024. We248

sourced full-text PDFs from CORE.ac.uk (Knoth249

et al., 2023), an open-access repository of academic250

publications.251

For each document, we extracted full text using252

pymupdf4llm, introducing a filter for documents253

with significant chunks of missing text. Figures and254

captions were extracted using pdffigures 2.0 (Clark255

and Divvala, 2016), aligning with the CPIQA ap-256

proach. We use GPT-4o (OpenAI et al., 2024) to257

generate detailed figure retrieval-friendly descrip-258

tions based on the extracted figure type, caption259

and raw image file. This allows for text-only em-260

beddings to be used in a RAG setting, although261

image-caption pairs are included in the release.262

We generated question-answer pairs by present-263

ing GPT-4o with the full text and figure descrip-264

tions. We utilise role-based prompting, generat-265

ing questions for the general public, climate ex-266

perts and climate sceptics. Additionally, we gen-267

erate multiple question types to encourage a wide268

breadth of questions. Full prompt variations can be269

found in B270

3.2 Question-Answering Architecture271

Our baseline two-stage RAG pipeline follows a272

standard retrieval approach, designed for compara-273

bility with SPIQA and evaluation of source attri-274

bution. The retriever embeds the user query, and275

retrieves relevant full text documents. These are276

used as a filter for the second stage, where the same277

query is used to retrieve chunks and figures from278

the filtered documents, maintaining continuity be-279

tween chunks if required. Retrieved chunks and280

figure descriptions are inserted into a prompt tem-281

plate alongside the question, from which the LLM282

generates the answer.283

We use NovaSearch/stella_en_1.5B_v5 (Zhang284

et al., 2024) as our embedding model due to it be-285

ing the highest ranked on the MTEB (Massive Text286

Embedding Benchmark) (Muennighoff et al., 2022)287

for the retrieval task with a minimum tokens of at288

least 100k+, which is a requirement for embed- 289

ding the majority of documents in CPIQA. In cases 290

where the document is longer than the max-tokens, 291

we chunk the document, maximising token count. 292

3.3 Context-Based Query Expansion 293

Context-RAG first seeks to understand the context 294

and intent behind the question. Instead of simply 295

asking, "What do we need to know to answer this 296

question?", our approach reframes it as, "What is 297

the context of this question?" or "Why is this ques- 298

tion being asked?". This decomposition enables 299

retrieval that is broader, more targeted, and better 300

aligned with the underlying information need. 301

The LLM breaks the input question into three 302

distinct contextual perspectives, each represented 303

as a descriptive paragraph, ensuring that retrieval 304

is not biased toward a single interpretation. These 305

are used as part of stage one - retrieval of full text 306

documents. Further, we use the same LLM to break 307

down each context into a set of domain-specific key 308

terms that are up to a sentence in length. This gives 309

finer granularity in the second stage of retrieval. 310

By shifting retrieval focus from the question it- 311

self to its underlying context, we hypothesize that 312

Context-RAG improves recall, diversity, and fac- 313

tual grounding, ensuring that responses draw from 314

a broader and more relevant evidence base. Further, 315

this prompt structure can be applied prior to any 316

other prompt decomposition or expansion method 317

so should be seen as a complimentary method. 318

4 Results 319

We evaluate our proposed Context-RAG method 320

against the standard two-step RAG approach across 321

two datasets: SPIQA, a benchmark for scientific 322

paper image question answering, and CPIQA, our 323

newly introduced dataset for climate science. Per- 324

formance is measured using BERTScore-F1 across 325

multiple test cases and language models. 326

4.1 Context-RAG 327

Table 2 demonstrates the two-step RAG approach 328

has a 7% lower BERTScore-F1 compared to the 329

best open source models tested, and our Context- 330

RAG a 3% lower score. Given our change in 331

SPIQA problem formulation, from a one-step QA 332

task where the relevant source paper is provided to 333

a two step QA task where the source paper must be 334

retrieved, this lower performance was expected. In 335

the SPIQA dataset test-A contains LLM-generated 336
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Figure 1: Generic pipeline used to construct CPIQA dataset & set up vectorstore prior to retrieval task

Figure 2: Architecture diagram demonstrating distinction between two-step RAG and Context-RAG

Test Case Best open-weight baseline
(Pramanick et al., 2024) 2 step RAG Context-RAG

test-A 61.61 57.54 63.28
test-B 47.21 53.22 53.32
test-C 48.45 32.27 34.20
Overall 54.57 47.85 51.31

Table 2: Comparison of our standard two-step RAG and Context-RAG methods on the SPIQA dataset, using
Llama-3.3-70B-Instruct, compared to baseline results: LLaVA-1.5-7B (Liu et al., 2023) for test-A, test-B and
InstructBLIP-7B (Dai et al., 2023) for test-C. Baseline results experimental setup provides source paper, whereas our
setup retrieves from the entire dataset. bert-base-uncased is used as the evaluation model for BERT-score (Zhang*
et al., 2020).

QAs whilst test-B and test-C have human-written337

QAs. For two-step RAG we see a 6% improvement338

for test-B. With Context-RAG, we see an improve-339

ment of 4% over two-step RAG, outpeforming the340

best open source models in test-A by 2% and test-B341

by 6% showing the potential for our Context-RAG342

method. 343

4.2 Climate Question-Answering 344

A summary of our CPIQA dataset can be found in 345

table 3. We define a train/test/validation split to 346

improve comparability to figure work that may use 347

this data. 348
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Split Paper count Question count Figure count
Train 4255 51060 38325
Validation 99 1188 903
Test 197 2364 1816

Table 3: Summary of CPIQA dataset size incl. number of documents, questions and figures

LLM 2 step RAG Context-RAG
GPT-4o 67.18 69.10
Gemini 2.0-flash 62.22 64.21
Llama-3.3-70B-Instruct 64.38 65.35
DeepSeek-R1-Distill-Qwen-32B 64.79 65.47
Gemma-2-27b-it 62.32 62.05

Table 4: Comparison of our standard two-step RAG and Context-RAG methods on our CPIQA dataset. Evaluated
using BERT-score F1 using the model microsoft/deberta-xlarge-mnli (He et al., 2021)

On CPIQA (table 4), we compare both RAG349

methods across five LLMs. GPT-4o achieves the350

highest overall performance, with Context-RAG351

(69.10) slightly surpassing the two-step approach352

(67.18). Gemini 2.0-flash follows closely, show-353

ing a similar pattern, where retrieval based on354

generated contexts consistently improves results.355

Other models, such as Llama-3.3-70B-Instruct and356

DeepSeek-R1-Distill-Qwen-32B, show a smaller357

gap between the two approaches, suggesting that358

context informed retrieval benefits higher-capacity359

models more significantly.360

Table 5 provides insights into the retrieval effec-361

tiveness of two-step RAG vs. Context-RAG when362

retrieving the specific source paper for GPT-4o.363

Interestingly, two-step RAG achieves a higher cor-364

rect retrieval rate (60%) than Context-RAG (39%).365

However, despite retrieving the correct document366

less frequently, Context-RAG still yields a higher367

F1 score (70.96 vs. 68.71) which suggests the368

enhanced retrieved diversity of Context-RAG is369

allowing it to generate better overall answers.370

4.2.1 Expert Evaluation371

We asked academic climate science experts to eval-372

uate our best performing model, GPT-4o, accord-373

ing to the qualitative citeria and scoring guidelines374

below:375

• Answer precision: Degree of errors in the an-376

swer (1 - lots of errors, 5 - no errors). Unre-377

lated to the question, consider only the answer378

independently of the question.379

• Answer recall: To what degree does the re-380

sponse answer the question? Consider the381

relevance to the question (1 - irrelevant to the382

question, 5 - fully covers the question)383

• Answer provenance: Is the answer using in- 384

formation from the source document? (1 = 385

not based on context paper; 5 = fully based on 386

context paper) 387

• Answer conciseness: Does the answer contain 388

waffle or does it go off on a tangent to the 389

question? (1 = verbose; 5 = concise) 390

The experts were given the question, generated 391

answer, and full PDF source document. Due to 392

expert availability, a random 6% sample of the 393

test set was evaluated by our experts balanced by 394

question type. Table 6 presents the expert eval- 395

uation of GPT-4o with Context-RAG, analyzing 396

performance across different question audiences 397

and types. Context-RAG achieves high concise- 398

ness scores across all audiences (≥4.1), indicating 399

its ability to generate succinct responses. Non- 400

figure-based and numeric questions exhibit strong 401

precision and recall, particularly for the climate 402

expert role, where numeric questions achieve 4.1 403

precision and 4.7 recall. Questions generated us- 404

ing the climate expert role had significantly higher 405

provenance scores, especially for numerical (4.6) 406

questions, suggesting that the experts found the 407

answers well-supported by evidence in the source 408

paper. For the general public and climate scep- 409

tic roles, Context-RAG achieves moderate per- 410

formance across all dimensions. Numeric ques- 411

tions for the climate sceptic role showed 3.7 pre- 412

cision and 4.1 recall, while figure-based and rea- 413

soning questions had slightly lower provenance 414

scores (2.4-2.7), indicating some difficulty in trac- 415

ing sources. For the general public role, prove- 416

nance remains lowest for reasoning questions (2.4), 417

suggesting challenges in aligning broad responses 418

with domain-expert expectations. Overall, our ex- 419

pert qualitative evaluation results align with the 420
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Method Retrieval result Retrieval rate % F1 score

2 step RAG Correct 60% 68.71
Incorrect 40% 66.12

Context-RAG Correct 39% 70.96
Incorrect 61% 67.97

Table 5: Retrieval rate of the specific source paper for GPT-4o, and its corresponding F1 socre

LLM Question
Audience

Question
Type Precision Recall Proven-

ance
Concise-

ness

GPT-4o
Using

Context-RAG
(Best tested
approach)

General public

Figure-based 3.6 3.7 2.8 4.9
Numeric 2.9 3.6 3.0 4.6
Non-fig 4.2 4.3 3.0 4.9
Reasoning 3.4 3.7 2.4 4.7

Climate sceptic

Figure-based 3.9 3.6 3.3 4.3
Numeric 3.7 4.1 2.9 4.3
Non-fig 3.4 3.3 2.4 4.4
Reasoning 4.0 3.6 2.7 4.3

Climate expert

Figure-based 3.9 3.6 3.7 4.1
Numeric 4.1 4.7 4.6 4.8
Non-fig 3.9 4.3 4.4 4.7
Reasoning 4.0 4.4 4.4 4.4

Table 6: Expert evaluation of our best approach across roles and evaluation types on a scale of 1-5

trends demonstrated in the BERTscore-F1 results421

shown in table 7.422

5 Discussion423

5.1 Context-RAG vs two-step RAG: Retrieval424

vs Answer Quality425

Our results highlight key differences between426

Context-RAG and the two-step RAG approach in427

terms of retrieval accuracy and answer quality. As428

shown in table 5, two-step RAG achieves a higher429

retrieval rate for the exact source paper (60% vs.430

39%), while Context-RAG has a lower rate of ex-431

act source matches but produces slightly higher F1432

scores in answer generation. This suggests that433

Context-RAG, despite not always retrieving the434

original source, provides sufficient and relevant435

information for generating high-quality answers.436

One possible explanation for this is the nature of437

climate science literature, where overlapping fac-438

tual content across multiple papers may reduce the439

importance of retrieving a specific source. Many440

academic papers cite and build upon each other,441

meaning that relevant information can often be442

found in multiple documents. Context-RAG’s abil-443

ity to extract and structure key concepts before444

retrieval may allow it to synthesize information445

from related sources, even if the exact original pa-446

per is not retrieved. This could explain its rela-447

tively strong answer quality despite a lower direct448

retrieval rate.449

This trade-off is further reflected in our broader450

evaluation metrics. In our Climate QA setting (ta- 451

ble 4), Context-RAG yields improved BERT-scores 452

compared to two-step RAG, particularly for more 453

complex questions. This indicates that selecting 454

and structuring context before retrieval may con- 455

tribute to better alignment with model-generated 456

responses. However, two-step RAG’s higher re- 457

trieval rate suggests it may be more reliable when 458

strict source matching is a priority. 459

These findings suggest that retrieval rate alone is 460

not always the best indicator of final answer quality. 461

While two-step RAG more frequently retrieves the 462

intended source, Context-RAG appears to generate 463

answers that are at least as effective, if not more so, 464

in terms of response accuracy. 465

5.2 Performance Across Different Models 466

Our evaluation shows that the performance of 467

Context-RAG compared to two-step RAG, whilst 468

always better, varies across models. Larger mod- 469

els, such as GPT-4o and Gemma, show greater im- 470

provements in answer quality with Context-RAG, 471

suggesting that their enhanced reasoning capabil- 472

ities allow them to make better use of retrieved 473

context. For smaller models, the improvements are 474

less pronounced, indicating that they may struggle 475

to leverage retrieved information as effectively. 476

Notably, context generation can be done in ad- 477

dition to any other prompt augmentation or de- 478

composition technique, though potential impact on 479

performance is not evaluated in this work. 480
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5.3 SPIQA vs CPIQA: Domain-Specific481

Insights482

Comparing SPIQA and CPIQA, we observe dis-483

tinct trends that highlight domain-specific retrieval484

challenges. Context-RAG demonstrates consis-485

tent improvements over two-step RAG across both486

datasets, but CPIQA remains more challenging due487

to domain-specific complexities. Specifically, cli-488

mate science papers frequently cite each other and489

share overlapping facts, making it harder for re-490

trieval models to isolate the most relevant docu-491

ment before evidence extraction. This is reflected492

in CPIQA’s lower retrieval accuracy despite the493

improved context expansion.494

The expert evaluation of Context-RAG on495

CPIQA suggests that provenance and precision are496

particularly important for climate science experts,497

as climate-related claims often require precise at-498

tribution to datasets, models, or prior research. In499

contrast, SPIQA, which focuses on interpreting500

structured results in computer science papers, may501

place relatively less emphasis on cross-document502

attribution and more on model reasoning over struc-503

tured information. These differences suggest that504

retrieval and reasoning challenges may manifest505

differently across domains.506

5.4 Breakdown by Question Type and507

Audience508

Performance varies across different question types509

and target audiences, highlighting distinct chal-510

lenges in retrieval and answer generation. As511

shown in table 7, numeric and figure-based ques-512

tions benefit the most from Context-RAG, with con-513

sistent improvements across models. This suggests514

that retrieving structured, contextually relevant in-515

formation before chunk selection is particularly516

useful for questions requiring precise data interpre-517

tation.518

Reasoning-based questions show smaller gains,519

indicating that retrieval improvements alone may520

not fully address challenges in multi-step inference.521

This aligns with previous findings that complex522

reasoning tasks often depend more on a model’s523

intrinsic capabilities than retrieval alone.524

Audience-specific performance trends also re-525

veal key insights. Questions targeted at climate ex-526

perts generally yield the highest scores, suggesting527

that expert-level queries align well with retrieved528

academic content. In contrast, questions posed529

from a sceptic’s perspective score lower, likely due530

to misalignment between the retrieved scientific lit- 531

erature and the framing of the question. This high- 532

lights the difficulty of addressing sceptical view- 533

points in a fact-based retrieval system. 534

6 Conclusion 535

To support research in climate-focused QA, this 536

paper introduces CPIQA, a dataset built from over 537

4,551 climate science papers and 54,612 GPT-4o 538

generated question-answer pairs, integrating both 539

text and figure-based question answering. CPIQA 540

incorporates expert-informed question generation 541

and multimodal evidence retrieval, making it a valu- 542

able resource for future work in climate AI. 543

We describe Context-RAG, a novel retrieval- 544

augmented generation (RAG) approach that im- 545

proves answer quality by structuring retrieval 546

around contextual variations of a question. Unlike 547

traditional RAG methods that directly retrieve doc- 548

uments based on the query, Context-RAG first gen- 549

erates multiple contextual perspectives, retrieves 550

documents accordingly, and then refines retrieval 551

using key domain-specific terms. Our evaluation 552

on CPIQA, a new multimodal climate QA dataset 553

described in this paper, and SPIQA, a scientific 554

paper image QA benchmark dataset, demonstrates 555

that Context-RAG outperforms the standard two- 556

step RAG approach in answer quality, even when 557

exact document retrieval rates are lower. 558

Our results show that Context-RAG improves 559

performance across various question types and 560

user audiences, particularly for numeric and figure- 561

based questions. Larger models, such as GPT-4o, 562

benefit most from this structured retrieval approach, 563

leveraging contextually relevant evidence for im- 564

proved reasoning. Furthermore, our expert evalu- 565

ation of the best-performing model reinforces the 566

effectiveness of Context-RAG in real-world climate 567

science applications. 568

These findings highlight the importance of 569

evidence-based QA methods. Future directions 570

for this work include the exploration of domain- 571

specific fine-tuning of RAG QA models, a more 572

complete evaluation of the effectiveness of differ- 573

ent RAG prompting techniques, and exploring en- 574

hancements to Context-RAG that are more explic- 575

itly tailored to our four different question types. 576

7 Limitations 577

Our GPT-4o generated question-answer pairs are 578

sourced from single source documents, and do not 579

8



consider answers that might span multiple docu-580

ments. Other documents in our dataset may contra-581

dict or deviate from the source document and this582

is an exciting area for future work to explore, as we583

show with Context-RAG increased performance584

even when the specific source document was not585

retrieved.586

Our CPIQA dataset has GPT-4o generated QA587

pairs. Whilst we performed a qualitative climate588

scientist expert evaluation for our RAG answers in589

terms of precision, provenance and conciseness, it590

was not feasible to perform expert analysis of the591

generated QA pairs themselves due to the size of592

our dataset and availability of our experts.593

In this paper, we only use LLaMa-based models594

for evaluation on SPIQA due to time constraints.595

We expect our RAG results will generalize to any596

base LLM on any scientific paper QA task, but597

this paper has not explicitly confirmed this and we598

leave it as an item for future work. We did test599

CIPQA on five LLMs which strongly suggests our600

hypothesis for this is correct.601

Our RAG experiments were run on eight H100602

GPU cards using approximately 60 GPU hours of603

compute time. The GPT-4o QA pair generation604

took twelve hours and cost $550.605
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B.2 Stage 1 contexts generation template905

Given a question, describe in
detail 3 contexts or domains in
which it can be asked, explain
the contexts with a paragraph
each. Include titles of academic
documents that could be used in the
context. Give the contexts as 3
paragraphs with no headings.
Question: {question}
Contexts:

906

B.3 Stage 2 keyword generation template907

Given a question and context
about the question, decompose the
question and context into a set of
relevant long-form query sentences
for evidence document retrieval
(RAG) that can answer the question.
Present each sentence on a newline
only with no headings.
Context: {context}
Question: {question}
Decomposed phrases:

908
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Large language model Question Audience Question Type 2 Step RAG
(BERTScore-F1)

Context-RAG
(BERTScore-F1)

OpenAI GPT-4o

General public

Numeric 73.67 76.65
Figure-based 66.40 67.06
Non-fig 64.25 67.10
Reasoning 63.41 63.81

Climate sceptic

Numeric 64.61 65.55
Figure-based 64.36 66.15
Non-fig 64.97 66.32
Reasoning 64.97 66.39

Climate expert

Numeric 78.48 81.34
Figure-based 68.62 70.73
Non-fig 67.69 69.92
Reasoning 63.97 66.63

Google Gemini 2.0-flash

General public

Numeric 64.11 64.93
Figure-based 61.81 63.70
Non-fig 60.64 62.75
Reasoning 59.28 61.63

Climate sceptic

Numeric 60.84 62.35
Figure-based 60.07 61.97
Non-fig 60.35 62.23
Reasoning 60.23 62.35

Climate expert

Numeric 70.02 72.35
Figure-based 64.66 67.18
Non-fig 64.76 66.01
Reasoning 60.04 62.35

Llama-3.3-70B-Instruct

General public

Numeric 63.64 72.11
Figure-based 64.13 67.48
Non-fig 63.00 64.81
Reasoning 62.33 62.05

Climate sceptic

Numeric 63.33 61.22
Figure-based 62.93 61.16
Non-fig 63.28 60.23
Reasoning 63.14 60.04

Climate expert

Numeric 70.26 77.59
Figure-based 66.93 66.66
Non-fig 66.90 66.10
Reasoning 63.32 63.89

DeepSeek-R1-Distill-Qwen-32B

General public

Numeric 70.40 67.78
Figure-based 65.05 65.16
Non-fig 63.30 66.04
Reasoning 62.25 61.48

Climate sceptic

Numeric 62.80 63.56
Figure-based 62.58 64.07
Non-fig 63.16 64.28
Reasoning 63.50 64.45

Climate expert

Numeric 73.26 74.40
Figure-based 63.75 64.43
Non-fig 64.87 65.74
Reasoning 61.16 63.31

gemma-2-27b-it

General public

Numeric 68.76 67.25
Figure-based 64.13 63.99
Non-fig 62.43 62.81
Reasoning 58.20 58.94

Climate sceptic

Numeric 60.82 60.74
Figure-based 59.81 61.22
Non-fig 61.35 62.24
Reasoning 60.52 62.00

Climate expert

Numeric 71.95 64.65
Figure-based 60.60 63.17
Non-fig 62.67 63.18
Reasoning 53.15 54.59

Table 7: Evaluation of models across question types and RAG methods. Questions are divided into numeric, figure
bases, non-figure based and reasoning based
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