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change of the atomic modes’ time evolution. The method
comprises selecting two atomic modes that are differently
affected by the field; and measuring a field-induced differ-
ence between the selected atomic modes; and using the
measured field-induced difference to infer a gradient of the
field.
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Condensing a first BEC in a first atom trap having a
first length £, the first length extending along a first longitudinal
axis between a first rigid boundary r, and a second rigid
boundary r;, wherein the first BEC comprises a uniform
density when not under the influence of an external potential

Condensing a second BEC in a second atom trap having a
second length L, the second length being equal to the first
length, and extending along a second longitudinal axis
between a third rigid boundary z and a fourth rigid boundary
Zr, wherein the second BEC comprises a uniform density when
not under the influence of an external potential

Orienting the gravimeter such that the first longitudinal axis is
parallel with a direction of the acceleration due to the
gravitational field, and the second longitudinal axis is

perpendicular to the gravitational field

Measuring a first frequency of a mode of the first BEC

Measuring a second frequency of a mode of the second BEC

Using a difference between the first frequency and the second
frequency to measure the acceleration due to the gravitational field

Figure 5
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Condensing a BEC in an axially symmetric trapping potential ,
wherein the BEC comprises at least two atomic modes.

l

Placing the BEC near a gravitational field, the field
causing a distortion in the shape of the BEC.

.

Selecting two atomic modes within the BEC whose field-
induced phase differs and allowing the phase the selected
atomic field modes to evolve for a fixed time interval
under the influence of the gravitational field.

A 4

Measuring an accumulated phase difference of the two modes
after the fixed time interval.

.

Using the accumulated phase difference to measure a gradient
of the gravitational field.

Figure 10
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QUANTUM GRAVIMETERS AND
GRADIOMETERS

FIELD OF THE INVENTION

The present invention relates to the measurement of
acceleration using quantum effects, in particular acceleration
due to gravity, and particularly but not exclusively to quan-
tum gravimeters comprising Bose-Einstein condensates
(BECs). The present invention also or alternatively relates to
the measurement of a field gradient using quantum effects,
in particular a gravity gradient, and particularly but not
exclusively to quantum gradiometers comprising BECs.

BACKGROUND TO THE INVENTION

Quantum gravimeters exploit quantum properties to mea-
sure local gravitational fields with high precision. Applica-
tions range from finding pipework under London to navi-
gation and search for oil. Industry and science would
strongly benefit not only from a precise instrument but also
from a portable one.

Current quantum gravimeters use atom interferometers
that measure between a few meters and centimetres and
cannot be further miniaturised without losing precision. This
is because their precision depends on the interferometer arm
length through the atomic time of flight in the interferometer.

Gravitational waves are postulated in the theory of gen-
eral relativity as distortions in the local gravitational field. It
has been shown that such gravitational waves would pro-
duce collective excitations (called phonons) in a BEC, and
that those phonons are detectable under appropriate condi-
tions.

In C. Sabin, D. E. Bruschi, M. Ahmadi, and I. Fuentes,
New J. Phys 16 085003 (2014) it is shown that gravitational
waves create phonons in a Bose-Einstein condensate (BEC).
A traveling spacetime distortion produces particle creation
resonances that correspond to the dynamical Casimir effect
in a BEC phononic field contained in a cavity-type trap. It
is proposed to use this effect to detect gravitational waves.
The amplitude of the wave can be estimated by applying
recently developed relativistic quantum metrology tech-
niques. The optimal precision bound on the estimation of the
wave’s amplitude is provided. Finally, it is shown that the
parameter regime required to detect gravitational waves with
this technique could be, in principle, within experimental
reach in a medium-term timescale.

M. Ahmadi, D. E. Bruschi, C. Sabin, G. Adesso and 1.
Fuentes, Sci. Rep. 4, 4996 (2014) presents a framework for
relativistic quantum metrology, in which techniques for the
application of metrology to quantum field theory are intro-
duced. This framework allows for high precision estimation
of parameters that appear in quantum field theory including
proper times and accelerations.

C. Sabin, J. Kohlrus, D. E. Bruschi and 1. Fuentes, EPJ
Quantum Technology 3, 8 (2016) builds on the knowledge
that quasiparticles in a Bose-Finstein condensate are sensi-
tive to space-time distortions, and that gravitational waves
can induce transformations on the state of phonons that can
be observed through quantum state discrimination tech-
niques. This papers shows that this observation method is
highly robust to thermal noise and depletion. A bound on the
strain sensitivity is derived that shows that the detection of
waves in the kHz regime is not significantly affected by
temperature in a wide range of parameters that are well
within current experimental reach.
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2

It is an object of the current invention to provide an
alternative quantum gravimeter that exploits the relativistic
effect of phonon creation by gravitational waves.

SUMMARY OF THE INVENTION

According to a first aspect of the invention we provide a
method of measuring a gradient of a field (such as a gravity
gradient) using one or more trapped BECs, each having a
density distribution, and at least two atomic modes within
those BECs; wherein the density distributions of the one or
more BECs are modified by the field, which leads to a
change of the atomic modes’ time evolution; wherein the
method comprises:

selecting two atomic modes that are differently affected

by the field;

measuring a field-induced difference between the selected

atomic modes; and

using the measured field-induced difference to infer a

gradient of the field.

The field may be a gravitational field, and the field
induced difference between the two modes may comprise a
field-dependent phase. Alternatively, or additionally a num-
ber of excitations may be exchanged between the modes or
created within one or both of the modes.

The method may comprise using a single trapped BEC
having a density distribution that is perturbed by the external
field. The two differing modes (e.g. two modes whose
field-induced phase differs) may be selected from modes
existing in the single BEC.

Each atomic mode may be defined by an angular momen-
tum quantum number and a magnetic quantum number.
Measuring the field induced phase difference between two
modes may involve selecting two modes with the same
angular momentum quantum number, but with differing
magnetic quantum numbers. The magnetic quantum num-
bers of the selected modes may differ by one.

The or each BEC may be trapped in a trapping potential.
The trapping potential may comprise an electromagnetic
portion and a field-induced portion. The field-induced por-
tion may be due to a gravitational field, which may be caused
by a mass distribution in the vicinity of the BEC. The mass
distribution may cause a distortion in the shape of the BEC.

The two modes may be at an angle to each other, such that
the distortion in the shape of the trapping potential causes
the two modes to have differing effective lengths. The two
modes may be perpendicular to each other.

The electromagnetic portion of the trapping potential may
be a harmonic trapping potential. The gravitational field may
add a linear term to the electromagnetic portion of the
trapping potential.

A plurality of independent consecutive measurements of
the phase difference may be taken. The measurements may
then be averaged to produce an averaged phase difference.
This averaging may improve the accuracy of the final result.

The one or more atomic modes within the BEC may be
prepared in a squeezed state. This may result in a further
improvement in the accuracy of the measurement.

According to a second aspect of the invention we provide
a quantum gradiometer operable to perform the method of
the first aspect of the invention.

According to a third aspect of the invention we provide a
system for measuring a field gradient; the system compris-
ing:
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a trapped BEC having a density distribution, wherein the
trapped BEC comprises a plurality of atomic modes,
and wherein the density distribution of the trapped BEC
is modified by the field;

a measurement system for measuring a field-induced
difference between two selected atomic modes within
the trapped BEC; and

a processor for inferring a field gradient from the mea-
sured field-induced difference.

The field induced difference may be a phase difference
between the modes, a number of excitations exchanged
between the modes, or a number of new excitations created
within one or both of the modes.

The system may be operable to perform the method of the
first aspect of the invention, including optional features.

According to a fourth aspect of the invention we provide
a method of measuring an acceleration due to a gravitational
field using one or more BECs,

wherein the one or more BECs include:

a first mode propagating in/parallel to a first direction
(e.g. between a first location (which may be a
boundary) r,, and a second location (which may be a
boundary) r,), wherein the first direction may be
parallel to a direction of the acceleration due to the
gravitational field; and

a second mode propagating in/parallel to a second
direction, different to the first direction, between a
third location (which may be a boundary) z, and a
fourth location (which may be a boundary) z,.
wherein the second direction may be perpendicular
to the first direction and to the direction of the
acceleration due to the gravitational field;

wherein the method comprises:
measuring a phase difference between the first mode

and the second mode; and

using the measured phase difference to measure the
acceleration due to the gravitational field.

Such a scheme is advantageous as is makes use of
collective oscillations (i.e. modes) within the at least one
BEC, rather than relying on atom interference. It can thus be
made smaller than prior atom interferometers.

The first direction is, in most realistic scenarios, a vertical
direction, and the second direction is thus a horizontal
direction. The frequency in the vertical mode depends on the
Schwarzschild radius, as the acceleration due to gravity
causes a density perturbation in the BEC in the vertical
direction, which has an effect on the frequency of the vertical
mode. A phase difference between the modes thus can be
used to provide information about the Schwarzschild radius
(and therefore gravity).

The phase difference between the first frequency mode
and the second frequency mode may be used to estimate the
local Schwarzschild radius 1.

The local gravitational field may be estimated from the
local Schwarzschild radius r, using

g=r.c2r,?
where T, is the radial height coordinate within the gravita-
tional field.

The one or more BECs may have a uniform density when
not under the influence of an external potential.

The method may further comprise condensing the at least
one BEC in a trapping potential which is tuned to partially
cancel the acceleration caused by the gravitational field,
such that a density perturbation &, is created in the BEC.
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4
The trapping potential may be given by

where x'=x-7,

and the corresponding relative density perturbation 6, is
given by

The at least one BEC may be only one BEC, and the
method may further comprise condensing a BEC having a
first length L, extending along a first longitudinal axis
between the first location (or boundary) r,, and the second
location (or boundary) r,, and a second length I, extending
along a second longitudinal axis between the third location
(or boundary) z, and the fourth location (or boundary) z,.,
wherein the second longitudinal axis is perpendicular to the
first longitudinal axis. The second length is preferably equal
to the first length.
Alternatively, the at least one BEC may comprise two
BECs, and the first (vertical) mode may propagate in the first
BEC, whilst the second (horizontal) mode may propagate in
the second BEC.
The method may further comprise the steps of:
condensing a first BEC in a first atom trap having a first
length L, between the first and second locations (which
may be boundaries) r, and 1,

condensing a second BEC in a second atom trap having a
second length L, between the third and fourth locations
(which may be boundaries) z, and z,, the second length
being equal to the first length,

wherein the first mode propagates in the first BEC and the

second mode propagates in the second BEC.

The or each BEC may be confined in a box potential. For
instance, the first BEC may be confined in a first box
potential and the second BEC may be confined in a second
box potential. The first box potential may be effectively
one-dimensional, with the mode being used in the analysis
propagating along that one dimension. Similarly, the second
box potential may be effectively one-dimensional, with the
mode being used in the analysis propagating along that one
dimension.

The length L, of each of the first and second BECs may
be held constant by a respective rigid rod, and deformation
of the rigid rod due to gravity may be taken into account for
the first BEC. Such a deformation may be neglected for the
second BEC.

The deformation of the rigid rod may affect the frequen-
cies of the frequency modes through

‘Dv,kdef:“)n,k( 14+0)

where @ is a frequency shift.

The first mode may be a squeezed state. The method may
further comprise creating a squeezed state for a first mode k
of the first BEC.

The second mode may be a coherent state. The method
may further comprise preparing a coherent state a second
mode of the second BEC. The second mode of the second
BEC may have the same mode number k as the squeezed
mode of the first BEC.



US 12,242,019 B2

5

The method may further comprise entangling the first and
second modes.

A phase shift may be introduced between the first and
second modes. The phase shift may be /2.

The or each BEC may be modelled as a quantised field.

The first mode may be a phonon mode. The second mode
may also be a phonon mode.

The spacetime of the or each BEC may be described using
Schwarzschild geometry in order to calculate the accelera-
tion due to gravity.

The phase shift may be used to determine the Schwarzs-
child radius using

e vk (61)
Wi = —Fre)? and
LP

(uie]{ = (uh,k(l +®) (62)

where v and © are defined for the light cavity and the BEC
respectively as

. (63)
Light: ®=A
V=G50
1272
BEC{ = EA_ 5pr
2 64

According to a fifth aspect of the invention we provide a

quantum gravimeter comprising:

a first BEC in a first atom trap having a first length L,
between first and second locations 1, and r,,

a second BEC in a second atom trap having a second
length L, between the third and fourth locations z, and
Z,,

a measuring system operable to measure a phase differ-
ence between a first mode in the first BEC, the first
mode propagating in a first direction between the first
location 1, and the second location T, and a second
mode in the second BEC, the second mode propagating
in a second direction between the third location z, and
the fourth location z,, wherein the first direction is
parallel to a direction of the acceleration due to the
gravitational field and wherein the second direction is
perpendicular to the direction of the acceleration due to
the gravitational field; and

a processor operable to use the phase difference between
the first mode and the second mode to measure the
acceleration due to the gravitational field.

According to a sixth aspect of the invention we provide a

quantum gravimeter comprising:

a BEC having a first length L, extending along a first
longitudinal axis between a first location 1,, and a
second location r,, and a second length L, extending
along a second longitudinal axis between a third loca-
tion z, and a fourth location z,, wherein the first
longitudinal axis is parallel to a direction of the accel-
eration due to the gravitational field and wherein the
second longitudinal axis is perpendicular to the direc-
tion of the acceleration due to the gravitational field and
to the first longitudinal axis;

a measuring system operable to measure a phase differ-
ence between a first mode propagating in a first direc-
tion between the first location T, and the second loca-

h
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6

tion 1, and a second mode propagating in a second
direction between the third location z, and the fourth
location z,; and

a processor operable to use the phase difference between

the first mode and the second mode to measure the
acceleration due to the gravitational field.

It will be appreciated that the features described above
with respect to the method of the fourth aspect of the
invention may be implemented in a quantum gravimeter
according to the fifth aspect of the invention or the sixth
aspect of the invention.

According to a seventh aspect of the invention we provide
a quantum gravimeter/accelerometer operable to perform
the method of the fourth aspect of the invention.

The technology described herein can be adapted to mea-
sure any acceleration, not just the acceleration due to gravity,
and therefore according to an eighth aspect of the invention
we provide a method of measuring an acceleration (e.g. that
experienced when at rest in a linear gravitational potential)
using one or more trapped BECs and at least two atomic
field modes within those BECs; wherein the density distri-
butions of the one or more BECs are modified by the
acceleration, which leads to a change of the field modes’
time evolution; wherein the method comprises:

selecting two modes that are differently affected by the

acceleration; and

measuring an acceleration-induced difference; and

using the measured acceleration induced difference to

infer the acceleration.

The acceleration-induced difference may comprise one or
more of:

(i) an acceleration dependent phase;

(i) a number of excitations exchanged between the

modes;

(iii) a number of new excitations created within one of the

modes, or both of the modes.

The two modes may be at an angle to each other, such that
the acceleration causes the two modes to have differing
effective lengths. The two modes may be perpendicular to
each other, for example, the two modes may comprise a
mode that is parallel to a direction of the acceleration and a
mode that is perpendicular to a direction of that acceleration.

The acceleration may be an acceleration due to gravity,
and thus the method of the eighth aspect of the invention
may be combined with any of the method steps of the fourth
aspect of the invention if required.

The above methods may also be used to measure/analyse
the field gradient (e.g. a gravity gradient) rather than the
acceleration due to a field. Density variations in one or more
BECs caused by a field can be used to infer a local gradient
of that field by measuring a phase difference between two
differently oriented modes within the one or more BECs.
The techniques of the 4”-8™ aspects of the invention may
thus be combined with the techniques of the 1-3™ aspects
of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Aspects of the invention will now be described in more
detail, by way of example only, with reference to the
accompanying drawings, in which

FIG. 1 schematically illustrates a quantum gravimeter;

FIG. 2 schematically shows a) an effective uniform Bose-
Einstein condensate (BEC) confined within a 1-dimensional
box potential, and b) as a comparison for the BEC case, an
effectively 1-dimensional light field confined using mirrors;
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FIG. 3 schematically illustrates effects of acceleration on
a rod used to suspend the device creating the trapping
potential for the BEC;

FIG. 4 schematically illustrates the principle of an inter-
ferometric measurement set up;

FIG. 5 sets out steps of a method of measuring accelera-
tion; and

FIG. 6 sets out a schematic proposal for a detector

FIGS. 7a and 7b show the effects of a gravitational mass
distribution on the BEC

FIG. 8 illustrates a scheme for measuring density of a
BEC;

FIG. 9 schematically illustrates a quantum gradiometer;
and

FIG. 10 sets out steps of a method of measuring a field
gradient.

DETAILED DESCRIPTION

We have developed a measurement scheme that changes
the paradigm on how field effects, particularly gravitational
effects, are measured using quantum systems. Our scheme
overcomes limitations due to time of flight constraints by
using the effects of a field, such as gravity, on collective
excitations (called phonons) of static and oscillating Bose-
Einstein condensates (BECs). Two exemplary measurement
schemes are described below. First, a system and method for
measuring an acceleration due to a field (e.g. gravity) is
summarised. Second, a system and method for measuring a
field gradient (e.g. a gravity gradient) is summarised. Both
methods are then described mathematically in more detail in
the sections that follow.

Gravimeter

An example system for measuring an acceleration due to
afield is schematically illustrated in FIG. 1 as gravimeter 10.
The gravimeter 10 may be used to very accurately measure
an acceleration due to a gravitational field (proper accelera-
tion in this case matches gravitational acceleration).

The gravimeter comprises at least one, and preferably first
and second atom traps 12, 14, which are perpendicular to
one another. The first atom trap 12 is aligned with a direction
of an external acceleration to be measured, in this case
acceleration due to gravity, indicated in FIG. 1 by the arrow
g. The first atom trap is thus aligned along a direction that
is radial to a surface of a body causing the gravitational
acceleration which is to be measured (e.g. the Earth), and so
for most purposes the first atom trap is substantially vertical.
The second atom trap 14 is perpendicular to the first atom
trap 12, and hence perpendicular to the acceleration being
measured. For most purposes the second atom trap is sub-
stantially horizontal.

Each of the atom traps 12, 14 contains, when in use, a
Bose Einstein condensate (BEC) confined within a trapping
potential. A BEC is a state of matter comprising bosons, in
which a large fraction of the bosons occupy the lowest
quantum state. A BEC may be formed by cooling a dilute gas
of bosons below a critical temperature, very close to abso-
lute zero (—273.15° C.). Methods of forming BECs are well
known in the art, and so will not be discussed in further
detail herein.

Each of the BECs in the gravimeter shown in FIG. 1 has
a constant atomic density (wWhen not under the effect of an
external field, such as gravity) and is confined within an
effectively one-dimensional trapping potential having rigid
boundary conditions and a known, constant, proper length
L, The first trap 12 contains a first BEC 26 having a first
proper length L, extending along a first longitudinal axis 28
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between a first rigid boundary 1, and a second rigid boundary
1, Similarly, the second trap 14 contains a second BEC 30
having a second proper length L, equal to the first (when not
experiencing relativistic effects), and extending along a
second longitudinal axis 32 between a third rigid boundary
7, and a fourth rigid boundary z..

Measuring equipment 34 is operable in use to measure a
phase difference between first frequency of a first mode of
the first BEC 26 and a second frequency of a second mode
of the second BEC 30. A processing device 36 is operable to
infer information about the local gravitational field from the
frequency difference, and in particular from the difference in
the modification of the frequencies of the modes due to the
difference in the modification of the BEC density induced by
acceleration/gravity, as explained in more detail below.

In particular, the gravimeter may be used to measure the
Schwarzschild radius (ie. the product 2GM/c* where G is the
gravitational constant and M the mass) due to a gravitational
field. The gravimeter relies on using the effects produced by
the spacetime of the Earth (or by gravity) on the quantum
states of a phononic quantum field and the bulk (i.e. the
atoms in the ground state, also referred to as “atomic
density”) of a BEC. These effects include a perturbation in
the atomic density of the vertically oriented BEC that is due
to the gravitational field.

In previous quantum gravimetry methods atom-atom
interactions are considered as a systematic effect. In con-
trast, in this method we use two-body collisions that give
rise to entanglement between atoms and matter wave vibra-
tional modes (called “phonons”, which correspond to exci-
tations also referred to as “density fluctuations”). In the
absence of collisions there are no phonons. The reason why
we use two-body interactions is because the dynamical
evolution of phononic modes that they produce is affected by
gravity.

The gravitational field affects the frequencies of these
modes through the quantised field equation

g, (x°, 2) = Z{ah,k%,k(xo, 2) + aZ,mz,k (. 2)}, @4

k

The solutions to this equation are plane waves ¢, , (k
indicates the mode number) that have frequencies which
depend on the height in the gravitational field x, the
Schwarzschild radius r=2GM/c* (where c is the speed of
light), the length of the BEC Lp and the effective speed of
sound c (ie. the atomic mass, density and the strength of the
interactions (scattering length). Information about the local
Schwarzschild radius r, (and thus the local gravitational
field) can therefore be obtained by analysing the frequencies
of phonon modes within a BEC.

The Schwarzschild radius is defined as:

r=2GM/C? A)

The local gravitational field g can be obtained using

e=GM/P? (B)

Replacing GM in equation (B) gives

g=r .2 ©

where 1 is the radial height coordinate within the gravita-
tional field. The local gravitational field can thus deduced
from the local Schwarzschild radius using equation (C).
Further details explaining why there is field information
encoded in the difference between the frequency modes, and
how that information may be extracted, is provided in the
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detailed discussion below (headed DETAILED DISCUS-
SION: GRAVIMETER). First, however, we give further
information on an example experimental set-up.

An example of a one-dimensional trap 16 suitable for use
in the gravimeter of FIG. 1 is the “box trap” shown in FIG.
2. The box trap is formed using one hollow tube laser beam
18 and two sheet laser beams 20, 22, which together create
a repulsive potential 16 for the atoms within the trap. The
atomic cloud is confined by the three beams to the dark
cylindrical trapping region 24, which can be considered
effectively one-dimensional for our purposes in that the
trapping region 24 is very small in two dimensions and much
longer in a third dimension, which corresponds to the length
Lp of the trapping region 24. Such a set-up allows us to
assume that the BEC is only excited for momenta in the
longitudinal dimension (i.e. the dimension having length
Lp). It will be appreciated that there are multiple ways to
make such a potential, and this is an example only. Other
types of potential (e.g. a harmonic potential) could also be
used, if required.

An atom trap of the type discussed above can be created
using 532 nm laser beams. With a total laser power of
P,=~700 mW it is possible to achieve a trap depth of V =k ;x2
uK (where k is the Boltzman constant). Further details of the
construction of an appropriate atom trap can be found in A.
L. Gaunt, T. F. Schmidutz, 1. Gotlibovych, R. P. Smith, and
7. Hadzibabic, Phys. Rev. Lett. 110, 200406 (2013).

A first BEC 26 may be condensed within the first atom
trap 12 using standard cooling techniques. Similarly, a
second BEC 30 may be condensed within the second atom
trap 14 using standard cooling techniques.

Accuracy may be improved by, for the vertical BEC,
creating a squeezed state for a mode k (the method works
with other states but is improved by using squeezed states).
Squeezing phonons can be done by several methods that are
well known in the art (such as changing the length of the
trap, adding an electromagnetic potential, etc).

For the horizontal BEC, a mode within the same mode
number k can be prepared in a coherent state (although a
squeezed or other state can also be used if preferred). Note
that the horizontal mode can have a different mode number,
but it is more convenient mathematically to use the same
mode number. Indeed, the horizontal “mode” could be the
bulk of the BEC rather than a phonon mode, which may
result in greater sensitivity (since the number of atoms can
be much higher in the bulk, and the bulk is usually in a
coherent state).

As explained above, the gravimeter is oriented with the
first longitudinal axis aligned with the direction of the
acceleration due to the gravitational field (i.e. vertical/
radial), and the second longitudinal axis perpendicular to the
first (i.e. horizontal, or alternatively tangential). Information
about the gravitational field is encoded within the vertical
mode, but not in the horizontal mode (as will be explained
below)

The horizontal BEC is located adjacent an end of the
vertical BEC. In the example shown the horizontal BEC 30
is located adjacent a lower end of the vertical BEC 26. In
particular, the longitudinal axis 32 of the horizontal BEC is
located at the same vertical coordinate as the lower bound-
ary 1, of the vertical BEC. Alternatively, the horizontal BEC
may be located at the upper boundary t, of the vertical BEC.
As explained in more detail below, the accuracy of the
gravimeter is increased when the horizontal BEC is located
at an end of the vertical BEC; however other locations are
possible if required, with the exception that the horizontal
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10
BEC may not be located halfway along the vertical BEC (i.e.
at r,+L,/2)—farther details as why this is the case are
provided below.

Each BEC 26, 30 is confined within an atom trap which
confines the atoms within the trap in a trapping potential V,
created by the box trap arrangement of lasers. The gravita-
tional field of the Earth affects the atomic density in the
vertical box potential V,, such that it will not remain
uniform unless the effect due to the Earth’s gravitational
field is cancelled out. We can assume that the gravitational
field has no effect on the horizontal box potential V, because
the potential is effectively one-dimensional and perpendicu-
lar to the direction of the gravitational field, meaning the
horizontal potential experiences no force due to the gravi-
tational field in its longitudinal dimension.

A linear electromagnetic potential AV is applied to the
vertical trap 12 (for example by applying a magnetic field of
the right strength) in order to cancel out the effects of the
external gravitational field. In particular the linear potential
AV is applied to the vertical BEC 26 that cancels the effect
of the gravitational field on the bulk of the atoms within the
BEC. The field is typically cancelled up to second order in
r,Vr, and xV, (where x is the radial (i.e. vertical) coordinate
and 1, is the position of the lower boundary in isotropic
Cartesian coordinates—discussed in more detail below), and
up to the first order in their product. Therefore the density
will be uniform to that order. In practice, an experimentalist
may tune the gradient of the linear potential dAV/dx such
that the density is homogeneous.

Alternatively, we have found that dAV/dx can also be
fixed to a value that differs slightly from the value necessary
to cancel the full effect of the gravitational field. This
difference leads to a density perturbation in the first BEC 26.
We can use this perturbation to increase the accuracy of our
estimate of the Earth’s spacetime parameters, as explained in
more detail below.

The accuracy of the estimate may also be increased by
taking into account the effects of length distortion in the
vertical direction due to the gravitational field. Again, this
effect may be disregarded in the horizontal direction.

Many techniques exist for the measurement of the atomic
mode frequencies, for instance counting the phonon differ-
ence in each mode (vertical and horizontal), dual parameter
estimation, parity measurement or using Bayesian protocol.

A variant of the method is that instead of using two
separate one dimensional BECs, one could instead use a
single BEC in a three-dimensional box potential and use two
modes in that single BEC, one horizontal mode in a coherent
state and one vertical mode in a squeezed state

It will be appreciated that the two modes do not need to
be vertical and horizontal, nor do they need to be perpen-
dicular to one another. The arrangement shown in FIG. 1 is
useful in that the mathematics may be simplified (as
described more below) but other modes may be used if
required. Any two modes that are differently affected by the
field being measured may be selected if required.

A third variant of the method, which can also be imple-
mented using either two separate BECs or a single BEC in
a three dimensional box involves transferring excitations
between the bulk and the two selected phononic modes (e.g.
vertical and horizontal) using a beamsplitter gate and extra
phase shift.

Many techniques exist for the measurement of the output
of 30, for instance counting the phonon difference in each
mode (vertical and horizontal), dual parameter estimation,
parity measurement or using Bayesian protocol.
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A fourth variant of the method, which can be implemented
using either two separate BECs or a single BEC in a three
dimensional box, is a pumped SU(1,1) scheme which
involves transferring excitations between the bulk and the
phononic modes using for example tritter gates and para-
metric amplification. Other gates mixing excitations
between the bulk and phononic modes can be also used

Contrary with atom interferometry where interactions are
avoided, the gravimeter described above takes into account
two-body collisions.

In the example implementation discussed above the BEC
measures 100 um, therefore, our design can be implemented
with state of the art table top technologies (including laser
system and vacuum chamber) but soon this technology will
be miniaturised into chips. The phononic field can be cooled
down to 0.5nK making the device highly sensitive.

Current quantum gravimeters are based on non-relativis-
tic quantum mechanics and cannot be employed to measure
gravity beyond the Newtonian regime because quantum
theory and general relativity are incompatible theories. This
theoretical framework enables the description of both quan-
tum theory and general relativity in a consistent way. The
detection scheme relies on the deformation of the BEC (a
relativistic effect) produced by the gravitational field of the
Earth on a Bose-Finstein condensate consisting of atoms
cooled below the nano-Kelvin regime. Vertical deformation
produces an observable effect on the phononic modes of the
BEC as compared to longitudinal modes. These differences
between the vertical and longitudinal modes are observable
and can be used to estimate the local gravitational field.

Note that BECs are also used in atom interferometry for
high precision experiments. However in atom interferom-
etry, the wave function of single atoms is brought into
interference with itself; no collective phenomenon is used,
while phonons in BECs are the quasi-particles of collective
oscillations of atoms.

Such a gravimeter can be used to measure the proper
acceleration and/or the Schwarzschild radius of the Earth. As
discussed in significantly more detail below, the basis of the
measurement is the difference of the fundamental frequency
of phonon modes in differently oriented BECs (or in differ-
ently oriented modes within a single BEC) due to the
deformation of the length of the trapping potential of the
BEC (or the length of the cavity). The relative error bound
for the estimation of the Schwarzschild radius on the length
scale of 200 pm is 10~® in one run (6 seconds) and 107" if
one integrates over a year. This compares very well with
commercial atomic quantum gravimeters that reach relative
errors of 107 in 15 days with a device that measure
100x50%x70 cm®. The gravimeter discussed herein has the
advantage that the device can be miniaturised without losing
precision and can be employed to measure field strengths
beyond the Newtonian regime.

Gradiometer

Another application for BECs is in gradiometry, that is, to
measure differential forces due to a field gradient, such as a
gravity gradient.

FIG. 6 shows a basic scheme for a ground state interfer-
ometer. A BEC is split into two clouds and then recombines
to interfere. The interference measures any field gradient due
to an object and constrains deviations from general relativity
(e.g. fifth force models). Such a detector has a long integra-
tion time: atoms can be held near the object for a longer time
than with a ballistic scheme.

However, the measurement sensitivity can be improved
using collective quantum BEC excitations, as demonstrated
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in the present invention. An initially squeezed phonon state
has better phase estimation and error scaling than any
classical state.

FIG. 7a shows a BEC 38 trapped in a potential, which in
this case is a spherically symmetrical, harmonic trapping
potential 42. Such a potential may be generated by light
and/or magnetic fields in a known manner. A BEC 38 in such
a trapping potential has a known initial spatial density
distribution, which in this case is a density distribution that
varies parabolically with distance from the centre of the trap.
The BEC can thus be considered to be a sphere having a
substantially constant radius & ,. Atomic field modes can
exist with such a trapped BEC. Atomic field modes (also
referred to as phonons) are collective oscillations of the
atoms in a BEC 38 with well-defined (quantised) energy
levels.

If an arbitrary mass distribution 46 is placed in the vicinity
of the BEC 38, the BEC 38 will deform due to the gravity
exerted by that mass. This deformation changes the proper-
ties of the BEC, in particular the atomic mode structure of
the phonon field.

Typically, using the present scheme one can measure a 20
mg mass at the distance of 1 mm with a good signal to noise
ratio. For every three orders of mass increase, one gets one
order of magnitude increase in distance (e.g. 20 kg at a
distance of 1 m, and 20 tonnes at a distance of 10 m).

A gradient of the field causing the deformation (i.e. a
gradient of the gravitational field) may be determined by
measuring a phase difference between two atomic field
modes that are differently affected by the field. Such modes
may be, for example a first mode that is at a first orientation
(e.g. parallel) with respect to a selected axis along which a
field due to the mass distribution acts, and a second mode
that is at a second, different, orientation (e.g. perpendicular)
to that axis. As the BEC is extremely cold there are only a
few thermal excitations of the phonon field, which represent
the noise background on which we measure.

FIG. 7b shows the BEC 38 after it has been deformed due
to a mass distribution 46 in the vicinity of the BEC 38, in this
case a spherically symmetric, homogenous mass distribu-
tion. The mass distribution causes a force to act on the BEC
along a known axis (shown in this example as the z-axis).
The presence of the mass distribution 46 thus adds a
gravitational (Newtonian) potential to the original trapping
potential 42, resulting in a new trapping potential 44 with its
centre shifted by amount z, along the z-axis, as shown in
FIG. 7b. As a result, the centre of mass of the BEC 38 is also
shifted by amount z, along the z-axis. Furthermore, the
trapping potential 44 profile is also broadened along the
z-axis, when compared to the profile of the original trapping
potential 42. The overall effect is that the BEC 38 is
elongated (or deformed) along the z-axis, and assumes a
spheroidal shape having a second, deformed, density distri-
bution (which is in this example also a parabolic distribu-
tion). The radius of the trapped BEC thus can no longer be
considered substantially constant, but instead varies between
a maximum radius H/A (which is along the direction
parallel to the field due the mass distribution, i.e. the z-axis)
and a minimum radius # perpendicular to the direction of
that field).

The spheroidal shape and the parabolic density distribu-
tion of the BEC 38 give rise to a well-defined set of atomic
field modes within the BEC that are different to the field
modes in an unperturbed BEC. Those perturbed atomic field
modes, and in particular the angular frequencies/wave-
lengths of those modes, encode information about the grav-
ity gradient.
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One approach to determine gradient information about the
field that is perturbing the BEC from a perturbed BEC is to
select any two arbitrary modes of the perturbed BEC 38. The
two modes can be allowed to evolve for a fixed time interval,
and then the phase difference can be measured experimen-
tally to reveal the gravity gradient. Therefore, one of the
modes effectively serves as a reference for the other. As
discussed in more detail below, such a system works effec-
tively if the two selected modes have the same total angular
momentum quantum number, but have magnetic quantum
numbers that differ (e.g. by one).

In the specific scheme illustrated, of a BEC in a harmonic
trap, information about the field gradient can thus be deter-
mined by considering phonons with two specific angular
momentum quantum numbers. Any two phonons modes
with different angular momentum quantum numbers may be
selected. In one example, we select modes with angular
momentum projected in the z-direction 1 and 1-1, where 1 is
the absolute (total) value of the angular momentum of both
modes. For these modes, the frequencies are known when
the BEC is deformed (ellipsoidal) in the z-direction.

These frequencies in the gravitational field of a sphere
are:

w, AU OFGMAR @)
and

w, = NIOHI=3)GMRIRP @]

We see that what appears is €,,,,,/=2 MG/R? which is the
gravity gradient. The phase is given as 0=t and the gravity
gradient can be measured through measuring the phase.
Here, t is the total time evolution of the phonon modes.

Then, the principle limit on the precision of a measure-
ment of the gravity gradient through this phase is given by

20)% 1 @)
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egrad

A specific way to access the phase of the phonon modes
could be let these modes interfere. This is described in
equation (3) giving the frequency difference between the
two modes:

&)

3 €grad

4\/70)0.

Aw; = wyy —wyy =

The frequency difference would lead to an accumulated
phase difference between the modes of A¢=Aw,t, which is
the parameter to be measured experimentally. We can obtain
an absolute sensitivity of 107 s™2 for gravity gradient
measurements using this scheme.

However, it can be appreciated that the present invention
is not limited to measuring only the phase difference of the
two phonon modes whose frequencies are dictated above—
other modes can be selected. It can also be appreciated that
not all phonons modes may have an analytical representa-
tion. In such cases, numerical methods may be employed to
order to obtain the relevant parameters, such as the frequen-
cies of the modes.

There exist many methods of extracting the phase differ-
ence. For example, in order to experimentally measure the
phase difference, one can either try to measure the phase
difference directly by allowing the modes to interfere, as
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mentioned above, or to infer the phase difference of the
modes separately by measuring, for example, the density of
the BEC 38 and then calculating the phase difference from
this.

One method of calculating the phase difference between
phonon modes by measuring the density of a BEC compris-
ing the modes has been termed ‘heterodyne detection’ by
some authors, and is illustrated in FIG. 8. After the modes
are excited in the BEC 38, the trapping potential is switched
off and the BEC starts to expand and fall freely under
gravity. During the expansion the energy contained in the
phonons is transformed into the kinetic energy of atoms.
These particles may interfere with the atoms in the ground
state within the BEC 38 to produce periodic density modu-
lations which can be measured using a detector 48. In the
present invention, the periodic density modulations can
result from interference of the atoms that have derived their
kinetic energy from two different modes of the BEC. Thus,
these density modulations contain the information about the
phase difference of the phonons. Information about the local
gravitational field gradient can be inferred from the phase
difference, as discussed above.

It is also possible to control the phonon-phonon interac-
tions in the BEC with Feshbach resonances via manipulation
of the BEC’s shape, enabling multi-mode operations that
can be used for the implementation of Mach-Zehnder inter-
ferometer (MZI) schemes. The controlled coupling of the
phonons is equivalent to a beam splitter in the MZI, and
thus, can be used to infer the phase or phase difference of the
phonons directly.

Typically, the measurements made using the above meth-
ods are carried out multiple times. The measurements are
then averaged to produce an average phase difference, to
improve accuracy of the final result.

Further improvement in accuracy is obtained if phonons
are created in a squeezed state. Squeezing could be achieved
by periodically changing the shape of the BEC (for example
by modulating the trapping potential) or the atom-atom
interaction strength of the BEC.

FIG. 9 shows an exemplary gradiometer which imple-
ments the methods discussed above. A BEC 40 is trapped in
a trapping potential and is deformed by an external field
acting in the direction F. Measuring equipment 48 is oper-
able in use to measure a phase difference between a first
mode of a perturbed BEC 38 and a second differently
oriented mode of the same BEC. A processing device 50 is
operable to infer information about the gradient of the field
perturbing the BEC from the measured phase difference.

As an alternative to the schemes discussed above, two
BECs could be used (similar to the gravimeter scheme
discussed above), where one of the BECs is perturbed by the
field whilst the other BEC is not perturbed, or is differently
perturbed. A method and system for extracting the gravity
gradient information would then involve measuring the
phase differences between two modes, one ‘reference’ mode
in the unperturbed BEC and another ‘probe’ mode in the
perturbed BEC, both of which are allowed to evolve for a
fixed time interval. The reference mode may be a selected
mode k of the unperturbed BEC, and the probe may be the
same mode k (i.e. with the same angular momentum quan-
tum number and magnetic quantum number), but of the
perturbed BEC. As explained above, the phase difference
could be extracted by allowing the modes to interfere.
Detailed Discussion: Gravimeter
Section I. Summary of Detailed Analysis

The theoretical framework underpinning the gravimeter
described above is discussed in the pages below. Besides the
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phonon field in a BEC, we consider a light field in a
1-dimensional optical cavity to compare with. In particular,
we study the frequency spectrum of the quantum fields when
they are kept at a fixed height above the ground in a
laboratory on the surface of the earth. This situation corre-
sponds to a proper acceleration that matches the gravita-
tional acceleration. We consider two orientations of the
BEC/cavity, horizontal and vertical, that lead to different
effects on the frequency spectrum. The time evolution of any
mode of the light field/phonon field can be used as a clock.
We derive bounds for the precision of these extended clocks
and discuss the effect of time dilation and proper accelera-
tion. The influence of time dilation on the evolution of the
extended clocks can be used for the estimation of gravita-
tional red shift and the Schwarzschild radius of the earth by
comparing the readings of two clocks at different height. We
give limits for the precision of such measurements. The
proper acceleration of the extended clocks matches the
gravitational acceleration. Therefore, the different effect of
proper acceleration on the clocks in horizontal and vertical
orientation can be used to infer the Schwarzschild radius of
the Earth locally. We derive the principle limitation for such
a measurement. We also present an experimental setup that
can be used to approach the principle bound for the local
estimation of the Schwarzschild radius: modes of the quan-
tum field in differently oriented BECs/cavities are brought
into interference in a Mach-Zehnder interferometer (MZI)
type setup.

The description below is organised as follows: in Section
IT we present the physical set-up; a hovering 1-dimensional
BEC/cavity in the gravitational field of the Earth. In Section
III, we introduce our model of a 1-dimensional BEC in the
gravitational field of the Earth and we introduce the phonon
field which serves as the counterpart to the light field in an
optical cavity, as well as the deformation of the density due
to gravity. The quantisation of both the phonon field in a
BEC and the light field in a cavity, is presented in Section
IV and the frequency spectrum is derived for horizontal and
vertical orientation. In Section V, we derive the effect of
gravity on the length of the BEC/cavity in the vertical
orientation. This leads to an additional change of the fre-
quency spectrum that we compare with the relativistic effect.
Additionally, we consider the cavity as an extended clock
and we apply methods of quantum metrology to provide
bounds on the precision for the estimation of proper time.
Furthermore, we give the precision for the estimation of red
shift and the Schwarzschild radius by independent measure-
ments at different heights. In Section VI, we introduce local
estimations of gravitational accelerations, i.e. the Schwarzs-
child radius, with two differently oriented BECs/cavities.
Finally, in Sec. VII we propose a Mach-Zehnder interfer-
ometer-like setup, which can in principle approach the
precision bound. A summary, conclusion and an outlook on
possible applications and future work are given in Section
VIIL

The conventions used herein are the following: the metric
signature is (—, +, +, +) in 3+1-dimensions and (—, +) in 1+1
dimensions. We use the symbol Tp for transposition when
convenient to distinguish it from time.
Section II. The Hovering 1-Dimensional Cavity

Effects of earth rotation and deviations from spherical
symmetry can be safely ignored for our purposes. Therefore,
we describe the spacetime surrounding the earth using the
Schwarzschild geometry, which is given as
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1 M

g- diag(—f (", o

”, rzsinzﬂ),

in spherical Schwarzschild coordinates (x°, r, v, ©). Here,
x°=ct, f(r)=1-r/r, the Schwarzschild radius is given as
r,:=2GM/c?, the parameter M is the mass of the planet and
G is the gravitational constant. For our purposes it is useful
to consider the transformation of the Schwarzschild metric
in Eq. (1) to the isotropic Cartesian coordinates (x°x, y, z).
With r=(1+r/4r)*r where r=(x*+y’*+z%)""* we arrive at the
Schwarzschild metric in isotropic spherical coordinates.
After a the usual transformations from spherical to Cartesian
coordinates, we find

@

Note that the coordinate transformation from the
Schwarzschild coordinates to the isotropic coordinates is
time independent. Therefore, any point at a fixed coordinate
position in Schwarzschild coordinates stays at a fixed coor-
dinate position in isotropic coordinates. Hence, there is no
additional proper acceleration introduced by fixing the coor-
dinate position in the new coordinate system.

The Schwarzschild radius of the earth is of the order of 9
mm, while the distance to its center is of the order of 10 m.
Therefore, we can expand the metric (2) in orders of r /. In
second order in r/r, we find

33 (€)

2
ry . s 3
Suv =Ty + = dlag(l, L1, D+ o dlag(—l, Za Za Z)a

where 1,,=diag(-1, 1, 1, 1). We will neglect contributions
of higher order than r ?/r? in the following. Note that the first
two terms in the metric (3) can be associated with the
Newtonian limit. They can be derived directly from the
linearised Einstein equations and the energy momentum
tensor for a non-relativistic point particle in the Lorenz
gauge. Terms of order r,2/r* are purely relativistic.

The system of interest is a massless scalar field y trapped
inside a rectangular cavity. We assume that the cavity is very
small in two dimensions and longer in the third one. Such a
set-up can describe both, the electromagnetic field confined
within an optical cavity or the phonon field inside a trapped
BEC. In the latter case, the bulk of the BEC acts as a cavity
for the phonons. In the following, we introduce the formal-
ism in full generality and we then specialise to the phonon
excitations in a trapped BEC.

We assume that the field is only excited for momenta in
the elongated dimension and it is found, with good approxi-
mation, in the ground state with respect to the transversal
dimensions. This assumption can be understood by consid-
ering the energy spectrum of the transverse dimensions; the
energy difference between two states is inversely propor-
tional to the length of the relevant dimension. The smaller
the confinement, the larger the energy difference. Therefore,
we can consider the field as effectively 1-dimensional.

For the purposes of demonstrating the mathematics, we
consider the cavities hovering at a fixed distance from the
surface of the Earth with two different orientations: a vertical
(i.e. radial) one and a horizontal one, as shown in FIG. 1. We
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now assume the vertically oriented cavity to be placed along
the x-axis with its lower (bottom) edge located at the
position 1, and its higher (top) edge at r,. The horizontal
cavity, on the other hand, will be located at x=r,,. Due to the
rotational symmetry in the y-z-plane, we can restrict our
considerations to the horizontal orientation in z-direction.
We set one edge of the cavity to z=0 and the other to z,>0.

The edges of the cavity, as well as every other component
of the cavity, do not follow geodesics and therefore must
have an outward pointing four-acceleration. We anticipate
that this will result in a measurable difference between the
time evolution of the fields in the vertical and the horizontal
orientation.

We will proceed by considering two different scenarios. In
the first scenario, we assume that the cavity length is fixed
by rigid rods. In particular in the case of an optical cavity,
we assume that the end mirrors of the cavity are attached to
the ends of the rod. For the case of a BEC in a trap, we
assume that the length of the system that creates the trapping
potential is fixed by rod. We will neglect all effects due to the
finite width of the rod; we assume it to be effectively
1-dimensional. Since it is a matter system, its length is given
by the proper length

Lpzfda','gws“(a')sv(a').

For the vertical cavity, we set s*(5)=(0, 1, 0, 0), a=r,, and b=
r,, and for the horizontal cavity, we set s*(5)=(0, 0, 0, 1), a=z,
and b=z,.. In the second one, we will also consider the effect
of the finite stiffness of the rod that holds the cavity,
therefore moving towards more realistic implementations of
the predictions of this work.

For the horizontal orientation, we start with the coordi-
nates (x°, z), and we write I(z):=(r,>+z*)"?. We consider
distances of at most the length of the trap/cavity L, which is
of the order between centimeters and micrometers. There-
fore L /r, is approximately of the same order as rs/fb.
Expanding the metric (3) in second order in z/r, and rJr,,
and in first order in their product, we find

8 h,pv:f rs(Tp)diag(=1.2(r,)),
where we defined the red shift function:

)

%)
Jrs(P):= [

and the spatial scale function:

15;’5
872

As explained above, we assume that the cavity is rigid,
and that the weak tidal forces due to the curvature of
spacetime are not able to affect the rigidity of the cavity. The
rigidity of the BEC trap is well approximated by a constant
proper length of the cavity. We obtain L ~f "dz. frs(@)'?
X(r)"?=f xs(r,)"%. This equation fixes z, as a function of L.
We obtain

z~f RS(;b)7 ! /22(;)7 llsz-

©®

2rg
=y

2@ ::[

N

For the vertical scenario, we start with the coordinates (x°,
x'), where x'=x—T,,, and we assume that x'/r,<<1 and x'fr,~r,/
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1,. Then, we expand the effective 1+1-dimensional metric up
to second order in r/r, and x'/r, and first order in their
product. We obtain

gx’ ®
Chyv = fRS(Vb)(l + —)X

s T2

The proper length in the vertical orientation is

@

2rex’

" " (10)
Lp:f dx’ (gy11(x)
o
rgx,’)
473

an
= frs) Y 7)1 (

which can be inverted as

a2

. _ rsL
= fas(Tp) 1/22(717) l/sz(l + 47zp ]
b

In the next Section, we will introduce the description of
a BEC in the spacetime described by the metric (3) and we
will give the conditions under which the phonon field in the
BEC can be described completely analogously to the light
field confined in an optical cavity placed in the same
spacetime.
Section III. 1-Dimensional Relativistic BEC in the Gravita-
tional Field of the Earth

A BEC can be effectively described by the Gross-Pitaev-
skii equation (see L. P. Pitaevskii, Soviet Physics JETP-
USSR 13,451 (1961) and E. P. Gross, I1 Nuovo Cimento 20,
454 (1961)). This accounts for the collective behaviour of
the bulk of the atoms that compose the BEC. However, small
perturbations of the BEC, known as phonons, appear as
quantised massless particles that propagate on an effective
curved background metric. The kinematics of the phonons
propagating through the bulk are described by a Klein-
Gordon equation (21, below), where the metric g is replaced
by the effective metric g with components

< 2 uytty
uv = —P|8uw + 1- > a |
c* Jluu®|

Here, the speed c, is defined by

a3

. dd (14
o 1e®| +co ’

where

2= h_)L (15

CE—) P

and the four-vector u, is the flow associated with the phase
of the wave function of the BEC bulk (see C. Barceld, S.
Liberati, and M. Visser, Classical and Quantum Gravity 18,
1137 (2001)), the speed of sound in the BEC is ¢, and the
density p of the BEC may depend on space and time
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coordinates. For the BECs that we are considering here,
cy2/c? is of the order of 1072°. Therefore, we can approxi-
mate ¢.=Cg.

An important feature of BECs is that the background
metric g can be experimentally tuned to replicate dynamical
spacetimes. This can be done experimentally by tuning
accordingly the density p, the flows u,, and the speed of
sound c,. This versatile nature of BECs provides us with a
tool for probing dynamics and properties of the “real”
background spacetime when first attempting to study non-
Minkowski background metrics.

The density, the flow and the speed of sound in the BEC
cannot be chosen freely and are constrained. By considering
two body collisions only, one can model a BEC in a curved
spacetime by considering a charged, self interacting scalar
field governed by the relativistic, non-linear field Eq. (see
the generalisation of Eq. (10) in S. Fagnocchi, S. Finazzi, S.
Liberati, M. Kormos, and A. Trombettoni, New J. Phys. 12,
095012 (2010) to curved spacetimes)

I NI 16)
P fp- N =0

(it
D¢_[

Here, the function V is the external trapping potential and
A is the coupling constant for the self interaction of the BEC
atorms. The mean field approximation allows us to replace
the field operator by a function, 0—¢, and we obtain the
equation for the mean field ¢ of the condensate. This is the
relativistic version of the Gross-Pitaevskii equation. By
considering a Madelung representation of the mean field, ¢=
Vpe®, and by defining

h
Hy = ;0# 0,

we obtain the hydrodynamical representation of equation 16,
which reads

0=20, (\/—det(g) & puy) 17
2

Nl = =g, = c* + h_z
m

These equations connect the density p and the flows u,,.

As a first approach to the problem of analysing a trapped
BEC placed in Schwarzschild spacetime, we assume that the
external potential V allows for a constant density p and
vanishing spatial components of u,,. As explained in Section
II, we consider an effective 1+1-dimensional situation. To
this end, we assume that the extension of the bulk is much
larger in one direction than in the other two directions. The
solution to Egs. (17) in the elongated direction, when the
cavity is horizontal and the trapping potential is uniform
with infinite walls, i.e. V=0 inside the box and V= outside
of the box, becomes

1tg?=f gs(rpN*+2c0” " fps(Fy). (18)

When considering the vertical orientation of the effective
1+1-dimensional BEC, the same expression for the flow
component U, as in (18) can be obtained if a potential of the
form V=V +AV is added, where V, is the uniform trapping
potential and AV the linear potential given as
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AV=-"3—u~—
T T

The potential AV cancels the effect of the gravitational
field on the bulk up to second order in rJr, and x/r,,, and first
order in their product. The cancellation of the gravitational
field is common in experiments with BECs. It is done, for
example, by applying a magnetic field of the right strength
(see for instance A. L. Gaunt, T. F. Schmidutz, I. Gotli-
bovych, R. P. Smith, and Z. Hadzibabic, Phys. Rev. Lett.
110, 200406 (2013)). In order to obtain the potential AV, the
experimenter has to tune the gradient of the linear potential,
dAV/dx, such that the density is homogeneous. However,
dAV/dx can also be fixed to a value that differs slightly from
the value necessary to cancel the full effect of the gravita-
tional field. This difference can lead to a density perturbation
which has an effect on the phonon field that can, in principle,
be measured. Let us assume that AV, is given by Eq. (19) but
r,/t,” replaced by some default value adjustments r, o/T, o°.
Then, the corresponding relative density perturbation §,
defined as p=p,(1+8,) is given by

1 rg rs0 ( , x,’) (20)
=—=—]—=- — " -=1
2\7 T 2

obtained via equations (17) by assuming irrotationality of
the flows u,, and using foxy’dx'ﬁpzo, since the number of
atoms is conserved and the unperturbed density p, and speed
of sound c, are constant. The relative perturbation of the
density in Eq. (20) can then be used for the measurement of
the gravitational field as we will show in the next section.
Section IV. Quantization of the Fields

In this section, we quantise the phonon/light field y in the
BEC/cavity. The phonon/photon field obeys the massless
Klein-Gordon equation (see N. D. Birrell and P. C. W.
Davies, Quantum fields in curved space (Cambridge: Uni-
versity Press, 1982)

@n

1
= —=0,(+/-22"%),
Dlﬁ ‘/_—g /»l( ggu )

where g:=det (g,). Here, g, =g, for the light field and
g,,=8,, for the phonon field. For both cases, the 1+I-
dimensional metric g,,, depends on the orientation.
A. Horizontal Orientation

First, we consider the photon case. Note that the metric (4)
does not depend on the variable z. Therefore, after the

transformation to the coordinates (x°,%) with z=X(r,)"/%, we
obtain the metric
Znw=Frs(rp)diag(=1,1). (22)

We impose Dirichlet boundary conditions y,(x°, 0)=y,,
(xY,Z,)=0 on the field y. The corresponding solutions to Eq.
(21) with background metric (22) are the plane waves

o n it

Nk

@3

¢h,k(x0, 2)::
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where k is a positive integer and

o CTK cnkf ()
Wiy =— =— 7).
hk %, Lp RSUFp

The solutions (23) are normalised with respect to the Klein-
Gordon inner product (¢, ®,KG, h:=if7dzf(r,) ">
(0%,300,0,9,0%,). We can quantise the field y in the O i
basis, when studying this horizontal setup, and we find

¥i(x0,2) = Z{ah,kqﬁh,k(xo, 2) + a5 (2%, 2)), @24

k

where the creation and annihilation operators 4, &,
satisfy the canonical commutation relation algebra [4,,,
ﬁh,/ja]zsk,k“

For the phonon field in the BEC, we have to consider the
acoustic metric g from Eq. (13). Since the BEC is effectively
1-dimensional, we find, in the coordinates (c.t, z),

Yo = pfﬁes(ﬁ)(—l, D) @5

This metric is conformally equivalent to the metric for the
light field in (4). Therefore, we can recover all the above
equations for the light field with the only difference that we
obtain the frequencies

cqrtk
Wk = —— frs(Fe)2.
LP

Therefore, we can give the general expression for the
frequencies

vk

1 (26)
Wy = L_fRS(7b)2>
P

where v=c for the light field and v=c, for the phonon field.
B. Vertical Orientation

Again, we first consider the photon case. After the coor-
dinate transformation to (x°, %), where

@n

2}"5}6” 1/2
)

o — 12 d //[1 _
®=) j: ¢
— ’ VSJC/
~ Z(Vb)l/zx [1 - 2—7127),
which leads to x'=X(r,,)™"* %(1+rx'/21,%), we find the metric

* @8)
&= ﬁes(ﬂ)(l + %)diag(—l, 1
b

In second order in r,/r,, and x'/r,,, and in first order in their
product.

The Dirichlet boundary conditions on the field y,, imply
v, (x%, £,)=y,(x° &,)=0. We quantise the filed and obtain
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¥, (%, %) = Z{av,kqsv,k(xo, )+ il 84 (2%, %)) @9
k

The creation and annihilation operators 4, , 4, " satisfy
the canonical commutation relations [4, ,, 4, ,',]1=3, . Here,
we have introduced the modes

SOk e (0)
0 5. inf 2k 5
¢v,k(x ,JC) = \/E Sln( - x)a
where
oy CTTK
Wyp =/

are the frequencies with given by Eq. (12) and Eq. (27) as

31

N - rsL
% =~ frs(s) sz[l— 47127”).

The phonon field can be treated similarly to the horizontal
case if the external linear potential is exactly canceling the
effect of the gravitational field, i.e. if 5p=0. However, to fix
the potential, a precise measurement of the gravitational
field would be necessary in the first place which would
reduce the utility of our setup for measurement significantly.
Instead, the external potential can be fixed to some value
close to the cancellation and the effect of the difference can
be used for the measurement of the gravitational field itself.
As explained in Section III, there are no spatial velocity
flows, and we find for the acoustic metric due to a time-
independent density perturbation

A +6,800 O ) (32)

[
iy & Po—(1 +6 )1/2(
Guger = Po €50 ’ 0 &1l

where the unperturbed density and speed of sound are
assumed to the be equivalent to the values of these param-
eters in the vertical orientation. After a re-definition of the
time coordinate as x°=c_qt we arrive at the acoustic metric

(1+385)8v00 O ) (33)

c 1
K =po—I(1+ 2
Evu = 0 Cso( 2 ( 0 g1

As in Section II, we start with the coordinates (x°x")
where x'=x—T,, and we assume that x'/r, <<l and X'/r,~1/T,.
Then, we expand the effective 1+1-dimensional metric up to
second order in ry/r, and x'/r,, and first order in their product.
Furthermore, we will consider linear and quadratic terms in
the relative density perturbations, which we will justify later.
We obtain for the non-zero components of the metric

B0 = —PE) (34)

G5

2rex’
g1 = POOH(1-6, + 5,3)2@)(1 - :2 )
b
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-continued
where
, c 36, 36/23 rgx’ (36)
P()=po—|1+ =2 + 22 s 1+ = |
[ 2 8 i
Now, we perform a transformation to (x°,%), where
f, N ERCS (37)
X = d]C —” .
0 |§v,00(7€ )|
In these coordinates, the acoustic metric becomes
&y w=P(®diag(-1,1), (38)

where P(X)=P(x'(X)). The normalised solutions to the Klein-
Gordon equation (21) are given are given as

G

e— iyl | (Wyy
———sin| %,
nk €s0

0 =
Poa(x®,3) =
and the corresponding frequencies are

BEC _ csomk

w =
vk %

with X, the coordinate of the end of the trap potential. Since
the number of atoms is conserved and the unperturbed
density is constant, we find X, from Eq. (37) as

1 Sy 36/23
751=2(7b)2£d?€ 1—7+T 1

(40)

This justifies cons1der1ng quadratlc terms in &, although
we only derived it in first order in rL, /% the only
remaining linear term in &, is multiplied by rL, /r,” and,
hence, the term in &, proportlonal to rSLp/rb is the leading
order term. Furthermore as c*/cy”> will be of the order of

10%°, we see from Eq. (20) that 8, can be significantly larger
than r Ll/rb .

For the gravitational field of the Earth close to its surface
r/r,? is of the order of 10-'® m™'. Therefore, we will neglect
the term proportional to the product of and r/r,* and 8, in
Eq. (40) in the following. From Eq. (20), we see that
8,=0',(x'~x'/2), where &',=dd/dx". We find

, rsx’ 1 Sof ,, X'x (41)
P E (Vb)l/zde(l——z 2(}52— 2')+
30,( o
5 []CZ—JC]C,‘FTIJ]
2
_ @21 rs* V_Sé_Px/erix/z
o7 724 fe4n !
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With Eq. (12), we find

42)

rsL, (rg 5, 4,

~ fas@) V2L, 1 - LZ]
Jrs(Tp) p( p= 2 64)

As stated above, for the BECs that we consider herein,
c/c,o>~10%°. Therefore, from Eq. (20), we find that r /r,” is
smaller than &, by more than a factor 10'* even if the
external potential would cancel the effect of the gravitational
field with a relative error of the order of 107°. Therefore, we
can write

1 ol &2
~ frs(Ts) ZLp(l— 27; ”64p]
For the case that §V~107°, ¢?/c ,~10%° and L, ~107* m,

we obtain that & °L,*/64~ 0_6 while r,L /4rb2 ~1072",
Therefore, the effect of the density perturbatlon is dominant
and it was justified to consider quadratlc terms in &,
although they are second order in L, /r,>. The reason for
this is the extremely low rigidity of BECS which makes them
very sensitive to external forces.
C. Frequency Shifts

Using the relation between the Schwarzschild coordinate
rand T given as r=(1+r,/47)%r, we can rewrite the red shift
function in the more common form

Ses®)=1= = = 1)

in second order in

and the frequencies become

crk 43
@i = 7" and
P
. [1 rsL, ] (44)
= wj +
vk hk 47’1%
for the light cavity and
soTtk 45
W€ = 2 and (
1252
WBEC — BECc|q rslp &Ly (46)
vk hk 4}”127 64

for the BEC and where c,=c,,, for the horizontal cavity. The
factor f(r,)"" represents the usual gravitational red shift that
is experienced when photons are sent between two points at
different height in the gravitational field of the earth (see R.
V. Pound and G. A. Rebka, Phys. Rev. Lett. 3, 439 (1959)).
Note that, due to the red shift, both frequencies become zero
at the Schwarzschild radius, which occurs when approach-
ing a black hole. Hence, this limit has to be taken with care.
For our considerations about the gravitational field of the
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Earth, this is not of importance since every point outside of
the surface of the Earth is far from its Schwarzschild radius.

In the limit L,—0, we have ®, ;—®,, ;. Therefore on the
one hand, we conclude that the root of the frequency is the
finite spatial extension of the BEC/cavity. In particular, the
frequencies @, , for a BEC/cavity with its lower end at 1, are
equivalent to the frequencies of the field modes in the
horizontal BEC/cavity atr,=r,+L /2 in second order in L ,/,,
and in first order in their product. Hence, there would be no
difference between the two systems in this order if the
horizontal cavity would be located in the middle between the
ends of the vertical cavity. On the other hand, the frequency
difference between m,, , and ®, , for both cavity and BEC, is
due to the proper acceleration of the whole system that is
necessary to keep it at a fixed Schwarzschild coordinate r. In
particular, ®, =, , only at r,=co that is, asymptotically far
from the earth.

For the derivation Eq. (44), we assumed that the proper
length of the BEC/cavity is kept fixed by taking a perfectly
rigid rod as reference. However, all realistic materials are
deformable. In the next section, we will derive the effect of
the deformation of the reference rod on the frequency
spectrum of the fields in the gravitational field of the earth.
Section V. Deformation of the Cavity

We assume that the cavity/trap is supported by a rod of
constant but negligible width. Furthermore, we assume that
the material properties are constant along the rod. To keep
the cavity/trap at a constant distance from the centre of the
Earth, the whole system has to be accelerated upwards. We
assume that this is achieved by supporting the rod from
below at r, (not by suspending it from above).

Therefore, the upward acceleration will contract the rod if
it is vertically oriented and there will be no effect on the rod
if it is horizontally oriented. In the following, we will derive
the effect in for the vertical orientation. Again, we use the
metric (28) in the coordinates (x°, %), and we do all calcu-
lations up to the second order in second order in r /,, and X/
I, and in first order in their product. In the first step, we
derive the acceleration of a segment of the rod in the
gravitational field from the geodesic equation

2 . @7
80 = T @@,

where the dot denotes the derivative with respect to the
proper time T of the segment and the connection coefficients
are given as

1 (48)
Fﬁ’lp = Egga(a"gv,a'p + 0p gv,a‘v - aﬂ'gv,vp)'

We assume that, initially, £F(T)=((g, o) ""*.0) and we find
that

_dg “49)

dr’

2 px 2

% 0. d°E crg
a =, —_— ==
€=

2
27,

Every segment of the rod at [0, £,] will be affected by
an inertial stress that is given by the all of the segments
above it. For the proper length of every segment dX of the
rod we have (g, ,,)"” dX and therefore, its density is given
as (g,.,,)"*pd&. Then, we find the stress as
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o[ 1 L . (U]
o(X) = axf dx(gv,n)zp = fRZS(7b)an(7Cr = X).

With Hooke’s law we find the strain € (X)=6(X)/E, we find
for the change of the proper length of the rod using Eq. (31)
and r=(1+r/47)°r

% 1 )
AL, = f d3(@,) 7 & (%)
0

s P 52
= frs(Tp) 2

c2p rsL? EprsLy (53)
“TE T TTE a3

The ratio E/p,,, is called the specific modulus or stiffness to
density ratio. It is equivalent to the square of the speed of
sound c,,, in the longitudinal direction of the rod. Therefore,
we obtain

& rl? (54)

2 2"
Crod 475

Another meaningful question arising is, will tidal effects on
the horizontal rod take part in the sensitivity? Due to the
sphericity of the planet, the horizontal rod will be an
effective cantilevered rigid beam supported on z=0 and
subjected to gravitational acceleration on every other point
of the system, as depicted in FIG. 3. The classical displace-
ment ox at each point ze [0, z,] of the cavity is effectively
given by equation (2.3) of V. Srivastava, H. Jones, and G.
Greenwood, Proceedings of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences 462, 2863
(2006). By considering a constant gravitational force (up to
second order in z /r,, z/r, and first order in their product), the
displacement is

(55)
ox=3

A2 org 1l z,zz2 zz
7 3 ")

2 2.2
Croq 15 1

where h is the thickness of the rod. Given that L ~z,, we can
estimate the frequency change due to this deformation by
defining an upper bound Lp”d“l of the deformed rod as

(56

2
arg i o = (14 (222) e

Although this is clearly not the length that the rod will
have in reality, it will serve with as a heuristic argument for
our purposes.

Integrating equation (56) and defining
VTCk/Lp’id“l, we find

ridal, _

tidal

9 & AL (&)
Wi w1 = se—— S

28 Cfod ”2

To compete with the smallest correction 3Lprx/2rb2, the
rod would have to be as thin as h~10"" m which would imply
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h~L,, since Lp~104‘. In order to be comparable with the
effect given by the deformation of the vertical cavity
3Lp02rx/20md2rb2, one would need h~10"° m. Finally, to be
comparable with the effect induced by the deformation of the
BEC §',°L,%/64 the thickness would need to be h~10"" m.

For our purposes we will assume that the rod is suffi-
ciently thick for this effect to be negligible. In the case of a
light cavity, the change of proper length L, only affects the
radar length, and we can write the resonant frequencies as

WO = W (L+ A, 8

Where
+ 1]L P

For an aluminium rod, c*c? ;s of the order 10® and for
arod of carbyne (linear acetylenic carbon), the material with
the highest known specific modulus, it would be of the order
10%. Therefore, in all realistic situations, c*c? +1 is
equivalent to ¢*/c?,_; in equation (59).

In the case of a uniformly trapped BEC, the length change
also affects the speed of sound c, since it is proportional to
the square root of the density of the BEC which is propor-
tional to the square root of the inverse of the proper length
of the trap. We obtain that

2 59

1r
A:=——i 2
4rp\choa

3 60
wffc = wh,k(l + EA) 60
We write the general equation
k 61
Wi = 2= frp)? and ©L
LP
wiekf = wyi(l +0). (62

where v and ® are defined for the light cavity and the BEC
respectively as

63
. v=
Light O=A
V=G50
’2 72
BEC{ :EA_(Spr
2 64

The time evolution of a single mode of the field gives rise
to a phase which can be employed to measure time. In this
sense, these modes correspond to extended quantum clocks.
We have already noted that w, ,—®,, , for r,=cc. Therefore,
the extended clocks work like local clocks for the observer
at an infinite radial distance. This occurs because, at an
extremely large (infinite) distance from the surface of the
Earth no proper acceleration is needed to keep the system at
a fixed coordinate r. We will discuss further properties of our
extended clocks in Section A (below). With two clocks at
different height, the red shift and the Schwarzschild radius
of the earth can be inferred. This will be part of Section A
as well. However, also the frequency difference of modes of
two differently oriented BECs/cavities due to proper accel-
eration can employed for a measurement of that accelera-
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tion. When the radius to the center of the earth is known, the
Schwarzschild radius of the earth can be inferred. We will
discuss this application in Sections VI and VIIL

A. Measurements of Proper Time

Special relativity predicts that time is not an absolute
concept. However, a meaningful notion of time can be
constructed as the time measured by a point-like clock
moving along the world-line of a physical (pointlike)
observer. This time is known as proper time T and is defined
as ‘C:—fds, where ds is the line element. In the gravitational
field of the Earth, we have t=f(r)'"%t for an observer at a
fixed radial position r. In the following, we want to calculate
the principle error bound on the estimation of the proper
time t,, by a measurement on a single mode of the quantum
field in the extended clock built from an optical cavity or the
phonon field in a BEC. To this end, we employ quantum
metrology and the quantum Cramer-Rao bound which gives
a lower bound for the absolute error of the estimation of a
parameter A from a measurement on a quantum system AA?
given a specific initial state. We have for the lower bound

1 1
SMFQL O T MHW

2 (64)

where H is the quantum Fisher information (QFI) and M is
the number of repetitions of the experiment (see D. Safrdnek
and L. Fuentes, Phys. Rev. A94, 062313 (2016) for some
details). From the absolute error bound AA we can obtain the
relative error bound as IAAI/IAI28(A) where S(A):=(1Al/
\/MH(X) ~!. The quantum Fisher information is obtained by
optimisation over all possible measurements for a given
initial state of the system. Therefore, to obtain a value for the
bound, an initial state has to be specified. Later we will give
an example of a measurement that can be used to approach
the bound in practice. For a more detailed account of the
tools used here and the derivation of the error bounds see
Appendix 2.

In order to compute the error bound on the measurement
of the proper time T,,,, we have to set A=T,,,. We assume that
the initial state is a single-mode squeezed coherent state
(SMSC) of a given mode k, defined as D,(c)S,(r)|0,> where

Si() = exp[%(ﬁzz - ﬁ.,%)]

is the squeezing operator, re R (i.e. r is a real number) is the
squeezing parameter, D (c)=exp [0, '—a*4,] is the dis-
placement operator and 10,> is the vacuum state of mode k.
We assume that all other modes are in the vacuum state.
Then, we obtain the relative error bound (see Eq. A7 in
Appendix 2)

ssmsc (T'b )= 1 , (65)

d
\/ZM \/ sinh?(2r) + 2|2 e? Ty 5 Vi
d‘r,b

where , is the time dependent phase change of the field
mode. We have y,, =, =0 ,T,,, for the horizontal orien-
tation of the extended clock and Y, =t (=0, (1+O)T, .
for the vertical orientation, where we define
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urk (66)

Woy = Z,

which is the k-th frequency of the field in the cavity when
it is placed asymptotically far from the Earth. Employing
Eq. (61) and Eq. (62), we obtain the relative error bound for
proper time measurement with the SMSC state to first order
in A, which reads

C(r) = 1 «
N Y S22+ 2laPe? [wosty,|
B (r,,) = 63 (r,, )1 - @) 69

Given our results (67) and (68), we can answer the
following question: How well can the proper time t,, be
measured using an extended clock (cavity) with its lower
end at r,, in the vertical setup and the whole clock at r,, in the
horizontal setup?

For the horizontal setup, we find that the relative error
bound does not depend on the position of the clock, which
coincides with what we would expect from a local clock that
is not coupled to an external field. Its precision does not
depend on its motion. To first order in L, the results (67) and
(68) coincide and we would get the same result for the
vertical orientation. However, we note that there is a small
correction proportional to the proper length of the cavity and
the gravitational acceleration agzczrx/(Zrbz) at r,,. Interest-
ingly, this correction increases the sensitivity of the proper
time measurement since the frequency is increased by a
factor 1+®. Since @ is very small in practice (for an
aluminum rod of 1 m, at most of the order 107®), the increase
in sensitivity is negligible. Therefore, we will not distinguish
the two orientations in the next section, where we derive the
sensitivity for the estimation of red shift by comparing the
readings of two clocks at different distances from the surface
of the Earth.

B. Estimation of Red Shift

With two extended clocks at two different positions r,, and
r', we can measure the gravitational time dilation or red shift.
To achieve this, the reading of the extended clock at ', could
be encoded into a light signal that is sent to the clock at r,,
where the readings are compared. The red shift is given
as =(A,,—A, )/, . where A, b and A, are the wave length of
a light s1gnal at r, and r',, respectively. Since the wave-
lengths and the frequency are related as A, ,=27c/o, and the
phase

¥ = Wy,
is a scalar, we have

©9)

From standard uncertainty propagation, we know that the
relative error bound behaves as

Tt

\/(T 9z
so= [

z 9 T,

: 7, 9z Y
4]
] Grgy (Try )" + [7 E] Sry (77"
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-continued

f(rb/)l/l
| Fe P = Flr qu

Note that the relative error bound becomes infinite for
1,=r, as we could have expected since the relative red shift
vanishes for r, =r,. One particular situation is r, —o, which
corresponds to a clock at infinite radial distance from the
surface of the Earth. In the limit r,—co, we have that
@, ), N*—=F(,)"?, which gives the total gravitational
red shift of a light signal emitted at r, compared with a clock
at infinite radial distance. The observer at spatial infinity is
particularly interesting since its proper time is the coordinate
time and the frequencies of the field inside the cavity
measured by this observer are independent of the orientation
of the cavity and take the value ®,,=vnk/L,. We have

am

) = ot 00 )

1
1= reo)?|

In the next Section, we discuss the estimation of the
Schwarzschild radius of the Earth using the extended clocks.
C. Estimation of the Schwarzschild Radius r,

Since the red shift function f(r,)=(1-r/r,) contains the
Schwarzschild radius of the Earth r,, the measurement of
relative time dilation or red shift can be used to infer the
Schwarzschild radius. To compute this, we need to assume
that either the position r,, of the sender and r,, of the receiver
are known, or three clocks are used. We will consider the
first case here. Let us assume that the reading of the extended
clock at r,. is encoded in a classical light signal and sent
down to the receiver at r,. To evaluate a proper time
difference T,,—T, , one needs a reference time. Since we are
comparing the signals at 1,,, the reference time is t,,. Hence,
the observable that we are considering here is again the red
shift

From standard uncertainty propagation, we know that the
relative error bound behaves as

gy

o(rs) =
0r5 _ —f(Vb) 6rb/ (Trb/ )2 + 0, (Trb)z .
02 |1 1 flre)
ry fry)

Again, the relative error bound becomes infinite for r,=r,,
as we could have expected since the relative time dilation
vanishes for r,=r,. Therefore, we recover the standard
general relativity tenet that locally, space-time is flat. Let us
consider the particular case of the emitter at an infinite radial
distance from the surface of the Earth r,, —co. From Eq. (71),
we obtain

ST (e = (_S _ 1) 5, ) +6(T,b)z 72)
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In the next Section we will provide numbers for the
relative error bounds we derived so far.
D. Measurements with Photons and Phonons Let us see how
well we can measure proper time, red shift and the
Schwarzschild radius of the Earth using the electromagnetic
field in a cavity or the phononic field in BEC. The change
between the two systems can be readily obtained by substi-
tuting the speed of light ¢ with the speed of sound c,. The
physical implementation, however, carries different chal-
lenges. This is due to the fact that both the amount of
squeezing and the lifetime of the excitations are significantly
different for photons and phonons within state-of-the-art
experimental set-ups.

From Eq. (65), we see that the precision increases with the
frequency

of the mode under consideration. Hence, we choose a small
cavity length L ,=200 pm. For photons, we have v=c and we
can assume a maximal squeezing of r=1.7 which is about 15
dB—the highest squeezing achieved to date. Using the
reflectivity of current state-of-the-art mirrors, the largest
time scale for photons is of the order of T, ,,,,,~70 ns,
which corresponds to the time that it takes to decrease the
initial photon number n, to n,,.. We can assume a power of
1 mW in the cavity, Wthh corresponds to about 10* photons
for a wavelength of 500 nm. For the phonon field, we have
v=c,,, Which can be of the order 0.05 m/s, and we assume
the maximal squeezing to be r=5.3 and the maximal number
of phonons 10”. In a BEC, the maximum time scale is the
decoherence time of the phonons of about t; ,,,,,,,=0 s. With
these numbers, we find for the photon field an error bound
8, M5 (x, ,) of the order of 107¥Mk and for phonons
5 SMSC(‘C ) 10_10/(\/Mk) Since the same time interval
cannot be measured twice, we can set M=1. We see that the
phononic field performs better than the light field although
the frequencies are much higher for the light field. One
reason for this to occur is that it is not the frequency but the
maximal achievable phase change y,=w, T that governs the
relative error bound. The phonon states live longer than the
photon states. But this would only lead to equivalence of the
error bounds in our case. Another reason is that one can
achieve much higher squeezing in a phononic field.

However, even for very high mode numbers, the relative
error bounds we obtained cannot match the relative error of
about 1077, which can be achieved by the best clocks
currently available. In the case of the phonon field, another
problem arises when considering time measurements. The
shortest time measurable with the phononic clock would be
6 s if one aims at relative precision of 1075. The shortest time
that can be measured in principle with the extended clocks
is given by the absolute error bound A, “(t, )=
T, 5 SMSC(, ). We find for the photon field a fundamental
time resolution of the order of 107'° s/(\/Mk) and for the
phonon field of the order of 107° s/(\/Mk) Again, we can
assume that M=1 since a time interval cannot be measured
twice and there cannot be more than one experiment at the
same position.

For the estimation of the red shift and the Schwarzschild
radius, the significant figure of merit is the best relative error
bound since we do not need a high time resolution of the
measurement (for practical reasons, it may be desirable to
stay below 10° s measurement time). For the estimation of
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the Schwarzschild radius, if r,>>r, we find for quotient of
the factor in Eq. (72) and the factor in Eq. (70)

27 fewft = fen)| < L 73

We can conclude that the values of the relative error
bounds for the estimation of the Schwarzschild radius and
those for the estimation of the red shift are of the same order
of magnitude. Therefore, we will only discuss the estimation
of the Schwarzschild radius in the following.

Assuming r,=6371 km and r,=8.89 mm, we find the value
1.43x10° for the factor (73) that would appear in Eq. (72),
which has to be multiplied with the error bounds for the
proper time measurements in order to obtain the relative
error bounds 8(z_.) for the estimation of the Schwarzschild
radius. In the gravitational field of the Earth we have r,>>r;
and we can assume that both clocks reach their maximal
accuracy by approximately the same proper time at r_.
Considering the SMSC state and the mode k, we find a
relative error bound 8,55<=/s"(r } of the order of 10°/(

VMK) for the light field and §,55°=55(r )~1/(NMk) for
the phonon field. In contrast to the measurement of proper
time, the estimation of the Schwarzschild radius can be
performed several times. Let us assume that the experiment
is performed for the lifetime T, of the states, which we
assumed to be 70 ns for the light field and 6 s for the
phononic field. If we assume that the experiment will be
restarted without delay, we can set M=t/t;. We find for a
measurement time of one year, i.e. T=3.17x10” s a relative
error bound 8,515 (r ) of the order of 10~5/k for the
light fields in a cavity and a relative error bound
8, SMSC==BEC (1 y of the order of 10~*/k for the phonon field
in a BEC. This shows that the photonic clock is more precise
for the measurement of the Schwarzschild radius than the
phononic clock. In general, we find for the quotient of the
two error bounds

SEMSC,oo,Iighr (74)

w9 o2,

‘MSC 00, BEC
SPCBEC (1)

In principle, the sensitivity of the measurement could be
increased significantly if, instead of just the classical time
measurement, the whole quantum state of the clock at r,,.
could be encoded in a light signal and sent down to r,,. Then,
the quantum states of the two clocks could be brought into
interference and a measurement could be performed after-
wards. In order to give the error bound for this situation, we
need to take into account the effect of the propagation of the
light signal from r,, to r,, and the exact mechanism of
interference has to be specified.

However, if we use two differently oriented extended
clocks, we are able to let them interfere locally circumvent-
ing the transmission of any signal. We will discuss this set
up in the next sections.

Section VI. Local Estimation of the Schwarzschild Radius

In this section, we investigate how to estimate the
Schwarzschild radius locally by using two differently ori-
ented clocks. First, we consider the comparison of indepen-
dent readings of the clocks. At the end, we will also consider
measurements of the whole system.

The phase of a mode of the field for the vertical and
horizontal orientation evolve as W, ;=03 ,(1+®)T, , and
W, =0T, Hence, the vertically oriented clock with its



US 12,242,019 B2

33

lower end at r,, is effectively showing a proper time T,,=(1+
0)t,, while the horizontally oriented clock is showing the
proper time T, . This difference can be used to estimate the
Schwarzschild radius locally if r, is known with sufficient
accuracy. We find

(75)
5050 (g =
1|0 1o -1 3 11001 3
—|=—"1 o) ) == o)’ v
i Py n‘r,b (T gp7) +6(T b) o (T o) +6(T b)

Considering r,>>r, and the SMSC state, it follows that

4% 2 (76)
cav,loc ~ b rod MSC
op " rs) = _Vst =y N2 6 (Trb)
for the light field in the cavity and
413 2 PG| an
§BECoc .y o b |2 _ & Optp 2 §M5C (7,
g s rslp|2 ¢y el V2 g ( b)

for the phonon field in the BEC. &',L,, is the relative change
of the density of the BEC over the length of the trapping
potential due to the difference between the external linear
potential AV and the linear part of the gravitational field. We
find that the sensitivity increases with increasing &' L. This
is because &',L,, appears quadratic in the relative frequency
shift @. Let us assume that S'pr~10_2. Then, we obtain that
¢?8',L, /8¢,y is of the order 10'®. As stated above, for an
aluminium rod, c*c?,,, is of the order 10°. Therefore, the
effect of the density perturbation in the BEC dominates and
we can write

42 2 8 78)
6fEC,zoc(rS)~ b €50

T orsLy ¢ §L,

NG &fMSC(TVb) .

Let us give some values for the relative error bounds in
Eq. (76) and Eq. (78). For the experimental parameters
considered in subsection D above, and considering an alu-
minium rod with density of the order of 7000 kgm™ and
Young’s modulus of the order of 70 GPa, for the light field
we obtain a single-shot relative error bound of the order of
10* and after one year of integration time we get 10~>. For
the phonon field in the BEC, we find a single-shot relative
error bound of the order of 107°, further increasing to 107'°
after a year of integration. However, to achieve this sensi-
tivity, the applied external linear potential AV has to be
known by the same precision. Note that such an experiment
can be performed on a length scale of 200 pm. In contrast to
experiments with atom interferometry and drop towers, all
parts of the experimental apparatus are at rest.

Employing two extended clocks at the same position can
have an additional advantage. They can be brought into
interference. This means that one could entangle the modes
before the measurement. Furthermore, quantum mechanical
measurements could be performed on both systems without
the necessity of encoding the state of one of the two clocks
into an intermediate quantum system, such as a laser beam,
for the transportation of the quantum state. We will discuss
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this possibility in the next section by giving an explicit
measurement that can approach the error bound given by the
quantum Fisher information
Section VII. A Phononic Mach-Zehnder Interferometer

Mach-Zehnder interferometers on BECs have been
experimentally proposed in early work such as T. Berrada,
S. van Frank, R. Bucker, T. Schumm, J. F. Schaff, and J.
Schmiedmayer, Nature Communications 4, 2077 EP (2013).
and J. Grond, U. Hohenester, J. Schmiedmayer, and A.
Smerzi, Phys. Rev. A 84, 023619 (2011, when the conden-
sate is trapped in a harmonic potential. Although experi-
mental interferometer schemes with box-trapped phonons as
the quantum states are yet to be developed, proposals such
as A. C. J. Wade, J. F. Sherson, and K. Mglmer, Phys. Rev.
Lett. 115, 060401 (2015) that allow the mapping of the
quantum state of a BEC into a light field make this idea
feasible in the near future.

Let us consider two phononic modes of the same wave
number, one in the horizontal orientation with frequency
®,, and one in the vertical orientation with frequency
o, =0, (1+0), as seen in FIG. 1. The difference of the
frequencies ®, ,~, =, ,® contains information about the
Schwarzschild radius that can be extracted locally—in con-
trast to the sum of the frequencies. As proven in traditional
MZI setups for optimal precision, we will consider the
horizontal cavity to be in a coherent state and the vertical
cavity in a squeezed vacuum state as depicted in FIG. 1.

The full transformation of the state depicted in FIG. 4 is
given by

B’;ro:so(f/(qSA [OFs)]) ® U(g))l%% 9

representing a MZI scheme with an artificial phase shift of

e
2’

where  1W,>:=B.o.50"1¥,>, 0O )W, ~y,=0Oy, . the
beam splitting operation is

a _Z
Bsoso =27
given in the Schwinger representation by

7, = %(ajah - afa,)

and the phase shift induces the transformations

(AT
ay —>[1he’("’ 72)

and 4,—4,. Here, the initial state is then expressed as
¥, >=D(e)|0>=l0>, I¥,>=8(1)I0>=Ir>. After the state evo-
Iution, a second 50:50 beam splitter is placed before a
measurement M takes place. The after-phase procedure is
depicted with T:=B, 5,"M. In order to achieve sub shot-
noise sensitivities, a number of different measurements can
be taken, each yielding different sensitivities. One option is
to take the difference of phonon counting on each arm, given
by the measurement
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in the Schwinger representation. Due to error propagation,
the relative error of the Schwarzschild radius in terms of this
measurement is given by

(80)

where A¢* is given by

81

22, 12 20 A
At = \/lal e +sinh? () + tan? (¢4 ) F (e, 1)

(11 = sinh?(»)*

with F(a,r)=lal>~2 sinh? (r) cosh? (r) and a=ilal (see L.
Pezze and A. Smerzi, Phys. Rev. Lett. 100, 073601 (2008)).
Due to the artificial phase 7/2, the optimal sensitivity is then
shifted to ¢DP,A=0. It must be kept in mind however, that the
sensitivity becomes infinite when the number of squeezed
and coherent phonons is the same. Nevertheless, the shot-
noise limit is beaten when Iotl*>>sinh? (r). For the QFI, we
obtain a bound of

(82)

where (as per L. Pezze et all, above)

1 (83)

Ve +sink?()

AQ%F] =

It is clear that the phase sensitivity given by equation (83)
is different than that given by (76). This is because the latter
corresponds to a single mode parameter estimation. How-
ever, it is possible to get access to this information only by
comparing with an external reference phase. This can be
done by performing instead a dual parameter estimation (see
M. G. A. Paris, International Journal of Quantum Informa-
tion 07, 125 (2009)) and considering on the Fisher infor-
mation metric only the sector corresponding to the phase
difference, which then leads to the phase sensitivity given by
equation (83). For further details, we refer the reader to M.
Jarzyna and R. Demkowicz-Dobrzarski, Phys. Rev. A 85,
011801 (2012). This sensitivity beats the shot-noise limit
when r>>1 and achieves Heisenberg scaling when loul>~
sinh? (r). Additionally, the QFI can be saturated by consid-
ering a parity measurement instead (B. T. Gard, C. You, D.
K. Mishra, R. Singh, H. Lee, T. R. Corbitt, and J. P. Dowling,
EPJ Quantum Technology 4, 4 (2017)) or by performing a
bayesian protocol (L. Pezze and A. Smerzi, Phys. Rev. Lett.
100, 073601 (2008)).

An additional enhancement exclusive to the BEC setup
can be made by implementing a pumped-up SU(1, 1)
scheme with a pump that transfers excitations on the atom-
field from the bulk to the phonons. With the implementation
of tritter gates and parametric amplifiers, it is possible to

increase the sensitivity by a factor of 2|CSC(29)|\/Nph/Nm
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where 6 is a mixing angle, N,, is the total number of
phonons and N, is the number of atoms. However, care
must be taken upon the choice of mixing parameters since a
large transfer of atom excitations pumped into the phonon
state may destroy the condensate.

A. Comparison with the Optimal Bound Given by the QFI

It is not possible to use the exact same parameters to
compare the sensitivities achieved with phonon number
difference and with parity/QFI since each reach their mini-
mum with different values of the squeezing parameter. For
the J _, measurement, a value of lal=10? (corresponding to a
number of Rubidium atoms of 10°) fixes the optimal sensi-
tivity with a squeezing parameter of r=3.77. Using equation
(80) we obtain a relative error of 8,,,""(r,)=4.92x107* for
a single-shot and SEXP’VIZ[(IS)=2.14><10_11 after one year of
integration time. For the parity measurement/QFI the rela-
tive error reads SQF,MZ[(IS)=3.43><10_8 after a single shot-
measurement, further leading to 6, 2 (r )=1.49x107""
after a year of integration, with a squeezing parameter of
r=5.29. The additional correction assuming a pumped-up
SU(1,1) setup was chosen with a mixing angle of 6~0.1,
which pumps the number of phonons up to 1% the number
of atoms.

B. Comparison with Previous Schemes

One of the main advantage of our proposal is its dimen-
sions. At the scale of micrometres, its portability exceeds
that of current atom interferometry setups by at least two
orders of magnitude.

While its sensitivity appears be below than those reported
by the other proposals, it is also important to note that the
time scale at which the experiment can be realised is shorter
than their integration time, since the reported running time
of our proposal corresponds to a single run. We can calculate
the integration time T,,,=MXx6 s in order to reach the other
setups’ sensitivities, obtaining T,,~1.96 hours to reach the
precision of the atom interferometers and T,,,=3.22 hours to
reach the precision of a previous on-chip BEC. As an
additional note, another promising setup of length 10> m
that relies on optomechanics was recently proposed.
Although its relative error is yet to be experimentally
confirmed, it is reported to be 107'? in a cycle time of 10~
s. However, our proposal is a purely static BEC, which
further simplifies its experimental implementation.

Section VIII. Conclusions and Discussion

We have discussed above how to employ the phonon field
in an effectively 1-dimensional BEC as a quantum probe of
the gravitational field of the Earth. We compared it to the
light field in a 1-dimensional optical cavity used for the same
purpose. The external field can be easily tuned by finding the
point at which the BEC bulk keeps its position.

Each single mode of the quantum fields can be seen as a
spatially extended clock. We found that the BEC clock and
the optical cavity clock can measure time with a relative
precision of up to 1076 and 1077 for a single measurement,
respectively. However, to achieve these levels of sensitivity,
the duration of a single measurement on the BEC clock must
be 6 s, the maximal lifetime of the phonons in the BEC,
while a single measurement on the light field in the cavity
only needs to take 70 ns, the life-time of the photon state in
the cavity. In particular, the maximal time resolution of a
light cavity clock is 107'¢ s while it is about 107 s for the
BEC clock. The reason for this is the much higher frequency
of the light field modes in comparison to the phonon field
modes. We assumed optical frequencies for the light cavity.
Therefore, it is a proper lower bound for realistic detector
systems. We also discussed the estimation of red shift and
the Schwarzschild radius using two independent time mea-
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surements at different radial distances from the surface of the
Earth. For an integration time of one year, we found a
relative error bound of 107 and 10~ for the light cavity
clock and the BEC clock respectively.

We introduced a novel idea of how to measure the proper
acceleration or the Schwarzschild radius of the Earth with
two differently oriented BECs/cavities on the length scale of
200 pm. The basis of the measurement is the difference of
the fundamental frequency of phonon modes in differently
oriented BECs (or photon modes in differently oriented
cavities) due to the deformation of the length of the trapping
potential of the BEC (or the length of the cavity). There are
three separate effects that play a role. The first is the
fundamental difference between the proper length of a rigid
rod and the radar length, which defines the fundamental
frequency in a curved spacetime. This effect is completely
given by the finite extension of the clocks we consider. The
second effect is the deformation of the material which holds
the cavity and the material that holds the devices that
generate the external potential which holds the BEC, respec-
tively. Finally, the third and dominant effect is a possible
deformation of the BEC cloud due to a mismatch on
gravitational parameters. We assumed the material to be a
rod of mass density p,,, and Young’s module E, and we
assumed the whole device to be supported from below. We
found that the effect of the deformation of matter is much
larger than the effect of the deformation of spacetime for any
realistic situation.

The measurement for the estimation of the gravitational
acceleration or the Schwarzschild radius can be done by two
independent time measurements on the two clocks and
subsequent comparison of the results or by a measurement
on the combined system of the two differently oriented
clocks in a Mach-Zehnder interferometer-like scheme. The
relative error bound for the estimation of the Schwarzschild
radius on the length scale of 200 pm turned out to be,
respectively, 107> and 107*€ for the light cavity in the optical
regime and for the BEC if the rod which keeps the length of
the BEC/cavity fixed is made from aluminium. Finally, for
the MZI setup we get bounds of 107! both for the J,
measurement and for the QFI/parity measurement with the
additional improvement of pumped-up setups.

Detailed Discussion: Gradiometer

The collective oscillations of the atoms in BECs can
also/alternatively be used to estimate a field gradient causing
perturbations in a BEC, for example a gravity gradient. In
principle, this can enable the measurement of a gravity
gradient due to a mass. Below we demonstrate our method
by considering spherical masses ranging from the size of the
earth to small spheres with masses down to hundreds of
milligrams. It will be appreciated that the method can be
adapted for use with other masses of different sizes and
shapes. It is notable however that the measurement scheme
functions on the length scale of a BEC, which is of the order
of micrometres.

The principle of gradiometry is based on the fact that an
external force adds a quadratic term to the trap potential
which changes the frequencies of the collective oscillations
of the BEC. Consider a spherically symmetric trapping
potential given by Vtmpzmwoz(x2+y2+zz)/2, where ), is the
is the trapping frequency and m is the mass of the atoms in
the BEC. In the case of the gravitational field of a massive
sphere, the quadratic term in the potential is proportional to
the gravity gradient. The BEC 38 is therefore spherically
symmetric, and possesses a radius 9.

If this setup is placed in a gravitational field represented
by a Newtonian potential ¢, the total potential is given by
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V=V,,,+m®. The gravitational field of a spherically sym-
metrical, homogeneous mass distribution can be written as
$O=—MG/R where M is the total mass, G is Newton’s
gravitational constant and R is the radial distance from the
centre of the mass distribution. Assuming that the centre of
the mass distribution is located along the z-axis at a distance
R from the centre of the trap potential, the gravitational field
can be written as

z  pP-27
O = -MG T T A3
R 2R

up to second order in the spatial distances, where p*=x*+y~.
Therefore, the total potential seen by the BEC can be written
as

m(wipz + wg(z - Zg)z)
2

V= +C,

where  ®,=(®,+MG/R?)"?,
z,=MG/R*w_? and

MGY?2 2
C= —m(—) /sz.
R

The linear part of the Newtonian potential leads to a shift of
the equilibrium position of the BEC.

By defining z'=z—z_ and by neglecting the constant term
C (or cancelling it by an additional global contribution to the
time evolution of phonon modes), a new potential is
obtained:

0=w,"+2 MG/RH)"?,

V=Sl + i), L

It can be seen that the trap frequencies depend on the
gravity gradient e, =2 MG/R>, which forms the basis of
its measurement.

In an axially symmetric potential such as Eq. 1, the BEC’s
stationary density can be approximated as n=p(l—(p*+
A?z?) R?)/U,, where A=/, encodes the shape of the
BEC (in our case A<1 which corresponds to a prolate shape),
R is the radius of the BEC, Uy=4n#> a__/m, a_,,, is the
scattering length and p is the chemical potential. The radius
of the BEC can be given in terms of the chemical potential
as RZ=2u/m®,? and the total number of atoms can be
derived from the density as N_=8% R * p/15Ug\. This leads
to an expression for the radius of the BEC as R =(150U,A/
4nmN, o, %)"".

The above approximation is called the Thomas-Fermi
approximation and it describes the density profiles in experi-
mental situations quite accurately if N a___,/a,,>>1, where
N,, is the number of atoms in the BEC, a,;,=(f/m®)'"* and
®=(w,’®,)""*. The parabolic density profile and the sphe-
roidal shape of the BEC give rise to a specific set of modes
of density perturbations the density perturbations have the
spatial dependence on &ne<r'Y,,(0,0) in spherical coordi-

grad’ :

nates r="Vp>+z>,0=arccos (z/r) and ¢=arctan (y/x), where
Y,,.(0.0) is the spherical harmonic function with angular
momentum | and the z-component of the angular momentum
vector m=+] or m=+(l-1). These two types of modes are
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denoted as On;, and On,,,. The corresponding angular
frequencies are given as o,;°=lo,* and o, ;*=(1-1)w,*+
®,%, respectively. The gravity gradient is expected to be
much smaller than that of the trap potential. Therefore, the
frequencies can be approximated as @, lz\/T(w0+GM/2R30)O)
and ®,, , =V(0g+(1-3)GM2IR? o).

The modes 6n,, and dn,, , contain information about the
gravity gradient €, ;=2 MG/R? as an external parameter.
Therefore, it is possible to estimate its value from a mea-
surement on these modes.

A lower bound for the relative error §_ of any estimation
of a given parameter E imprinted on a given mode can be
obtained from the quantum Cramer-Rao bound (QCRB).
The QCRB can be expressed in terms of the quantum Fisher
information (QFI) H, and the number of measurements N as
A=1ANH_. The corresponding relative error bound is
obtained as 6,=1/ IEI/\/N—IL. Since MG/R? is imprinted only
on the frequency, we obtain the minimal relative error for the
estimation of €,,,, by Gaussian error propagation from the
minimal error of an estimation of a phase change A=At as
8.=8,,/1d In(Ad)/d In(e,,,,)|, where sz\/kgmdmwo for the
mode 8n,, ,. Therefore, we find that §.=0,,. If the initial
state of the mode under consideration is assumed to be a
Gaussian state and if only a one single mode is being
measured, the optimal precision for the measurement of a
phase change is reached for a squeezed vacuum state and the
corresponding QFI becomes H,,=8n (n+1), where n=sinh’r
is the number of squeezed phonons, where r is the squeezing
parameter. Then:

203 1 @
8,

Cgrad a(Degraa \/7«)0[1/2Nn(n +1) .

where ol)=1 for the modes 8n,, and a(l)=I(1-3)/1 for the
modes 0n; ;.

We now evaluate the relative error bound in Eq. (2) for
two specific situations; the gravitational field of the earth
and the gravitational field of a sphere of tungsten or gold.
Lets assume that the trapping frequency is my=2mx0.2 Hz.
For a rubidium-87 BEC of 10° atoms this would lead to a
radius of 120 pm and a central density of n(0)~10"" ¢cm™,
which is fully in the currently experimentally accessible
regime. This would lead to a radius of 380 pm and a central
density of n(0)~10' cm™. The small density of the BEC is
an advantage as it leads to a long half life time of the BEC
density. It can be was shown that the density depends on
time as

dp®)

=-Dp@)
o o),

where D is the decay constant. Therefore, after solving the
differential equation, we find a quadratic dependence of the
density half life time on the inverse density, i.e. t,,=3/2Dp.
Previous experiments with rubidium atoms found the decay
constant to be D=1.8x1072° cm® s™'. For a density of the
order of 10'* cm™, this leads to a theoretical half life time
of the order of the order of 10° s. Therefore, it can safely
assumed that the BEC density can be kept constant for a
duration of each experiment of the order of 100 s. Then, the
second limiting time scale that one has to consider is the
coherence time of the phonons. For BECs of temperatures T
below or of the order of the chemical potential divided by
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the Boltzmann constant k,, the damping rate is given by y~
VIwg(k; T/ 2((0)a,,,,?)"". Assuming 1=3 and a tempera-
ture of the BEC of 0.5 nK, which can be achieved in
experiments, the inverse damping rates are of the order of
10? s and 10° s for 10° and 10® rubidium atoms, respectively.
From the inverse damping rate, one can calculate the coher-
ence time of a squeezed phonon state. For the above
parameters, the coherence times are calculated to be between
10” m and 10> m seconds. Therefore, it is justified to assume
a duration of 100 s for each experiment.

For the number of independent consecutive measure-
ments, a value of 10" is assumed which corresponds to a
total measurement time of about one and a half weeks. The
number of squeezed phonons in the cases of 10 and 10®
atoms, respectively, is set to n=10> and n=10" (which cor-
responds to a squeezing parameter of r~4 and r~5, respec-
tively). The mode number 1=3 is used. For the case of the
gravitational field of the earth and R of the same order as the
radius of the earth, it is found that ®,*/e orac 18 Of the order
of 10°. This leads to a relative error bound of the order of
1072 and 107> for 10° and 10® atoms, respectively. Hence in
principle, it is possible to measure the gravitational gradient
due to the gravitational field of the earth on the length scale
of a BEC using the phonons in the condensate.

A 100 mg gold or tungsten sphere has a radius of the order
of 1 mm, and one can assume a distance between the centre
of the BEC and the centre of the sphere of the same order.
With 0,=27x0.2 Hz, it is found that w,*/e oraq 1S again of the
order 10° and a relative error bound of the order of 1072 and
1073 for 10° and 10® atoms, respectively, by using the same
system parameters as above. The reason for this scaling is
that by considering R to be always of the same order as the
radius of the sphere independently of its mass, the expres-
sion

2 ~2pG

is obtained, where p is the mass density of the sphere.

Therefore, the absolute sensitivity of the scheme is given
as €, 1072~10~7 s and €rad 1073~107% 572 for 10° and
10® atoms in the BEC, respectively. On the length scale of
100 pm, such small gradients correspond to gravitational
field differences of 10~ Gal (107" g) and 107'° Gal (107"?
g), respectively. 10 repetitions of the experiments are con-
sidered. Therefore, the single shot sensitivity would be
comparable to a differential force sensitivity of the order of
1077 Gal (107'° g) and 107® (10" g), respectively, which is
one order of magnitude better than what is achieved by state
of the art atom interferometry.

To measure the gravity gradient induced by even smaller
masses, the trapping frequency would have to be increased
to decrease the radius of the BEC. This would lead to a
decrease of the sensitivity. For example, a gold or tungsten
sphere with a mass of the order of 100 pg has a radius of the
order of 100 um. To get a BEC with a radius of the order of
10 pm with 10° rubidium-87 atoms, we have to use a
trapping frequency m,=2mx20 Hz. The corresponding cen-
tral density is of the order of 10™'? cm, which still allows for
experimental times of 100 s in principle. Using the same
parameters for the phonon state as above, we obtain a
relative error bound of the order of 107" and 107 for 10° and
10® atoms, respectively and an absolute error bound of 10.8
gal (107" g) for 10° atoms and 10~° gal (107" g) for 10®
atoms with 10" repetitions.
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To have a chance to reach the relative error bound given
in Eq. (2), there has to be a phase reference to compare the
phase change of the probe state with. In particular, the
frequency of the reference has to be exactly \/Tu)o. One
possibility to avoid this would be to use two modes of
perturbations of the BEC density and compare them with
each other such as in a Mach-Zehnder interferometer (MZI)
scheme. By comparing two modes with the same angular
momentum 1 but different quantum number m, the difference
of the two frequencies can be approximated as:

&)

3€grad

2‘\/70)0.

Aw; = wyy —wyy =

The frequency difference would lead to an accumulated
phase difference between the modes A@,=Aw,t. Note that the
frequency difference (Eq. 3) decreases with increasing angu-
lar momentum 1. This is in contrast to the change of
frequency of each single mode due to the gravitational field
considered above. This would enable multi-mode operations
that can be used for the implementation of MZI schemes. In
metrology with optical modes, there are two distinct classes
of schemes of Mach-Zehnder interferometry commonly
used; SU(2) and SU(1,1). SU(2) schemes only consider
passive optical elements and the SU(1,1) schemes contain
active optical elements. In all schemes the optimal QFI
depends on the total number of particles in the two arms of
the interferometer which we denote as n in the following. It
can be shown that the optimal QFI for a phase measurement
for the SU(2) scheme is reached for two identically squeezed
and coherently displaced states at the two input ports of the
first beam splitter of the MZI. The total number of squeezed
particles has to be %5 of the total number particles n. For the
case of n>>1, the optimum Hy,*“®=8n(n+2)/3. In contrast
to the SU(2) scheme, the SU(1,1) scheme uses optical
parametric amplifiers (OPA) instead of passive beam split-
ters. At the OPA the light fields interact non-linearly and they
are additionally squeezed. It can also be shown that the
optimal QFI for the SU(1,1) scheme is given as H5¢SU(1’1)z4
n(n+2)/3 for n>>1. To reach this QFI, two coherent states
with the same number of particles have to injected into the
two ports of the MZI and the number of squeezed particles
that are created at the OPA should be %5 of the number total
number of particles in the arms of the interferometer. If the
number of squeezed particles is fixed, Hg,*“® and
H5¢SU(1’1) differ from the optimal single mode QFI that we
discussed above approximately by a factor % and 3%, respec-
tively.

However, it is in general more easy to create highly
excited coherent states than large squeezing. A particular
adaptation of the SU(1,1) scheme is also beneficial when the
number of squeezed particles is much smaller than the total
number of particles. It is called “pumped-up” SU(1,1)
interferometry because the active optical elements are addi-
tionally pumped by a strong coherent light field. It is shown
that the optimal QFI for the pumped up SU(1, 1) scheme
becomes Hj,7“=ne*’/4. For n=sinh® r and n>>1, and it is
found that Hg”* differs from the one mode QFI by a factor
Vis. However, in situations where the number of coherent
particles is much larger than the number of squeezed par-
ticles, the application of the pumped up SU(1,1) interfer-
ometry can be truly beneficial.

SUMMARY

The above work shows that the density of a trapped BEC
is modified by gravity and that this affects the evolution of

20

25

30

35

40

45

50

55

60

65

42

collective BEC modes. In the case of trapping potentials that
produce a constant and uniform density in the absence of
gravity (e.g. box potentials), one can find modes that acquire
different phase evolution in the presence of gravity.

A phase acquired by a quantum state [@> during its
evolution is given by e*“I@>. In this case the phase shift
0(t) is a function of time t. In our work, the quantum state
can describe one or more modes. In the discussions above
we focus on the state of two modes but our scheme can be
applied to more modes if required.

To measure a phase we need it to be a relative phase i.e.
of the form

19> =10, >+l >

Where 1¢,> and |@,> are two different states of the
system.

As explained above, the phase shift 8(t) depends on the
gravitational parameters and that is why we can then us it to
measure gravity and its gradient.

It will be appreciated that the case described above is a
special one. As well as affecting the phase difference
between two modes of a system, an external field applied to
a closed system might cause excitations to transfer between
two modes of the system, or new excitations to be created
within one or more of the modes.

A more general evolution of a quantum system can be
modelled using a unitary transformation. A unitary is given
by e®® where now ©(t) is not only a function of t but a
matrix. This is the most general evolution a quantum system
undergoes when the system is closed (when it does not
interact with the environment). It acts on the state of the
system as e"®®|¢@> where the quantum state |@> can describe
one or more modes.

I9s>=e"Plp>=ZC(1)l9,> 19>

Here C(t),; are functions of t. A phase is then a special case
where C(t),=0 if i#j and C(1),;=6,(t) if i=j. Here 8,(t) is again
a function of t. If the modes are phonon modes trapped in a
potential in the presence of gravity, the numbers C(t),; will
depend on the gravitational parameters and can be used to
measure them. In M. Ahmadi, D. E. Bruschi, C. Sabin, G.
Adesso and . Fuentes, Sci. Rep. 4, 4996 (2014) (noted in the
background section above) we analyse the case of an oscil-
lating cavity in flat spacetime with acceleration a.

If the unitary transformation acts on a m number of modes
but we measure only n (with n<m) or if the system under-
goes losses due to the interaction with the environment, then
the modes of interest n evolve under a Complete Positive
map which is the transformation we obtain after tracing out
the degrees of freedom which we do not measure.

In both cases, the evolution of the modes is no longer pure
(pure means it can be represented by a vector [¢> in the
Hilbert space). Instead the states are mixed, which means
that the state can no longer be represented by a vector in the
Hilbert space but by a matrix, called the density matrix,
which is an operator acting on the Hilbert space. The
schemes described herein work with both pure and mixed
states.

For more general trapping potentials that produce time
varying and/or non-uniform density, the mode evolution
may be a complete positive map that encodes the gravita-
tional parameters. Complete positive maps include the case
where the evolution is a phase (as discussed above), but also
extend to unitary transformations such as a Bogoliubov
transformations and to non-unitary evolutions due to deco-
herence. The field parameters (including the gravitational
field strength (gravimeter example above) and its gradient
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(gradiometer example above)) can be estimated in the New-
tonian or General relativistic regimes by measuring the
system (for example the phase difference between the
modes) using absorption imaging, interaction with a cavity
mode, interaction with a laser, interaction with impurities
among other methods.

The scheme therefore considers two or more frequency
modes (including zero momentum and sharp momentum
modes, also superpositions of sharp momentum modes) of a
single or multiple trapped BECs (trapping potentials can
give rise to uniform, non-uniform, constant and varying
density). The modes can be prepared in a suitable quantum
state (which can be separate or entangled states and can
include coherent, squeezed, or any other pure or mixed state)
such that the mode evolution encodes the field (e.g. gravi-
tational) parameter to be estimated.

We thus disclose a method of measuring the gravitational
field using one or more trapped BECs and at least two
atomic field modes within those BECs, wherein the gravi-
tational field leads to a change of the field modes’ time
evolution amounting to a gravitational-dependent phase
or/and a number of excitations being exchanged between the
modes (the number of excitations exchanged by the modes
depending on the gravitational field) or/and a number of new
excitations being created in the modes (the number of
created excitations depending on the gravitational field). The
method comprises:

selecting at least two modes whose initial states have

changed due to the gravitational field;
measuring the phase difference, or counting the number of
excitations exchanged by the modes or counting the
number of excitations created within the modes; and

using either the measured phase difference, the number of
excitations exchanged, the number of excitations cre-
ated, or a combination of any of these to infer the
acceleration.

Number of excitations may be counted using standard
methods including absorption imaging, homodyne or het-
erodyne detection, through interactions with a laser field or
cavity field.

The above work differs from atom interferometry in that
we consider the atoms to be trapped, and we include
interactions between those trapped atoms so that the modes
we consider are collective modes. Our modes are sharp in
frequency and delocalised in the extent of the system.
Instead atom interferometry considers free falling spatially
separated single particle states.

The above work is distinguished from double-well sys-
tems in that such schemes consider only right atoms vs left
atoms rather than phononic modes, and do not consider how
gravity affects the density.

The invention claimed is:

1. A method of measuring an acceleration due to a
gravitational field using one or more Bose-Einstein conden-
sates (BECs),

wherein the one or more BECs, include:

a first atomic field mode comprising collective oscilla-
tions within the one or more BECs propagating in a first
direction, wherein the first atomic field mode is a
phonon mode; and

a second atomic field mode comprising collective oscil-
lations within the one or more BECs propagating in a
second direction different to the first direction, wherein
the second atomic field mode is a phonon mode;

wherein the first atomic field mode and the second atomic
field mode are linearly independent modes, such that
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the acceleration causes the first atomic field mode and
the second atomic field mode to have a different effec-
tive length;

wherein the method comprises:

measuring a phase difference between the first atomic
field mode and the second atomic field mode within the
one or more BECs, the phase difference resulting from
an effect of the acceleration on the linearly independent
modes of the first and second atomic field modes; and
using the measured phase difference to measure the accel-
eration due to the gravitational field.
2. The method of claim 1, wherein the first direction is
parallel to a direction of the acceleration due to the gravi-
tational field and the second direction is perpendicular to the
direction of the acceleration due to the gravitational field.
3. The method of claim 1, further comprising the steps of:
condensing a first BEC in a first atom trap having a first
length L, between first and second locations (which
may be boundaries) r, and r,,

condensing a second BEC in a second atom trap having a
second length L, between third and fourth locations
(which may be boundaries) z, and z,, the second length
being equal to the first length,

wherein the first atomic field mode is measured in the first

BEC and the second atomic field mode is measured in
the second BEC.

4. The method of claim 3, wherein the first BEC is
confined in a box potential and wherein the second BEC is
confined in a box potential.

5. The method of claim 3, wherein the first length L, of
the first BEC and the second length [, of the second BEC
are held constant by a respective rigid rod, and wherein
deformation of the rigid rod due to gravity is taken into
account for the first BEC but neglected for the second BEC.

6. A method of measuring an acceleration using one or
more trapped Bose-Einstein condensates, (BECs), and at
least two atomic field modes, each atomic field mode
comprising collective oscillations within said one or more
trapped BECs, wherein a density distribution of at least one
of the one or more trapped BECs is modified by the
acceleration, which leads to a change of a time evolution of
the at least two atomic field modes'; wherein the method
comprises:

selecting two atomic field modes that are differently

affected by the acceleration, the two atomic field modes
each being a phonon mode and wherein the two atomic
field modes are linearly independent modes, such that
the acceleration causes the two atomic field modes to
have a different effective length; and

measuring an acceleration-induced difference; and

using the measured acceleration-induced difference to

infer the acceleration.

7. The method of claim 6, wherein the acceleration is an
acceleration due to gravity, and wherein the acceleration-
induced difference between the two atomic field modes
comprises one or more of:

(1) an acceleration-dependent phase difference,

(i1) a number of excitations exchanged between the two

atomic field modes, and

(ii1) a number of new excitations created within one or

both of the two atomic field modes.

8. The method of claim 7, wherein the phase difference
between a first atomic field mode and a second atomic field
mode is used to estimate the local Schwarzschild radius r,.

9. The method of claim 8, wherein the local gravitational
field g is estimated from the local Schwarzschild radius r,
using
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where T,, is the radial height coordinate within the gravita-
tional field and c is the speed of light.

10. The method of claim 6, further comprising

condensing the one or more trapped BECs in a trapping
potential which is tuned to partially cancel the accel-
eration caused by a gravitational field, such that a
density perturbation &, is created in the BEC.
11. The method of claim 6, further comprising the steps
of:

condensing a first BEC in a first atom trap having a first
length L, between first and second locations (which
may be boundaries) 1, and T,,

condensing a second BEC in a second atom trap having a
second length 1, between third and fourth locations
(which may be boundaries) z, and z,, the second length
being equal to the first length,

wherein a first atomic field mode is measured in the first

BEC and a second atomic field mode is measured in the
second BEC.
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12. The method of claim 11, wherein the first BEC is
confined in a box potential and wherein the second BEC is
confined in a box potential.

13. The method of claim 11, wherein the first length L, of
the first BEC and the second length L, of the second BEC
are held constant by a respective rigid rod, and wherein
deformation of the rigid rod due to gravity is taken into
account for the first BEC but neglected for the second BEC.

14. The method of claim 11, further comprising creating
a squeezed state for a mode k of the first BEC.

15. The method of claim 14, further comprising preparing
a coherent state or a squeezed state for a mode of the second
BEC having the same mode number k as the squeezed state
of the first BEC.

16. The method of claim 14, further comprising entan-
gling the first and second atomic field modes.

17. The method of claim 16, wherein a phase shift is
introduced between the first and second atomic field modes,
wherein the phase shift is /2.

18. The method of claim 6, wherein a spacetime geometry
of the one or more trapped BECs is described using
Schwarzschild geometry in order to calculate the accelera-
tion due to gravity.

19. A quantum accelerometer operable to perform the
method of claim 6.



