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A B S T R A C T

There are many examples in nature of travelling waves used for propulsion purposes, e.g., micro-organisms and
sea creatures. Structural travelling waves can be used to induce momentum in a surrounding media creating a net
propelling force. Recent research has tried to capture this interaction in engineering devices. Nonetheless, some
challenges remain to fully exploit this phenomenon so that travelling-waves propelled devices can be optimally
designed. One such challenge is that the interaction between the structure and the surrounding fluid heavily
influences the amplitude of the waves and how they travel through the structure. This paper proposes a sys-
tematic qualitative and quantitative analysis of travelling waves in a slender cantilever beam submerged in
water. The novelty of this work is demonstrated through two key aspects: The application of the Euler-Bernoulli
beam equation combined with the Galerkin approximation, enabling a deeper understanding of how travelling
waves form at resonant frequencies rather than non-resonant ones; and An analytical approach using a Galerkin
approximation to characterise the nonlinear fluid-structure interaction, followed by linearisation for a
comprehensive parametric study of the problem. In this investigation, the contributions of the first five vibration
modes are considered in relation to the travelling waves observed near the resonant peaks. Experimental tests
validate the analytical results and assess the accuracy of the proposed models. The results demonstrate that the
model presented effectively characterises the travelling waves, making a suitable tool for the design of travelling-
wave propelled devices.

1. Introduction

Several design solutions for robotic fish [1,2] and other artificial
swimmers [3] feature mechanisms consisting of beam-like structures in
which structural travelling waves are used to induce momentum in the
surrounding fluid, resulting in thrust. The same principle was effectively
used in [4–6] for the design of micropumps. Both these types of
nature-inspired devices use structural travelling waves and their inter-
action with the surrounding fluid to generate a net propulsive force: this
is used either to propel the structure or to move the surrounding fluid.
Artificial swimmers and micropumps, for instance, take inspiration from
anguilliform locomotion which generates travelling waves from the
body movement of the organism to create propulsion [7].

Travelling waves in submerged beams are utilised not only for
transport devices but also for reducing drag. Research in [8] demon-
strates that employing travelling waves can decrease drag by 47 % for
underwater micro vehicles. For achieving high drag reduction, resonant
frequency excitation should be used, reaching a maximum reduction

rate of 47 %. Conversely, for net energy savings, low-frequency excita-
tion is preferable, as it provides considerable drag reduction over larger
areas while also enhancing the vehicle’s endurance through energy
savings.

Due to boundary conditions, beam structures inherently do not
produce pure travelling waves. Adjustments in boundary conditions are
necessary to suppress standing wave generation. Loh and Ro [9] intro-
duced a two-mode excitation method using two forces positioned sym-
metrically along the beam length, with identical amplitude and
frequency but a 90-degree phase difference. Optimal travelling waves
are achieved when the beam operates between two resonant fre-
quencies, particularly in higher modes where the hyperbolic component
of the mode shape is nearly zero. This straightforward technique has
been further developed in subsequent studies [10–19]. However, issues
such as manufacturing precision, structural instability, and actuator
discrepancies can affect pure travelling wave generation.

Kuribayashi et al. [20] proposed an alternative method based on
impedance matching, utilising two actuators: one for excitation and
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another to prevent wave reflection at boundaries. This method requires
precise tuning as impedance values vary with load amplitude and fre-
quency [21]. Tanaka and Kikushima [22] introduced an active sink
method, which eliminates reflecting waves at boundaries using damping
mechanisms, similar to impedance matching, but effective only within
specific frequency ranges.

Further developments have been made to enhance travelling wave
generation. Ghenna et al. [23] proposed a vector control method to
improve the two-mode excitation technique. Enhancements to the
impedance matching method were achieved by adding springs to the
beam ends to mitigate reflection effects [24]. Blanchard et al. [25,26]
examined the addition of springs and dampers to optimise the active
sink method, varying their positions for best results. Minikes et al. [27]
developed a tuning method based on wave identification, enabling
real-time control to achieve pure travelling waves. Furthermore, Kumar
and DasGupta [28] developed a method to generate a simple harmonic
travelling wave in beams using boundary excitation.

In a submerged beamwithout external flow, the kinetic energy of the
beam is partially dissipated to the surrounding fluid through flow sep-
aration [29]. This induces a phase shift along the beam, resulting in
travelling wave pattern in the vibration. Consequently, travelling waves
can be produced by implementing single excitation such as a cantilever
beam configuration subjected to base motion [29]. The transferred en-
ergy can be estimated from hydrodynamic forces containing an inertial
force and drag force described by the Navier-Stoke equations using the
numerical techniques proposed by Ahsan [30]. The inertial force aligns
with the local acceleration of the beam, affecting its mass per unit
length. The drag force, which is related to the local velocity of the beam,
enhances the overall dissipative force acting on the beam [31]. Conse-
quently, hydrodynamic forces typically reduce the natural frequencies
and increase the damping of the beam.

Hydrodynamic forces are influenced by a variety of factors including
the geometry, the fluid dynamics properties [32–34], the boundary
conditions [35,36] and the velocities involved [30,37]. Sader [37]
extended the study by providing correction factors for the hydrody-
namic function applicable to beams with rectangular cross-sections. This
methodology was further developed to examine slender beams sub-
merged in viscous fluids, incorporating experimental verification [38],
torsional vibrations [39,40], compressible fluids [41], and vibrations
near solid surfaces [42,43]. It was observed that reducing the
cross-section of a slender cantilever beam increases viscous damping
[37]. The frequency response of a rectangular cantilever beam remains
relatively unaffected by an infinite planar surface when the distance
between them is greater than the beam’s width [42]. When a solid
surface is in close proximity to the vibrating beam, hydrodynamic
loading increases significantly. Specifically, the damping component of
this loading rises sharply when the Reynolds number and the ratio of the
wall distance to beam width are less than or equal to one [43].

To achieve optimal design for propulsion, it is paramount to study
both the qualitative and quantitative characteristics of the travelling
waves generated by the beam. Here, the term “quantitative” refers to the
ratio between the amplitude of the travelling wave versus the amplitude
of the standing wave. This can be achieved following the technique
shown in [10,44], which uses a scalar value to express how much of the
displacement is caused by the travelling wave. This technique has been
beneficial for extracting data from the motion of swimming fish [7,45],
conducting parametric studies for system optimisation [14,15], and
sensing mechanical waves [27,46]. The term “qualitative” describes the
vibrational properties of travelling waves which include the amplitude,
mode shapes and phase delay between the tips of the beam. Qualitative
studies in travelling waves, particularly for a submerged beam, are
limited in the literature. Therefore, in this paper, we extend the study of
the quality of travelling waves through theoretical analysis and exper-
imental validation.

Using validated analytical models, it is possible to explore the trav-
elling and standing waves, and demonstrate how the travelling waves

are formed. This approach is suitable to investigate the characteristics of
travelling waves for each resonant frequency and determine which pa-
rameters contribute the most to the generation of travelling waves. This
will enable an enhanced understanding of mechanical waves, particu-
larly in submerged beams underwater, and contribute to the develop-
ment of devices capable of generating maximum thrust with minimum
effort.

This paper is structured as follows: Section 1 provides an introduc-
tion to the current applications and significance of submerged beams in
liquid environments, highlighting the importance of understanding
fluid-structure interactions. Section 2 covers the theoretical modelling
and analysis, starting with a Galerkin-based model for fluid-structure
interaction and followed by a linear approximation approach. In Sec-
tion 3, we present the experimental results and analysis, describing the
experimental methods, characteristics of beams in air, partially sub-
merged in water, and fully submerged underwater, as well as the
behaviour of higher modes. Section 4 focuses on model validation, de-
tailing the validation procedure and providing results for beams with
various length. Section 5 discusses the findings on linear approximation
and passive travelling waves. Finally, Section 6 summarises the key
contributions and implications of our study. Additional details and data
are provided in the Appendix.

2. Theoretical modelling and analysis

This section explores the theoretical foundation of fluid-structure
interactions involving submerged beams. It begins with introducing a
Galerkin-based model for understanding the complex dynamics between
the fluid and the structure. Following this, a linear approximation
approach is introduced to facilitate the connection between beam
displacement and the wave equation. These models establish a basis for
the experimental investigations and validations presented in the sub-
sequent sections.

The system under consideration is illustrated in Fig. 1. Due to the
relative motion between the beam and base, the total displacement of
the beam, wt(x,t), can be determined as follows:

wt(x, t) = wb(x, t) + w(x, t), (1)

where t is the time, x is the position along the beam length, w(x, t) is the
relative (local) displacement of the clamped-free beam, andwb(x,t) is the
motion of the base defined as:

wb(x, t) = δ(x)Afsinωf t, (2)

where δ(x) = 1 for the clamped-free beam [47], Afand ωf denote the
displacement and forcing frequency, respectively.

2.1. Galerkin-based model for fluid-structure interaction

The fundamental modelling assumption considers the beam as
slender, where the displacement in the Z direction (refer to Fig. 1) is
sufficiently small to neglect deflection in the X direction and rotational
inertia. Additionally, the uniformity in flexural rigidity, EI, and mass
distribution, μ, along the beam’s length is presumed. For this system, the
Euler-Bernoulli beam theory [48] is used. Based on the Galerkin
approximation, the solution for the Euler-Bernoulli beam model can be
represented as a series of independent functions containing spatial and
temporal parts of the form:

w(x, t) =
∑∞

i=1
φi(x)qi(t), (3)

where φi(x) is the mode-shape of the system and qi(t) is the modal
displacement for the i-th mode. The mode shape equation, φi(x), is given
by:
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φi(x) = coshβix − cosβix − σi(sinhβix − sinβix), (4)

where the values of βi and σi for i= 1, 2,…,∞ can be obtained from [47].
The mathematical derivation leading to the mode shape equation is
detailed in Appendix A.

For the case of a beam interacting with surrounding fluid, the pres-
ence of the fluid introduces two essential effects in the beam equation,
namely the drag and inertial forces which can be expressed as:

Ff =
π
4

ρfCmb2
∂2w
∂t2 +

1
2

ρfCdb
⃒
⃒
⃒
⃒
∂w
∂t

⃒
⃒
⃒
⃒

∂w
∂t , (5)

where Ff is the total fluid force acting on the beam, ρf is the fluid density,
b is the beam width, Cd and Cm are the drag and inertia coefficients,
respectively. The expression in Eq. (5) is mainly based on the Morison
equation [49] which is originally for a fixed body subjected to a fluc-
tuating flow. Since this study considers a vibrating beam in quiescent
fluid with no external flow, the flow velocity around the beam is
assumed to be equal to the transverse velocity of the beam.

In this study, damping is incorporated into the Euler-Bernoulli beam
equation using Eq. (5). Applying the separation of variables from Eq. (3)
and multiplying by an arbitrary mode shape, with orthogonality con-
ditions provided in Appendix A, yields the modal equation:

q̈i(t) + 2ζld,iωniq̇˙i(t) +
Cqd

(μ +M)L
∑∞

j=1

∑∞

k=1
ψ jkiq̇˙k(t)

⃒
⃒
⃒q̇˙j(t)

⃒
⃒
⃒+ ω2

niqi(t) = Qi(t),

(6)

where
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Qi(t) =
1

(μ +M)L

∫ L

0
F(x, t)φidx = −

ẅb(x, t)
L

∫ L

0
φi(x)dx,

ψ jki =

∫ L

0

⃒
⃒φj(x)

⃒
⃒φk(x)φi(x)dx.

(7)

The modal coordinates in Eq. (6) are difficult to solve because it
involves nonlinear differential equations due to the quadratic damping
function. Therefore, a linear approximation will be used, as described in
the following section.

2.2. Linear approximation

In the case of small displacement, the nonlinear term |∂w/∂t|∂w/∂t in

Eq. (5) can be approximated with Afωf∂w/∂t [29]. Using the same deri-
vation techniques, this results in a linear second order ODE analogous to
a spring-mass-damper system expressed as:

q̈i(t) + 2ζiωniq̇˙i(t) + ω2
niqi(t) = Qi(t), (8)

where ζi = (Cld + 0.5ρfCdbAfωf)/(2(μ + M)ωni). This equation can be
solved analytically using the Duhamel integral to obtain the solution of
qi(t), as described in Appendix B.

To illustrate the wave composition in the beam, the series lpiφi and
rpiφi described in Appendix B can be expressed as functions of a single
wavelength as follows:

⎧
⎪⎨

⎪⎩

U(βx) = Afδ(x) +
∑∞

i=1
lpiφi ≅ U1cosβx+ U2sinβx,

V(βx) =
∑∞

i=1
rpiφi ≅ V1cosβx+ V2sinβx.

(9)

Using trigonometric identities, this allows the beam equation to be
separated based on the travelling components, resulting in:

w(x, t) =
1
2
((U1 + V2)sin(ωt + βx) + (V1 − U2)cos(ωt + βx)

+ (U1 − V2)sin(ωt − βx) + (U2 + V1)cos(ωt − βx)),
(10)

where (ωt + βx) and (ωt − βx) represent the wave travelling in the
positive and negative direction, respectively. Therefore, three possibil-
ities of mechanical waves can be generated on the beam based on the
definition of Eq. (10), namely standing, travelling and hybrid waves.

The condition of a pure standing wave emerges when damping is
minimal, ζ ≈ 0. Consequently, rpi ≈ 0 or V(βx) ≈ 0 as these are pro-
portional to the damping ratio. Without V1 and V2, the wave in Eq. (10)
propagates both positively and negatively with equal amplitudes,
resulting in standing waves, often indicated by the presence of node(s) in
the beam envelope, as shown in Fig. 2. The position of the node along the
beam length can slightly shift left or right depending on U1 and U2
values.

When damping is significant, the term V(βx) cannot be neglected.
The relative contribution of V1 and V2 to Eq. (10) induce differences
between forward travelling, ωt + βx, and backward travelling, ωt − βx,
components, resulting in a hybrid wave pattern with a trough instead of
a node, as illustrated in Fig. 2. For a pure travelling wave, it is necessary
for the waves to travel solely in one direction – either positive or
negative. This can be achieved by ensuring U1= V2= 0 and U2= V1∕= 0,

Fig. 1. Schematic diagram of the beam subjected to base excitation, along with a detailed view of a small section of the beam in its deformed position. The beam is
immersed in a fluid and anchored at the base, which oscillates with a displacement wb(x,t). The detailed view shows the deformation of the beam from its unde-
formed shape w(x) to its deformed shape, illustrating the changes in arc length Δs, deflection Δw, and horizontal distance Δx.
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Fig. 2. Typical wave patterns in finite structures. Panels (a), (b), and (c) present the normalised displacement against the normalised beam length, highlighting
different wave characteristics. In panel (a), a node is shown, representing a point of zero displacement. Panel (b) displays a uniform displacement profile along the
beam. Panel (c) identifies a trough, indicating the lowest point in the displacement profile. Panels (d), (e), and (f) show the temporal evolution of the beam deflection.
The colour intensity denotes the displacement magnitude, with red for maximum positive displacement and blue for maximum negative displacement. Panel (d)
illustrates standing waves with nodes, while panel (e) shows travelling waves propagating in one direction. Panel (f) features hybrid waves characterised by troughs.

Fig. 3. The general layout of the experimental setup. The system includes a PC for data acquisition, a signal generator/signal analyser (SG/SA), a power amplifier,
and a shaker to induce vibrations in the beam. The beam is submerged in a tank, and its vibrations are measured using accelerometers and a laser vibrometer. A
camera captures the movement of the beam. The detailed section on the right shows the placement of the shaker, accelerometer, and beam within the tank.
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causing the wave equation in Eq. (10) to simplify to cos(ωt − βx). In
practice, this involves adjusting boundary conditions to eliminate
reflecting waves, as outlined in references [20–22,50].

3. Experimental results and analysis

This section presents the experimental procedures and results, aim-
ing to empirically validate the theoretical models discussed earlier. The
experimental methods used to characterize the beams’ behaviour in
different environments— in air, partially submerged in water, and fully
submerged underwater—are described in detail. The analysis includes
the evaluation of higher vibrational modes, providing a comprehensive
understanding of the beam dynamics under varying conditions.

3.1. Experimental methods

Experimental validation is essential for verifying the accuracy and
assessing limitations of derived analytical models, particularly by
obtaining properties and dynamic responses of the beam. Beam prop-
erties are examined via prescribed frequency response function (FRF)
measurements to determine natural frequencies and damping factors.
These parameters are crucial for determining simulation parameters for
validation as well as comprehending how the surrounding fluid influ-
encing the behaviour of the beam. By exploring the dynamics of the
beam with respect to time (t) and length (x), a comprehensive com-
parison and examination of the experimental and analytical models is
carried out.

The schematic diagram of the experimental setup is illustrated in
Fig. 3. A PC was used to visualise the data and provide an interface to the
signal generator, signal analyser (SG/SA), and high-speed camera. The
output from the signal generator was amplified by a 48-W power
amplifier, LDS PA25E, and then channelled into an electrodynamic
shaker, LDS V201, to induce vibrations. To enable complete immersion,
the beam was constrained to the moving platform of the shaker through
an extension (supporting) plate so that the beam would be completely
submerged within a water-filled tank (see Fig. 3). The tank had di-
mensions of 15 cm in diameter and 28 cm in height and was mounted on
an adjustable table to allow variation in the beam’s immersion depth.
The supporting plate, acting as a rigid constraint for the beam, was
designed to yield a first natural frequency of approximately 130 Hz. This
value was intentionally set nearly three times higher than the opera-
tional frequency of the beam to prevent any dynamic interaction

between resonances.
As shown in Fig. 3, one accelerometer was located at the connection

between the extension and shaker to measure the input acceleration
from the shaker, and a second accelerometer was placed close to the
beam. These two accelerometers served to detect any additional dy-
namics introduced by the extension that might impact the motion of the
beam. The accelerometers used were ceramic shear accelerometers from
PCB Piezotronics, specifically Model-352C22, with signals amplified
using a PCB Piezotronics Model-428C signal amplifier. A Polytec
PDV100 laser vibrometer was directed toward the free tip of the beam,
targeting the laser reference point indicated in Fig. 3 to measure the
beam’s velocity. To estimate the FRF of the system, the output signals
from the sensors were connected to the SignalCalc Ace signal analyser,
powered by the Quattro hardware platform.

The motion of the beamwas captured using a Photron Fastcam SA1.1
high-speed camera set at a 2000 fps frame rate and 1/2000s shutter
speed. A sample image is displayed in Fig. 4(a). This image was con-
verted to binary using MATLAB’s “edge” syntax with the Canny method,
rendering the beam edge as white pixels and the rest as black (Fig. 4(b)),
where only a portion of the binary image is shown for editorial reasons.
After successful conversion to a logical image (black = 0, white = 1),
coordinates of non-zero (white) pixels were collected. This generated a
one-dimensional array plotted in Fig. 4(c), where the X-Y position of the
beam is displayed for a given instant of time.

Using the same methodology on a series of images captured consis-
tently over time, 3D vectors containing beam length, time and beam
displacement in the x-, y- and z-directions were obtained. An illustration
of this data acquisition is shown in Fig. 5: it is worth mentioning that the
X Pixel direction in Fig. 4(a) is aligned with the z-directions in Fig. 5, and
the Y Pixel direction in Fig. 4(a) is aligned with the x-directions in Fig. 5.
Two essential projections are employed: the xz- and xy-plane. The xz-
plane, representing the front view, displays the beam envelope’s pro-
jection with respect to its length, while the xy-plane presents the contour
displacement with respect to t and x. For enhanced comparison with the
analytical model, the beam length is normalised against L and the beam
displacement is normalised against the maximum displacement value at
x = 0L.

For small displacements, post-processed data might exhibit noise
from factors such as the anti-aliasing filter of the camera and edge
detection algorithm filtering. This can introduce inconsistent pixel
movement in the pixel grid over time. Thus, for the DIC measurements,
the input frequency and amplitude were chosen so that beam

Fig. 4. (a) A sample image of a fully submerged beam taken by the high-speed camera, (b) Conversion from a true colour image to a binary logical image, with
detailed views showing the conversion process at different sections of the beam. (c) Pixel coordinates extracted from the binary image, illustrating the deflection of
the beam.
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displacements larger than 1 mm were obtained; with our excitation
system, this was possible in the frequency window of 0–50 Hz.

3.2. Beam characteristics in air

The beam used in this investigation was characterised by specific
dimensions: a length, width and thickness of 80 mm, 12.75 mm, and
0.08 mm, respectively. The material density was determined to be
approximately 7200 kg/m3. The experimental setup depicted in Fig. 3
was modified to obtain the beam characteristics in air, and the water
tank was removed. A random signal generated by the SG/SA was used to
generate white noise across the range of frequencies 0–250 Hz to obtain
the FRF of the beam. Three maximum amplitude levels have been used:
80 mV, 200 mV and 300 mV. As displayed in Fig. 6, the resulting FRF
depicts the beam tip velocity relative to the base acceleration for the
three different amplitude levels.

At the first natural frequency shown in Fig. 6(a), it can be observed
that the peak decreases and experiences a slight shift with increasing
amplitude. This relatively weak nonlinearity is likely attributable to the
interaction between the beam and the surrounding air medium [51].
Nonlinear behaviour also becomes evident near the second natural fre-
quency, as shown in Fig. 6(b). This anomaly is characterised by a
notch-like feature.

Fig. 6(c)-(e) shows the steady-state vibration of the beam in air for
various frequencies. In the first row of the figure, the displacement of the
beam is projected onto the time-beam’s length plane (t vs x). The second
row illustrates the displacement projection versus the beam’s length, x,
as described in Fig. 5. The plots in Fig. 6(c)-(e) demonstrate mechanical
waves characterised by relatively low damping values mainly due to air
resistance and material properties. It is important to note that in Eq.
(B.1), low damping values result in vanishing rpi terms. In good
approximation, the cosine term of the equation can be neglected, and the
solution converges to the standing wave solution of the beam equation.
This phenomenon can also be interpreted using Eq. (9), where low
damping values lead to negligible Vi(x) terms and ultimately cause the
waves to travel (propagating) in the positive and negative directions
equally, hence generating standing wave formation.

The beam envelope at f = 8 Hz, shown in Fig. 6(c), can be described
as the sum of the base amplitude and the first mode shape. This can be
approximated using Eq. (B.2) with the spatial function U(βx) = (Af +
lp1φ1). At f = 14 Hz, displayed in Fig. 6(d), despite lying between the
first two resonant peaks, the influence of the second mode remains

relatively small. The nodal point appears because
(
ω2
n1 − ω2) turns

negative when ω > ωn1 resulting in a negative value of lp1.When lp1ϕ1 +
lp2ϕ2 = − Af, U(βx) reaches zero. Therefore, all the coefficients Uiof the
spatial function of the wave equation become zero – the coefficient Vi are
close to zero due to the low value of damping – resulting in a node in the
motion of the beam. By increasing the forcing frequency, the influence of
the second mode becomes more pronounced, causing the nodal points to
shift towards the free end of the beam. This phenomenon is evident in
Fig. 6(e) when the beam is actuated at f= 40 Hz, which falls between the
first and second resonant peaks but closer to the second natural
frequency.

The identification of the stiffness and damping coefficients uses the
transient (decay) responses of the system in free vibration following the
nonlinear identification method devised by Londono [52]. This
approach investigated the nonlinear behaviour, particularly due to the
presence of the notch in the FRF observed in the second resonant fre-
quency. This method enabled the extraction of the nonlinear backbone
and damping curves. It relies on tracking the peak and zero-crossing
points to estimate the instantaneous amplitude and frequency. A har-
monic input signal is applied to the beam at a specific modal frequency
to give an accurate estimation. The forcing is maintained until the sys-
tem attains a steady state, at which the input signal is abruptly termi-
nated. Consequently, the beam enters a free vibration phase within the
designated mode, effectively eliminating any influence from the other
modes. This technique is commonly known as the resonance decay
method [53].

The noise in the measurements was mitigated through the use of a
band-pass filter, and the data point was interpolated using linear inter-
polation to facilitate the smooth detection of zero-crossing points,
avoiding errors introduced by irregular measurement. Fig. 7(a) and (b)
show the backbone and damping curves, respectively, for the first mode,
where the instantaneous frequency and damping curves were smoothed
using a 10-point (symmetric) moving average filter. As expected, both
curves display amplitude dependency. Given the frequency range in
which the backbone curve varies, this can be considered in good
approximation linear. Conversely, the damping curve exhibits a positive
gradient, confirming the quadratic relation used in the theoretical
description of the damping in Eq. (5).

Unlike the first mode, the second resonance shown in Fig. 7(c) and
(d) presents a notable discontinuity in both the backbone and damping
curves. At this frequency, the beam’s vibrations are relatively small, and
the impact of air damping on the structure is minimal. However, when
the forcing amplitude is increased, as exemplified at 5 mV, an intriguing
phenomenon arises: after the force is discontinued, the accelerometer
positioned at the tip of the supporting plate captures vibration signals.
Frequency-domain analysis reveals that both the beam and the sup-
porting plate decay at the same frequency. This suggests that the beam
interacts with the supporting plate in a manner reminiscent of a dynamic
vibration absorber. This interaction is the underlying reason behind the
discontinuity observed in the backbone and damping curves illustrated
in Fig. 7(c) and (d), and the FRF of the second mode shown in Fig. 6(b).
Overall, this observation supports the assumption that damping due to
air and material properties only contributes minimally to damping ratio,
ζ < 0.8%, as inferred from the damping curves in Fig. 7.

3.3. Characteristics of beam partially submerged in water

This section investigates the behaviour of the beam when partially
submerged, providing insight into the transition effects between the air
and water environments. These experiments are crucial for under-
standing the initial stages of submersion and the interaction of the
structure with the fluid at varying depths. Although numerous studies
have explored into the behaviours of partially submerged beam in water
[54–62], the propagation of structural travelling waves in such condi-
tions remains largely uncharted. This study aims to illuminate this

Fig. 5. A 3D-plot of the normalised displacement with respect to the normal-
ised beam length and time. This plot is created from a series of experimentally
captured images and converted into contour data. The colour intensity indicates
the magnitude of displacement, with warmer colours representing higher
displacement values.
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phenomenon offering valuable insights to enhance the existing models.
Fig. 8 shows the FRF of the beam tip relative to the base acceleration

for various dipping depths, denoted with d. These FRFs are obtained
through the application of a random signal characterised by a maximum
amplitude of 100 mV. It is worth noting that the relatively low signal-to-
noise ratio observed in the proximity to the first peak is likely due to the
accelerometer’s cut-off frequency. The figure provides a visualisation of
how the position of the second peak rapidly shifts toward lower fre-
quencies with increasing the dipping depth, progressing from 1 cm to 5
cm. Notably, after approximately two-thirds of the beam is submerged in
water, there is only a marginal change in the position of the second peak.
This is highlighted by the black and green lines in the FRF shown in
Fig. 8. At a dipping depth of d = 5 cm, the emergence of the third mode
becomes visible at a frequency just below 60 Hz. Furthermore, at a
dipping depth of d = 7 cm (indicated by the green line), the third

resonant frequency becomes more prominent and, surprisingly, aligns
with the second mode observed at a dipping depth of d= 1 cm (depicted
by the red line).

To explore the steady-state vibration of the beam, a dipping depth of
d = 5 cm was selected for further analysis. The findings of this investi-
gation are presented in Fig. 8, which showcases a contour plot of the
beam at the specified dipping depth while considering various forcing
frequencies. The techniques used to obtain these responses requires the
correction for the change of refractive index between air and water, as
described in Appendix C.

From inspection of Fig. 8(a), it can be observed that at a forcing
frequency of f = 4 Hz, near the first mode, a node is visible around the
boundary of the air and water interface. As the forcing frequency in-
creases to 8 Hz, shown in Fig. 8(b), the node tends to migrate towards
the free end of the beam. This phenomenon is consistent between the

Fig. 6. FRF (Frequency Response Function) of the beam in air for various amplitudes. The main plot shows the transfer function across a range of frequencies for
three different input amplitudes: 80 mV (red), 200 mV (blue), and 300 mV (black). Insets (a) and (b) display zoomed sections of the first and second peaks,
respectively, highlighting detailed frequency responses. Panels (c), (d), and (e) illustrate the steady-state beam responses generated with forcing frequencies of 8 Hz,
14 Hz, and 40 Hz, respectively. The upper part of each panel shows the temporal evolution of the beam deflection, and the lower part shows the corresponding
normalised amplitude along the beam length. Blue circle markers in the main plot indicate the locations of the forcing frequencies in the FRF.
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Fig. 7. (a) Backbone and (b) damping curves of the first natural frequency, and (c) backbone and (d) damping curves of the second resonant frequency. The
amplitude of vibration (m/s) is plotted against frequency (Hz) and damping ratio (ζ) for various input voltages. Panels (a) and (b) illustrate the response at the first
natural frequency with input voltages of 5 mV (red), 10 mV (blue), 20 mV (black), and 30 mV (green). Panels (c) and (d) show the response at the second resonant
frequency with input voltages of 1 mV (red), 2 mV (blue), 3 mV (black), and 5 mV (green).

Fig. 8. Influence of the dipping depth on the beam FRF. The main plot shows the transfer function across a range of frequencies for different dipping depths: 1 cm
(red), 3 cm (blue), 5 cm (black), and 7 cm (green). Panels (a) to (f) display the vibration responses of the partially submerged beam with a dipping depth of 5 cm,
generated with forcing frequencies of 4 Hz, 8 Hz, 18 Hz, 20 Hz, 22 Hz, and 24 Hz, respectively. Each panel shows the temporal evolution of the beam deflection along
the beam length, and the blue circle markers in the main plot indicate the locations of the forcing frequencies in the FRF.
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beam vibrating in both air and water. Upon exceeding the threshold of
16 Hz, which marks the lowest magnitude point in the FRF between the
two peaks, the dry part of the beam, shown in Fig. 8(c), manifests
travelling waves. This wave behaviour, displayed in Fig. 8(d), intensifies
as the frequency reaches 20 Hz, signifying the presence of strong trav-
elling waves within the structure. After passing the second peak,
observed at f = 22 Hz in Fig. 8(e), the wave speed in the dry part of the
beam further increases, while in the submerged section it remains
relatively constant.

Notably, at f = 24 Hz, shown in Fig. 8(f), slightly beyond the second
peak, the emergence of a second node becomes apparent in the transi-
tion region between the air and water interfaces. It is important to note
that a small base excitation around the second mode can lead to a
substantial tip displacement. This is captured by the pronounced dif-
ference in colour intensity between the dry and wet portions of the
beam.

The phenomenon in Fig. 8 is better approximated with a simple
model described in references [26,46]. This model involves an elastic
structure coupled with a spring-dashpot system positioned at one loca-
tion along the structure’s length. The spring and dashpot prevent
reflecting waves from propagating along the structure. Consequently,
there exist segments of the structure which exhibit pure travelling
waves, and others predominantly standing waves.

3.4. Characteristics of beam fully submerged underwater

Using the procedures described in Section 3.1, Fig. 9 displays the FRF
of the fully submerged beam for various excitation amplitudes. The
second and third peaks exhibit a consistent pattern: as the forcing
amplitude increases, the magnitude at the resonant peak decreases. This
noticeable trend suggests the presence of a strong nonlinear damping
function that depends on the amplitude of vibration.

In theory, the relationship between natural frequencies in air and
water can be expressed as follows [63]:

fn,w = fn,a
(

1+
πρwb
4ρbh

)− 1/2

. (11)

Substituting the first-two natural frequencies acquired from the tests
conducted in air into Eq. (11) yields the first and second natural fre-
quencies of 2.69 Hz and 16.88 Hz, respectively. The estimated values for
the second natural frequency falls below the damped natural frequencies
observed in the measurements in Fig. 9. This discrepancy can potentially
be attributed to the effect of the surrounding fluid on the flexural ri-
gidity, EI: this will be further investigated in Section 4.

Fig. 9(a)-(f) illustrates the vibration responses of the beam across
various forcing frequencies. At f = 4 Hz, shown in Fig. 9(a), the colour
map indicates that the node is located at the midpoint of the beam.
Approaching the second peak, as indicated at f = 16 Hz in Fig. 9(b), a

Fig. 9. Measured FRF of the beam fully submerged underwater. The main plot shows the transfer function across a range of frequencies for different input am-
plitudes: 80 mV (red), 200 mV (blue), and 300 mV (black). Panels (a) to (f) display the vibration responses of the partially submerged beam with a dipping depth of 5
cm, generated with forcing frequencies of 4 Hz, 16 Hz, 18 Hz, 20 Hz, 22 Hz, and 34 Hz, respectively. Each panel shows the temporal evolution of the beam deflection
along the beam length, and the blue circle markers in the main plot indicate the locations of the forcing frequencies in the FRF.
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clear travelling wave phenomenon becomes evident, characterised by
the increased inclination of the colour contours, which indicate a higher
wave speed. However, there is a noticeable discontinuity in the wave
pattern attributed to the presence of the node associated with the second
mode shape. After reaching the second peak, the mechanical waves
transition from a single-node into a dual-node configuration, while
maintaining their travelling waves nature. These transitions are effec-
tively captured in Fig. 9(c)-(e) within the range of f= 18 Hz to f= 22 Hz.

Furthermore, as the frequency reaches f = 34 Hz, depicted in Fig. 9

(f), the second node attains full formation, and the standing waves
dominate the beam dynamics. This observation suggests that travelling
waves manifest in close proximity to the natural frequencies, while
standing waves become apparent when the forcing frequency is tuned
away from these resonant points.

3.5. Higher modes

Artificial swimmers and micropumps use travelling waves on higher

Fig. 10. FRF of the submerged beam in (a) air and (b) fully immersed underwater. The main plots show the transfer function across a range of frequencies for
different input amplitudes: 80 mV (red), 140 mV (blue), 200 mV (black), and 300 mV (green). Panels (c) to (h) display vibration patterns of the submerged beam
actuated with forcing frequencies of 2 Hz, 4 Hz, 10 Hz, 12 Hz, 14 Hz, and 18 Hz, respectively. Each panel shows the temporal evolution of the beam deflection along
the beam length. The blue circle markers in the main plots indicate the locations of the forcing frequencies in the FRF. The notch in panel (a) is similar to the one
observed in Fig. 6.
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modes rather than operating within lower modes. To generate this
motion, an investigation was conducted on a metal beam characterised
by a length, width and thickness of 135 mm, 12.75 mm, and 0.04 mm,
respectively. Fig. 10(a) and (b) presents the FRF of the elastic beam both
when in air and fully submerged in water for various amplitudes. Using

the quadrature peak-picking method, it was found that this beam is
considerably damped compared to a beam with higher thickness values.

The notch observed in the third resonance shown in Fig. 10(a) is
similar to the phenomenon observed in Fig. 6(b). In Fig. 6(b), the beam
interacts with the supporting plate that mimics the behaviour of a

Fig. 11. Schematic diagram of validation between experiment and numerical simulation: (a) beam envelope, and (b) maximum displacement against x and t. In (a),
the front view highlights the maximum displacement max(wt,e) from the experiment and max(wt,s) from the simulation, with colour switching to monotone for
clarity. The extracted maximum displacement is used for validation. In (b), the top view shows the time evolution of the beam’s displacement along its length for both
the experimental (top) and simulation (bottom) results. The extracted data highlights the maximum displacement, which is compared by offsetting to t = 0s. The
graphs on the right depict the maximum displacement profiles against normalised length and time for both the experiment and simulation, facilitating direct
comparison and validation.
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dynamic vibration absorber. This interaction is the fundamental reason
for the discontinuity observed in the backbone and damping curves
depicted in Fig. 7(c) and (d). Moreover, it is essential to note that this
notch disappears when the beam is tested underwater as shown in
Fig. 10(b). Given the substantial damping provided by the liquid envi-
ronment, the notch is not expected to affect the main response.
Furthermore, our experiments utilise a maximum forcing frequency that
is two times less than the frequency at which the notch appears.
Consequently, this notch does not interfere with the primary response of
the system and should not be a cause for concern in this study.

In the underwater experiments illustrated in Fig. 10(b), it is impor-
tant to highlight that the first mode, estimated using Eq. (11), falls below
1 Hz, surpassing the accelerometer’s cut-off frequency. Consequently,
the first peak evident in Fig. 10(b) pertains to the second resonant fre-
quency. As anticipated, there are four modes under 20 Hz, making the
beam the best candidate for effectively emulating anguilliform
locomotion.

Fig. 10(c)-(g) visually represents the wave propagation with respect
to time and length, achieved by setting the signal generator to a
maximum amplitude of 300 mV. Notably, the beam transitions from one
node to three nodes below 10 Hz. Examining Fig. 10(e)-(h), the plots
from f = 10 Hz to f = 14 Hz offer insights into mechanical wave for-
mation around the fourth resonance. Strong travelling waves are evident
at f= 12 Hz. The fourth node appears as the frequency reaches f= 14 Hz,
indicating progression beyond the fourth peak. By f = 18 Hz, shown in
Fig. 10(g), the fourth node is fully established.

4. Model validation

This section focuses on validating the theoretical models using
experimental data. The validation procedure is outlined, detailing the
steps taken to ensure the models accurately represent the observed
behaviour of the beams. Validation results for beams of two different
lengths, 8 cm and 13.5 cm, are presented to demonstrate the robustness
of the models across varying conditions. This validation provides valu-
able insights into the applicability of the theoretical approaches devel-
oped in Section 2.

4.1. Validation procedure

It is important to emphasise that the validation process focuses on
steady-state responses. In Section 2, the beam’s motion was theoretically
by separating the spatial and temporal contribution. To validate the
spatial function, a comparison between the beam envelope of the
experimental observations and simulations is carried out. Fig. 11(a)
shows a schematic of the procedure used to compare the numerical and
experimental beam envelope at a specific frequency. The envelopes,
denoted as max(wt,e) and max(wt,s) for the experiment and simulation
respectively, are obtained by tracking the maximum amplitudes of the
displacement along the beam length. For each location along the beam
length, the algorithm finds the value of the first maximum in the time
series – which will be the same over subsequent periods since the
response of the beam is in a steady state.

Fig. 11(b) presents the procedure used to track the maximum
displacement over time, comparing the experimental and numerical
maxima, thereby validating the behaviour of the temporal function used
to describe the displacement of the beam. It is worth noting that the
discontinuity observed at x = 0.5L due to the presence of a node or
trough complicates the characterisation of the waves, as it splits the
spatial domain into distinct regions.

4.2. Beam with l = 8 cm

Before comparing the responses of the analytical and experimental
models, it is necessary to identify the correct nonlinear damping model
in terms of the modal coordinate, qi(t). This requires an estimation of the

mechanical parameters used in the underlying linear beam model (i.e.,
the model of the beam when the nonlinear interaction with the water is
not present). For this purpose, the flexural rigidity, EI, has been esti-
mated by substituting the first and second resonant frequencies obtained
from the experimental results in air into the formula for natural fre-
quencies derived from the Euler-Bernoulli beam model. This yielded
values of EI equal to 7.64 × 10–6 N m2 and 6.95 × 10–6 N m2 for the first
and second modes, respectively. The average of these values, 7.23 ×

10–6 N m2, has been used in the model. With the linear parameters
identified, the nonlinear coefficient values outlined in Eq. (A.6) can be
calculated numerically, and the results are provided in Table 1.

From Table 1, it is evident that the values of the modal cross-coupling
terms, such as ψ121,ψ211,ψ221,ψ121, ψ122 and ψ221, are small in com-
parison to ψ111 and ψ222. Therefore, only the modal terms with i = j = k
are considered, reducing the overall complexity of the proposed
formulation. Eq. (A.6) is a nonlinear second-order differential equation
that cannot be solved analytically; hence, it was solved using the nu-
merical integration scheme Runge-Kutta Prince Dormant (ode45 in
MATLAB), leading to solutions for q1(t) and q2(t) that encompass both
transient and steady-state components. To permit the comparison be-
tween the numerical models and experimental measurements, the
transient responses have been eliminated.

For numerical simulation, the water density ρf is set to 997 kg/m3,
while the coefficients Cm and Cd are 1 and 1.8 respectively, according to
references [3,64]. Fig. 12(a) provides a comparison between the
experimental and nonlinear analytical models generated at f= 4 Hz. The
envelope of the analytical model, displayed using a black solid line in
Fig. 12(a), is superimposed on the experimental results, shown in
monotone grey. For clarity, the contour map of the analytical model in
Fig. 12(b) highlights the pattern followed by the maximum displace-
ments in the time-beam length plane, with the black line illustrating the
beam envelope. Note that the wave propagation contour map for the
experimental results is presented in Fig. 9. Examining Fig. 12(b), it be-
comes evident that the maximum amplitude at x= 0L occurs at t= 0.06s
– depending solely on the time needed for the transient to pass. To
simplify the comparison with the experimental data, an offset in time
was introduced to align the wave propagation for both models so that
they both start at t = 0s, as illustrated in Fig. 12c). In general, the
comparison of spatial and temporal functions against the experimental
measurements yields satisfactory results.

Applying a similar methodology, the responses in Fig. 12(d)-(f) were
generated for f = 16 Hz. Noticeably, the envelope of the analytical
model, depicted with the black line in Fig. 12(d), exhibits slight varia-
tions, particularly in terms of amplitude and location of nodes, when
compared to the experimental model. Conversely, the wave propagation
shown in Fig. 12(f), aligns well for both models. This suggests that the
discrepancies may arise due to parameters associated with the damping
and the spatial functions. Note that the damping estimation used in this
study is based on the Morison equation, originally formulated for a fixed
cylinder body within an oscillatory flow: as reported in [29]. This
approach can lead to damping underestimation for large vibration
amplitude, as demonstrated in references [33,65,66], the hydrodynamic
forcing functions which are related to the coefficients Cm and Cd in

Table 1
Nonlinear coefficient values of Eq. (A.6).

jki |q̇˙j|q̇˙k ψjki

111 |q̇˙1|q̇˙1 0.118225
121 |q̇˙1|q̇˙2 − 0.03196
211 |q̇˙2|q̇˙1 0.079282
221 |q̇˙2|q̇˙2 − 0.00707
112 |q̇˙1|q̇˙1 − 0.03196
122 |q̇˙1|q̇˙2 0.076415
212 |q̇˙2|q̇˙1 − 0.00707
222 |q̇˙2|q̇˙2 0.103617
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Morison’s equation vary depending on vibration amplitude and fre-
quency. For the case of a flat plate subjected to large vibration amplitude
induced by an oscillatory flow, Aureli et al. [65] observed that the Cd
value can fall within the range of 0.5 to 4.2. Hence, in this study, a
parametric investigation of Cd was conducted: it was found that to
produce the best fit for the experimental result, the Morrison value of Cd
needs to be multiplied by a correction factor of 2. As seen in Figure 12(f),
the use of the correction factor does not substantially alter the responses
over time and beam length.

Fig. 13 shows a comparison between the two models for forcing
frequencies ranging between the second and third resonant frequencies.
The first three modes were employed in the numerical simulations, with
a nonlinear coefficient value ψ333 of 0.101934. Specifically, Fig. 13 a)
and (c) present the superposition of the experimental and numerical
results at f = 18 Hz. For generating steady-state responses from the
numerical simulation at f = 22 Hz, depicted in Fig. 13 (d)-(f), the Cd and
Cm values were multiplied by a correction factor of 2.2 and 0.8,
respectively. This is consistent with prior investigation conducted in
[33,65,66] that the coefficients Cd and Cm can vary due to the change in
vibration amplitude and frequency. At this frequency, the displacement
is notably smaller and this affects the signal-to-noise ratio in the data
measured with the camera. This leads to a higher noise value in the
beam-length/displacement plot, as shown in Fig. 13 (d) and (f). Despite
the differences in the experimental and numerical results, the general
trends can be observed.

4.3. Beam with l = 13.5 cm

The beam density was calculated from mass and volume measure-
ments to be 7200 kg/m3. The first five peaks from the FRF in Figure 10

(b) were used to estimate the flexural rigidity. Through numerical
integration, the nonlinear coefficientsof the nonlinear damping model in
Eq. (7) were determined: ψ111= 0.200,ψ222= 0.175,ψ333= 0.172, ψ444
= 0.157, ψ555 = 0.158 and ψ666 = 0.159.

Fig. 14 presents a comparison between the numerical and experi-
mental models generated using forcing frequencies near the second and
third resonant frequencies. Fig. 14(a) reveals that the envelope of the
analytical model does not reproduce the maximum amplitudes observed
in the experimental measurements. As a remedy, a correction factor of
0.85 was applied to Cm in order to improve the envelope. Note that, in
this case, applying the correction factor to Cmwhile leaving Cd unaltered
is sufficient to improve the beam envelope as evident from the dotted
black lines in Figure 14(a). At f = 4 Hz, the use of the correction factor
was not necessary to approximate the envelope of the experimental
model, as illustrated in Fig. 14(d). Furthermore, there is no significant
discrepancy in the wave propagation patterns between the two models,
particularly evident in the plot of maximum amplitudes with respect to t
and x, shown in Fig. 14(c) and (f).

Fig. 15 shows a comparison between the nonlinear analytical and
experimental models using forcing frequencies near the fourth and fifth
resonant frequencies. The numerical model without the correction fac-
tor in Cd and Cm effectively approximates the experimental model even
at higher modes. While a few nodal points in the analytical models might
be slightly underestimated, as evident at the second trough of Fig. 15(a)
and (d), no substantial disparities are noticeable. The envelope and the
time series validation exhibit excellent agreement, highlighting the
reliable performance of the mode shape and the modal coordinate in
estimating the actual model.

Fig. 12. Comparison of the analytical and experimental models. (a), (b), and (c) were generated at 4 Hz and (d), (e), and (f) were actuated at 16 Hz. The grey line
indicates the experimental model. The solid black lines represent the numerical model, and the dotted black lines indicate the numerical model with modified Cd. The
envelope line and contour map in the second column refer to the analytical model. Panel (a) shows the displacement along the beam length, (b) depicts the time
evolution of the displacement of the beam, and (c) compares the time evolution between the experiment and simulation. Panels (d), (e), and (f) follow the same
format for the higher frequency. The comparisons highlight the agreement and differences between the experimental and numerical models.

S.N.H. Syuhri et al. International Journal of Mechanical Sciences 283 (2024) 109623 

13 



5. Discussion

This section addresses the implications of the findings from both the
theoretical and experimental analyses. The discussion begins with
examining the linear approximation, facilitating the connection be-
tween the dynamic behaviour of the beam’s motion and mechanical
wave phenomena. Following this, the analysis of passive travelling
waves is presented, including a detailed description of the parameters
contributing to their formation. This thorough analysis of the results
enhances the understanding of passive travelling waves in beam-like
structures and highlights potential directions for future research.

5.1. Linear approximation

It has been demonstrated that the analytical model with nonlinear
damping can closely approximate the experimental measurements. The
linear approximation model, however, is helpful in explaining the me-
chanical wave phenomena. The first row of Fig. 16 shows the compar-
ison of the modal coordinates with respect to the frequency generated
with the base amplitude,Af, of 1.5 mm. The dotted blue lines represent qi
acquired through the application of the linear damping model as pre-
sented in Eq. (8). Conversely, the solid red lines depict the solution of qi
obtained from the quadratic damping model, as outlined in Eq. (A.6),
considering solely the nonlinear coefficients ψ111q̇˙1|q̇˙1| and ψ222q̇˙2|q̇˙2|
for the simulation.

It is evident that disparities arise near the natural frequencies, where
the damping predicted by the linear model is underestimated in com-
parison to the nonlinear model. By eliminating the influence of the mode
shape as outlined in Eq. (B.1), it is possible to explain why the linear and
nonlinear models diverge near natural frequencies while converging at

frequencies distant from resonance. As the forcing frequency approaches
the natural frequency, the subtraction of ω2

n − ω2 becomes close to zero.
Consequently, the responses are primarily characterised by the cosine
component of Eq. (B.1), which is directly proportional to the damping
function, 2ζωnω. On the contrary, when the beam is actuated away from
the natural frequencies, the sine component surpasses the cosine
component, resulting in ω2

n − ω2≫2ζωnω. Therefore, the damping holds
minimal influence over the modal coordinates in such cases.

To address the issue of underestimated damping in the linear model,
a correction factor χ(ω) is introduced within the linear damping to more
accurately estimate the nonlinear term |∂w/∂t|∂w/∂t. The dashed black
lines in Fig. 16 demonstrate the responses of the linear model incorpo-
rating the correction factor. The variation of the correction factor across
frequency is depicted separately and presented in the second row of
Fig. 16. Ultimately, this facilitates the interpretation of wave phenom-
ena on the beam through the insights developed in Section 2.2.

5.2. Passive travelling waves

For the case of the 8 cm beam, when the beam is actuated in the
vicinity of the first resonance, the functions U(βx) and V(βx) have the
same value due to the significant amount of damping. Fig. 17 provides a
schematic diagram illustrating the decomposition of the spatial func-
tion, including an illustrative example at f = 2 Hz. The magnitude of U
(βx) is essentially determined by Af + lp1φ1, making U(βx) non-zero at x
= 0. Since V(βx) gradually increases from zero and its temporal part is
90◦ out of phase with U(βx), the sum of these spatial functions can form
travelling waves. However, their magnitudes vary over the beam length
and are not as uniform as in the example of full travelling waves illus-
trated in Fig. 2. This variation is due to the nature of the first mode shape

Fig. 13. Comparison of the analytical and experimental models. Panels (a), (b), and (c) were generated at 18 Hz and panels (d), (e), and (f) were actuated at 22 Hz.
The grey lines indicate the experimental model. The dotted and dash-dotted black lines specify the numerical model with modified Cd and the numerical model with
modified Cd and Cm, respectively. The envelope line and contour map in the second column refer to the analytical model. Panel (a) shows the displacement along the
beam length, (b) depicts the time evolution of the beam’s displacement, and (c) compares the time evolution between the experiment and simulation. Panels (d), (e),
and (f) follow the same format for the higher frequency.
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of the cantilever beam configuration.
Fig. 18(a) displays the upper view corresponding to the isometric

representation shown in Fig. 17. The black line, representing max(wt), is
visualised separately from the contour plot in Fig. 18(b). It is clear that
the slope is small. In theory, the slope of this line can be further
increased by increasing the damping value to extend the magnitude of V
(βx) and, hence, increasing the phase delay between the beam tips.
However, this is practically inconvenient. Changing the fluid charac-
teristics, for example, will affect the Reynolds number which in turn
alters not only the damping but also the added mass coefficients [36].
The existence of the travelling waves in this configuration occurs in a
very limited frequency range. Beyond the first resonance, the function of
U(βx) transforms into Af − lp1φ1 as a consequence of the term

(
ω2
n1 −

ω2). Consequently, U(βx) exhibits negative values along the beam’s
length, as depicted in Figure 19(a). At the point of zero-crossing for U
(βx), a nodal point can emerge when a minor contribution from V(βx) is
considered. In Figure 18(b), the red line represents the peak amplitude
of the beam with respect to t and x, observed at f = 3 Hz. A comparison
between the black and red lines highlights the substantial impact that
the sign (positive or negative) in the variable lp1 can significantly
transform the shape of the lines. As frequencies increase, such as at f= 4
Hz, the zero-crossing point undergoes a shift towards the right or to-
wards the free end of the beam. This phenomenon is exemplified by the
displacement of the blue line shown in Figure 18(b).

When the beam is forced close to the second mode, for instance at f=
16 Hz, the constants lp1, lp2, rp1 and rp2 are all in the same order of
magnitude. Consequently, the spatial functions are governed by equa-
tions containing the sum of the first two modes, leading to expressions U
(βx) = (Af − lp1φ1 + lp2φ2) and V(βx) = (rp1φ1 + rp2φ2). The graphical
representation of these functions with respect to the beam length is
depicted in Figure 19(a). The figure illustrates that the discontinuity

observed in the travelling wave generated at this frequency arises from
the proximity of the zero-crossing points between the two spatial func-
tions. Additionally, it can be inferred that the observed inclination of the
wave, denoted by the black line in Figure 19(b), is due to the significant
contribution of V(βx) which surpasses the effect of U(βx). However, V
(βx) tends to deteriorate when the beam is forced away from resonance.
Inevitably, this reduces the intensity of the travelling waves. These ar-
guments are visually represented in Figure 19(c), which displays the
evolution of the travelling contribution across various frequencies. As
anticipated, the slope of the maximum beam amplitude curve experi-
ences a steep decline as the beam’s excitation is moved farther from the
second resonance.

At f = 18 Hz (or beyond the second resonance) shown in Fig. 19, U
(βx) is described by the relation (Af − lp1φ1 − lp2φ2), featuring two zero-
crossing points at approximately 0.3 L and 0.8 L. The magnitude of V(βx)
at 0.3 L, as depicted in Figure 19(d), can compensate for the nodal point
formation in the beam envelope. This is why the beam the beam enve-
lope at f= 18 Hz exhibits only one node. As the beam is actuated further
away from resonance, for instance at an intermediate point between the
second and third resonances depicted in Figure 13(d), U(βx) pre-
dominates over the responses due to the subtraction of ω2

ni − ω2. On the
other hand, rp1, rp2 and rp3 contribute less to the beam equation. Hence,
the beam displacement given in Eq. (B.1) mainly comprises the sine part.
Since the input base and relative beam motion are in phase, the total
responses create hybrid waves containing fewer travelling waves.

For the case of the 13.5 cm beam, the slope of the travelling com-
ponents around the second mode does not exhibit a more pronounced
angle compared to the previous beam model. The transverse velocity of
the beam in this mode is exceptionally low, and the squaring of the
velocity term in the beam equation results in the damping function that
approaches zero. As a result, the variable rpi is comparatively lower than
its counterpart, lpi. Moreover, the first natural frequency’s value drops

Fig. 14. Comparison of the analytical and experimental models. Panels (a), (b), and (c) were generated at 2 Hz and panels (d), (e), and (f) were actuated at 4 Hz. The
grey lines indicate the experimental model. The solid and dotted black lines indicate the numerical model and numerical model with modified Cm, respectively. The
envelope line and contour map in the second column refer to the analytical model.
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Fig. 15. Comparison of the analytical and experimental models. Panels (a), (b), and (c) were generated at 10 Hz and panels (d), (e), and (f) were actuated at 18 Hz.
The grey and solid black lines signify the experimental model and the numerical model, respectively. The envelope line and contour map in the second column refer
to the analytical model.

Fig. 16. Plot of the (a) first and (b) second modal coordinates with respect to frequency. In the modal coordinate plots, the solid red line represents the nonlinear
model, the dotted blue line represents the linear approximation, and the dashed black line represents the linear approximation with the correction factor. The second
row shows the correction factor corresponding to the plots in the first row.
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below 1 Hz, leading to a dominant proportion of lp1 among the variables.
As the forcing frequency is raised to f = 4 Hz, all parameters exhibit a
similar order of magnitude, with the exception of rp3. Consequently, the
travelling waves become more prominent.

To further investigate the presence of a nodal point x= 0.58 L shown
in Figure 15(a), the spatial functions of the beam generated at f = 10 Hz
are plotted in Fig. 20(a). Evidently, the nodal point emerges as a
consequence of the second zero-crossing point of U(βx) which coincides

with the trough of V(βx). This pattern persists up to the fifth mode,
where the nodal point occurs at x = 0.43 L as displayed in Figure 15(d).
The plot of the spatial functions shown in Figure 20(b) illustrates that
the nodal point is a result of the zero-crossing of U(βx) intersecting with
V(βx). It is important to note that these nodal points at this particular
length cannot be simply eliminated by increasing the damping. To
address this issue, it is necessary to manipulate the spatial functions in a
manner that causes the positions of the zero-crossing points between the

Fig. 17. Schematic diagram of spatial function decomposition. The beam equation is given by Eq. (B.1), which includes both sine and cosine terms with respective
coefficients lpi and rpi as defined in Eq. (B.2). The isometric and front views show an example at f = 2Hz, highlighting the maximum displacement max(wt). The
decomposition process is illustrated, where the maximum displacement max(wt) is separated into spatial functions U(βx) and V(βx). The graph shows these com-
ponents, with U(βx) and V(βx) represented by dashed and dotted lines, respectively.

Fig. 18. (a) The contour map of the beam generated at 2 Hz and (b) the maximum amplitude of the beam against t and x for various frequencies. It compares the
maximum amplitude of the beam for frequencies of 2 Hz (black), 3 Hz (red), and 4 Hz (blue). Note that an offset to t = 0 was implemented for each individ-
ual frequency.
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two functions to shift, preventing their coincidental alignment. In
practical terms, this objective can be attained through the application of
two forces positioned around each end of the beam, while carefully
regulating their associated forcing functions. This approach is often
referred to as ’two-mode excitation’ [14,15,50,67].

The characteristics of passive travelling waves are notably different
from those of the two-mode excitation proposed by Loh and Ro [50].
Specifically, passive travelling waves occur at resonant frequencies,
whereas travelling waves in the two-mode excitation system occur away
from resonance. To illustrate this distinction, consider a beam vibrating
at its first resonance, where ω = ωn1. Under this condition, the total beam
displacement is described by Equation (B.3), the mathematical deriva-
tion of which is detailed in Appendix B. Equation (B.3) closely resembles
the model proposed by Loh and Ro [68], where a beam is excited by
forces of identical frequency but with a 90-degree phase difference.
However, a key difference lies in the constants Afδ(x) in the sine term

and rp1φ1(x) in the cosine term, which results in less pure travelling
waves compared to those described by Loh and Ro [68]. It is important
to note that Loh and Ro’s model assumes equal forcing values for both
sine and cosine components.

In passive travelling waves, when the excitation frequency deviates
from resonance (e.g., ω < ωn1), the response of the beam can manifest as
standing waves. This phenomenon is mathematically derived in Ap-
pendix B, as shown in Equation (B.4). This equation predicts the gen-
eration of standing waves, as the displacement of the beam is primarily a
superposition of two sine functions. Equation (B.4) aligns with the two-
mode excitationmodel shown in Eq. (B.5), particularly when it is excited
at its natural frequencies.

6. Conclusions

This paper investigates the travelling waves of a slender beam

Fig. 19. (a) Plot of spatial functions and (b) location of the travelling part of the beam generated with 16 Hz. (c) The travelling parts of the 8 cm beam for various
frequencies: 12 Hz (red), 14 Hz (blue), 16 Hz (black), and 18 Hz (green). (d) Spatial functions and (e) contour plot of the beam at 18 Hz.

Fig. 20. The spatial function of the 13.5 cm beam at (a) f = 10 Hz and (b) f = 18 Hz, showing show the spatial functions U(βx) and V(βx), represented by the dash-
dotted and dotted lines, respectively, along the beam length for the given frequencies.
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underwater with the aim of inducing propulsion. Analytical models
based on linear and nonlinear damping have been developed, allowing
the relationship between the beam displacement and the process that
results in mechanical travelling waves to be investigated. In an initial
examination of the beam in air, the backbone diagrams demonstrate that
the beam possesses very weak nonlinearities which confirm the small
displacement assumption made in the theoretical modelling. Further
examination in the nonlinear damping model reveals that energy
transfer between modes can be neglected, as demonstrated by the
magnitude of cross-coupling coefficients in the model proposed. This
assumption has been verified via a comparison between the analytical
and experimental results for the case of a fully immersed beam,
providing good agreement and therefore validating the assumption
made.

It has been shown from experimental results that the highest
amplitude travelling waves for a partially and fully submerged beam
underwater are located in the neighbourhood of the natural frequencies.
This is where the damping contributes the most to the beam equation,
creating a phase delay in the propagation of the waves along the beam.
The partially submerged beam model exhibits an interesting phenome-
non around resonance in which the water absorbs the incoming wave to
prevent its reflection and therefore the creation of standing waves. This
results in intense travelling waves along the beam.

To expand the investigation into higher modes, a more flexible beam
was also investigated. The underwater tests revealed that the beam
possesses very dense natural frequencies as demonstrated by the number
of peaks in the FRF up to 20 Hz. Particular attention has been given to
the nodal points occurring at higher modes: these can affect the quality
of the travelling waves creating a discontinuity in the wave and there-
fore affecting its suitability for propulsion. It has been demonstrated that
the occurrences of the nodes are strongly dependent on the spatial
functions that described the displacement of the beam. This has been
thoroughly studied in the clamped-free beam configuration, but it can be
generalised to other boundary conditions.

Finally, the use of the Galerkin method allowed us to investigate the
relationship between the parameters contributing to the formation of
travelling waves. This approach enabled us to understand how travelling
waves are formed at resonant frequencies. Furthermore, this investiga-
tion expands the work done in [15,69] contributing to the development
of efficient devices propelled via travelling waves. In particular, this
work enables the implementation of a control strategy which requires a

single point excitation and relegates the two-mode excitation only to
those frequency ranges away from resonance where high-amplitude
travelling waves are difficult to achieve. This comes with a consider-
able reduction in input power. This investigation complements the work
on fluid-structure interaction presented by the authors in [19,70] where
the effect of the travelling wave on the surrounding fluid is presented.

Since the forcing frequencies in this study are limited, future studies
should consider higher frequencies and variations in input amplitude to
explore the amplitude contributions of the modes adjacent to the forcing
frequency, thereby determining the optimal actuation methods. Addi-
tionally, further research is needed to investigate how the boundary
conditions change as the beam transitions from vibrating in air to being
partially submerged and fully submerged, to better understand the
phenomena.
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Appendix A: Mathematical Derivations for Section 2.1

Substituting the method of separation variables given in Eq. (3) into an unforced Euler-Bernoulli beam equation results in:

a2

φ(x)
∂4φ(x)

∂x4 = −
1
q(t)

∂2q
∂t2 = ω2, (A.1)

where the term ω2 has been introduced to represent the frequency equation that is associated with the temporal part and a = EI/μ. Equation (A.1)
consists of two equations: a second-order derivative with respect to t, and a fourth-order derivative with respect to x. Therefore, it requires two initial
conditions and four boundary conditions to obtain the individual solution of the spatial and temporal functions. For the case of the clamped-free beam,
the boundary conditions can be modelled by assuming zero deflection and slope at the clamped end, and zero bending moment and shear force at the
free end. Enforcing these conditions leads to the formulation of the mode shape equation, φi(x), in Eq. (4).

The mathematical derivation in Equation (A.1) is independent of damping and forcing functions, and is helpful to attain the mode shape of the
beam. It is worth mentioning that there is no clear understanding on how to derive the mathematical model of damping mechanism in finite structures.
Depending on the system being considered, the damping term can be integrated with the beam equation before or after applying the method of
separation variables. In this study, the damping is applied to the beam equation by incorporating Eq. (5) into the Euler-Bernoulli beam equation. By
applying the separation variables from Eq. (3) the following is obtained:

(μ +M)
∑∞

j=1
φj(x)q̈j(t) + Cld

∑∞

j=1
φj(x)q̇˙j(t) + Cqd

∑∞

j=1

⃒
⃒
⃒φj(x)q̇˙j(t)

⃒
⃒
⃒
∑∞

k=1

φk(x)q̇˙k(t) + EI
∑∞

j=1

∂4φj(x)
∂x4 qj(t) = F(x, t), (A.2)

where Cld is the linear damping due to the material, M = 0.25πρfCmb2, Cqd = 0.5ρfCdb and F(x, t) = − (μ + M)ẅb(x, t). Multiplying Eq. (A.2) with an
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arbitrary mode shape, φi providing that i ∕= j, and then integrating over the length of the beam, L, yields:

(μ +M)
∑∞

j=1

∫ L

0
φjφidxq̈j + Cld

∑∞

j=1

∫ L

0
φjφidxq̇˙j + Cqd

∑∞

j=1

∑∞

k=1

∫ L

0

⃒
⃒φj

⃒
⃒φkφidxq̇˙k

⃒
⃒
⃒q̇˙j

⃒
⃒
⃒ + EI

∑∞

j=1

∫ L

0

∂4φj

∂x4 φidxqj =

∫ L

0
F(x, t)φidx, (A.3)

By using orthogonality conditions, Equation (A.3) can be expressed as an infinite series of independent equations of which the i-th mode is given
by:

(μ +M)

∫ L

0
φiφidxq̈i + Cld

∫ L

0
φiφidxq̇˙i + Cqd

∑∞

j=1

∑∞

k=1

∫ L

0

⃒
⃒φj

⃒
⃒φkφidxq̇˙k

⃒
⃒
⃒q̇˙j

⃒
⃒
⃒ + EI

∑∞

j=1

∫ L

0

∂4φi

∂x4 φidxqi =

∫ L

0
F(x, t)φidx, (A.4)

The definitions of mode-shapes, when i = j, satisfy:
⎧
⎪⎪⎨

⎪⎪⎩

∫ L

0
φiφidx = L,

∫ L

0
φʹ́ʹ́
i φidx =

β4i
L3
.

(A.5)

The terms ψ jkiq̇˙k(t)
⃒
⃒
⃒q̇˙j(t)

⃒
⃒
⃒ in Eq. (6) can lead to multiple coefficients depending on the number of modes used in the simulation. To illustrate this, the

first two modes, i = 1, 2, are used for the nonlinear modal coordinate equation which gives:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q̈1 + 2ζld,1ωn1q̇1 +
Cqd

(μ +M)L
(ψ111q̇1|q̇1| + ψ121q̇1|q̇2| + ψ211q̇2|q̇1| + ψ221q̇2|q̇2|) + ω2

n1q1 = Q1,

q̈2 + 2ζld,2ωn2q̇2 +
Cqd

(μ +M)L
(ψ112q̇1|q̇1| + ψ122q̇1|q̇2| + ψ212q̇2|q̇1| + ψ222q̇2|q̇2|) + ω2

n2q2 = Q2.
(A.6)

Equation (A.6) contains a nonlinear damping term which requires numerical integration to obtain the solution of q1 and q2.

Appendix B: Mathematical Derivations for Section 2.2 and 5.2

The complete solution for the steady-state beam vibration, wt(x,t), can be realised by multiplying the modal coordinate, qi(t), with the mode shape,
φi(x), and considering the relative motion of the beam expressed in Eq. (1) to give:

wt(x, t) = Afδ(x)sinωt + (lp1φ1(x) + lp2φ2(x) + …)sinωt
+(rp1φ1(x) + rp2φ2(x) + …)cosωt, (B.1)

where the terms lp and rp are constants defined as

lpi =
(
ω2
ni − ω2

)

(
ω2
ni − ω2

)2
+ (2ζiωniω)

2f0

rpi =
2ζiωniω

(
ω2
ni − ω2

)2
+ (2ζiωniω)

2f0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

i = 1,2,…,∞, (B.2)

whereas f0 =
(
Afω2

f /L
) ∫ L

0 φi(x)dx.

Let us take an example of the beam vibrating at the first resonance, ω = ωn1. Accordingly, the terms lp1 in Eq. (B.1) becomes equal to zero due to
numerator

(
ω2
n1 − ω2) = 0 in Eq. (B.2). In contrast, rp1 becomes maximum due to denominator 2ζ1ωn1ω/(2ζ1ωn1ω)2. The other higher mode contri-

butions, such as lp2,lp3,… and rp2,rp3,… are negligible. This condition leads to the total beam displacement of:

wt(x, t) = Afδ(x)sinωt + rp1φ1(x)cosωt. (B.3)

In case the beam vibrating away from resonance, for instance ωn1 > ω, the term rp1will be close to zero, while the term lp1 is at its maximum value.
Neglecting the small contribution from the higher modes, the total beam equation becomes:

wt(x, t) = Afδ(x)sinωt + lp1φ1(x)sinωt. (B.4)

As a comparison, the two-mode excitation model proposed by Loh and Ro [68] is:

wt(x, t) = Pcosωt
∑∞

i=1

φi(x)φi(l1)
ω2
ni − ω2 + Psinωt

∑∞

i=1

φi(x)φi(l2)
ω2
ni − ω2 , (B.5)

where P is the forcing magnitude, l1 and l2 are the location of the forcing function. Accordingly, if the two-mode excitation is forced in non-resonant
conditions, for instance ω < ωn1, Eq. (B.5) becomes identical to Eq. (B.3) except for the magnitude of travelling waves.

Appendix C: Data Acquisition for Partially Submerged Beam

Fig. E.1(a) shows a sample image of a partially submerged beam. Pixel acquisition was hindered by a displacement discontinuity caused by the
change of refraction index at the air-water interface, as illustrated in Fig. E.1(b). Consequently, this interface region was eliminated, and the two
sections were merged by offsetting the submerged part of the beam of a quantity equal to the gap at the interface. Subsequently, the amplitude was
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normalised against the maximum displacement measured at the root of the beam.

Fig. E.1. (a) A cropped image of the partially submerged beam, showing a detailed view of the beam and highlighting the conversion from a true colour image to a
binary logical image in different sections. (b) Effect of the reflection on the pixel coordinates, illustrating how the reflection impacts the recorded pixel positions.
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