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ABSTRACT
Annealing improves the switching and synaptic performance of ITO/WOx/CuOx/ITO transparent devices. The device has low SET and
RESET voltages, stable and robust AC endurance of up to 106 cycles, and can retain the states for more than 104 s. The device demon-
strates synaptic capabilities by emulating neural functions under both electrical and light stimuli. The behaviors including long-term
potentiation/depression, paired-pulse facilitation, spike-timing-dependent plasticity, and fully tunable relaxation time of short-term mem-
ory, mimicking the temporal dynamics of the biological neuron, are declared. A convolutional neural network operation is conducted by
exploiting the synaptic functions of the device. The high accuracy of 96.67% with high noise tolerance (close to an ideal synapse) can be
achieved. Material analyses are conducted, and switching/synaptic mechanisms are proposed to explain such phenomena.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0252709

The increasing demand for neuromorphic computing and
making more energy-efficient and high-performance computing
hardware has driven extensive research into developing synaptic
devices that can mimic biological synaptic behaviors.1,2 Optoelec-
tronic memristive synapses have become a promising candidate for
neuromorphic hardware due to their ability to integrate the bene-
fits of both photonic and electronic systems, thereby enhancing the
speed and efficiency of neuromorphic computing.3 Recent reports
suggest that memristive devices made of p–n junction films have
better performance than single-layer devices made of either p- or
n-type films.4–6 P- and n-type films have unique defect type and
concentration that govern the electron conduction in the films.
Stacking such two types of films could avoid random formation and
rupture of conducting filaments in memristive cells, thus enhanc-
ing the electrical performance.7 However, those reports did not
investigate whether the devices can still perform well after they

are subjected to an annealing process. The CMOS compatibility of
memristive devices should be tested to determine if the devices can
“survive” at back-end-of-line (BEOL) annealing temperature.5,8–10

In this study, we investigate the impact of annealing on the per-
formance of memristive devices fabricated by WOx/CuOx p–n films
sandwiched between ITO electrodes. We observed that the annealed
devices demonstrated better performance than the as-deposited
ones. Device reliability and versatility to be varied by light and elec-
trical stimuli were also observed and studied. Materials analyses
were also conducted to explain the performance enhancement of the
devices after annealing.11

Commercial indium tin oxide (ITO) coated glass substrates
were cleaned with acetone and propanol in an ultrasonic cleaner
and dried with nitrogen gas. The resistive layers consisting of 10 nm
CuOx and 40 nm WOx were sequentially deposited using a 50 W
RF sputtering system under 10 mTorr argon at room temperature,
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employing CuOx and WOx targets, respectively. Thereafter, post-
deposition annealing was conducted at 300 ○C for 30 min. in a
vacuum ambient. This annealing condition was chosen due to the
typical annealing in the BEOL process.5,9 Finally, 100 nm ITO top
electrodes (TEs) with a diameter of 150 μm were deposited via
RF sputtering using a metal shadow mask, and the schematic of
the ITO/WOx/CuOx/ITO p–n heterojunction memristive device is
shown in Fig. 1(a). The UV–Vis transmittance spectrum, shown in
Fig. 1(b) and its inset, demonstrates the device transparency, with a
90% transmittance in visible light. The thickness and compositional
identification of layers were confirmed using a transmission elec-
tron microscope (TEM) and energy-dispersive spectroscopy (EDS,
Thermo Fisher Scientific Spectra 300); the results are depicted
in Figs. 1(c) and 1(d), respectively. The thicknesses of WOx and
CuOx are found to be 40 and 10 nm, respectively, and elemental
composition is confirmed by the EDS line scan. As-deposited and
as-annealed devices are denoted as AD and AA devices, respec-
tively. Electrical characterization was conducted using an Agilent
B1500A semiconductor parameter analyzer and an Agilent B1530A
waveform generator, while optical stimuli were applied via a vio-
let laser source (wavelength of 405 nm with a power density of
120 mW/mm2); a voltage bias was applied to the top electrode
while the bottom electrode was grounded, and current compliance
(CC) was used to avoid device breakdown. Surface morphology
was studied using scanning electron microscopy (SEM, Hitachi
SU-8010) and atomic force microscopy (AFM, Veeco Dimension-
3100). X-ray photoelectron spectroscopy (XPS, Thermo Fisher Sci-
entific ESCALAB Xi+) was used to analyze defect concentration and
elemental distribution in the multilayer films.

Typical I–V sweeping curves for the AD and AA devices are
shown in Fig. 2(a). In the low voltage region, the AD device exhibits
rectifying behavior, confirming its p–n heterojunction; however,

FIG. 1. (a) Schematic diagram of the ITO/WOx/CuOx/ITO device under violet light
illumination. (b) Transmittance spectra of the memristor device; the inset highlights
the excellent transparency of the memristor device. (c) Cross-sectional TEM and
(d) EDS line scan of the memristive device.

FIG. 2. (a) Typical I–V switching curves of the first cycle of AD and AA devices,
with an inset showing the I–V scan in the pristine condition for the devices. (b)
Endurance characteristics of AD and AA devices over multiple switching cycles.
(c) Retention performance of AA in both resistance states at RT and 85 ○C. (d)
Endurance of the AA device under AC stress (SET: −1.4 V for 300 ns, RESET:
1 V for 100 ns). (e)–(g) Multi-level switching characteristics of the AA device. (h)
Conduction mechanism fitting for the AA device, with the inset showing the details
of the fittings.

the annealing process suppresses the diode characteristic [inset
of Fig. 2(a)]. A negative voltage sweeps the devices from a high
resistance state (HRS) to a low resistance state (LRS) (SET pro-
cess); note that the devices are forming-free. Conversely, a positive
sweep switches the devices from LRS to HRS (RESET process). The
annealing treatment not only reduces the current compliance (CC)
required to switch the devices but also decreases the SET (from −1.4
to −1 V, Vset) and RESET voltages (from 2.0 to 1.2 V, Vreset). The
AA device exhibits better endurance, demonstrating stable switch-
ing cycles with a memory window of 37 without any data errors
or state decay for over 1200 cycles. Note that we conducted anneal-
ing at various temperatures and found that annealing temperatures
below and above 300 ○C deteriorate the performance of the device.
We suggest that this phenomenon is due to the trade-off between the
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crystallinity and lattice mismatch at the interfaces (see Fig. S1 of the
supplementary material for details).12,13

Based on the above results, it is clear that the AA device works
at lower voltage and current and has better stability, which is more
appealing for low-power system implementation. It is found that
the AA device is capable of retaining its HRS and LRS for more
than 104 s at an elevated temperature and performing robust AC
endurance for more than 106 cycles, as depicted in Figs. 2(c) and
2(d). Figures 2(e)–2(g) show that the device can be programmed
to demonstrate multi-state characteristics by varying the CC and
RESET voltages; a 2-bits/cell storage operation can be achieved, indi-
cating its capability for high-density data storage. The switching
process is governed by the Ohmic law in the low voltage region
of HRS, suggesting that injected carriers may initially encounter
resistance due to traps or interfacial barriers.14 At higher voltages
in the HRS and LRS, the conduction mechanism transitions to
Poole–Frenkel (P–F) as depicted in Fig. 2(h), indicating the pres-
ence of the amount and kind of defects determining the switching
properties of the device.

Figure 3(a) exhibits the long-term potentiation (LTP) and
depression (LTD) of the devices. It is found that the AA device
exhibits more stable epoch training than the AD device; more-
over, the AA device has lower noise and a larger dynamic range
of 140%. This further confirms that the AA device is superior to
AD. Figure 3(b) shows that the AA device has minimal deviation in

the maximum and minimum conductance states (Gmax and Gmin)
during the 500 epochs, where the symmetric error is small. The
method of the symmetric error calculation is explained in our pre-
vious work.15 This high level of symmetry could positively impact
brain-inspired computation.16 The LTP/LTD curves are well-fitted
using the following equations to determine their nonlinearity (NL)
values:17

GLTP = B(1 − exp(−
P
A )) +Gmin, (1)

GLTD = −B(1 − exp(−
P−Pmax

A )) +Gmax, (2)

B = Gmax −Gmin

1 − exp(−
Pmax

A )
, (3)

where Pmax is the maximum spike number, and the nonlinearity
(NL) is fitted by using parameter B, functioning as a parameter of A,
which reflects the behavior of the system.18 It is found that the NL is
less than three [Fig. 3(c)], indicating that the LTP/LTD performance
could be useful for efficient neuromorphic computation.19

Figure 3(d) shows the spike-timing-dependent plasticity
(STDP) capabilities of the device. The spike time difference (Δt) rep-
resents the interval between the presynaptic and postsynaptic pulses,
calculated as Δt = tpre − tpost. The conductance change was measured

FIG. 3. (a) Ten epochs of LTP and
LTD of AD and AA devices; amplitude
−1.2 and 1.4 V with a pulse width
of 10 μs and a read pulse of 0.1 V,
1 ms. (b) Fitting curve showing NL coeffi-
cients for both potentiation and depres-
sion. (c) Gmax and Gmin values over a
total of 500 cycles, along with symmetric
error analysis of 100 randomly selected
LTP/LTD cycles. (d) Asymmetric anti-
Hebbian STDP response of the device
for time intervals Δt < 0 and Δt > 0;
the pulse width of each short spike is
maintained at 100 μs with pulse heights
of +1.4 and −1.4 V. (e) Applied volt-
age bias of electrical spikes for PPF
and corresponding measured current. (f)
Electrical PPF index.
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as a function of Δt, with presynaptic and postsynaptic pulses applied
accordingly. The change in conductance (ΔG) was calculated using
the formula ΔG = (G2 − G1)/G1, where G1 and G2 are the conduc-
tance states before and after the pulse sequence, respectively. This
variation in conductance states follows an exponential relationship
with synaptic weight, as described by the following function:20

ΔG =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

A1 exp(−Δt
τ1
), Δt > 0,

A2 exp(−Δt
τ2
), Δt < 0,

(4)

where A1 and A2 are the scaling factors, whereas τ1 and τ2 are
time constants. The results show that the AA device reveals an
asymmetric anti-Hebbian STDP response, with potentiation (P) and
depression (D) observed in the second and fourth quadrants. The
conductance change is inversely proportional to the time difference
between spikes, closely responding biological synapse behavior and
supporting the potential for neural applications.21

PPF is another essential synaptic function, exhibiting changes
in synaptic weight following multiple excitatory postsynaptic poten-
tials.22 We evaluate the PPF by applying two identical spikes with
varying time intervals, and the corresponding ΔG is measured, as
shown in Fig. 3(e). Measurements are taken after fully resetting the
device to HRS to ensure accurate current responses for each test.
The conductance change between the two spikes is used to calcu-
late the PPF index based on the formula provided in the inset of
Fig. 3(e). Curve fitting as indicated in Fig. 3(f) is performed using
the following equation:23

PPF = C1 × exp(−t
τ1
) + C2 × exp(−t

τ2
), (5)

where t is the duration between two spikes, C1 and C2 are the
starting magnitudes of the phases, and τ1 and τ2 are the relaxation
times for the rapid and slow phases, respectively. It is found that
τ1 = 31.548 s and τ2 = 31.544 s. This demonstrates that the AA device
has the ability to emulate PPF that could enable realistic short-
term memorization stimulation for neuromorphic computing.24

The above results show that the switching and synaptic performance
of the AA device is better than that of the AD device. Materials
analysis was conducted to elucidate this phenomenon.

The SEM images [Fig. 4(a)] illustrate that annealing increases
the grain size and crystalline quality; meanwhile, the AFM topog-
raphy [insets of Fig. 4(a)] reveals that the annealed film has lower
surface roughness with fewer grain boundaries and micro-voids.
This denser structure facilitates less formation of conduction fil-
ament branches along the grain boundaries.10 XPS depth profile
analyses shown in Fig. 4(b) reveal that the annealing process induces
metal interdiffusion at the interfaces to cause a high concentration
of In atoms at the TE/WOx and CuOx/bottom electrode (BE) inter-
faces, while the Cu diffuses into the WOx film. Indium (In) and
cupper (Cu) atoms are known to diffuse relatively easily into adja-
cent layers under thermal treatment.25,26 The annealing process also
increases the oxygen vacancy (Vo) concentration in the annealed
films, as depicted in Fig. 4(c);25 the XPS O1s spectra analysis was
performed by following methods reported in the literature.27 The
diffused metallic defects and oxygen vacancies alter the property
of interfacial layers. Based on the above materials analysis, we can
explain the switching and synaptic mechanism of the devices as
depicted in the schematic shown in Fig. 4(d).

Since the AD device has less number of oxygen vacancies
(Vo) that are distributed within the WOx and CuOx layers, and
the indium atoms (In) are diffused predominantly at the top and

FIG. 4. (a) Surface scan micrographs of AD and AA films, with inset AFM images showing surface topography and root mean square (Rq) roughness values. (b) XPS depth
profile spectra of the AD and AA devices, respectively. (c) Vo concentration at different depths for AD and AA devices and the typical O1s spectra and their fitting near the
WOx/CuOx interface. (d) Schematic illustration of the switching mechanism for (i) AD and (ii) AA devices.
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bottom electrode interfaces [Figs. 4(b) and 4(c)], a negative bias
to the TE will create new Vo2+ defects by ionizing oxygens in the
WOx and CuOx layers and simultaneously ionize indium atoms
(In3+ cations) and thereafter repulse positively charge defects (In3+

and Vo2+ toward TE). From the TE interface, the filament grows,
reaching BE, where the filament will consist of Vo and In, connect-
ing the TE and BE and switching the device to the LRS state. Note
that the pre-existing Vo concentration in the AD is not sufficient to
complete filamentary formation, which is why a creation of Vo is
required and a higher Vset is observed in the AD device [Fig. 2(a)].
When the polarity is reversed, oxygen ions from the BE interface will
recombine with the Vo, and the In will drift back to the BE, caus-
ing the filament to rupture within the CuOx layer and return the
device to HRS. Meanwhile, in the AA device, the annealing intro-
duces extensive diffusion of In and copper (Cu) atoms toward the
WOx layer, and thus, a higher number of Vo, In, and Cu defects
exist in the pristine state, as compared to the AD device. These accu-
mulated defects at the interface reduce the barrier height of the p–n
junction, thereby weakening the rectifying behavior and suppressing
the diode-like effect. This observation is further supported by the
temperature coefficient of resistance,28 TCR, α(AA) = 0.0049 ○C−1,
which is consistent with values typically associated with compos-
ite filament-based devices.29 This positive TCR behavior indicates
that the low-resistance state conduction is not governed by interfa-
cial effects but rather by metallic or semi-metallic filaments formed
via the diffusion of indium and copper ions. A positive bias drifts
Cu2+, In3+, and Vo2+ defects toward the TE during the SET process.
Since the concentration of In is high at the region near the BE and
TE interfaces, while a high number of Vo and Cu are distributed
in the WOx region, the base and the body of the filament will con-
sist of the mixture of In, Cu, and Vo defects. Meanwhile, the apex
of the filament will predominantly consist of In and Cu atoms. The
availability of sufficient defects in the pristine state makes the for-
mation of filament easy, and the size of the filament is a bit bigger
than that of the AD device; thus, the AA device has a lower Vset
and higher LRS current [Figs. 2(a) and 2(b)], respectively.30 Metal
cations have lower ionization energy (Cu = 7.726 eV, In = 5.786 eV,
and O = 13.618 eV)31 and migrate faster than oxygen atoms, causing
the filament to rupture easily and resulting in a larger gap between
the ruptured filament and the electrode during the RESET process;32

thus, the AA device requires a lower Vreset and a larger memory
window. Moreover, the lower number of grain boundaries in the
annealed films helps reduce the formation of branch filaments. We
suspect that the switching instability of the AD device is due to
the generation of stronger branches at the grain boundaries after
repeated switching cycles that lead to a high fluctuation and the
decay of the memory window [Fig. 2(b)].

P and D have processes similar to those of the LRS and HRS;
however, the redox reaction and defect migration occur in short
pulses. The P is performed after resetting the device (HRS), and short
negative pulses (−1.2 V) repulse cation metals from BE toward the
ruptured filament, gradually increasing the conductance (synaptic
weight) of the cell; note that P does not rejuvenate the filament back
to LRS since the energy that is given by the short pulses is not as
high as the SET process. The device requires a slightly higher D pulse
amplitude (+1.4 V); this is because the holes that are injected from
the TE need to travel a large distance across the body toward the tip
of the metal filament; meanwhile, the injection of electrons from the

BE is more difficult due to the large gap between the BE and the tip of
the filament, and the metal cations need to cross this gap to depress
the filament.

Our device responds to light illumination, as shown in Fig. 5(a).
The photogenerated current (Ip) increases steadily during the 600 s
of illumination, and the device undergoes an initial rapid current
decay [inset of Fig. 5(a)], followed by a much slower, prolonged
decay lasting ∼20 times the illumination period. This behavior
mimics the forgetting mechanism in biological synapse; we further
analyze this by employing the Ebbinghaus forgetting curve.33 As
illustrated in Fig. 5(b), the relaxation data extracted from Fig. 5(a)
are fitted using a double exponential decay model, as described by
Eq. (5). The calculated relaxation times are τ1 = 29.246 s for the
fast decay phase and τ2 = 10 255.221 s for the slow decay phase,
indicating the presence of long-lasting persistent photoconductivity

FIG. 5. Programming via light stimulation. (a) Photoresponse under 600 s of illumi-
nation, with the inset showing an abrupt change followed by gradual relaxation in
darkness over 12 000 s; a constant read voltage of 0.1 V was used. (b) Ebbinghaus
forgetting curve following 600 s illumination [extracted from (a)] showing the decay.
(c) STM to LTM transition under varying pulse widths. (d) Photocurrent change as
a function of pulse width [extracted from (c)]. (e) Learning and re-learning behavior.
(f) STM to LTM transition observed under varying numbers of illumination pulses.
(g) Optical PPF with two identical stimulation pulses. (h) PPF index variation with
interval time between optical pulses.
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(PPC) in the device;15 see Fig. S2 of the supplementary material, for
the detailed explanation of the carrier recombination and trapping
dynamics during the decay phases. This programming and forget-
ting process can be finely tuned by changing the optical stimulation
parameters. As shown in Fig. 5(c), Ip increases with the duration of
the optical spikes (ranging from 5 to 90 s), with wider spikes produc-
ing a more significant change in Ip (ΔIp). This correlation between
the spike width and Ip change is further illustrated in Fig. 5(d),
where the trend of ΔIp indicates that the decay process slows down
as the spike width increases, demonstrating the learning behavior
observed in the human brain, where longer stimuli reinforce mem-
ory retention, allowing a transition from short-term to long-term
memorization (STM-to-LTM).18 This result is also consistent with
previously reported findings,34 further supporting the memristor’s
ability to emulate biological memory processes.

In the human brain, the re-learning process for forgotten infor-
mation typically requires less time than the initial learning.35 This
behavior can be emulated by our device, as shown in Fig. 5(e). Ini-
tially, the device is illuminated by an optical spike for 4.76 s, resulting
in an increase in Ip to 204.72 nA. After turning off the light source
for 5 s, Ip decreases to an intermediate state of 177.59 nA. Upon
re-illumination, it takes only 1.74 s for Ip to return to its previ-
ous learning level, a shorter time than that required for the initial
spike. This re-learning capability demonstrates that our device can
simulate memory reinforcement, similar to cognitive learning in
biological systems. Based on this, a stimulation number-dependent
learning measurement was conducted, and the result is depicted in
Fig. 5(f). It is indicated that the device is first exposed to five con-
secutive light pulses, resulting in excitatory postsynaptic currents
(EPSCs) increasing to 349.65 nA before the stimulus is turned off.
This result illustrates STM behavior based on temporary retention
rather than a complete return to the initial state.36 Repeated stimu-
lation enables STM to transition into LTM, as evidenced by a more
pronounced EPSC increase when the number of pulses is increased
(from 10 to 60). This increment in EPSC decays more slowly than

the EPSC generated by fewer repetitions, indicating that stronger
potentiation effects occur with more extensive stimulation. Conse-
quently, the device demonstrates an STM to LTM transition based
on the stimulation frequency, which is in line with the Atkinson
and Shiffrin model of cognitive learning.37 This model suggests that
weaker stimuli induce STM, while repeated, stronger stimuli estab-
lish LTM. This behavior highlights the device’s ability to mimic basic
human memory processes and is consistent with previously reported
findings.38

Similar to the electrical PPF test [Figs. 3(e) and 3(f)], two identi-
cal optical pulses at 405 nm with a 5 s width are applied to the device
with varying intervals (10–100 s) to emulate PPF synaptic behavior,
as shown in Fig. 5(g). The resulting conductance changes, exhib-
ited in Fig. 5(h), are fitted using Eq. (5), yielding relaxation times of
τ1 = 81.784 s and τ2 = 81.799 s. These findings confirm the device’s
ability to simulate STM through realistic synaptic responses via light
stimuli, supporting its use in optoelectronic applications and neu-
romorphic computing where both electrical and optical synaptic
functions can be employed.39

The violet light has a photon energy of about 3.06 eV, while
the bandgap of WOx is 2.7 eV40 and that of CuOx is 2.17 eV.41 Upon
illumination, this energy excites electrons in both materials, promot-
ing them from the valence band (Ev) to the conduction band (Ec)
and creating electron–hole pairs, thus increasing Ip. When the light
illumination is stopped, the slower carrier determines the IP decay
behavior.

To validate the neuromorphic computing feasibility of our
device, a convolutional neural network (CNN) is implemented for
face recognition by using 32 × 32 pixel2 resized face images from the
ORL dataset, as shown in the schematic in Fig. 6(a). The ORL dataset
consists of 400 images from 40 different individuals. The images of
certain individuals are taken at different times, with varied lighting
conditions, face characteristics (e.g., with or without spectacles), and
facial attitudes (e.g., smiling or not smiling, open or closed eyes).
The subjects are positioned frontally and upright, with room for

FIG. 6. (a) Schematic diagram of the CNN architecture used in the experiment. (b) Sample ORL face image showing variations in noise levels: original image, Gaussian, and
SAP noise. (c) Test accuracy results as a function of epoch number for the CNN under each noise condition. (d) Confusion matrix of 0.10 SAP noise illustrates performance
by comparing the desired output classes with their predicted classifications.

APL Mater. 13, 051112 (2025); doi: 10.1063/5.0252709 13, 051112-6

© Author(s) 2025

 02 July 2025 08:13:56

https://pubs.aip.org/aip/apm
https://doi.org/10.60893/figshare.apm.c.7785314


APL Materials ARTICLE pubs.aip.org/aip/apm

little side movements, in all photographs, which are taken against
a uniformly dark background. The CNN architecture includes three
convolutional layers, three max-pooling layers, and two fully con-
nected layers. Based on the NL parameter of the device’s LTP/LTD
characteristics, a backpropagation algorithm is employed to simu-
late the CNN model, utilizing 280 training images and 120 testing
images.

The noise tolerance of the CNN model is assessed by applied
Gaussian noise, as salt and pepper42 each with a 0.10 noise level to
the ORL dataset, as shown in Fig. 6(b). After 1000 training epochs,
the device achieves an accuracy of 96.67%, compared to 97.75% for
an ideal synapse with an NL value of zero. When noise is intro-
duced, the model maintains high accuracy, achieving 93.33% with
Gaussian noise and 88.33% with SAP noise. These results, pre-
sented in Figs. 6(c) and 6(d), highlight the device’s resilience to noise
and its potential for accurately classifying corrupted face images,
underscoring its suitability for practical neuromorphic computing
applications where robustness against noisy data is essential. We also
investigated the effect of cycle-to-cycle (C2C) and device-to-device
(D2D) variations on the CNN accuracy (see Figs. S3 and S4 of the
supplementary material). The C2C analysis showed that the device
maintains relatively consistent performance over repeated cycles.
Although a slight degradation in nonlinearity (NL) is observed after
extended cycling, the LTP/LTD curves and dynamic range remain
within acceptable limits for the CNN computation. Meanwhile, the
D2D analysis revealed that some fluctuations in device behavior
across different cells take randomly in different regions, indicat-
ing a variation in the yield and fabrication consistency, which may
affect large-scale array integration. However, despite this, the CNN
classification accuracy remains high, suggesting that the system is
relatively robust to such a variation at the current scale of evaluation.

The metal interdiffusion and enlargement of grains of the films
induced by the annealing process on the ITO/WOx/CuOx/ITO cell
promoted stable switching and synaptic performance. Meanwhile,
the device made without annealing suffered from memory window
and epoch decay and higher on and off voltages. The metal interdif-
fusion of In from the electrodes and Cu into the WOx layer led to the
formation of filament predominantly consisting of In and Cu atoms
that help the redox process during set/reset and P/D processes.
Moreover, the device responded well to light stimuli, demonstrat-
ing short-term to long-term memorization. The synaptic function
of the device can be used to compute CNN face recognition with
high accuracy despite the introduction of noises. This study provides
insights into the fabrication of optoelectronic memristive devices for
data storage and neuromorphic computing applications.

SUPPLEMENTARY MATERIAL

The supplementary material includes discussions on the effects
of annealing at different temperatures, the photoconduction mech-
anism under violet light illumination, and analyses of cycle-to-cycle
and device-to-device variations.
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