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Thanks to their astonishing prediction ability, deep neural networks (DNNs) have been
deployed in various disciplines, from computer vision to natural language processing.
However, their opaque decision-making mechanism makes it challenging to employ
them in sensitive areas such as healthcare, legal settings, and autonomous driving.
Many works have been proposed in the explainable artificial intelligence (XAI) field to
overcome this issue and make DNNs more transparent, trustworthy, and deployable.
However, most of these methodologies suffer from several drawbacks.

This thesis explores the current landscape of XAI and identifies critical shortcomings in
the field that require urgent attention. Through a thorough examination of these limita-
tions, we reveal key gaps that motivate our contributions. To address these challenges,
we propose a novel methodology, multilevel XAI, which generates human-like explana-
tions in the form of linguistic and visual concepts for machine learning and computer
vision tasks. Our approach demonstrates that producing multilevel concept-based ex-
planations can be both cost-effective and achieved without significantly compromising
model performance.

Building on this, we introduce a novel weakly supervised semantic segmentation frame-
work, semantic proportions-based semantic segmentation (SPSS). This approach facilitates
effective semantic segmentation without the need for costly and impractical pixel-wise
ground-truth segmentation maps, which are often challenging to obtain in real-world
scenarios. By leveraging class proportions as the sole supervision during training, SPSS
enables an intuitive and efficient generation of segmentation maps. Furthermore, this
framework opens opportunities to integrate the explainability components of multilevel
XAI, paving the way for future research to achieve semantic segmentation with signif-
icantly reduced annotation costs.

We further identified that one of the most significant gaps in the concept-based XAI
field—on which this thesis also specifically focuses—is the absence of standardised
measures and benchmarks for fair evaluation and selection of the most effective method-
ologies. To address this, we propose three novel measures and benchmarks to advance
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the field. We encourage the research community to employ these measures and bench-
marks for a fair comparison among concept-based XAI techniques.

Finally, we discuss the limitations of our work and possible future directions that, once
realised, could significantly impact the XAI, machine learning, and computer vision
communities.
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Chapter 1

Introduction

Deep neural networks (DNNs) have demonstrated impressive predictive performance
across various domains, including medicine [1, 2], robotics [3, 4] and economics [5].
They have been successfully applied to a wide range of problems, such as object de-
tection [6, 7], stock prediction [8], image generation [9, 10] and machine translation
[11, 12], among many others. This success can be attributed to advancements in deep
learning [13], the availability of massive datasets [14] and the increasing computational
power provided by graphics processing units (GPUs) [15].

Despite the significant performance improvements in DNNs over recent years, gaining
trust in their predictions remains a challenge due to the complex and opaque nature of
their decision-making processes [16–21]. To address this, model interpretability has be-
come essential in uncovering the “black box” of deep networks. Interpretability, often
defined as the ability to provide explanations in terms understandable to humans [22], plays
a crucial role in bridging the gap between DNNs’ performance and user trust1.

The techniques developed to interpret and explain machine learning (ML) models are
broadly categorised as explainable artificial intelligence (XAI) methodologies [26, 27].
Consequently, this thesis adopts XAI as its core term. In recent years, the field of XAI
has experienced exponential growth, with numerous approaches proposed to address
the transparency challenge of black-box models. These approaches aim to make such
models safer for deployment, especially in sensitive domains, including healthcare [28,
29] and law [30]. By improving transparency, XAI seeks to achieve several objectives,
such as ensuring fairness by detecting and mitigating discrimination or unexpected
behaviours in ML systems. XAI techniques also assist practitioners in debugging their
systems by identifying biases in data or in the models themselves [20, 31]. Furthermore,
explainability is not merely a desirable feature; since 2018, the General Data Protection

1Ongoing discussions have explored the distinctions between terms like interpretability, explainability,
trustworthiness and transparency, debating their appropriate use in the field [18, 23–25]. In this thesis, we
focus on the shared goal of XAI methodologies—to make AI more understandable to humans—and leave
a detailed discussion of the differences among these terms for future work.
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Regulation (GDPR) in Europe has mandated that artificial intelligence (AI) systems
provide justifications for their decisions, further underscoring the critical role of XAI
[32, 33].

XAI methodologies can be categorised along several dimensions, such as the type of
explanations they produce, the ML models they are applicable to, and the specific tasks
they aim to address. Proposed techniques frequently belong to multiple subcategories
within these dimensions. For instance, a single method might generate both visual
and conceptual explanations or be applicable to both traditional ML models and deep
learning architectures. This overlapping nature reflects the versatility and multifaceted
nature of XAI techniques, which are not limited to a single category but instead span
across several, depending on their design and application. The next section presents
the dimensions along which XAI methodologies are commonly categorised.

1.1 Overview of XAI Categorisation: Key Dimensions

This section explores six critical dimensions for categorising XAI methodologies: ex-
planation phase, explanation level, modality of explanations, model specificity, target
audience and granularity. These dimensions provide a structured framework for un-
derstanding how XAI techniques differ in their approaches and applications (refer to
Figure 1.1 for an overview). This discussion also sets the stage for the modality-focused
literature review presented in Chapter 2.

Explanation Phase. XAI techniques are typically categorised into two main types:
post-hoc and ad-hoc methods. Post-hoc methods are applied after the model has been
trained and offer explanations without altering the model structure or any train/test
time intervention [34, 35]. These methods aim to interpret the decision-making pro-
cess retrospectively, often using visualisations or perturbation techniques. In contrast,
ad-hoc methods refer to models that are either inherently interpretable, such as linear
models and decision trees; or that incorporate explainability directly into their architec-
ture during training [36, 37]. While inherently interpretable methods often have lim-
ited predictive capacity, techniques that integrate explainability into black-box models
typically experience a performance trade-off due to the structural train/test time inter-
ventions. Unlike post-hoc methods, which provide explanations after the fact, ad-hoc
techniques offer immediate, by-product interpretability.

Explanation Level. XAI methods can also be distinguished by whether they provide
global or local explanations. Global explanations aim to give a comprehensive view of
how a model behaves across a wide range of inputs, offering insight into the overall
functioning of the model. Local explanations, in contrast, focus on specific predictions,
providing details on why the model made a certain decision for a particular input. In
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Dimension 1  - Explanation Phase

Dimension 2  - Explanation Level

Dimension 3  - Model Specificity

Dimension 4  - Target Audience

Dimension 5  - Granularity

Dimension 6  - Modality of Explanation

Post hoc (e.g., Saliency maps, LRP)
Ad hoc (e.g., CBMs)

Applied after model training to explain decisions
Built-in interpretability in model architecture

Global (e.g., CAVs, Post-hoc CBMs)
Local (e.g., SHAP, LIME)

Provides a general understanding of model behaviour
Explains individual decisions or predictions

Model specific (e.g., Grad-CAM)
Model agnostic (e.g., LIME, SHAP)

Methods tailored to specific models like CNNs
Can be applied to any type of model

Researchers (e.g., interpret. tools)
End users (e.g., interactive visuals)

Designed for model developers seeking insights
Tailored for users needing output understanding

Fine-grained (i.e., concept level)
Coarse-grained (i.e., class level)

Provides detailed insights into specific parts of inputs
Offers a general understanding of model predictions

Visual (e.g., CAM, Occlusion)
Conceptual (e.g., CAVs, CBMs)

Explanations provided visually, often as heatmaps
Explanations provided as text e.g., concept names

FIGURE 1.1: XAI dimensions for various applications.

short, this category highlights the scale at which a model’s behaviour is interpreted,
whether explaining its behaviour in general or for individual instances.

Model Specificity. For this aspect, XAI methods are labelled as either model-specific or
model-agnostic. Model-specific methods [38–41] are designed to work with particular
types of architectures, such as convolutional neural networks (CNNs), utilising their
unique architecture for explanations. Model-agnostic methods [36, 42–45], however,
can be applied to any ML model, regardless of its structure, as they only require test
inputs and the prediction function. This categorisation reflects the adaptability of XAI
techniques, indicating whether they are specialised for certain architectures or can be
broadly applied across different models.

Target Audience. XAI methods are designed to cater to different groups of users with
varying needs. Some tools are tailored for researchers and developers who require
deep insights into model behaviour to refine and improve model architectures. These
tools often provide detailed, technical explanations and are useful during model de-
velopment. On the other hand, there are methods aimed at end users who need to
understand model outputs without delving into the underlying technical details. For
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these users, interactive visualisations or simplified explanations are more appropriate,
helping them trust and comprehend a system’s decisions. Google‘s what-if tool [46],
AI Explainability 360 toolkit by IBM [47] and H2O AutoML platform [48] are some
user-friendly examples.

Granularity. Granularity refers to the level of detail provided by an XAI technique.
In this direction, methodologies can be categorised as offering fine-grained or coarse-
grained explanations. Fine-grained explanations, such as concept-level insights, delve
into more detail of a model’s decisions, offering feature-specific information [49, 50].
On the other hand, coarse-grained explanations, like class-level or object-level insights,
offer a more general understanding of why a model made a particular prediction, typ-
ically explaining what contributed to the decision overall [34, 35, 39]. This category
helps determine the level of precision or detail in the explanations, depending on the
needs of the user. To give an example, for an animal classification task, a coarse-grained
explanation would be a saliency map highlighting the class of interest for a test im-
age, whereas a fine-grained explanation would generate more granular, concept-wise
heatmaps highlighting different parts of the object in an input image alongside their
textual descriptions.

Modality of Explanations. In this aspect, the distinction lies between the type of gen-
erated explanations. For visual tasks, there are two common modalities: visual and
conceptual. Visual explanations often involve heatmaps that highlight important re-
gions of an image, giving an intuitive, visual representation of what influenced the
model’s decision [42, 44]. Conceptual explanations, on the other hand, ideally offer ex-
planations as human-understandable concepts, e.g., stripe for a zebra image [36, 41]. In
Chapter 2, we delve deeper into these two modalities, offering more detailed insights
and a review of the relevant literature surrounding both modalities. For each modal-
ity, we will explore key methodologies, drawing on existing research to highlight the
strengths and limitations of these approaches. This examination also aims to provide
a comprehensive understanding of the role each modality plays in enhancing AI inter-
pretability and trustworthiness.

1.2 Research Motivation and Contributions

One of the most critical areas where explainability has become essential is computer vi-
sion. DNNs, widely deployed in tasks such as image classification, object detection,
and semantic segmentation, have provided superior performance to the traditional
methodologies while bringing together the mentioned transparency challenge. In high-
stake domains where computer vision models are widely used such as autonomous
driving [51] and medical diagnostics [52], it is not enough for these models to be accu-
rate—they must also provide insights into how they reach their conclusions to ensure
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trust and accountability. This need has driven the development of explainability tech-
niques specifically designed for computer vision models, enabling users to interpret
and visualise the inner workings of these models.

In this thesis, we explore XAI methodologies that are specifically designed for, or adapt-
able to, computer vision tasks. We identify their current limitations and propose novel
approaches to address and overcome these limitations as detailed below.

Traditional visual explanation techniques, such as class activation mapping (CAM)
[38], Grad-CAM [39] and layer-wise relevance propagation (LRP) [35], generate heatmaps
that highlight the regions in an image most relevant to a model’s prediction. Similarly,
saliency maps [34] visualise the contribution of individual pixels to a model’s decision,
providing a detailed spatial understanding of what part of an image influenced the out-
come. These methods are particularly useful for giving intuitive, visually interpretable
feedback on a model’s focus during inference. However, while they excel in visual attri-
bution, they often fall short in offering semantic, high-level explanations detailing why
certain regions or pixels were important in terms of human-understandable concepts
like object parts, texture or shape.

In contrast, concept-based explanations such as concept activation vectors (CAVs) [36,
53] and concept bottleneck models (CBMs) [37, 41, 54] provide an alternative form of
interpretability by linking model predictions to human-understandable concepts. For
instance, CAVs allow a model to explain its predictions based on predefined, inter-
pretable concepts, for instance identifying that an image contains an antelope because
of the horn concept, rather than merely highlighting the body of the animal. Simi-
larly, CBMs are designed to make predictions through an intermediate layer of pre-
defined concepts. This ensures that the model uses human-recognisable features like
tumour size or inflammation in medical diagnosis to make a decision. These approaches
help users understand what high-level, human-like features are driving a model’s de-
cisions. However, while concept-based methods offer deeper semantic interpretability,
they lack the spatial, pixel-level precision that visual attribution techniques provide.
This makes them less suitable for tasks where it is important to know exactly which
parts of an image were crucial for a model’s decision, such as identifying a specific
region in an X-ray image responsible for a medical diagnosis.

In summary, concept-based methodologies are better suited for applications where un-
derstanding the conceptual reasoning behind a prediction is critical, whereas visual at-
tribution techniques are preferable when spatial localisation and visual interpretability
are key. Despite this trade-off, the combination of both types of explanations could of-
fer a more comprehensive understanding of a model’s behaviour, particularly in fields
like healthcare and autonomous driving, where both what and where are crucial for trust
and safety. In this respect, we aim to bring together the two desired properties of XAI
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and propose human-understandable concepts alongside their pixel attribution maps. The
details of our contributions are as below.

• We propose a novel concept-based XAI methodology, multilevel XAI, which pro-
vides intuitive, multilevel explanations while maintaining reasonable annotation
costs. This methodology generates human-like explanations for vision tasks in
both linguistic and visual forms, without significantly compromising the predic-
tive performance of DNNs. The explanations produced by multilevel XAI take
the form of concept-wise saliency maps, highlighting image regions that strongly
influence class predictions. Compared to conventional class-wise saliency maps,
these multilevel explanations are more intuitive and easier to interpret. Addi-
tionally, they are more reliable than other concept-based explanations due to the
inclusion of visual attribution maps as a by-product.

• Although our multilevel XAI approach qualitatively aligns many concepts with
human interpretations, quantitatively validating this alignment remains challeng-
ing without ground-truth concept-wise segmentation maps, which are prohibitively
expensive to collect. If such maps were available, quantitative evaluation could
leverage the intersection-over-union (IoU)—an evaluation metric widely used
for segmentation tasks—to compare ground truth with predicted concept maps.
However, the challenge of collecting these maps led us to propose a novel weakly-
supervised semantic segmentation methodology called semantic proportions-based
semantic segmentation (SPSS). This technique predicts segmentation maps without
requiring per-pixel ground-truth segmentation maps, instead relying on signifi-
cantly less information—namely, the proportions of semantic classes. Given that
multilevel XAI produces explanations in the form of concept-wise saliency maps,
we envision using these maps to estimate class proportions in future work. Due to
time constraints, we have not pursued this further in this thesis. However, SPSS
demonstrates that this direction holds promise for advancing weakly-supervised
segmentation and improving explainability.

• Building on our multilevel XAI approach and SPSS framework, we identified
a significant gap in the evaluation criteria and benchmark datasets within the
concept-based XAI field. To address this, we propose three novel measures: the
concept global importance measure (CGIM) the concept existence measure (CEM) and
the concept location measure (CLM), designed to evaluate the concept prediction
and localisation capabilities of methodologies in this domain. Furthermore, we
advocate for the use of the well-known Caltech-UCSB Bird (CUB) [55] dataset
as a benchmark, leveraging its diverse range of labels. Through qualitative and
quantitative analysis, we demonstrate that while concept-based methodologies
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are widely used and recognised, their concept prediction capabilities are surpris-
ingly limited. Moreover, their highly ranked concept outputs often fail to corre-
spond to the correct regions in a given image, raising concerns about their relia-
bility and safe application. We encourage the research community to adopt our
proposed evaluation measures and the CUB as the benchmark dataset to establish
a unified and fair standard for comparison.

1.3 Thesis Structure

The remainder of this thesis is structured as follows.

Chapter 2 presents an extensive review of existing literature related to XAI method-
ologies, with a particular emphasis on categorising these techniques into distinct sub-
groups based on the modality of explanations. Additionally, this chapter includes a con-
cise overview of weakly supervised semantic segmentation (WSSS) methods, highlight-
ing recent advancements and challenges within this domain.

Chapter 3 proposes a novel multilevel XAI methodology. This approach aims to en-
hance interpretability by generating concept-wise saliency maps, offering more granu-
lar insights into how individual features contribute to model decisions. The proposed
methodology is thoroughly evaluated across various benchmark datasets, demonstrat-
ing its superiority over existing XAI techniques.

In Chapter 4, we present a new WSSS technique. This chapter explores how the pro-
posed SPSS model can achieve effective semantic segmentation across multiple tasks
where only coarse annotations in the form of class proportions are available. We de-
tail the model architecture, training strategy, and extensive experiments showcasing its
performance compared to other state-of-the-art methods.

In Chapter 5, we propose three novel evaluation criteria—CGIM, CEM and CLM—along
with a benchmark dataset to establish a standardised framework for evaluating concept-
based XAI methodologies. Additionally, we introduce the concept activation mapping
(CoAM) framework, which addresses a critical gap in current concept-based XAI tech-
niques: the lack of visual concept attribution. This chapter underscores the need for a
more careful and rigorous design of concept-based XAI methodologies.

Finally, Chapter 6 provides a comprehensive conclusion of the thesis. We summarise
the key contributions and findings, discuss the limitations and challenges encountered
throughout the research, and propose potential future directions aimed at overcoming
these challenges. This chapter also reflects on broader implications for the fields of
XAI and weakly supervised learning, suggesting avenues for further exploration and
innovation.
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Chapter 2

Literature Review

This chapter briefly explores the history of CNNs and examines their frequently cited
“black-box” nature. It then reviews key XAI methodologies for computer vision tasks
to offer a concise yet informative overview. This overview is based on the modality
of explanations, distinguishing between visual and conceptual approaches. Finally, we
delve into the WSSS (weakly supervised semantic segmentation) techniques, laying the
groundwork for the SPSS methodology introduced in Chapter 4. This chapter comple-
ments the more specific literature reviews presented in this thesis’ main chapters.

2.1 Black-box Nature of CNNs

First proposed in 1998 for handwritten character recognition [56], CNNs have shown
a remarkable performance, especially in vision tasks. Thanks to the ImageNet dataset
[14] and efficient GPUs that enabled thousands of computations in parallel, AlexNet
by Krizhevsky et al., achieved state-of-the-art performance in ImageNet LSVRC-2012
competition [57]. Following AlexNet, several even more performant architectures have
been proposed including but not limited to VGG [58], GoogleNet [59] ResNet [60],
DenseNet [61], MobileNet [62], EfficientNet [63] and ConvNeXt [64, 65]. With these
CNN-based architectures, human-level performance has already been reached and ar-
guably outperformed in various tasks. However, CNNs’ black box nature has been seen
as the main obstacle to their further deployment, especially in fields where human life
is at stake.

The so-called black-box nature of CNNs arises from their end-to-end learning process,
which contrasts with traditional ML methods such as decision trees [66] and support
vector machines (SVMs) [67] where features are manually designed by experts—for
example, edge and texture detectors or colour histograms—tailored to specific tasks
[68, 69]. As the decision process of traditional ML techniques is built around these
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predefined, human-understood features, it is relatively easy to follow the reasoning
behind their predictions. In contrast, CNNs automatically learn features directly from
data through multiple layers of abstraction without any human intervention. This au-
tomatic feature extraction helps CNNs achieve state-of-the-art performance, but it also
complicates our understanding of what the model is learning at each stage. The learned
representations are highly complex and the decision process is non-linear which leads
to an opaque decision-making that obscures the internal workings of the model [70].

Several methodologies were proposed to tackle these opaque predictions and make
deep networks more transparent. In this direction, efforts to enhance the interpretabil-
ity of CNNs have focused on two primary strategies: visualising model behaviour and
aligning learned high-level features with human-understandable concepts.

Visualisation techniques aim to illuminate how CNNs build complex representations
hierarchically from simpler ones, as early studies revealed that initial layers learn basic
features like edges and lines, while later layers capture textures and patterns, culminat-
ing in the penultimate layer focusing on object parts—insights contributing to what [71]
describes as Algorithmic Transparency [72–74]. Additionally, pixel attribution methods
highlight specific regions of input images that most strongly influence model predic-
tions, providing a clearer understanding of what drives specific decisions [34, 75].

On the other hand, feature-concept alignment methodologies seek to map high-level
features learned by CNNs to human-interpretable concepts [36, 41, 76]. These ap-
proaches reconnect abstract representations of deep networks with predefined, seman-
tically meaningful concepts, akin to the handcrafted features used in traditional mod-
els. By doing so, they aim to bridge the gap between the opaque, high-dimensional
workings of CNNs and human intuition, making the decision-making process more
transparent and understandable.

An ideal XAI methodology would seamlessly address both directions detailed above: it
would not only match high-level features—automatically extracted during training—to
human-understandable concepts but also localise these concepts spatially within an ex-
amined input sample. Such a methodology would provide a more holistic explanation,
enabling users to understand not only what the model has learned but also where these
concepts are represented in the input. This dual capability would allow for more in-
tuitive and interpretable model explanations, improving trust and transparency in AI
systems across various domains.

2.2 Visual Explanations

Visual explanations are arguably the most widely used XAI techniques for computer
vision tasks as they offer a direct way to interpret model decisions by providing visual
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representations of what a model makes its decisions based on. This category encom-
passes a wide range of methods, often focusing on how particular parts of an image
contribute to a model’s output. The goal of visual explanations is to make the inner
workings of deep networks, especially CNNs, more transparent and interpretable.

2.2.1 Activation Maximisation

Visual explanations for CNN decisions can take the form of patterns that strongly ac-
tivate a neuron, a feature map, an entire layer, or a predicted class—a process com-
monly referred to as activation maximisation. A notable methodology in this direction
is random noise image optimisation. This approach starts with a random noise image,
and the gradients of a specific unit are computed with respect to this image. The pro-
cess identifies the patterns that most strongly activate the targeted unit, resulting in
visionary pattern images that offer insights into the network’s learned representations
[73, 77–79]. Activation maximisation with random image optimisation, while useful
for understanding which input patterns maximise the response of specific neurons or
layers in black box models, comes with several limitations. One significant drawback
is that the generated visualisations often lack interpretability and clarity, especially for
higher-level neurons. The images produced tend to be highly abstract and sometimes
visually unrealistic, making it difficult for humans to intuitively grasp what the model
is focusing on. Additionally, they require numerous optimisation steps to generate
meaningful activations, which makes them computationally expensive and hence their
real-time or large-scale applications challenging.

An alternative approach, which eliminates these drawbacks, outputs real images in-
stead. This is achieved by feeding the entire training set to the trained model and
selecting a group of images that highly activate a specific unit [73, 80]. However, this
approach places a significant burden on end-users, who must manually sift through
highly activating images to identify common patterns—a process that is highly suscep-
tible to human bias.

In addition to the mentioned drawbacks, activation maximisation techniques are also
prone to adversarial artefacts—small changes in the input can drastically change the
output activation without corresponding to any meaningful difference in the input im-
age, undermining the reliability of the explanations. Overall, while activation max-
imisation offers insights into model behaviour, its limitations in clarity, computational
cost, and susceptibility to noise reduce its practical utility in explainability.
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2.2.2 Pixel Attribution

Pixel attribution techniques aim to find out image parts that contribute the most to their
class predictions by creating heatmaps. These maps are used to mask input images to
highlight specific parts crucial for a specific prediction. A heatmap is obtained by as-
signing an importance score to each pixel or a group of pixels. The intuition behind
pixel attribution draws from the principles of linear models. In the case of a simple
linear model where an input x with P features is classified by, say, a single neuron
without any non-linear activation, the class score for a particular class c is computed as
Sc = ∑i w(i)

c x(i), where wc is a weight vector. This intuitively means that each feature
in x contributes to the overall score based on its corresponding weight in wc. A feature
with a higher score, i.e., w(i)

c ∗ x(i), has a greater impact on the class score, as Sc is a
weighted sum of the feature values. Thus, features with higher values after being mul-
tiplied by their corresponding weights are considered more important in determining
the class prediction. This simple idea is the foundation of pixel attribution methodolo-
gies, which assign a score to each pixel in an input image based on its contribution to
the class prediction.

We can adapt the linear example above to a more complex image classification scenario
achieved by CNNs. Let x ∈ RP denote an input image with P pixels, to be classified as
one of the C classes. A trained model defines a mapping function f : RP → RC, which
generates a probability vector expressed as f (x) = [S1, ..., SC], where Sc represents the
probability score for class c. Attribution methods assign a relevance score to each pixel
in x, denoted as rc = [r(1)c , ..., r(P)

c ], where r(i)c represents the relevance score of pixel i
for class c. Obtaining these relevance scores helps us mask the input image accord-
ingly and derive a saliency map [71]. As CNNs are complex architectures and include
multiple layers with nonlinearities, the linear approach cannot be directly applied, i.e.,
obtaining rc is not as straightforward as wc. However, various approximations have
been proposed as detailed below.

2.2.2.1 Backpropagation-based saliency mapping

Backpropagation-based methods are widely used for saliency mapping [34, 72, 81]. In
this direction, Simonyan et al., presented the first saliency mapping technique where
they take gradients of a class score Sc for class c with respect to the pixels of the input
image x [34]. These gradients result in a relevance score vector, rc =

∂Sc
∂x , with the same

size as the input image. Higher positive relevance scores indicate important pixels for
class c, while lower ones show insignificant ones. In addition, high negative values can
be seen as an indicator of other classes or backgrounds. These relevance scores then
can be used to weigh the pixels to create a saliency map [34, 71]. As Springenberg et
al. present, the other two well-known gradients-based methods, deconvolution [72, 82]
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and guided backpropagation, indeed follow the same process as Simonyan’s approach
apart from the way they backpropagate through the activation functions [81].

Integrated Gradients [83] provides a principled way to quantify the contribution of
each input feature to a model’s prediction. It addresses some of the limitations of the
early gradient-based methods, which can be noisy or misleading due to local irregular-
ities in the model’s gradients. They compute attributions by integrating the gradients
of the model’s output with respect to the input along a straight path from a baseline
(e.g., a black image or zero vector) to the actual input. Mathematically, it averages
these gradients over multiple steps along the path, ensuring that the attributions are
both robust, which refers to explanations remaining consistent when the input data or
the model itself undergoes insignificant changes. For instance, explanations would be
expected to stay the same when the pixel values of an input image change in a way
that the predicted object protects its characteristics. The author claims that their ap-
proach satisfies desirable theoretical properties, such as completeness, which ensures
that the sum of all attributions matches the difference between the model output for the
input and the baseline. By providing a clear and interpretable mapping of input fea-
tures to their contributions, Integrated Gradients has been recognised as an important
technique in XAI research.

Deep learning important features (DeepLIFT) [84] is another backpropagation-based
pixel attribution method that provides a robust framework for explaining the predic-
tions of deep networks by comparing the activations of neurons to their reference acti-
vations. Unlike gradient-based methods, which can suffer from issues such as vanish-
ing gradients or noise, DeepLIFT assigns contribution scores by tracking the changes
in outputs relative to a baseline input. It propagates these contributions backwards
through the network using a set of predefined rules to ensure consistency and effi-
ciency. The key innovation of DeepLIFT lies in its ability to handle nonlinearities more
effectively by considering both the input and the reference, allowing it to capture mean-
ingful attributions even in complex networks. DeepLIFT is also claimed to satisfy the
completeness property (the sum of attributions matches the difference between the
model output for the input and the baseline) similar to the Integrated Gradients ap-
proach. In addition, it also holds the symmetry (equal changes in symmetric inputs
receive equal attributions) property, which contributes to their robustness and safe use.

LRP (layer-wise relevance propagation) [35, 85–87] is a powerful explainability tech-
nique designed to interpret the decisions of DNNs by tracing back the contributions
of individual input features to the model’s output. LRP works by decomposing the
prediction score and redistributing it layer by layer, from the output back to the input,
using a set of conservation rules. This redistribution ensures that the total relevance
is preserved at each layer, ultimately assigning relevance scores to input features in a
way that reflects their contribution to the prediction. By doing so, LRP is claimed to
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satisfy important properties such as relevance conservation and provides insights into
how specific features, such as pixels in an image, influence the model’s output.

Backpropagation-based XAI methodologies have been pivotal in unravelling the inner
workings of complex neural networks. They offer a relatively efficient way to link in-
put features to model predictions, enabling practitioners to gain insights into model be-
haviour and hence increase trustworthiness. These methods are particularly appealing
due to their simplicity and adaptability across various neural architectures. However,
their limitations are equally noteworthy. One key issue is their lack of precision, as
they often produce coarse, blurry visualisations that highlight large, indistinct regions
of the image, making it difficult to pinpoint exactly what features the model is focus-
ing on. This can be particularly problematic when interpreting decisions in tasks like
medical imaging or autonomous driving, where fine-grained details are critical. These
methodologies also often suffer from instability and lack of robustness, with explana-
tions being sensitive to minor input perturbations. They may also struggle to capture
global model behaviour, instead focusing on local feature importance, which can lead
to misleading or incomplete interpretations. Furthermore, the ones that employ gradi-
ents may be vulnerable to vanishing gradients and susceptible to noise. Additionally,
saliency maps by backpropagation-based methodologies tend to be post-hoc explana-
tions, meaning they provide insights only after a decision is made, which might not
always reflect the true reasoning process of the model.

In summary, these shortcomings reduce the effectiveness of backpropagation-based
methodologies in providing clear, consistent, and trustworthy interpretations, espe-
cially in high-stakes applications, which underline the need for complementary XAI
approaches that provide more consistent and comprehensive explanations.

2.2.2.2 Class activation mapping (CAM)

Another group of methods, CAM, leverage the final convolutional layer of DNNs,
which is shown to capture the most meaningful and complete object signals [74]. Un-
like backpropagation-based approaches, CAM focuses on high-level features within
these layers rather than tracing gradients or activations back to the input pixels. The
first CAM method, introduced by Zhou et al., was designed for architectures incor-
porating a global average pooling (GAP) layer between the final convolutional and
classification layers [38].

In this method, the GAP layer computes a scalar value Fk for each feature map f k,
which is then passed to the classification layer along with weights w. The class score
for a particular class c is calculated as Sc = ∑ wk

c Fk, where wk
c denotes the contribution

of Fk—and by extension, the feature map f k—to the score for class c. Each feature map
f k in the final convolutional layer, prior to the GAP operation, is expected to highlight
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the region that corresponds to the concept it represents when scaled by its calculated
weight wk

c .

For instance, in a face recognition task, a feature map activated by the nose might re-
ceive a high weight, while one responding to unrelated features, such as a car wheel,
would be assigned a low or even negative weight. The weighted sum of these feature
maps is then upsampled to the input image’s resolution, producing a saliency map that
highlights the most relevant regions for the examined class.

A key limitation of the CAM approach is that it can only be applied to CNNs with a
GAP layer between the last convolutional and classification layers, such as GoogleNet
[59]. For architectures lacking this structure, CAM requires modifying the model by
adding a GAP layer after the final convolutional layer. However, this alteration neces-
sitates model retraining, which can lead to performance degradation compared to the
original model.

GradCAM [39] was introduced to overcome the limitations of CAM, particularly its de-
pendency on GAP. As a generalisation of CAM, GradCAM eliminates the need for spe-
cific model types or architectural modifications, making it more versatile and broadly
applicable. This is achieved thanks to the way GradCAM weighs each feature map; dif-
ferently from CAM, it takes the gradients of the output score Sc for a given class c with
respect to each feature map f k at the last convolutional layer, i.e., ∂Sc

∂ f k . After this process,
k different gradient maps are obtained. Finally, by applying GAP, a single weight,

wk
c =

1
Z ∑

i

∂Sc

∂ f k
i

, (2.1)

for each feature map is obtained where i indicates the location of each pixel and Z
is the total number of pixels in the feature map f k. Following that, similar to CAM,
a weighted sum of the feature maps generates a heatmap with the same dimensions
as f k (also see Figure 2.1 for an illustration). ReLU is also applied to keep features
that positively affect a given class and ignore the negative signals that probably are
for the other classes. Lastly, acquired heatmaps are upsampled to the size of the input
image to highlight important parts of it. In addition, the authors show how to get more
class-discriminative and fine-grained results using simple element-wise multiplication
between saliency maps generated with GradCAM and guided backpropagation [81].

More approaches were proposed to further refine the resulting activation maps of Grad-
CAM. For instance, Chattopadhay et al. proposed the GradCAM++ method to generate
better localisation and handle multiple instances in a single image [88]. The main dif-
ference of this approach from GradCAM is taking into account only positive partial
derivatives of feature maps at the last convolutional layer. ScoreCAM [75], presented
by Wang et al., gets rid of the dependency on gradients of the GradCAM method by
masking input images according to feature maps to obtain perturbed images. Scores



16 Chapter 2. Literature Review

Input

CNN

Feature maps

FC layer(s)

Classifier
Grosbeak

Towhee

Nuthatch

gradients through the last CNN to obtain wc

w1
c∗ +w2

c∗ + +w3
c∗ =

Gradient-weighted class activation mapping (GradCAM)

FIGURE 2.1: An overview of gradient-weighted class activation mapping (GradCAM)
[39]. Gradients of the predicted class score with respect to the feature maps of the last
convolutional layer are computed to obtain weights wc. These weights are used to
linearly combine the feature maps, and the resulting weighted sum is used to mask
the input image to obtain a saliency map, highlighting the regions most relevant to the

prediction.

obtained by forward passes of these images are used as weights, for instance, wk
c for

feature map k. This method claims to reduce noise in the saliency maps caused by
gradients.

Advanced CAM methods, including Grad-CAM and Grad-CAM++, have been widely
adopted for visualising the important regions of an image that contribute to a model’s
decision, but they also come with notable limitations. One key issue is that while they
can be applied to a broader range of architectures than traditional CAM (which re-
quires GAP), the visualisations they produce are often still relatively coarse and low-
resolution. This can obscure fine details that might be critical in tasks such as medical
image analysis or detailed object recognition, where understanding subtle features is
essential. Moreover, CAM-based methods generally highlight large regions of an im-
age, making it difficult to differentiate between important and unimportant features
within these highlighted areas. Additionally, CAM methods typically focus on explain-
ing a model’s final decision for a specific class, offering little insight into the interme-
diate layers or the broader decision-making process across the network. This narrow
focus limits their ability to provide a holistic understanding of how the model pro-
cesses and interprets input data. Overall, while CAM methods offer valuable insights,
their lack of spatial precision and limited scope reduce their effectiveness in generating
deep, fine-grained explanations.
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2.2.2.3 Perturbation-based methodologies

Another approach to pixel attribution involves perturbation-based methodologies. These
methods use altered versions of an image to gain insights into a model’s inner work-
ings. For example, in the occlusion sensitivity technique by Zeiler et al., a portion of an
image is replaced with a patch that contains either the average pixel value of the entire
image or a uniform colour. Newly created perturbations are then passed through the
trained model to see the effect of the occluded area on the prediction. Despite being as
simple as blocking a part of an image, occlusion is shown to be an effective approach.
To give an example, the authors showed that when they occlude a dog’s head in a
given image, the probability for the dog class drops significantly, which indicates that
the head of the dog is crucial for the trained model when making that specific predic-
tion [72].

In a similar methodology, RISE [45] employs an automated approach to generate per-
turbations for attribution maps. Given a trained CNN model f : RH×W → RC that
maps an input image X of size H ×W to an output class c, RISE introduces a binary
mask M sampled from a random distributionD and of the same size as X. By perform-
ing element-wise multiplication of M and X, a perturbed image is created with random
occlusions at specific pixel locations. Repeating this process with multiple masks pro-
duces a set of perturbed images. The model’s prediction probabilities for class c are
then computed for each perturbed image and used as weights. Finally, a weighted sum
of all perturbed images is used to generate an attribution map. The idea of occluding
parts of an image or starting from a blank image and incrementally adding random
patches (or pixels) to observe changes in the classification score for a given output class
has inspired many model-agnostic methods, which we discuss next.

We now review some well-known model-agnostic methods, which fall under the cate-
gory of perturbation-based pixel attribution techniques. These methodologies are not
designed specifically for CNNs and can be applied to any trained ML model, as they
only require the investigated input sample and the prediction function. Often referred
to as “black-box” XAI techniques, these methods do not rely on access to the trained
model’s internal components, such as weights or feature maps, unlike most of the ap-
proaches reviewed so far.

One of the well-known model-agnostic techniques, local interpretable model-agnostic
explanations (LIME) [42], is presented by Ribeiro et al., and followed by different vari-
ants such as G-LIME [89] and S-LIME [90]. The idea behind LIME is to approximate a
trained complex ML model with a simpler linear model in the local vicinity of an input
sample. In this context, LIME is based on the assumption that we introduced earlier
in this section: linear models can be interpreted by evaluating the weights they opti-
mise per feature. LIME works by first splitting an input image into superpixels which
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are contiguous regions of similar pixels. It then perturbs the image by randomly turn-
ing some superpixels on and off to create variations of the original image. For each of
these perturbed images, the distance to the original image is calculated to capture how
much they differ. The original black-box model is then used to classify these perturbed
images, and the predictions are recorded. Based on the distances and the correspond-
ing predictions, LIME constructs a new, simpler linear model that approximates the
behaviour of the original complex model in the local region around the investigated
sample. Finally, the most important superpixels—those that have the greatest impact
on the prediction—are highlighted as pixel attribution maps for the model’s decision.
By doing so, LIME helps identify which parts of the image were most influential for the
model’s decision.

(A) LIME. Adapted from [42]. (B) Anchors. Adapted from [43].

FIGURE 2.2: The difference between LIME and Anchors approaches: LIME fits the best
possible linear line while anchors “guarantee” that almost all the examples satisfying
the rules are from the same class. D is the perturbation space for both approaches, the
straight blue line is the linear model that LIME proposes, and the dashed box is the

local area that the Anchor method “anchors” the explanations.

To illustrate how LIME works, we present Figure 2.2a for a binary classification task.
As shown, a complex pattern, highlighted in brown colour, is captured by the original
trained model. The big red star is the instance to be explained, and other red stars
represent the perturbed samples from the same class while the blue octagrams are the
samples from the opposite class. The larger an instance, the closer it is to the data point
being queried. Using the predicted classes from the original complex model for the
perturbed instances, along with the calculated distances, the linear model (represented
by the blue line) is optimised to approximate and explain the class prediction of the red
star in its local vicinity. Although this new model does not reflect the global behaviour
of the complex model, it is locally faithful; meaning that it reflects the behaviour of the
complex model in the local area of the given instance. The weights of this linear line
show the importance of each image patch in the input image [42].

One major issue that LIME and other linear approximation approaches face is to de-
termine the neighbourhood in which the given explanations are valid. There is no
specified way to decide which data points these explanations are applicable to. This is
a vital issue as the coverage of explanations is not clear. In other words, explanations
would be tricky and unstable when trying to predict unseen examples by relying on the
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weights of the newly fitted model. An attempt to mitigate this limitation was made by
the same authors in [43], where a novel method called Anchors: high-precision model-
agnostic explanations is presented. The difference between Anchors and LIME can be
seen in Figure 2.2b. Anchors aim to fix a local area where all the instances are from
the same class to achieve consistent “anchored” explanations. In this way, explanations
help users predict unseen data points with high precision and less effort. This approach
is presented in the form of a rule-based system, and an example explanation may be,

• if you are [younger than 50] and [female], then you are very unlikely to have cancer,

where [age: under 50] and [gender: female] are referred to as anchors. As long as these
anchors are present in new input, it is highly likely to be predicted as belonging to the
same class as samples sharing these feature values. These features are assumed to cause
the classification and provided that they are held; changes in the rest of the features do
not affect the prediction. Similarly, for an image classification task, the anchors may be,

• if the given image includes [stripes], then it is almost guaranteed that the model
will classify it correctly as a zebra,

and hence the super-pixels involving [stripes] are called anchors. Anchors aim to meet
two main requirements: precision and coverage. The former is about how precise the
explanations are, while the latter defines the local area where these explanations are
applicable. For a zebra classification task, precision is the percentage of perturbed ex-
amples from the same class as the input image that also contains [stripes], whereas
coverage is defined as the fraction of the number of samples that hold the given anchor
[stripes] to all perturbed instances [43].

SHapley Additive exPlanations (SHAP) by Lundberg et al. is another powerful and
widely used model-agnostic XAI approach [44]. It is rooted in the concept of Shapley
values from cooperative game theory, where the goal is to fairly attribute the contribu-
tion to each player in a game based on their impact on the overall outcome. Applied
to ML, SHAP assigns a value to each feature, representing its contribution to the fi-
nal prediction for an individual instance. What makes SHAP particularly appealing
is its theoretical rigour and its ability to provide consistent, model-agnostic explana-
tions, making it highly versatile across different types of ML models, from linear to
deep learning architectures. This versatility is achieved through several specialised
variants designed to enhance both efficiency and accuracy depending on the model
type. For instance, Kernel SHAP is the most general version, allowing SHAP values to
be computed for any ML model. However, it relies on a kernel-based approximation
technique that samples many combinations of feature subsets, which can be computa-
tionally intensive, particularly for high-dimensional data. Despite its flexibility, Kernel
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SHAP’s high computational cost often limits its scalability, especially for large datasets
or complex models.

To address these performance limitations, model-specific variants of SHAP have been
developed, with Tree SHAP [91] standing out as a prominent example. Tailored for tree-
based models like decision trees, random forests, and gradient boosting machines, Tree
SHAP leverages the structure of these models to compute exact SHAP values much
more efficiently than Kernel SHAP. This makes it an ideal choice for structured data,
where tree-based models are often preferred due to their predictive power and inter-
pretability. In a similar vein, Deep SHAP combines SHAP values with DeepLIFT [84],
to provide efficient explanations for deep learning models. By utilising backpropaga-
tion, Deep SHAP makes it feasible to explain complex neural networks in a compu-
tationally efficient manner, which is critical for tasks involving unstructured data like
images or text.

These various SHAP variants highlight the method’s remarkable adaptability across
different ML models, which helped SHAP to become one of the cornerstone techniques
in XAI. Its versatility in offering both local explanations—detailing the contributions
of individual features to specific predictions—and broader global insights—captured
through aggregations across the entire model—makes it an invaluable tool for diagnos-
ing model behaviour, ensuring fairness, and promoting accountability in ML systems.

Perturbation-based XAI methodologies, such as SHAP and LIME, have gained consid-
erable traction for their flexibility and ability to provide model-agnostic explanations.
These methods excel at generating intuitive local explanations by estimating the con-
tribution of individual features to a model’s predictions, making them valuable tools
for interpreting complex ML models. Their general applicability across different model
types is a significant strength, allowing practitioners to apply them to a wide range of
tasks without requiring specific model architecture knowledge.

However, these methodologies are not without limitations. One significant challenge is
their computational complexity. Estimating feature attributions often requires multiple
model evaluations for various perturbed inputs, which can become infeasible for high-
dimensional datasets or computationally expensive models. Another drawback is their
reliance on assumptions about the data, such as feature independence, which is rarely
true in real-world datasets. This can lead to misleading or less accurate interpretations
in the presence of feature correlations. Additionally, while perturbation-based methods
are effective at providing local explanations, deriving consistent global insights can
be difficult, especially when local attributions vary widely across instances. Finally,
being model-agnostic, these approaches might not fully capture the internal mechanics
or nuances of a model, potentially limiting their utility in domains requiring a deep
understanding of a model’s workings.
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2.3 Conceptual Explanations

While visual explanations by activation maximisation and pixel attribution techniques
are widely employed for computer vision tasks, there is also a growing interest in con-
ceptual forms of explanations. Methodologies proposed in this direction aim to provide
a high-level understanding of how models make decisions by linking their internal rep-
resentations to human-interpretable concepts. This is particularly useful when the goal
is to explain complex models in terms of concepts or features that align with human
reasoning.

Network dissection [49] is a systematic methodology for interpreting the internal repre-
sentations of neural networks by quantifying how individual neurons encode specific
human-interpretable concepts. It provides a way to analyse the emergent structure
within deep networks, particularly CNNs. The technique involves mapping the activa-
tion patterns of neurons to a predefined set of semantic concepts derived from labelled
datasets, such as object categories, textures, or scenes. By evaluating the alignment be-
tween neuron activations and these concepts, network dissection enables researchers to
understand the role and specialisation of neurons in the decision-making process of a
model. This method is significant in demystifying the “black-box” nature of neural net-
works, providing insights into their interpretability, which are critical for debugging,
enhancing trustworthiness, and identifying biases in AI systems.

Despite these advantages, network dissection has significant limitations. A key draw-
back is its reliance on segmentation maps for concepts, which are costly and time-
consuming to create, especially for large and diverse datasets. This dependence can
introduce biases and restrict the scope of analysis to predefined, segmented concepts,
potentially overlooking emergent or complex features not present in the available seg-
mentation maps. Additionally, network dissection focuses on individual units, which
may fail to account for the collective behaviour of multiple units crucial for encoding
higher-level abstractions. Lastly, it is better suited for static, pre-trained models and
may struggle to offer insights for fine-tuned or dynamically evolving architectures.

Concept whitening [76] is another well-known technique. It works by modifying the
latent space of neural networks to improve interpretability and disentanglement of
learned representations. It introduces a specialised transformation layer into the net-
work, which ensures that specific latent dimensions are decorrelated and aligned with
human-understandable concepts. This is achieved through a whitening process that
removes redundancy among features, making each dimension orthogonal to others,
while simultaneously associating them with predefined semantic concepts. By ex-
plicitly controlling the latent dimensions to represent interpretable concepts, concept
whitening facilitates understanding and debugging of model behaviour, and can po-
tentially lead to better generalisation by reducing overfitting to irrelevant correlations
in the data.
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CAVs (concept activation vectors), presented by Kim et al., represent one of the key
methodologies in the concept-based explanations realm [36]. By defining a set of high-
level concepts, such as “striped” or “spotted” for, say, animal classification, CAVs mea-
sure the alignment of these concepts with the model’s internal representations and
allow researchers to examine how a deep learning model responds to these human-
interpretable concepts. This is achieved by calculating directional derivatives of model
predictions with respect to the predefined concepts at an intermediate layer of the ex-
amined model. This enables the generation of more meaningful explanations in the
form of human-understandable concepts compared to the CNNs’ learnt high-level fea-
tures or highlighted coarse-grained object locations. CAVs have been particularly valu-
able in medical imaging where model domain-specific explanations are crucial [92, 93].

Crabbe et al. [94] proposed the concept activation regions (CARs) which extends the
CAVs approach to address its limitations in modelling scattered concept examples in a
DNN’s latent space. Unlike CAVs, which assume that concept examples align with a
single direction in the latent space, CARs represent concepts as regions encompassing
multiple clusters. This representation uses the kernel trick and support vector classi-
fiers to define concept activation regions. CARs enable describing how concepts relate
to DNN predictions and also show how specific features correspond to concepts. Ad-
ditionally, CARs demonstrate the potential for DNNs to autonomously identify estab-
lished scientific concepts, such as grading systems in prostate cancer analysis.

Presented as an extension to the earlier idea [95, 96] of first predicting the concepts and
then using the predicted concepts to predict a final target, CBMs (concept bottleneck
models) [41] offer a compelling approach within the realm of conceptual explanations
in XAI. These models are designed to provide interpretable decisions by incorporat-
ing human-understandable concepts into their decision-making process. In a CBM,
the model first predicts a set of predefined concepts—such as “texture”, “shape”, or
“tumour size”—which serve as high-level, interpretable features. These predicted con-
cepts are then used as inputs to make the final decision. By doing so, CBMs allow users
to directly inspect the model’s reasoning at an intermediate level, offering transparency
into how each concept contributes to the outcome. This structured approach not only
makes the decision-making process more understandable but also allows for interven-
tions at the concept level, enabling users to correct mispredicted concepts before they
affect the final output. In this direction, there have been several works exploring effi-
cient ways to achieve systematic interventions and model corrections [54, 97–99].

CBMs differ from CAVs in how they treat concepts. While CBMs are trained with the
explicit goal of predicting and utilising predefined concepts as an integral part of their
decision pipeline, CAVs operate in a post-hoc manner. CAVs are used to probe and
analyse a trained model’s internal representations to measure how well these represen-
tations align with specific concepts, without requiring the model to explicitly predict
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those concepts during training. In other words, CAVs extract and quantify the influ-
ence of concepts after the model has been trained, while CBMs actively incorporate
and rely on concepts throughout the learning process. This distinction gives CBMs a
unique advantage when it comes to interpretability and control, as they offer built-in
transparency and allow for direct correction at the concept level, enhancing both the
interpretability and robustness of the model. Several extensions were introduced to
improve CBMs [100–104].

One key drawback of CBMs is their high cost as they require manual concept anno-
tation for every training image. This process can be time-consuming and resource-
intensive, especially when working with large datasets. One solution is proposed in
Chapter 3 where class-wise attributes were used to train CBMs which significantly
reduced the annotation cost. Another solution is to integrate CAVs [36] in CBMs,
which require only a set of positive and negative examples per concept, making them
less annotation-intensive compared to the full concept annotations required by CBMs.
Moreover, CAVs can even be derived from a completely different dataset to form con-
cept banks, which then can be employed to explain models trained with related datasets,
making CAVs more flexible and scalable.

In this context, post-hoc CBMs [37] achieve this integration to create a more efficient
and controlled approach. They work by leveraging CAVs to obtain concept values,
eliminating the need for intermediate concept predictions. Following that, a single
layer is introduced as a bottleneck inspired by CBMs to map the concept values to the
final classes. By doing so, post-hoc CBMs maintain the model intervention property
of traditional CBMs while avoiding the high costs of concept annotation for every im-
age, thanks to CAVs. This approach efficiently brings together the flexibility of CAVs
and the structured decision-making process of CBMs, allowing for more scalable and
transparent model analysis. Even though post-hoc CBMs were shown to be effective as
a global explicator via model editing experiments, their concept prediction and locali-
sation abilities are under-explored. This is due to post-hoc CBMs not being trained to
explicitly predict the concepts unlike traditional CBMs, which hinders the possibility
to do any direct evaluation on individual concept predictions.

Another methodology that aims to reduce the concept annotation cost, the CounTEX
framework, connects image classifiers with textual concepts, leveraging a multi-modal
embedding space, such as that provided by CLIP [105], to generate counterfactual ex-
planations. It aims to explain classifier decisions by identifying and quantifying the
contribution of specific, human-interpretable concepts derived from text. By mapping
between the latent spaces of the target classifier and the CLIP model, CounTEX creates
a projection mechanism to explain both correct and incorrect classifications in terms
of these textual concepts. This approach aims to address the challenge of concept-
annotated datasets requirement by utilising text-driven concepts [106].
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An essential aspect of concept-based interpretability is the accurate prediction and lo-
calisation of highly important concepts. For example, if an animal classifier identifies
an image as an antelope and indicates the horn as a critical concept for this prediction,
the horn should not only be present in the input image but also activate the network in
a way that aligns with the image region containing the horn.

While several methodologies discussed earlier provide relatively efficient solutions
for concept-based explanations, their outputs are typically limited to a single level of
abstraction. This means they lack the visual components necessary to highlight the
precise regions corresponding to concepts in a given image. Furthermore, there is a
noticeable absence of standardised evaluation metrics and benchmark datasets, mak-
ing it challenging to compare these methodologies and comprehensively assess their
strengths and limitations.

This thesis addresses these gaps in concept-based explanation methodologies. In Chap-
ter 3, we introduce multilevel XAI, a method that generates both concepts and their
corresponding heatmaps within the input image. To address the lack of evaluation
tools, Chapter 5 proposes novel metrics for concept prediction and localisation while
advocating for the use of an existing dataset, Caltech-UCSD Birds (CUB) [55], as a
benchmark to evaluate concept-based explanation methodologies. These contributions
enable more robust comparisons and comprehensive assessments of their performance.

2.4 Weakly Supervised Semantic Segmentation

Semantic segmentation is a core task in computer vision, focused on assigning se-
mantically meaningful labels to every pixel in an image to identify specific objects.
This task has diverse applications, including autonomous driving [107, 108], scene un-
derstanding [109], and medical image analysis [110, 111]. By enabling machines to
extract detailed semantic information from images, it brings them closer to human-
like visual perception. However, the inherent complexity and variability of real-world
scenes, combined with the substantial need for labelled data to train deep learning
models, make semantic segmentation a challenging problem. To tackle these diffi-
culties, researchers have proposed various methods, such as fully convolutional net-
works (FCNs) [112], encoder-decoder architectures [113, 114], and attention mecha-
nisms [115]. These approaches have driven significant progress in semantic segmenta-
tion, establishing it as a vibrant and rapidly evolving research field.

Despite these architectural advancements, the requirement of pixel-wise segmentation
maps remains a significant challenge for successful semantic segmentation applica-
tions. WSSS approaches have been proposed to address this expensive per-pixel an-
notation challenge by leveraging less detailed coarse annotations, such as image-level
labels, bounding boxes, scribbles, or points, to significantly reduce annotation efforts.
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Depending on the granularity and type of available annotations, weak supervision can
be categorised into these types, each offering unique advantages and challenges that
influence the methods and performance of WSSS approaches.

XAI has also emerged as a promising avenue for providing weak supervision in this
context, offering significant potential for reducing reliance on fully annotated data.
Techniques like Grad-CAM [39], LRP [35], and Integrated Gradients [83] generate salien-
cy maps that highlight key regions contributing to a model’s predictions, making them
valuable for WSSS. These outputs can serve as pseudo-annotations, guiding segmen-
tation models by localising salient object parts. Hybrid approaches that combine XAI-
generated pseudo-labels with weak annotations, such as image-level labels or bound-
ing boxes, further enhance segmentation accuracy while minimising annotation costs.
By aligning model interpretability with segmentation tasks, XAI fosters more transpar-
ent and explainable WSSS pipelines, bridging the gap between coarse annotations and
precise segmentation, and ultimately reducing the need for dense supervision.

Below, we explore methodologies that utilise various levels of annotations, ranging
from image-level labels to saliency maps generated by XAI techniques, as forms of
weak supervision for semantic segmentation tasks. These methodologies were shown
to be effective in outputting segmentation maps while keeping the annotation cost rel-
atively low.

Image-level labels indicate the presence of classes in an image without providing spa-
tial information. They are the weakest form of supervision, as they lack localisation de-
tails. Methods using image-level labels often begin with CAM to localise discriminative
regions associated with each class. While CAM-based approaches are computationally
efficient, they tend to focus on the most salient parts of an object, leading to incomplete
segmentations. Recent advancements aim to overcome these limitations through seed
refinement, self-training, and affinity propagation, enabling broader and more accurate
object coverage [116–118].

Bounding box annotations provide a coarse spatial indication of object locations, offer-
ing a balance between annotation cost and localisation precision. Early methods like
BoxSup [119] refine segmentations iteratively within the boundaries defined by the
boxes. Contemporary approaches integrate box constraints into deep learning mod-
els, achieving better spatial precision by aligning predicted masks with bounding box
edges and leveraging region-based loss functions [120, 121].

Scribbles and points serve as sparse spatial supervision, offering minimal yet explicit
guidance about object locations. Scribble-based methods propagate annotations to un-
marked regions using edge detection, graph-based propagation, or energy minimisa-
tion techniques [122–124]. Point-based methods rely on a few annotated pixels per
object, often integrating these with background priors and unsupervised techniques to
complete the segmentation [125].
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Several studies have demonstrated the use of XAI outputs as weak supervision for
semantic segmentation, effectively bridging the gap between limited annotations and
high-quality segmentation models [126, 127]. For instance, HiResCAM-generated heat-
maps have been used to refine annotations, enhancing segmentation models by high-
lighting relevant regions, particularly in complex image scenarios [128]. These ap-
proaches have been especially impactful in fields like medical imaging, where XAI-
driven heatmaps help identify regions of interest for weakly supervised segmentation,
reducing reliance on dense pixel-level annotations while improving model accuracy
[129]. This integration of interpretability and weak supervision demonstrates the dual
benefit of enhanced transparency and reduced annotation efforts.

Core approaches in WSSS revolve around generating and refining pseudo-labels, de-
signing robust loss functions, and leveraging auxiliary information to improve seg-
mentation accuracy. Loss functions are tailored to handle weak supervision, employing
strategies to encourage confident predictions, and consistency regularisation to ensure
stability under perturbations. Additionally, auxiliary cues, like saliency maps and edge
detectors, help strengthen spatial information and guide model training.

The evaluation of WSSS methods relies on benchmark datasets and performance met-
rics that capture segmentation quality. Popular datasets, such as PASCAL VOC [130],
MS COCO [131], and Cityscapes [132], provide a range of challenges in terms of object
diversity, scale, and complexity. These datasets often include subsets tailored for weak
supervision, with annotations like image-level labels or bounding boxes. The primary
metric for assessing WSSS methods is Intersection over Union (IoU), which quantifies
the overlap between predicted and ground-truth masks. To complement IoU, metrics
like boundary accuracy and object localisation precision are sometimes used to provide
finer insights into model performance. As WSSS research advances, the development of
more diverse datasets and evaluation criteria will play a crucial role in driving progress
and ensuring the robustness of these methods in real-world scenarios.

WSSS has emerged as a promising approach to address the high annotation costs asso-
ciated with fully supervised methods, providing high-quality segmentation with min-
imal supervision. By utilising diverse forms of weak annotations, WSSS effectively
balances annotation efficiency with segmentation performance. However, it still faces
significant challenges such as localisation bias, where methods like CAM focus on
the most discriminative object parts while neglecting less salient regions, and noise
in pseudo-labels, which can propagate errors during training. Scalability and gener-
alisation also remain critical concerns, as models often struggle to adapt to diverse
datasets and real-world scenarios. To address these challenges, recent trends include
the adoption of transformer-based architectures [133] for capturing global and contex-
tual information, contrastive learning to enhance pixel-level discrimination and robust
strategies for mitigating pseudo-label noise. Additionally, hybrid supervision strate-
gies, combining multiple weak annotations, and domain adaptation techniques are
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gaining traction to improve generalisation across varied domains. As research con-
tinues to evolve, these advancements position WSSS as a key enabler for robust and
scalable segmentation solutions across diverse applications.
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Chapter 3

Multilevel XAI: Visual and
Linguistic Bonded Explanations

Applications of DNNs are booming in more and more fields but lack transparency due
to their black-box nature. XAI is therefore of paramount importance, where strate-
gies are proposed to understand how these black-box models function. The research
so far mainly focuses on producing, for example, class-wise saliency maps, highlight-
ing parts of a given image that affect the prediction the most. However, this method
does not fully represent the way humans explain their reasoning and, awkwardly, val-
idating these maps is quite complex and generally requires subjective interpretation.
In this chapter, we conduct XAI differently by proposing a new XAI methodology in
a multilevel (i.e., visual and linguistic) manner. By leveraging the interplay between
the learned representations, i.e., image features and linguistic attributes, the proposed
approach can provide salient attributes and attribute-wise saliency maps, which are
far more intuitive than the class-wise maps, without requiring per-image ground-truth
human explanations. It introduces self-interpretable attributes to overcome the current
limitations in XAI and bring the XAI closer to a human-like explanation. The proposed
architecture is simple in use and can reach surprisingly good performance in both pre-
diction and explainability for DNNs thanks to the low-cost per-class attributes.

Our work has the potential of gaining end users’ trust in DNNs and making it possi-
ble to answer “why” by creating human-like explanations. Future applications could
include sensitive fields where practitioners are desperate to understand how black-box
models decide on a specific prediction before their deployment. A prominent example
is medical imaging where it is sine qua non to see how DNNs make decisions. Our
technique could help domain experts trust the automated system they get help from.
This is achieved differently from currently available techniques that can only highlight
the part of an image that DNNs seem to rely on. We argue that self-explainable DNNs
are the future of ML applications. As DNNs are currently the most preferred techniques
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and their most apparent limitation is the complicated decision process, we bring about
a novel and cheap technique that, to the best of our knowledge, has never been pro-
posed before.

3.1 Introduction

Recent developments in computational resources with a significant rise in data size
have led DNNs, such as multilayer perceptron (MLP) and CNNs, to be widely used
in various tasks, such as image classification. Despite their excellent performance in
prediction, DNNs are seen as black boxes as their decision process generally includes
a huge number of parameters and nonlinearities [19, 31, 72]. The lack of explanation
in these black boxes hinders their direct implementation in important and sensitive
domains such as medicine and autonomous driving, where human life may directly be
affected [24, 134, 135].

An example would be the DNNs trained to detect coronavirus. Although many works
have been conducted and claimed to have a high predictive performance in detecting
COVID-19 cases, a Turing Institute’s recent report [136] disappointingly found that AI
used to detect coronavirus had little to no benefit and may even be harmful, mainly
due to unnoticed biases in the data and its inherent black-box nature (also see e.g.
[137]). Another example is a woman who was hit and killed by an autonomous car.
An investigation showed that the death was caused by the incapability of the car in
detecting a human unless they were near a crosswalk [138]. In addition to these life-
related examples, there are plenty of others where bias in training data or the model
itself causes unwanted discrimination that may immensely affect people’s lives. Ama-
zon’s AI-enabled recruitment tool is an example of how discriminative these models
could be by only recommending men and directly eliminating resumes including the
word “woman”; the company later announced that this tool had never been used to
recruit people due to the detected bias [139]. These examples clearly show that for ML
models to gain acceptance, it is critical to be able to reason why a certain decision has
been made to prevent any unwanted consequences.

Explanations delivered by XAI can help ML practitioners debug their models by for
example investigating the misclassification cases [33] and detecting bias in data [63].
There have been several works in this context to reveal the reasoning of the black-
box models [34, 38, 42, 43, 45, 81, 88, 141]. However, the most widely used technique,
creating class-wise saliency maps (e.g. see left of Figure 3.1) to indicate the areas that
contribute to the prediction the most, have severe innate limitations. The first is the val-
idation process of these maps, which is mostly qualitative or requires labour-intensive
object-wise annotations [142, 143]. A recent study in [125] showed that full supervi-
sion of object segmentation by humans takes around 78 seconds per instance while
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FIGURE 3.1: Explainability of the proposed multilevel XAI model. A bird image from
the Least Auklet class is predicted correctly by our approach, with human-like mul-
tilevel explanations via salient attributes (e.g. “striped belly”) and the corresponding
attribute-wise saliency maps (right). Result by Grad-CAM [39] (left) and concept-based

models such as [41, 140] (middle) are also given for comparison.

higher error rate bounding boxes take 10 seconds per instance to produce, which are
much more expensive than 1 second per instance image-level annotations. Moreover,
requiring a higher level of annotation by experts is rather impractical. Another limi-
tation stems from the discrepancy between these maps and human-like explanations.
Humans naturally explain their reasoning using discriminative words (e.g. domestic vs
wild or weak vs strong to differentiate a cat from a lion) together with pointing to where
those words lie in the given image if visually permitting [142, 143] (cf. our results on
the right of Figure 3.1). To produce human-like explanations, this multilevel (i.e., visual
and linguistic) manner is crucial, which also inspires the work in this chapter.

In this chapter, we propose a new methodology called multilevel XAI to delve into
DNNs by leveraging visual and linguistic attributes. Our approach exploits per-class
attributes (rather than per-image attributes, which are too expensive and generally im-
practical) to interpret DNNs in e.g. classifying raw images. By creating multilevel
explanations, i.e., linguistic salient attributes and attribute-wise saliency maps, our
method can provide explanations close to those we might expect from humans (e.g.
see the right of Figure 3.1). This is a big step forward in XAI and this new methodology
does not suffer from the above-mentioned limitations existing in current XAI solutions.
The proposed setting adds a small extra cost to the training set, i.e., per-class attributes,
which can be easily obtained if needed using for example online search engines or some
autonomous tools (e.g. GPT-3 API [144]), and once acquired they can always be in use
since in most cases they are time and image invariant.

Our main contributions lie in: i) proposing a multilevel XAI methodology which is
easy to use and can achieve near human-like explanations; ii) implementing extensive
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experiments on both coarse-grained and fine-grained datasets to validate the perfor-
mance of the proposed approach; and iii) conducting insightful discussions in XAI and
future paths.

The rest of the chapter is organized as follows. Section 3.2 presents the related work
in the XAI field. Section 3.3 details the methodology of our proposed multilevel XAI.
We provide the specifics of the datasets used in the experiments in Section 3.4. The
experiment details and the results are given in Section 3.5. In Section 3.6, we raise a
number of general research questions regarding XAI and discuss how much our tech-
nique, together with its limitations, addresses them. Finally, we conclude in Section 3.7.
Pseudo-codes and further experiments are also provided.

3.2 Related Work

The complexity of ML models generally affects the transparency/explainability be-
cause of the difficulty of following the model prediction process [33]. One line of re-
search is where researchers employ inherently explainable models and utilise white-
box models such as Bayesian rules [145] and linear models [146] to handle complex
problems. These models, generally, struggle to reach the prediction ability of DNNs.

3.2.1 Post-hoc Approaches

Methodologies in the XAI field mainly aim to propose methods to understand how
high-performance black-box machine/deep learning models work. The majority of
XAI methods introduced ideas to explain pre-trained models in a post-hoc manner, i.e.,
they are neither interested in the training setting nor in changing any of the models’
components. These methods could be model-independent requiring only prediction
function [42, 43] or model-dependent that need additional information of the trained
model such as feature maps at a certain layer [38] or gradients [39]. DNNs for visual
tasks do not output any textual justification. Modern visual-language models are effec-
tive in describing image content but lack outputting discriminative features that cause
the prediction [142]. Forcing these models to output more discriminative features is one
related work proposed in [143]. It aims to output multilevel explanations for vision-
language tasks, e.g., visual question answering and activity recognition. Apart from
a completely different focus against the work in this work, this method also requires
labour-intensive per-image annotations during training that are avoided in our work.
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3.2.2 Ante-hoc Approaches

More recently, there have also been attempts to train self-explainable models, also
known as ante-hoc approaches. They can output explanations alongside their predic-
tions, hence eliminating the need for any post-hoc design. Most of the state-of-the-
art methods for visual recognition tasks are based on the parametric softmax function
which projects latent features to the class space. One line of research presents method-
ologies based on non-parametric distance-based learning in the latent space and elim-
inates the use of softmax projection, making the decision processes of DNNs more
human-understandable. These methods cluster training images in the latent space to
obtain class centroids and then classify test images based on their distances to these
centroids [147, 148]. As our classifier is pre-trained with attribute-class information
and is frozen during the X-MLP and X-CNN training (see the detail in Section 3.3.2), we
share the main aim of these methodologies towards more understandable predictions –
putting effort into modelling the latent data structure. Explanations by distance-based
methods are achieved by constraining the class centroids to be samples from the train-
ing set, and predictions are claimed to be inherently explainable as class centroids (i.e.,
real observations from the training set) can be displayed as a reason for predictions.

CBMs [41] share ideas with our work and are analogous to X-MLP, but neither of them
is multilevel. In particular, unlike CBM, our X-MLP and X-CNN only require class-
wise attributes, ensuring our approach is significantly cheaper to implement. Simi-
lar to CBM in terms of being analogous to our X-MLP, the work in [140] proposed a
framework that can leverage concepts in different levels of supervision scenarios but
with more storage and training capacity requirements. Explanations by these existing
ante-hoc approaches are pre-defined concepts (i.e., meaningful words such as stripes),
non-defined concepts (e.g. concepts 1, 2, 3, . . .), and/or the images that maximally acti-
vate these concepts (see also the middle of Figure 3.1). In contrast, our explanations are
multilevel, possessing the advantage over the ante-hoc approaches mentioned above
in terms of being capable of providing a spatial location in individual images asso-
ciated with each linguistic attribute (see Figure 3.17 for an example that presents the
significance of our multilevel explanations).

The zero-shot learning regime is where side information (e.g. attributes and class tax-
onomies) is exploited to classify images of classes that have no labelled samples during
training [149]. The aim is to match image features with class attributes and then to
classify unseen classes thanks to the prior side information. There are various tech-
niques to find the best match that allow unseen class predictions [150–153]. Although
we integrate side information into our training process similar to zero-shot learning,
we are not interested in unseen classes; instead, the proposed work aims to train self-
explainable models in many-shot case. Unlike the majority of XAI methods, our ex-
planations are multilevel outputting both linguistic and visual explanations. Finally,
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different from other extremely limited number of multilevel attempts that specifically
work on vision-language models, our training setting is significantly cheaper and does
not require per-image annotations.

Feature Extraction

Input Features

X X̃
ψ

Proposed Architecture

π

MLP/CNN

Feature maps of
last CNN layer

Explanations

X̄1
j

X̄2
j

X̄3
jResized feature maps

to match input shape

Attribute-wise saliency maps

Extract visual
counterparts uj =

(u1
j , · · · , uK

j )
Salient attributes

ŷj
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FIGURE 3.2: Multilevel XAI architecture. Image features X̃ are extracted from images
X using feature extraction model ψ. Class labels Y are embedded into class attributes
Ỹ using language model ϕ. DNN π (e.g. MLP and CNN) is then trained to match X̃
with Ỹ . The explainability of DNN π for image Xj is by the obtained salient attributes

uj (linguistic) and the attribute-wise saliency maps X̄ i
j (visual).

3.3 Methodology of Multilevel XAI

In this section, we introduce our multilevel XAI methodology, see Figure 3.2 for its main
architecture. It consists of three main components: i) a pre-trained feature extraction
block generating high-level image features from input images (left of Figure 3.2); ii) a
self-explainable DNN block bridging the extracted features with linguistic attributes
(middle of Figure 3.2); and iii) a language model block (being frozen after training)
linking the linguistic attributes to the output class labels (right of Figure 3.2). All of
these blocks are important and are well studied in various fields, yet in the XAI regime,
their study is rather limited. To the best of our knowledge, this is the first time they
have been used to explain neural networks in a multilevel (i.e., visual and linguistic)
manner particularly when the per-image attributes are unavailable. Further description
is given below.

Preliminary. Let X be the set of images and Y = {1, 2, · · · , C} be the set of C class
labels. Let S = {(Xi, yi) | Xi ∈ X , yi ∈ Y , i = 1, 2, . . . , N} be a training set with N
image/label pairs, where yi is the ground truth label of image Xi ∈ RM1×M2×M3 with
M3 set to 1 and 3 respectively for grey and colour images.

In our formalism, we used a pre-trained embedding ψ : X → X̃ from input images,
Xi, to high-level visual feature vectors, ψ(Xi). Rather than learn a mapping to classes
yi, we instead learn a mapping to linguistic features describing the classes. This can
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be viewed as an embedding, ϕ : Y → Ỹ , of the classes to a linguistic feature space, Ỹ .
This is a distributed embedding in that a single class will have many features associated
with it and each feature will be associated with many different classes. We are left
with the relatively simple task of finding a mapping between visual feature vectors
ψ(Xi) and linguistic feature vectors ϕ(yi). To achieve this we use a neural architecture
π(ψ(Xi), W), where W are trainable weights chosen by minimising the loss (energy)
function

∑
(Xi ,yi)∈S

ℓ(ϕ(yi), π(ψ(Xi), W)), (3.1)

where ℓ : Ỹ × Ỹ → R is a single-sample loss function defined in the linguist feature
space. To make a class prediction, we independently train an inverse mapping ϕ† :
Ỹ → Y from linguistic features to classes. Thus we can make class predictions using
ϕ†(π(ψ(Xi), W)).

A
cc

ur
ac

y

K̂

FIGURE 3.3: Classification accuracy of MLPL using the generated training datasets
T with different Ĉ and K̂ values on the AwA2 dataset. Note that the set of C sam-
ples is perturbed Ĉ > 0 times to obtain CĈ number of samples; and K̂ represents the
number of attributes whose values are manipulated per class against the ground-truth

attribute-class matrix.

Feature extraction. Within our framework, there is a freedom to choose the feature
extraction models ψ (see the left of Figure 3.2). To illustrate this flexibility, we have
used both pre-trained ResNet101 [60] and VGG16 [58] for visual feature extraction. In
both cases, we cut the network before the final dense layers.

3.3.1 Class Embedding

A central component in our approach is the introduction of a meaningful K-dimensional
embedding space, Ỹ . We consider a mapping ϕ from class yi ∈ Y to an embedding vec-
tor ỹi ∈ Ỹ , where each component of ỹi is a linguistic attribute. In practice, ϕ would
be a probabilistic embedding describing the conditional probability of P(ỹi | yi); how-
ever, obtaining this is difficult. Instead, we start from a matrix A ∈ RC×K provided
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Algorithm 1 Multilevel XAI: training and test

TRAINING

1: Input: Image set X , class label set Y , pre-trained feature extraction network ψ, and
dataset T0.

2: Output: Models π and ϕ†

3: X̃ = ψ(X ) ▷ Image feature extraction
4: Generate dataset T by using Algorithm 2 on T0
5: Train ϕ† with T ▷ Map attributes to classes via MLPL
6: Train π ▷ Match visual and linguistic attributes

7: return Models π (i.e., πMLP/πCNN) and ϕ†

TEST

8: Input: Image Xj, models ψ, π and ϕ†

9: Output: X-MLP/X-CNN ▷ Self-explainable predictions

10: ŷj = ϕ†(π(ψ(Xj))) ▷ Predict the class label for Xj

11: Calculate uj using Eqn 3.2
12: X-MLP/X-CNN: Pick the top K∗ largest components of uj as the salient linguistic

attributes
13: X-CNN: Extract the visual counterparts of the K∗ attributes from the last CNN layer

of πCNN
14: return X-MLP/X-CNN

by experts (in our case, this was conveniently provided by the zero-shot learning com-
munity, see Table 3.1 for an example [154]), which can be interpreted as E(ỹi | yi). In
our approach, we also need to learn the “inverse mapping”, ϕ†(ỹi), giving P(yi | ỹi).
We learn this mapping using an MLP (MLPL in our model, see the right of Figure 3.2),
where our inputs are noisy vectors ỹi (i.e., the rows of matrix A) and our targets are
the classes yi. This mapping is learned entirely without seeing the training images and
is then frozen. Although this is a rather simple approach, it is extremely fast to learn
and leads to good performance. Given the Gaussian nature of the data with equal
and isotropic variances, a distance-to-template classifier would also be a valid and po-
tentially optimal choice. In this work, we opted for an MLP due to its flexibility and
general applicability across tasks. In this regard, our choice reflects a modelling pref-
erence, and other options, such as distance-based classifiers, are expected to be equally
valid in this setting.

3.3.2 Explainable Neural Networks

Below we introduce the strategies regarding how the DNN π in our proposed multi-
level architecture (middle of Figure 3.2) can be explainable. Note that π : ψ(Xi) →
ϕ(yi), where Xi ∈ X and yi ∈ Y . Since ϕ(yi) is not unique, we train π to learn the



3.4. Data 37

match between features and attributes in an unsupervised way (regarding Ỹ) using the
training set S (i.e., image/label pairs), with the trained MLPL and pre-trained ψ.

∀Xj ∈ X used for testing, let ŷj = ϕ†(π(ψ(Xj)), W) be the predicted class label of the
test image Xj. Let πk(ψ(Xj)) be the k-th attribute of π(ψ(Xj)), where k ∈ {1, 2, . . . , K}.
We define uj ∈ RK as the importance of the attributes for the test image Xj and evaluate
it by taking the gradient of the predicted class label ŷj with respect to every attribute of
π(ψ(Xj)), i.e.,

uj = (u1
j , u2

j , · · · , uK
j ) =

(︂ ∂ŷj

∂π1(ψ(Xj))
,

∂ŷj

∂π2(ψ(Xj))
, · · · ,

∂ŷj

∂πK(ψ(Xj))

)︂
. (3.2)

Then the top K∗ largest of {uk
j }K

k=1 will be selected as the salient linguistic attributes for
image Xk. In this sense, π therefore can be explained by these salient linguistic terms.
As examples, two of the most common neural networks – MLP and CNN – are adopted
for π below.

Explainable MLP. Here π represents an MLP, say πMLP consisting of a few dense lay-
ers. πMLP can then be explained by the obtained salient linguistic terms in a single-level
manner. We also call πMLP explainable MLP (X-MLP).

Explainable CNN. Here π represents a CNN, say πCNN consisting of convolutional
layers with K channels followed by a GAP layer. πCNN can then be explained by the
obtained salient linguistic terms. Moreover, we can also find out where these salient
attributes are related in the given test image Xj by exploiting the spatial information
preservation property of the CNN structure. For the i-th attribute, i ∈ {1, 2, . . . , K}, its
attribute-wise saliency map (i.e., heat map mask) say X̄ i

j can be obtained by the output
of the last CNN layer after being upsampled to the same size of Xj; in other words, the
salient part of Xj is corresponding to the i-th salient attribute X̄ i

j.

In contrast to πMLP, πCNN provides both the salient linguistic terms and the corre-
sponding attribute-wise saliency maps in a multilevel manner with no extra cost. For
ease of reference, we call πCNN explainable CNN (X-CNN). The procedures regarding
training and testing of our approach are summarised in Algorithm 1.

3.4 Data

Animals with Attributes (AwA1) is a well-known dataset used in zero-shot learning
[154]. Due to the absence of raw images and copyright issues, an alternative version of
it named AwA2 was introduced in [149]. It is a medium-scale coarse-grained dataset
with 37 322 images from 50 classes collected from public web sources, including 85
attributes per class available. Table 3.1 (see Table 3.3 for its full version) presents a size
of 5×7 excerpt of AwA2, exemplifying the nature between the attributes and different
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classes. The other benchmark dataset used in this work is CUB-200-2011 [55]. CUB
is a fine-grained dataset containing around 11 800 images of 200 different bird classes,
including 312 attributes per class. These linguistic attributes will be exploited to create
self-explainable DNNs under our proposed methodology.

TABLE 3.1: An excerpt of the attribute-class matrix A for the AwA2 dataset. Attribute
values are in [0, 100] and standardised before use.

Classes
Attributes Gray Patches spots Lean Tail Strong Muscle · · ·

Antelope 12.34 16.11 9.19 39.99 40.59 33.56 26.14 · · ·
Grizzly bear 3.75 1.25 0 0 9.38 78.48 48.89 · · ·
Killer whale 1.25 68.49 32.69 22.68 41.67 63.35 10.45 · · ·

Beaver 7.5 0 7.5 8.75 86.56 32.81 24.38 · · ·
Dalmatian 0 37.08 100 63.68 53.75 34.93 23.75 · · ·

3.4.1 Generation of the Training Dataset T for MLPL

Recall that we have the attribute-class matrix A ∈ RC×K, where C and K represent
the number of classes and the number of attributes per class, respectively. Table 3.3
shows the full matrix A for the AwA2 dataset. The original matrix A can directly form
a dataset, i.e.,

T0 =
{︁
(ỹk, yk) | ỹk ∈ Ỹ , †∥ ∈ Y , ∥ = ∞,∈, . . . , C

}︁
, (3.3)

but this is too small to train MLPL; note that ỹk = (ỹ1
k , · · · , ỹK

k ) is the k-th row of A for
class k, and ỹi

k is the i-th attribute of ỹk.

We augment T0 by upsampling each sample (ỹk, yk) ∈ T0 to Ĉ number of samples by
randomly manipulating K̂ number of attributes of ỹk among the total K, with the aim of
perturbing the original samples. The values of the selected attributes for manipulation
can be conducted randomly. In our setting, we use two values β0 > 0 and β1 < 0, and
change the positive values of the selected attributes to β1, otherwise, to β0. Note that
this setting is an arbitrary choice (here we use β0 = 1.5 and β1 = −0.5), which can be
replaced by other ways appropriate. We finally generate a training dataset T with CĈ
(Ĉ > 0) number of samples. In our experiments, Ĉ is set to 100. The data generation
process is summarised in Algorithm 2.

3.5 Experiments

All the experiments were implemented on a personal laptop with the following specifi-
cations: i) i7-8750H CPU; ii) GeForce GTX 1060 GPU; and iii) 16GB RAM. The proposed
methodology is trained and tested on the coarse-grained and fine-grained benchmark
datasets. Training of MLPL takes around 15 minutes. Training of X-MLP and X-CNN
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Algorithm 2 Generation of the training dataset T for MLPL

1: Input: Dataset T0, empty dataset T , upsampling rate Ĉ ∈ N, the number of at-
tributes manipulated K̂, β0 > 0 and β1 < 0.

2: Output: Training dataset T ▷ Generated training dataset to train MLPL

3: Get the values of C and K from the dataset T0
4: for i = 1 to Ĉ do
5: for k = 1 to C do
6: Get the current sample (ỹk, yk) ∈ T0
7: Set ỹk,i = ỹk
8: for j = 1 to K̂ do
9: Generate a random number t ∈ {1, · · · , K} for which attribute value to

change
10: if ỹt

k,i ≤ 0 then
11: ỹt

k,i = β0
12: else
13: ỹt

k,i = β1
14: end if
15: end for
16: Add (ỹk,i, yk) into T
17: end for
18: end for
19: return Dataset T

takes around 30 minutes and 80 minutes, respectively. The pre-trained feature extrac-
tion models (i.e., ψ) ResNet101 and VGG16 are downloaded from Keras’ website1. The
implementation setup and results in the XAI regime are given below.

3.5.1 Implementation Setup

I) For the feature extraction model ψ, pre-trained ResNet101 and VGG16 are respec-
tively used for datasets AwA2 and CUB. The sizes of the extracted features for each
image in datasets AwA2 and CUB are respectively 8× 8× 2048 and 8× 8× 512. II) The
language model MLPL is a few layers wide MLP (here 3 layers are used). To train it,
two training sets, T , with size of 5 000 and 20 000 respectively for datasets AwA2 and
CUB are formed.

MLPL, including the order of the attributes, is frozen after the training completes. III)
πMLP is a few layers wide MLP (here 4 layers are used) taking 2 048 and 512 features
extracted by ψ and outputting 85 and 312 attributes for datasets AwA2 and CUB, re-
spectively. πCNN for simplicity is set to one single convolutional layer with the size of
8× 8× 85 and 8× 8× 312 for datasets AwA2 and CUB, respectively. A 30/70 split of
the data was formed for training/test. IV) For comparison, fine-tuned ResNet101 and

1Pre-trained ResNet101 and VGG16: https://keras.io/api/applications/

https://keras.io/api/applications/
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VGG16 are obtained by directly using the training set of image/label pairs of AwA2
and CUB, respectively.

The Adam optimizer with a learning rate of 0.001 and batch size of 32 is used in all
experiments. The number of epochs is set to 100 and early stopping is applied (with
patience set to 10 based on the validation loss). We stress that our main goal is to
make DNNs self-explainable rather than accuracy-driven. It is expected that the pre-
diction performance reported could be improved for example with hyper-parameter
fine-tuning and/or wiser selection of the feature extraction model ψ.

3.5.2 Classification Performance of MLPL

Although our main focus in this work is XAI rather than the classification accuracy of
MLPL, it is worth evaluating the classification accuracy performance of MLPL under
the training dataset T . To do so and also investigate the impact of the parameters Ĉ
and K̂, we first generate different training dataset T using different upsampling rate Ĉ
and different value of K̂ (i.e., the number of attributes whose values are manipulated)
ranging from 0 to 65 (i.e., up to two-thirds of the total 85 attributes per class in the
AwA2 dataset). Afterwards, to evaluate the accuracy performance of MLPL using the
generated datasets T regarding different Ĉ and K̂, we further split each dataset T into
two parts with the ratio of 70/30 for training and test, respectively.

Figure 3.3 shows the classification accuracy of MLPL corresponding to different K̂ and
Ĉ values. It is seen that the accuracy decreases when K̂ becomes larger for each Ĉ,
which is reasonable, since the larger the K̂, the higher the perturbation of the ground
truth attribute-class samples. The results also show that larger Ĉ (which leads to a
bigger dataset T ) results in more robust models against more noisy samples, e.g. see
the yellow line in Figure 3.3 for the case of Ĉ = 100. In contrast, when Ĉ is small,
there is a significant classification performance drop as shown in Figure 3.3; e.g., the
classification accuracy drops from over 90% (for Ĉ = 100) to 65% (for Ĉ = 10) when
K̂ = 32.

Finally, for completeness, we investigate the case of no perturbation, i.e., the case of Ĉ =

0. In this case, Table 3.3, T0, is directly used for the MLPL training. We generate test sets
following the same way of generating T by manipulating the samples in T0 once with
different K̂ values. As shown in Figure 3.3 for Ĉ = 0, the model’s performance drops
significantly when K̂ becomes larger, indicating the limited performance of the model
trained just by using the original set T0. In our XAI experiments, we pick Ĉ = 100 and
K̂ = 8 and remark that there is a freedom of choice for these hyperparameters to obtain
better results.
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3.5.3 Classification Performance of the Proposed Architecture

Table 3.2 shows that the proposed multilevel XAI architecture in Figure 3.2 can achieve
surprisingly good performance (i.e., over 90% and ∼ 50% accuracy for the 50-class and
200-class datasets AwA2 and CUB, respectively) in classification accuracy against the
fine-tuned neural networks (i.e., ResNet101 and VGG16 trained directly on the labelled
data, which lack explainability) on hold-out test set even though this is not the main
aim of this work. The neural networks’ performance in accuracy highly depends on the
quality of the data acquired. However, most of the data researchers work on, if not all,
could be biased, insufficient and/or sensitive. Creating architectures that can explain
themselves and simultaneously reach high prediction performance – just like the one
introduced in this work – is arguably the long-term pursuit in ML.

TABLE 3.2: Classification accuracy. X-MLP/X-CNN can achieve comparable perfor-
mance against the fine-tuned ResNet101 and VGG16, which, however, lack the lin-

guistic and visual explainability that X-MLP/X-CNN delivers.

Data Model Test Accuracy Explainability
ResNet101 95.8± 1.3 N/A

AwA2 X-MLP 90.5± 0.8 Unilevel
X-CNN 90.1± 1.1 Multilevel
VGG16 57.2± 1.4 N/A

CUB X-MLP 54.9± 1.5 Unilevel
X-CNN 44.6± 1.1 Multilevel

3.5.4 Explainability Performance of Our Multilevel XAI Method

3.5.4.1 Explainability for correct predictions

For a given image Least Auklet from the CUB dataset, see Figure 3.1, both the fine-
tuned DNN (VGG16 in our case) and our proposed method can easily classify it cor-
rectly. However, the fine-tuned DNN gives no explanation for why it reaches a decision
by itself. Post-hoc XAI methods (such as [39, 42, 43]) could be employed to see whether
the classified object as a whole in the given image is the main part that the fine-tuned
DNN focuses on (i.e., left of Figure 3.1), but this level of explanation is rather limited
and is an incomplete reflection of human-like explanations as discussed throughout
the chapter. In contrast, the attribute-wise level of explanation that the proposed mul-
tilevel XAI model delivers (i.e., right of Figure 3.1) is much richer, wider, deeper and
self-explainable thanks to the linguistic attributes. In detail, some of the most salient
attributes that affect the prediction are presented as striped belly, rufous bill and grey
breast. Their corresponding saliency maps convincingly highlight the correct part of
the image for the mentioned individual attributes. This type of explanation is desir-
able and is an important indicator of the match between image features and class-wise
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Antelope Zebra Horns Group

Stripes Quadrupedal Horns Group

Salient attributes for explanation

FIGURE 3.4: Explainability of the proposed approach for correct prediction. Human-
like multilevel explanations are delivered by the salient attributes and their saliency

maps (by X-CNN), which are matched well.

attributes that are learnt in an unsupervised way by the proposed architecture (i.e., un-
supervised in the sense that the training images have not been labelled by linguistic
attributes and/or salient regions have not been given).

Figure 3.4 demonstrates the power of the proposed model in explainability with more
challenging images. Linguistic self-explainable attributes of stripes and group are out-
putted as salient for zebra, while quadrupedal and horns are outputted for antelope by
X-MLP and X-CNN. Attribute-wise saliency maps for horn and group outputted by X-
CNN show the human-like explanation power of our approach. Some attributes can be
well captured by DNNs with examples shown in Figures 3.1, 3.4 and 3.18. To further
demonstrate this property, we present below more images from a variety of classes,
showing that the presented attributes are indeed learnt rather than special to the given
images or classes.

The attribute-wise saliency maps for example in Figure 3.5 show that the attribute horns
is clearly learnt for the Ox, Antelope and Buffalo classes; for more results see Figures
3.6 and 3.7. Further examples of the correct class prediction with the multilevel explain-
ability by our approach are shown in Figures 3.8 and 3.9. For abstract attributes, their
saliency maps could give us an idea of what part of the image activates that specific
attribute, e.g. active or weak. Moreover, the attribute values given by experts in Table
3.1 for the predicted classes indicate whether experts think these attributes are helpful
in discriminating one class from the others. After checking, we can see these salient
attributes obtained by our approach for the predicted classes are indeed meaningful.
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Ox Horns Buffalo Horns Antelope Horns

FIGURE 3.5: Images from different classes in the AwA2 dataset with their obtained
attribute-wise saliency maps by our approach. Examples from Ox, Buffalo and Ante-

lope classes show that the attribute horns is well captured by X-CNN.

3.5.4.2 Explainabilility regarding attribute-class prediction

Although the class-wise attributes are learnt in an unsupervised way by our approach,
the previous experiments have shown the power of our model in activating meaning-
ful attributes. To further demonstrate its ability in attribute prediction, we present the
attribute-class prediction averaged over the test samples for each class, see Table 3.4.
The predicted attribute values in this table are expected to be close to Table 3.3 (i.e., the
ground truth). Moreover, Figure 3.10 shows the top five classes that maximally activate
the given individual attributes (i.e., white, pads, etc.), together with one representa-
tive image from each class. It shows that the maximally activated attributes are indeed
meaningful and highly relevant to the classes that activate them. More results are given
in Figures 3.11, 3.12, 3.13 and 3.14 for colour, skin-type, movement and body-part re-
lated attributes, respectively.
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Least Auklet Rufous bill Artic Tern Rufous bill Kingfisher Rufous bill

FIGURE 3.6: Images from different classes in the CUB dataset with their obtained
attribute-wise saliency maps by our approach. Examples from Least Auklet, Artic
Tern and Kingfisher classes show that the attribute rufous bill is well captured by X-

CNN.

Kittwake Rufous leg Artic Tern Rufous leg

FIGURE 3.7: Images from different classes in the CUB dataset with their obtained
attribute-wise saliency maps by our approach. Examples from Kittiwake and Artic

Tern classes show that the attribute rufous leg is well captured by X-CNN.

3.5.4.3 Explainabilility for incorrect prediction

Reaching 100% prediction accuracy is not the case for any method given a nontrivial
task. Therefore, investigating the reason behind wrong predictions is equally impor-
tant. The left of Figure 3.17 shows a grizzly bear which is misclassified as the polar
bear and, to understand the reason behind this, the top five salient attributes obtained
by the proposed approach for both grizzly bear and polar bear classes are presented.
These attributes are indeed the ones that differentiate these two classes (cf. the full
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Blue Grosbeak Blue crown Grey bill Pointed wing

Golden winged
Warlber

Black bill Grey upperpart Bill size: about
the same as head

FIGURE 3.8: Explainability of the proposed approach for correct class prediction. Left:
randomly selected test images in the CUB dataset. Right: the top three most salient
attributes helping the neural network make the correct classification and the corre-

sponding attribute-wise saliency maps.

Walrus Tusks Fierce Fish

Mouse White Weak Timid

Squirrel Hibernate Forager Active

Giraffe Spots Longneck Yellow

FIGURE 3.9: Explainability of the proposed approach for correct class prediction. Left:
randomly selected test images in the AwA2 dataset. Right: the top three most salient
attributes helping the neural network make the correct classification and the corre-

sponding attribute-wise saliency maps.



46 Chapter 3. Multilevel XAI: Visual and Linguistic Bonded Explanations

w
hi

te

dalmatian giant panda killer whale skunk rabbit

pa
ds

Persian cat giant panda tiger Siamese cat German shepherd

lo
ng

le
g

chimpanzee spider monkey giraffe horse dalmatian

ta
il

Persian cat rat skunk Siamese cat squirrel

sw
im

s

walrus killer whale dolphin humpback whale otter

qu
ad

ra
pe

da
l

moose chihuahua sheep deer wolf

FIGURE 3.10: The top five classes that maximally activate the given individual at-
tributes on the left. For better illustration, one representative image from each class is

also shown together with the class name.

attribute-class matrix in Table 3.3). The attribute-wise saliency maps of the most salient
attributes (i.e., white and brown) for both classes provide further insights regarding
why this misclassification occurred. After occluding the part considered as “white”
(by our approach) with a brown patch, the manipulated image is then correctly clas-
sified by our approach as a grizzly bear with high confidence, see the right of Figure
3.17; furthermore, the saliency map for the most salient attribute, “brown”, now indeed
highlights both the head of the bear and the brown patch, showing that our approach
clearly learns what brown is and considers it as a strong indicator of grizzly bear class.
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FIGURE 3.11: The top five classes that maximally activate the given individual colour-
related attributes on the left. For better illustration, one representative image from

each class is also shown together with the class name.

Further examples of incorrect class prediction with the multilevel explainability by our
approach are shown in Figures 3.15 and 3.16. The grizzly bear classified as polar bear
and the whale classified as dolphin are some of the most frequent misclassification
cases detected. After checking the attribute values in Table 3.1 given by the experts for
the predicted classes and the ground-truth classes, we can see these salient attributes
obtained by our approach are indeed consistent with the ones given by experts for the
predicted classes; see also more discussion in Section 3.6 for the challenges e.g. the
linguistic alignment and the nature of explainability.
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FIGURE 3.12: The top five classes that maximally activate the given individual skin
type attributes on the left. For better illustration, one representative image from each

class is also shown together with the class name.

3.5.4.4 Sensitivity between attributes and features

To further investigate the effectiveness of the linguistic attributes in our method in ex-
plainability, we test a zebra image and its artificial conversion to a horse using Cycle-
Gan [155], i.e., the attribute stripes is removed from the zebra, see Figure 3.18. Again, all
three models (i.e., fine-tuned ResNet101, X-MLP and X-CNN) classified the zebra im-
age as zebra and the artificially generated horse as a horse. At this point the fine-tuned
ResNet101 has no explanation ability to show what changed in the original image that
forces it to output “horse”. In contrast, our model clearly shows that “stripes” is one
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FIGURE 3.13: The top five classes that maximally activate the given individual
movement-related attributes on the left. For better illustration, one representative im-
age from each class is also shown together with the class name. In particular, for the
attribute ‘flys’ (see the last row in the figure), only one class that maximally activates

it is shown since there is only one aminal (i.e., bat) that can fly in the dataset.

of the salient attributes for the original zebra image with the attribute value of 2.15
and it drops to 0.41 for the artificially generated horse image. To validate the reason
behind this visually, the attribute-wise saliency maps, generated by our approach with
no extra cost, indicate that the X-CNN model focuses on the body of the zebra where
the “stripes” lie, whereas arbitrary parts of the artificially generated horse image are
highlighted when asked to show where the stripes are, see the bottom of Figure 3.18.
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FIGURE 3.14: The top five classes that maximally activate the given individual body
part attributes on the left. For better illustration, one representative image from each

class is also shown together with the class name.

3.5.4.5 Class embeddings with shuffled attribute values

Previous experiments are conducted using the prior information (i.e., the attribute-class
matrix shown in Table 3.1) provided by experts. An interesting and natural question
is: what will the results be if the attribute-class matrix takes different values? In other
words, to what extent, will the prior information in the attribute-class matrix be helpful
in interpretability? To investigate this, we first shuffled all the columns of the attribute-
class matrices for both datasets. In an extreme case, say the values of “ground” and
“water” for the tiger class may be switched, which apparently would cause a dramatic
information loss against the one provided by experts. The shuffled datasets are then
used to train the model MLPL. Surprisingly, we found that it converged as fast as using



3.5. Experiments 51

Polar Bear
(Grizzly Bear)

White Coastal Pads

Dolphin
(Killer Whale)

Hairless Smart Ocean

German Shepherd
(Dalmatian)

Meatteeth Pads Fierce

Horse
(Antelope)

Brown Domestic Chewteeth

FIGURE 3.15: Explainability of the proposed approach for incorrect class prediction.
Left: randomly selected test images in dataset AwA2; e.g., Polar Bear (Grizzly Bear)
means the Grizzly Bear class is incorrectly predicted to be Polar Bear. Right: the top
three most salient attributes helping the neural network make the incorrect classifica-

tion and the corresponding attribute-wise saliency maps.

the original data; moreover, the newly trained models X-MLP and X-CNN also reached
an accuracy close to the ones obtained by using the original data.

Figure 3.19 shows the interpretability results provided by our approach in this at-
tributes shuffling scenario. Obviously, the linguistic attributes become meaningless;
moreover, we also observe that the salient regions no longer appear to be associated
with the object being recognised and defy an easy human explanation in contrast to
what was observed in Figure 3.1.

This finding by our approach shows that those pre-determined attribute lists are crucial
to explainability. It also suggests that purely relying on the accuracy of DNNs (which
might be trained on data with unknown flaws) could be perilous and the corresponding
interpretability is essential. Further discussion is in Section 3.6.
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Pileated Woodpecker
(Yellow-headed Blackbird)

Tree-clinging-shape Pointed wings Grey breast

Brown Thrasher
(Northern Fulmar)

Pink leg Bill size: about
the same as head

Shape:
sandpiper-like

FIGURE 3.16: Explainability of the proposed approach for incorrect class prediction.
Left: randomly selected test images in dataset CUB. Right: the top three most salient
attributes helping the neural network make the incorrect classification and the corre-

sponding attribute-wise saliency maps.

White Input image Brown

Polar

(82%)

Grizzly

(16%)white pads coastal

fish pathces : the most salient attribute

brown forest muscle

cavebipedal

Manipulated image Brown

grizzly bear (91%)

brown

FIGURE 3.17: Explainability of the proposed approach for incorrect prediction. Left:
A grizzly bear which is misclassified as a polar bear. The top five salient attributes are
shown in ellipses for the highest probable class (i.e. polar bear) and second class (i.e.
grizzly bear). The most salient attributes (i.e., white and brown) and their saliency
maps provide insights into the prediction. Right: A manipulated grizzly bear image
(obtained by replacing the area related to the attribute “white” with a brown patch)

which is then correctly classified by our approach with high confidence (91%).

3.5.4.6 Information of linguistic attributes

We now study the information of linguistic attributes, which will give us some guid-
ance about the relationship between each class and its attributes.

For a set of classes Y (in our case the 50 species in the dataset AwA2), let Y be a random
variable describing our classes, and define the probability of a class having class label
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Zebra Artificial Horse

2.15 0.41

Longleg Stripes Furry

FIGURE 3.18: Effectiveness of linguistic attributes in our approach. “Stripes” is one of
the salient attributes for zebra with the value of 2.15 and its saliency map reasonably
highlights the body of the zebra. For the artificial horse image, the attribute “stripes”

is of value 0.41 and its saliency map is meaningfully unrelated.

Input image

Attribute-wise saliency map

Attribute 1 Attribute 2 Attribute 3

Attribute
1

Attribute
2

Attribute
3

Salient attributes by
multilevel XAI:

FIGURE 3.19: Explainability of the proposed approach in the scenario of attributes
shuffling (cf. Figure 3.1). Model accuracy reaches the same level as when we use the
true linguistic attribute values, whereas the attribute-wise saliency maps are meaning-
less to humans, illustrating the importance of prior knowledge of the attribute values.

y ∈ Y as P[Y = y]. Then the entropy (or uncertainty) in the class label is

HY = − ∑
y∈Y

P[Y = y] log(P[Y = y]). (3.4)

To compute the mutual information for a linguistic attribute, ỹk, we need to know
P
[︁
Y | ỹk]︁, which can be estimated from a proper image set V ⊆ X . If we choose an

image Xi ∈ V , we can feed it into our network (i.e., see Figure 3.20) to find its attribute
value, ỹk

i , 1 ≤ k ≤ K. To simplify the calculation, let us set a threshold on the attribute
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value so that if it is above the threshold we treat ỹk
i = 1, otherwise ỹk

i = 0. For each
y ∈ Y and each α ∈ {0, 1}, we can estimate various probabilities, e.g.,

P
[︂
Y = y, ỹk = α

]︂
≈

∑Xi∈V

r
Xi in class y

z r
ỹk

i = α
z

|V| ,

P
[︂
ỹk = α

]︂
≈

∑Xi∈V

r
ỹk

i = α
z

|V| , (3.5)

where
r

predicate
z

is an indicator function (equal to 1 if the predicate is true and 0
otherwise). We can then compute

P
[︂
Y = y | ỹk = α

]︂
=

P
[︁
Y = y, ỹk = α

]︁
P
[︁
ỹk = α

]︁ . (3.6)

The conditional entropy of the classes given the (binarised) linguistic attribute is given
by

HY|ỹk = − ∑
ỹk∈{0,1}

∑
y∈Y

P
[︂
Y = y, ỹk = α

]︂
log

(︂
P
[︂
Y = y | ỹk = α

]︂)︂
. (3.7)

The mutual information on the classes due to the linguistic attributes is given by

I
(︂

Y; ỹk
)︂
= HY − HY|ỹk . (3.8)

Calculating the mutual information by attributes ỹk predicted by our approach and Eqn
(3.8) gives us a measure of how important each attribute is in differentiating the classes,
see Table 3.5. Some of them seem useless by themselves as seen in Table 3.5; however,
they could be important in combination with others.

An alternative way to calculate the mutual information is by following the same steps
above but obtaining ỹk values from the attribute-class matrix given in Table 3.1 instead
of dataset V . These alternative mutual information values represent the importance
of each attribute for human experts who created Table 3.1. The calculated alternative
mutual information is also presented in Table 3.5.

We now have two mutual information values per attribute, i.e., one is by using the
dataset V (here we use the test set) and the other is by using the prior knowledge given
in Table 3.1, see Table 3.5. Comparison between these two values for each attribute
is helpful to see the discrepancy between what attributes people think are important
and the ones that our trained DNNs learn. To give an example, “small” reduces the
uncertainty by 0.98 bits when using the table values given by experts. However, it takes
the value of 0.13 when using images, which suggests that “small” is not one of the best
attributes for the trained DNN to differentiate the given classes, although people think
it is. Further discussion is in Section 3.7 below.
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Xi ∈ V

Xi

Pre-trained
CNN

Z
X-CNN

Ỹ

MLPL

Y

FIGURE 3.20: A simplified version of the proposed multilevel XAI architecture. An
image Xi with a class label in Y is drawn from the dataset V ⊆ X . It is then passed
to a pre-trained CNN. After passing through the last CNN layer, Z, it is passed to
X-CNN, which produces a linguistic representation in Ỹ . Finally, it is passed to the

MLPL with a softmax output, giving a predicted label in Y for Xi.

The pseudo-code for the training and test steps of our approach, i.e., X-MLP/X-CNN,
is given in Algorithm 1. The pseudo-code for the data perturbation used to train the
MLPL is given in Algorithm 2.

The full attribute-class matrix A annotated by experts for the AwA2 dataset is given in
Table 3.3. The attribute-class prediction (averaged over the test samples for each class)
by our approach for the AwA2 dataset is given in Table 3.4 (cf. Table 3.3).

3.6 Discussion and Limitations

To the best of our knowledge, the proposed approach is totally novel to XAI. It also
raises a number of questions that are not commonly addressed in this context. Many of
these open research questions we believe are important to the further development of
XAI. Some of these are outlined below.

Linguistic alignment. We train the X-CNN network to find some visual features that
separate the set of animals with high scores for a linguistic feature from those with low
scores. We hope in doing so that the feature we learn captures some salient aspect of the
linguistic feature. The extent to which we succeed we call the “linguistic alignment”.
Because we are learning this correlation in an unsupervised manner, we are not guar-
anteed that the visual feature aligns correctly with the linguistic label. This is likely to
improve if we were to use more classes. On a small database of animals dominated
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TABLE 3.3: Full attribute-class matrix A for the AwA2 dataset.
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by undulates and fish, it would be easy to confuse the linguistic term “hooves” with
“legs”. Such confusion is much less likely if the dataset contained other animals, such
as dogs or primates.

The linguistic alignment is complicated as a DNN is likely to assess circumstantial or
contextual evidence for the existence of an attribute. As hooves are highly correlated
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TABLE 3.4: Attribute-class prediction (averaged over the test samples for each class)
by our approach for the AwA2 dataset (cf. Table 3.3).
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with legs, it would not be surprising if the legs were considered highly salient to the
presence of hooves in an image. This appears to be common in many of the attributes,
where saliency maps appear to take in a much larger area than the feature described by
the linguistic attribute. At some level, this clearly makes sense. A hoof-like object that
is not attached to a leg is unlikely to be a hoof. Similarly, where a hoof is occluded, there
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TABLE 3.5: Mutual information of attributes calculated by using test images and the
prior knowledge given by experts in Table 3.3 separately. Symbol *** indicates the

value is less than 0.01.

Attributes

Info.
via Test images Experts

Attributes

Info.
via Test images Experts

Black 0.38 0.95 Muscle 0.31 0.98
White 0.10 0.99 Bipedal *** 0.63
Blue 0.33 0.40 Quadrupedal 0.08 0.58

Brown 0.49 0.92 Active *** 0.82
Gray 0.02 0.99 Inactive 0.49 0.99

Orange 0.09 0.40 Nocturnal 0.43 0.88
Red 0.52 0.14 Hibernate 0.49 0.82

Yellow 0.40 0.40 Agility 0.42 0.92
Patches 0.14 0.88 Fish 0.09 0.92
Spots *** 0.79 Meat 0.46 0.97

Stripes 0.53 0.40 Plankton 0.35 0.32
Furry *** 0.76 Vegetation 0.23 0.99

Hairless 0.54 0.82 Insects 0.36 0.40
Toughskin *** 0.99 Forager 0.30 0.99

Big 0.34 0.95 Grazer 0.38 0.92
Small 0.13 0.98 Hunter *** 0.92

Bulbous 0.21 0.99 Scavenger 0.53 0.52
Lean 0.50 1 Skimmer 0.69 0.24

Flippers 0.15 0.58 Stalker *** 0.72
Hands 0.15 0.32 Newworld 0.30 0.68
Hooves 0.16 0.79 Oldworld 0.45 0.52
Pads 0.19 0.88 Arctic 0.07 0.68
Paws 0.51 0.99 Coastal 0.08 0.63

Longleg 0.50 0.85 Desert 0.59 0.14
Longneck 0.29 0.46 Bush 0.48 0.76

Tail 0.17 0.76 Plains 0.21 0.97
Chewteeth *** 0.76 Forest 0.04 0.98
Meatteeth 0.60 0.99 Fields 0.37 0.95
Buckteeth *** 0.79 Jungle 0.52 0.76

Strainteeth 0.38 0.52 Mountains 0.35 0.79
Horns 0.14 0.63 Ocean 0.39 0.63
Claws 0.15 0.98 Ground *** 0.68
Tusks 0.18 0.32 Water 0.14 0.72

Smelly *** 0.99 Tree 0.29 0.68
Flys 0.35 0.14 Cave 0.27 0.40
Hops 0.36 0.32 Fierce 0.25 0.98

Swims 0.32 0.72 Timid *** 0.92
Tunnels 0.14 0.46 Smart 0.51 0.90
Walks 0.57 0.72 Group 0.29 0.97
Fast 0.06 0.63 Solitary 0.31 0.98
Slow 0.55 0.97 Nestspot 0.20 0.97

Strong 0.24 0.90 Domestic *** 0.94
Weak 0.14 0.72

may be enough context to infer that the animal is very likely to be hooved. However,
this contextual evidence reduces the linguistic alignment. This is a feature of explain-
ability rather than a fault of our approach. However, an important line of research in
XAI is to separate circumstantial and contextual evidence from direct evidence.

The nature of explainability. Explanations for classifications are not unique. This
was shown when we randomised the elements in the matrix, A, between classes and
linguistic attributes. In doing so, it seems highly unlikely that any attribute has a sim-
ple linguistic description. Yet, we can train our model with these random attributes
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and still obtain classification levels of around 90% in AwA2. This seems at first sight
counter-intuitive, although given that we have 85 continuous features they have the po-
tential to carry sufficient information to separate the classes with high accuracy. What
separates, at least, some of the true linguistic attributes from other attributes is the in-
formation content of the linguistic attributes; that is the linguistic attributes that have
a high mutual information in regard to the classes. However, some of these attributes
are hard for a DNN to learn.

What attributes DNNs learn. We have shown examples of attributes such as “rufous
bill” that appear to be well captured by the networks. However, through using an inde-
pendent test set we find that some of the linguistic attributes appear not to have been
learned by the network. An example of this is “big”, clearly an attribute that would
be useful for humans to distinguish an elephant from a squirrel. Because of the nature
of the training set, where objects tend to be resized to fill most of the image, this turns
out to carry little information about the classes. However, the lack of success of these
attributes is very informative regarding how DNNs perform a discriminative task. All
the linguistic attributes used in the data are chosen by experts because linguistically
they carry considerable mutual information about the classes. The failure of DNNs to
exploit some of these terms obtained by our approach conveys important insights that
directly address the issue of what information a neural network is actually learning – a
core concern of XAI.

Tangible vs abstract attributes. The linguistic attributes used in this work (that we in-
herited from the zero-shot learning community) interestingly incorporate both tangible
and abstract attributes. For the tangible attributes such as “horn”, we would expect the
corresponding saliency map to highlight the horn (although as we have argued it may
highlight areas that are important contextual clues to the presence of a horn). The more
abstract attributes such as “domestic” or “fast” are less easily attributed to a particular
area of the image. They may however be highly informative for example in differen-
tiating between cat and lion. When these attributes are informative then it is clearly
important to understand whereabouts in the image these attributes are inferred. Again
our approach goes some way towards addressing this issue.

Atomic and compound attributes. In our approach, we have treated all attributes as
atomic. Consequently, pointy, fluffy and large ears would all be treated as separate
linguistic attributes. However, each attribute would correspond to the same area of
the image, and in many cases, it seems more natural to treat attributes as compound
entities. We have not attempted to do this, but if we wish to scale up our approach to
larger datasets, this seems to us to be an important area of future research.
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3.7 Conclusion

High-performance DNNs are highly desirable when they can reason about their deci-
sions. We presented a new XAI methodology—multilevel XAI—with self-explainable
models delivering human-like multilevel explanations alongside the class probabilities.
Explaining why a certain prediction is made using linguistic terms and attribute-wise
saliency maps without requiring per-image ground-truth explanations in the training
phase makes the proposed technique efficient and inexpensive. The results in ex-
plainability demonstrated by the match between image features and class embeddings
greatly empower the explainability of DNNs while preserving their prediction ability
at a reasonable level. Given the importance of XAI and the power of the newly intro-
duced approach, we believe this could spark new avenues in XAI and shed light on
developing and applying AI in more sensible ways.
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Chapter 4

Semantic Proportions-based
Semantic Segmentation

Although we obtain heatmaps that indicate regions important for classification thanks
to our multilevel XAI approach, the precision of the heatmaps is not always high which
may lead to ambiguity in the explanations. One way to address this is to use semantic
segmentation technology to aid explanations. To explore the possibility of using this,
we made a diversion into the field of semantic segmentation. Motivated by the ability
of XAI heatmaps to identify relevant regions, we explored whether we can learn to
perform semantic segmentation with minimum information. This leads us to develop
SPSS (semantic proportions-based semantic segmentation). Here, we show that we
can learn surprisingly accurate semantic segmentation using only knowledge of the
proportion of each class in an image. This work contributes to the field of semantic
segmentation outside of XAI. Nevertheless, we see this as an important first step in
showing the potential of using semantic segmentation as part of an XAI framework.

Semantic segmentation is a critical task in computer vision aiming to identify and
classify individual pixels in an image, with numerous applications in for example au-
tonomous driving and medical image analysis. However, semantic segmentation can
be highly challenging particularly due to the need for large amounts of annotated
data. Annotating images is a time-consuming and costly process, often requiring expert
knowledge and significant effort; moreover, saving the annotated images could dra-
matically increase the storage space. In this chapter, we propose a novel approach for
semantic segmentation, requiring the rough information of individual semantic class
proportions, shortened as semantic proportions, rather than the necessity of ground-truth
segmentation maps. This greatly simplifies the data annotation process and thus will
significantly reduce the annotation time, cost and storage space, opening up new pos-
sibilities for semantic segmentation tasks where obtaining the full ground-truth seg-
mentation maps may not be feasible or practical. Our proposed method of utilising
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semantic proportions can (i) further be utilised as a booster in the presence of ground-
truth segmentation maps to gain performance without extra data and model complex-
ity, and (ii) also be seen as a parameter-free plug-and-play module, which can be at-
tached to existing DNNs designed for semantic segmentation. Extensive experimen-
tal results demonstrate the good performance of our method compared to benchmark
methods that rely on ground-truth segmentation maps. Utilising semantic proportions
suggested in this work offers a promising direction for future semantic segmentation
research.

4.1 Introduction

Semantic segmentation is the task of partitioning an image into different regions de-
pending on their semantic classes/categories. It is widely used in a variety of fields
such as autonomous driving [108], medical imaging [156, 157], augmented reality [158]
and robotics [159]. Impressive improvements have been shown in those areas with the
recent development of DNNs, benefiting from the availability of extensive annotated
segmentation datasets at a large scale [160, 161]. However, creating such datasets can be
expensive and time-consuming due to the usual need to annotate pixel-wise labels as it
takes between 54 and 79 seconds per object [125], thus requiring a couple of minutes per
image with a few objects. Moreover, requiring full supervision is rather impractical in
some cases, for example, in medical imaging where expert knowledge is required. An-
notating 3D data for semantic segmentation is even more costly and time-consuming
due to the additional complexity and dimensionality of the data, which generally re-
quires voxel (i.e., point in 3D space) annotation. Skilled annotators from outsourcing
companies that are dedicated to data annotation may be needed for specific requests to
ensure annotation accuracy and consistency, adding further to the cost [162]. In addi-
tion, saving the annotated data could also be expensive given the substantial amount
of storage space generally needed.

Benchmark methods Ours
Input: Xi

Annotation: Y∗i

point supervision
segmentation mask...

scribbles

Benchmark
models

Predicted masks: Yi

←−−−−
−−−−−−→ −−−→

SP: ρ∗i

Predicted SP: ρi

Predicted masks: Yi

building: 68%
water : 4%...

vegetation : 7%

Our model

1

0

FIGURE 4.1: Difference between the proposed semantic segmentation approach and
benchmark methods.
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Different approaches have been proposed to reduce the fine-grained level (e.g. pixel-
wise) annotation costs. One line of research is to train segmentation models in a weakly
supervised manner by requiring image-level labels [163, 164], scribbles [122], eye tracks
[165], or point supervision [125, 166] rather than costly segmentation masks of individ-
ual semantic classes. In contrast, in this chapter, we propose to utilise the proportion
(i.e., percentage information) of each semantic class present in the image for semantic
segmentation. For simplicity, we call this type of annotation semantic (class) proportions
(SP). To the best of our knowledge, this is the first time utilising SP for semantic seg-
mentation. This innovative way, different from the existing ways (see e.g. Figure 4.1),
could significantly simplify and reduce the human involvement required for data anno-
tation and storage space in semantic segmentation. Our proposed approach by utilising
the SP annotation can achieve comparable and sometimes even better performance in
comparison to benchmark methods with full supervision utilising ground-truth seg-
mentation masks. Moreover, we show that our method can sometimes provide free
performance improvement in the presence of ground-truth maps as it can serve as a
plug-and-play module, which can easily be added on top of existing DNNs trained for
segmentation tasks.

Our main contributions are: i) propose a new semantic segmentation methodology and
a plug-and-play module, utilising SP annotations; ii) conduct extensive experiments on
representative benchmark datasets from distinct fields to demonstrate the effectiveness
and robustness of the proposed approach; and iii) draw an insightful discussion for
semantic segmentation with weakly annotated data and future directions.

4.2 Related Work

Supervision levels in semantic segmentation. In recent years, more and more researchers
have focused on reducing the annotation cost for semantic segmentation tasks. One
way is to use weakly supervised learning techniques that require less precise or less ex-
pensive forms of supervision. For instance, the work in [164] proposed to utilise image-
level labels, the work in [117, 119] used bounding boxes, and the methods in [122, 123]
fed scribbles as labels instead of precise annotations to conduct semantic segmenta-
tion. Those approaches can significantly reduce the annotation cost, as they require less
manual effort to annotate the data. However, there is always a trade-off between the
annotation cost and the model performance, i.e., models trained with higher levels of
supervision generally perform better than weakly supervised models. Active learning
is an alternative approach to reduce the annotation cost by selecting the most informa-
tive samples to annotate based on the current model’s uncertainty. With the selected
most informative samples, active learning can reduce the amount of data that needs to
be labelled, thus reducing the annotation cost [167]. It is worth mentioning that this
is actually similar to the way we propose for the SP degraded by clustering presented
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in Section 4.5.2.2. Reducing the annotation cost could also be achieved by generating
synthetic data that can be used to augment the real-world data [168]. Synthetic data
can be generated using e.g. computer graphics or other techniques to simulate realistic
images and labels.

DNNs for semantic segmentation. The work in [112] made a breakthrough by proposing
fully convolutional networks (FCNs) for semantic segmentation. FCNs utilise CNNs
to transform input images into a probability map, where each entry of the probability
map represents the likelihood of the corresponding image pixel belonging to a partic-
ular class. This approach allows the model to learn spatial features and eliminate the
need for hand-crafted features. Following FCN, several variants have been proposed
to improve the segmentation performance. For example, SegNet [169] is a modification
of FCN employing an encoder-decoder architecture to achieve better performance; and
DeepLab [113] introduced a novel technique called atrous spatial pyramid pooling to
capture multi-scale information from the input image. U-Net [170], one of the architec-
tures used in our proposed methodology, is a type of CNN consisting of a contracting
path and an expansive path. The skip connections in U-Net allow the network to retain
and reuse high-level feature representations learned in the contracting path, helping
to improve segmentation accuracy. The U-Net architecture has been widely used for
biomedical image segmentation tasks such as cell segmentation [171], organ segmenta-
tion [172] and lesion detection [173, 174], due to its ability to accurately segment objects
within images while using relatively few training samples. Furthermore, its modular
architecture and efficient training make it adaptable to a wide range of segmentation
tasks. Therefore, to demonstrate our methodology utilising SP, we employ a modified
and relatively basic version of the U-Net architecture as the backbone of our models for
most of the experiments.

4.3 Methodology

Notation. Let X be a set of images. Without loss of generality, we assume each image
in X contains no more than C semantic classes. ∀Xi ∈ X , Xi ∈ RM×H, where M× H
is the image size. Let XT ⊂ X and XV ⊂ X be the training and validation (test) sets,
respectively; and let ΩT ⊂ N be the set containing the indexes of the images in XT.
∀Xi ∈ XT, annotations are available. The most general annotation is the ground-truth
segmentation maps, say {Y∗ij}C

j=1, for Xi, where each Y∗ij ∈ RM×H is a binary mask
for the semantic class j of Xi. For simplicity, let Y∗i be a tensor formed by {Y∗ij}C

j=1,
where its j-th channel is Y∗ij . Note that the ground-truth segmentation maps are not
required in our approach for semantic segmentation in this paper unless specifically
stated; instead, they are mainly used by benchmark methods for comparison purposes.
Analogously, let Yi be the predicted segmentation maps following the same format as
Y∗i . Let ρ∗i = (ρ∗i1, · · · , ρ∗iC) be the given SP annotation of image Xi ∈ XT, which will be
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mainly used to train our approach, where each ρ∗ij ∈ [0, 1] is the SP of the j-th semantic
class of Xi and ∑C

j=1 ρ∗ij = 1.

Input: Xi

Feature extraction
−−−−−−−−→

CNN Features: Yi

Predicted segmentation maps

SP computation

−−−−−−−−−−−−→ −−→

i.e.,

GAP
Lsp
←→

Predictions: ρi Ground-truth: ρ∗i

FIGURE 4.2: The SPSS (SP-based semantic segmentation) architecture. In the training
stage, features are firstly extracted by a CNN from the input; and then the extracted
features are through a GAP layer calculating the SP. After training using the loss func-
tion Lsp, the proposed SPSS architecture can force the extracted features to be the

prediction of the class-wise segmentation masks.

Annotation: SP

Annotation: SM

Loss for SP

Loss for semantic SM

Feature extraction
−−−−−−−−→

Features

SP computation

−−−−−−−−−−→ −−−−→

CNN GAP
↑
Lsp

Lsm

Ltotal =
αLsp + (1− α)Lsm

FIGURE 4.3: The SPSS+ architecture (cf. the SPSS architecture in Figure 4.2). In con-
trast, Ltotal (see Eq. (4.3)), a weighted average of Lsp and Lsm, is calculated during
training. After training, the SPSS+ architecture can force the extracted features to be

the prediction of the class-wise segmentation masks.

Loss function. Two types of loss functions are introduced in the architectures of our
method. One is based on the mean squared error (MSE). MSE is commonly used to
evaluate the performance of regression models where there are numerical target values
to predict. We employ MSE to measure the discrepancy between the ground-truth SP
and the predicted ones. For ease of reference, we call this loss function Lsp throughout
the chapter, i.e.,

Lsp =
1
|ΩT| ∑

i∈ΩT

∥ρ∗i − ρi∥2, (4.1)

where ρi is the predicted SP for image Xi ∈ XT and |ΩT| is the cardinality of set ΩT.
The other loss function, which will be deferred in Section 4.3.2, is defined based on the
binary cross-entropy (BCE). BCE is a commonly used loss function in binary classifica-
tion problems and measures the discrepancy between the predicted probabilities and
the true binary ones. Below we define the BCE function as

Lsm =
1
|ΩT| ∑

i∈ΩT

C

∑
j=1
−(Y∗ij log(Yij) + (1− Y∗ij ) log(1− Yij)), (4.2)
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where Yij is the predicted segmentation map for the j-th semantic class of image Xi ∈
XT.

4.3.1 Proposed SP-based Semantic Segmentation Architecture

The proposed SPSS architecture is shown in Figure 4.2. It contains two main parts.
The first part of the SPSS architecture is feature extraction. Employing a CNN is a
common approach in current state-of-the-art semantic segmentation methods. In our
SPSS, a CNN (or other type of DNNs) is utilised as its backbone to extract high-level
image features Yi from the input image Xi. The second part of the SPSS architecture is a
GAP layer, which takes the image features Yi to generate the SP, ρi, for the input image
Xi. The SPSS architecture is then trained by using the loss function Lsp defined in Eq.
(4.1). After training the SPSS architecture, the extracted features Yi of the trained CNN
are, surprisingly, the prediction of the class-wise segmentation masks; that is how the
SPSS architecture performs semantic segmentation by just using the SP rather than the
ground-truth segmentation maps.

We remark that both parts in the SPSS architecture except for utilising SP are well-
known and commonly employed for e.g. computer vision tasks. To the best of our
knowledge, it is, for the first time, to combine them for semantic segmentation in re-
ducing the need for labour-intensive (fine-grained) ground-truth segmentation masks
to the (coarse-grained) SP level.

4.3.2 A Booster: SPSS+

The proposed SPSS architecture in Figure 4.2 only uses the SP annotation for semantic
segmentation, which is quite cheap in terms of annotation generation. Moreover, SPSS
is also very flexible. For example, i) the proposed loss function Lsp using SP can be
employed as a plug-and-play module in different DNNs; and ii) SPSS can be enhanced
directly when additional annotation information is available. Below we give a show-
case regarding how to use SP and pixel-level annotations jointly to enhance the SPSS
architecture, see Figure 4.3. For ease of reference, we call the proposed booster in Figure
4.3 SPSS+.

The total loss for the SPSS+ architecture is

Ltotal = αLsp + (1− α)Lsm, (4.3)

where α is an adjustable weight to determine the trade-off between Lsp and Lsm. The
SPSS+ architecture uses the loss Ltotal, which considers the annotations of the SP and
segmentation masks for training. Similar to the SPSS architecture (in Figure 4.2), the
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extracted features Yi of the trained CNN in the SPSS+ architecture are the prediction of
the class-wise segmentation masks, i.e., the semantic segmentation results.

Our SPSS can generally achieve comparable performance against benchmark seman-
tic segmentation methods. SPSS+ works as a performance booster and improves the
segmentation ability of SPSS without extra training data or model complexity. More
details regarding the extensive validation and comparison are given in Section 4.5.

4.4 Data and Settings

4.4.1 Data

The proposed SP-based methodology for semantic segmentation is showcased on four
different datasets described below.

(i) Satellite images of Dubai, i.e., Aerial Dubai. This is an open-source aerial imagery
dataset presented as part of a Kaggle competition1. The dataset includes 8 tiles and each
tile has 9 images of various sizes and their corresponding ground-truth segmentation
masks for 6 classes, i.e., building, land, road, vegetation, water and unlabeled.

(ii) Medical imaging dataset ISIC (International Skin Imaging Collaboration). This is a
comprehensive collection of dermoscopic images specifically curated for the study and
analysis of skin lesions [175, 176]. It contains 2594 training, 100 validation and 1,000
test images with high-resolution capturing various types of skin lesions, including be-
nign and malignant conditions. Each image in the dataset is accompanied by expert
annotations including detailed segmentation masks outlining the precise boundaries
of the lesions. These annotations are crucial for segmentation methods to accurately
delineate the lesion from the surrounding skin. The ISIC dataset is frequently used
in research and competitions, such as the ISIC Challenge, to benchmark and advance
segmentation algorithms. However, obtaining fine-grained pixel-level segmentation
masks is expensive and our SPSS model shows comparable performance despite being
trained with dramatically less expensive SP rather than full masks.

(iii) Medical imaging dataset Electron Microscopy2. It contains 165 slices of microscopy
images with a size of 768× 1024. The primary aim of this medical dataset is to identify
and classify mitochondria pixels. This dataset is quite challenging since its semantic
classes are severely imbalanced, i.e., the size of the mitochondria in most slices is very
small (e.g. see the right column of Figure 4.4 and Figure 4.7).

(iv) Medical imaging dataset LGG Brain MRI from The Cancer Genome Atlas (TCGA)
and The Cancer Imaging Archive (TCIA). We used the version made available by Buda

1https://www.kaggle.com/datasets/humansintheloop/semantic-segmentation-of-aerial-imagery
2https://www.epfl.ch/labs/cvlab/data/data-em/

https://www.kaggle.com/datasets/humansintheloop/semantic-segmentation-of-aerial-imagery
https://www.epfl.ch/labs/cvlab/data/data-em/
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et al. [177] on Kaggle3, where the authors selected 120 patients from the TCGA lower-
grade glioma collection4 which had available preoperative imaging data including at
least a fluid-attenuated inversion recovery (FLAIR) sequence. The dataset includes
roughly 4000 brain MRI images of 110 patients from 5 institutions. Figure 4.4 presents
some example images for the three medical imaging datasets.

LGG Brain MRI ISIC Electron Microscopy

FIGURE 4.4: Example images and ground-truth segmentation masks of the three em-
ployed medical imaging datasets.

For the use of medical imaging datasets ISIC, LGG Brain MRI and Electron Microscopy,
an ethical clearance from the University of Southampton was obtained with the ERGO
number 100585.

4.4.1.1 Data preprocessing

The Aerial Dubai and Electron Microscopy datasets contain large images that were
preprocessed into smaller patches for analysis. Specifically, each image in the Aerial

Dubai dataset was divided into 224 × 224 pixel patches, resulting in a total of 1,647
images. For the Electron Microscopy dataset, images were divided into 256 × 256
pixel patches, yielding 1,980 images. The images in the LGG Brain MRI dataset, origi-
nally sized at 256× 256 pixels, were centre-cropped to 144× 144 pixels. Subsequently,
images from all datasets including ISIC were then resized to 288 × 288 pixels. This
preprocessing ensures uniformity in image sizes across different datasets, facilitating
consistent and effective analysis.

4.4.2 Experimental Settings

Benchmark methods with different CNN backbones (e.g., U-Net [170] or Feature Pyra-
mid Network (FPN) [178] with VGG16 [58] and ResNet34 [60]) are trained end-to-end
for semantic segmentation using the ground-truth segmentation masks, comparing to

3https://www.kaggle.com/datasets/mateuszbuda/lgg-mri-segmentation
4https://cancergenome.nih.gov/cancersselected/lowergradeglioma

https://www.kaggle.com/datasets/mateuszbuda/lgg-mri-segmentation
https://cancergenome.nih.gov/cancersselected/lowergradeglioma
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ours using the SP. For a fair comparison, the same training images are used to train all
the models.

Input: Xi
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Input: Xi
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SM: Y∗i
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SPSS+ Model
seg. map

mitochondria

FIGURE 4.5: Diagrams of the proposed models SPSS and SPSS+ on the datasets Aerial
Dubai (left) and Electronic Microscopy (right; significant class imbalance), respec-

tively.

4.4.2.1 Deep neural architecture details

• We employed U-Net [170] and FPN [178] architectures with pre-trained weights
from VGG16 [58] and ResNet34 [60] on the Aerial Dubai dataset. For the medical
imaging datasets and all the ablation experiments presented in Section 4.5, we
consistently utilized a U-Net with VGG16 weights.

• To adapt U-Net and FPN for predicting SP rather than fine-grained masks, a 1×
1 convolutional layer with n filters is employed to match the C number of the
semantic classes. Thus n is set to 6 and 1 to output feature maps of the size 288×
288× 6 and 288× 288× 1 respectively for the Aerial Dubai and medical imaging
datasets. Note that there is no need to set n to 2 for the binary segmentation
problem with medical imaging datasets. Finally, a GAP layer is added on top to
get n float to be used as the predicted SP values.

• To obtain segmentation maps during the test stage, we extract the feature maps
prior to the GAP layer and visualise them per semantic class (cf. Figures 4.2 and
4.3).

4.4.2.2 Training setup

For all experiments, an 80/20 split for the training/test, Adam optimizer with a learn-
ing rate of 10−3, and a batch size of 16 were chosen. The number of epochs was set to
100 with early stopping applied with patience set to 10 based on the validation loss.
All the experiments were implemented on a personal laptop with the following specifi-
cations: i7-8750H CPU, GeForce GTX 1060 GPU and 16GB RAM. Training of SPSS and
SPSS+ takes around 30 minutes and 40 minutes, respectively.
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4.5 Experiments

We highlight that the main aim here is to show that semantic segmentation can be
achieved with significantly weaker annotations, i.e., the SP annotation, rather than seg-
mentation accuracy enhancement only. Recall that the difference between SPSS and
SPSS+ is just the way of using the annotations for their training, i.e., SPSS+ addresses
scenarios in which ground-truth segmentation maps are available. Figure 4.5 illustrates
the difference by utilising the SPSS and SPSS+ architectures on the datasets Aerial

Dubai and Electronic Microscopy, respectively. To demonstrate the effectiveness of
our semantic segmentation approach, we evaluate performance using mean Intersec-
tion over Union (IoU) and F1 scores.

4.5.1 Segmentation Performance Comparison

Quantitative comparison. Tables 4.1 and 4.2 give the quantitative results of our method
and the benchmark methods for the Aerial Dubai and the three medical imaging
datasets, respectively. Well-known evaluation metrics, i.e., Mean IoU and F1 scores
are employed. Estimated errors in the mean are obtained by training the models three
times with randomly initialised weights. Tables 4.1 and 4.2 show that SPSS performs
comparably to the benchmark methods for all tasks, demonstrating the utility of the
SP annotation for semantic segmentation that our methodology introduces. Moreover,
SPSS+, i.e., using both ground-truth maps and SP, outperforms the benchmark meth-
ods for all the cases except for using the FPN with VGG16 backbone, indicating the
usefulness of involving the SP annotation. Note again that SPSS+ does not require any
additional data collection or increase in model complexity, hence offering performance
improvements for semantic segmentation tasks nearly for free. Without loss of gener-
ality, U-Net with VGG16 is adopted in our method for the rest of the experiments.

TABLE 4.1: Quantitative semantic segmentation results (Mean IoU and F1 scores) on
the Aerial Dubai dataset.

Model U-Net FPN
Backbone VGG16 ResNet34 VGG16 ResNet34

Metric Mean IoU F1 Mean IoU F1 Mean IoU F1 Mean IoU F1
Benchmark 71.3± 1.2 88.3± 0.7 69.2± 0.8 86.1± 1.2 68.5± 0.5 82.1± 0.3 67.2± 0.8 81.3± 0.8

SPSS 64.2± 0.6 83.7± 0.4 64.4± 0.4 80.6± 0.8 60.5± 0.2 77.2± 0.4 61.7± 0.6 77.5± 1.1
SPSS+ 71.6± 0.6 88.7± 0.6 70.4± 0.5 86.4± 0.3 67.7± 1.2 80.5± 0.5 69.2± 1.0 82.5± 0.7

TABLE 4.2: Quantitative semantic segmentation results (Mean IoU scores) on the med-
ical imaging datasets using U-Net with VGG16 backbone.

Method
Data

ISIC Mithocondria Brain MRI

Benchmark 78.4± 0.3 83.7± 0.6 72.3± 0.2
SPSS 73.2± 0.5 76.5± 0.2 69.5± 0.6

SPSS+ 79.1± 0.1 84.3± 0.5 72.8± 0.4
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Qualitative comparison. Figure 4.6 shows the qualitative results of our method and the
benchmark method for the Aerial Dubai dataset. Surprisingly, the class-wise segmen-
tation maps that our method achieves (middle of Figure 4.6) are visually significantly
better than that of the benchmark method (right of Figure 4.6) in terms of the binari-
sation ability, indicating the effectiveness of the loss Lsp (defined in Eq. (4.1)) using
the SP annotation we introduce. For the significant class imbalance dataset Electronic
Microscopy, Figure 4.7 shows the qualitative results of our method and the benchmark
method for some challenging cases. Again, our method exhibits superior performance
against the benchmark method. For example, our method can accurately segment the
mitochondria on the top-left corner of the second image despite employing much less
annotation, but the benchmark method completely misses it despite being trained us-
ing the ground-truth segmentation masks. This again validates the effectiveness of the
SP annotation for semantic segmentation. Moreover, due to the great binarisation abil-
ity of the loss Lsp using SP, it may serve as an auxiliary loss functioning as a plug-and-
play module even in scenarios where ground-truth segmentation masks are available
to enhance the segmentation performance of many existing methods as SPSS+ does.

Classes:
building

land
road

vegetation
water

Dataset:
Aerial Dubai

Ground truth Input: Xi SPSS (ours) Benchmark method

FIGURE 4.6: Qualitative semantic segmentation comparison between our SPSS
method (middle) and the benchmark method (right).
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FIGURE 4.7: Comparison between our SPSS+ method (upper) and the benchmark
method (lower) on some images from the Electronic Microscopy dataset.
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4.5.2 Sensitivity Analysis

Obtaining precise SP annotations may be challenging and, as a result, annotators may
provide rough estimates instead. We showcase that rough estimated SP is quite suffi-
cient for our model to achieve good performance (further results are deferred in Section
4.5.3). Below we first investigate the robustness of our models corresponding to the
quality of the SP. Two extreme ways of degrading the SP are examined: one is adding
noises to the SP directly and the other is assigning images in individual clusters to the
same SP.

4.5.2.1 SP degraded by different noise

We first conduct sensitivity analysis of our method SPSS by systematically adding
Gaussian noise to the SP for the Aerial Dubai dataset. Let N (0, σ) be the normal dis-
tribution with 0 mean and standard deviation σ. For the given SP ρ∗i = (ρ∗i1, · · · , ρ∗iC)

of ∀Xi ∈ XT, let ρ̃∗i = (ρ̃∗i1, · · · , ρ̃∗iC), where

ρ̃∗ij = ρ∗ij +N (0, σ), j = 1, · · · , C. (4.4)

Then the softmax operator is used to normalise ρ̃∗i , and the normalised ρ̃∗i is used as
the new SP to train our model. Here the standard deviation σ controls the level of
the Gaussian noise being added to the SP; e.g., σ = 0.1 represents 10% Gaussian noise.
Table 4.3 showcases the robustness of our methodology, as it continues performing well
even with the SP degraded by quite high levels of noise. Our method suffers a drop in
performance of ∼ 4% for 10% Gaussian noise being added to the SP. Our method still
works significantly above random guessing even with the SP which is degraded by
50% Gaussian noise. This shows that our method is quite robust corresponding to the
SP, which means the annotators could in practice spend much less effort for providing
rough SP rather than the precise SP.

TABLE 4.3: Performance of our model in terms of Mean IoU trained by using the SP
degraded by Gaussian noise.

Dataset Aerial Dubai

Noise (%) 0 5 10 15 20 30 40 50
Mean IoU 64.2 62.4 60.1 57.8 52.2 48.3 43.4 38.3

For medical imaging datasets, the SP of the positive class region, i.e., ρ∗i1, is degraded by
a different noise generation process to present diverse noise injection scenarios. Noise
is added in a controlled manner utilising the uniform distribution U (a, b) bounded by
a and b, ensuring that the degraded SP remains within a specified range, i.e.,

ρ̃∗i1 = ρ∗i1 + λ U (a, b)ρ∗i1, (4.5)
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Algorithm 3 Noisy SP ρ̃∗i Generation

1: Input: Ground-truth SP ρ∗i of image Xi, standard deviation σ, lower bound a, and
upper bound b.

2: Output: Noisy SP ρ̃∗i
3: if length(ρ∗i ) == 1 then ▷ E.g., medical imaging datasets
4: Randomly select λ from {−1, 1};
5: ρ̃∗i1 = ρ∗i1 + λ U (a, b)ρ∗i1;
6: else ▷ E.g., Aerial Dubai dataset
7: for j = 1 to length(ρ∗i ) do
8: ρ̃∗ij = ρ∗ij +N (0, σ);
9: end for

10: end if
11: return ρ̃∗i

where λ is a parameter with value −1 or 1 selected randomly. The above way ensures
that the degraded SP is relative to the size of the original SP controlled by bounds a and
b. The above steps are also summarised in Algorithm 3. The results presented in Table
4.4 again show that our method SPSS is robust against a high level of noise imposed on
the SP.

TABLE 4.4: Performance of our model in terms of Mean IoU trained by using the
degraded SP for medical imaging datasets.

Noise ([a, b])
Data

ISIC Mithocondria Brain MRI

Noise free 73.2 76.5 69.5
[0, 0.5] 70.1 70.5 62.5
[0, 1] 67.3 66.2 60.1
[0.5, 1] 69.3 64.2 63.1

4.5.2.2 SP degraded by clustering

We now conduct the sensitivity analysis of our method by degrading the SP of the
training images by clustering. The degradation procedures are: i) clustering the set of
the given SP, i.e., {ρ∗i }i∈ΩT , into K clusters by K-means; ii) clustering the training set XT

into the same K clusters, say X k
T , k = 1, . . . , K, corresponding to the SP clusters; and iii)

assigning all the training images in cluster X k
T the same SP which is randomly selected

from the SP of one image in this cluster; see also Figure 4.8 for illustration. Obviously,
implementing this way of degrading the SP, all the images’ SP in the training set XT

are changed except for K (i.e., the number of clusters) images if every training image
has different SP annotation in the original SP set. The smaller the number K, the more
severe the SP degradation.

The performance of our method regarding the SP degraded by clustering is shown in
Table 4.5, indicating again the robustness of our methodology corresponding to the SP.
For example, after just using K = 100 images’ SP for the whole training set XT, the
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Mean IoU of our method only drops by ∼ 2.5%; and just using K = 5 images’ SP
for the whole training set, our method can still work to some extent (i.e., the Mean
IoU just drops less than half). This again shows that our method is indeed quite robust
corresponding to the SP. This suggests one possible strategy to reduce effort is to cluster
images (for example from patients with a similar level of disease) and then estimate SP
on representative images in the cluster.

TABLE 4.5: Performance of our model in terms of Mean IoU trained by using the SP
degraded by clustering.

Dataset Aerial Dubai

# Clusters K 100 50 30 20 10 5
Mean IoU 61.7 59.4 56.5 51.2 47.4 38.3

Training set SP set

ρ∗i

SP clusters

−→

Image clusters

FIGURE 4.8: Diagram of the SP annotation degraded by clustering. Images are clus-
tered corresponding to the SP clusters which are achieved by applying K-means on
the SP set. An SP annotation for one image in each image cluster is then randomly

selected from that cluster and is assigned to all the images in that image cluster.

4.5.3 Further Comparison and Analysis

For demonstration purposes, the SP information used in the previous experiments is
simply obtained from the given annotated ground-truth segmentation masks. Cer-
tainly, in practice, we need the estimated SP information directly from annotators rather
than from the ground-truth segmentation masks and thus significantly simplify the
data annotation process. Below we showcase that rough estimated SP directly from an-
notators can indeed be obtained efficiently and cheaply and is quite sufficient for our
models to achieve good performance.

To directly obtain the SP annotations (in the absence of ground-truth masks), 52 images
were randomly picked from the Aerial Dubai dataset, and then three annotators (the
author of this thesis and two supervisors) estimated the SP for the provided images.
The estimated SP scores were then averaged. Afterwards, data augmentation tech-
niques such as flipping and rotation were applied to obtain 416 images for training.
Further details of the annotation process are given below.

The three annotators were asked to annotate a small batch containing 52 images from
the Aerial Dubai dataset each with the size of 288× 288 to show the efficiency of the
SP annotation process compared to the pixel-wise annotation, as well as the excellent
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Reference Images Average SP Estimations by Annotators

Classes
B: building
L: land
R: road
V: vegetation
W: water

FIGURE 4.9: Showcase of the SP annotation process by annotators directly. Three an-
notators were asked to annotate a batch with 52 images for training. Left: reference im-
ages whose SP information is calculated from the pixel-wise annotated ground-truth
segmentation maps. Right: some randomly selected images with their average SP es-

timations by the three annotators.

semantic segmentation ability of the proposed SPSS model compared to the benchmark
model (with the ground-truth segmentation maps).

• The annotators were provided with three reference images whose SP information
is simply obtained via the pixel-wise segmentation maps, see the left of Figure 4.9.
The reference images could be helpful for annotators to adjust their estimations;
for instance, for the last image in the first row of Figure 4.9 regarding the SP
estimations, it is clear that the water area is a little larger than that in the first
reference image, which helps the annotators to estimate a proportion with a larger
value than that for the water area in the reference image (i.e., 20% vs. 16%). The
average estimation of the three annotators for the water area in the mentioned
image is around 20%, which is quite close to the value obtained by its ground-
truth map, i.e., 21.3%, showing the efficiency of the SP annotation directly by
annotators in this manner. Moreover, our sensitivity experiments showed that
obtaining precise SP information for training is not a must for our SPSS model to
perform well, making the SP annotation process even more efficient and relaxing
given its tolerance of rough deviation in the SP estimations.

• After each annotator completes their SP annotation, the average SP annotation of
the three annotators is obtained for the 52 images.
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• Finally, two types of augmentation strategies were carried out to increase the
training dataset size. Each image was flipped horizontally and rotated by 90,
180 and 270 degrees clockwise. The rotations were also applied to every flipped
image. Therefore, 8 images were obtained for every image, and a training dataset
consisting of 416 images in total was formed. Note that, since the SP information
is irrelevant to the position of the content in an image, the estimated SP for one
image is also applied to all of its 7 augmented versions.

Table 4.6 highlights the time and memory cost to produce the SP annotations compared
to producing the ground-truth segmentation masks.

Pixel annotation for a single image with 5 objects takes roughly 330 seconds which is
around 16 times more than the time required for SP annotation5. Regarding memory, a
mask with the size of 224× 224 takes up around 148 kB. With compression, this value
can drop to as low as 4 kB, which is still roughly 200 times larger than the SP which
consists of only 5 numbers. This huge efficiency brought by our proposed SP strat-
egy is quite significant, particularly for big datasets which are required for semantic
segmentation.

TABLE 4.6: Comparison between the annotation styles of obtaining the segmentation
masks and the SP in terms of time and memory. The Aerial Dubai dataset is used.

Annotation Average time Memory per image
style per image Original Compressed

Segmentation masks ∼ 330s ∼ 148 kB ∼ 4 kB
SP (via annotators) ∼ 20s ∼ 0.02 kB

We now further compare the semantic segmentation performance between the bench-
mark model with ground-truth segmentation maps and our SPSS with the SP simply
obtained from the ground-truth segmentation maps and the rough SP produced by the
annotators, separately. Table 4.7 presents the results on the same test set used in Table
4.1. The results are quite impressive as SPSS with the rough SP estimations surpasses
not only the way of using the SP obtained by the ground-truth maps but also the bench-
mark model trained using the costly ground-truth maps.

TABLE 4.7: Quantitative comparison on the Aerial Dubai dataset with rough esti-
mated SP annotations.

Model Mean IoU Per-class F1 score Mean accuracyBuilding Land Road Vegetation Water
Segmentation masks 39.5± 1.3 52.7± 1.2 84.8± 0.6 2.4± 0.6 43.2± 1.3 75.4± 0.5 67.9± 1.1
SP (via seg. masks) 37.9± 0.8 39.8± 1.3 84.6± 0.3 4.5± 0.2 41.3± 0.8 77.2± 0.9 67.4± 0.3
SP (via annotators) 41.6± 1.3 46.2± 0.7 85.7± 1.3 26.6± 2.1 44.3± 0.8 75.6± 0.3 68.7± 0.4

5Average time taken for per-pixel annotation is estimated based on [125].
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4.6 Discussion and Limitations

SP (semantic proportions) for each training image is required as annotation/label infor-
mation for the presented semantic segmentation model. In this work, we obtained
these proportions from both the segmentation maps available for the chosen datasets
and three annotators directly to demonstrate the effectiveness and robustness of our
proposed SP-based methodology. We would like to stress that the reason why we ben-
efited from the existing segmentation maps, which seems controversial to our main aim
at first glance, is to show that the proposed methodology is feasible in the presence of
SP. Arguably, reasonable proportions can be simply extracted from the ground-truth
segmentation maps if they are annotated properly. Therefore, obtaining SP from the
readily available maps to achieve our aim is sensible. Clearly, our goal is to train our
proposed model when the segmentation maps are unavailable. It is evident from our
experiments that obtaining SP annotation could be much cheaper than obtaining pre-
cise segmentation maps, particularly for data volumes in high dimensions. There are
obviously various ways to obtain SP readily in the absence of the segmentation maps,
such as by employing mechanical turks. There may exist applications such as estimat-
ing the density of housing in a particular area where information may be extracted
from other studies or even obtained from pre-trained large language models, e.g., GPT-
3 [144].

The results that we present in Section 4.5 are promising and one may wonder if the
exact proportions are a must, which would make the proposed setting as expensive as
the traditional one. To demonstrate that this is not the case and that our methodol-
ogy only needs rough SP, we presented a sensitivity analysis regarding SP, where we
added various amounts of noise to the extracted SP and demonstrated that the model
performs satisfactorily well when trained with noisy SP. We also presented sensitivity
analysis by investigating degraded SP by clustering to further support the robustness
of our methodology when the precise SP is unavailable. The analysis suggests that our
methodology not only works well with rough SP but also with rough SP for only some
representative images from the whole training set, indicating its need for significantly
less annotation effort.

Additional annotations. In many scenarios, different types of annotations may exist. This
raises the question of whether it is feasible for semantic segmentation methods to use
the combination of different types of annotations to boost their performance. In this
regard, our proposed semantic segmentation methodology based on SP delivers quite
promising results.

For datasets where the ground-truth segmentation maps are available, the SP annota-
tion can be calculated directly. In these cases, an additional loss function using the SP
scores can be used as demonstrated by the SPSS+ model we have proposed. The re-
sults shown in Tables 4.1 and 4.2 demonstrated the good performance of SPSS+. The



78 Chapter 4. Semantic Proportions-based Semantic Segmentation

enhanced performance of our method by utilising both annotation types may benefit
from our introduced loss function Ltotal in Eq. (4.3). It contains the Lsp loss defined
in Eq. (4.1), which measures the MSE between the predicted SP and the given SP.
The visualisation results in Figure 4.6 showed that our Lsp loss may produce better
segmentation than the loss directly measuring the segmentation maps (that the bench-
mark method uses) in terms of the binarisation ability. Therefore, combining the Lsp

loss with the Lsm loss and then forming the Ltotal loss could boost the semantic seg-
mentation performance, e.g. see the visualisation given in Figure 4.7.

Limitations. SP provides much less information than standard segmentation annota-
tions. In some scenarios, for example, with a large number of classes or where some
classes represent only a tiny proportion of any image, the semantic proportions might
not provide enough information for the network to infer the classes. Thus the utility of
SP will be problem-dependent. In many ways, the surprising observation for us was to
discover how powerful SP is on a range of problems given how little information we
are providing to the network. Although SP will not be a solution for all segmentation
problems, we believe that its relative cheapness means that it may be the method of
choice in a number of applications where semantic segmentation is required, but the
resources to hand annotation images are limited.

In this work, we proposed a new semantic segmentation methodology by introducing
the SP annotation. In the scenario of quite limited annotation, using SP for semantic
segmentation can already achieve competitive results. If additional annotations are
available, our method can easily utilise them for a performance boost. Moreover, for
existing segmentation methods that use different types of annotations, we also suggest
involving SP in these methods; e.g., our proposed Lsp loss could serve as a type of
regularisation given its effectiveness in binarisation.

4.7 Conclusion

Semantic segmentation methodologies generally require costly annotations such as the
ground-truth segmentation masks in order to achieve satisfying performance. Moti-
vated by reducing the annotation time and cost for semantic segmentation, we in this
chapter presented a new methodology SPSS, relying on the SP annotation instead of the
costly ground-truth segmentation maps. Extensive experiments validated the great po-
tential of the proposed methodology in reducing the time and cost required for annota-
tion, making it more feasible for large-scale applications. Furthermore, this innovative
design opens up new opportunities for semantic segmentation tasks where obtaining
the ground-truth segmentation maps may not be feasible or practical. We believe that
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the use of the SP annotation suggested in this chapter offers a new and promising av-
enue for future research in the field of semantic segmentation, with evident and wide
real-world applications.

In the context of XAI, we believe that these results suggest that semantic segmentations
could plausibly be used as a more accurate way to represent saliency information. An
obvious next step would be to use the saliency maps we generated in Chapter 3 to
train a semantic segmentation network. This might then provide a much more detailed
explanation of how a DNN interprets an image. Due to lack of time, this next step will
have to be left as future work.
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Chapter 5

Concept-Based Explainable
Artificial Intelligence: Measures and
Benchmarks

In this chapter, we return to our main theme of XAI. Here, we explore new methods
to evaluate the performance of XAI and particular alignment between linguistic labels
and features found by the DNNs.

Concept-based explanation methods, such as CBMs (concept bottleneck models) and
CAVs (concept activation vectors), aim to improve the interpretability of ML models
by linking their decisions to human-understandable concepts. These methods hold
great promise but rely on the critical assumption that such concepts can be accurately
attributed to the network’s feature space. However, this foundational assumption has
not been rigorously validated, mainly because the field lacks standardised measures
and benchmarks to assess the existence and spatial alignment of such concepts. To
address this, we propose three measures: the CGIM (concept global importance measure)
to measure the global concept alignment, the CEM (concept existence measure) to test
whether a concept identified by an examined methodology truly exists in the image,
and the CLM (concept location measure) to evaluate whether the identified concept is
spatially aligned with the corresponding human-understood region in a test image. To
enable CLM, we also introduce CoAM (concept activation mapping), a technique for vi-
sualising concept activations. We use the benchmark Caltech-UCSB Bird (CUB) [55]
dataset and we benchmark post-hoc CBMs [37] on this dataset to illustrate their capa-
bilities and challenges. Through qualitative and quantitative experiments, we demon-
strate that, in many cases, even the most important concepts determined by post-hoc
CBMs are not present in input images; moreover, when they are present, their saliency
maps fail to align with the expected regions by either activating across an entire object
or misidentifying relevant concept-specific regions. We analyse the root causes of these
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limitations, such as the natural correlation of concepts. Our findings underscore the
need for more careful application of concept-based explanation techniques especially
in settings where spatial interpretability is critical.

5.1 Introduction

In recent years interest in XAI methods has grown substantially because of the desire
to exploit the success of newly developed ML methods to new areas of our lives [16,
18, 142, 179, 180]. In an attempt to make XAI more understandable to the layman there
has been a growing drive to develop techniques that provide explanations in terms of
human-understandable concepts [36, 41, 49, 50, 98, 101]. One of the big challenges of
concept-based XAI methods that is of paramount importance yet lacks of research is
to ensure that the concepts identified as important to making a decision properly align
with human understanding of the concepts.

In this chapter, we propose three new measures for measuring this alignment on a large
dataset. The first is the CGIM, which measures the global concept alignment by the XAI
techniques. The second is the CEM, which measures whether the concepts identified
as important for making a classification exist in an image. For example, if the horn is
identified as the most important concept for deciding the image is a rhinoceros then
we should expect the horn to be visible in the image. The third measure is the CLM,
which measures whether the excitable region of the feature maps used to determine an
important concept is close to the location where we would expect the concept to be. In
the example above, we would expect the heatmap representing the area of the feature
map that corresponds to the horn concept should be located around the horn. Using
these three measures we create a benchmark problem using the CUB dataset [55]. This
is a rich dataset that provides 200 bird classes together with 112 binary concepts and
the locations of many parts of the bird given for each image. Using this dataset and
our new measures we can test the performance of concept-based XAI methods over the
whole dataset of 11,800 images.

To illustrate the usefulness of our measures we examine a prominent example of a
concept-based XAI system known as the post-hoc CBMs [37]. This method is designed
to provide explanations of classifiers based on DNNs. The method is a synthesis of
two approaches – traditional CBMs [41] and CAVs [36] – for concept-based expla-
nations. Traditional CBMs are a relatively straightforward approach to introducing
human-understandable concepts into XAI. In traditional CBMs, we start from a net-
work trained to classify a set of classes and replace the final few layers with a new
set of layers that are trained to predict human-understandable concepts, which pro-
vides a “concept bottleneck”. From this concept representation, a fully connected layer
is trained to predict the classes. Given a new image, it is then straightforward to see
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FIGURE 5.1: Overview of CAVs, CBMs, post-hoc CBMs and the proposed tech-
niques. Feature extractor a⃝, concept prediction block b⃝, CAVs c⃝, concept bottleneck
d⃝, classifier e⃝, and our proposed CoAM framework f⃝. A traditional (without con-
cept bottleneck) classification model consists of a⃝ + e⃝, and c⃝ is introduced post-hoc
to explain its predictions via CAVs. a⃝ + b⃝ + d⃝ + e⃝ forms the steps for traditional
CBMs training, whereas a⃝ + c⃝ + d⃝ + e⃝ forms the post-hoc CBMs. Our proposed
CoAM framework is f⃝, weighing pre-GAP feature maps with CAVs for concept visu-
alisation. g⃝ presents the example steps of our proposed measures: CGIM, CEM and

CLM.

which concepts are important in making the prediction [41]. The disadvantage of tra-
ditional CBMs is that in order to train the network it requires that every image is an-
notated with the set of concepts that are visible in the image. Although there exists
a few datasets where such annotations are given, generally it would be prohibitively
expensive to annotate a large dataset.

There has therefore been a drive to find cheaper methods to learn concepts. One ex-
ample proposed by Aysel et al. [50] is to use annotations for the classes rather than
individual images. A second family of models that were developed to provide concept-
based explanations is known as CAV methods [36]. These methods take a pre-trained
network and probe the internal representation to determine the directions in that rep-
resentation that align with human-understandable concepts. One approach for doing
this is to take two subsets of the images, one class where the concept is present and the
other class where the concept is absent. From examining the difference in the represen-
tations between the two classes we can determine CAVs. This method is an example of
a “post-hoc” XAI method as it seeks to explain the decisions of a pretrained network
without changing that network.
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The post-hoc CBMs [37] combine CAVs with the traditional CBMs. It takes a pre-
trained network and feeds each channel in the last convolution layers into a GAP layer.
It uses the GAP representation to learn a set of CAVs. To do so, for each concept, it
chooses m positive and negative example images which it then trains an SVM (support
vector machine) to separate (m is of the order of 100 images). Each SVM discriminant
vector is taken as a CAV. These CAVs are then used to determine the degree to which a
concept is present in an image. From this, a concept bottleneck can be trained. This is
the post-hoc CBMs that we study in this chapter. The network is illustrated in the top
row of Figure 5.1, and the bottom row illustrates the new measures that we propose to
evaluate the alignment of the concepts with human understanding of the concepts.

Although post-hoc CBMs sacrifice some performance accuracy in predicting classes
compared to traditional DNNs (i.e., the ones without a concept bottleneck), they pro-
vide a relatively cheap way to obtain human-interpretable concepts. However, for this
explanation to be useful, the concepts need to be accurately aligned with human under-
standing of the concept. We use the new measures and new benchmarks for evaluating
this alignment. As we will see the alignment is surprisingly poor, which highlights the
necessity of introducing new measures for assessing this alignment. The main contri-
butions of the paper are as follows.

• We propose the CoAM to visualise concept activations.

• We propose three quantitative measures: i) CGIM, to test the global concept align-
ment by XAI methods; ii) CEM, to test whether a concept being identified by XAI
methods exists in the image; and iii) CLM, to test whether a concept being iden-
tified by XAI methods is spatially aligned with the human concept.

• We benchmark the post-hoc CBMs [37] using the proposed measures to evalu-
ate the alignment of concept-based XAI techniques on a benchmark dataset and
conduct insightful discussion.

The rest of the chapter is structured as follows. Section 5.2 recalls related work on
concept-based explainability. Section 5.3 provides an overview of CBMs and CAVs
as foundational methodologies. Section 5.4 introduces our proposed measures CGIM,
CEM, and CLM, including our CoAM framework for concept activation visualisation.
The thorough experimental results are presented in Section 5.5, followed by a detailed
discussion of the findings in Section 5.6 and limitations. Finally, Section 5.7 concludes
the chapter.
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5.2 Related Work

This section recalls concept-based methodologies for XAI and examines existing vari-
ants of CAM highlighting the need for a dedicated approach to concept visualisation
(which can be addressed by our CoAM).

Network dissection [49] is one of the well-known concept-based approaches, where in-
dividual neurons in a network are examined to identify their correspondence to human-
understandable concepts like edges, textures, or objects. By aligning neuron activations
with segmentation-annotated images, network dissection quantifies how well a model’s
internal representations map to meaningful concepts. However, this method is compu-
tationally expensive and data-intensive, requiring large and richly labelled datasets to
accurately associate neurons with interpretable concepts. Despite its valuable insights,
these limitations have prompted the development of more efficient and flexible meth-
ods, such as CAVs and CBMs.

Testing with CAVs (TCAV) framework [36] introduced CAVs to explain model predic-
tions based on high-level human-interpretable concepts. CAVs represent directions in
the latent space of a model corresponding to specific concepts, allowing for sensitivity
analysis. By perturbing an input in the direction of a concept vector, TCAV measures
how much the model’s prediction depends on that specific concept, offering quantita-
tive insights into the reliance on different concepts for a given task. TCAV has been
applied in several fields to assess whether models depend on sensitive attributes like
gender or race when making decisions. Recent adaptations have improved the com-
putational efficiency and robustness of CAVs when applied to large-scale models [181].
However, TCAV can only unveil the global effect of concepts on examined classes and
not on individual samples. Therefore, it is unable to directly assess the concept predic-
tions or provide spatial concept localisation for individual images.

CBMs [41] offers a significantly different approach to interpretability. They enforce that
intermediate representations of the model correspond to human-understandable con-
cepts, such as attributes (e.g., colour, shape, part) of objects in an image. By constraining
the model to predict based on these explicit concepts, CBMs inherently provide an in-
terpretable mechanism for understanding decisions. This makes it easier to debug and
correct errors by diagnosing the model’s performance on individual concepts. Recent
work in CBMs has focused on improving robustness, especially when concept labels
are noisy or incomplete. For instance, in Label-free CBMs [182], a method was pro-
posed using unsupervised techniques to learn concept bottlenecks, thereby extending
the applicability of CBMs to scenarios where manual labelling is expensive or imprac-
tical. Despite their interpretability, CBMs typically lack the ability to provide spatial
visualisations, limiting their usefulness in tasks that require precise localisation of im-
portant concepts.
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The multilevel XAI method in [50] offers solutions for both expensive annotation needs
and single-level output drawbacks of CBMs. The cost-effective solution to CBMs is
achieved by only requiring class-wise concept annotations rather than per-image. More-
over, the multilevel XAI method provides concept-wise heatmaps by-product handling
the single-level limitation of CBMs. To be more precise, different from other CBM ap-
proaches, the explanations by the multilevel XAI method are not only raw concept
values but also each concept comes with its saliency map that highlights the region in
the image activated by that concept. The authors in [50] have also shown the possibility
of concept intervention on the input dimension, which is much more intuitive than the
concept dimension. To give an example, in other CBMs, one may tweak the concept
value, say, “white” at the bottleneck layer to flip the prediction, say, from polar bear to
grizzly bear. In the multilevel XAI method, one can convert the white colour region in
the image to brown to achieve the same flipping, which is more intuitive and reliable.

A breakthrough in visual explanations came with the introduction of CAM [38], which
provides spatial localisation by computing class-specific activation maps that highlight
the regions of an image most relevant for a given prediction. CAM operates by util-
ising the output of GAP layers in CNNs, enabling the generation of heatmaps that
represent regions crucial for the final classification. This approach was generalised
in Grad-CAM [39], which makes use of the gradients flowing into the final convolu-
tional layer to visualise where the model “looks” when making a decision. Grad-CAM
extends CAM to more general architectures without requiring specific layers like GAP.
However, Grad-CAM does not always provide sharp localisation, especially when mul-
tiple objects are present in the image. Grad-CAM++ [88] addresses this limitation by
refining the localisation to better handle multiple instances of objects, offering a more
fine-grained interpretation. Further extensions include Score-CAM [75], which elimi-
nates the dependency on gradients, instead using the activations themselves to weigh
different regions of the input. This addresses some of the instability associated with
gradient-based methods but comes with increased computational overhead. Other ad-
vancements like Ablation-CAM [183] explore removing parts of the model and input
to measure their impact on predictions, thus improving interpretability.

5.3 Preliminary

In this section, we first present the notations used throughout the paper and then
demonstrate how CAVs are generated as proposed by [36]. After that, we introduce
the notations for traditional and post-hoc CBMs to familiarise the readers with these
methodologies and their differences. Finally, the global and local concept importance
notions are discussed.
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Let X be the set of images, U be the set of concept labels, and Y = {1, 2, · · · , K} be the
set of K class labels. Let S = {(Xi, ui, yi, Λi,Pi) | Xi ∈ X , ui ∈ U , yi ∈ Y , i = 1, 2, . . . , N}
be the training set with N samples, where ui ∈ {0, 1}L is the concept label vector with L
different concepts for image Xi ∈ RM1×M2×M3 (M3 = 3 for RGB images), and yi ∈ RK (a
one-hot vector) denotes the class label of image Xi, Λi is the set containing the indexes
of activated concepts for image Xi (i.e., the indexes of the components in ui with value
1), and Pi = {pi1, · · · , piL} is the set holding centre pixel coordinates pij of concept j
with j = 1, . . . , L for image Xi. Let f : X → Rd be a d-dimensional feature extractor,
which can be any trained DNNs such as ResNet [60] and VGG [58]. From block a⃝
in Figure 5.1, we see that the feature vector f (Xi) consists of the post-GAP features
(i.e., the features right after the GAP layer). Let Ei ∈ RH×W×d represent the pre-GAP
feature maps (i.e., the features right before the GAP layer), where H, W and d denote
the height, width and depth (i.e., the number of channels). The k-th channel of Ei is
represented as Ei(:, :, k) ∈ RH×W .

CAVs. Following [36] and [37], for j = 1, . . . , L, to generate the CAV cj ∈ Rd for the j-th
concept, two sets of image embeddings through f are needed, i.e., N pos

j for positive
examples and N neg

j for negative ones. In detail, set N pos
j consists of embeddings of

Np images (positive examples) that contain the j-th concept, and set N neg
j consists of

embeddings of Nn randomly chosen images (negative examples) that do not contain the
concept. Sets N pos

j and N neg
j are then used to train an SVM with cj being the obtained

normal vector to the hyperplane separating sets N pos
j and N neg

j . All together, these L
number of CAVs form a concept bank C = (c1, · · · , cL)

⊤ ∈ RL×d. For an image Xi, the
feature vector f (Xi) is to be projected onto the concept space by C, i.e., C f (Xi) ∈ RL,
which is the concept value vector ûi to be fed to the classifier.

Traditional vs. post-hoc CBMs. After the feature vector f (Xi) is obtained for image Xi,
the traditional CBMs predict concepts by the concept prediction block, while the post-
hoc CBMs project the feature vector f (Xi) onto the concept space using the concept
bank C, see Figure 5.1. Let

ûi = (ûi1, ûi2, · · · , ûiL)
⊤ = g( f (Xi)) (5.1)

be the obtained concept vector for image Xi and g be the projection function. Then, for
traditional CBMs, as the ground-truth concept label vector ui for image Xi is available, g
(i.e., the concept prediction block) is achieved/trained by minimising the below binary
cross-entropy loss function

Lg = ∑
i
Lg(ûi, ui). (5.2)

In contrast, for post-hoc CBMs, where the ground-truth concept label vector ui is not
available, the obtained concept vector ûi corresponding to Xi is directly obtained by
setting

g( f (Xi)) = C f (Xi). (5.3)
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Finally, the obtained concept vector ûi is used to predict the final classes via a single
classification layer

h : RL → Y (5.4)

for both the traditional and post-hoc CBMs. In detail,

h(ûi) = θ⊤ûi + b, (5.5)

where θ ∈ RL×K holds the weights and b is the bias. Function h is trained for the final
classification with the categorical cross-entropy loss function

Lh = ∑
i
Lh(ŷi, yi), (5.6)

where ŷi = h(g( f (Xi))) is the class prediction of Xi.

Global vs. local concept importance. After training, it is to use the trained model to
make a prediction for every test image, and then rank the concepts and present the
highest l of them as explanations. In this regard, it is crucial to differentiate between
the global and local importance of concepts for a task as they may play key roles in
different scenarios. Global importance is the overall effect of concepts for a given class.
For instance, in the post-hoc CBMs setting, the classifier h is a single layer with weights
θ mapping concept values to the final classes (also see the right of Figure 5.1) and each
parameter of this layer is proposed as the global importance of a concept that they weigh
for an examined class. By analysing each parameter, say θjk, one can assess the overall
effect of the concept j for class k. Moreover, tuning these parameters may allow the
model to debug as presented in [37]. The local importance of concepts on the other hand
is their influence on individual class predictions rather than on the entire class. The
CBM and its variants focus on local concept interventions [36], which is the process of
tweaking the predicted/projected concept values in ûi at the concept bottleneck layer,
i.e., d⃝ in Figure 5.1, to flip a single class prediction when needed. An effective way to
determine what concept values to intervene on is an active area of research [97, 98, 100].

One, however, should note that the magnitude of the concept values at the bottleneck
layer is not the same as the local importance. This is because a class prediction score by h
is the θ-weighted sum of concept values, and the parameters of θ may greatly increase
or decrease the individual concept effects on the final classification. Therefore, defining
the concept importance solely based on their values in ûi is misleading. We will address
this issue in our proposed methodology in Section 5.4.
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5.4 Proposed Methodology

There is a significant gap in the field regarding the evaluation of the explainability
power of the well-known concept-based methodologies. To fill this gap and assess the
existence and correctness of the concepts given as highly important by XAI techniques,
we propose our CoAM framework (see f⃝ in Figure 5.1 for an overview), which allows
concept visualisation. Moreover, we also propose the CGIM to test the global concept
alignment by XAI methods, the CEM to evaluate the existence of the concepts, and the
CLM to reveal whether the highly important concepts correspond to the correct regions
in a given test image.

5.4.1 Concept Activation Mapping

We below propose the CoAM framework, which generates concept activation maps
revealing the parts of an image that correspond to these concepts. As we know, for
post-hoc CBMs, the pre-GAP feature maps Ei ∈ RH×W×d (which contain spatial infor-
mation) for the examined image Xi become the post-GAP feature vector f (Xi) after the
GAP layer, which is then linked to the CAVs, cj = (cj1, · · · , cjd)

⊤, j = 1, . . . , L.

Our introduced concept activation maps, say Fij, for Xi corresponding to the j-th con-
cept for j = 1, . . . , L, are calculated by

Fij =
1
d

d

∑
k=1

cjkEi(:, :, k) ∈ RH×W , (5.7)

i.e., weighing the pre-GAP feature maps of Xi by the j-th CAV; see block c⃝ in Figure
5.1. The CoAM framework is also summarised in Algorithm 4, with Fi being the out-
put, where Fi(:, :, j) = Fij for j = 1, 2, . . . , L. Since the size of each Fij is significantly
smaller than that of Xi, to visualise the concept activation maps in a better way and for
localisation assessment, we upsample them to the original image size of Xi, denoted by
F̄ ij, and overlay them on Xi. This will tell us what parts of the input image contribute to
the individual concepts. Algorithm 5 gives the details of the final feature visualisation
pseudo-code.

5.4.2 Concept Global Importance Measure

We firstly introduce the global importance score of concept j for class k as θjk [the (j, k)-
th entry of θ], i.e., the weight in the classifier h mapping the j-th concept to the k-th
class, for j = 1, 2, . . . , L and k = 1, 2, . . . , K. Let V ∈ RL×K be the ground-truth concept
matrix for all the classes provided by annotators, where the entry of its j-th row and
k-th column Vjk is the ground-truth value of the j-th concept for the k-th class. One
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might consider directly comparing θjk and Vjk for global evaluation of the correctness
of θjk. However, this is inappropriate because these values are on different scales; in
particular, V contains values between 0 and 1, while θ can take any real value as it
represents layer weights. To address this issue, we propose to compare the entire j-th
row vectors θ(j, :) and V(j, :) by calculating their similarity for j = 1, 2, . . . , L.

Our first type CGIM is defined as

ρCGIM1
j := ϕ(θ(j, :), V(j, :)), j = 1, 2, . . . , L, (5.8)

where ϕ is the function for similarity calculation. In this paper, we use the cosine sim-
ilarity (measuring the alignment between two vectors regardless of their magnitudes)
for ϕ. Therefore, ρCGIM1

j is a similarity score between −1 and 1 for the j-th concept.

Ideally, ρCGIM1
j is expected to be close to 1 if the obtained θ(j, :) is meaningful.

Analogous to the first type CGIM in Eqn (5.8), we also introduce the concept global
explanations based on the average say û∗k of the concept vectors ûi of ∀Xi ∈ X k

T , where
X k

T is the set that consists of all the test images with correct predicted class 1 ≤ k ≤ K
and |X k

T | = Nk. Then, form Û∗ = (û∗1 , û∗2 , · · · , û∗K) ∈ RL×K, i.e., the obtained average
concept matrix. Our second type CGIM is then defined as

ρCGIM2
j := ϕ(Û∗(j, :), V(j, :)), j = 1, 2, . . . , L. (5.9)

If we consider both the weight matrix θ and the obtained average concept matrix Û∗,
we have our third type CGIM, which is defined as

ρCGIM3
j := ϕ(Û∗θ(j, :), V(j, :)), j = 1, 2, . . . , L, (5.10)

where Û∗θ = θ⊙ Û∗ with ⊙ being the pointwise multiplication operator.

The above proposed CGIM scores ρCGIM1
j , ρCGIM2

j , and ρCGIM3
j are for each concept 1 ≤

j ≤ L. They can also be readily modified analogously so that we can calculate CGIM
scores for each class 1 ≤ k ≤ K, i.e.,

ρCGIM1
k := ϕ(θ(:, k), V(:, k)), (5.11)

ρCGIM2
k := ϕ(Û∗(:, k), V(:, k)), (5.12)

ρCGIM3
k := ϕ(Û∗θ(:, k), V(:, k)). (5.13)

5.4.3 Concept Existence Measure

We now define the local importance score of concept j for class k as θjkûij; note that ûij

is the obtained j-th concept value of test image Xi and θjk is the weight in classifier h
linking the j-th concept and the k-th class prediction. We rank the total L concepts for
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Algorithm 4 Concept Activation Mapping (CoAM)

Input:

• Pre-GAP feature maps Ei ∈ RH×W×d for image Xi

• Concept bank C ∈ RL×d

Output: Concept activation map Fi ∈ RH×W×L

1: for each concept j in the C do
2: Compute the weighted map Fij with Eqn (5.7)
3: Set Fi(:, :, j) = Fij

4: end for
5: return Fi

test image Xi based on their contribution to the final classification prediction k using
the local importance score θjkûij, and let qi = (qi1, qi2, · · · , qiL)

⊤ represent the ranked
indexes of the concepts for Xi. Therefore, if qis = m, it means the m-concept is ranked at
the s place for s = 1, 2, . . . , L based on the descending order of the magnitude of θmkûim

among {θjkûij}L
j=1.

Recall that Λi is the set containing the indexes of activated concepts for image Xi. Our
CEM is defined as

ρCEM
l :=

1
l

l

∑
j=1

1Λi(qij), (5.14)

assessing if the first l ≤ L concepts (i.e., the first l components) in qi exist in the exam-
ined image Xi, where 1Λi is an indicator function defined as

1Λi(x) =

⎧⎨⎩1, if x ∈ Λi;

0, otherwise.
(5.15)

Obviously, the CEM ρCEM
l is an accuracy score between 0 and 1 evaluating the existence

of highly important concepts in image Xi, thanks to the set Λi containing the indexes of
activated concepts. CEM reveals the reliability of explanations generated by a trained
model; for example, ρCEM

l = 0 means none of the l highly important concepts exists in
the examined image, whereas ρCEM

l = 1 means all of the l highly important concepts
exist in the examined image. We remark that ρCEM

l can also be obtained in the same
manner by using θjk or ûij instead of θjkûij as the local importance score for comparison
purpose.

5.4.4 Concept Location Measure

After checking whether the obtained important concepts of image Xi exist in the ground-
truth set Λi with CEM and generating concept activation maps with CoAM, we now
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Algorithm 5 Feature Visualisation in CoAM

Input:

• Boolean flag colored for generating colored heatmaps.

• Threshold value threshold for binary heatmaps.

• Opacity level β for superimposed heatmaps.

• Input image Xi ∈ RM1×M2×M3 .

• Concept activation map Fi ∈ RH×W×L of Xi. ▷ L is the number of concepts

Output: Set of superimposed images S̄ ∈ RM1×M2×M3×L.

1: Initialize an empty list of superimposed images S̄
2: for each spatial projection map j in Fi do
3: heatmap = resize (Fij, (M1, M2)) ▷ Generate heatmap with size of (M1, M2)

4: if colored then ▷ Apply a colormap to the heatmap
5: jet heatmap = apply colormap (heatmap, “jet”) ▷ Convert the heatmap to

an RGB image
6: superimposed img = β· jet heatmap + Xi ▷ Overlay heatmap on the original

image Xi
7: Append superimposed img to S̄
8: else ▷ Generate binary heatmap using the threshold value
9: binary heatmap = binary threshold (heatmap, threshold)

10: superimposed img = Xi⊙ binary heatmap ▷ Overlay heatmap on the
original image Xi

11: Append superimposed img to S̄
12: end if
13: end for
14: return S̄

propose CLM to assess whether the obtained concepts of image Xi correspond to the
correct region in Xi.

Note that this check could be rigorously done by calculating the IoU (intersection over
union) score if a ground-truth segmentation map per concept is available. However, the
absence of these ground-truth maps makes this way impractical. In contrast, it will be
much easier to mark some pixels, e.g. the coordinate information of the centre pixel for
each important semantic area in an image, and then link the coordinate information to
each concept. One useful label available for this purpose is the coordinate information
of the centre pixel for each concept, i.e., Pi, for image Xi.

The proposed CLM checks whether the concept-wise activation heatmap F̄ ij for concept
j generated by CoAM contains the ground-truth centre location pij. For the l ≤ L most
important concepts of Xi obtained in qi, our CLM is defined as

ρCLM
l :=

1
l

l

∑
j=1

1Ωij(pij), (5.16)
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where Ωij is the visual region of concept j of Xi. Obviously, ρCLM
l is an accuracy score

between 0 and 1 evaluating the alignment between the obtained individual concept
heatmaps and their actual region in the image Xi. In particular, ρCLM

l = 0 means none of
the l highly important concepts corresponds to the correct region in the image, whereas
a ρCLM

l = 1 score means all the l highly important concepts correspond to the correct
region in the image. Finally, we remark that there are many ways to obtain the visual
region Ωij. In this paper, we use thresholding on the concept-wise activation heatmap
F̄ ij with threshold τ to obtain Ωij.

5.5 Experiments

We in this section benchmark results and evaluate the performance of the post-hoc
CBMs using our proposed measures. The benchmark fine-grained bird classification
dataset, CUB [55], with concept annotations such as wing colour, beak shape and feather
pattern is employed for the experiments. It consists of 200 different classes and 112 bi-
nary concept labels for around 11, 800 images. Additionally, the central pixel locations
of 12 different body parts are provided and used for concept localisation assessment
by the proposed CLM. Following [37], we employ a ResNet-18 [60] trained on the CUB

dataset1 as the feature extractor f . CAVs are calculated as explained in Section 5.4 to
create a concept bank C (also see c⃝ in Figure 5.1). Finally, a single layer h with weights
θ ∈ R112×200 is trained for the classification.

5.5.1 Post-hoc CBMs Reproduction

By employing the same model as the feature extractor and following the same steps
for CAVs and classifier training, we reproduce the results of post-hoc CBMs [37] with
various hyperparameter combinations. There are two hyperparameters to tune during
the SVM training for CAV learning, i.e., Np and Nn (the number of positive and neg-
ative images per concept), which we set to 50 and 100, respectively. The other hyper-
parameter is the regularisation term λ in SVM, which controls the trade-off between
maximising the margin that separates classes and minimising classification errors on
the training data. A low λ value allows the model to prioritise a wider margin, even
if some data points are misclassified, making the model more robust to noise and po-
tentially improving its generalisation of new data. In contrast, a high λ value forces
the SVM to minimise the training error, making it less tolerant of misclassifications and
resulting in a narrower margin. While a high λ can lead to more accurate training
performance, it may also increase the risk of overfitting, as the model becomes more
sensitive to individual data points. Thus, λ helps balance the SVM’s complexity and
flexibility, impacting its ability to generalise well.

1The trained CUB model is available at https://github.com/osmr/imgclsmob.

https://github.com/osmr/imgclsmob
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TABLE 5.1: Classification accuracy of the reproduced post-hoc CBMs with different
settings for the parameters λ, Np, and Nn.

λ
Np = Nn 50 100

0.001 26.7 52.2
0.01 34.1 44.9
0.1 29.1 41.5
1 25.5 59.1

10 25.3 58.7
Traditional model w/o bottleneck 75.4

We train SVM with λ values ranging from 0.001 to 10. Table 5.1 shows the classification
accuracy of the classifier h with various concept banks obtained by these hyperparam-
eter combinations. For the experiments in the rest of the paper, we employ the model
with the best classification accuracy 59.1%, which is achieved when Np = Nn = 100
and λ = 1. This result is very close to the accuracy 58.8% reported in the seminal work
[37]. Note that there is more than 15% accuracy loss in comparison to the traditional
model, i.e., the one without a concept bottleneck (i.e., a⃝ + e⃝ in Figure 5.1), for the sake
of obtaining an interpretable model via concept bottleneck.

5.5.2 Global Importance Evaluation

We now investigate the quality of the global explanations of the post-hoc CBMs. Re-
call that the entries of θ ∈ R112×200 are considered as the global importance scores,
determining the importance of a concept for an examined class. Ideally, these weights
should closely align with human annotations in V ∈ R112×200, i.e., the so-called ground
truth. Intuitively, we expect the CGIM scores ρCGIM1

j , ρCGIM2
j , and ρCGIM3

j of θ, Û∗, and
Û∗θ corresponding to V for each concept 1 ≤ j ≤ 112 (and analogously for each class
1 ≤ k ≤ 200) to be close to 1 if the obtained θ, Û∗, and Û∗θ are meaningful.

The calculated CGIM scores of the post-hoc CBMs for each concept 1 ≤ j ≤ 112 and
for each class 1 ≤ k ≤ 200 are respectively presented in Table 5.2 and Tables 5.3 and
5.4. To better visualise and interpret results, Figure 5.2 showcases the histograms of
the obtained CGIM scores across a range between −1 (maximum dissimilarity) and 1
(maximum similarity), regarding individual classes and concepts. Again, in an ideal
scenario, it would be expected the CGIM scores ρCGIM1

k and ρCGIM1
j in the top row of

Figure 5.2 to be a single prominent bar at the value of 1, or at the very least, a clear
accumulation of bars towards the right end of the histogram (approaching 1), if the
results of the post-hoc CBMs are meaningful/correct. Obviously, this is not the case.
For example, the class and concept histograms in Figure 5.2 (a)–(b) show that many bars
are distributed across the range from−1 to 1 with a noticeable number of values on the
negative side, indicating a tendency towards negative correlation for some classes and
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Class Concept

(a) ρCGIM1
k

(b) ρCGIM1
j

(c) ρCGIM2
k

(d) ρCGIM2
j

(e) ρCGIM3
k

(f) ρCGIM3
j

FIGURE 5.2: Histograms of the CGIM scores of the post-hoc CBMs. Plots on the left
and right columns show the results for classes and concepts, respectively. A full list of
the CGIM scores can be found in Table 5.2 for the concepts and in Tables 5.3 and 5.4

for the classes.

concepts, which is contrary to the expected accumulation near 1. The class and concept
histograms in terms of ρCGIM2

k and ρCGIM2
j in Figure 5.2 (c)–(d) and ρCGIM3

j and ρCGIM3
k in

Figure 5.2 (e)–(f) again disclose the same issue of the post-hoc CBMs.

A deeper analysis is also conducted by investigating the specific concepts and classes
with significantly low or negative CGIM scores presented in Tables 5.2, 5.3 and 5.4.
For instance, the ρCGIM1

j score for concept (j = 51) black eye colour in Table 5.2 is a
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TABLE 5.2: Full list of CGIM scores for concepts in CUB dataset [55] with reproduced
post-hoc CBMs [37].

Concept
CGIM

ρCGIM1
j ρCGIM2

j ρCGIM3
j Concept

CGIM
ρCGIM1

j ρCGIM2
j ρCGIM3

j

1: Dagger beak 0.54 0.05 0.41 57: Yellow forehead colour 0.41 0.22 0.47
2: Hooked seabird beak 0.45 0.08 0.34 58: Black forehead colour 0.39 0.25 0.35

3: All-purpose beak 0.37 0.67 0.46 59: White forehead colour 0.52 −0.13 0.07
4: Cone beak 0.47 0.23 0.43 60: Brown under tail colour −0.01 −0.16 0.23

5: Brown wing colour 0.22 −0.05 0.28 61: Grey under tail colour 0.36 −0.21 0.30
6: Grey wing colour −0.13 −0.25 0.31 62: Black under tail colour −0.11 0.35 0.24

7: Yellow wing colour 0.42 −0.04 0.42 63: White under tail colour 0.02 −0.22 0.23
8: Black wing colour 0.42 −0.02 0.33 64: Buff under tail colour 0.46 −0.21 0.22
9: White wing colour −0.05 0.08 0.30 65: Brown nape colour 0.22 0.00 0.39
10: Buff wing colour 0.22 0.12 0.30 66: Grey nape colour 0.27 0.34 0.38

11: Brown upper-part colour 0.09 0.03 0.26 67: Yellow nape colour 0.35 0.23 0.52
12: Grey upper-part colour −0.36 0.16 0.23 68: Black nape colour 0.37 0.00 0.20

13: Yellow upper-part colour 0.46 0.09 0.45 69: White nape colour 0.38 0.16 0.28
14: Black upper-part colour −0.04 0.48 0.30 70: Buff nape colour 0.49 −0.24 0.14
15: White upper-part colour 0.32 −0.17 0.23 71: Brown belly colour 0.56 −0.15 0.22
16: Buff upper-part colour 0.27 −0.13 0.20 72: Grey belly colour 0.52 −0.12 0.41

17: Brown underpart colour 0.47 0.02 0.36 73: Yellow belly colour 0.20 0.43 0.27
18: Grey underpart colour 0.19 0.04 0.37 74: Black belly colour 0.48 0.21 0.46

19: Yellow underpart colour 0.40 0.55 0.51 75: White belly colour 0.01 0.33 0.21
20: Black underpart colour 0.55 0.05 0.29 76: Buff belly colour 0.48 −0.31 −0.07
21: White underpart colour −0.04 0.03 0.26 77: Rounded wing shape 0.05 0.03 0.38
22: Buff underpart colour 0.18 −0.10 0.20 78: Pointed wing shape 0.51 −0.16 0.34

23: Solid breast pattern 0.38 0.39 0.40 79: Small size −0.09 0.37 0.28
24: Striped breast pattern 0.33 0.00 0.33 80: Medium size 0.23 0.06 0.29

25: Multi-coloured breast pattern 0.51 −0.19 0.25 81: Very small size 0.57 −0.21 0.26
26: Brown back colour 0.43 0.04 0.23 82: Duck-like shape 0.42 0.41 0.57
27: Grey back colour 0.38 −0.21 0.18 83: Perching-like shape −0.18 0.47 0.11

28: Yellow back colour 0.31 0.03 0.32 84: Solid back pattern 0.53 −0.13 0.20
29: Black back colour 0.22 0.60 0.38 85: Striped back pattern 0.33 −0.09 0.33
30: White back colour 0.34 −0.23 0.20 86: Multi-coloured back pattern 0.25 −0.38 0.39
31: Buff back colour 0.01 −0.24 0.27 87: Solid tail pattern 0.64 0.41 0.45

32: Notched tail shape 0.21 −0.10 0.31 88: Striped tail pattern 0.42 −0.30 0.21
33: Brown upper tail colour 0.33 −0.10 0.23 89: Multi-coloured tail pattern 0.25 −0.41 0.21
34: Grey upper tail colour 0.08 −0.19 0.23 90: Solid belly pattern 0.35 0.47 0.37
35: Black upper tail colour 0.44 0.50 0.50 91: Brown primary colour 0.12 0.19 0.26
36: White upper tail colour −0.13 0.19 0.25 92: Grey primary colour 0.45 0.00 0.27
37: Buff upper tail colour 0.51 −0.01 0.39 93: Yellow primary colour 0.12 0.44 0.31
38: Head pattern eyebrow 0.41 −0.12 0.37 94: Black primary colour 0.47 0.11 0.39

39: Head pattern plain 0.67 −0.05 0.34 95: White primary colour 0.58 −0.05 0.26
40: Brown breast colour 0.39 0.19 0.23 96: Buff primary colour 0.32 −0.29 0.26
41: Grey breast colour 0.58 −0.05 0.35 97: Grey leg colour 0.55 0.22 0.43

42: Yellow breast colour 0.47 0.26 0.46 98: Black leg colour 0.43 −0.09 0.29
43: Black breast colour 0.22 0.00 0.25 99: Buff leg colour 0.17 0.00 0.27
44: White breast colour 0.32 −0.19 0.30 100: Grey bill colour 0.43 0.06 0.41
45: Buff breast colour 0.32 −0.26 0.17 101: Black bill colour 0.36 0.39 0.38
46: Grey throat colour 0.38 −0.11 0.37 102: Buff bill colour 0.52 −0.43 −0.13

47: Yellow throat colour 0.26 0.23 0.29 103: Blue crown colour 0.37 0.27 0.50
48: Black throat colour 0.52 −0.03 0.28 104: Brown crown colour 0.39 0.16 0.32
49: White throat colour 0.45 0.14 0.32 105: Grey crown colour 0.39 −0.24 0.19
50: Buff throat colour 0.42 −0.29 0.22 106: Yellow crown colour 0.25 0.20 0.36
51: Black eye colour −0.63 0.82 −0.33 107: Black crown colour 0.45 0.18 0.39
52: Head size beak 0.40 0.26 0.38 108: White crown colour 0.42 −0.13 0.01

53: Shorten than head size beak −0.08 0.43 0.23 109: Solid wing pattern 0.61 0.39 0.60
54: Blue forehead colour 0.26 0.36 0.50 110: Spotted wing pattern 0.48 0.04 0.49

55: Brown forehead colour 0.43 −0.20 0.32 111: Striped wing pattern 0.24 −0.12 0.37
56: Grey forehead colour 0.62 −0.20 0.06 112: Multi-coloured wing pattern 0.27 0.17 0.40

large negative value, i.e., −0.63. Similarly, the ρCGIM1
j score close to 0 for class (k = 18)
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TABLE 5.3: Full list of CGIM scores for classes in CUB dataset [55] with reproduced
post-hoc CBMs [37].

Class
CGIM

ρCGIM1
k ρCGIM2

k ρCGIM3
k Class

CGIM
ρCGIM1

k ρCGIM2
k ρCGIM3

k

1: Black footed Albatross 0.24 −0.20 0.03 51: Horned Grebe 0.27 −0.24 0.24
2: Laysan Albatross 0.30 0.04 0.11 52: Pied billed Grebe 0.32 −0.12 0.32
3: Sooty Albatross 0.28 −0.15 0.17 53: Western Grebe 0.25 −0.04 0.24

4: Groove billed Ani 0.28 0.37 0.31 54: Blue Grosbeak 0.20 0.20 0.31
5: Crested Auklet 0.25 0.18 0.26 55: Evening Grosbeak 0.40 0.24 0.35

6: Least Auklet 0.26 0.07 0.14 56: Pine Grosbeak 0.14 −0.01 0.20
7: Parakeet Auklet 0.25 0.12 0.20 57: Rose breasted Grosbeak 0.31 0.17 0.31

8: Rhinoceros Auklet 0.36 0.00 0.22 58: Pigeon Guillemot 0.36 0.05 0.20
9: Brewer Blackbird 0.29 0.21 0.28 59: California Gull 0.27 0.16 0.24

10: Red winged Blackbird 0.27 0.36 0.38 60: Glaucous winged Gull 0.37 0.04 0.26
11: Rusty Blackbird 0.17 −0.09 0.32 61: Heermann Gull 0.26 0.12 0.32

12: Yellow headed Blackbird 0.36 0.32 0.41 62: Herring Gull 0.27 0.01 0.17
13: Bobolink 0.27 0.23 0.34 63: Ivory Gull 0.33 0.33 0.30

14: Indigo Bunting 0.15 0.16 0.23 64: Ring billed Gull 0.34 0.20 0.29
15: Lazuli Bunting 0.16 −0.07 0.27 65: Slaty backed Gull 0.25 −0.04 0.23

16: Painted Bunting 0.28 0.01 0.36 66: Western Gull 0.16 0.15 0.20
17: Cardinal 0.22 0.00 0.17 67: Anna Hummingbird 0.16 −0.15 0.17

18: Spotted Catbird −0.02 −0.38 0.14 68: Ruby throated Hummingbird 0.28 −0.22 0.17
19: Gray Catbird 0.27 0.17 0.28 69: Rufous Hummingbird 0.19 −0.09 0.16

20: Yellow breasted Chat 0.39 0.01 0.33 70: Green Violetear 0.20 −0.14 0.12
21: Eastern Towhee 0.31 0.00 0.33 71: Long tailed Jaeger 0.24 −0.16 0.13

22: Chuck will Widow 0.23 0.05 0.32 72: Pomarine Jaeger 0.18 −0.28 0.36
23: Brandt Cormorant 0.27 0.02 0.16 73: Blue Jay 0.30 0.02 0.36

24: Red faced Cormorant 0.22 0.15 0.24 74: Florida Jay 0.32 −0.06 0.24
25: Pelagic Cormorant 0.05 0.06 0.16 75: Green Jay 0.32 0.13 0.38
26: Bronzed Cowbird 0.22 0.19 0.32 76: Dark eyed Junco 0.22 −0.05 0.20

27: Shiny Cowbird 0.33 0.25 0.24 77: Tropical Kingbird 0.28 0.13 0.36
28: Brown Creeper 0.30 0.11 0.27 78: Gray Kingbird 0.17 0.06 0.29
29: American Crow 0.28 0.38 0.28 79: Belted Kingfisher 0.25 0.01 0.19

30: Fish Crow 0.29 0.44 0.33 80: Green Kingfisher 0.27 −0.04 0.23
31: Black billed Cuckoo 0.26 0.04 0.21 81: Pied Kingfisher 0.14 0.41 0.19
32: Mangrove Cuckoo 0.23 −0.22 0.17 82: Ringed Kingfisher 0.21 −0.18 0.17

33: Yellow billed Cuckoo 0.26 −0.02 0.29 83: White breasted Kingfisher 0.39 0.13 0.28
34: Gray-crowned Rosy Finch 0.33 0.14 0.21 84: Red legged Kittiwake 0.30 0.17 0.25

35: Purple Finch 0.05 0.00 0.16 85: Horned Lark 0.31 0.13 0.23
36: Northern Flicker 0.35 0.02 0.29 86: Pacific Loon 0.48 −0.13 0.17

37: Acadian Flycatcher 0.32 −0.15 0.33 87: Mallard 0.27 −0.14 0.23
38: Great Crested Flycatcher 0.37 0.00 0.30 88: Western Meadowlark 0.43 0.05 0.38

39: Least Flycatcher 0.14 −0.15 0.16 89: Hooded Merganser 0.46 −0.03 0.38
40: Olive sided Flycatcher 0.21 −0.20 0.25 90: Red breasted Merganser 0.24 −0.10 0.29

41: Scissor tailed Flycatcher 0.25 −0.01 0.25 91: Mockingbird 0.22 −0.03 0.10
42: Vermilion Flycatcher 0.12 −0.01 0.07 92: Nighthawk 0.32 −0.12 0.26

43: Yellow bellied Flycatcher 0.37 −0.22 0.18 93: Clark Nutcracker 0.32 0.20 0.31
44: Frigatebird 0.25 0.04 0.18 94: White breasted Nuthatch 0.24 0.11 0.34

45: Northern Fulmar 0.14 0.12 0.16 95: Baltimore Oriole 0.27 0.07 0.30
46: Gadwall 0.32 −0.04 0.36 96: Hooded Oriole 0.27 0.17 0.19

47: American Goldfinch 0.38 0.37 0.37 97: Orchard Oriole 0.30 0.08 0.17
48: European Goldfinch 0.45 0.13 0.32 98: Scott Oriole 0.43 0.23 0.43
49: Boat tailed Grackle 0.32 0.08 0.25 99: Ovenbird 0.23 0.00 0.13

50: Eared Grebe 0.26 −0.10 0.14 100: Brown Pelican 0.22 −0.45 0.06
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TABLE 5.4: Full list of CGIM scores for classes in CUB dataset [55] with reproduced
post-hoc CBMs [37] (Table 5.3 continued).

Class
CGIM

ρCGIM1
k ρCGIM2

k ρCGIM3
k Class

CGIM
ρCGIM1

k ρCGIM2
k ρCGIM3

k

101: White Pelican 0.19 0.03 0.05 151: Black-capped Vireo 0.25 0.02 0.27
102: Western Wood Pewee 0.26 0.05 0.23 152: Blue-headed Vireo 0.35 0.03 0.30

103: Sayornis 0.25 −0.16 0.13 153: Philadelphia Vireo 0.19 0.00 0.20
104: American Pipit 0.27 0.09 0.27 154: Red-eyed Vireo 0.20 0.00 0.32
105: Whip poor will 0.24 −0.21 0.34 155: Warbling Vireo 0.34 0.10 0.14
106: Horned Puffin 0.37 0.24 0.35 156: White-eyed Vireo 0.31 0.05 0.25

107: Common Raven 0.32 0.24 0.33 157: Yellow-throated Vireo 0.21 0.16 0.13
108: White-necked Raven 0.35 0.22 0.35 158: Bay-breasted Warbler 0.32 −0.12 0.22
109: American Redstart 0.28 0.12 0.24 159: Black-and-white Warbler 0.35 0.15 0.30

110: Geococcyx 0.24 −0.10 0.24 160: Black-throated Blue Warbler 0.26 0.02 0.27
111: Loggerhead Shrike 0.33 0.28 0.31 161: Blue-winged Warbler 0.26 0.36 0.35
112: Great Grey Shrike 0.28 0.19 0.31 162: Canada Warbler 0.27 0.06 0.17
113: Baird’s Sparrow 0.24 0.12 0.31 163: Cape May Warbler 0.28 −0.05 0.30

114: Black-throated Sparrow 0.33 0.08 0.22 164: Cerulean Warbler 0.10 −0.10 0.21
115: Brewer’s Sparrow 0.25 0.23 0.12 165: Chestnut-sided Warbler 0.27 0.02 0.35
116: Chipping Sparrow 0.28 0.02 0.21 166: Golden-winged Warbler 0.40 0.20 0.39

117: Clay-colored Sparrow 0.22 0.07 0.16 167: Hooded Warbler 0.26 0.17 0.43
118: House Sparrow 0.36 0.11 0.24 168: Kentucky Warbler 0.12 0.17 0.14
119: Field Sparrow 0.14 0.07 0.19 169: Magnolia Warbler 0.41 0.19 0.35
120: Fox Sparrow 0.22 0.10 0.22 170: Mourning Warbler 0.33 0.06 0.24

121: Grasshopper Sparrow 0.30 0.08 0.34 171: Myrtle Warbler 0.34 0.01 0.22
122: Harris’s Sparrow 0.22 −0.01 0.31 172: Nashville Warbler 0.27 0.18 0.33

123: Henslow’s Sparrow 0.34 0.10 0.27 173: Orange-crowned Warbler 0.21 0.00 0.18
124: Le Conte’s Sparrow 0.36 0.09 0.29 174: Palm Warbler 0.18 −0.05 0.09

125: Lincoln Sparrow 0.28 0.22 0.21 175: Pine Warbler 0.23 0.23 0.19
126: Nelson’s Sharp-tailed Sparrow 0.31 −0.13 0.17 176: Prairie Warbler 0.20 0.16 0.24

127: Savannah Sparrow 0.35 0.13 0.32 177: Prothonotary Warbler 0.33 0.37 0.42
128: Seaside Sparrow 0.15 −0.24 0.07 178: Swainson’s Warbler 0.31 0.05 0.20

129: Song Sparrow 0.37 0.20 0.29 179: Tennessee Warbler 0.17 0.00 0.20
130: Tree Sparrow 0.38 0.10 0.20 180: Wilson’s Warbler 0.20 0.25 0.34

131: Vesper Sparrow 0.16 0.12 0.17 181: Worm-eating Warbler 0.33 0.02 0.32
132: White-crowned Sparrow 0.40 0.12 0.33 182: Yellow Warbler 0.33 0.37 0.34
133: White-throated Sparrow 0.18 0.00 0.27 183: Northern Waterthrush 0.23 0.08 0.24

134: Cape Glossy Starling 0.40 0.14 0.34 184: Louisiana Waterthrush 0.27 0.01 0.19
135: Bank Swallow 0.17 −0.15 0.19 185: Bohemian Waxwing 0.29 0.23 0.28
136: Barn Swallow 0.37 0.09 0.22 186: Cedar Waxwing 0.40 0.12 0.25
137: Cliff Swallow 0.29 −0.13 0.12 187: American Three-toed Woodpecker 0.32 0.14 0.20
138: Tree Swallow 0.33 0.17 0.30 188: Pileated Woodpecker 0.31 0.27 0.26

139: Scarlet Tanager 0.30 0.10 0.09 189: Red-bellied Woodpecker 0.20 0.10 0.27
140: Summer Tanager 0.21 0.10 0.16 190: Red-cockaded Woodpecker 0.28 0.26 0.26

141: Arctic Tern 0.23 0.17 0.26 191: Red-headed Woodpecker 0.39 0.22 0.33
142: Black Tern 0.22 −0.07 0.27 192: Downy Woodpecker 0.27 0.24 0.27

143: Caspian Tern 0.12 0.20 0.26 193: Bewick Wren 0.20 0.25 0.30
144: Common Tern 0.17 0.11 0.26 194: Cactus Wren 0.39 0.17 0.29
145: Elegant Tern 0.22 0.23 0.25 195: Carolina Wren 0.33 0.27 0.30
146: Forsters Tern 0.17 0.25 0.24 196: House Wren 0.26 0.30 0.28

147: Least Tern 0.38 0.20 0.33 197: Marsh Wren 0.33 0.07 0.21
148: Green tailed Towhee 0.30 0.06 0.27 198: Rock Wren 0.24 0.19 0.22

149: Brown Thrasher 0.34 0.10 0.30 199: Winter Wren 0.20 0.32 0.16
150: Sage Thrasher 0.37 0.12 0.25 200: Common Yellowthroat 0.30 −0.04 0.30
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TABLE 5.5: Concept existence assessment of the reproduced post-hoc CBMs under
CEM for the top l most important concepts.

Image CEM based on l = 1 l = 3 l = 5
θjk 39.2 37.9 37.1

Entire test set ûij 84.3 80.1 77.2
θjkûij 49.3 44.3 41.2

θjk 48.5 46.8 44.8
Correct class set ûij 85.4 82.1 80.7

θjkûij 55.4 49.1 45.8

spotted catbird and class (k = 25) pelagic cormorant in Table 5.3 indicates that these classes
share no similarities to their ground truth. For the first time, the low and negative
valued CGIM scores occurring for many concepts and classes raise concerns about the
reliability and quality of the explanations of the post-hoc CBMs.

5.5.3 Concept Existence Evaluation

After analysing the global importance evaluation based on the classifier’s weights and
average concept predictions, we, in this section, focus on the local importance anal-
ysis. The first step in this regard is to assess the concept existence qualitatively and
quantitatively.

5.5.3.1 Qualitative observations

When a set of concepts is presented as highly important for a prediction by a trained
model, it is essential to qualitatively verify whether these concepts really exist in the
image. In Figure 5.3, we present random images from the test set with the top 5 most
important concepts for their prediction outputted by the reproduced post-hoc CBM
[37]. As shown in Figure 5.3, many of those highly important concepts do not actually
exist in the given images. For instance, for an American Redstart in the first column, the
most important concept is given as white throat; this is incorrect because the bird has a
black throat, which can be clearly seen in the input image. Similarly, for the brown pelican
image in the second column, the fifth most important concept is given as shorten than
head bill; this is not the case as the pelican has a much longer bill than its head.

5.5.3.2 Quantitative test by CEM

We calculate the CEM score over the entire test set. The full results are presented in
Table 5.5 in terms of ranking the importance of the concepts based on i) the weights
of the classifier θjk, ii) the projected concept values ûij, and iii) their combination θjkûij,
for the top l most important concepts with l set to 1, 3, and 5. The results show that
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American Redstart

white throat (✗)
white back (✗)
plain head (✓)

black throat (✓)
mainly white (✗)

Brown Pelican

perch-like shape (✗)
yellow nape (✗)

multicolour back (✗)
mainly yellow (✗)

short bill (✗)

Ivory Gull

white forehead (✓)
black breast (✗)

all purpose bill (✗)
white under tail (✓)
perch-like shape (✗)

Ovenbird

striped breast (✓)
yellow throat (✗)

buff upper tail (✗)
striped wing (✗)

brown forehead (✓)

Bronzed Cowbird

white belly (✗)
black upper tail (✓)

buff upper tail (✗)
buff breast (✗)
black back (✓)

Magnolia Warbler

yellow underpart (✓)
mainly yellow (✓)
grey under tail (✗)
black crown (✗)
plain head (✗)

FIGURE 5.3: Randomly selected test images from different classes and the top 5 most
important concepts for their classification by the post-hoc CBMs. In particular, sym-
bol ✓ is for concept existence in the ground-truth label, while symbol ✗ indicates the

concept absence in the ground-truth label.

TABLE 5.6: The number of concepts, grouped based on their types, and mapped to the
parts (see Table 5.7 for more details).

Part
Type

Color Pattern Shape Total

Back 6 3 — 9
Beak 3 2 4 9
Belly 6 1 — 7
Breast 6 3 — 9
Crown 6 — — 6
Head 6 2 — 8
Eye 1 — — 1
Leg 3 — — 3

Wing 6 4 2 12
Nape 6 — — 6
Tail 10 3 1 14

Throat 5 — — 5
Others 18 — 5 23
Total 82 18 12 112

the CEM score based on ûij is significantly higher than the others, which is intuitive at
first glance as the highest values after concept projection are highly likely to be present
in the ground-truth label. However, as detailed in Section 5.4, the concept values in
ûi do not independently determine the final class prediction; instead, these values are
weighted by their respective weights in θ, which can significantly alter their overall
impact. Relying solely on the projected concept values in ûi may therefore lead to
misleading conclusions. Hence, we build our argument based on θjkûij rather than
solely on ûij or θjk. Strikingly, as shown in Table 5.5, the single most important concept
(i.e., when l = 1) only exists in the images around 55% of the times when the image is
correctly classified. This score drops to 49% when the test is done on the entire test set.
Moreover, the CEM score is even lower when l is set to 3 and 5.
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Input Concept-wise maps Class maps

White Nuthatch m-colour wing (✓) white nape (✓) grey leg (✓) grey belly (✗)

Green tail Towhee grey belly (✓) white wing (✗) grey bill (✓) yellow crown (✗)

Clark Nutcracker all-purpose bill (✗) g. forehead (✓) m-colour wing (✓)white wing (✗)

Rose Grosbeak w. upperpart (✓)m-colour breast (✓) cone bill (✓) blue crown (✗)

FIGURE 5.4: Class and concept visualisation with our CoAM. All images (on the left)
are correctly classified and their class-wise saliency maps are given on the right. The
four most important concepts under CEM for the given classifications and their indi-
vidual saliency maps are given in the middle. In particular, symbol ✓ is for concept
existence in the ground-truth label, while ✗ shows the concept absence in the ground-

truth label.

5.5.4 Concept Localisation Evaluation

We now assess the concept of localisation qualitatively using our proposed CoAM and
quantitatively by our proposed CLM.

TABLE 5.7: Details of the concepts and the parts they are mapped to.

Part
Type

Color Pattern (length for beak) Shape

Back brown, grey, yellow, black, white, buff solid, striped, multi-coloured —
Beak grey, black, buff same-as-head, shorter-than-head dagger, hooked-seabird, all-purpose, cone
Belly brown, grey, yellow, black, white, buff solid —
Breast brown, grey, yellow, black, white, buff solid, striped, multi-coloured —
Crown blue, brown, grey, yellow, black, white — —
Head blue, brown, grey, yellow, black, white eyebrow, plain —
Eye black — —
Leg grey, black, buff — —

Wing brown, grey, yellow, black, white, buff solid, spotted, striped, multi-coloured rounded, pointed
Nape brown, grey, yellow, black, white, buff — —
Tail brown, grey, black, white, buff solid, striped, multi-colored notched

Throat grey, yellow, black, white, buff — —
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5.5.4.1 Qualitative observations

By visualizing concept heatmaps for different concepts using our proposed CoAM, we
identified several recurring patterns. Figure 5.4 presents some examples of class and
concept visualisation by using our CoAM. In many cases, the concept activation maps
cover broad image regions, often extending beyond the expected concept areas. For
instance, when detecting the concept grey leg in a white breast nuthatch image, the con-
cept map covers the entire body of the bird rather than focusing on the specific region
around the leg, as shown in the first row in Figure 5.4. Moreover, many of the fine-
grained concepts such as crown or tail pattern are often not correctly localised. For in-
stance, the heatmap highlights a region around the leg for blue crown concept as given
in the last row of Figure 5.4.

5.5.4.2 Quantitative test by CLM

To be able to calculate the CLM score, the centre pixel coordinates for individual con-
cepts are needed. In the CUB dataset, the centre pixel coordinates are only available for
12 broader body parts such as beak, throat, and leg. Fortunately, most of the 112 concepts
are related to one of the 12 body parts, allowing us to match each concept to its closest
body part and hence exploit the corresponding body-part coordinates for concepts. For
instance, we match the hooked seabird beak concept with the beak part and the solid wing
concept with the wing; see Tables 5.6 and 5.7 for details. We ignore concepts that are
not related to a specific part such as overall size, shape and colour information, which
leaves us with 89 out of 112 concepts for the CLM evaluation.

Recall that after obtaining the activation map for the j-th concept F̄ ij of Xi, CLM checks
if the centre pixel location pij falls into the highest activated region Ωij. Here Ωij is
formed by the α(M1M2)/12 number of pixels in terms of the largest pixel intensities in
F̄ ij, where α is a hyperparameter that allows changing the region’s size. For example,
α = 1 means the 1/12 of the image is scanned, which is the size of a rough area for each
of the 12 body parts such as beak, back and throat as given in Tables 5.6 and 5.7.

Table 5.8 gives the CLM scores for different choices of α. For α = 1, only 13.3% of
the time the centre pixel for a concept falls into the highly activated region Ωij. Even
increasing α to 6, which means half of the image is scanned, the centre pixels of the
individual concepts are still not in the concept locations 41% of the time.

5.6 Discussion

Learning human-understandable concepts is a challenging task. Often concepts are
highly correlated with other features. For example, although hooves clearly relate to
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TABLE 5.8: Concept localisation assessment of the reproduced post-hoc CBMs under
CLM for the top l most important concepts.

Value α for Ωij CLM based on l = 1 l = 3 l = 5
θjk 10.8 13.6 13.8

α = 1 ûij 14.9 14.6 14.6
θjkûij 13.3 13.5 12.9

θjk 29.6 30.1 31.2
α = 3 ûij 39.2 33.7 33.1

θjkûij 33.4 32.2 31.8
θjk 52.3 50.8 51.6

α = 6 ûij 54.5 56.4 55.9
θjkûij 59.0 55.0 53.9

the feet of animals, a group of hooved animals often share other common features (e.g.,
they are often quadrupeds that feed on grass). Although these other features might
help to identify the concepts, it is not very helpful to be told that an important concept
for determining that the image represents a cow is hooves if the hooves are not visible
in the image. It is therefore important to check that the human-understandable con-
cepts exist in the image and when they exist the network is finding them in the correct
location. By providing measures and benchmarks we hope that this will provide an
important stimulus to develop models with improved alignment.

Concept-based XAI methodologies showcase either global or local explainability of
their proposed techniques, depending on their model setting. For instance, with tradi-
tional CBMs, the quality of concept predictions can be assessed just like the final class
predictions since the concept labels should be readily available for them to work in the
first place. On the other hand, when concept labels are not available as in the post-
hoc CBMs case, the main evaluation is on the classifier weights (i.e., θ) as the global
explicator. This evaluation is further supported by model editing experiments. To the
best of our knowledge, there are no well-known evaluation measures other than model
editing experiments, where some concepts are deliberately removed during test time to
see how well the said concept is learnt as important for the prediction. However, none
of these experiments makes a comparison between these weights and the ground-truth
labels (i.e., V for the CUB dataset), hindering their reliability. Therefore, we propose
CoAM and CGIM to visualise and evaluate the global explainability of concept-based
XAI methodologies more rigorously and surface the alignment between the global con-
cept explanations and ground-truth labels. Moreover, when the ground-truth concept
labels are not available, for methods such as post-hoc CBMs, they are unable to do
concept predictions and instead project concepts to the concept space, which would
prevent a direct concept prediction evaluation even if the test set had ground-truth la-
bels for each concept. Our CEM and CLM allow local concept evaluation regardless of
the training settings of methodologies, i.e., whether they predict or project concepts to
the concept space.
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We should note, however, that the measures we provide do not directly measure the
usefulness of the concepts as an explanation. Rather it acts as a sanity check that the
concepts are correctly identified in the images. Also, success on the benchmark is not
necessarily the top objective of a network; for example, the motivation of the post-hoc
CBMs [37] was to provide a low-cost means of building traditional CBMs. A traditional
CBM that uses per-image annotation will surely have a superior performance on our
benchmark, but it may be too costly to train this on other datasets.

There are drawbacks to the measures CEM and CLM that we propose. The CEM can
only be used on datasets where we have per-image annotations of the concepts for a
test set (note that for our case, only a small number of concepts like the top l ≪ L are re-
quired per-image, and therefore is cheap). This limits its use to a very small number of
datasets. Having a measure limited to one (or a small number of datasets) runs the risk
that models are developed that overfit to that particular dataset. Applications to other
datasets in other domains would undoubtedly be helpful for widespread use of our
proposed measures. These domains would include healthcare where explainability is
crucial and necessary for experts to trust AI predictions. Nevertheless, we had to leave
this as part of future work and are hopeful to see our measures used in a variety of do-
mains in the near future. The CLM requires knowledge of the location of the concepts.
In fact, the concept locations were not given and we had to do a “best guess” approx-
imation of whether the concepts found in the “saliency maps” overlap with the real
concept locations. It is also debatable whether the heatmaps we obtained by weighting
the feature maps before doing GAP correctly capture the location of the concepts. In
our judgment, this seems as fair an estimate of the position as we can make. We feel
there is considerable value in visualising the location of a concept through the use of
heatmaps. In Chapter 3, we built saliency maps for each concept, but there we aligned
each feature map to a concept which prevented cross-contamination between concept
locations. By providing visualisations of the parts of the image that activated the con-
cept, it made it much easier to assess the alignment of concepts in that model. We have
attempted to provide a similar visualisation for the post-hoc CBMs [37], although as
this is not part of the design of that model the visualisation may not be perfect. Finally,
reducing the assessment of alignment to a couple of numbers loses a lot of fine-grain
detail. As we illustrated, we can get a better understanding of the failure of the network
by examining the performance in more detail, for example, by plotting histograms of
the CBMs results to identify particularly poor concepts, or by visualising the locations
of the features to understand what concepts might be being learnt.

Despite those drawbacks, we believe that proposing a new benchmark for assessing
concept alignment has the potential to concentrate the effort of researchers on improv-
ing the performance of concept-based XAI systems. As we have illustrated, the per-
formance of post-hoc CBMs is surprisingly poor. Without doing a systematic analysis
of this alignment, it is easy to overlook this problem and believe that an XAI system is
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more powerful than it actually is. Our hope is that by introducing a new benchmark
we can improve the accuracy of future concept-based XAI systems.

Our findings raise important questions about the utility of current concept-based expla-
nation methodologies in providing spatially grounded explanations for image-based
tasks. While these models offer some degree of interpretability by linking decisions to
human-understandable concepts, their failure to predict and localise concepts correctly
can lead to misleading interpretations. This highlights the importance of more rigorous
evaluation criteria such as CGIM, CEM and CLM and the development of models that
prioritise both concept prediction accuracy and spatial interpretability.

5.7 Conclusion

In this chapter, we proposed three novel measures, i.e., CGIM, CEM and CLM, for
concept-based XAI systems. CGIM provides a way to measure the global concept align-
ment ability of concept-based XAI techniques. CEM and CLM are introduced for local
importance evaluation, testing if highly important concepts by XAI techniques exist
and can be correctly localised in a given test image, respectively. Employing these
three measures, we benchmarked post-hoc CBMs on the CUB dataset. Our experiments
demonstrated significant limitations in current post-hoc methods, with many concepts
and classes found to be weakly or even negatively correlated with their ground-truth
labels by CGIM. Moreover, many concepts presented as highly important are not found
to be present in test images by CEM, and their concept activations fail to align with the
expected regions of the input images by CLM. As the field of XAI continues to evolve,
it is essential to ensure that methods not only provide understandable concepts but
also accurately predict and localise these concepts within input data. Future work may
focus on improving both the concept prediction and spatial localisation capabilities of
concept-based XAI methods, ensuring that they can offer reliable and interpretable in-
sights across diverse applications.
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Chapter 6

Conclusions and Future Directions

This thesis investigates the black-box nature of DNNs and underscores the importance
of the tools and techniques to interpret these complex models. In this context, it pro-
vides a comprehensive review of well-known methodologies aimed at enhancing the
interpretability, fairness, and transparency of these networks, particularly within the
context of computer vision. By identifying key challenges and gaps in the field, we
propose targeted solutions to address these limitations. In this chapter, we summarise
our findings, highlight the current limitations of our work, and discuss potential strate-
gies to overcome these limitations, outlining promising directions for future research.

6.1 Multilevel XAI

In Chapter 3, we define the types and levels of explanations that are both intuitive and
desirable for humans to comprehend and trust machine predictions in the context of
computer vision. We argue that explanations should be multilevel—combining high-
level, human-understandable concepts with their corresponding saliency maps. We
demonstrate that many well-known methodologies in the XAI field fall short of achiev-
ing this multilevel nature, as they typically produce single-level explanations, such as
coarse-grained, object-wide saliency maps or simple lists of concepts. To address this
limitation, we introduced multilevel XAI—a novel approach that generates multilevel,
human-like explanations. By doing so, we aim to enhance the transparency, accessibil-
ity, and interpretability of deep networks.

Multilevel XAI can be viewed as a variant of CBMs, as it introduces an intermediate
concept block that bridges high-level features learnt by deep networks and their final
class predictions. However, multilevel XAI offers significant advantages over tradi-
tional CBMs. Firstly, it requires only class-wise concept annotations, drastically reduc-
ing annotation costs by several orders of magnitude depending on the task, compared
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to the image-wise concept annotations typically required by CBMs. Secondly, multilevel
XAI generates concept-wise saliency maps by product, elevating the level of explanation
from a single layer to a more comprehensive two-layer representation. Furthermore,
these by-product concept-wise saliency maps enable intervention at the pixel level, of-
fering a more intuitive and user-friendly approach compared to the popular concept-
level interventions (see Figures 3.17 and 3.18 for examples).

There are limitations to our multilevel XAI approach. While it significantly reduces
annotation costs, it still requires additional annotations, i.e., class-wise concept labels,
to generate explanations. These annotations, sourced from human annotators, may
necessitate domain-specific expertise, especially for tasks like medical image classifica-
tion. Reducing this dependency, for instance, by leveraging large language models, is
a promising avenue for future research.

Another critical challenge lies in identifying the optimal set of concepts. Ideally, this
set should be highly representative of the task-specific classes while ensuring minimal
overlap or dependency among the concepts. This remains an open research area that
warrants further exploration.

A further limitation involves the generation of concept-wise saliency maps. While the
multilevel XAI approach successfully produces these maps for many concepts, gener-
ating intuitive and precise maps that clearly delineate regions corresponding to every
individual concept remains challenging. These challenges often arise from inherent
complexities in explanations, such as distinguishing circumstantial evidence from con-
textual cues or defining atomic versus compound concepts. In Section 3.6, we delve
deeper into these issues and encourage the research community to address them to
advance the field of concept-based explanations.

Despite these limitations, the multilevel XAI approach offers significant advantages
to the concept-based XAI field. Promising future directions include developing auto-
mated methods for concept labelling, identifying optimal concept sets for specific tasks,
and refining saliency map generation.

6.2 Semantic Proportions-based Semantic Segmentation

Semantic segmentation tasks are inherently challenging due to the expensive per-pixel
annotation requirements. To address this, several forms of weak supervision—such as
bounding boxes and scribbles—have been proposed in the field of WSSS (weakly su-
pervised semantic segmentation) to reduce these costs. In Chapter 4, we introduced
a novel WSSS methodology, SPSS, which has been demonstrated to be a significantly
cost-efficient approach for achieving semantic segmentation while maintaining an ac-
ceptable level of accuracy. Our experiments show that SPSS enables the prediction of
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high-quality segmentation maps using only rough class proportions per image. This is
significant because it requires minimal effort for annotation: just a few numerical val-
ues per image (one value per class). By doing so, SPSS reduces the annotation costs by
several orders of magnitude in terms of both time and size compared to full per-pixel
annotations, as highlighted in Table 4.6.

In the experiments presented in Chapter 4, we obtained semantic class proportion infor-
mation either from existing segmentation maps or through limited manual annotations
by a small group of annotators, as illustrated in Figure 4.9. The latter approach was
particularly employed to demonstrate that precise class proportions, as in the former,
are not strictly necessary—rough estimates are sufficient for SPSS to achieve satisfac-
tory segmentation predictions. To further validate this, we conducted ablation studies
in Section 4.5.2, where noise and cluster experiments demonstrated that SPSS performs
reasonably well even when the precise proportions were significantly altered.

Additionally, as shown in Table 4.7, our results indicated that when the number of
training images is severely restricted, the models trained using semantic proportions
outperform those relying on costly per-pixel annotations. This finding is particularly
significant, as having access to a limited number of segmentation-annotated images is a
common constraint in real-world applications, further highlighting the practical appeal
of the SPSS approach.

Our SPSS methodology does have some limitations. While the pixel accuracies achieved
by it are promising, they are not as high as those obtained through per-pixel training—a
drawback common to most WSSS techniques. Future work will focus on developing
smart solutions, such as alternative training objectives or innovative ways to leverage
semantic proportions to help bridge the gap and bring results closer to the optimal
accuracy achieved with per-pixel annotations. For instance, combining semantic pro-
portions with other forms of weak supervision, as seen in other methodologies using
segmentation maps, could be one of the directions.

While we have demonstrated the low cost of obtaining rough class proportions com-
pared to per-pixel annotations, future work will focus on automating this annotation
process to further reduce costs. One promising direction involves leveraging the concept-
wise saliency maps generated by the multilevel XAI technique introduced in Chapter 3.
This direction requires an initial qualitative and quantitative comparison between the
segmentation maps that our SPSS generates and the saliency maps obtained by tradi-
tional XAI methodologies for a fairer judgment. More importantly, their collaborative
use in the semantic segmentation tasks is promising.

Using saliency maps from XAI methodologies for segmentation tasks is not a novel
idea; prior research has successfully employed these maps as a form of weak super-
vision, particularly when combined with other weak annotations such as class labels
or bounding boxes. The additional location information provided by saliency maps
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enriches the supervision compared to scenarios where class labels, bounding boxes,
or scribbles are used in isolation. However, it is worth noting a key distinction: the
objective in our SPSS framework is as simple as predicting a few numerical values
(i.e., class proportions) and obtaining the saliency maps by-product, whereas saliency
map-based methodologies still aim to make per-pixel predictions. This introduces chal-
lenges; saliency maps as ground-truth often include a substantial number of false posi-
tives and negatives, making them far from ideal ground-truth segmentation maps. The
inherent unreliability of these maps may limit further improvements in segmentation
accuracy.

In Chapter 4, we demonstrated the effectiveness of SPSS in domains such as aerial
imaging, where class boundaries are relatively distinct, and in medical imaging, where
tasks are typically binary. However, semantic proportions may be insufficient in scenar-
ios with a high number of classes in a single image, particularly when several objects
occupy similar spatial regions or when certain class proportions are too small to be
representative. Thus, SPSS may not be a universal solution for all segmentation chal-
lenges. However, its low annotation cost makes it a desirable starting point in cases
where per-pixel annotations are infeasible or prohibitively expensive.

Looking forward, future work will include exploring domains and scenarios where
SPSS performs effectively, as well as identifying cases where it is less suitable and
should be avoided. This exploration will help refine the applicability of SPSS and guide
its integration into a broader range of segmentation tasks.

6.3 Concept-Based Explainable Artificial Intelligence: Measures
and Benchmarks

Concept-based XAI methodologies have gained popularity in recent years due to their
intuitive and human-understandable outputs. However, the field lacks consensus on
evaluation standards and widely accepted benchmark datasets, making it challenging
to compare and validate techniques. Current works often rely on secondary evalua-
tions. For instance, in some studies where the proposed methodology includes altering
the DNN structure, such as by introducing a concept bottleneck to provide concept-
level explanations, the evaluation is based on the observation that the model modifi-
cation does not significantly degrade model prediction performance while providing
explanations. Others conduct ablation studies, showing that removing highly impor-
tant concepts results in significant changes in model predictions.

While these commonly used evaluation approaches provide some insights into the
validity of the outputted concepts, they exhibit significant limitations. Specifically,
they do not rigorously verify whether the highly important concepts identified by the
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trained model truly exist or whether they spatially align with relevant parts of the ex-
amined image. We contend that the field requires more rigorous, comprehensive, and
standardised evaluation criteria, along with widely accepted benchmark datasets, to
enable fair and consistent comparisons.

To address these challenges, Chapter 5 introduces three novel and intuitive measures:
CGIM, CEM, and CLM. CGIM facilitates global concept evaluation by assessing con-
cept alignment, while CEM and CLM focus on local concept evaluation, examining
concept presence and spatial localisation, respectively. Furthermore, we recommended
the CUB [55] as a benchmark dataset for concept-based XAI methodologies.

Employing the CEM is relatively straightforward, as it simply verifies whether the k
most important concepts are present in the ground-truth concept labels. In contrast,
the CLM presents a greater challenge because most concept-based XAI techniques lack
concept-wise saliency maps, offering only single-level outputs that indicate concept rel-
evance without spatial localisation—a core limitation that motivates the multilevel XAI
proposed in Chapter 3. To address this gap and enable CLM evaluation, we developed
the CoAM framework, which extends single-level explanations into two-level outputs.
This two-level structure includes both concept names and their corresponding saliency
maps, similar to those produced by multilevel XAI. As a case study, we used CoAM to
generate concept-wise saliency maps for the post-hoc CBM method [37]. A promising
future direction involves automating the adaptation of CoAM to other concept-based
methodologies, further broadening its applicability.

One of the main strengths of concept bottleneck models is that they allow model in-
tervention, which can be used as feedback for model improvement. In this direction,
post hoc CBMs stand out as they allow global intervention; unlike traditional CBMs,
which only allow local intervention. However, both these well-known methodologies
can achieve model intervention at a single level, i.e., by tweaking the predicted concept
value before the final classification or changing the concept weight in the classification
layer. We take this one step further and achieve model intervention on pixel level both
in our proposed Multilevel XAI methodology in Chapter 3 and in Chapter 5 where we
introduced CoAM for concepts visualisation for all CBMs. We believe that the model
intervention made possible by our methodologies is promising for better analysis of
concept-based models and hence their improvement.

Currently, we rely on the CUB dataset as our benchmark due to its inclusion of both
concept existence labels and weak spatial annotations, such as centre pixel locations
for several concepts. However, relying on a single dataset risks overfitting models to
its specific characteristics. Fortunately, obtaining additional benchmarks is feasible,
as many existing datasets already include per-image concept labels commonly used
for training concept-based models. The primary challenge lies in the lack of spatial
annotations required for CLM evaluation. Future efforts should prioritise augmenting
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these datasets or annotating new benchmarks with spatial labels to mitigate overfitting
and enhance the generalisability of concept-based explainability methods.

By introducing rigorous measures and a benchmark dataset, our work aims to make
comparisons between concept-based XAI methodologies fair and standardised. A promis-
ing future direction is the creation of a common platform where researchers can upload
their trained models and receive automated evaluations of their concept prediction and
localisation capabilities. Through these contributions, we strive to establish a unified
and standardised framework for evaluating concept-based explainability, addressing
critical gaps in the field.

In summary, by proposing the CGIM, CEM and CLM as evaluation measures, develop-
ing the CoAM framework for spatial map generation, and promoting CUB as a bench-
mark dataset, we aim to foster consistency and comparability in future research. These
efforts pave the way for more robust, interpretable, and impactful XAI methodologies.
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