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Abstract
Emergent Narratives (EN) are a popular approach in game design
where stories naturally emerge from players’ interactions with the
game world. Story sifting is an EN technique where the player’s
attention is drawn to particularly interesting narrative patterns,
but these story sifting patterns can be complex and difficult to
create. To address this, we have developed an event-based rules
system that supports composable patterns: building blocks that
allow higher-level stories to be constructed from lower level ones.
We demonstrate our approach through a simulation (of an alien
invasion scenario) alongside a powerful incremental story sifter
that curates compound events. We conduct agent ratio and stability
testing to demonstrate the system’s robustness, and a complexity
test to show how the performance of the sifter scales with agent
numbers and map size. Our findings show that the system remains
stable throughout. Ourwork demonstrates that an event-based rules
approach can effectively support composite patterns, ultimately
enabling the curation of more complex EN stories.

CCS Concepts
• Human-centered computing→ Human computer interac-
tion (HCI); • Applied computing→Media arts.
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1 Introduction
Interactive digital narrative (IDN) plays a crucial role in game de-
sign, providing a narrative space in which gameplay can occur and
motivating players with narrative goals and objectives. IDN comes
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in many different forms. Designed Narratives are non-linear experi-
ences that are authored in advance, and which can take a variety of
structural shapes [13], they allow for interactivity whilst maintain-
ing designer control over agency and are therefore a very popular
approach that are used in manymainstream narrative games (for ex-
ample, the works of Telltale, or in AAA adventures such as Ubisoft’s
Assassin’s Creed series). Generative Narratives are not pre-authored
but rather are created during play; they allow for wider agency, but
provide only indirect control by the game designers [7, 19]. Finally
Emergent Narratives (EN) do not impose narrative direction but
rather allow stories to emerge through a player’s interaction with
a complex game world and rely on players’ making sense of that
interaction [29]; they allow maximum agency but offer the least
control of the stories and their quality, leading some to describe
them less as games and more as narrative instruments [17] .

Emergent Narratives are considered special by those that play
them because they offer a unique and unpredictable experience that
does not rely on pre-defined stories, and which feels personalised to
the player [26]. Popular examples include The Sims [23], RimWorld
[27], and Dwarf Fortress [25]. These games offer huge narrative
variety but at the risk that few interesting stories will emerge, or
that those that do might be of poor quality, or buried in thousands
of meaningless events, and therefore missed by players [26].

Game designers have a number of strategies to prevent this. For
example, by setting up evocative narrative elements, or perturbing
a stable simulation world through provocative events (for example,
in Rimworld – depending on your choice of narrator – your space
colony might encounter things such as cargo pods, solar flares, or
pirate raiders [18]). Researchers have also looked at this problem,
and suggested Story Sifting as a potential solution [26]. A Story
Sifter scans system events looking for interesting narrative pat-
terns; this might be retrospective (such as analysing a game log), or
incremental (in which case it runs in real time and looks for patterns
as they develop) [14]. In both cases it can then draw the player’s
attention to the most narratively interesting events.

A challenge for story-sifters is that sifting patterns are complex
and difficult to author, leading to a limited set of stories that can be
identified. In our work, we address this challenge by proposing the
idea of using a rule-based story sifter to support composable story
sifting patterns, which can be combined to generate more complex
stories. In our model, low-level events in the simulation trigger
higher-level patterns that are fed back into the simulation and
can then trigger further patterns. We argue that these composable
patterns more easily enable complex patterns to be built and that a
rule-based story sifter is well-suited to support this process.
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To demonstrate this idea we have designed a game simulation
environment where the stories can unfold. The advantage of this
approach (rather than a playable game) is that our simulator can
rapidly generate large amounts of data for experimental purposes
without needing human participants. However, our sifter follows
the incremental approach, meaning that it operates at runtime and
therefore could be applied to a live game environment.

The rest of the paper is structured as follows. Section 2 describes
the history of emergent narrative games, their unique aesthetics,
and prior work on story sifting. Section 3 presents our simulation,
based around an alien invasion scenario, and describes the agents,
environment, and interactions. Section 4 describes our rules-based
story sifter and shows how patterns are defined. Section 5 evaluates
our system in terms of its stability and performance. Finally Section
6 summarises our key findings, and discusses as future work how
this type of story sifting might be coupled with a drama manager,
before Section 7 concludes the paper.

2 Background
EN was first described by Galyean, who suggested that narrative
structures might emerge from the environment as a product of
interaction when players navigate a game experiences [9]. Galyean
was setting EN up as a default way of experiencing narrative in
games, rather than as a genre of narrative game in its own right, thus
setting the scene for Designed and Generative Narrative approaches
(what he calls “Narrative Guidance” [8]) that have since become
the norm in popular narrative games.

EN as a distinct approach to narrative games was first explored
by Aylett who described it as a bottom-up structure where the
narrative emerges through interactions [1]. Aylett turned to EN
as a method of addressing the narrative paradox, the challenge
of maintaining narrative coherence while allowing users to be
participants rather than mere spectators [2]. This view of EN is
reinforced in more recent work by Ryan, who describes it as a
bottom-up approach where narratives emerge out of a computer
simulation of characters’ activity [26].

This tradition of EN emphasises the simulated story world, and
Ryan goes as far as suggesting that they need not even be inter-
active. An alternative view is set out by Mateas, who focuses on
the player’s role in constructing a narrative from their experience
[20]. Walsh describes this view succinctly while reflecting on how
players formulate narratives in games like The Sims: “In doing so
you are making sense of events just as we make sense of events
elsewhere in life; you are creating a narrative, not remediating an
interactive narrative emerging from the session.” [29].

Kreminski highlights this difference in emphasis (storyworld
vs player) in their excellent discussion of historical interactive EN
[16]. In our work we tend towards the simulated storyworld view,
focusing on agent interactions within a simulation – although our
approach certainly does not preclude a player, and could be targeted
to involve them explicitly (see Section 6).

Almost from its very beginnings, the shortcomings of EN were
acknowledged. EN is a bottom-up structure where authors create
only possibilities. This means that the events generated by the
simulation could be entirely random, potentially leading to stories
that are boring, contradictory, or untellable. In her game FearNot,

targetted at anti-bullying, Aylett acknowledges these problems and
introduced a stage manager, a system that sets up scenes and charac-
ters and can even intervene to ensure that stories progress in certain
ways [3]. Modern EN games often use different interventions in
order to increase the probability of interesting events, Rimworld
even incorporates this into play by offering three different story-
tellers, each representing a different level of difficulty, shaping the
pacing and intensity of the player’s experience by selecting dif-
ferent types and frequency of event [27]. Even The Sims manages
narrative progress indirectly. Characters have hidden desire trees,
where their goals progress from an early root goal to different final
outcomes (for example, desiring a telescope as a child, to applying
to be an astronaut as an adult) [4].

Drama managers are systems that take this intervention to ex-
tremes. A drama manager is an omniscient system that guides and
shapes the story dynamically as players explore the game world
[28, 30]. It continuously monitors the simulation and make deci-
sions [21]. Façade[22] is an example of using a drama manager to
guide the story’s progression in a meaningful direction. It relies
on Story Beats which are a collection of interactions. The drama
manager dynamically sequences interactions based on the current
narrative state, ensuring that the story progresses coherently.

Drama managers are typically seen as an approach in Genera-
tive Narrative rather than EN. Ryan argues that any intervention
risks compromising the unique aesthetics of EN by making the
story more likely to appear well-formed rather than spontaneously
emerging from the simulated story world [26] risking key aes-
thetics such as the thrill of experiencing actual, improbable, and
unauthored events.

Ryan suggested an alternative approach to curating ENs. He
initially termed this “story recognition”, suggesting the possibility
of developing a system capable of retrospectively selecting the
interesting stories from a simulation log. Later he introduced the
term “story sifting” to describe the fundamental task of selecting
compelling stories from a morass of events [26].

Research in this area has been growing, for example Felt, a query
language-based story sifter [15]. Felt allows for the creation of com-
plex sifting patterns rather than relying solely on literal sequences.
This approach enables story sequences to be non-continuous, al-
lowing for the inclusion of other unrelated events interspersed
within the narrative. In this system, events that emerge from the
simulation are stored in a database, and users create sifting patterns
using a query language. These sifting patterns consist of a set of
logic variables and their relationships. The logic variables can be
substituted with specific types of database entities, such as charac-
ters and events, while the relationships define the constraints on
the values that these variables can take.

Felt has a few shortcomings. Firstly, the sifting pattern authoring
might be difficult since the story sequence can be long. Although
query languages are flexible, it is still a burden for users to write and
maintain. Additionally, this work is retrospective, and all the events
were recognized after they emerged from the story world. This
means they could not be incorporated into a live game. To solve
these issues, Kreminski introduces a domain-specific languageWin-
now and the idea of incremental story sifting [14]. In Winnow the
sifting patterns try to match a series of ordered events, disregard-
ing irrelevant events. To make it incremental the system creates
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a partial matches pool to save sifting patterns and branches. Each
time a new event occurs, the system compares it with the sifting
patterns in the pool. The event only needs to be a partial match
rather than a perfect one to be stored.

Clothier and Millard use an incremental story sifter to create a
drama manager that they argue does not disrupt the aesthetics of
EN [5]. In their game, Awash!, the system first passes each event
to an incremental story sifter to identify emerging patterns. These
unfinished stories are then passed to a drama manager which in-
directly intervenes in an attempt to increase their probability of
completing. Their results show how incremental sifters might be
used in games to improve narrative quality whilst limiting any
impact on EN aesthetics.

This prior work shows that story sifting is effective and can be
used in game environments at runtime to both draw a player’s
attention to interesting stories, and to drive possible interventions.
However the problem remains that sifting patterns are complex to
author. Johnson-Bey and Mateas also view patterns as sophisticated
queries (as in Felt) but they present Centrifuge, a visual tool for con-
structing sifting patterns [12]. Centrifuge allows authors to create
patterns in a node based drag and drop environment, with queries,
logic, and functions represented as special kinds of nodes. They
demonstrate their approach in a simulated game called “Talk of the
Town” a social simulation that models businesses, occupations, and
relationships. They identify pattern re-use as an important missing
feature that would create modularity.

Our approach is similar to Felt and Centrifuge in that we repre-
sent sifting patterns as queries that match against the game world.
However in our work we represent that world as a series of events,
and that enables us to define patterns as sequences of events, and by
reinserting completed patterns as new high-level events, we enable
composable patterns and thus modularity. We are also inspired by
their methodology, creating a game simulator that enables us to
easily test our story sifter.

3 Simulation
The first step in exploring composable patterns is to build the game
simulator that can act as the basis of the project: a story world in
which stories can unfold. There are a few advantages of building
up a simulator rather than a game. Most significant is that the
simulator can be run many times without human involvement,
and thus generate a large amount of data that is highly beneficial
for testing. There is a secondary benefit in that a simulator does
not require a player interface that acts as an intermediary. This
significantly reduces the development burden, but also removes the
quality of that interface as a variable when testing.

Figure 1: The architecture of the project

Fig 1 shows the architecture of the whole system. It is made of
three components. The Simulator generates events and pass them

to the Story Sifter while the simulator is running. The Story Sifter
curates the potentially compelling parts of the stories by comparing
those events to a set of stored patterns. When a pattern is complete,
the story sifter generates a high-level event to summarize the story
and then passes it back to the simulator. The high-level event is
regarded as a new event and can be responded to by agents in the
simulator, and in turn further curated by the story sifter. It is in
this way that patterns can be composed from other patterns. The
whole interaction of the Simulator and Story Sifter are logged, this
log is then passed to a Visualizer where the events can be replayed,
and the stories that were identified explored.

The simulator is designed to be an event-based system. Inside
the simulator are many agents who have goals and can do actions
based on their environment. We define an event as a change of
state [10], which could be in the simulated environment (such as
the movement of an agent from one place to an adjacent place) or
in the agents themselves (as a transition in their behavioural state
model). When a state changes, the simulator generates an event
with a series of parameters including a time stamp, the content of
the event, and an event ID.

3.1 Scenario
In order to explore story sifting patterns we need to have a story
world, we therefore need to come up with a theme that can generate
lots of dramatic conflicts. In ‘Talk of the Town’ Johnson-Bey and
Mateas used a social scenario that maps well to social management
games such as The Sims [12]. We have chosen a more melodramatic
scenario that is closer to the strategy genre, and modeled an alien
invasion scenario in a small town (inspired by popular films such
as Independence Day, War of the Worlds, and Mars Attacks).

The simulator was developed in JavaScript. Within the simulator,
there are three types of character agents: townsfolk, aliens, and
soldiers, each of which will be dynamically spawned on themap and
move freely. As time passes by, agents may encounter each other
and interact. The town map is a grid of cells and is procedurally
generated by code, incorporating randomized roads and buildings.
In this section, we will discuss the simulator in detail from two
aspects: the agents and the map generation.

3.2 Agents
Each agent runs a Finite State Machine (FSM) that dictates its be-
haviour, they receive signals from the environment, and can take
actions depending on their current state. The FSM is based on a set
of states-condition-action. The action can be an interaction with the
world or other agents, or it could be an internal state change. An
event will be generated when the state changes, and recorded into
the events log. For example, a townsfolk may begin with a “wander”
state, but will switch to a “run away” state when encountering an
alien nearby. This state change can be recorded as an event labeled
“A runs away from B” where A and B are identifiers.

There are three types of agents with different FSMs: alien, soldier,
and townsfolk:

• Aliens:Wander around the town, prioritizing the destruc-
tion of buildings and attacking human characters (soldiers
and townsfolk).
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• Soldiers: Patrol the town, protect townsfolk, and attempt to
kill any alien invaders they encounter.

• Townsfolk:Walk around or hide in buildings. Running away
if they see an alien nearby.

Fig 2 shows an example of a soldier’s FSM. Soldiers can be in one
of five states: patrol, run away, chase, attack, and died. They usually
start in the patrol state. The states can transfer to others based on
some conditions. For example, when a soldier sees an enemy: if
the enemy is out of attack range, they will chase the enemy; if the
soldier is low on health they we will run away from the enemy;
otherwise, they will attack the enemy. The attack state may later
transfer to the chase state if the enemy escapes out of attack range,
but still remains in visual range.

3.3 Map Generation
There are lots of popular approaches to generate random indoor
or outdoor maps, like Binary Space Partitioning [24] for rooms or
the Diamond Square Algorithm [6]. In this project, we used the
L-system algorithm, since this algorithm can be applied reletively
easily to a town. An L-system is a parallel rewriting system that
consists of an initial axiom which is the initial string, an alphabet
which indicates all the symbols in this system, and a set of produc-
tion rules that define how the variables in the alphabet could be
replaced [11]. It starts with the axiom, and then in every iteration,
replaces the variables with the rules.

In this project, we defined the L-system as follows:

𝑎𝑥𝑖𝑜𝑚 : [𝐹 ] − −𝐹 (1)
𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡 : {𝐹, [, ], +,−} (2)
𝑟𝑢𝑙𝑒𝑠 : 𝐹− > [+𝐹 ] [−𝐹 ], 𝐹− > [+𝐹 ]𝐹 [−𝐹 ], 𝐹− > [−𝐹 ]𝐹 [+𝐹 ] (3)

“F” means to move forward by one unit. “+” means to turn right
for 90 degree, while “-” means to turn left for 90 degree. “[” means
to save the current state, and “]” means to pop state. In order to
make the roads look more natural, we used three rules to replace
the variable “F”. In each iteration, we will randomly select one rule
for each single “F”. We also added a probability to ignore rules,
making the roads more irregular. After a few iterations, we got the
final string, which can used to draw the random roads of a city. For
example:

• iteration1: [F]–F
• iteration2: [[+F][-F]]–[+F]F[-F]
• iteration3: [[+[+F]F[-F]][-[-F]F[+F]]]–[+[+F][-F]][+F][-F][-[-
F]F[+F]]

Once the roads are generated, we add buildings by traversing
those roads, and then generating one randomly sized building on
each side of this road (checking for clashes with other buildings).

Figure 4 presents an example of the visualizer. On the left side,
you can see an example of a town map generated with this method,
with gray roads and orange buildings providing a clear layout of the
environment. Character interact with this environment in a number
of simple ways, townsfolk can hide in buildings, buildings block
lines of sight and movement, and all agents move more quickly on
roads than land.

4 Story Sifter
The story sifter is the central element of our research. It uses a
set of sifting patterns to curate compelling stories from the vast
number of events generated by the simulator.

4.1 Incremental Story Sifter
As we discussed in Section 2 strictly speaking we are developing
an incremental story sifter that is capable of story sifting while
the simulator is running. It therefore has a sense of both patterns
that have completed as well as those that have started and have
the potential to complete. Similar to Winnow [14], we use a pool to
store partial matches, which represents the potential stories. When
a new event occurs, the story sifter performs two tasks:

Initiating New Partial Matches: The sifter checks all of its
story patterns to see if any new patterns can be initiated by the
new event. If it does, then the story sifter will initiate the partial
match and put it into the pool. But if there is already one partial
match with the same events and same pattern in the pool, it will be
skipped to avoid repetition.

Checking Existing Partial Matches: The sifter then checks
the pool to see if the new event progresses any existing partial
matches. If it does, it adds the event’s ID to this partial match’s
event list. The sifter then checks if the partial match is complete.
If a partial match is completed, it will be removed from the pool,
and a high-level event representing that pattern is generated. This
high-level event is then added back into the simulator, making it
available as part of other patterns.

4.2 Patterns
In describing the patterns it is helpful to distinguish between low-
level events (which are natively generated by the simulator – for
example, an agent moving or attacking another agent) and high-
level events (which are generated as a result of the completion of
patterns). Patterns can be defined using either type of event.

In this project, we defined five high-level events: “almost kill”,
“escape”, “defeat”, “giant killer”, and “lucky kill”. We then defined
two additional high-level events that draw on these, “revenge” and
“ace killer”. Although the system does not distinguish them we call
these last two story-level events, and can monitor them separately
as they are the composite patterns that players would be most
interested in. As an example of how these composable patterns
work we can look at the “revenge” pattern. A “revenge” describes a
story where A attacks and almost kills B, then B escapes, and later
B comes back and kills A. It requires at least three high-level events:
“almost kill”, “escape”, and “defeat”. Each of these high-level event
needs a few low-level events. In this case, an “almost kill” event
includes “A attacks B”, “B is badly hurt”, and then “B runs away
from A”. An “escape” event includes “A run away from B”, and “A
successfully run away from B”. A “defeat” event includes “A attacks
B”, and “A kills B”.

We defined patterns in a JSON file. The pattern has a condition
list describing the sequence of events that make up the story and
whether these events should be repeated. Figure 3 shows the “lucky
kill” pattern, where one character attacks and immediately defeats
another.
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Figure 2: The soldiers’ states diagram

• The “time-limit” indicates that if a partial match initiated
with this pattern exceeds 20,000 simulation time units with-
out completion, it will be terminated and removed from the
pool. In this case there is no strict need for a time limit (given
the current actions available to the agents) so we set this to
a high value.

• The “unless” condition specifies situations that would ter-
minate and remove the partial match from the pool. In this
case if the target dies the pattern can never be fulfilled and
is removed.

• The "unless-forever" is a special case that if the event in this
list happened, the partial match will be labeled false and left
in the partial match pool forever. No new partial match of
the same type with the same characters will be initiated (if
this case if A attacks B and kills B at the very first attack,
then it is a lucky kill. Otherwise, A will never have another
lucky kill to B.).

4.3 Visualizer
The simulator requires a visualiser that converts the event log onto a
visual representation that is easier to understand and follow. Figure
4 shows the visualiser interface. The map is displayed on the left,
with roads in grey and buildings in dark orange. Characters are
represented by squares labeled with their names: aliens are red,
soldiers are dark blue, and townsfolk are green. When a character
dies, their square turns grey.

On the right side, there are two scrollable views. The left scrol-
lable view lists all the successfully curated high-level events. When

"lucky_kill": { "events": [
{

"char1Idx": 0,
"tag": "attacked", "char2Idx": 1, "repeat": false

}, {
}

"char1Idx": 1,
"tag": "was killed by", "char2Idx": 0, "repeat": false

}
], "unless": [
{

"char1Idx": 0,
"tag": "was killed by" }

], "unless_forever": [
{

"char1Idx": 0,
"tag": "attacked" }

],
"tag": "luckily killed",
"type": "high-level",
"main_characters": [0, 1]
}

Figure 3: ‘Lucky Kill’ Pattern

the ”show” button in a high-level event is clicked, the right scrollable
view displays the low-level events that constitute the high-level
event. This also causes the map to jump to the frame where the
high-level event was happening. At the bottom of the interface
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Figure 4: An example of the visualizer

is the controller part, including play, forward, and backward but-
tons, along with a slider. These controls can be used to manage the
playback of the run.

The visualizer requires several inputs to accurately reconstruct
these events:

• Map data: A description of the town map marking roads
and buildings.

• Events log: A log recording all event information in the
form: character 1, event, character 2, time, and ID.

• States log: A log recording all the state information of the
objects in the simulator. It includes the object name, state,
position, and time.

The states log is there for performance reasons. Initially it is
required for the starting state of all of the agents, in theory the
state of the simulation at any given time could then be generated
by running the events from the beginning, however this makes it
expensive to jump between times. The states log not only holds the
state at time 0, but also records it every 1000 time intervals - thus
when jumping to a new point the simulator doesn’t have to run the
simulation from the start every time.

5 Evaluation and Performance
Our goal with this research is to find out how a rules-based story
sifter can support composable patterns. In the previous sections, we
demonstrated how this system was designed and constructed. In
this section, we will analyze and evaluate the system to demonstrate
that it works as planned. To achieve this, we firstly investigated
what would make a suitable ratio between the character types. Then
we conducted a complexity test to assess the system’s performance
as the number of agents and map size changes. Finally, we con-
ducted a stability test to ensure the system behaves predictably
enough for further study.

5.1 Methodology
To clarify the evaluation process, several key terms are defined
below:

• Partial Match: The story sifter compares each new event
from the simulator with all predefined patterns. If the event
matches the first event of a pattern, a partial match is gener-
ated and placed in the partial match pool.

• Completed Match: If/once all the events in a pattern are
matched, this pattern is completed. It will be removed from
the partial match pool and generates a new event.

Partial Matches and Completed Matches refer to all seven of our
patterns. Five of these are high-level events and two are story-level
events, and this gives another way to monitor how the story sifter
is performing. Put another way, the number of partial matches is
the sum of initiated high-level events and initiated story events,
while the number of completed matches is the sum of completed
high-level events and completed story events.

Before running our tests we first need to find a suitable character
ratio (between townsfolk, soliders, and aliens), since different char-
acter ratios might produce different results. We explored ratios in
the range 1 to 3. We aim to avoid any one type becoming dominant,
as this would lead the simulator to equilibrium too quickly (for
example, if the aliens kill all other characters then no more inter-
actions would emerge). We therefore chose to test the ratios: 1:1:1,
1:2:2, 2:1:2, 2:2:1, 1:1:3, 1:3:1, and 3:1:1. The ratios are represented
as [alien: soldier: townsfolk].

We used the number of partial matches initialized as an indicator
of story richness. We ran the simulator with our different ratios and
analysed the data. Two major factors were considered in choosing
the most suitable ratio:

• Generates a sufficient number of partial matches.
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• The number of partial matches generated does not vary
significantly.

For each ratio, we ran the simulator one hundred times to obtain
the average number and the variance of the partial matches created.
In all cases the simulator was allowed to run for twenty thousand
time cycles. We then created plots to compare the results.

For the complexity test, we aimed to determine how the number
of characters and the map size affect the simulator’s execution. We
selected three character counts (total number of agents): 20, 50,
and 100, along with four map area sizes: 2500, 12500, 22500, and
40000. We tested the map sizes paired with the three character
counts in the best ratio from the previous experiment, resulting in
twelve combinations. For each combination we ran the simulator
100 times and recorded data of the execution time, the total events,
initiated partial matches, completed matches, initiated high-level
events, completed high-level events, initiated stories, and completed
stories. We then analyzed these data trends.

For the stability test, we aimed to find out the variance in results
when running the simulation multiple times. Ideally we are looking
for a range of results, but where the extents of that range are not
wildly different. We used the same ratio as before, with a map size
of 10,000 and 50 agents. We checked for crashes or errors during the
simulator’s execution and calculated the variances of the execution
time and partial matches to see how the numbers vary when map
size and character size changes.

5.2 Ratio Selection
Firstly, we compared the different ratios from several aspects in-
cluding partial matches number, partial matches variances, initiated
stories number and completed stories number. Fig 5a demonstrates
the average partial matches generated (based on one hundred runs
each). Ratio 2:2:1 generated the highest number of partial matches
of over 450, while the ratio 3:1:1 and 1:1:3 produced the lowest
of below 300. Ratio 1:1:1 generated the second highest number of
partial matches of around 400.

Fig 5b shows the variance of each ratios’ partial matches genera-
tion. A higher variance value indicates that for a given ratio, the
number of partial matches can vary significantly across different
runs. As we can see, the variance of ratios 1:3:1, 3:1:1 and 2:2:1 are
high (over 4000). Whereas we aim to keep the variance relatively
low so that there is some consistency between runs.

Lastly, we compared the number of initiated and completed sto-
ries, as shown in Fig 5c and Fig 5d. Ratios 1:1:3, 3:1:1, and 2:1:2
performed poorly in initiating stories (under 25), while the other
ratios generated an average of over 33 initiated stories. For com-
pleted stories, most ratios achieved an average of over 6.5. However,
ratios 3:1:1 and 2:1:2 had the lowest performance, with fewer than
5 completed stories.

When choosing a ratio to use for the rest of the experiments we
are looking for something with high partial matches and stories
and low variance. 2:2:1 performs the best on initiated matches and
stories but shows high variance. Overall, the 1:1:1 ratio appears to
be the best choice, offering the second highest partial matches and
completed stories coupled with relatively low variance. Therefore,
we selected this ratio for our subsequent research.

5.3 Complexity Test
Having chosen a suitable ratio we now look at how the map size and
character number impact the execution time and pattern matching.

From Fig 6a, we can see that the execution time nearly doubles
when the characters size doubles, but when the map area size in-
creases, the trend of execution time rise more gradually. Fig 6b
illustrates the average total events. As the number of characters
in the simulator increases, the number of generated events also
rises. However, when the map area size changes, the total number
of events initially increases (more space initially means that the
agents survive longer, leading to more events) but tends to level
off after reaching the size of 22,500 (as the number of interactions
decreases due to fewer encounters in the larger area).

Fig 6c and Fig 6d shows that both partial matches and completed
matches follows a slightly different pattern, dropping as the map
area increases even at the smaller scales. Although as before the
matches increase proportionally with the character size.

Finally, we compared the trend of the high-level events and
stories separately. From Fig 6e and 6f we can see that approximately
one in four initiated high-level events reach completion. Similar to
partial matches, the number slightly decreases when the map area
size increases, but grows proportionally with the character size.

Fig 6g and Fig 6h shows the initiated and completed stories
(composite patterns). Approximately one in five initiated stories
are completed which is only slightly lower than the other patterns.
As before the number slightly decreases when the map area size
increases, but grows proportionally with the character size.

With regard to these complexity test, we can draw a number of
conclusions. Firstly, on a larger map, fewer meaningful events are
generated. This is probably as it becomes less likely for characters
to meet when the map size grows, which results in fewer interac-
tions. Secondly, when there are more characters in the simulator,
the number of events, partial matches, high-level events, and mini
stories grows significantly as the opportunity for interactions in-
creases. However, it is clear that agent count has a more significant
impact on interactions, as when we double the number of agents
from 50 to 100 and (approximately) double the map size from 22500
to 40000 they do not cancel each other out and we still see a signifi-
cant increase in interactions (events and matches). This is probably
because the agents do not rely purely on chance to encounter each
other but actively pursue one another, reducing the impact of scale.

5.4 Stability Test
Our final analysis was to look at how our system behaves across
multiple runs. A stable system would show a relatively small vari-
ance with few spikes.

Each of our twelve scenarios were run one thousand times and
the differences explored.

Fig 7a and Fig 7b illustrates the execution time over those one
thousand runs. We can see that most execution times converge in
a range of approximately 2,000 to 3000 milliseconds. Only a few
runs have an unusually high or low execution time. There are no
crashes or errors during the runs.

Fig 7c and Fig 7d demonstrates the generation of partial matches
and completed matches. We can see that most partial matches are
in a range of 350 to 450, while the completed matches are in a
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(a) Partial matches (b) Partial matches variance (c) Initiated stories

(d) Completed stories (e) All partial matches

Figure 5: Ratio selection

range of approximately 100 to 150. We then calculated the variance
of the execution time with three character sizes: 20, 50, 100, and
two map area sizes: 10,000 and 20,000. We can see in Fig 7e that
with the increase of the number of characters, the execution time
variance increase significantly. However, the map area size have
little influence on the execution time.

In Fig 7f, we calculated the variance of the partial matches with
three character sizes: 20, 50, 100, and two map area sizes: 10,000
and 20,000. Similar to Fig 7e, the map area size has less effect on
the variance, while character size plays a more important role.

From the stability test, we can see the following points. Firstly,
over 1000 runs, the system seems to be robust, since there are no
crashes, errors, or significant changes. Secondly, the map area size
has little influence on the variance in execution time, indicating
that the simulator tends to use a similar amount of time for a run
regardless of the map size. Thirdly, similar to the execution time,
the number of characters is more influential on the variance in
pattern matches than the map area size. So the more characters in
the simulator, the more likely for the output of the system to vary.

6 Discussion
Our work builds on key research in story sifting, especially prior
work on real-time story curation [14] and story sifter intervention
within games [5]. Previous work has also explored the challenges
of defining story sifting patterns, established game simulation as
an appropriate methodology, and identified modularity as a key
research challenge in the space [12]. We address this challenge
directly, with the goal of establishing a game simulation frame-
work to demonstrate and test composite patterns. In our data, the
"completed stories" represent these composite patterns. Our contri-
bution lies in the provision of an event-driven game simulation, and
demonstration that composite patterns can be supported by rein-
serting completed patterns as new events in the simulation. This
enables completed patterns to be reused as components of more
complex patterns while simultaneously reducing the complexity
and overload of managing multiple patterns.

To show that the story-sifter is effective in this context we have
performed stability tests to show that the behaviour is within an
acceptable variance between different runs, and explored how the
complexity of the simulation (in terms of number of agents and
map size) impacts performance. Predictably, both execution time
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(a) Average execution time (b) Average total events (c) Average partial matches

(d) Average completed matches (e) Average high-level events (f) Average completed high-level events

(g) Average initiated stories (h) Average completed stories

Figure 6: Complexity Test

and the number of matches increase significantly as the population
grows. More agents (characters) in the system also leads to a greater
number of events and stories - which is what we would expect to see
if the simulation was running correctly. Map size has less impact,
initially leading to slightly more events (as survivability increases)
and then as the map size grows significantly it leads to fewer events
(as interactions decrease) although these seems to be mitigated by
the characters behaviour (in actively pursuing one another).

Overall, the evaluation shows that the system effectively sup-
ports composable patterns and scales well to higher complexities.
One limitation is that we have a relatively small number of patterns
and did not test the impact of alternative numbers of patterns on
execution time, this is a clear direction for future work. Another
avenue would be to explore user testing to explore to what extent
composable patterns and therefore modularity impact authoring
(as suggested by Johnson-Bey and Mateas [12]).

Beyond these extensions to our existing study we also hope to
look at how a protagonist may be factored into our simulation. At
present the simulation assumes an omniscient player that can see
all events equally, this makes it a good simulation of certain game
genres where this is the norm (e.g. large scale strategy games, or
management simulations) but not for games where the player has
an avatar in the game, and sees the game world from that avatar’s
perspective. Explicitly modelling one of the agents as a protagonist
would solve this issue, and would also provide the possibility of
focusing the story sifter on events local to the player, and ignoring
remote events - whichmight have a positive impact on performance.

Finally we are eager to explore how our simulation environment
might act as an alternative way to explore story sifting intervention
in a quantitative manner. Clothier and Millard describe three forms
of intervention that could be used to make stories more likely to
complete [5]: generative, where the simulation is altered without
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(a) Execution time (b) Ranked execution time (c) Partial matches and complted matches

(d) Ranked matches (e) Execution time variance with different
character size

(f) Partial matches variance with different
character size

Figure 7: Stability Test

regard for the rules of the simulation (e.g. inserting new agents, or
moving agents instantly from one place to another); direct, where
the intervention is always within the rules of the simulation (e.g.
forcing a state change within an agent); and indirect, where the
system merely adjusts probabilities to make stories more likely to
occur. We would add the possibility of indirect player intervention,
where the player is nudged rather than the agents in the simulation
(e.g. by creating additional goals, or just making suggestions).

Direct and indirect interaction could be exploredwithin the scope
of our existing simulation, and generative and player intervention
could be explored with the addition of a protagonist as described
above (direct intervention should be beyond the player’s sphere of
knowledge to maintain the illusion of a logical world, and player
intervention could be modelled by adjusting the behaviour of the
protagonist agent rather than other agents). Our event-based game
simulation thus provides a robust platform for exploring the impact
and behaviour of these alternative approaches in the future.

7 Conclusion and Future Work
In this paper, we have presented an event-based approach for Emer-
gent Narrative using composable patterns, this includes a game
simulation that generates events, an incremental story sifter that

curates interesting stories in real time, and a visualizer to review
events within the simulator.

Building on this foundation, we implemented support for com-
posable patterns by generating a new event for each fully matched
pattern, which is then inserted back into the simulation and can
then be used as the basis for other patterns. Although we are deal-
ing with a relatively simple scenario and set of patterns we have
covered several important conditions, such as “unless” to termi-
nate this match when invalidated by events, and “unless-forever”
to terminate and leave this match in the partial match pool as a
block for the pattern ever being matched again. These conditions
provide a solid basis for developing more patterns in the future. We
also conducted analysis of the performance and operation of the
simulation to assess the complexity and stability of our approach.

Our findings demonstrate a stable simulation, with an expected
complexity profile, and suggests that our approach does effectively
support composable patterns, enabling a more modular approach
to the creation of story sifting patterns.

Our work could also act as the foundation for quantitative analy-
sis of future developments such as story sifting intervention –where
the system intervenes in order tomake partial patternmatchesmore
likely to complete. We have discussed how this could be done with
the current simulation for direct and indirect intervention, and how
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it might be done with the addition of a protagonist for generative
and player intervention.

We are currently conducting quantitative research to evaluate
the overall effectiveness of the simulator. In the future, qualitative
research may be necessary when our results are applied in the
gaming domain, particularly to explore the impact of participant
involvement, assess the quality of generated stories, and compare
story generation with and without intervention methods.

Emergent narrative has established itself as the basis for a par-
ticular form of narrative game with its own aesthetics and its own
challenges. Story sifting is one approach to address those challenges
without introducing designed elements that might change those
aesthetics. We hope that our work might inform the next generation
of emergent narrative games, showing how sophisticated stories
might be built up from composite patterns, and act as a foundation
for future quantitative analysis of how story sifting and story sifting
intervention could impact the experience of players.
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