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The Large Hadron Collider (LHC) serves as a powerful experimental platform for
investigating the fundamental constituents of matter under extreme conditions.
However, the reconstruction of boosted objects — highly energetic particles whose
decay products manifest as dense sprays of hadrons or jets — presents enduring
challenges. Accurate reconstruction of these objects is essential not only for validating
the Standard Model but also for probing potential new physics phenomena such as
heavy resonances and exotic particles. To address these challenges, this thesis explores
the application of Graph Neural Networks (GNNs) for event reconstruction at the
LHC. GNNs offer a transformative approach by leveraging the relational and
geometric structure inherent in collider data. They are permutation invariant and
generalise well to point clouds of variable size, which are ideal properties for collider
physics. Additionally, they can be designed to respect physical properties such as
Lorentz equivariance, rotational symmetry, and infrared and collinear safety, making
them suitable for the complexities of jet clustering and boosted object reconstruction.
This research explores GNN-based frameworks, incorporating novel methodologies to
enhance reconstruction fidelity, and establishing new approaches to node prediction
in message passing architectures.

This thesis presents our exploratory work as a kind of A - Z prototype for conducting
Graph Machine Learning (ML) studies on simulated collider data. Three major
contributions to the field are provided. First, we introduce a robust software
ecosystem tailored for collider data analysis, enabling seamless data manipulation and
model integration. Second, we propose an innovative clustering algorithm that
dispenses with traditional jet definitions, instead incorporating simulation-based
information, such as particle ancestry and momentum, to achieve superior clustering
granularity. Finally, we demonstrate the application of IRC safe Interaction Networks
with the novel Bright Edge Classification for effective node classification, and Cluster
Double Sifting for the reconstruction of boosted Higgs bosons and top quarks,
achieving state-of-the-art performance in providing detector-level constituents for the
reconstruction of the top quark.
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Chapter 1

Introduction

The pursuit of understanding the fundamental structure of the universe lies at the
heart of particle physics, where experiments and theoretical frameworks converge to
probe the most basic constituents of matter and the forces governing their interactions.
Over the last century, this endeavour has progressed through a succession of
groundbreaking discoveries, from the identification of the electron to the monumental
detection of the Higgs boson in 2012 at CERN’s Large Hadron Collider (LHC). These
milestones have culminated in the development of the Standard Model (SM), a
quantum field theory encapsulating our current best understanding of

electromagnetic, weak, and strong interactions.

Despite its extraordinary predictive power, the SM has paradoxically created
challenges for further progress in fundamental physics. Its unmatched accuracy in
describing known phenomena has left a scarcity of anomalous experimental data to
guide theoretical breakthroughs. This lack of clear deviations from the SM limits the
ability to identify new physics directions, creating a sense of stagnation in exploratory
frameworks. However, this challenge opens the door to novel data-centric
methodologies to uncover subtle patterns and extract deeper insights, thereby

reinvigorating the search for transformative discoveries in particle physics.

At the experimental frontier, high-energy collisions at the LHC serve as a test-bed for
generating and studying particles under extreme conditions. However, the immense
complexity of the collision environment, characterised by overlapping interactions,
soft emissions, and the non-perturbative nature of hadronisation, presents significant
challenges. Boosted objects — highly energetic particles whose decay products are
collimated into dense sprays of hadrons called jets — represent one such challenge.
Accurately reconstructing these objects is critical for probing both SM processes and
potential new physics, such as heavy resonances or exotic particles decaying in

boosted configurations.



4 Chapter 1. Introduction

The advent of machine learning (ML) has transformed the landscape of data analysis
in high-energy physics (HEP). Graph Neural Networks (GNNSs), in particular, offer a
promising paradigm for leveraging the inherent relational and geometric structure of
particle interactions. By representing particle momenta and detector outputs as
graph-structured data, GNNs enable the formulation of reconstruction tasks in ways
that preserve physical symmetries, such as permutation invariance and collinear
safety. This work explores the potential of GNNs for reconstructing boosted objects,
advancing both the theoretical understanding of these methods and their practical
application to collider data. The research is inherently exploratory, aiming to
investigate novel approaches and present proofs of concept rather than fully polished
solutions or established methodologies. By stepping away from well-trodden paths,
this thesis seeks to open new avenues for understanding and leveraging

simulation-based data in high-energy physics.

This thesis addresses three interconnected objectives: first, to establish a
comprehensive software ecosystem for analysing simulated particle physics data,
streamlining data manipulation and analysis tasks; second, to define a novel form of
clustering that supersedes traditional jet definitions by leveraging simulation-based
information, including particle ancestry and momentum, addressing the specific
challenges posed by colour flow and its impact on defining ancestry; and third, to
apply GNNss to this task to achieve detector-level reconstruction of boosted particle
constituents, culminating in a novel approach to top quark reconstruction, which has
been historically underexplored due to the complexities of colour flow in simulation
data.

The thesis is structured as follows. Chapter 2 explores the design and operation of
particle detectors, focusing on the types of data they collect and their relevance to
collider experiments. Chapter 3 delves into quantum chromodynamics (QCD) and
parton showers, describing how jets are formed through divergences, hadronisation,
and related phenomena. Chapter 4 discusses jet physics, detailing jet definitions,
clustering algorithms, and jet grooming techniques. Chapter 5 provides an overview
of machine learning in high-energy physics, introduces graph representations,
presents a taxonomy of graph neural networks, and describes the Interaction Network
and Energy Weighted Message Passing Network architectures. Chapter 6 outlines the
creation of a software ecosystem for simulating and analysing particle physics data,
emphasising the formation of heterogeneous data structures from simulation outputs.
Chapter 7 introduces a novel clustering method that supersedes traditional jet
definitions by incorporating simulation-based information, such as particle ancestry
and momentum. Chapter 8 combines the Energy Weighted Message Passing Network
with the Interaction Network and a novel activation layer to achieve superior Higgs
boson reconstruction. Chapter 9 applies the developed model to top quark
reconstruction, addressing challenges posed by colour flow and utilising the



innovative cluster double sifting technique to achieve state-of-the-art performance.
Finally, Chapter 10 presents the conclusions, summarising the key findings of the
thesis and discussing potential avenues for future research in high-energy physics and
machine learning methodologies.






Chapter 2

Particle detectors

We can almost see protons and electrons in a Wilson chamber; we can
almost see mass being conserved. We do not actually see these things; but

what we do see has a very close relation to them.

- Eddington (1939)

Who ordered that?

-1 I. Rabi’s reaction to the discovery of the muon (1936)

This chapter starts with an overview of the early techniques used to detect and
measure the properties of particles. As we gain familiarity for the important features
of particle physics data, we will set context for subsections, which explore the growth
in scale and resolution detector technology. This will put us on firm ground to
understand the physical processes and resulting simulated data which is at the heart

of our study.

2.1 Cloud chambers

The crucial testing of the theoretical framework defined by the SM relies on particle
detector experiments. Detectors began with humble setups. Cloud chambers were
tabletop particle detectors, whose construction may be demonstrated within minutes
by any secondary school lab technician!. The result is a super-saturated chamber of
isopropyl alcohol, which forms clouds that ionise easily when particles pass through.

This leads to trails of ions along the trajectories of these particles. Due to the

1Simply line the bottom of a fish tank with felt, or any absorbant material. Squirt in isopropyl alcohol
until the material is moist. Place dry ice into a deep tray, and then cover with a metal lid. Finally, flip the
fish tank and place it over the tray. Switch the lights off, shine a torch in the tank, and watch the streaks of
subatomic particles.
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electrostatic attraction between the ions and the polar alcohol molecules, the ions act
as a nucleation site for condensation, making the trails visible to the naked eye. Early
particle physicists would watch for these tracks, recording the trajectories to identify
and study the particles observed.

Simple geometric analysis of these condensation tracks can yield surprisingly detailed
information about the particles producing them. For instance, some tracks appear
thinner than others. This represents particles with lower ionising powers, such as 8
particles; more highly ionising radiation, eg. a particles, result in much thicker tracks.
Track length, too, offers insights into either the kinetic energy or the mass of particles.
Generally, high energy particles produce longer tracks, whereas short tracks tend to be
produced by particles with either low kinetic energy or high mass. The link between
geometry and physical properties was pushed further by Skobelzyn (1927), who

applied a magnetic field to deflect the particle trajectories.

Charged particles are deflected when they are in motion relative to magnetic fields, as
described by the Lorentz equation:

F=g(E+v xB). 2.1)

Using this law, and combining it with equations for helical motion and particle
kinematics, it is possible to determine the polarity of the particle’s charge, and further

calculate the particle’s momentum.

By applying a magnetic field (say, upwards), we can examine the curvature of the path
to determine if the particle is positively (clockwise motion) or negatively
(anticlockwise motion) charged. Determining momentum, energy, and mass involves
more detailed cross-referencing between the radius of curvature, magnetic field
strength, and the geometric analyses discussed above. The interested reader is
directed to Gupta and Ghosh (1946) for both experimental and theoretical details.

This setup, in fact, provided the first experimental confirmation for the existence of
antimatter, as predicted by Dirac (1928). Anderson (1933) observed a particle whose
behaviour was in every detail identical to an electron, but with an opposite direction
of curvature, implying a positive charge, see figure 2.1. Thus the positron was
discovered.

Astonishingly, for a brief period of time in the 1930s, Anderson’s experiments with
cloud chambers resulted in the discovery of half of the known particles in existence at
the time! Prior to Anderson’s work, only electrons, protons, and neutrons were
known. Following his discovery of the positron, he subsequently discovered the
muon and anti-muon. Muons are a form of charged lepton, of which there are three
generations: electrons, muons, and tauons, in order of increasing mass. Muon detection

has developed significantly over the years, and we will pay particular attention to
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Figure 2.1: Photograph of the cloud chamber track observed by Anderson, proving the
existence of the positron.

this. In fact, the detector we will be using for reference throughout this work, the
Compact Muon Solenoid, as its name suggests has specialised components for direct

muon detection.
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2.2 Modern experiments at the LHC

Shrek: [Detectors] are like onions—

Donkey: They stink?

Shrek: No-

Donkey: They make you cry?

Shrek: No!

Donkey: Oh, you leave them out in the Sun, they get all brown, start
sprouting little white hairs?

Shrek: No - layers! Onions have layers; [detectors] have layers... Onions
have layers... You get it, [they] both have layers.

— Shrek (2001)

While exciting in their simplicity of construction, and clear correspondence of
observations with underlying physics, cloud chambers are much too limited for
modern studies. In the halcyon days of tabletop experiments, comparatively low
energy particles were the primary focus of study. It is natural that particle physicists
first structured their theories using low energy interactions. A great deal was not
understood, and many particles appearing in early experiments were entirely
unexpected. So numerous were these particles, that Oppenheimer is said to have
described it as a “subnuclear zoo” in a 1956 public lecture at the Rochester VI
conference (Johnson, 1999), and the term particle zoo stuck. Ultimately attempts to
organise the particle zoo were successful. The solution was introduced independently
by both Gell-Mann (1964) and Zweig (1964). The underlying structure is known as the
Eightfold-Way, which describes the particle zoo as combinatoric expressions of ways
to organise 6 fundamental particles (the quarks of the SM) in groups of 2 or 3 (mesons
and baryons), forming a vast array of composite particles. As descriptions of the low
energy domain became more detailed, it was necessary to probe higher energy scales
in order to encounter new phenomena and verify theoretical ideas. A century on from
these initial experiments, we have introduced colliders capable of not just observing,
but creating particles at ever higher energy scales, and have densely packed the
surrounding space with detectors whose sensitivity and throughput has exploded, to

study their behaviours in incredible detail.

The LHC is the largest particle physics experiment in the world by several metrics,
boasting a circular collider with a 27 km circumference. There are four large general
purpose detectors attached to this loop. These are ATLAS, CMS, ALICE, and LHCb.
They are referred to as “general purpose” because they are designed to study many
physics processes, so enabling greater flexibility in experiment design in response to
developments in theory. CMS is so named for its high number of detector components

within a Compact volume, its ability to directly detect Muons, and its
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superconducting Solenoidal magnet, the largest ever manufactured at the hand-in
date for this thesis. In this work, when connecting our approach and results to
experimental details, we will use the operating parameters of CMS as a guide. To do
this, we consider the types of data these detectors output, and how this reflects the
theoretical understanding of the phenomena providing the input.

2.3 Producing tracks and towers

Modern detectors continue to study particles by tracing their paths in the presence of
magnetic fields. Such analysis is referred to as track finding and reconstruction. The
innermost region is wrapped in a cylindrical shell of silicon pixel detector components.
In fact, several layers of silicon pixel and strip detectors build outward, so successive
detections at higher radii form a trajectory, hence the name “track reconstruction”.
Additionally, components known as calorimeters measure the energy of particles by
stopping them. Stopping high energy particles causes them to shower, and the
cascade of captured particle energies is known as a tower. So, we expand our

vocabulary to include towers, as well as tracks, to represent detector data.

The tracks and towers are collected by a series of detector subsystems. As eluded to
above, these subsystems form cylindrical layered shells, built outwards around a
central beamline. The central beamline is a highly focused circular path, created with
strong magnetic fields, along which the high velocity charged particles are restricted
to move, via equation 2.1. At the LHC, the particles accelerated are protons, one of the
two baryons forming nuclear matter, containing quarks uud. These protons are
obtained by ionising monatomic hydrogen gas. They are then accelerated in dense
clusters, known as bunches, each of which containing 100 billion protons. These
bunches are spaced 7 m apart, such that successive bunches pass an observer in the

detector’s reference frame every 25 ns.

However, merely accelerating particles offers us very little. Instead, bunches are
crossed with each other, by accelerating them in opposite directions around the LHC
beamline. Thus, every 25 ns, two groups of 100 billion high speed protons come into
range and facilitate approximately 20 head-on collisions, with an aim to produce high
mass particles in the interactions. Note that — while this may not seem like many
collisions per crossing — one key benefit of a circular collider vs. a linear collider is that
the accelerated particles which do not collide have additional opportunities to do so
on subsequent revolutions. The centre-of-mass collision energy between any two
protons is 13 TeV which, for context, produces similar conditions to that of the
Universe one picosecond after the Big Bang?.

20r, more relatably, the kinetic energy equivalent of two mosquitos flying head-on at each other. This
may seem underwhelming, but the fact this energy is concentrated on two subatomic particles, rather than
macroscopic animals, yields more extreme results.
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The detection and analytical work begins here, to determine what interactions
occurred, and crucially, if any particles we wish to study were created.

2.3.1 Temporal resolution and pileup

It is worth noting that the ~ 20 overlapping proton-proton collisions will need to be
individually resolved. This puts a demanding requirement to maximise the temporal
resolution and minimise the dead time of detectors. Dead time refers to the minimum
time separation required between two detectable hits on the same detector channel. It
is the period during which a detector is unable to register a new event after detecting a
previous one (Particle Data Group et al., 2020). Table 2.1 displays modern timing

performances of detector components.

We can tell from these data that it is generally not possible with current technologies
to resolve 20 collision events per 25 ns, leading to multiple proton collisions being
recorded as the same event. This is a form of contamination called pileup, and
strategies for mitigation are included in chapter 4.3. Pileup mitigation in the data
analysis phase is an active area of research, and obtaining effective strategies will
prove even more important once the High-Luminosity upgrade of the LHC is
completed, as this is expected to result in an order of magnitude increase in the
number of concurrent collisions (Cassese, 2022). However, this is not the research

focus of this thesis.

Table 2.1: Typical temporal resolutions and deadtimes of common charged particle de-
tectors (Particle Data Group et al., 2020).

Detector Type Time Resolution Dead Time
Resistive plate chamber  1ns —
Streamer chamber 2 ps 100 ms
Liquid argon drift [7] ~200 ns ~2 ps
Scintillation tracker 100 ps/n 10 ns
Bubble chamber 1 ms 50 ms
Proportional chamber 2ns 20-200 ns
Drift chamber 2ns 20-100 ns
Micro-pattern gas detect. <10 ns 10-100 ns
Silicon strip few ns ~50 ns

Silicon pixel few ns ~50 ns
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Figure 2.2: Showing the detector subsystems of CMS building outwards as the radius
increases (Sirunyan et al. (2017)).

2.4 Detector subsystems

We now take a moment to break down the structure of the CMS detector, building up
from the innermost subsystems outwards in radius. Figure 2.2 shows this structure.
We will start from the silicon tracker, pass through the electromagnetic and hadronic
calorimeters, discuss the solenoidal magnet, and finally the Muon chambers contained
within the iron yolk. This is a far cry from the tabletop experiments of cloud
chambers, stretching from a radius of 3.3 cm to over 7 m.

241 The inner tracking system

At a radius of 3.3 cm, the innermost shells are formed of silicon® pixel detectors (as
mentioned above), building out in 3 layers to a 10.2 cm radius. These are the highest
resolution detector subsystems in CMS, with an area of 100 x 150 um? per pixel (The
CMS Collaboration et al., 2008).

30ther semiconductor detectors exist. Silicon may be fabricated into ~ 100 m thick layers, so the tem-
poral response is competitive, as well as the spatial resolution. However, germanium is another popular
choice (Particle Data Group et al., 2020).
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Techniques such as charge sharing may boost this resolution yet higher (Kotlinski,
2001; Boronat et al., 2015). It is essential that the inner subsystems are high resolution,
as the particle flux is high at these radii, with ~ 1 million particles flowing per square
millimetre each second. As the particle flux tapers off due to the increasing radius, 10
layers of silicon microstrip detectors are used, since the lower resolution of detector
strips is sufficient to reconstruct the less densely packed particle trajectories. The flux
ranges from 60,000 to just 3,000 particles mm~2 s~! between radii 22 cm - 1.15 m. This
approach provides us with high resolution track data for charged particles, but we are

unable to detect uncharged particles in this way.

2.4.2 The electromagnetic calorimeters

Electrically neutral particles present a challenge for detection. In order to be detected,
they must be stopped by a nuclear collision. Naturally, such collisions result in a
significant momentum transfer, and thus produce particle showers of their own.
These cascades are modelled as cones emanating from the point of interaction. It is
important to wait until the charged particles have been captured before triggering the
cascades from these neutral particles; detecting neutral particles prior to charged
particles would lead to even higher fluxes on the already heavily burdened silicon
pixel and strip subsystems. Since these detectors capture the towers of energy
produced by the original particle, they are known as calorimeters. When calorimeters
produce cones with a limited lateral spread of this energy, we describe the showers as
having a smaller Moliere radius, which results in higher resolution particle detection.
The Moliere radius is defined as the radius of a cylinder centred along the direction of
a particle, such that 90% of its energy is deposited within the surrounding material
(Moliere, 1948). The Moliere radius for a particle detection depends on the type of
particle being detected, and the material from which the calorimeter is fabricated.
CMS has two calorimeter subsystems for which the material choice is matched to two
respective classes of particles.

Photons are captured first in an electromagnetic calorimeter (ECAL). This subsystem
measures the energies of particles via the electromagnetic interaction, primarily via
photons and electrons / positrons. Lead tungstate (PbWOy) crystals are used in CMS’s
ECAL subsystem, selected for its high electromagnetic cross section, and small
Moliere radius of 21.9 mm for photons (ECA, 1997). This leads to a transverse
granularity of Ay x A¢ = 0.0175 x 0.0175 (or 22 x 22 mm?), see chapter 2.5.
Additionally, its low density of 8.28 g cm 2 results in a low hadronic cross section.
This means that the effective cross-sectional area between incoming photons and the
nuclei within PbWOj is high, leading to more frequent interactions, and the converse
is true for incident hadrons. The 67.4 tonne collection of 61,200 crystals are packed
tight, to enhance accuracy of the missing energy measurement from the detected
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interactions. This effectively lets hadrons past, which are subsequently captured by
the hadronic calorimeter (HCAL) subsystem.

2.4.3 The hadronic calorimeters

HCAL is formed of 16 alternating layers of brass (10% Zn, 90% Cu) absorber and
plastic scintillator tiles. Plastic scintillator tiles contain wavelength-shifting (WLS)
tibres, which capture the scintillating photons produced by particle interactions, and
pass them on to photodetectors. The materials from which this subsystem is
constructed are selected for several desirable properties.

Copper boasts a short interaction length Ajn;, meaning the HCAL subsystem within
the barrel (HB) can trigger many showers even with limited thickness. This is blended
with Zinc to form a brass alloy, which improves the machinability of the material.
From a structural perspective, both brass and plastic also offer support to the detector

subsystem.

The non-magnetic nature of these materials is crucial, for two reasons (HCA, 1997).
On one hand, it prevents the detectors from interfering with the uniform central field
in CMS. On the other, it prevents the subsystem from experiencing magnetic forces
which could put it under stress. This is crucial in this region of the detector, as the
strength of the magnetic field in this region is extremely powerful, at 4 T.

2.4.4 The solenoidal electromagnet

This magnetic field is produced by the subsequent layer of the CMS apparatus: the
solenoidal electromagnet. With a length of 12 m, and inner diameter of 6 m, the 12
tonne solenoid is the largest ever constructed. By enclosing the inner tracking system,
the precision of measurements, such as particle impact parameters and secondary
vertex locations, are enhanced. This is due to its strong bending power of 12 Tm,
which is necessary to deflect the high inertia particles travelling near light speed,

providing kinematic information via equation 2.1.

Additionally, despite the HB plastic scintillator’s non-magnetic fabrication, the
magnetic field does affect HB’s detector response. This leads to an intrinsic
brightening of the scintillator response of ~ 5 — 8%. This occurs due to the magnetic
field stimulating polymer excitation in the plastic, which increases the energy of
ultraviolet light emitted. The brightness is further improved due to the strong
bending power of the magnetic field, since low energy electrons are deflected,
producing longer path-lengths over which to interact through the subsystem.
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The particles which continue to propagate beyond the inner tracking and calorimetry
subsystems pass through this solenoid, so their energy is not captured by barrel
detectors. Passage through the solenoid causes it to act as an additional absorber,
adding 1.4\ / sin 6 interaction lengths, where 6 is the angle of inclination of incident
particles, in spherical polar coordinates (HCA, 1997; Abramov et al., 2001; The CMS
Collaboration et al., 2008). We make use of this effect in the penultimate detector

subsystem.

2.4.5 The Outer Hadronic Calorimeter

The barrel HCAL (HB) is constrained in width by the available space between the
outer radius of the ECAL (1.77 m) and the inner wall of the solenoid (2.95 m). While
this compact design effectively captures hadron showers within its boundaries, it
struggles to contain high-energy hadrons fully, particularly at pseudorapidity # = 0.
As a result, some hadronic showers are only partially absorbed, leading to energy
leakage that degrades the calorimeter’s hermeticity. This energy loss is particularly
detrimental to physics studies that rely on precise missing transverse energy (ETss)
measurements, such as searches for new physics or the production of neutrinos, where

accurately accounting for undetected energy is critical (Abdullin et al.).

To address this, the outer hadronic calorimeter (HO) subsystem was implemented
(HCA, 1997; The CMS Collaboration et al., 2008; Abramov et al., 2001). Simulations
have demonstrated that the addition of HO significantly reduces energy leakage,
leading to improved energy resolution across a range of particle energies. Figure 2.3

illustrates this improvement (Abdullin et al.).

The HO leverages the solenoid and its cryostat as additional absorbers, which help
capture late-developing showers. This is particularly important for higher-energy
hadrons, as their interactions may start deeper within the detector volume. HO’s
design incorporates alternating active and absorber layers to facilitate the
development and detection of these hadron showers, mirroring the layered structure
used in HB.

In addition to hadron detection, the HO subsystem plays a key role in tagging muons.
Minimum ionizing particles (MIPs), such as muons, can traverse the calorimeters with
minimal energy loss and are efficiently detected by HO at a 90% efficiency rate, with
noise levels below 20%. This high efficiency ensures reliable muon tagging, which
complements the standalone muon system in CMS. While resistive plate chambers
(RPCs) in the barrel muon system can trigger muon detection, their standalone
efficiency is approximately 72%, making the contribution of HO critical for robust

muon detection (Abdullin et al.).
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Muons are a unique and vital particle for physics studies at CMS. Unlike electrons,
which are prone to significant radiative losses as they traverse the detector material,
muons are much less affected by such losses. This characteristic enables the
reconstruction of muon 4-momentum with exceptional accuracy, particularly when

combining information from the muon system and the inner tracker.

Muon detection is central to high-resolution measurements, such as reconstructing the
Higgs boson’s mass in decay channels involving muons. For example, the four-muon
decay channel provides the best mass resolution among Higgs decay modes, making
precise muon tracking essential for these studies. Combining the measurements from
the inner tracker and muon system yields an order-of-magnitude improvement in

momentum resolution at low momenta (The CMS Collaboration et al., 2008).

The CMS muon system consists of three primary detector components:

1. Drift Tube Chambers (DTs) in the barrel region, which provide precise position
and timing information for muons at lower pseudorapidity values.

2. Cathode Strip Chambers (CSCs) in the endcaps, designed to handle the higher
particle fluxes and radiation levels at high pseudorapidity.

3. Resistive Plate Chambers (RPCs), which serve as a complementary system for
fast triggering across both barrel and endcap regions.

Together, these systems allow CMS to achieve highly accurate muon identification and

momentum reconstruction, earning the detector its namesake.

Figure 2.4 summarises our description, showing which particles are targeted by each

subsystem.

2.5 Detector geometry

The LHC is a 27 km toroidal particle accelerator. We can consider CMS to be a linear
section along its circumference, which forms the site of our simulated collision

experiments. This forms a cylindrical coordinate system, see figure 2.6.

The azimuthal direction, ¢, has periodic boundaries. The beam axis, or z-axis, is the
axis of rotational symmetry of the cylinder, and the direction along which particle
beams are accelerated. Motion perpendicular to this beam axis is said to be transverse.
Events in which a high proportion of the collision energy is used in the hard
momentum transfer produce particles which have high transverse momentum, pr,

thus evolving with trajectories directed at the central region of the detector. Transverse

pr = \/P3+ Py (2.2)

momentum is calculated as
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Figure 2.3: Energy resolution for pions as a function of beam energy measured with
ECAL + HB, and with ECAL + HB + HO for the beam being shot at (a) # = 0.22 and
(b) 7 = 0.56 (Abdullin et al.).

where p, and p, are the Euclidean components of momentum in the plane

perpendicular to the beam axis, z.

As we shall see in chapter 3.1, when two composite particles collide, such as protons,
the products of the interaction may be left with residual momentum. This can be quite
sizeable, leading to distortions in the particle distributions due to space-time effects
from special relativity. As a result, the obvious choice of coordinates to complete our
cylindrical geometry for the collider, distance along the beam axis is not fit for

purpose.
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Figure 2.4: Describing how detectors develop tracks and towers for various kinds
of particles, highlighting specifically which subsystems are active for which particles
(Rizzi (2018)).

Rapidity is the hyperbolic angle which describes the separation of two inertial frames

of reference:

1 E+p,
y= Zlog(E_pz)- (2.3)

It can thus characterise the displacement from the central region of the detector, and
has the desirable properties that it may be shifted with a simple addition, and the
difference between the rapidity of two particles is Lorentz invariant to boosts along

the beam axis.

However, pseudorapidity 7 is more often taken as the practical coordinate, rather than
rapidity y. It's widely adopted in high-energy physics experiments due to its direct
relationship with the polar angle () of a particle’s trajectory relative to the beam axis .
Defined as

n = —Inftan(0/2)], (24)

pseudorapidity relies only on 6, which is straightforward to measure using the
detector’s geometry (Ellis et al., 1996). Pseudorapidity and rapidity for a given
particle are the same in the limit m — 0; this is a reasonable approximation as long as
the particle has a high ratio of spatial momentum with rest energy. For massive
particles or composite objects like jets, the difference between 77 and y can be
non-negligible, making rapidity the more appropriate measure in such contexts (Ellis
et al., 1989; Marzani et al., 2019). However, in the high-energy collisions we shall be
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studying, where particles often have very large momenta relative to their masses, the
approximation E =~ p holds, and 7 closely matches y. This makes pseudorapidity a
reliable and convenient coordinate for most experimental analyses, allowing for
efficient descriptions of particle trajectories while retaining reasonable accuracy in the
high-energy limit. Therefore, from here on, we shall take 7 as our longitudinal
detector coordinate.

The simplicity of psuedorapidity’s definition in terms of 6 contrasts with rapidity y,
which requires knowledge of a particle’s energy E and longitudinal momentum p, for
its calculation. By using 7, experimentalists can describe particle trajectories without
needing to measure energy, which may be challenging for certain particles like neutral
hadrons. This makes pseudorapidity particularly convenient for visualising particle
distributions and analysing detector data.

Detector geometries are often designed to have uniform coverage in pseudorapidity,
further motivating its use. Cylindrical detectors like those in the CMS and ATLAS
experiments segment their components, such as tracking systems and calorimeters,
based on |7| (Huth et al., 1990). For instance, the tracker typically covers || < 2.5,
while calorimeters extend to |17| < 5 (Bayatian et al., 2006). This segmentation ensures
that detector acceptance is naturally expressed in terms of pseudorapidity, simplifying
the analysis and comparison of data across different regions. Additionally,
pseudorapidity’s direct relationship to 6 allows experimentalists to map the spatial
coverage of the detector straightforwardly, enhancing the practicality of experimental

setups.

We can view the final state particles as scattered across a pseudorapidity-azimuth

(7 — ¢) plane (Tkachov, 2002), shown in figure 2.5. As mentioned in chapter 3.1, in this
study we are interested in processes which have high pr, and thus are mostly
concentrated at the central region of the detector barrel. For these purposes, it is
common to remove radiation that would not be picked up by these detectors, by
applying cuts to the data, usually |y| < 2.5 and pr > 0.5. For experiments which are
concerned with detecting high rapidity emissions, hemispherical end caps are filled

with detectors at either end of the barrel, but these are not considered here.

The Euclidean distance between particles within this plane is invariant to boosts,

AR = \/ A2 + Ag2. (2.5)

AR is a quantity frequently used to cluster final state particles, and provide a

geometric quantity to act as a window defining the nearby particles.4

“We will use this later to define locality in our graph data structures.
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Chapter 3
QCD and parton showers

In the previous chapter, we were cavalier in the statement that particles “showered”.
Why should particles interact at all? How do interactions lead to the creation of new
particles? Why are most of these particles unstable, decaying on their own via
fundamental interactions spontaneously? We will address some of these questions at a

high level throughout this chapter.

To do this, we will heuristically explore the quantum field formulation of the forces
driving the phenomena we study. It must be stressed, though, that this work is
primarily focused on the analysis of simulated data. While illuminating, the precise
low level details of the physical interactions which produce this data were largely
taken for granted, and did not substantially drive our program of research. With that

disclaimer out of the way, let’s dive in.

3.1 The parton model and proton collisions

As discussed in chapter 2, at the LHC proton-proton collision experiments are
performed, with a centre-of-mass energy of 13 TeV'. We understand the structure of
protons via the parton model. First proposed by Feynman in the 1960s, the parton
model is essentially an approximation to a more fundamental theory where quarks
and gluons are the quanta of a field theory of strong interactions, similar to how
electrons and photons function in quantum electrodynamics (QED) (Close, 1979). A
parton is a point-like constituent of a hadron, which we understand to be quarks and

gluons.

During a high energy proton-proton collision, we can use this model to describe how

the structure affects the momentum transfer. We assume that, at these energy scales,

IThis is not the only kind of particle collision that occurs at the LHC. Heavy ion collision experiments
are also conducted, but these are not relevant for our research.
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Figure 3.1: Depicting the interaction of two partons from colliding protons, with a
centre-of-mass energy of 13 TeV. The energy transfer goes on to produce a pair of top
quarks, which are longitudinally boosted in the centre-of-mass / lab frame.

the partons are effectively independent of one another. Therefore, the momenta of
individual partons may vary wildly, despite the overall momentum of the proton
being zero in its rest frame. This model suggests that the strongest interaction is likely
to happen between just one active parton from each proton, giving rise to the highest
momentum transfer. The energy of this collision may be transferred to produce a new

particle-antiparticle pair, such as a tf pair, see figure 3.1.

However, as the interacting active partons may have any proportion of their
respective proton’s collision momentum, it is not possible to guarantee that the overall
momentum of the hard (high momentum) collision will be zero. Therefore, it is very
likely that the particles produced in the hard collision will have a significant
relativistic boost of their momenta in the longitudinal / beam axis (typically taken as
the z-axis). This is why the use of (pseudo)rapidity introduced in chapter 2.5 is
important, since we need coordinates which are invariant under relativistic boosts.

3.1.1 Radiation from outside the hard momentum transfer

If we consider the momentum transfer between the active partons in the hard
interaction, we notice that not all of the collision energy is accounted for. The
momentum transferred during the hard collision is used to produce high energy
particles, eg. qj — tt. However, these have finite masses, which often fall far below the
collision energy. The energy gap between the collision energy and the masses of the
partons produced is filled by Bremsstrahlung radiation, emitted from the active
partons, called initial state radiation (ISR) (Ellis and Soper, 1993). Due to the
potentially wide gap between momentum transfer and collision energy, this ISR is not

necessarily soft (Marzani et al., 2019).

Thinking beyond the hard momentum transfer also begs the question: what do the
remaining partons in the protons do during the collision? These typically undergo

much softer interactions with each other, resulting in low pr emissions. Since
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spectator partons are not considered part of the “initial state” of the hard interaction,
this is called the Underlying Event (UE), rather than ISR. It is typically softer than the
ISR, and while earlier analyses have treated it as uncorrelated with the hard process
(Ellis and Soper, 1993), later studies explore the more nuanced connection between the
two (Larkoski et al., 2020). Typically, we can expect a diffused radiation pattern over
the detector, though in general its contribution can vary from highly diffused to
point-like (Salam, 2010). In any case, the phase space taken up by the UE develops
differently to that of the hard partons or the ISR.

Both the hard partons and ISR possess colour charge, and high energy, making hard
parton emission inevitable. These produce cascades of splits and radiative decays,
reducing the energy scales of parton interactions. Ultimately, the particles entering the
detector have energies orders of magnitude lower than those in the hard process.
Until the energies fall below a certain threshold (Aqcp), this can be described using
perturbative QCD. After this point, different non-perturbative models must be used.
As the energy scale of the UE is already low, it is entirely governed by
non-perturbative QCD. We shall discuss the shift from the perturbative to

non-perturbative regimes more in the next subsections.

It is our intention to study the properties of the particles produced in the hard process.
We do so by analysing the final products of the particle cascades initiated from them.
When clustered, these form a proxy of the particles we wish to study, which we call
jets.

3.2 Introducing jets

Jets are sprays of collimated hadrons originating from the fragmentation of partons.
These arise due to QCD colour confinement, which prevents quarks and gluons from
existing as free particles. The process of jet formation encompasses multiple stages,
including parton showering, hadronisation, and jet clustering. We shall present
showering and hadronisation in this section, but dedicate chapter 4 in its entirety for
jet clustering, in which we will address the need to mitigate the effects of ISR and the
UE.

3.2.1 Parton Showering

The evolution of a parton begins with parton showering: a series of small-angle
splittings governed by QCD dynamics. The probability of a parton emitting a gluon or
splitting into other partons is described by the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations (Larkoski et al.; Ellis
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et al., 1996). These equations incorporate splitting functions, such as Py,(z), Pse(z),
Pg4(z), and Pge(z), which encode the likelihood of specific branching events between
quarks and gluons. The theoretical details of the DGLAP equations are beyond the
scope of this study, however we can gain the key insights which will form the QCD
backdrop of our study from equation 3.1 and equation 3.2.

The probability of a parton (e.g., X) emitting a gluon or splitting into another parton is
given by:

dE do
E 0’
where «; is the QCD coupling constant, E is the energy of the emitted parton, and 0 is

P(X — Xg) ~ as (3.1)

the angle of emission. Notice two features of this relationship (Salam, 2010; Marzani
etal., 2019):

1. The divergence at small 8§ shows that small-angle emissions dominate, leading to
collimated sprays of hard particles.
2. The divergence at low E results in low energy emissions dominating, leading to

broadening and wide angle emissions of soft particles.

The first of these observations signals the need for collinear safety. That is, observables
used to reconstruct properties of X must be invariant if a particle is replaced by two
particles whose momenta have the same / very similar direction, and the sum of
which is equal to the original. The second observation gives rise to the need for
infrared safety. In other words, observables must not be affected if the final state
constituents have many near-zero energy particles superimposed in random locations.
At the perturbative level, this is achieved through cancellations between real and
virtual corrections. Infrared and collinear (IRC) safety will be explored further in
chapter 4.2.

3.2.2 Hadronisation

As the energy scale approaches a fixed limit, which we call Aqcp, perturbative QCD
breaks down. Partons then transform into colour-neutral hadrons in a
non-perturbative process known as hadronisation. While theoretical frameworks like
Quantum Chromodynamics (QCD) describe parton dynamics at high energies, the
transition to hadrons necessitates phenomenological models due to the breakdown of
perturbative techniques at low energy scales. In this section, we take a high level
overview of the theoretical underpinnings, phenomenological models, and practical

implications of hadronisation, with an emphasis on its relevance to jet analysis.

In QCD, the strong coupling constant & gains a dependence on the energy scale of

interactions during renormalisation. This is described with the Renormalisation
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Group (RG) equation
1

poin 12/ Ndyp)’

where B is a constant term which depends on the number of colours (QCD charges)

as — as(p) = (3.2)

and active quark flavours in the interaction. Taking limits to two extremes of this
equation tells us two important details about QCD for our work:

1. At the limit of infinite energy, # — oo, the strong coupling vanishes, a; — 0
2. At the lower limit of energy, u — Aqcp, the strong coupling diverges, a; — oo

How is this relevant for our showers? Well, in the high energy limit, we are allowed to
consider colour-charged partons as moving effectively freely, experiencing no
confinement due to the small coupling strength. However, as the energy decreases, the
binding potential becomes insurmountably large. Consider bound g7 states, which are
called mesons. Below Agcp, one would have to invest so much energy into separating
the two bound quarks, that prior to breaking their bond, another g4 would be created
in a pair production. These would pair off with any bare quarks before they are able to

be observed. Colour confinement is hence unavoidable at low energy scales.

As such, we must have a description of how the colour reconnects when we dip below
the Aqcp threshold. Since the strong coupling constant diverges at these scales, it is
not possible to use perturbative techniques to calculate the behaviour of colour. So, it
is with a heavy heart that we must abandon QCD in favour of phenomenological
models: physics-motivated descriptions, based more on heuristic ideas of the physics

than rigorous theory.

Physicists employ phenomenological models implemented in Monte-Carlo event
generators (MCEGs) to simulate the complex transition between QCD and
phenomenology. These models play a crucial role in connecting theoretical predictions
at the parton level to experimental observables based on hadrons. In our work, we
rely on Pythia to perform our showering and hadronisation. The sole method of
hadronisation used in the current version (v8.3) is the Lund String model, and is

therefore the most important model for our purposes (Sjostrand et al., 2015).

In the string model, partons are connected by a string-like potential, which fragments
into hadrons as the energy increases. This is most easily described for e*e™
annihilation (Ellis et al., 1996). The colour field between the produced quark and
antiquark collapses into a string-like configuration as they move in opposite
directions. The string has uniform energy per unit length, corresponding to a linear
quark confining potential. The string breaks up into hadron-sized pieces through

spontaneous g4 pair production in its colour field.


https://pythia.org/
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If a gluon splits perturbatively into a g7 pair during parton shower evolution, an
additional string segment is produced. Gluons that remain at the end of the shower
lead to kinks in the string segment that connect them. Each string segment then breaks
up into hadrons. The string model has undergone significant refinements to form the
basis of the JETSET simulation program, which gives a good description of hadronic

final states in e"e™ annihilation (Ellis et al., 1996).

While the string model is the relevant hadronisation technique for our work, we note
that other models exist. Herwig (Bdhr et al., 2008; Bewick et al., 2024) and Sherpa
make use of the cluster model, whereby colour-connected partons form low-mass
clusters, which decay into hadrons (Hoche, 2015). However, as we merely wish to give
a high level overview, we shall leave the details of these techniques to be explored by

the interested reader.

We now have a working model of the most relevant theory and approaches which
power our particle collision simulations to our work. MCEGs are extremely
sophisticated programs, developed over decades with extensive testing and
improvements. In this work, we respect that these models have been well verified
against experimental data, and concern ourselves primarily with the data record
produced by the combined simulations of MadGraph5 (Alwall et al., 2011) and Pythia
(Bierlich et al., 2022). In chapter 7.2, we make significant contributions to the creation
of data structures to manipulate this record. The ideas of showering and
hadronisation are explored further in chapter 8.3, where the process is represented

topologically using directed acyclic graphs.


https://herwig.hepforge.org/
https://launchpad.net/mg5amcnlo
https://pythia.org/
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Chapter 4

Jet Physics

4.1 Jet clustering algorithms

As introduced in chapter 3.2, jets are collimated sprays of hadrons, formed due to the
process of parton showering and hadronisation. A precise and systematic approach is
necessary to map the observed hadronic sprays back to the original hard interactions.
This is achieved using jet clustering algorithms. These algorithms group particles
based on kinematic and geometric criteria, ultimately providing insight into the
nature of the underlying physics processes, such as the production and decay of a
Higgs boson into a bb pair.

All algorithms we shall present here are IRC safe. We shall explore specifically what

this means for jets, and how it applies in a detector context in chapter 4.2.

41.1 The Snowmass accord

The Snowmass accord (Huth et al., 1990), established in 1990, outlines several
important criteria that a good jet clustering algorithm should satisfy. These criteria are
aimed at ensuring that the algorithms are both practical for experimental analysis and
theoretically sound for comparison with calculations (Salam, 2010; Marzani et al.,
2019). The key criteria are:

1. Simple implementation in experimental analysis:
The algorithm should be easy to implement in experimental settings. This means
the algorithm should not be too computationally intensive and should be
applicable to the type of data collected in experiments, such as tracks and
calorimeter towers.
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2. Simple implementation in theoretical calculations:
The algorithm must also be straightforward to implement in theoretical
calculations. This allows theorists to make predictions that can be directly
compared with experimental results. The algorithm should be well defined
mathematically to facilitate theoretical computations.

3. Defined at any order of perturbation theory:
The algorithm should be well-defined at any order of perturbation theory. This
ensures that calculations can be performed to any desired level of precision. This
also relates to the concept of IRC safety, see chapter 4.2.

4. Yields finite cross-sections at any order of perturbation theory:
The algorithm must yield finite cross-sections at any order of perturbation
theory. This is also a key feature of an IRC safe algorithm. This is because, in
quantum field theory, calculations can result in infinite results if not handled
carefully. If the jet algorithm is IRC safe, those infinities are avoided or
controlled, allowing for sensible comparisons with experimental data.

5. Yields a cross section that is relatively insensitive to hadronisation:
The algorithm should yield a cross-section that is relatively insensitive to the
hadronisation process. As discussed in chapter 3.2.2, hadronisation refers to the
process where quarks and gluons turn into observable hadrons, and is a
non-perturbative process that is difficult to model accurately. Therefore, jet
algorithms should aim to minimise this sensitivity to allow more reliable
comparison between parton-level calculations and hadron-level observations.
This also means that observables built from jet quantities should be as little
sensitive as possible to non-perturbative effects like hadronisation and the UE.

4.1.2 Sterman-Weinberg jets

The Sterman-Weinberg algorithm (Sterman and Weinberg, 1977), introduced in 1977,
was among the first methods to define jet cross sections within perturbative QCD
(Ellis et al., 1996). This algorithm was specifically designed for e"e™ collisions and
classified an event as containing two jets if at least a fraction 1 — € of the total event
energy was captured within two cones with a half-opening angle é (Banfi et al., 2006;
Salam, 2010). For this reason, it is referred to as a “cone” algorithm.

The parameters 6 and € provide flexibility in distinguishing between two-jet and
multi-jet events. To avoid incorrect classification, extreme values such as € — 0 or

€ — 1, and excessively small J, are generally avoided. Furthermore, the specific values
of 6 and € must be tuned according to the requirements of the physics analysis being
performed. This use of angular and energy thresholds to define jets is a hallmark of
cone-based algorithms. The Sterman-Weinberg method enabled a consistent
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perturbative QCD calculation for determining the probability of observing two jets in
an event (Salam, 2010).

Despite its historical significance, the Sterman-Weinberg jet definition has limitations
in both theoretical and experimental analyses of multi-jet final states. One significant
drawback is that cones with fixed half-angles J do not efficiently tile the solid angle
phase space. As a result, more advanced jet definitions have been developed to
address these shortcomings (Ellis et al., 1996).

4.1.3 Sequential recombination algorithms

To overcome the limitations of cone-based approaches, sequential recombination
algorithms were developed. These methods progressively combine particles into jets
by calculating a pairwise distance measure d;;, which is defined based on the particles’
energies and their angular separation. The purpose of the clustering process is to
simulate the behavior of QCD parton branching, grouping together particles that are
likely to have originated from the same hard parton (Banfi et al., 2006; Moretti et al.,
1998).

In these algorithms, the process begins by treating each particle as an independent
object, often referred to as a “pseudojet”. The algorithm calculates all pairwise
distances dij between the pseudojets, as well as the beam distance d,5, which
quantifies the proximity of each pseudojet to the beam line. The next step is to identify
the smallest distance among the computed values. If the smallest distance
corresponds to a pairwise distance d;;, the two associated pseudojets are merged into a
single new pseudojet. On the other hand, if the smallest value corresponds to a beam
distance d;p, the associated pseudojet is promoted to a jet and is no longer considered
in further clustering. This procedure is repeated, recalculating the distances at each
step, until all particles have been grouped into jets (Chakraborty et al., 2022; Cacciari
et al., 2008; Krohn et al., 2009).

The definition of the distance measure d;; is a fundamental feature that distinguishes
between different sequential recombination algorithms and determines their
clustering behaviour (Banfi et al., 2006). Ideally, this distance measure must capture
the divergences in QCD matrix elements, ensuring that particles are clustered together
when they are soft or collinear, as such configurations correspond to singularities in
QCD calculations.

At the same time, a well-designed distance measure must avoid introducing any
artificial closeness due to momentum variations that do not correspond to physical
divergences. This property ensures that particles are clustered only when they share a
genuine physical relationship, reflecting the underlying parton dynamics (Banfi et al.,
2006).
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The jet clusters serving as a proxy for particle reconstructions are represented by
binary trees. These trees are loosely considered to represent the possible history of
decays and fragmentations from the high energy particles to the low energy
constituents. They are formed by repeatedly merging “nearby” pairs of detector-level
particles, until no more nearby particles are left, determined by the analyst of the
event choosing a suitable distance threshold. In our work, we have access to more
complete data via simulations resulting in directed acyclic graphs, rather than trees,

see chapter 5.2 and chapter 8.3.

Prominent examples of sequential recombination algorithms include the JADE
algorithm, the kr algorithm, and its modern extensions, such as the
Cambridge/Aachen and anti-kt algorithms (Cerro et al., 2022; Salam, 2010). Each of
these methods employs a unique distance measure, leading to distinct clustering

patterns and characteristics in the resulting jets.

4.1.3.1 JADE algorithm

The JADE algorithm uses a distance measure, d;;, to determine which particles should
be clustered together into jets (Salam, 2010; Moretti et al., 1998). The distance between

particles i and j is defined as

. 2E1E](1 — COSs 91])
Etzot

dij , (4.1)
where E; and E; are the energies of the particles, 0;; is the angle between them, and Eyot
is the total energy of the event. The algorithm iteratively combines the pair of particles
with the smallest d;; until all remaining pairs have a d;; greater than some threshold

value dj.

This distance measure, d;;, is directly related to the invariant mass of the particle pair,
m;j (Moretti et al., 1998). For massless particles, the invariant mass squared is given by
mizj = 2E;E;(1 — cos 0;;) (Dokshitzer et al., 1997; Bartel et al.). Thus, the JADE
algorithm’s distance measure is essentially the squared invariant mass of the particle

pair, normalised by the total energy of the event squared.

While the JADE algorithm was a widely used and effective approach to jet clustering
for many years, the use of invariant mass in its distance measure can lead to
limitations. Specifically, the JADE algorithm tends to cluster soft, widely separated
particles together early in the clustering process (Moretti et al., 1998; Salam, 2010; Ellis
et al.,, 1996). This is because the invariant mass of two soft particles moving in
opposite directions can be smaller than the invariant mass of a soft particle and a
nearby hard one, even if the soft particles are not physically related. This behaviour is
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undesirable because it can result in the formation of spurious jets that do not
correspond to a single hard scattering. These spurious jets, sometimes referred to as
“phantom jets”, do not align with the underlying physics of the event (Dokshitzer
et al., 1997; Ellis et al., 1996).

JADE'’s preference for clustering soft particles also leads to larger hadronisation
corrections, complicating the comparison of parton-level calculations with
hadron-level observations (Moretti et al., 1998; Catani et al., 1991). This makes the
JADE algorithm less robust in terms of accurately reflecting the underlying hard

scattering process.

These issues with the JADE algorithm’s distance measure led to the development of
alternative algorithms like the kt algorithm. We introduce the generalised form of this
next, but specifically the use of relative transverse momentum instead of invariant
mass, addresses some of the shortcomings of JADE. This is because this approach is
more sensitive to collinear emissions than widely separated soft particles.

4.1.3.2 Generalised k7

The generalised kt algorithm refines JADE! by introducing a new form of distance
measure with a tunable parameter p, offering greater flexibility and control over the
clustering process (Krohn et al., 2009; Dokshitzer et al., 1997; Salam, 2010; Marzani
etal., 2019):

. 2p 2
d;j = min(p}, pr;)ARE, (4.2)
where AR?]. follows the same definition as equation 2.5, measuring the angular

separation in the rapidity-azimuth plane.

As in JADE, we define a characteristic distance such that, if dij exceeds it, we promote
our pseudojet to become a jet and remove it from the set of constituents to cluster. We
call this the beam distance d;g, and it is defined as

dip = pR?, (4.3)

where we introduce R as a tunable jet radius. This is a descriptive name, if a little
misleading. While increasing the value of R does indeed lead to larger jets (and vice
versa), it is not exactly equal to the circular radius of a jet. Indeed, jets are rarely
conical / have a circular cross section on the detector wall. The shape of the jet is

determined by the choice of tunable parameters.

I The precursor to generalised k1 was kt, which was formulated with a similar distance measure similar
to JADE’s. This is reformulated in generalised kt.
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Setting hyperparameters R and p must be done with care to achieve the data analyst’s
goals. A choice of R corresponds to a bias in expectations for how collimated the
sprays of particles forming the jets is. The selection of p has a more nuanced effect on
the composition and geometry of the produced jets.

If passed as a positive number, typically p > 1, softer (smaller p7) particles result in
smaller d;;, and thus are prioritised in the construction of jets, ie. they are clustered
first. This makes jets very sensitive to soft radiation, and can result in significant
pollution with low energy particles that did not originate from the particle we wish to
reconstruct (Marzani et al., 2019). Algorithms using this value of p are referred to as kr
(Catani et al., 1991).

The Cambridge / Aachen (CA) algorithm (Dokshitzer et al., 1997) does away with this
sensitivity by simply relying on detector coordinates and geometry, rather than
transverse momentum . This is done by setting p = 0.

Anti-kt instead prioritises the hard (high pr) particles in reconstructing jets, by setting
p = —1. This results in hard jet cores iteratively merging soft particles moving
outwards, forming generally circular jets. This makes anti-kt robust to pollution
(Krohn et al., 2009). Additionally, the conical jet structure centred on hard particles,

which are inherently easier to detect, improves the quality of calibration in detectors.

From a theoretical perspective, the binary tree produced by the kr algorithm
corresponds more closely to the expected ancestral structure of parton decays and
fragmentations. This is due to the fact that k1’s distance measure mimics the enhanced
frequency of soft emissions, predicted by QCD. That is, k’s small distance measure
between soft particles ought to reconstruct their parent partons more faithfully, with a
history that looks similar to the parton showering process. However, the practical
benefits in experimental contexts has led to anti-kT becoming the standard method of
clustering in collider experiments? (Cacciari et al., 2008; Gallicchio and Schwartz,
2010).

4.2 Infrared and collinear safety

IRC safety was introduced when we discussed parton showering in chapter 3.2.1. As
it stems from the underlying QCD that governs parton evolution at the high energy
scale, it is crucial for both theoretical predictions and experimental analyses. We have
already discussed the divergences which arise in QCD when particles undergo
collinear splitting or soft emissions. In this section we will explore the practical
considerations we will need to make in analysing our jets.

2Many analyses will first cluster using anti-kt to obtain convenient jet shapes and filter noise, then
apply CA clustering to obtain a binary tree whose branchings more closely resemble the expectations of
QCD.
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To recap, IRC safety arises due to the diverging probability of the following two ways

a parton can decay:

¢ collinear splitting: a single particle splits into multiple particles traveling in
nearly identical directions.

* soft emission: A particle radiates low-energy particles in various directions.

When trying to form clusters at the detector-level to capture the phase space of hard
partons we wish to reconstruct, this places the following conditions on our algorithms
to ensure IRC safety. Any observable constructed from our clusters must remain
unchanged if:

* a particle is replaced with a set of collinear particles
¢ particles with negligible energy are superimposed all over the detector wall

This can be formalised as follows with the following two equations. For collinear

splitting:

Vm+1(,k1,k],) — Vm(,kz +k],) lfkl H k] (44)

For soft emission:

Vm+1(- . .,ki,. . ) — Vm( . .,ki,1,ki+1,. . ) ifki — 0. (45)

Where V), is an observable based on a cluster of m particles with momenta k;. V;,11
corresponds to a particle splitting. In equation 4.4 a particle with momentum k; + k;
splits into two collinear particles, with momenta k; and k; respectively. In equation 4.5
a particle with vanishing momentum k; is inserted into the cluster. In both cases, the

observable V1 is required to tend to V.

In practice, the finite resolution of detectors limits the precision with which jet
algorithms can resolve particle trajectories and energies. In the case of IRC safety, this
can work in our favour, regularising our measurements. When particles are too soft or
their angular separation falls below the detector’s granularity, their signals are either
merged or discarded. However, even if detectors may experience a mitigated effect of
IRC splittings, the high probability of these processes requires that observables
describing them are invariant to their effects to garner any respect in the HEP
phenomenology community. If IRC safety can’t be guaranteed, divergences may
propagate through perturbative calculations, leading to potentially infinite cross
sections. By enforcing IRC safety, we guarantee proper cancellation of divergences in

perturbative calculations.
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4.3 Jet grooming

So far we have discussed methods for forming clusters from particle momenta
scattered over the  — ¢ plane. These methods locate jets as proxies for the particles in
the hard process. But as we discussed in chapter 3.1.1, there are other sources of
radiation entering the detectors than the final state products of the hard collision.
These include ISR and the UE. Additionally, the phenomenon of pileup (PU) was
introduced in chapter 2.3.1, and this contributes to a substantial increase in jet

contamination.

In order to gain high resolution when reconstructing hard partons we wish to study,
experimentalists employ strategies for subtracting contaminating radiation, which is
broadly called jet grooming (Larkoski et al.; Marzani et al., 2019). We discuss a few
specific techniques which come under this umbrella term for the remainder of the
chapter.

4.3.1 Filtering

Jet filtering (Butterworth et al., 2008) is a jet grooming technique designed to reduce
contamination from soft radiation by focusing on the hardest substructure of a jet. It
achieves this by re-clustering the jet’s constituents with a smaller radius, Rgyt, and
selecting only the ng); subjets with the largest transverse momentum (pr) (Salam, 2010;
Marzani et al., 2019). This process helps isolate the relevant hard substructure of the
jet, improving its suitability for further analysis.

The choice of Rg; is determined by the analysts. However, two prominent works
identify a similar approach. Krohn et al. opted to use a radius of half the original jet,
Ry = Ro/2, and Salam (2010) refined this in a H? — bb study, using the same
measure, but applying a minimum radius of 0.3, ie. Rg; = min(0.3, R,;/2). Ultimately,
the choice of Rg); is made based on the suitability for the specific study being carried

out.

Once the re-clustering is complete, the algorithm identifies smaller subjets within the
re-clustered jet. It then selects the ng) subjets with the largest pr. The parameter ng; is
typically set to match the expected number of hard prongs (distinct hard
substructures) within the jet, plus one additional subjet to account for a hard gluon
emission. The selected subjets are combined to form the filtered jet, which is then used
for further analysis. By retaining only the hardest subjets, filtering effectively removes
soft, wide-angle radiation that is unlikely to originate from the primary hard

scattering process.

Filtering is particularly valuable in analyses where the number of hard prongs within

a jet is known, such as searches for boosted heavy particles. For example W* / Z° /
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HY bosons, which typically exhibit 11pr0ng = 2, 50 14 is set to 3 to account for an
additional hard gluon emission. It would also be useful for top quarks, with
Nprong = 3, and again we set ngy = 4 for the additional hard gluon.

4.3.2 Trimming

Trimming (Krohn et al.) is another jet grooming technique that addresses
contamination, particularly for jets formed from light partons. Trimming is very
similar in spirit to filtering; a key difference, however, is that while filtering retains a
fixed number of the hardest subjets, trimming removes all subjets below a pr
threshold.

Trimming employs an “outside-in” algorithm, starting with pre-identified seed jets®.
These jets are then re-clustered into smaller subjets using a jet-finding algorithm,
commonly the kr algorithm. The kt algorithm is particularly useful because it
effectively balances energy sharing between subjets. The re-clustering is performed
with a smaller radius Ry, compared to the original jet radius, allowing finer

resolution of the jet’s substructure.

Once the subjets are identified, a “softness criterion” is applied to determine which
subjets are retained. Specifically, subjets are kept only if their transverse momentum
pr exceeds a certain fraction, fcut, of the hard scale of the event. The hard scale — often
represented as the transverse momentum of the seed jet or the event’s effective mass
(Anarq) — provides a reference point for distinguishing soft and hard contributions.
Subjets falling below this threshold are discarded. That is, for a subjet i to remain, it

must satisfy:

pri > fcutAhard . (4.6)

Trimming is designed to clean up jets by removing soft radiation that arises from ISR,
the UE, and PU while preserving the hard core of the jet. By removing soft subjets,
trimming reduces the active area of the jet. This makes trimmed jets less sensitive to

contamination from soft radiation. This improves the accuracy of jet reconstruction.

4.3.3 Pruning

Pruning (Ellis et al., 2009) is a bottom-up jet grooming technique designed to
reconstruct boosted heavy particles by dynamically removing spurious mergings
during jet clustering (Krohn et al.). Unlike trimming, which operates top-down,

3Krohn et al. states that any jet clustering algorithm may be used to produce these initial seed jets,
regarding the choice of algorithm as largely irrelevant.
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pruning iteratively applies constraints during clustering to remove soft or asymmetric

recombinations.

Starting with a seed jet, pruning re-clusters using a jet algorithm (e.g., kt or
Cambridge/Aachen) with a larger radius (Marzani et al., 2019). At each step, it
imposes two conditions for recombining constituents i and j:

1. Dynamic Radius Constraint: Constituents must satisfy

Mjet
ARij < Rprune = 2fprune7/ (47)
PT jet

where fprune is a parameter.
2. Momentum Symmetry: Splittings must be sufficiently symmetric:

min(pr,;, PT,]') 2 ZpruneP'T,(i+))- (4.8)

If neither condition holds, the softer constituent is discarded. By dynamically
adjusting the pruning radius Rprune based on jet kinematics, pruning enhances

sensitivity to jet energy and structure compared to fixed-radius methods.

Pruned jets fall into two categories (Marzani et al., 2019):

¢ I-Pruning: A soft, large-angle emission dominates and is pruned away.
® Y-Pruning: A symmetric hard splitting (1 — 2) defines the substructure, often
preferred in theory due to analytical control.

Pruning excels at identifying hard substructures from heavy particle decays but
struggles with light quark jets where scale separations are less distinct. It is also more
sensitive to PU and the UE, which can distort the pruning radius, misclassifying

symmetric (Y-pruning) jets as dominated by soft emissions (I-pruning).

4.3.4 How does this relate to our work?

In this work we explore techniques which don’t formally require jet clustering
definitions. However, considerations from jet clustering and grooming inform
essential aspects of our GNN definition. When preparing training data, inspiration is
drawn from the motivations of I-pruning, as clusters formed without jet definitions
equally benefit from removing wide angle radiation. Additionally, by considering the
decay products of the hard process by the prongs characterised by traditional jet
analysis, our interpretation was greatly improved, which undoubtedly shaped our
methods. Most importantly, by incorporating pr and AR measures into our graph
neural network algorithms, we are able to make it IRC safe, drawing on inspiration

from traditional jet analysis.
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Chapter 5

Machine learning on graphs

ML has transformed numerous aspects of collider physics, including jet physics,
where its contributions are especially impactful. Aligning the intrinsic data
representations in collider physics analyses with the input structures for specific ML
models has offered state-of-the-art performance in several domains. In this thesis, we
are interested in the applications of Graph Neural Networks (GNNs) for particle

reconstruction.

We start this chapter with a biased and non-exhaustive tour of some ML applications
to HEP, and consider their suitability based on the constraints they place on data
representation. This is followed by an introduction to graph representations of data.
Next, we discuss the Graph Network (GN) formalism, which provides a taxonomy for
understanding the internal components of GNNs, and the levels of downstream
prediction which they make possible. We expand upon this by discussing three
general flavours of GNN, in order of increasing expressivity, before finally introducing

specific architectures which influenced our work.

5.1 Choosing models for collider data

5.1.1 Multilayer perceptron

Here we introduce a neural network architecture called a multilayer perceptron
(MLP). MLPs are themselves very basic, being one of the earliest approaches in ML
(Rosenblatt, 1958). An MLP is a simple, biologically inspired model of cognition in the
brain. The architecture is effectively a graph structure, composed of layers of
“neurons”, or nodes. Nodes in any given layer are not connected to each other;

however, they are connected to every node in the previous and next layers.
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The first layer is known as the “input layer”, which takes a vector of input values,

h(®) = x. The nodes in the subsequent layer are then assigned with the sum value of
all of the nodes from the previous layer, weighted by scalar parameters attributed to
the edge from the source nodes. These edge values are stored for each pair of nodes in
a weight matrix W), This effectively corresponds to a matrix multiplication of
WORI-1) but this does not produce the node values in layer /, h(). That's because
matrix multiplication is a linear transform, and applying repeated linear
transformations over and over again is equivalent to applying one single linear
transformation. That is, we wouldn’t need a multilayered approach at all, because we
could just condense all of the W() into one resultant matrix, and optimising an

architecture like that is equivalent to fitting a straight line.

Straight line fits can be excellent tools in data analysis, but the power of MLPs is that
they are Universal function approximators, and the approximations improve the
deeper they get. Hence, we introduce a nonlinearity, o, so the full equation for an MLP
reads

h) — o (W(l)h("l) n b(l)) ) (5.1)

where we have introduced a displacement to our weighted sum, b(!), commonly
known as the bias. Therefore, “deep” MLPs, consisting of many layers, become highly

nonlinear functions which we can fit to almost anything.

However, as MLPs rely on fixed-size inputs, and the fully connected structure
between layers is expensive, they are rarely the right choice for modern
frontier-of-research studies in ML. Instead, they are often used behind the scenes as

components of more specialised architectures, including GNNs, as we shall see.

5.1.2 Nonlinear activation functions

As we have discussed, MLPs are able to achieve their remarkable expressiveness via
repeated applications of linear transforms (whose parameters are learnable), followed

by nonlinear activation functions.

We shall focus on two variants: the Sigmoid function, and the Rectified Linear Unit
(ReLU).

The ReLU function is simply the identity for positive inputs, and zero for negative
inputs, see equation 5.2.

x ifx>0,
ReLU(x) = max(0,x) = (5.2)
0 x<O0.
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This has the advantage of being simple to write down and explain. It’s also easy to
implement gradient-based optimisations, since its gradients are simply +1 for positive
inputs, and 0 for negative inputs (this is evidently extremely computationally
inexpensive, too). However, the total loss of gradient information in the negative
domain can diminish its expressive power. Therefore, many ML practitioners opt to

use the LeakyReLU variant instead.

LeakyReLU is identical to ReLU in the positive domain: it’s just the identity
transform. However, it introduces a hyperparameter a for the gradient of negative
inputs, allowing the gradient in the negative domain to take a non-zero value, see

equation 5.3.

x ifx>0,
LeakyReLU(x; o) = (5.3)
ax x <0.

This means that the derivative of LeakyReLU is +1 for positive inputs, and the
constant a for negative inputs. This is still attractive in its simplicity, but it introduces
a hyperparameter which must be chosen by the ML practitioner training the model.
This will either be chosen on the basis of guesswork, trial-and-error, or systematic
hyperparameter tuning, requiring the evaluation of metrics over repeated training

runs, which is an expensive use of compute resources.

An interesting variant which overcomes this limitation Parameterised ReLU (PReLU)
activation function. This is defined identically to LeakyReLU in equation 5.3, but
PReLU treats the negative gradient « as a learnable parameter, such that the model is

able to converge on an appropriate value during training.

Due to its enhanced expressiveness, in this work we favour using PReLU activation
functions in latent layers of our NN architectures!.

As we shall explore, our work is primarily concerned with binary classification
problems. That is, our models transform the input data to produce yes / no (or 1 / 0)
outputs. However in principle, outputs produced from repeated linear transforms and
PReLU activations could take on any value, positive or negative. We need a way of
mapping these outputs into the range (0, 1).

The Sigmoid activation is a smooth step activation function which maps x € R to
o € (0,1), and is defined by the formula:

1

= . 5.4
14e* 4

Sigmoid(x) = o(x)

Latent or hidden layers are the internal layers of a NN or MLP, ie. any layer that is not the input or
output layer.
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As such, it is the de facto nonlinearity to provide binary classification scores for NN

outputs.

So, in general for this work, we make use of PReLU nonlinearities in latent layers, and

we apply a Sigmoid function to our outputs for binary classification tasks.

5.1.3 Jetimages

The inspiring success of computer vision over the past decade has led to many fields
utilising algorithms such as Convolutional Neural Networks (CNNs) for classification
tasks. Representing the substructure of jets as “jet images” leads to two dimensional
arrays of pixels in the # — ¢ plane (Cogan et al., 2015). These are effectively heatmaps
or 2D histograms, where each bin contains the total amount of energy or pr deposited
in a corresponding calorimeter cell (Kasieczka et al., 2017); pr is typically preferred,
due to its invariance under Lorentz boosts (de Oliveira et al., 2016). These models have
shown success in tagging boosted bosons (Cogan et al., 2015; de Oliveira et al., 2016),
and top quarks (Macaluso and Shih, 2018; Dillon et al., 2019; Kasieczka et al., 2017). Jet
tagging is the problem of associating a jet with a possible high energy parton which
initiated it. A drawback of this approach is the need for extensive pre-processing,
exploiting symmetries such as rotation and translation invariances, to align jets along
the same axis, and keep their positions consistent. On top of this, the fixed size of 2D
input arrays for jet images imposes limitations on the input data representation and
memory consumption. Towers represented by the binned energy deposits are unable
to distinguish between multiple particles in the same bin. Additionally, the sparsity of
collider data results results in jet image representations having mostly zeroed-out
bins, which limits memory efficiency. More ergonomic matches of jet representations

with models have been shown to provide superior results.

5.1.4 Recurrent neural networks

As we have discussed in chapter 4.1.3, traditional sequential recombination clustering
algorithms result in binary trees. These trees are often interpreted as an approximation
for the series of particle splittings which resulted in the final state particles at the
detector level. This sequential tree structure is ideally suited to Recurrent Neural
Networks (RNNSs), a technique from Natural Language Processing (NLP) which
operates over variable length sequences. RNNs can thus be used as a form of feature
extraction / embedding, traversing from the root node of the binary tree down to the
leaves, recursively updating a global representation of the jet. This representation is
naturally summarised as a fixed-length vector, which may be passed to other
architectures for downstream prediction tasks.
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Using RNNs in this way for W* boson tagging has been shown to offer improvements
in both selection performance and efficiency (Louppe et al., 2019). However, Louppe
et al. (2019) highlight that the topological structure imposed by the sequential
recombination algorithm has inferior performance when compared with simply
ordering the jet constituents by their value of pr. It seems likely that this is a result of
limitations in the assumption that the cluster topology is a meaningful approximation
to the unseen decay history. Constructing a topological history of particle decays from
sequential recombination is fundamentally flawed, since we wouldn’t expect the
decay history to be a tree, much less a binary tree?>. However, the sequentially
recombined representation was more robust in terms of IRC safety. RNNs are not the
only offering from NLP to have an impact on jet physics — recent work has explored

applications of the breakthrough architecture receiving global attention in recent years.

5.1.5 Transformers

Recent buzz over the transformer model’s ability to effectively scale to large quantities
of data has not gone unnoticed in the HEP community. Particle Transformer (ParT)
(Qu et al., 2024) in CMS, has shown improvements over current methods in jet
tagging. ParT employs attention mechanisms and pairwise features to infer the origins
of jets, while its extension, GloParT, expands this framework to a larger set of classes,
including all-hadronic and semi-leptonic decays. This transformer architecture
enables the authors to train over truly huge datasets, with 100M jets®. This takes in a
point cloud data structure, with four-momenta, electric charge, and particle type (ie.
five classes: charged hadron, neutral hadron, electron, muon, and photon). Formatted
as a matrix, pairwise relationships between all particles are learned, as well as
embeddings of the particles, which are combined for downstream prediction tasks. In
this way, the transformer architecture employed is effectively equivalent to a graph
neural network (GNN), where the data is formatted as a fully-connected graph. This is
a very expensive computation, since a fully connected graph with O(N) nodes
corresponds to O(N?) pairwise relationships, where each node and pairwise
relationship is itself a feature vector. When pretrained on existing datasets and
subsequently fine-tuned, ParT does achieve modest improvements to current
state-of-the-art methods across the board for accuracy, AUC score, and background
rejection, though no significant improvement is seen on the existing ParticleNet (Qu
and Gouskos, 2020) without this pretraining and fine-tuning approach. We will
explore more economical uses of graph data structures via explicit uses of GNNs in

depth later, albeit for the different downstream task of particle reconstruction.

2This is because particles may undergo more complex interaction than simple 1 — 2 splittings. Also,
during hadronisation weakly connected cycles are introduced, which is not representable as a tree.

3Future scholars may find this quaint, but at the time of writing this is two orders of magnitude larger
than current publicly available datasets.
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At this point, we may notice that it is not straightforward to encode jets into useful
representations which match the requirements of input data for ML models. JetCLR
also utilises transformers, but with the more generic goal of learning expressive
representations of jets in high dimensional embedding spaces (Dillon et al., 2022). This
combines the transformers’ architecture with a contrastive learning loss function,
leading to general purpose discriminative representations. In theory, it should be
possible to use these representations for a number of downstream tasks, though the
authors opted to test this on top tagging. They found an improvement when
compared with jet image approaches, and while the top tagging results themselves
were not state-of-the-art, the key message was that symmetry-preserving general
purpose representations can deliver good results, and with future work may present a
strong opportunity for transfer learning.

5.1.6 Generative models

Moving away from jet tagging, ML is also making an impact on speeding up
simulation pipelines. Generating detector-level data is particularly computationally
challenging. Traditional simulation techniques, such as those based on Geant4
(Agostinelli et al., 2003), are resource-intensive and time-consuming. ML-based
approaches, such as variational autoencoders (VAEs) and generative adversarial
networks (GANSs), provide a computationally efficient alternative (Carrazza and
Dreyer, 2019). For example, these methods have been employed by the ATLAS
collaboration to model the electromagnetic calorimeter’s response, quickly simulating

electromagnetic showers while preserving accuracy (Aad et al., 2024).

In this work, we will explore the role of graph neural networks in particle
reconstruction. That is, we will take point cloud data of the detector-level particles
following a Pythia showering and hadronisation simulation, and attempt to cluster
them to reconstruct two specific high energy particles: the Higgs boson and the top
quark. We will do this by classifying each detector-level particle as to whether or not
they belong to the cluster for our desired reconstructed particle. Operating over point
cloud data efficiently to produce classifications on each individual point is an ideal
problem space for GNNs to be applied.

But what is a graph?


https://pythia.org/

5.2. Graphs as flexible data structures 45

5.2 Graphs as flexible data structures

A graph (or network) is minimally described by two sets: a set of nodes V, and a set of
edges £. Graphs can be used to represent data structures in many domains, from the
humdrum to the esoteric.

For example, a person’s social network forms a graph, in which people are nodes, and
the relationships between them are edges. Understanding graphs in this context may
lead to better insights about a person’s values and interests, based on their attributes

and the context of their community.

GPS and navigation mobile applications have become valuable utilities in many
people’s lives; these combine graph based representations where nodes are cities,
intersections, or waypoints, and edges are roads or pathways. These edges may be
weighted with physical distance in space, projected travel time, or cost of any tolls en
route. Applying techniques from formal graph theory, such as Dijkstra’s algorithm,

benefits the lives of at least one billion people each month?.

In biochemistry, it has long been considered useful to model the structure of a
molecule with a graph, where atoms are nodes, and bonds are edges (Knisley and
Knisley, 2008). In this case, a global (or graph-level) feature u may describe some

emergent property of the entire network eg. chemical properties of a drug.

Taken together with the node and edge features, the graph is denoted in its most
general form as
G=(V,&u), (5.5)

which is often abbreviated simply to G (V, &, u).

Each edge e,y € £ represents a pairwise relationship between the two nodes it
connects, vs — v, where v5,v; € V. In a directed graph, v; is referred to as the source
node, and v, is the destination node. In an undirected graph, all nodes in V serve as
both source and destination nodes.

Graphs can take several forms. For instance, multigraphs allow multiple edges
between the same pair of nodes. A special category of graphs, called natural graphs,
are derived directly from the inherent structure of the data they represent. A family
tree, for example, is a natural graph in which nodes correspond to individuals, and
edges represent familial relationships.

A tree is a type of directed graph with the following properties:

¢ A single root node serves as the origin of all directed paths.

4This is based on Google’s own, now archived, metrics for iPhone users of Google Maps in 2020.
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¢ Each node is either an ancestor or descendant of other nodes.
¢ A node with no descendants is called a leaf node.

If sibling nodes are allowed to share edges, the graph becomes a directed acyclic
graph (DAG). Unlike trees, DAGs may contain multiple root nodes and allow more
complex interconnections while preserving a lack of cycles.

The description provided by V and £ is topological. Much of graph theory relates to
graphs from a purely topological perspective. However, since we wish to model
physical systems with our graphs, where nodes and edges represent particles and the
relationships between them, we wish to enrich them with additional data. This is done
by attaching attributes at the node, edge, or graph level, and as such these networks
are called attributed graphs®.

5.2.1 Aside: distinguishing the generation DAG vs. the input graph

We have now developed sufficient graph vocabulary to distinguish networks based on
structural descriptors. Therefore, we take this opportunity to break the flow of this
thesis and make a distinction early to help clarify later remarks.

We will utilise two different kinds of graph in our study. The purpose of this
subsection is not to fully describe the structure and method of construction for these
graphs in depth; this is done in other sections. However, we wish to emphasise the
structural composition of these graphs here as a means of additional context, to help
readers avoid confusion when it is necessary to reference both kinds of graphs in the

same discussion.

The simulation history will be represented as a generation DAG, described in

chapter 8.3. This is a natural, attributed multigraph. Here the particles are represented
as edges, and each edge is attributed with the full range of particle properties
available from our simulations, see chapter 8. Nodes represent the interactions
between particles, and while some studies may attach attributes representing vertex
locations in space, we choose to leave the nodes unattributed. This is a multigraph
because the particles (edges) produced from a common interaction (source vertex)
may go on to interact with each other immediately afterwards (at a common
destination vertex). Hence two nodes may share multiple edges. The root of this
graph has two outgoing edges, which are the initial protons in the collision, and the
leaves of the graph represent where the particles terminate upon entering the detector,
at the end of the showering and hadronisation.

50nce we go on to discuss machine learning on graphs, we shall call these feature vectors, but really
it’s the same thing.
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The second graph is formed from the edges directly incident on the leaves of the
generation DAG. The ancestral information is discarded, and these particles form the
node set for a new graph. This is naturally a point cloud, so we construct an edge set
based on the inter-particle distance between pairs of nodes. There are many
approaches to doing this, where k-nearest neighbours (kNN) is a popular choice. We
instead adopt the prescription of the Energy Weighted Message Passing (EWMP)
network (Konar et al., 2022), but this will be explored in more depth in chapter 5.5.

For now, we simply wish to stress that, while the generation DAG is used in
producing supervision labels for the input graph, it is not the input graph itself.

¢ The generation DAG has a natural hierarchical topology, represents the particles
as edges, and includes intermediate particles which do not enter the detector.

¢ The input graph has no natural topological structure, represents particles as
nodes, and is formed entirely of detector-level particles.

With this aside out of the way, we return to describe practical mathematical

approaches for representing graphs.

5.2.2 Neighbourhood representations

The edge set £ of a graph can be represented in several forms, each with unique
advantages and drawbacks.

Rich analyses are made possible by selecting specific representations. As will be
discussed in chapter 5.2.2.5, the incidence matrix may be used as a discrete differential
operator over graph structures. Additionally, the Laplacian matrix encodes rich
information via its eigenvector decomposition. Spectral analysis can be used to
understand the graph structure, and is an effective tool in clustering graphs (Cerro
etal., 2022).

In the following sections, we define and consider the functions of several edge
representations. In this work, we will use the edge list and adjacency matrix

representations to describe our graph structures.

5.2.2.1 Edge List

This representation consists of a N x 2 matrix or a list of N tuples, where each tuple
corresponds to an edge. It is compact, simple to define, and representing multigraphs
may be done trivially by adding an additional entry with the same pair of vertex

indices.
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Edge attributes are likewise easy to include, simply by storing more than 2 values per
row, where the first two continue to provide source and destination vertex indices, and
subsequent values provide edge attributes. Because there is no limit on how many

values can be stored in each row, the attribute may be a vector quantity of any size.

However, it can be inefficient for manipulation and traversal. The edge list is

conceptually identical to the sparse matrix coordinate (COO) list representation.

5.2.2.2 Adjacency list

In this representation, each node maintains a list of its neighbours or destinations to
which it links. Multigraphs are also supported by this representation. The adjacency
list format is well-suited for efficient storage and traversal, especially in large or

sparse networks.

Attributing edges is noticeably more complex than in the edge list format, and

normally involves storing nested tuples and / or [mappings] for each entry in an
adjacency row. The Python package networkx (Hagberg et al., 2008) provides an
implementation of this approach.

5.2.2.3 Adjacency matrix

The adjacency matrix A is a square matrix where:

1 if €ij e&
Ajj = (5.6)
0 otherwise.

For undirected graphs, the matrix is symmetric. Self-loops appear along the diagonal.

In directed graphs, rows represent source nodes, and columns represent destination
nodes. The sum over a row gives the out-degree of a node, while the sum over a
column gives the in-degree. The degree of a node is defined as the number of edges
which are connected to it, without considering the direction of those connections, ie.
incoming or outgoing. Thus, in-degree and out-degree are the number of edges

specifically the number of incoming and outgoing edges, respectively.

Non-binary adjacency matrices can encode additional information. For instance,
multigraphs can store the number of edges between nodes by allowing A;; € Ny, and
scalar edge attributes can represent weighted relationships. However, adding edge
attributes and supporting multigraphs simultaneously is not possible without

additional data structures; nor is storing non-scalar edge attributes.


https://docs.python.org/3/library/stdtypes.html#tuples
https://networkx.org/

5.2. Graphs as flexible data structures 49

5.2.2.4 Laplacian matrix

The Laplacian matrix L is defined as the difference between the degree matrix D and

the adjacency matrix A:

deg(v;) ifi=j
Lij =4 —1 if i 7'é ] and 61']' cé& (5-7)

0 otherwise.

For directed graphs, two Laplacians can be defined: one for in-degrees (Li») and
another for out-degrees (Loyt). Normalisation strategies help address the dominance
of high-degree nodes.

The symmetric normalised Laplacian is given by:

Y™ =D LD :=1-D :AD 2. (5.8)

The random walk normalized Laplacian is:

L™ =D 'L=I-D'A. (5.9)

It is impossible to represent multigraphs or edge attributes using this representation
alone, as the elements of the Laplacian matrix encode important information that
would be obscured by such attempts.

The Laplacian may also be written as L = VTV, where V is the incidence matrix.

5.2.2.5 Incidence matrix

The incidence matrix V represents edges in terms of their source and destination

nodes, where each row i is a node, and each column j is an edge:

1 if i = source node
Vij={ —1 ifi = destination node (5.10)
0 otherwise.

This means that the incidence matrix — unlike the Laplacian or adjacency matrices — is

not generally square®.

It is easy for two nodes to share multiple edges in this representation, since the matrix

may be extended with identical columns. It is also possible to store scalar attributes,

®Cycles are one case where you could always expect a square incidence matrix.
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just as in the adjacency matrix example, though this is complex and may hamper the
mathematical properties of the incidence matrix.

In particular, when a vector of node features is left-multiplied by the incidence matrix,
the result is a vector representing edge feature differences between the source and
destination nodes. This operation resembles a discrete differential operator.

5.2.3 Graph connectivity

A graph is connected if any two nodes are joined by a path. Disconnected graphs are
decomposed into components, subsets of the graph where each subset is connected.

In directed graphs, connectivity is categorized into three types. In strongly connected
graphs, there exists a directed path between any two nodes, respecting edge
directionality. Weakly connected graphs may still find paths by disregarding edge
directionality. Disconnected graphs contain multiple components with no path

connecting them.

For undirected graphs, connectivity can be analysed using block-diagonal adjacency
matrices, where each block corresponds to a separate component.

Due to how we form the input graphs to our models, while it’s possible a given graph
may be (weakly) connected, they generally have multiple disconnected components.
More on this in chapter 10.2.1.

5.3 Message passing

Graphs, represented by nodes and edges, provide a flexible framework for modeling
relationships within complex data. Beyond their topological structure, graphs can be
enriched with attributes on nodes and edges, capturing diverse types of
information—from physical properties to semantic relationships. For instance, in
high-energy physics, nodes might represent particles with attributes such as
four-momentum, while edges could denote interactions or distances between these
particles. These attributes enable the representation of both local and global properties
of a system.

In machine learning, embeddings play a crucial role in transforming graph data into
vector spaces, where computational operations become feasible. An embedding maps
the attributes of nodes, edges, or the entire graph into a structured vector space. This
mapping ensures that similar entities are placed closer together, facilitating

downstream tasks such as classification, regression, or clustering. The flexibility of
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embeddings allows their application across a wide range of fields, from social network
analysis to molecular chemistry.

Graphs, however, present unique challenges for machine learning. Unlike images or
sequences, which have fixed grid-like structures, graphs exhibit arbitrary sizes and
connectivity patterns. This variability complicates the design of models that operate
directly on graph data. Additionally, graph data must be processed in a way that
respects permutation invariance, the property that the output should not depend on

the arbitrary ordering of nodes or edges.

Message passing, the cornerstone of Graph Neural Networks (GNNs), addresses these
challenges by iteratively propagating and aggregating information across a graph. At
each iteration (or layer), nodes update their embeddings by combining their own
attributes with those of their neighbours. We can describe the process of defining
graph neural networks, and forming downstream predictions on nodes, edges, or
globally, using the graph network (GN) formalism .

5.3.1 The graph network formalism

The graph network formalism (Battaglia et al., 2018) provides a flexible framework for
performing computations on graph-structured data. It unifies GNN approaches to ML
under a single generalised description, including message passing neural networks
(MPNNSs) and non-local neural networks (NLNNs). By defining a class of functions
for relational reasoning, and highlighting opportunities to customise architectural
choices, it is applicable to a wide range of domains. The GN framework is not a
specific model architecture, but a vocabulary for thinking about computations on

graphs, which we will use to describe and compare GNN architectural choices.

The GN formalism shares the same graph description we have defined in equation 5.5,
describing a graph G = (V, £, u). Graphs in this formalism are treated as directed,
attributed multigraphs, allowing for edges with directionality, attributes, and even
multiple connections between nodes. Attributes can take the form of vectors, tensors,
or more complex data structures, and the graph’s structure can either be predefined or
inferred. Connectivity is often described using adjacency matrices or by encoding
sender and receiver indices for the edges. This aligns with our usage of adjacency
matrices and edge lists.

The computational unit of the GN framework is the GN block, which transforms an
input graph into an updated graph with the same structure but whose attributes
undergo embedding. Each block defines two internal functions: an update function,
and an aggregation function. There are three blocks in total corresponding to edge,
node, and graph-level update, sequentially in that order. Collating all three blocks, the

update functions ¢, ¢, and ¢* transform the edge, node, and graph level attributes
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Figure 5.1: The generic Graph Network architecture, from Shlomi et al. (2021).

into latent embeddings. They have fixed input and output sizes. The aggregation

e—u U— U

functions p*7?, p°7*, and p apply a permutation invariant aggregation to reduce a
variable number of incoming embeddings to a fixed-size output representation. This
is important, as these pooled embeddings form so-called “messages”, which are

propagated to the subsequent block for the next level of embedding.

As discussed, the process starts in the edge block, see figure 5.1. ¢° concatenates the
feature vectors of the nodes connected by the edge e; (Where k represents the edge
index). Subsequently, the feature vector of both the edge itself, and global feature
vector (if any) are also concatenated. The resulting vector is then mapped into its
embedded representation e;. The update function visits every edge in the graph
structure, such that every edge has a new embedding. We may collect these edge

embeddings as columns in a matrix E’.

Therefore, we have a description for the formation of new edge embeddings over the
whole graph. However, the message passing algorithm is able to update node features
too, by forming messages based on the nodes connected by incoming edges in its

neighbourhood. This is achieved in the first step of the node block.

We start by constructing so-called messages from the incoming edge embeddings.
However, an individual node may have any number of incoming edges, and we need
a fixed-size message for our following update step. Additionally, there really isn't a
defined ordering for neighbour nodes. Therefore, to summarise the information about
the target node’s neighbourhood, provided by the incoming edge embeddings, these

are reduced along their feature dimension using p*~°

, which is a permutation
invariant aggregation function. This forms a new vector & whose size matches the
edge embedding dimensions. It is this vector, which we call a “message”, from which

the algorithm message passing gets its name.
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The next step of the node block is to apply the node update function ¢°. For a given
node i, the update function ¢* concatenates the message received from its
neighbourhood &/ with its own node feature vector, and the global feature vector (if
any). In the same fashion as the update function in the edge block, it then maps the
resulting vector to a new embedding v/ for node i. Likewise, ¢ visits every node in
the graph, forming a new set of latent representations for each of them. Therefore, at
this stage, we have successfully performed updates to both node and edge

embeddings. We may collect these node embeddings as columns in a matrix V.

If a sufficiently expressive choice for ¢° is made, the edge embeddings may model
features of the relationship between pairs of nodes. Node embeddings naturally
update their embeddings on the basis of receiving information about their position
and identity within their neighbourhoods. This is a form of information diffusion.

We could stop here. Indeed we will go no further than these two steps in our studies,
since we will not be performing graph-level inferences. However, for completeness,
we describe the graph block.

To obtain a global embedding of the graph, messages from both the latent
representations of the edges and nodes are constructed. This is achieved simply by

e—u

applying the aggregation functions p*~* and p’~* to perform reductions over the
rows of edge and node embedding matrices E; and V’ respectively. These form two
two column vectors. The global update function then concatenates these with each
other, and the currently global feature (if any). Finally, it maps the resulting vector into

a new embedding for the global feature, u’.

This series of operations may be represented by the following equations:

e;c = (Pe(ekr VVk'VSk'u) é; = Pe%v(Ez{)
v, = ¢ (&, vi,u) & = p* 7" (E) (5.11)
u/ — (PM(é//V// u) ‘—,/ — pf}%u(vl)

In our work, we will use MLPs with PReLU nonlinearities for update functions, and
summations for our permutation invariant aggregation functions, see chapter ??:. This
is made slightly more complex by requiring IRC safety, chapter 5.5 for the refinements

we adopt in order to ensure this.

Thus, the feed-forward mechanism produces a graph with the same topology

GV, Eu)— G (V, E u) as the input. In GNN terms, once we have passed through
all three blocks of the GN framework, we say we have applied one graph layer or
GNN layer. By stacking graph layers, we form the full GNN architecture, prior to the

final classification or regression layer.
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For a given GNN layer, the number of nodes in the input and output layers of the
update function correspond to the initial and final number of dimensions of the
feature vectors transformed. This solves the problem of variable graph cardinality |V|,
since the underlying NN architecture only expects consistency in the dimension of the
input feature vectors, allowing graphs of arbitrary size and connectivity to be used for
training and inference. The choice of which data is represented by nodes, edges, and
graph level attributes, and how these data are related, can thus be chosen to best suit
the problem to which the GNN is applied.

The GN formalism generalises and extends many existing graph neural network
(GNN) approaches. For instance, graph convolutional networks (GCNs) can be
viewed as a specific case of GN blocks without global attributes, using simple linear
transformations for edge updates. Non-local neural networks (NLNNs) correspond to
fully connected graphs where pairwise attention mechanisms compute edge
attributes. Transformers, another powerful architecture, can be expressed as fully

connected graphs with attention-based edge weighting.

5.3.2 Computational graphs

Computational graphs provide a clearer description of the node update function. They
are defined as the rooted subtree around a given node of the input graph, and their
structure mirrors the process of aggregating and forming a new embedding on this
node. In some sense, this this reflects a bespoke NN architecture centred on each node,

with different computational structures depending on the input graph topology.

Figure 5.2a shows a simple graph structure, with nodes labelled from 1 - 7. In order to
update the embedding on node 1, we aggregate the neighbouring node features, and
transform the result with an MLP, see chapter 5.1.1. Figure 5.2b visualises this process
in a computational graph. Dashed arrows show the neighbours being aggregated to
MLP blocks in grey, and solid arrows represent the resulting update operation

performed on the embedding of node 1.

Applying a single GNN layer corresponds to embedding a node with its neighbours
initial feature vectors; if we stack two layers, however, the neighbours we aggregate
have themselves been embedded based on their own neighbourhoods. The result is
that the number of layers in a GNN is equal to the number of hops a node uses within
its local graph structure to perform its update operation, which widens the node’s
receptive field, ie. the neighbouring nodes which are used to embed it. The grey dotted
region in figure 5.2b shows how the computational graph grows when increasing the

number of graph layers from one to two.
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(a) Input graph undergoing (b) Computational graph to representing update
node embedding. function for node 1.

Figure 5.2: Demonstrating the node update function as a rooted subtree centred at the
receiving node, with grey boxes representing the shared weights at each layer. As layers
are stacked, the computational graph grows, representing additional hops in the input

graph.

In order for a GNN to maximise overall expressiveness, it is clear the update operation
for the computational graph should be as expressive as possible. In particular, this is

determined by the choice of aggregation function.

5.3.3 Expressiveness is in the aggregation function

Bronstein et al. (2021) provide a useful framework for specialising the GN formalism
within three “flavours”. These are identified as convolutional, attentional, and
message passing. Flavours are distinguished by what normalisation is applied during
the aggregation function when forming messages. Each flavour is a manifestation of
the same GN formalism, with the first being the most direct and general application,
and the remaining two are listed in order of increasing generality and implicit
computation. We outline the differences in message normalisation below, and

figure 5.3 is included from the source text to visualise this.

The convolutional flavour bases normalisation on classical graph theory metrics. For
instance, node degree, ie. how many neighbours a given node has, is used in the
Graph Convolutional Network (GCN) architecture (Kipf and Welling, 2017).

The attentional flavour makes inference more implicit by parameterising the
normalisation with learnable weights (Velickovi¢ et al., 2018). Messages are weighted
with an attention score, which is passed through a softmax activation such that these

attention scores form a set whose elements sum to one. These weights are learned via
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Figure 5.3: Visualising data flow for the three flavours of GNN, based on message
normalisation (Bronstein et al., 2021).

an MLP applied to the aggregate of node features between the receiving and
neighbouring nodes, so the normalisation is made implicit, rather than subjecting the
operation to a potentially limiting inductive bias.

In both of these cases, the weighted neighbouring node features are then aggregated,
and concatenated with the receiving node’s features, before ultimately being passed
through the node’s update function ¢.

Finally, the message passing flavour increases the level of implicit computation by
constructing incoming messages, not as the weighted feature vectors of a node’s
neighbours, but instead as a full-blown edge embedding feature vector, whose update
function is identical to ¢° from equation 5.11, except without the global feature u.
These messages require no weighting, as they are entirely implicit. They can then be
aggregated, concatenated with the receiving node features, and updated as normal.

Poor choice of aggregation functions may result in less expressive embeddings, or
have specific failure cases when distinguishing sets of nodes.

Consider element-wise mean pooling, as used in GCN. If we treat distinct feature
vectors in a node’s receptive field as numbers in a multi-set, element-wise mean
pooling would fail to distinguish between neighbourhoods with the same proportions
of numbers, eg. {1,2} and {1,1,2,2} would result in identical embeddings for GCN.
Element-wise max-pooling over neighbourhood features also fails to produce distinct
embeddings between multi-sets if their unique subsets have the same mixture of
feature vectors / numbers, eg. {1,1,2,3} and {1,2,2,3,3} both have the unique subset
{1,2,3}, so this would produce the same embedding. Element-wise sum-pooling
manages to distinguish both of these cases, so this appears to be the best choice among
non-parametric’ aggregations (Leskovec, 2021).

7Parametric aggregation functions exist which elevate the expressive power of GNNs, namely GIN, see
(Xu et al., 2018).
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5.4 Interaction networks

The Interaction Network (IN) is designed to model the interactions and relationships
between objects in a structured environment. It operates by iteratively updating edge
and node embeddings to capture graph-level reasoning. This section outlines the

architecture and its key components in detail.

The IN processes graph-structured data in several stages. First, the attributes of the
receiving nodes, sending nodes, and edges are concatenated and passed through an
MLP, which produces updated edge embeddings. Next, for each node in the graph,
the updated embeddings of its incident edges are aggregated, typically through
summation, to encode the influence of neighbouring edges. The aggregated edge
effects are then concatenated with the node’s own attributes and any external factors,
and this concatenated vector is processed through another MLP to compute updated
node embeddings. For tasks that require graph-level inference, the embeddings of all
nodes are summed element-wise into a single global vector. This global embedding is
then processed through a final MLP to generate the output for the entire graph. The
steps for graph-level aggregation are task-dependent and may be omitted for
applications requiring only node or edge level predictions. We do not require

graph-level inference in our work.

5.4.1 Edge update block

The edge update block is responsible for updating the embeddings of edges by
combining information from the attributes of sending and receiving nodes and the
edge itself. For each edge, the attributes of the sending node, the receiving node, and

the edge are concatenated into a single vector

Zi = € D Vi D Vg, (5.12)
where ey is the attribute vector for the edge, v, is the attribute vector for the receiving

node, and vy is the attribute vector for the sending node. This process is repeated for

all edges in the graph, resulting in a matrix:

Z,=\|z1 zp ... zn}, (5.13)

where each column corresponds to the concatenated attributes of an edge, and 7 is the

number of edges in the graph.
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An MLP is applied independently to each column of Z,, mapping the concatenated
attributes into a new embedding space. The output of this operation is a row matrix of
updated edge embeddings.

E=[e) ¢ ... ¢l (5.14)

This update step can be expressed as:

el/c = ¢e(ek/ Viks Vsk)/ (515)

where ¢° is the edge update function parameterised by the MLP.

Once the updated edge embeddings have been computed, they are aggregated to
compute the influence of edges on their respective receiving nodes. For a receiving
node i, the embeddings of all incident edges are summed element-wise.

e =p"""E)= ) e (5.16)
=

where p°~’? represents the aggregation function and {k | 7y = i} denotes the set of
edges where i is the receiving node. The result of this aggregation is a matrix:

E=[e & ... 2 (5.17)

m

where m is the number of nodes in the graph.

5.4.2 Vertex update block

The vertex update block updates the embeddings of nodes by combining their own
attributes, the aggregated edge effects, and any external effects. For each node i, a
vector is constructed by concatenating the node attributes, the aggregated edge
effects, and the external attributes:

Z, =V;D ég D x;, (5.18)

where v; is the node attribute vector, €, is the aggregated effect of all edges incident on
node i and x; is the vector of external attributes affecting the node. This concatenation

is performed for all nodes, resulting in a matrix:
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Z,=\z1 2o ... Zp|- (5.19)

An MLP is applied independently to each column of Z,, mapping the concatenated
attributes into a new embedding space. The output of this operation is a row matrix of
updated node embeddings:

Vi=|vi v, ... V), (5.20)
This node update step can be expressed as:
v, = ¢U(el,vi,x;), (5.21)

where ¢” is the node update function parameterised by the MLP.

5.4.3 Global update block

For tasks that require graph-level predictions, the embeddings of all nodes are
aggregated into a single vector to encode global information about the graph. This
aggregation is performed using an element-wise sum over the columns of the node

embedding matrix V':

v = p? V), (5.22)

where p?7" is the aggregation function. The resulting global embedding vector V' is
passed through a final MLP to produce the graph-level output:

u=¢"(v), (5.23)

where ¢" is the global update function parameterised by the MLP. If no graph-level
output is required, this block can be omitted, and the node embeddings from the
vertex update block can be used directly.

5.4.4 GN formalism and flavour considerations

The IN is a highly expressive GNN architecture. In sections chapters 5.3.1, 5.3.2, 5.3.3
we presented a powerful vocabulary for describing GNN architectures. Applying this
to describe the IN, we may understand it clearly in terms we have defined well.
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The IN engages all three blocks of graph embedding: the edge block, the node block,
and the global block. Edge embeddings are stored as the “interactions”, hence the
name. The IN was established with an emphasis placed on simulation of dynamic
physical systems (Battaglia et al., 2016) This is why the external effect vector x; is
included, to account for effects such as gravity. However, if we encode this as a global
feature of the graph at the input layer, functionally the network is no different to the
message-passing flavour network we discussed in chapter 5.3.3, (Bronstein et al.,
2021).

In chapter 10, we take inspiration from a method nominally applying INs to
reconstruct W= bosons from simulation data. Since the authors omit the use of
external effects vectors entirely, any potential discrepancy between INs and GNN5s
with message-passing flavour aggregations is rendered moot, so we may use the
terms interchangeably.

5.5 Energy weighted message passing networks

5.5.1 Graph construction

Infrared and collinear (IRC) safety is a fundamental requirement in the design of
graph-based methods for EWMPNSs in high-energy physics (Konar et al., 2022). In this
section, we outline the approach proposed by the authors of the EWMPN architecture
to constructing IRC-safe graphs from a point cloud of particle momenta. This ensures
that the resulting representation remains robust under infrared and collinear

emissions.

Graphs are an intuitive representation of particle systems, with nodes corresponding
to particles and edges encoding pairwise relationships. However, constructing such
graphs in an IRC-safe manner requires addressing specific challenges. In particular,
any graph construction must satisfy two critical properties: collinear safety and

infrared safety.

One important consideration is the inclusion of self-loops, where each node includes
itself in its neighbourhood. Without this feature, the graph can fail to preserve the
original information of a particle when it undergoes a splitting process, rendering the
graph IRC-unsafe. Furthermore, methods such as k-nearest neighbour (kNN) are
inherently unsafe in this context, as the neighbourhood of a node can change
discontinuously when a particle splits. This instability arises because kNN methods
drop connections in response to changes in the local configuration of particles, failing
to preserve relationships that are critical for IRC safety. By contrast, a radius-based
approach ensures that connections are preserved under splitting, as illustrated in

figure 5.4. In this diagram, the black arrows represent radius-based graph
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connections, which are more robust when compared with the red arrows, representing
kNN connections.

To formalise IRC-safe graph construction, the inclusion of neighbours for a given
particle is governed by decision and threshold functions. For any pair of particles p;
and pj, the decision function D(p;, p;) quantifies their relationship, while the threshold
function T(p;, p;) determines whether the relationship is strong enough for p; to be
included in the neighbourhood of p;. Formally, p; is assigned to the neighbourhood
N[i] of p; if D(pi, p;) < T(pi, p;). The design of these functions must respect the
kinematic constraints imposed by IRC safety.

Collinear safety requires that the neighbourhood relationship is preserved under the
splitting of a particle into two collinear particles. This implies that if p, and p; are
collinear fragments of an original particle, the decision and threshold conditions must
satisfy:

D(pi, pr +ps) < T(pi,pr +ps) <= D(pi,pr) < T(pi,pr) AD(pi,ps) < T(pi,ps),
(5.24)

and similarly in the reverse direction:

D(pr + Ps, pz) < T(pr + Ps, Pz) — D(prr pz) < T(pr; Pz) A D(pSl p1> < T(Ps; Pz)
(5.25)

These conditions ensure that a particle’s connections to other nodes in the graph

remain consistent as it undergoes collinear splitting.

Infrared safety, on the other hand, demands that the addition of soft particles to the
system does not remove any existing neighbours from a node’s neighbourhood. If Ni]
represents the neighbourhood of p; before the addition of a soft particle, and N'[i]
represents the neighbourhood after the perturbation, then infrared safety requires that
N[i] € N'[i]. This property is naturally satisfied when the inclusion condition

D(pi, pj) < T(pi, pj) depends only on the 4-momenta of the two particles being
compared, as the contribution of a soft particle cannot invalidate this inequality for

existing neighbours.

These principles are satisfied in the collinear limit (A,s — 0), provided the decision
and threshold functions depend solely on direction-related quantities, such as
pseudorapidity () and azimuthal angle (¢). A particularly simple and effective
implementation is to construct graphs in the 77 — ¢ plane using a constant radius. In

this case, the decision function is given by the angular separation AR;; between
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Figure 5.4: A k-nearest neighbour graph in the (7, ¢)-plane will have a different struc-
ture when any particle g splits to r and s. The set S denote the particles in the jet when
there is no splitting, while S’ denotes the particles with g splitting. We show the di-
rected edge connection to 7 from its three nearest neighbours with red on either side.
The neighbourhood set N (i) has b in it, however when g splits, N (i) does not contain
b. Therefore, the graph’s structure prevents a smooth extrapolation between the two
scenarios in the infra-red and collinear limit. This is not the case for a radius graph
with radius Ry in the (7, ¢) plane, which is shown with black connections. We also in-
clude the self-loop of i, by using the closed neighbourhood sets N (i) and N'(i), since
the node i could also split into two particles (Konar et al. (2022)).

particles p; and p;, and the threshold function is a fixed radius Ry, such that p; is
included in N[i] if AR;; < Ro. This radius-based approach naturally satisfies the
constraints of both collinear and infrared safety, making it a practical choice for
IRC-safe graph construction.

5.5.2 IRC safe message passing

The crux of the IRC safe message passing prescription outlined by Konar et al. (2022)
consists of two parts. The first is to construct the node features from direction-only
components of the four-momenta, and the second is to weight the sum aggregation in
the message construction by relative pr in the neighbourhood. Let’s explore what this
means, and why it ensures IRC safety.
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Consider a node with direction-only four-momentum components for its node feature,
(0
o = (. 9y), (5.26)

ie. the coordinates of the particle in the 7 — ¢ plane, where the superscript 0 refers to
the node feature at the Oth (input) layer of the GNN, and the hat over ‘750) indicates
that no information about vector magnitude is encoded. Now let’s assume that this
node is in the neighbourhood of another node j, ie. i € N'(j). The GN formalism tells
us that our first step must be to form new edge embeddings; here, we shall take a
simple edge update function:

eff) = ¢ (@), "), (5.27)

where <p§°) is the edge update function ¢° in the first GNN layer, we identify edges
with a subscript for their source and destination nodes instead, and adopt numerical
superscripts to denote how many times a feature has been embedded, rather than the
less descriptive primed notation in equation 5.11. As before, creating a message to

update node j may be done naively via a sum aggregation
_(1) ? 1 0) ,~(0) (0
el ¥ el = ¥ 0@, (5.28)

If the particle which the node i represents were to undergo a collinear split, the
resulting two nodes in the graph would have identical node features, since by
definition collinear particles travel in the same direction. In the case of equation 5.28,
this would mean in the collinear pair would produce twice the contribution in the
message construction than prior to the split®. This is not collinear safe, as the
downstream observables would be sensitive to collinear splits.

However, this can be resolved by considering the conservation of momentum. The
sum of transverse momenta for the split particles must equal the transverse

momentum of the original particle. Let us define the transverse momentum fraction
(NI

w; of the original particle before the split in the neighbourhood of node j:

Nj pr

WD = T (5.29)
YkeN[j] Pr

If the node were to split into i — 7, s, then it is a natural consequence of momentum

conservation that the fraction of their transverse momenta should be conserved, ie.

WD _ WV | ), (5.30)

1

8We would essentially have two incoming edges with the same embeddings from the split nodes.
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Therefore, if we define the aggregation function p°~? as the sum of the incoming edge
(M)

embedding vectors, weighted by the fractions w;”" *, collinear splits would have no

effect on the final message.

— e—v Nj A
e = g (ED) = T W0 o0
ieNTj]

o), (5.31)

Applying this pr based weighting to the aggregation function also enforces infrared
safety. This is because, if a particle g is emitted by i in the soft limit, its corresponding
momentum fraction wt(iNU D is zero, by definition, and therefore it has no impact on the
message construction. Therefore, infrared or collinear splits have no impact on the

subsequent node update.

When a GNN layer is formed with these constraints on the input node features and
aggregation function, these may be stacked to form a deep GNN, and the IRC safety is
preserved. This work therefore provides a vital tool in constructing IRC safe jet
observables from GNNSs, and has formed a foundation for our architectural design
choices.
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Chapter 6

Performance considerations for
Python in HEP

For new researchers in the field of high energy physics phenomenology, there are an
overwhelming number of data formats, and tools to generate data. In the author’s
experience, this data is complex and disjointed, with little in the way of easing in
beginners. Programs like Pythia produce large records of rich data, which extensively
detail the history of the simulation, and annotate the particles produced with detailed
meta-information. However, the semantic meaning of this data must be understood
during the analysis, and data structures to work with this are not provided (at least,
not in a satisfactory Pythonic format). pythia8.Particle objects may be iterated over
pythia8.Event container objects, and their properties are accessible via getter methods,
but this is poorly suited to Python’s vectorised no-loop conventions. These

conventions are essential in Python.

In following chapters, we introduce the ecosystem of software packages written in
support of the work in this thesis. This shows how design considerations are levied to

produce powerful analysis frameworks.

However, in this chapter we simply ask whether Python has sufficient performance
for our needs. The answer to this question is complex, and we touch on language

implementation details to guide our decisions.

6.1 Is Python fast enough?

There is debate over whether or not Python is a “slow” language. Taken at face value,
the answer is obvious: yes, Python is very slow. It’s safe to say that Guido Van
Rossum’s original intent when writing the Python language was far from how it is

being used today. Rossum viewed his language as a convenient second language for C


https://pythia.org/
https://pythia.org/doxygen/pythia8307/classPythia8_1_1Particle.html
https://pythia.org/doxygen/pythia8307/classPythia8_1_1Event.html
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programmers, for throwaway tasks. It was also targeted for beginners or students,
who may never be professional programmers. Indeed, to emphasise the playful
nature of the language, Rossum named Python for Monty Python'’s Flying Circus, of
which he was a fan!. Due to these goals, the Python interpreter performs a number of
high level tasks to ensure that code executes without a high standard for rigour forced

on the programmer.

One such feature of Python is garbage collection. Garbage collection is a memory
management model which automatically allocates and de-allocates memory in the
heap, by keeping track of references to the memory via bound variable names, items in
collection data structures, eg. lists, dictionaries, etc. A “reference” is simply an
integer address stored on the stack (usually written in hexadecimal) which refers to a
location in memory where some data on the heap is stored. Even basic
implementations of garbage collection are much too complex to explore in this work,
and Python’s implementation is highly advanced, and evolving (the garbage collector
has received important updates in both 3.12 and 3.13 releases). Suffice to say,
however, that when compared with the manual memory management of languages
such as C, or the borrow checker / ownership model used by Rust, garbage collection
adds significant overhead, and must be evaluated constantly at runtime?. Another
feature which improves Python’s ease-of-use, but limits its performance, is its
dynamic typing, and type coercion system. Unlike C, which is statically typed, Python
is permissive about which data types are bound to variable names. For instance,

1l
~

spam

spam "hello"

is perfectly legal Python code, and will yield the expected result of the final value of
spam being a string containing the characters “hello”. In C, we would require explicit
variable declaration with type information, and once declared this may not be
mutated implicitly; that is

int spam = 7;

spam = "hello";

would result in a compiler error. Additionally, Python’s standard mutable sequence
type, the list, may contain heterogeneous data types. As such, each item must be a
full object instance, which contains metadata regarding reference count, size, type, efc.
Storing these objects directly in a list in contiguous fashion becomes impractical, as

Lfo0 and bar are frequently used as metasyntactic variable names, ie. placeholders for variable names
when a programmer cannot think of anything suitable. In honour of Python’s namesake, a further meta-
syntactic variable spam is often seen in Python code, adopting the name of a 1970 Monty Python sketch.

2This additionally makes Python a non-deterministic language.


https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
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the items would have different sizes in memory. In order to iterate through these
objects, Python lists instead store references to the objects, rather than the objects
themselves. These objects are not guaranteed to be local to one another, so there is an
inherent cost in jumping between the various positions in memory to iterate through
the sequence. In the special (but quite common) case of sequences with homogeneous
data types —eg. a list of integers — the duplication of object metadata is unnecessary.
All item sizes will be identical, precluding the need for Python’s user-friendly
compromises on efficiency. Python data scientists have many techniques for
circumventing this inefficiency. At the heart of most of these approaches is a package
called numpy (Harris et al., 2020).

Python’s active community and easy-to-use packaging and distribution systems
enables users to package routines and data structures under namespaces which other
users may import and use easily. These may be written in Python itself, C, or indeed
many other languages with the help of specialised build tools, eg. f2py for Fortran. As
such, tremendous work has been done by Python programmers to expand the
functionality of the language, either by porting efficient computational libraries
compiled from Fortran / C to Python — eg. BLAS (Blackford et al., 2002) and LAPACK
(Anderson et al., 1999) — or by writing packages in pure Python (often using these

efficient compiled libraries as a computational back-end).

numpy is a package which was created to provide a homogeneous numeric sequence
data structure in Python, called ndarray. The nd prefix refers to the fact that the array
may be nested with sub-arrays to form arbitrary (but non-jagged) dimensionality. The
underlying implementation is in C, and it provides a contiguous block of memory,
storing each value more efficiently. Additionally, numpy and its sibling project SciPy
provide routines which are written in a blend of C, C++, Fortran, and Python, to
iterate and perform vectorised calculations over the data stored in these arrays. In this
way, the numpy vectorised approach trades memory for compute speed, in that iterating
over data in Python can be done in speeds competitive with C, but this data must first

be stored eagerly® in an ndarray.

Packages such as pandas* (pandas development team, 2020; Wes McKinney, 2010)
further extends this functionality to heterogeneous columnar data by introducing a
DataFrame data structure, which wraps ndarray instances as columns of a table, and
each column may have a distinct type. Hence, utilising compiled libraries from high
performance languages boosts Python’s speed, at the cost of memory consumption. In
this sense, Python is arguably a fast language. However, we may circumvent even this

limitation, by instead compiling high performance machine code at runtime or

3Eager computations are performed as soon as they are defined, as opposed to lazy computations. This
is useful when intermediate data is needed for IO.
4Polars is a recent, more performant competitor, written in Rust and ported to Python.
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just-in-time (JIT), rather than ahead-of-time (AOT). Before we can consider the
difference between JIT and AOT compilation, first let’s consider what a compiler does.

6.2 But what is a compiler?

A compiler is a program which converts a plaintext, human-readable file of source
code into a binary executable of machine-code which may be run by a computer.
However, compilers and programming languages were not created at the advent of
computers. In the time of John Backus’s team, writing the Fortran specification and
compiler in 1953, assembly language was a novelty innovation beyond hand-writing
machine code, and programmers were expected to uniquely write programs for the
specific machine they were operating with. Fortran was the first Universal language,
in that compilers could be written for specific machines to take generic text-based
Fortran code and convert them to machine code for those machines. This added layer
of abstraction meant that Fortran was the first portable, high level language. Crucially,
Backus demonstrated that the compiler could optimise the code such that it ran at
competitive speeds to hand-crafted machine code or assembly, written by experts for

specific machines, leading to widespread adoption.

Compilers continued to develop through the years, leading to greater portability of
programs, and better optimisation routines. Today, the level of optimisations is highly
sophisticated, and compilers can replace large globs of code with more efficient

alternatives. For instance the following C function

Listing 6.1 Algorithmic C implementation computing the sum to n of the natural num-
bers.

int sum_to n(int n) {
int total = 0;
for (int i =1; i <n+ 1; i++) {
total += 1i;
}

return total;

when compiled with either clang or gcc, could be expected to produce an executable
whose execution time scales linearly with n. Indeed this is seen when optimisations
are switched off. However, with optimisations on, both compilers produce a program
which runs in constant time, no matter what value of n is passed. How is this possible?
Clearly higher values of n would invoke more loop iterations. Not so. Modern
compilers recognise routines which sum natural numbers, even raised to arbitrary

powers, eg. sum of squares, cubes, etc. Having detected this, the algorithmic solution


https://clang.llvm.org/
https://gcc.gnu.org/
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is replaced with the analytical formula equivalent, such that the above code listing is

compiled with the replacement

Listing 6.2 Analytical formula C implementation of the sum to n formula.

int sum _to n(int n) {
return 0.5 * (n * (n + 1));

leading to the highly efficient constant-time performance.

Sophisticated optimisations such as these further lower the barrier for entry of

programmers to produce highly efficient code.

Even more excitingly, writing languages has been made simpler by an additional layer
of abstraction, on top of compilers. This was introduced with the release of Low Level
Virtual Machine (LLVM) by Chris Lattner in 2003. Rather than having to write
compilers for each individual chip architecture for any given language, LLVM enables
authors of programming languages to simply convert source code to a target
Intermediate Representation (IR) of the code. IR is agnostic to chip architecture, and code
written in it may then undergo compiler optimisations before being converted to
machine code for the target architecture. That is, languages which have substantially
different syntax and design goals, eg. C and Python, could theoretically compile to the
same IR, and thus benefit from the same terrific optimised machine-code speeds. The
upshot of this is that creating a compiler for a language is dramatically simplified to
producing IR which can be handed off to LLVM, which will then offer the same

performance for all languages with equivalent IR.

Readers may protest that Python is an interpreted language, not compiled. Interpreted
languages don’t compile to binary executables to be run afterwards. Instead, the
source code is passed to an interpreter, which converts the plaintext line-by-line into
bytecode, and this is then run as a machine-code equivalent. This is another source of
computational overhead, slowing down Python programs. The CPython
implementation of Python (that is, the Python interpreter which is written in C)
provides some optimisation for this by caching the bytecode, which prevents this step
from needing repetition between running the same source code twice. However,
LLVM may be used with Python by applying JIT compilers. The most popular of these

is numba.

numba offers a decorator to modify Python functions inplace. The function name is then
attached not to the original Python source code, but instead to a compiled version
which is stored in memory. The decorator provided is called numba.njit, ie.
“no-Python JIT compile”, and we can reproduce the same function as that produced

by listing 6.1 with compiler optimisations turned on.
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Listing 6.3 Just-in-time compiled version of a Python algorithm, computing the sum to
n for the natural numbers.

import numba as nb

@nb.njit
def sum to n(n: int) -> int:
total = 0

for i in range(1l, n + 1):
total += i
return total

This is because the function is being compiled with the same compiler back-end (as
clang; gcc does not use an LLVM back-end). Hence the performance is virtually the
same as compiled C code! It also benefits from the same compiler-level optimisations,
so that this algorithm is also constant time, rather than linear as the source code would
suggest.

Listing 6.4 Benchmarking the JIT compiled sum of natural numbers defined in list-
ing 6.3.

>>> @nb.njit
. def sum to n(n: int) -> int:
total = 0
for i in range(l, n + 1):
total += 1
return total

>>> sum_to n(100)

5050

>>> %%timeit

... sum_to n(100)

116 ns + 0.462 ns per loop (mean * std. dev. of 7 runs, 10,000,000 loops each)
>>> %%timeit

... sum_to n(1000)

117 ns = 0.0816 ns per loop (mean * std. dev. of 7 runs, 10,000,000 loops each)
>>> %%timeit

... sum_to n(10000)

118 ns + 0.159 ns per loop (mean * std. dev. of 7 runs, 10,000,000 loops each)

Additionally, notice that by using JIT compilation, there was no need to allocate an
ndarray to hold the intermediate values to be summed. This would have been

necessary if using numpy, eg. see listing 6.5.

Passing no parameters into the nb.njit decorator results in this compilation
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Listing 6.5 numpy solution for a Python algorithm to compute the sum to 7 for the natural
numbers. The .item() method is used at the end to convert the final result from a
np.1int32 object into a Python-native int.

import numpy as np

def sum to n(n: int) -> int:
values = np.arange(1l, n + 1)
return values.sum().item()

happening lazily®, ie. the function compiles the first time it is called, automatically
detecting the types of variables which are passed to it. If the function is called again
with different types for the arguments, it compiles again, and the function is
overloaded, dispatching the correct compiled function depending on what is passed
in. This allows numba to circumvent Python’s dynamic type system, as well as its
interpreter overhead, and the memory consumption of numpy.

By using a considered blend of efficient Python primitives, data science libraries such
as numpy and pandas, and LLVM-based JIT compilers such as numba, Python programs

can be written with competitive performance with languages such as C or Fortran.

5Lazy computation refers to operations which are “put off”, ie. performed only when the result is
needed. More generally, such techniques are ubiquitous in functional programming, as chaining lazy
operations on input data is equivalent to function composition.
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Chapter 7

Semantic heterogeneous data
structures with graphicle

In this chapter we explore how to deal with data records whose fields have different
types in memory and meaning. We explore how these can be handled in
heterogeneous data structures using established packages in the Python data
ecosystem, and where these methods fall short. We then discuss the importance of
meaning and derived properties from data, ie. its semantic interpretation. We explore
the current offering in the Python HEP ecosystem, and where these fail to meet our
needs. We finally introduce our package for processing HEP data with heterogeneous
and semantic data structures, bringing the power of relational database style querying

to analysing collision events.

7.1 Limitations in the current tools

We touched upon pandas in this previous chapter, which offers a DataFrame type with
the ability to store data in a tabular structure. Columns in a DataFrame store contiguous
blocks of memory with homogeneous data types. However, separate columns may
have different data types, and aren’t necessarily contiguous in memory. A DataFrame is
similar in principle to a dictionary of ndarray objects. This comes with a great deal of
high level routines, both provided by pandas itself, and via excellent reverse
compatibility with numpy. However, these routines are not semantic, in the sense that
they do not relate to the particle physics interpretations of the data, nor the topological
structure of the directed acyclic graph reflecting the generation process of the data.
This makes it difficult for HEP newcomers to work with data out-of-the-box, as they

must manipulate the data at a low level.
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Manipulating HEP data involves cross-referencing the units for dimensionful
quantities associated with the particles, such as charge and 4-momentum.
Additionally, the component ordering of 4-momentum must be explicitly enforced,
with conversions as necessary. Status codes provide valuable data for the role a given
particle plays in the data generation process, allowing precise pinpointing of
important regions of the event; this, too, must be compared against numerical values
provided in the manual for the event generator used. In Pythia, helicity / spin
polarisation is represented with values in the range [—1, +1] for spin up / down, and
a sentinel value of 9 for missing data. Even more idiosyncratic is Pythia’s handling of
colour flow information, with colours being any unique pair of numbers, both starting
from 500. Colour triplets have a single code, with the other number being 0, whereas
colour octets have two unique colour codes. Ancestry can be inferred for any given
particle by using the .motherList() method, to get a list of all the parent particles ID
codes. If these are cross referenced over the whole event, a directed acyclic graph
representing the event generation can be reconstructed. Suffice to say, this is a lot of
analysis to be reproduced time and again, and there are likely many convenience

calculations which could be shared between researchers.

The community has attempted to address this via Scikit-HEP (Rodrigues et al., 2020).
Scikit-HEP is a meta-package, or collection of packages, written for Python which

aims to provide utilities for the HEP community.

The Scikit-HEP project (HEP stands for High Energy Physics, see more in
the FAQ) is a community-driven and community-oriented project with the
aim of providing Particle Physics at large with an ecosystem for data
analysis in Python.

— Scikit-HEP’s official website (https://scikit-hep.org/about), 2025

Scikit-HEP’s vector is one such package which encapsulates numpy arrays of
4-momentum data, and provides many convenience functions (Chopra et al., 2025).
These include component conversions, shifts of reference frames using Lorentz boosts,
rotations, and pairwise distance calculations. This is just one offering of Scikit-HEP,

which has packages for more than just 4-momentum manipulation.

Scikit-HEP’s particle package (Rodrigues and Schreiner) provides an object oriented
approach to querying PDG (Navas et al., 2024) codes, which are the unique ID codes
for both experimentally observed and theoretical particles in HEP. Particles of the
same species share a number of properties, including charge, quark composition,
quantum numbers, efc. Using Particle objects, it is possible to retrieve these properties
based on PDG code, by performing a simple CSV lookup in the back-end. However, if
a user wishes to convert a numpy array of PDG codes to a corresponding array of
particle properties, the vectorisation must be done in Python. This fragments the


https://pythia.org/
https://docs.python.org/3/library/stdtypes.html#list
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https://scikit-hep.org/about
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interfaces between vector and particle, and may have negative performance

implications, due to the Python native iteration overhead discussed earlier.

While these packages provide semantic data structures to handle the low-level data,
they do not form a heterogeneous whole data structure over all particle properties in
the event record. In our view, this is essential to ease data manipulation. By
combining this semantic data with the power of relational databases, we may filter
over particle properties such as momentum components (either raw or derived), PDG
properties, status codes highlighting regions of the event space, colour codes, and
ancestry by traversing the DAG structure of the generation. This makes it possible to
aggregate, visualise, and perform more fine-tuned analyses over the particles by
drawing together multiple records describing their properties.

Since the interface design varies between packages in Scikit-HEP’s ecosystem, the
experience of moving between packages can at times feel inconsistent. For instance,
while vector (as its name suggested) provides vectorised operations over numpy arrays,
particle is object oriented, and glue code is needed to efficiently convert an array of
PDG codes into a corresponding array of particle properties from the PDG table
lookup. As such, a substantial ambition of this project was to create an ecosystem of
cross-compatible packages which could fill these niches!.

7.2 Graphicle for semantic and relational databases

The workhorse which made event analysis simple in this research project is graphicle
(Chaplais and Cerro, 2025). graphicle, like numpy, pandas, and the like has two primary
offerings: data structures, and optimised computations. Unlike these numerical
libraries, however, graphicle’s use case is much more narrowly defined. Where numpy
provides a flexible, agnostic data structure in ndarray, which is capable of storing data
in a variety of types — even allowing users to choose between little and big Endian

formats? — graphicle has the luxury narrowly defined use-cases.

graphicle operates over the data made available by MCEGs. In its current
implementation, this is specifically tailored towards Pythia, whose particle properties
are available via the getter methods shown in table 8.1 in chapter 8.

Many derived properties may be formed from this record, and there is redundancy in
the getter methods provided. Kinematic variables, such as pT(), pAbs(), theta(), m2(),
mT(), phi(), y(), eta(), and tau() can all just be viewed as components or derived
quantities of the four-momentum. Therefore we discard these from pythia8’s output,

"t would be exciting in future to contribute functionality from my packages to strengthen the Scikit-
HEP ecosystem overall.

2ie. whether bits for elements are stored right-to-left or left-to-right, respectively. I can’t imagine a
use-case for this, but that speaks to the broad church of numpy.
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and simply store the px(), py(), pz(), and e() components in a data structure wrapping
N x 4 array®, where N is the number of particles in an event. This is one of several
constituent data structures.

7.2.1 Data structures: components and composites

graphicle contains a number of component data structures. These are designed to be
composed together into composite structures, which will give us that relational
database power that we wish to create.

Table 7.1: Table of contents for graphicle’s data module, providing all of the data struc-
tures.

Name Used for Composite?
MomentumArray Four-momentum manipulation No
PdgArray PDG code querying No
StatusArray Status code querying No
ColorArray Colour code encapsulation No
HelicityArray Helicity encapsulation No
MaskArray Data filtering No
AdjacencyList Graph connectivity No
MaskGroup Combined data filtering Yes
ParticleSet Heterogeneous HEP data manipulation Yes
Graphicle Graph representation of heterogeneous HEP data Yes

Table 7.1 shows all data structures provided by graphicle. Let’s explore the first of
these, the MomentumArray.

MomentumArray is graphicle’s offering which most directly competes with the vector
library. Consider the interaction g b — t W~ (see figure 9.4a). Here, the W™ is forced
to decay leptonically, and the t decays via t — b W™, where the W is forced to decay
hadronically. If we take the MomentumArray representing the descendants of the t quark,

the string representation is given as (with units in GeV):

>>> pmu

MomentumArray([[-1.90988416e+00
[-1.41892981e+01
[-4.15116398e-02

-2.08095918e+00
-1.46714989e+01

3.60800480e-02

2.67532643e-01
8.12430669e-01
1.94391688e-02

2.84061650e+00]
2.04326411e+01]
1.51270130e-01]

[-8.44262475e-01 1.84254494e+00 -1.26666802e+00 2.39409245e+00]

3Note: we are using C style ordering of elements, rather than Fortan-style. That is, each row has 4
columns of contiguously stored double precision floating point elements.
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>>> Tlen(pmu)

20

This looks very similar to the structured ndarray which it wraps, giving the named

[-1.37997801e-01 -3.43958973e-01
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[-1.
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dtype=[('x",
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90057890e+01
27303878e+00
12919800e+00
04198168e-02
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.35037021e+00
.72901704e-01
.99024210e+00
.75941985e-01
.96448872e-01
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.79048477e+00
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.16407184e-01
.17296156e+00

('y',

'<f8'),
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-1.
-1.
-4,
-7.

1.
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1.

5
-1.
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-6.
-6.
-4,
-1.

(

37885172e-01
14437913e+01
15878903e+01
90489486e+01
37363827e-01
11655574e-03

.87754592e+01

66710535e-02

.46341788e-02

02024517e+01
98256939e+00
23750308e+01
44295947e+01
01502031e+01
89153873e+00
23581089e+01
z', '<fg8'),
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('e',

.50818518e-01]
.29119192e+01]
.34259592e+01]
.61375501e+01]
.56459085e+001]
.83277320e+00]
.89703242e+01]
.93923027e-01]
.19079850e+001]
.02420742e+01]
.99359898e+00]
.28519135e+01]
.48250571e+01]
.04916150e+01]
.97885615e+00]
.24163717e+01]1,

'<f8')1)

fields in the dtype keyword argument. In MomentumArray instances, each row here is

considered a single element, so this has a length of 20. The transverse momentum and

pseudorapidity are accessible via properties of the MomentumArray instance:

>>> pmu.pt # units of GeV

array([ 2.82454397,
5.9781116 ,

3.35159011,
8.32203241,

>>> pmu.eta # units
array([ 9.45760563e-02,
-1.31150974e+00,
-2.96322786e-01,
1.30446747e-02,
-2.89485061e+00,

7.2.2

20.41051346,
6.71523539,
0.57705013,
7.14871931,
of GeV

2

3.97940153e-02,
-1.40463063e+00,
6.10990809e-04,
-3.12303779e+00,
-2.93669656e+00,

0.05499987,
7.29001314,
4.18811741,
6.39881435,

2.02675874,
2.45233379,
0.9000341 ,
0.91781130,

3.46466913e-01,
-1.31373396e+00,
-2.84660962e+00,
-3.29181603e+00,
-2.37510501e+00,

Masking case study: momentum and PDG codes

0.37060919,
1.82745084,
0.29660384,
1.193293991])

-5.90120175e-01,
-1.34913958e+00,
2.88861131e-02,
-2.85939115e+00,
-3.03306490e+00])

As discussed in chapter 2.5, we will assume in this work that a rough approximation

to the detector response can be made by applying cuts of pr > 0.5 GeV and || < 2.5.
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We can apply these cuts by numpy-style subscripting with boolean arrays:

>>> pmu_cut = pmu[np.abs(pmu.eta) < 2.5]
>>> len(pmu_cut)

13

>>> pmu_cut = pmu_cut[pmu_cut.pt > 0.5]
>>> len(pmu_cut)

11

So, the first cut of |17| < 2.5 eliminates 7 particles, and the following cut of pr > 0.5
GeV eliminates two more. The resulting MomentumArray can be passed to the numpy
Universal Function (UFunc) “sum”, with an axis of 0 to indicate we wish to sum over
the rows (numpy views the MomentumArray as an unstructured N X 4 ndarray). We can
then find the mass by accessing the mass property of the resulting MomentumArray,
containing one element, which is the combined sum of all of the ¢ quark constituents.
Comparing before and after the cuts are applied yields:

>>> np.sum(pmu, axis=0).mass # units in GeV
array([170.81136533])
>>> np.sum(pmu_cut, axis=0).mass

array([79.422398561])

So in this particular instance, applying the detector-level cuts has caused the mass
calculation to suffer substantially. In fact, it’s likely here that, since the cut mass is so
close to the known mass of the W+ boson, the b quark was not within the detector’s
|7] < 2.5 window, and so only the W™ constituents remained. In any case, it was
possible to use the derived properties of the raw four-momenta provided by

MomentumArray to filter the momentum data.

We can apply these same masks to the next data structure in the list, the PdgArray. The
Scikit-HEP equivalent offering for PdgArray is given by the particle package (Rodrigues
and Schreiner). In fact, the underlying data for PdgArray comes from the CSV tables
provided by particle itself. PdgArrays provide particle properties by species via
instance attributes, eg. name, charge, etc.

>>> pdg
PdgArray([ -211 321 -211 211 -211 211 2112 -2212 211 -211 211 211
-211 22 22 -14 13 -321 211 2117,
dtype=int32)
>>> pdg.name

array(['pi-', 'K+', 'pi-', 'pi+', 'pi-', 'pi+', 'n', 'p~', ‘pi+', 'pi-',
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pi+', 'pi+', 'pi-', 'gamma', 'gamma',

nu(mu)~", 'mu-', 'K-',
'pi+', 'pi+'], dtype='<U7")

>>> pdg.charge

array([{-1., 1., -1., 1., -1., 1., ©., -1., 1., -1., 1., 1., -1.,
0., 0., 0., -1., -1., 1., 1.1)

This can also be filtered on the momentum data to crudely simulate the CMS
detectors. The previous method of applying cuts sequentially to the variable pmu_cut
has several drawbacks. One of which is the fact that it’s hard to repeat, as the data is
being changed inplace. Using the same variable name with data at different locations
in the same source code — excluding use for iteration or accumulation variables —is
called variable shadowing, and is considered a programming anti-pattern, for the
reason shown above and many others. It would be much better to have a single filter
which could be applied and reused for pmu, pdg, and any other data pertaining to the
particles we are considering. Fortunately, we can combine the filters using a logical AND

operation between the 77 and pr masks.

>>> cuts = np.logical and(np.abs(pmu.eta) < 2.5, pmu.pt > 0.5)
. pdg cut = pdg[cuts]

>>> len(pdg cut)

11

>>> pdg_cut.quarks

array(['Ud*, 'uS', 'uD', ‘uD', ‘'udd', ‘UUD', ‘uD', 'Ud', 'uD', 'Ud', 'uD'],
dtype='<U3")

The cuts mask can now be used on any data structure representing the same particle

properties.

Except this still has drawbacks. One immediate drawback of using logical AND or OR
operations to reduce boolean masks is that it is not possible to introspect how the final
result was produced. How many masks were combined? Which of them was more
permissive / restrictive? What was their semantic meaning? For example, what
kinematic filters were applied, and were other particle properties such as charge,
status code, or colour taken into account? None of this information can be encoded
and retrieved from a single boolean ndarray. Nor is it convenient, scalable, or
computationally efficient to keep several descriptively named masks in scope to be

reduced every time a combined mask is required.

>>> pdg_cut pdg[np.logical and(np.abs(pmu.eta) < 2.5, pmu.pt > 0.5)]

>>> pmu_cut = pmu[np.logical and(np.abs(pmu.eta) < 2.5, pmu.pt > 0.5)]


https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html
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It is here we introduce the concrete implementations of graphicle’s ABC called MaskBase.
In order to motivate why MaskBase was defined, and the purpose of its two concrete
implementations — MaskArray and MaskGroup — we must first explain the Composite
Pattern (Gamma et al., 1994; Freeman et al., 2004).

7.2.3 The Composite pattern for MaskGroups

The Composite Pattern is an Object Oriented Programming (OOP) structural design
pattern, see chapter 7.2.4. In generic terms, it defines an ABC which is called Component.
Concrete implementations of Component are Leaf and Composite. By sharing a
uniform interface enforced by the Component ABC, Leaf and Composite instances may
be treated identically by client code.

To illustrate, consider a digital sketching tool. An image may be created by overlaying
shapes, curves, line segments, efc. which we consider to be the leaves. However, any
subset or composite of the objects comprising the whole image may be considered an
image in its own right, including individual parts. The largest composite is, of course,
the whole image. However, seasoned users of tools like GIMP (The GIMP
Development Team, 2025) routinely form persistent composites of these leaves in
groups. Leaves within these groups have their relative positions, size, and aspect ratio
locked relative to each other, and thus behave as a single element rather than a
collection. Additionally, these groups may be further included in higher level groups
which include other composites or leaf elements. This structural hierarchy gives
control to the image creator to name, manipulate, and export meaningful portions of
the image different organisational levels. This tree-like, hierarchical organisation is the

hallmark of the Composite Pattern.

Returning to our MaskArray and MaskGroup data structures, we can use these concepts to
a structured approach to querying our data sets. Here, MaskArray is the leaf element,
MaskGroup is a composite, and they share MaskBase as the component interface unifying
the two. MaskGroup is a mapping with string keys, and values which are instances of
MaskBase, ie. another MaskGroup or a MaskArray. The common behaviour between both
MaskArray and MaskGroup is that instances of either can be passed as a subscript to
graphicle data structures (and, in fact, numpy arrays - try it!) as masks. MaskGroups
contain an agg_op parameter which is an enum with possible members AND, 0R, and NONE.
This tells the MaskGroup how to reduce the masks contained within it. The names of the
members are self-explanatory, with the caveat that NONE prevents any reduction
occurring, effectively breaking the ability to use it as a subscript. Hence, this agg_op is
seldom used.

So, our previous example can be improved by organising the 7 and pr cuts in a

MaskGroup.
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Listing 7.1 Demonstrating how kinematic cuts can be combined in a composite
MaskGroup structure. Notice that the leaf masks can always be retrieved by subscript-
ing the MaskGroup with their string keys.

>>> cuts = gcl.MaskGroup( # a kinematic mask
{"eta": np.abs(pmu.eta) < 2.5, "pt": pmu.pt > 0.5},
agg_op="AND"

>>> cuts # showing the MaskGroup repr
MaskGroup(masks=["eta", "pt"], agg op=AND)

>>> pdg_cut = pdg[cuts]

pmu[cuts]

>>> len(pmu_cut)

11

>>> len(pdg _cut) # same particles for pdg and pmu
11

>>> pts = pmu_cut.pt.tolist()

. pmu_cut

. names = pdg _cut.name.tolist()

>>> for name, pt in zip(names, pts):
print(f"{name=}, {pt=:.3e} GeV")

name='pi-', pt=2.825e+00 GeV
name="'K+', pt=2.041e+01 GeV
name='pi+', pt=2.027e+00 GeV
name='pi+', pt=5.978e+00 GeV
name='n', pt=6.715e+00 GeV
name="'p~"', pt=2.729e+01 GeV
name='pi+', pt=2.452e+00 GeV
name='pi-', pt=1.827e+00 GeV
name='pi+', pt=5.771e-01 GeV
name='pi-"', pt=4.188e+00 GeV
name='pi+', pt=9.178e-01 GeV
>>> len(pdg[cuts["eta"1]) # apply individual mask
13

In listing 7.1 we combine both 77 and pr kinematic cuts into a single MaskGroup object.
This acts as a container, and the individual masks (automatically cast from boolean
ndarray objects into MaskArrays) are accessible via Python’s standard mapping interface.
Just as in the Composite Pattern example explained earlier, though, MaskGroups can be
nested.

For instance, in listing 7.2, we create a mask called "leptons" to identify the x~ and 7,
leptons in our original cluster. Using MaskGroups, we can make this a sibling in our
hierarchy to the original kinematic cuts, which we call "kinematic". We can also set the

agg_op to OR, which has the effect of applying our original kinematic cuts, and then
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adding the leptons back in (which we can see from listing 7.1 has filtered out). Using
this method, we can investigate how much of a difference these leptonic detector-level
particles have on the final mass calculation. Printing out the MaskGroup, the nested tree
structure is apparent.

Listing 7.2 Demonstrating nesting capabilities by creating a MaskGroup with a lepton
whitelisting mask, combined with a MaskGroup of pr and # kinematic cuts. The string
representation of MaskGroup displays the tree structure of the hierarchy.

>>> # names -> PDG codes to find leptons
. dict(zip(pdg.name.tolist(), pdg.serialize()))

{'pi-': -211,
"K+': 321,
'pi+': 211,
'n': 2112,
'p~': -2212,
‘gamma’': 22,
‘nu(mu)~": -14,
'mu-": 13,
'K-': -321}
>>> mask = gcl.MaskGroup( # leptons are -14 and 13
{
"leptons": np.isin(np.abs(pdg), [13, 14]),
"kinematic": cuts # nest MaskGroup
}

agg op="OR" # OR => leptons added after cuts
)
>>> print(mask)
MaskGroup(agg op=0R)
|-- leptons
T -- kinematic
|-- eta
‘.- pt
>>> pmu_sum = np.sum(pmu[mask], axis=0)
. pmu_sum
MomentumArray([[ -47.84195626  22.87547043 -214.62844125 259.98069093]1,
dtype=[('x"', '<f8'), ('y', '<f8"), ('z', '<f8"), ('e', '<f8')1])
>>> pmu_sum.mass
array([136.79346453])

Note from listing 7.2 that .serialize() is graphicle’s equivalent of ndarray.tolist().
For non-composite data structures .serialize() will output a list, and composite
objects output dictionaries. By converting to pure-Python data structures, users may
then easily use libraries of their choice, such as the standard module [json], to encode
the data for plaintext IO. See listing 7.3 for an example of this.
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Listing 7.3 Plaintext IO example using the standard [json] library in tandem with
MaskGroup’s .serialize() method. Other graphicle objects may be stored and retrieved
in identical fashion.

>>> import json

. with open("maskgroup.json", "wt") as f:
json.dump(mask.serialize(), f)

. with open("maskgroup.json", "rt") as f:

mask read = gcl.MaskGroup(json.load(f), agg _op="OR")

. mask read.equal to(mask)

True

7.24 Programming paradigms and their role in graphicle

Here we take a brief sidestep from our demonstration of graphicle’s data structures to
discuss the software design and engineering considerations which underpin them.
The design and implementation of graphicle’s data structures and algorithms are
deeply rooted in two complementary programming paradigms: object-oriented
programming (OOP) and functional programming (FP). These paradigms are
leveraged to achieve a balance between modularity, reusability, and robustness,
enabling the creation of high-performance tools tailored for particle physics data

analysis.

7.24.1 Object-oriented programming

OOP focuses on encapsulating data within objects and associating methods (functions)
that operate on that data. In Python, this paradigm is implemented through the use of
classes, which serve as blueprints for creating objects. OOP excels in scenarios where

data persistence, modular design, and intuitive interfaces are paramount.

In graphicle, OOP is predominantly employed for structuring data types. For example,
the MomentumArray class provides a wrapper around N X 4 [numpy.ndarray] instances,
representing particle momenta. By defining an abstract base class (ABC) called
ArrayBase, graphicle ensures that all concrete implementations (e.g., MomentumArray,
PdgArray) adhere to a consistent interface. This interface supports critical operations

such as iteration, equality checks, and integration with external libraries like numpy.

The choice to inherit from collections.abc.Sequence underscores the principle of
“composition over inheritance.” This design philosophy minimises tightly coupled
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code while leveraging Python’s standard library to ensure that graphicle’s data
structures integrate seamlessly with the broader Python ecosystem. For example:

>>> import collections.abc as cla

>>> isinstance([1, 2, 3], cla.Sequence)

True

>>> isinstance(graphicle.MomentumArray.from spherical uniform(5, 10.0), cla.Sequence)

True

By aligning with Pythonic conventions, graphicle achieves a high degree of usability

and compatibility, making it a natural fit for scientific computing tasks.

7.2.4.2 Functional programming

FP emphasises immutability and the use of pure functions — those that produce
outputs solely based on their inputs without side effects. This paradigm is particularly
advantageous for implementing computational routines, as it promotes clarity and

reduces the likelihood of bugs stemming from unintended state changes.

In graphicle, FP principles are applied to develop robust algorithms that manipulate
data without modifying the underlying structures. For example, filtering operations
on particle data are performed by creating new MaskArray instances rather than altering
the original data. This approach ensures data integrity and facilitates reproducibility,
which are crucial for scientific research.

7.2.4.3 Polymorphism and reusability

Polymorphism, a cornerstone of OOP, allows different data structures to share a
common interface, enabling flexible and reusable code. In graphicle, polymorphism is
realised through ABCs like ArrayBase. For instance, the MomentumArray and PdgArray
classes both implement methods required by the ArrayBase interface, allowing them to

be used interchangeably in higher-level operations.

>>> pmu = graphicle.MomentumArray.from cartesian(px=[1.0], py=[0.0], pz=[0.0], e=[1.0])
>>> isinstance(pmu, graphicle.base.ArrayBase)

True

By restricting inheritance to abstract classes, graphicle avoids the pitfalls of tightly
coupled hierarchies. This approach is consistent with the “composition over
inheritance” principle advocated by the Gang of Four design patterns, ensuring

flexibility and maintainability in the library’s architecture.
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“Object composition is defined dynamically at run-time through objects
acquiring references to other objects. Composition requires objects to
respect each others’ interfaces, which in turn requires carefully designed
interfaces that don’t stop you from using one object with many others.”

— Gamma et al. (1994)

7.24.4 Blending paradigms for optimal design

The interplay of OOP and FP in graphicle exemplifies a thoughtful synthesis of these
paradigms. While OOP provides the structural backbone for data representation, FP
ensures that operations on this data remain predictable and robust. This dual
approach empowers researchers to focus on extracting insights from particle physics
data without being encumbered by implementation details.

By adhering to these paradigms, graphicle not only achieves technical excellence but
also serves as a model for designing scientific software that is both powerful and
user-friendly.

7.2.5 Topological information with AdjacencyList

Analysis with graphicle differs from other approaches in the central importance it
places on representing collision events as graphs. We use MCEGs to simulate the
history of successive decays in particle collision events. As we have mentioned, this
ancestry can be represented topologically as a Directed Acyclic Graph (DAG). In our
work, we represent the particles as edges in this graph, and the interactions between
particles as nodes, similar to the approach used for Feynman diagrams. We encode

this data in an AdjacencyList?.

The data exposed by the public interface is a structured ndarray with two fields: src
and dst. The source vertex (src) is the interaction from which the particle was
produced®, and the destination vertex (dst) is the next interaction the particle
participates in. This kind of graph data representation is called the Coordinate format
(COO).

However, despite the public interface, AdjacencyList more than a wrapper around
ndarray. The choice to expose and instantiate from ndarray is to enable a consistent
experience with graphicle’s ArrayBase implementations. Despite this, most routines

associated with AdjacencyList make use of its underlying scipy.sparse data, in the

4This is actually a misnomer. In chapter 5.2.2 we defined adjacency list and edge list representations of
graphs. AdjacencyList as graphicle defines it is actually an edge list as we define it here.

SProduced is a flexible term here. If a particle radiates a photon or gluon, but its species remains un-
changed, we refer to the incoming particle as having been destroyed, and two new particles are produced.
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form of private coo_array or csr_array attributes. Both of these scipy.sparse arrays are
computed lazily, but then cached for re-use to maximise efficiency.

Using scipy.sparse offloads expensive sparse matrix and graph traversal routines to
compiled and optimised C++. graphicle makes extensive use of graph traversal with
Breadth First Search, provided by scipy.sparse.csgraph.breadth_first_tree().

graphicle wraps this routine with [graphicle.select.vertex_descendant ()], which takes
an AdjacencyList and the integer index of one vertex expressed within its COO
formatted list, and outputs a MaskArray over the whole event, identifying the
topological descendants of the vertex. This MaskArray can be used in tandem with other
particle properties to refine and aggregate properties of the event space rooted on the
DAG of a specific ancestor. In chapter 9.1 we explore how this may be used to
reconstruct the mass of particles from the hard process.

AdjacencyList also exposes MaskArray instances as properties to select the roots and
leaves of the DAG it represents. This can be especially useful if the final MaskArray
identifying the remaining particles is missing (see chapter 7.2.6), or if showering /
hadronisation are not completed during the simulation. In both cases, the .1eaves
property is useful. In the former case, it would be identical to final; in the latter, final
would be False throughout, so .1eaves would identify the last particles produced in

the simulation.

7.2.6 Heterogeneous data composites

So far we have seen an example of a homogeneous composite data structure: the
MaskGroup. It's homogeneous in the sense that the actual data being held is all just
sequences of boolean data. We have then used our masks to filter over graphicles

sequential data structures individually. This is an awkward setup.

It is often necessary to create algorithms which use multiple particle properties in
tandem. Explicitly masking each data structure, requires the programmer to manually
keep track of all of them. This is a burden, and is likely to introduce mistakes®, or
friction to collaboration. An ad-hoc solution might be to organise them into some
container type, like a list, tuple, or dictionary. However, this would require iterating
over the items in the container in order to apply masks over the whole data set.
Importantly, such a generic approach would also miss the opportunity to create
specialised routines, made possible by having access to a rich variety of particle

properties simultaneously. This is where the ParticleSet composite type comes in.

®The choice of isolating event regions in graphicle using boolean masks offers some protection: if a
mask is passed into a dataset referring to different particles, it is unlikely that the error will silently pass,
since the number of particles in the data structure and the mask must match exactly. Hence, this usually
throws a IndexError, and can be caught.


https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_array.html#scipy.sparse.coo_array
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_array.html#scipy.sparse.csr_array
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://graphicle.readthedocs.io/en/latest/api/graphicle.data.Graphicle.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.breadth_first_tree.html
https://graphicle.readthedocs.io/en/latest/api/graphicle.data.Graphicle.html
https://graphicle.readthedocs.io/en/latest/api/graphicle.data.AdjacencyList.html
https://docs.python.org/3/library/functions.html#int
https://graphicle.readthedocs.io/en/latest/api/graphicle.data.MaskArray.html
https://graphicle.readthedocs.io/en/latest/api/graphicle.data.MaskArray.html
https://graphicle.readthedocs.io/en/latest/api/graphicle.data.AdjacencyList.html
https://graphicle.readthedocs.io/en/latest/api/graphicle.data.MaskArray.html
https://graphicle.readthedocs.io/en/latest/api/graphicle.data.MaskArray.html
https://graphicle.readthedocs.io/en/latest/api/graphicle.data.MaskGroup.html
https://graphicle.readthedocs.io/en/latest/api/graphicle.data.Graphicle.html
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuples
https://docs.python.org/3/library/stdtypes.html#dict
https://graphicle.readthedocs.io/en/latest/api/graphicle.data.ParticleSet.html
https://graphicle.readthedocs.io/en/latest/api/graphicle.data.Graphicle.html
https://docs.python.org/3/library/exceptions.html#IndexError

7.2.  Graphicle for semantic and relational databases 89

ParticleSet is a data structure which takes 6 optional parameters in its initialiser, see
listing 7.4. These are the first 6 data structures in table 7.1 — all of which implement
ArrayBase — including a MaskArray passed by keyword as final, which identifies the
final particles at the end of the simulation’. When a mask is passed to a ParticleSet
instance, a new ParticleSet object will be returned, with all populated fields masked
accordingly, see listing 7.5 and listing 7.6.

Listing 7.4 ParticleSet initialiser function signature.

gcl.ParticleSet(
pdg: graphicle.data.PdgArray = NOTHING,
pmu: graphicle.data.MomentumArray = NOTHING,
color: graphicle.data.ColorArray = NOTHING,
helicity: graphicle.data.HelicityArray = NOTHING,
status: graphicle.data.StatusArray = NOTHING,
final: graphicle.data.MaskArray = NOTHING,

) -> None

ParticleSet can further be extended by adding topological data.

As mentioned in the caption of listing 7.7, the sign of the src and dst value encodes
information about graph structure. This isn’t strictly necessary, since the graph
structure would remain unchanged using unsigned integer indices. However, it
allows easy consistency checks. For instance, notice that the root node (src = 0)
produces two protons, with a centre-of-mass energy of 13 TeV, as expected for the
LHC. Additionally, it can be seen that that leaf nodes (dst > 0) correspond to rows with
a final value of True, since in a full showering and hadronisation simulation, the
leaves are the final state particles entering the detector. This DAG adjacency
information is given by passing an AdjacencyList along with the ParticleSet instance
to the Graphicle constructor. However, the data in a fully populated Graphicle instance

contains more information about event structure than topology alone.

StatusArray contains pythia8’s status codes for each particle. In pythia version 8.312
(current at time of writing), there are 74 status codes, reserved between 0 - 199, with
user defined status codes reserved at values of over 200. These encode detailed
information about the purpose of a particle’s creation in the record. Similarly to
graphicle’s convention for dst vertices, negative signs represent intermediate particles,
positive signs represent the still remaining particles. We will omit the sign when
quoting values of status code, since it is usually implied, or available from other data
in the particle record. Particles with status codes of 12 represent the “incoming beam”,
whereas values between 21 - 29 refer to the hard event. 71 - 79 marks particles which
are produced in preparation for hadronisation. Using these ranges, we are able to

query the particle record with precision.

7As opposed to the intermediate particles which will never make it to the detector.
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Listing 7.5 ParticleSet’s string representation shows the data as a table, inspired by
the DataFrame representations in pandas. The output has been split into two tables for
document formatting purposes, but the unmodified output gives contiguous columns.

>>> print(particles)

name px py pz energy
p 0.00E+00 0.00E+00 6.50E+03 6.50E+03
p 0.00E+00 0.00E+00 -6.50E+03 6.50E+03
b~ -0.00E+00 0.00E+00 1.28E+02 1.28E+02
g 0.00E+00 -0.00E+00 -3.93E+02 3.93E+02
W+ 3.96E+01 -9.81E+00 8.85E+01 1.26E+02
K(S)0 -2.88E+00 -4.92E+00 5.30E+00 7.80E+00
gamma -4.14E-01 -9.25E-01 1.18E+00 1.55E+00
gamma -4.97E-01 -8.17E-01 1.03E+00 1.41E+00
pi+ -2.20E+00 -3.55E+00 4.05E+00 5.82E+00
pi- -6.81E-01 -1.37E+00 1.25E+00 1.98E+00

color anticolor helicity status final

0 0 9 -12  False

0 0 9 -12  False

0 501 1 -21 False

501 503 1 -21 False

0 0 0 -22 False

0 0 9 -91 False

0 0 9 91 True

0 0 9 91 True

0 0 9 91 True

0 0 9 91 True

[3153 particles x 10 attributes]

StatusArray provides a MaskGroup identifying various parts of the hard process via its
.hard_mask property. This is aliased by Graphicle, so can be either accessed as
StatusArray.hard_mask Or Graphicle.hard_mask, as shown in listing 7.8. If passed as a
subscript to a Graphicle instance, since the MaskGroup uses an agg_op of 0R, all particles in
the hard process will be provided:

>>> print(graph[graph.hard _mask])

name px py pz energy color
b~ -0.00E+00 0.00E+00 1.28E+02 1.28E+02 0
g 0.00E+00 -0.00E+00 -3.93E+02 3.93E+02 501
W+ 3.96E+01 -9.81E+00 8.85E+01 1.26E+02 0
t~ -3.96E+01 9.81E+00 -3.53E+02 3.95E+02 0
e+ 1.58E+01 1.94E+00 7.59E+01 7.75E+01 0
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Listing 7.6 Showing how all data contained within a ParticleSet instance can be
masked simultaneously. This is the same data as shown in listing 7.5.

>>> print(particles[particles.final])

name px py pz energy
e+ 1.58E+01 1.94E+00 7 .59E+01 7.75E+01
nu(e) 3.10E+01 5.01E+01 1.10E+01 5.99E+01
pi+ 2.07E-01 3.23E-01 -1.64E+01 1.64E+01
pi+ -6.41E-01 4.45E-01 9.24E-01 1.22E+00
K- -6.15E-03 -8.42E-01 -3.82E+02 3.82E+02
pi+ -2.19E-01 1.17E+00 -1.24E+01 1.24E+01
gamma -4.14E-01 -9.25E-01 1.18E+00 1.55E+00
gamma -4.97E-01 -8.17E-01 1.03E+00 1.41E+00
pi+ -2.20E+00 -3.55E+00 4.05E+00 5.82E+00
pi- -6.81E-01 -1.37E+00 1.25E+00 1.98E+00
color anticolor helicity status final
0 0 1 23 True
0 0 -1 23 True
0 0 9 82 True
0 0 9 84 True
(0] 0 9 84 True
0 0 9 91 True
0 0 9 91 True
0 0 9 91 True
0 0 9 91 True
0 0 9 91 True
[768 particles x 10 attributes]
nu(e) 3.10E+01 5.01E+01 1.10E+01 5.99E+01 0
W- -5.06E+01 6.54E+00 -7.36E+01 1.18E+02 0
b~ 1.77E+00  2.90E+01 -2.65E+02 2.66E+02 0
d -2.17E+01 -2.38E+01  1.51E+00 3.22E+01 502
u~ -2.89E+01 3.04E+01 -7.51E+01 8.60E+01 0
anticolor helicity status final src dst
501 1 -21 False -6 -3
503 1 -21 False -7 -3
0 0 -22  False -3 -4
503 0 -22 False -3 -5
0 1 23 True -1212 1533
0 -1 23 True -1212 1534
0 0 -22 False -1508 -1535
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Listing 7.7 The string repr of a Graphicle instance called graph. Notice the addition of
the src and dst columns compared to listing 7.5. src vertices with a value of 0 represent
the root of the event generation. Intermediate vertices are signalled with a negative
sign. dst vertices with a positive sign indicate that the particle in the corresponding
row is a leaf in the generation DAG,; therefore for full event simulations, these are the
particles incident on the detector wall.

>>> print(graph)

name px py pz energy color
p 0.00E+00 0.00E+00 6.50E+03 6.50E+03 0
p 0.00E+00 0.00E+00  -6.50E+03 6.50E+03 0
b~ -0.00E+00 0.00E+00 1.28E+02 1.28E+02 0
g 0.00E+00  -0.00E+00  -3.93E+02 3.93E+02 501
W+ 3.96E+01 -9.81E+00 8.85E+01 1.26E+02 0
K(S)0 -2.88E+00 -4.92E+00 5.30E+00 7.80E+00 0
gamma -4.14E-01  -9.25E-01 1.18E+00 1.55E+00 0
gamma -4.97E-01 -8.17E-01 1.03E+00 1.41E+00 0
pi+ -2.20E+00  -3.55E+00 4.05E+00 5.82E+00 0
pi- -6.81E-01  -1.37E+00 1.25E+00 1.98E+00 0

anticolor helicity status final src dst

0 9 -12  False 0 -1

0 9 -12  False 0 -2

501 1 -21 False -6 -3

503 1 -21 False -7 -3

0 0 -22 False -3 -4

0 9 -91 False -2813 -2821

0 9 91 True -2815 2822

0 9 91 True -2815 2823

0 9 91 True -2821 2824

0 9 91 True -2821 2825

[3153 particles x 12 attributes]

813 1 -23 False -1508 -1536
0 -1 -23 False -1535 -1537
502 1 -23 False -1535 -1538

[10 particles x 12 attributes]

Listing 7.8 - listing 7.11 shows how MaskGroup can break down the hard process of the
event by accessing its internal MaskArrays. Notice that both the t quark and its decay
product W boson are marked as “intermediate” in listing 7.10. This is because the
W boson ultimately decays hadronically into a quark / anti-quark pair, which is

given in the “outgoing” particles.
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Listing 7.8 Selecting the hard process from the collision event. StatusArray has a
.hard_mask property, which Graphicle aliases. The provided MaskGroup may be sub-
scripted to select more refined regions, see listing 7.9 - listing 7.11.

>>> print(graph.hard mask) # alias of graph.status.hard mask
MaskGroup(agg_op=0R)

|-- incoming

|-- intermediate

| -- outgoing

*-- outgoing nonperturbative diffraction

Listing 7.9 Isolating the “incoming” particles from the hard process over the full event
record.

>>> print(graph[graph.hard mask["incoming"]])

name pXx py pz energy color
b~ -0.00E+00 0.00E+00 1.28E+02 1.28E+02 0
g 0.00E+00 -0.00E+00 -3.93E+02 3.93E+02 501
anticolor helicity status final src dst

501 1 -21 False -6 -3

503 1 -21 False -7 -3

[2 particles x 12 attributes]

Listing 7.10 Isolating the “intermediate” particles from the hard process over the full
event record.

>>> print(graph[graph.hard mask["intermediate"]])

name px py pz energy color
W+ 3.96E+01 -9.81E+00 8.85E+01 1.26E+02 0
t~ -3.96E+01 9.81E+00 -3.53E+02 3.95E+02 0
W- -5.06E+01  6.54E+00 -7.36E+01 1.18E+02 0
anticolor helicity status final src dst
0 0 -22  False -3 -4
503 0 -22 False -3 -5
0 0 -22 False -1508 -1535

[3 particles x 12 attributes]

7.3 Beyond data structures: graphicle’s modules

graphicle offers a great deal beyond these data structures themselves. Routines for
traversing the generation DAG are available, along with forming matrices, performing
transforms to test IRC safety, and calculating event shape observables. A small subset
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Listing 7.11 Isolating the “outgoing” particles from the hard process over the full event
record.

>>> print(graph[graph.hard mask["outgoing"]1)

name pX py pz energy color
e+ 1.58E+01 1.94E+00 7.59E+01 7.75E+01 0
nu(e) 3.10E+01 5.01E+01 1.10E+01 5.99E+01 0
b~ 1.77E+00  2.90E+01 -2.65E+02 2.66E+02 0
d -2.17E+01 -2.38E+01 1.51E+00 3.22E+01 502
u~ -2.89E+01 3.04E+01 -7.51E+01 8.60E+01 0

anticolor helicity status final src dst

0 1 23 True -1212 1533

0 -1 23 True -1212 1534

813 1 -23 False -1508 -1536

0 -1 -23 False -1535 -1537

502 1 -23 False -1535 -1538

[5 particles x 12 attributes

of these are used in the examples shown in chapter 9. For more information, an API
reference provides information on graphicle’s functionality, with detailed descriptions,

type information, and examples.
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Chapter 8
Data generation with showerpipe

We have explored the data structures and analysis techniques for analysing simulated
HEP data, but little has been said about how these data were obtained. For this, we
owe a great deal to the authors of Pythia, who have put in the work to make a
reasonably feature-complete port of their C++ program into the Python package,
pythia8. This package reproduces the C++ interface well, which creates some friction
in Python.

8.1 Using pythia8 directly

8.1.1 Generating data

In order to perform a particle simulation using pythias, we first setup our MCEG by
instantiating a pythia8.Pythia object. This takes an optional parameter of xmiDir,
containing Pythia’s internal config data in the form of XML. Usually this is set as an
environment variable, so it can be omitted. Once the instance is created, one must pass
either a .cmnd file containing Pythia’s run settings, or perform a sequence of
.readString() method calls on the pythia8.Pythia instance constructed.

Listing 8.1 Pythia settings . cmnd file example.

PartonLevel:ISR = on
PartonLevel:FSR = on
PartonLevel:MPI = on

ColourReconnection:mode = 1
BeamRemnants: remnantMode = 1
Beams: frameType = 4

Beams:LHEF = /tmp/tmp906e4c6bw.lhe



https://pythia.org/
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Listing 8.1 is an example of a setup which requires a Les Houches Event (LHE) file
(Alwall et al., 2007) to be passed to the pythia8.Pythia constructor. LHE files contain
simulated data of the hard process, and in our case we provide it with files produced
by MadGraph5 (Alwall et al., 2011). Pythia does have the capacity to generate its own
hard events, but this is more limited and less sophisticated than the calculations
performed by MadGraphb. Once this has been passed, we call the somewhat
confusingly named! .init() method to start the event generator.

In listing 8.1, we show as an example the file we use in our work to simulate data. The
settings are fairly standard. We enable initial state and final state radiation, as well as
multi-parton interactions (these are just settings which increase the complexity of the
simulation, but improve the physicality of the results). We could have omitted
ColourReconnection:mode = 1 and BeamRemnants: remnantMode = 1, but these use newer
models based on closely matching QCD, so we switch those on for good measure.
Beams: frameType = 4 and the Beams:LHEF lines tell Pythia we would like to use a
pre-computed LHE input file for the hard interaction calculation, and gives the path to
the LHE file, respectively. For more information on using Pythia, introductions,
manuals, and worksheets can be found at https://pythia.org/.

Mutable properties then expose event data to the user. These are effectively containers
with a constant address in memory, but whose contents get refreshed every time a
new event is generated. Events are generated by calling the .next () method on the
Pythia instance. .next() returns True or False depending on whether or not an event
was actually generated. This should only happen in the case that a user passes an LHE
file in the . cmnd-style settings, as otherwise Pythia is capable of producing new events
indefinitely. However, once the end of a LHE file is reached, events are no longer
generated, and this is signalled via the output of .next().

A property of Pythia called .event then exposes a pythia8.Event object. This is an
iterable of pythia8.Particle instances. These expose particle properties by a large
number of methods. A non-exhaustive list of these methods is provided in table 8.1.

Table 8.1: Displaying the getter methods for particle properties provided by
pythia8.Particle.

Attribute Description

px(), py(), The Cartesian four-momentum components of the particle in the lab

pz(), e() rest frame

pAbs (), pT() The magnitude of 3-momentum and transverse momentum,
respectively

m2(), mT() The squared mass and transverse mass, respectively

IConfusing in that the object itself has already been initialised via its constructor.
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Attribute Description
theta(), The polar, azimuthal, rapidity, and pseudorapidity angles,

phi(), y(),
eta()

respectively

tau() The lab-frame lifetime in mm / ¢

id() The PDG code identifying particle species

status () The status code of the particle, identifying its role in the event
generation

pol() The spin polarisation of the particle (valid values are in range [-1, 1];

unset or unknown values are indicated with a sentinel value of 9)
col(),acol()  The colour codes of the particle; colour-singlets have both values set
to 0, colour-triplets have one non-zero value, and colour-octets are
indicated with two non-zero values
isFinal() Identifies if the particle remains (i.e., is not intermediate) after an
event has been fully simulated
motherList(), Collections providing indices of the immediate ancestors and
daugh- descendants of the particle, respectively

terList()

This forms the low-level data basis of the derived semantics for graphicle’s data

structures.

8.1.2 Difficulties in Python

The interface outlined above for generating and then accessing data requires a lot
from a Python programmer. First initialising the generator with pythia8.Pythia
initialiser, then seemingly having to initialise it a second time. The fact that the LHE
file must be hardcoded into the .cmnd file makes it hard to change. However, the
alternative of passing a filepath along with all other settings in successive calls to the
.readString() method increases code verbosity and couples source code to
configuration settings. This leads on to the difficulty with iteration.

The need to manually call .next() on the pythia8.Pythia is an uncomfortable fit in
Python. Python’s data model allows the implementation of a . __next_ () dunder
method, which would have made pythia8.Pythia compatible with Python’s standard
iteration patterns, including for-loops, and the existing built-in next () function.
Additionally, the boolean return status on .next() is not Pythonic. Python signals that
an iterator has been exhausted by throwing a StopIteration exception®. Manually

2There are those who question whether overloading Python’s error handling apparatus for expected
behaviour such as loop termination is a sensible design choice for the language, but it is the standard.
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needing to check for a False return value from .next () makes it likely that new users
will introduce errors into their data generation scripts by repeatedly calling .next ()
after the LHE file has been exhausted. Accessing the data is also problematic.

To minimise bugs in our work, we favour immutability over mutability, see

chapter 7.2.4. In-place mutation of data can introduce silent errors to code, as
accidental mutation invalidates data, but will likely produce plausible outputs for the
same routines. Additionally, side effects highly likely when multiple objects rely on
shared memory, leading to unexpected results if the data is modified in one, and
therefore implicitly in the other. When pythia8.Pythia generates a new event, the
instance of pythia8.Event is modified in-place. If users wish to compare successive
events for debugging purposes, there is no clear interface for detaching the data from
the generator to do so. Even if this were possible, it would require using
pythia8.Particle’s methods to access the raw and derived data, which is hard work.

Visiting individual pythia8.Particle instances and calling methods to access all four
components of momenta separately, along with colour, anti-colour, PDG, and status
codes increases code verbosity and complexity. Additionally, in chapter 6.1 we
covered why iterating over objects in pure Python is slow, so using this interface
would have negative performance implications. The now archived numpythia project
(Dawe et al., 2023) used to provide a Pythia interface to expose data as numpy arrays.
This is a much more natural choice for Python data science pipelines, but

unfortunately we cannot rely on deprecated projects.

The patterns we have criticised above may be perfectly idiomatic and reasonable in
C++ programs. The work which has gone into Pythia is substantial, and the basis for
all of the work carried out in this thesis. However, we have laid out why we believe
these patterns do not translate well into idiomatic Python, ie. pythia8 is not Pythonic.

8.2 Wrapping pythia8 to become Pythonic with showerpipe

The showerpipe package (Chaplais, 2025c) addresses these issues by providing two
wrapper interfaces to pythia8. These are showerpipe.generator.PythiaGenerator and

showerpipe.generator. PythiaEvent3.

8.2.1 The PythiaGenerator interface

PythiaGenerator removes some of the boilerplate from initialising the event generator.
Rather than calling the object constructor and subsequently passing the settings via

3 Ambitiously named with the Pythia prefix, as the original intention for showerpipe was to produce a
general-purpose adapter pattern, offering the same interface for other MCEGs, like Herwig 7.0.
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the .cmnd file / .readString() invocations to “initialise” the (already instantiated)
generator with a final .init() call, all settings are applied in the object constructor.
Additionally, PythiaGenerator’s constructor may take a parameter of lhe_file, which
inserts the Beams: LHEF key-value pair into the . cmnd file data, see listing 8.1. This
circumvents the coupling issue of either putting all file paths into the .cmnd file on
disk, or bloating code verbosity and complexity with many .readString() calls.

Once PythiaGenerator has been initialised, it uses Python’s data model to provide a
Pythonic iterator interface. By creating a concrete instance of
[collections.abc.Iterator] and simply implementing the next_ () dunder method,
PythiaGenerator becomes fully compatible with Python’s builtin iteration tools. The
special __len__ () method is also implemented, which makes PythiaGenerator a [Sized]
iterator. Upon iteration, instead of returning a boolean success status to be explicitly
evaluated for the end of the simulation, a PythiaEvent instance is yielded. Once
iteration is complete, the standard StopIteration exception is thrown, which exits
loops gracefully and remains consistent with the response of a standard exhausted
iterator when the builtin next () method is called on it.

8.2.2 The PythiaEvent interface

PythiaEvent exposes the particle data to the user. However, unlike pythia8.Event, it is
not an iterable over particle objects, to be queried with individual calls to getter
methods for each scalar describing the particle’s data. Instead, the PythiaEvent itself
has a number of properties relating to particle data. Data is exposed for all particles in
the event simultaneously by the attribute access, providing the data formatted in
ndarrays, see table 8.2.

Table 8.2: Attributes exposed by PythiaEvent to access data for all particles generated in
an event at once, exposed as ndarrays.

Attribute Description

pdg Particle Data Group identification codes for the particles in the event.

pmu Four-momenta of the particles, structured with fields for x, y, z, and e
components.

color Colour codes for particles, structured with color and anticolor fields.

helicity Helicity eigenvalues for particles; a sentinel value of 9 indicates no
eigenvalue.

status  Status codes describing each particle’s creation method and role, as defined

by Pythia.
final Boolean mask identifying the final-state particles in the simulation.
edges Directed acyclic graph (DAG) representing particle heritage, structured as a

COO adjacency list.
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By implementing these attributes, PythiaEvent satisfies graphicle’s EventInterface
protocol. This means that the ndarray data can be seamlessly imported to a
graphicle.Graphicle instance with the Graphicle.from_event() classmethod, ready for a
full analysis pipeline. Using protocols in this way is a form of Dependency Injection
(Freeman et al., 2004; Martin and Coplien, 2009). Both graphicle and showerpipe work
effectively without dependencies on one another obeying the Single Responsibility
Principle, while still enabling the benefits of strong interoperability (Hunt and
Thomas, 2019; Gamma et al., 1994).

The most substantial departure from showerpipe merely acting as a wrapper around
pythia8 comes in the form of the edges attribute. Internally, showerpipe compares each
particle’s list of parents and children. Particles will have common sets of shared
parents or shared children, and these are used to identify interaction vertices. This
information is cross-referenced over the whole event, and produces src / dst vertex ID
pairs for every particle, which forms the COO list. For a detailed definition of this
algorithm, see appendix A.

Taken together, showerpipe and graphicle form a powerful data generation and analysis

pipeline, whose idioms should be familiar to Python programmers.

8.3 Generation DAGs as a view on showering and

hadronisation

As previously stated, the nodes in a generation DAG represent interaction vertices.
Before hadronisation occurs, the dynamics of quantum chromodynamics (QCD) at
high energy, governed by the property of asymptotic freedom, give rise to a largely
tree-like structure. This tree structure reflects the kinematic flow of momentum and
energy during the parton shower phase of a simulation, wherein particles undergo
successive splittings and radiative emissions (Bierlich et al., 2022). These splittings
evolve the system from a few high-energy particles to a cascade of lower-energy
particles, populating the phase space of the event.

This phase of parton showering is characterised by the near-independence of partons,
as they are not colour-confined. The resulting topological structure of the generation
DAG mirrors the branching patterns predicted by perturbative QCD. Splittings are
encoded as edges of the DAG, with the nodes representing the interactions at which
partons split or radiate gluons. In this way, the tree-like pre-hadronisation structure of
the DAG encapsulates the dynamics of QCD cascades, encoding not only the

momentum transfer but also the subtle colour flow among partons.

However, this behaviour changes when the energies of particles fall below the
hadronisation scale, 4 ~ Aqcp. Here, the strong coupling constant, a;, grows so large
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that perturbative techniques break down, and colour confinement becomes
unavoidable. Particles must reorganise into colour-singlet hadrons, a process
governed by non-perturbative QCD dynamics. This reorganisation introduces what
we call hadronisation vertices into the DAG. Unlike earlier vertices, hadronisation
vertices represent the effective endpoints of perturbative QCD and the transition to
phenomenological models such as the Lund string or cluster model, which describe
the final-state hadrons (Sjostrand et al., 2015).

In the context of hadronic decays of colour-singlet bosons like the Higgs, the
generation DAG reveals crucial structural features. For example, due to the Higgs
boson’s intrinsic nature as a colour-singlet, its decay products are naturally paired
with complementary colour charges. These charges “flow” into confined colour
singlets during hadronisation, ensuring that the showers initiated by these products
remain largely isolated from the rest of the event. This phenomenon is referred to as
colour-connection, a feature that helps to explain why the momentum of a Higgs boson
is relatively straightforward to reconstruct from the topological analysis of its
descendant particles. The phase space occupied by Higgs descendants is effectively
“closed” under the influence of colour reconnection and hadronisation.

In contrast, consider the case of top quarks, which are not colour-singlets at
production. Top quarks inherit their QCD charge from the hard scattering of
initial-state partons. This inherited charge is naturally colour-connected to the
remnants of the initial-state spectator partons. Consequently, the top-quark showers
are far more entangled with the underlying event (UE), introducing complexities into
their reconstruction. The generation DAG of such an event encodes not only the
primary decay dynamics of the top quark but also the intricate web of colour
exchanges with the UE, a feature that challenges standard reconstruction techniques.

Thus, the generation DAG serves as an invaluable lens through which to examine the
dual processes of showering and hadronisation. It captures the interplay between
momentum flow and colour dynamics, offering a unique window into the topological
constraints imposed by QCD. While these ideas are explored further in the following
chapters on data preprocessing and clustering strategies, the generation DAG
provides the critical bridge between the simulation framework and the physical
observables reconstructed in detectors. By making explicit the transition from tree-like
perturbative structures to the web-like connectivity of hadronisation, this framework

underpins much of the subsequent analysis in this work.

It should be noted that, while showerpipe was developed to address the sharp edges
from porting the C++ Pythia project directly to Python, it was in the light of the work
presented in this thesis. Since it only exposes select attributes of the underlying Pythia
interface, it may be that critical functionality is missing for researchers who use Pythia

in more nuanced ways. It is hoped that, since the code is a work-in-progress, and is
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released as FOSS, community engagement will guide the development process to
address any such issues. But showerpipe is early in its development, and we must take
care not to give across the false impression that it replaces the excellent Pythia

simulator.
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Chapter 9

Preprocessing techniques for
generating supervision targets

9.1 Clustering via graph traversal

In listing 7.8 - listing 7.11, the StatusArray.hard_mask is used to locate regions inside the
hard event. It is possible to combine this data from the StatusArray with the
topological information provided by AdjacencyList. By identifying the intermediate
and outgoing particles in the hard process, their descendants may be found by
performing a Breadth-First Search (BFS) over the DAG structure.

BFS is a fundamental graph traversal algorithm that explores a graph level by level,
starting from a designated source node (Moore, 1959). It systematically visits all nodes
at a given distance from the source before moving on to the next level of nodes. This
approach ensures that the first time a node is visited, it is via the shortest path in terms
of edge count, making BFS especially useful for unweighted graphs.

The algorithm uses a first-in, first-out queue to manage the order of exploration.
Nodes are enqueued as they are discovered and dequeued for exploration in the order
they were added. BFS operates efficiently in linear time relative to the number of

vertices and edges in the graph.

Many software libraries provide efficient implementations of BFS. For example, SciPy
(Virtanen et al., 2020) includes a function called breadth first tree in its
scipy.sparse.csgraph module, which returns a tree of predecessors resulting from a
BFS traversal. This can be used to identify all descendants of a node in a directed
graph or all reachable nodes in an undirected one. Graphicle uses this implementation
in graphicle.select.hierarchy() to create a nested hierarchy of descendants of the hard

interaction, traversing the entire event to the final state particles.
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Naively, our initial assumption was that hierarchy() should produce jet clusterings
based entirely in MC simulation truth data. This is true for a certain class of particles.
High quality jet clusters may be found via BFS for colour singlet bosons (CSBs), ie.
W=, Z%, and HC. See listing 9.1 for an example of analysing the first H? event
produced in a file of 1 million, showered and hadronised by pythia8 via showerpipe (see
chapter 8 for more on showerpipe).

This analysis shows a remarkable agreement up to 10 significant figures between the
mass generated by the BFS cluster based on the DAG vs. the mass of the original
particle it is reconstructing. Indeed, Pythia does juggle momentum between
intermediate particles for algorithmic purposes, so numerical error is expected and
could account for the minor discrepancy beyond the 10th significant figure. In order to
prove that this performance is consistent and predictable, in figure 9.1a we display a
probability density histogram of mass calculations performed over the 100,000 events
of our test dataset, and we overlay this with the histogram produced by binning the
masses of the original Higgs bosons from the hard event. The histograms, network
plots, and heatmaps in this work are all image exports produced by colliderscope
(Chaplais, 2025a), an interactive visualisation library created for this work. The result
is a close match at a high resolution of £0.5 MeV.

If we apply the same procedure to an individual top quark, however, figure 9.1b
shows that the result is poor. To understand why, we must consider what the
generation DAG truly represents. This was covered in chapter 8.3, but to re-iterate:
whereas the DAG rooted on the Higgs boson represents a closed phase space due to
the colour connection of the bb quark pair, the top quark has no such convenient

advantage.

Instead, the t and consequently resulting b quark from the t — W™ b decay channel
are colour triplets, and connected to the UE via the spectator partons contained within
the beamline protons which initiated the collision. This means that the interaction
vertices exchanging colour play a more complex role. This has a particularly strong
effect as the energy scale lowers the event transitions from showering into
colour-reconnection and hadronisation. The interaction vertices at this point connect
the descendants of the b topologically to sources of momentum from the UE. This
effectively introduces noise to our momentum tracing via BFS on the DAG rooted on

the b quark, spoiling the individual top quark mass reconstruction.

9.2 Improved clusters with momentum matching

As we have said, the source of noise in figure 9.1b is due to interaction vertices being a
reflection of colour flow, rather than momentum flow, in events which are

colour-connected to the background. Even in principle, it is impossible to circumvent
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Higgs boson mass reconstructions from BFS versus true hard parton mass

variable
True mass
Reconstructed mass

100

80

60

Probability density

40

20

124.95 125 125.05
Mass (GeV)

(a) Higgs boson. BFS mass reconstruction is successful. Bin width is 1 MeV.
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(b) Single top quark. BFS mass reconstruction is poor. Bin width is 500 MeV.

Figure 9.1: Comparison of mass reconstructed with graphicle.select.hierarchy() vs.
Monte-Carlo truth mass for partons in the hard event. hierarchy() approximates the
momentum of the parton in the hard event by summing the momenta of the topological
descendants of the parton in the final state, found via BFS. Masses were computed over
the 100k events provided in the test datasets for the respective partons.
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Listing 9.1 Showering and hadronising a MadGraph5-generated hard event of p p —
H® 7Z°, where H® decays hadronically via the H? — b b channel, and Z° decays lep-
tonically. The BFS mask identifying descendants of the H” generated by hierarchy()
reconstructs the mass of the original hard H® accurately to 10 significant figures.

>>> import numpy as np
. import graphicle as gcl
. import showerpipe as shp

. splits = shp.lhe.split("unweighted events.lhe.gz", 1000)

. lhe data = next(splits)

. gen = shp.generator.PythiaGenerator("pythia-settings.cmnd", lhe data)
. event = next(gen)

gcl.Graphicle.from _event(event)

. graph
. hier = gcl.select.hierarchy(graph)
. print(hier)
MaskGroup(agg op=0R)
|-- Ho
| |--b
| |-- b~
| T-- latent
T-- 70
[-- mu+
[-- mu-
- latent
>>> HO cluster = graph.pmu[graph.final & hier["H0"]]
. HO pmu = np.sum(HO cluster, axis=0)
... HO pmu.mass.item() # mass of Higgs from cluster reconstruction
124.99329740563036
>>> hard HO pmu = graph.pmu[graph.hard mask & (graph.pdg.name == "H0")]
... hard HO pmu.mass.item() # mass of original Higgs in hard process
124.99329737099997

this issue fully, see chapter 3.2.2. However, some simple heuristics can significantly

improve performance.

Consider how hadronisation is represented in the generation DAG for the pp — tt
process. In figure 9.2a, we observe the resulting descendants of the b quark from the ¢
decay hadronising on a single interaction (hadronisation) vertex. Incident edges
(particles) are a mixture of descendants from the hard parton we wish to reconstruct,
and descendants from the UE. By superimposing the positions of the hard partons on
the 7 — ¢ plane against a scatter plot of the detector-level particles figure 9.2b, it is
apparent that distinct collimated sprays are associated with each incident particle to
the vertex. That is, localised regions of the momentum space incident on the

hadronisation vertex are preserved in the outgoing particles.
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For ancestry-only approaches, this means collimated sprays of detector level particles
aligning more closely with the UE are erroneously associated with the b quark. A
cluster aligned with the hard b quark is seen directly beneath it, but to the left are tight
clusters which are also included in its reconstruction, but should be discarded as the
UE. In fact, figure 2.5 is an identical scatter plot from the same event as figure 9.2b.
The difference is that in the former case, we had already applied the improved method

of clustering, which removed this UE noise.

To illustrate the improvement in the reconstruction, the t quark produced in the hard
process has a mass of 174.02 GeV. Combining the momenta of the detector-level
constituents associated with the b, 5, and ¢ quarks produced by the t’s decay as in
tigure 9.2b results in a mass reconstruction of 1179.1 GeV for the t quark. Whereas,
performing the same procedure on figure 2.5 which utilises our improved method, the
mass reconstruction is 174.45 GeV. So, how do we achieve this remarkable

improvement?

As we have learned, regions of momentum space can be associated with signal and
UE particles separately, providing expected directions for the outgoing particles
descending from these classes, respectively. By taking the direction-only components
of the outgoing particles, we can form a distance matrix comparing the incoming and
outgoing particles. Elements of this matrix are simply given as

AR;j = /(An)? + (A¢)?. i is an incident particle on the hadronisation vertex, and j is a
descendant of the hadronisation vertex in the final state. Note that j is unlikely to be a
direct child of the hadronisation vertex, since decays following hadronisation are

common.

To express more mathematically, let set T refer to the descendant particles identified
by the mask obtained via BFS of the DAG rooted on the individual ¢ quark. Further,
let set 7 refer to the particles incident to the hadronisation vertex. Finally, let set F
refer to the final state particles in the event. By our na"ive prescription of using only
topology to form clusters, we could define an individual top quark cluster in the final
state as 7 N F.

Instead, we form two new sets representing signal and background classes. The signal
class is defined as the top descendants incident on the hadronisation vertex,

S = T NI (the blue incoming edges in figure 9.2a). The background class is defined
as the UE descendants (the black incoming edges, ie. everything not descending from
the top) incident on the hadronisation vertex, B = Z\S.

In this jargon, our 7 and j elements from before may be defined asi € Zand j € 7 N F.
In the end, we wish to form a subset C C F representing a cluster to reconstruct the
top quark. The first step to produce this set is to populate it with elements such that
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(a) Showing the generation DAG centred around a hadronisation vertex. Blue
edges and vertices indicate the topological descendants of an individual top
quark. Black sections of the graph structure are descended exclusively from the
underlying event.
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(b) Scatter plot on the # — ¢ plane for a pp — tf production. Detector-level parti-
cles are grouped as descendants from partons in the hard process. Superimposed
at (0.3,-0.9) is the “hard b”, ie. the outgoing hard b quark produced by the t decay.

Figure 9.2: Demonstrating the overly-inclusive definition of clusters reconstructing a
hard parton by simply forming them from the hard parton’s descendants. Topological
descendants from the t quark in the generation DAG can be seen to collimate in several
distinct regions, where only one is centred on the relevant b descendant prior to hadro-
nisation. We see that hadronisation mixes ancestry with the UE.
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C* = {j : argmin AR;; € S}. 9.1)

That is, the topological descendants of an individual top quark in the hadronised final
state, whose momenta are more closely aligned with the top descendants before
hadronisation (rather than the UE) form the cluster used to reconstruct the top

momentum / mass. This process is automated by graphicle.select.clusters().

Equation 9.1 defines set C* as an intermediate cluster. Empirical observations of this
technique showed that this was not robust for clusters containing particles with very
large angular deviations AR;;. So our next step, after C* is obtained, is to exclude
elements with some high cut-off value Reyof for AR;j. clusters() calls centroid_prune()

on the result, which applies this maximum angular deviation cut-off, such that

C= C*\{k € C* : ARj; > Reytoff Vi € S}, 9.2)

where R.yoff is the cut-off maximum angular distance between clustered particles in
the final state, to top descendants incident on the hadronisation vertex.

The result of applying equation 9.2 via clusters() on the top quark, rather than using

hierarchy(), is shown in figure 9.3.

This shows a marked improvement to figure 9.1b. This result clearly does not
reproduce the mass histogram of the t quark in the hard scattering, but this is
fundamentally not possible. We do, however, substantially improve upon anti-kr
clusters tagged using Monte-Carlo truth data. Taken together, figure 9.1a and
figure 9.3 motivates us that our data pipeline serves as a high quality feed stock to
train a clustering model to exceed the performance of standard methods.

9.2.1 In praise of anti-kt

At this stage, we have outlined the limitations of anti-k7, and shown how simulated
data may be utilised to exceed its performance in producing high resolution mass
reconstructions. However, here we take a brief moment to outline our appreciation for
generalised-kt algorithms, and anti-kt in particular. Anti-k7 provides a robust
technique against soft radiation that is totally general, and by tweaking a few

hyperparameters can create meaningful clusters across all different kinds of processes.

The Monte-Carlo truth based methods developed in this chapter are able to
automatically create clusters to reconstruct any particle produced in a hard interaction
which, in the datasets explored by our studies, exceed the fidelity provided by anti-kr.
However, these may only be applied to experimental data indirectly, by evaluating
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Top quark mass reconstructions from momentum-improved BFS versus true hard
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Figure 9.3: Single top quark mass reconstruction improved by matching cluster con-
stituent directions to the top quark descendants before hadronisation, as per equa-
tion 9.2. Bin width is 100 MeV.

said data against our GNN models, trained with supervision from our Monte-Carlo
truth based clusters, see chapter 10 and chapter 11. Our GNN models are trained on
specific processes, and exhibit process and kinematic dependence, based on the
configuration of our MCEGs. Even the quality of our Monte-Carlo truth based clusters
for the same species of reconstructed particle exhibit process dependence, as we shall see

in chapter 9.3.

We believe this latter issue may be addressed with future developments to our
algorithm. Additionally, representation learning and transfer learning could be used
to generalise our trained GNNs to datasets with diverse processes and kinematic
profiles. However, it is important to acknowledge anti-k1’s innate generality, and we
have a great deal of respect for its justified, continuing contributions to HEP analysis.

9.3 Process dependence

We have been a bit imprecise about which processes are producing our t quark up to
this point. We have mentioned pp — tf, which is what we have shown in figure 2.5
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(a) Interaction of a gluon and b quark (b) Quark anti-quark annihilation pro-
producing a t quark and W~ boson. ducing a H? boson and Z° boson.

Figure 9.4: Feynman diagrams depicting the processes during the proton-proton col-
lision, which we study in this thesis using our MCEGs. Time runs from left to right,
such that incoming particles are on the left, virtual mediating particles are horizontally
aligned in the centre, and outgoing particles are on the right.

and figure 9.2, but it is not the process from which we have been constructing our

mass histograms from.

The reason for this is not because pp — tt gives poor reconstructions, and we wish to
sweep this under the rug. In fact, this could not be further from the truth. However,
when developing our ML models to reconstruct the clusters, the complexity of
reconstructing two t quarks simultaneously was a challenge we wished to avoid,
because if they both decayed hadronically, their detector deposits would look
identical, and may overlap. To this end, we prepare a dataset with only a single ¢ in
the final state, pp — t W, where the W™ is forced to decay leptonically. Specifically,
the process is given by the Feynman diagram in figure 9.4a. The details of the
simulated events will be described in more depth in chapter 11.

However, as we suggested before, the pp — tf reconstruction is of very high quality.
In fact, it vastly exceeds the quality of the pp — t W™ reconstruction, as can be seen in
figure 9.5. We do not yet understand the reasons for this discrepancy. Future research
to understand this difference, and to utilise the exceptionally high quality
reconstruction of the top quark seen in figure 9.5 would likely yield results which
exceed that which we present in this thesis, since it would significantly raise a glass
ceiling in terms of supervision target quality.

To explore the package ecosystem we have presented in this section, and perform your
own analyses, see the official Jupyter Notebook tutorial (Chaplais, 2025d).
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Top quark mass reconstructions from momentum-improved BFS versus true hard
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Figure 9.5: Improved single top quark mass reconstruction for pp — tf. Bin width is
300 MeV.



113

Part 111

Experimental results






115

Chapter 10

Higgs boson reconstruction using
EWMP networks

In this chapter, we present a GNN architecture which performs Higgs boson
reconstruction from detector-level data, in a manner which is IRC safe by construction,
as a node classification task. This adapts the approach of Konar et al. (2022), as
explored in chapter ??, for an EWMP network which extends the use beyond GCNs to
the “message passing flavour” of GNNSs, as described by Bronstein et al. (2021). In this
process, we take inspiration from Ju and Nachman (2020), whose work explored the
application of INs to reconstruct boosted W+ bosons as a link prediction task.

We introduce an activation layer specialised for GNNs called bright edge activation.
This enables the mapping of the link prediction task outlined by Ju and Nachman
(2020) into a node prediction task, which significantly simplifies the interpretation of

performance metrics.

10.1 Link prediction as clustering

10.1.1 Formulation

Ancestry information from Monte-Carlo truth data has been shown to be effective for
creating supervision labels on detector-level particles, descending from the W* boson
(Ju and Nachman, 2020). The authors of this method showed that performing link
prediction using the IN could reconstruct superior clusters to anti-kr.

They do this by encoding the event as a fully-connected bidirectional graph. In this

prescription, nodes are given feature vectors with full four-momentum data,
0) _

v;' = (px, py, p= E). Edge features on the input graph are not explicitly passed, but
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embeddings of the edges are learned via the message passing algorithm used by the
IN. No external feature vector is passed, or global embedding is produced, ie. only
nodes and edges are embedded.

After 8 embedding steps, the authors apply a linear classification layer to obtain scalar
logit scores on each edge'. Applying Sigmoid activations to these scores, see
equation 5.4, they are compared against targets using binary cross entropy (BCE) loss.

The Binary Cross-Entropy loss is a classification loss function, defined as:

N
BCE(y,9) = N > [yilog(#:) + (1 —yi) log(1 — 7)) (10.1)
i=1
Here, y; is the true binary label (0 or 1) for the i-th example, #; is the predicted
probability (output of the sigmoid function) for the i-th example, and N is the total

number of examples.

The targets are determined for each edge depending on the nodes they connect:

1 if both node i and node j € Higgs descendants
target;; = (10.2)
0 else.

That is, there are naturally targets on the nodes identifying whether or not the
corresponding particles are descendants of the Higgs / cluster consituents. To cast this
as a link prediction task, the edge targets effectively apply a logical AND operation on
both node targets.

10.1.2 Challenges

Formulating clustering as a link prediction task presents challenges. These are rooted
in both computational considerations, and the difficulty of interpretation due to the

convoluted problem formulation.

In the first case, GNNs have a high computational complexity (Thais et al., 2022;
Duarte and Vlimant, 2022). This effect becomes particularly aggravated when input
graphs contain many edges. The number of edges in a fully connected graph scales as
O(N?); if edges are encoded into high dimensional embedding spaces over many
iterative GNN layers, the memory consumption of the feed-forward pass of the GNN

becomes substantial, and keeping track of the operations for automatic differentiation

IThe term “logit” is used here to mean the output of a classification layer, prior to having a sig-
moid activation applied. Mathematically, the logit function is the inverse of the sigmoid function, see
https://en.wikipedia.org/wiki/Logit for more.
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in these cases adds a substantial additional burden?. In Ju and Nachman (2020)’s
work, the fully-connected graph structure maximises this memory footprint. This is
logical from the perspective that “true edges” are not known ab initio, and thus all
potential edges must be evaluated to obtain a pre-computed target, but the
computational expense is prohibitive without sufficient onboard memory for GPU

hardware.3.

The difficulties in evaluating model performance results from properties common in
graph structured data: class imbalance. From a sample of 1,000 randomly selected
events from our Higgs boson data set, the proportion of “true edges” compared with
“false edges”, as defined above, is approximately 3%. That is, if we were to use this
method to reconstruct Higgs bosons, 97% of the targets would be negative. Many
real-world link prediction tasks mirror this (Yang et al., 2014), and require substantial
work to reweight the chosen loss function, and tune the optimisation
hyperparameters.

On top of this, consider common classification performance metrics. A GNN which
learns to classify all particles as background would achieve a 97% accuracy rate. This
is clearly a catastrophic inflation in the apparent quality of a network, which may have
extracted no meaningful knowledge from the data. This is worsened by the fact that
such poor classifiers are a likely outcome, since severely imbalanced datasets are
difficult to account for, even when proportionally weighting positive and negative

contributions to the loss function.

Precision and recall are much better metrics here. Precision measures the ratio of true
positive (TP) predictions to total positive predictions. Recall measures the ratio of TP
predictions to the total size of the positive class.

# True positives
# True positives + # False positives’

Precision = (10.3)

# True positives

Recall = .
eca # True positives + # False negatives

(10.4)

These metrics have the advantage that they intrinsically account for class imbalance,
and provide a more detailed view on how the classifier is being optimised. For
instance, if precision is high but recall is low, the classifier can be said to be cautiousd,
only selecting a few examples to mark positive when it has high certainty for

%Interestingly, the sequence of differentiable operations which are performed on a tensor from back-
ends such as PyTorch or Tensorflow are called “computational graphs”. We omit this usage of the term
here to avoid confusion.

3Indeed, initial exploratory studies performing link prediction on fully connected graphs consistently
ran into memory consumption with NVIDIA Volta V100 GPUs at 16 GB RAM. This was rendered possible
once we switched to NVIDIA Quadro RTX 8000 with 48 GB RAM.
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correctness, leaving many ambiguous cases out. In contrast, if recall is high and
precision is low, the model is unscrupulous, and will catch many true positive labels
by over-zealously labelling faintly promising examples as positive, which introduces
lots of background.

However, this is still confused by the fact that there is no clear understanding of what
the number of pairwise targets represent in terms of cluster constituents counts. The
paper quotes a recall for link prediction of 89.6%, and a precision of 90.8%, but what
does this mean?* Both particles they connect are in a cluster, but it isn’t clear that this
is any more discriminating for clustering quality, since the edges have no clear

meaning.

We address these concerns in input data structure, architecture, and optimisation

choices.

10.2 Architecture

We implement a GNN which is IRC safe by construction, identifying Higgs cluster
constituents via node prediction. The algorithm used to form embeddings over graph
is heavily inspired by recent work on EWMP networks (Konar et al., 2022) described
in chapter 5.5.1.

The GNN is composed of 4 energy-weighted message-passing layers, followed by a
bright edge classification layer which performs node classification, described in

chapter 10.2.2. At the input layer, the node’s features are 3-vectors composed of the
direction-only components of the four-momenta for each detector-level particle in the
event, described more in chapter 10.2.1. The initial edge features are populated by the
AR;j values, computed between node i and node j, however preliminary
investigations did not show this to produce any benefit when compared with no initial
values for the edge features.

The GNN was trained to reproduce node-level targets identifying whether or not they
are descended from a Higgs boson in the hard collision event, see chapter 9.

10.2.1 Input graph structure

The nodes of the input graph to the GNN encode particle data via the nodes. Each

node represents a detector-level particle, and has an associated feature vector

4The paper actually frames these as new metrics which they call “edge efficiency” (recall) and “edge
purity” (precision), but the definitions are identical to the standard classification metrics.
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containing the direction-only components of the particle’s four-momenta. That is,

vi¥ = (2,95, (10.5)

0)
1

% = x;/ pri (likewise for ;). We deviate from the original EWMP network, passing the

where v;’ represents the node embedding after passing the I-th layer of the GNN, and
x and y components of the momenta directly rather than handling the ¢ values, to

avoid any potential issues on the periodic boundaries of ¢.

However, we follow the EWMP network prescription for the edges, which are
determined by utilising a fixed neighbourhood radius about each node, ie.

1 ARZ‘]' < Ry
Ajj = (10.6)
0 else.

The implied self-loops in this definition are allowed, as they are a necessary condition
for IRC safety (Konar et al., 2022). This generally leads to a graph with disconnected
subcomponents. Although this means that information diffusion for the
message-passing steps are constrained within each subcomponent, it has the benefit of
scaling well to events with a large number of nodes which eliminates the high
memory consumption of learning of fully connected graphs (Ju and Nachman, 2020).
However, this means that the GNN instead learns structural motifs within events,
rather than having a global sense of the “whole event”. The issue of the network
losing the ability to interpret global features of the event is partially mitigated in the
methods outlined in chapter 11.3.

If we concatenate the features of all nodes in the graph, we form a feature matrix v,
alongside the adjacency matrix A. We will refer to the overall graph data structure
passed through our GNN at a given layer as ) = (V(), A).

The input graph G(©) goes through a data augmentation step. Specifically, the
momentum input from the node features are randomly reflected in both the z-axis,
and the direction of the ¢-axis. Additionally, the momenta of the particle point cloud
is rotated about the z-axis by an angle d¢ € [0,27).

For a visual depiction of the input graph, with corresponding predictions of our
model, see figure 10.1.

10.2.2 Bright edge activation

For the reasons outlined in chapter 10.1.2, we wish to establish particle reconstruction
/ clustering as a node-level prediction task. In the link prediction approach,
classification is performed over all possible pairs of particles in an event, predicting
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Node predictions for one event (pred: 121.6 GeV, target: 123.1 GeV)
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Figure 10.1: This graph shows an event which is structured as a graph input structure.
Here our model’s output predictions are superimposed, where the node illumination
/ confidence score is given by the colour. The shape of the markers indicates the su-
pervision targets, where crosses represent UE and circles represent Higgs descendants.
If the markers are filled, the model correctly predicted their class, and if the marker is
empty the model incorrectly predicted the class, eg. an empty circle represents a false
negative.

both elements in a given pair belonging to the reconstructed cluster, see equation 10.2.
The memory expense of calculating differentiable high dimensional edge embeddings
across a fully connected graph of order O(10°) edges is substantial, and the results are
hard to interpret. Preliminary studies attempted node-level prediction based on
applying a classification layer to the node’s final embeddings, however results at this

stage were not promising.

The learned edge embeddings provide a rich description of the relationships across
the graph. These relationships are more numerous than the node features, and
naturally provide a higher resolution view on the graph structure. Instead of relying
on the node features from normal message passing to capture this same level of detail
as in the link prediction case, we develop an intuitive analogy for the edge embedding
to map translate the meaning behind their activations into node activations. We name
this approach bright edge classification.

Consider the setup of predicting the “true edge” targets, as defined in equation 10.2,

from the perspective of trying to determine if a given node i is contained within the
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Higgs cluster. If any incoming edge connecting the node to a neighbour j is positive,
this means both nodes are members of the Higgs cluster. Since we are focusing on
classifying node i, we discard considerations of node j entirely, and only consider

node i, and the incoming edge ef]-N), where N is the last GNN layer of the network.
(N)
1]

a Sigmoid activation function, if the edge classification score surpasses 0.5, both

The link prediction technique involves computing classification scores for e;. . Using
particles i and j are added to our Higgs cluster. This is repeated over the whole graph
structure. Inevitably, there are a large number of duplicate particles in the Higgs
cluster, due to double counting when multiple edges incident on the same node.
However, from any given node’s perspective, if just one incoming edge exceeds the 0.5

threshold for its score, the node must belong to the Higgs cluster.

We reframe this statement by analogy with fibre optic cables incident on a
photovoltaic (PV) cell. If a very sensitive PV cell, in otherwise total darkness, has
several incoming fibre optic cables, and each of these may be illuminated, the cell
produces a current if one or more fibre optic cables are illuminated. We say a node can
have incoming “bright” or “dark” edges, and if any one edge is bright, it will
“illuminate” the node. An illuminated node is taken to be a member of the positive
class in node prediction; in this case, a constituent of the Higgs cluster. A node is only

dark if all incoming edges are dark, see figure 10.2 for a schematic of this.

In order to make this mathematically explicit, a dark edge logit ¢;; would be one which
would give Sigmoid(e;;) < 0.5, which implies ¢;; < 0. Thus positive edge logits are

bright, negative edge logits are dark. So, how do we map this to node illumination?

We could sum the incoming edges; however this would have the undesirable
interpretation of dark edges having negative brightness. Dark edges could then act
destructively against bright edges, which is explicitly what we are trying to avoid.
This is easily solved by applying a ReLU activation equation 5.2 to our incoming edge
logits before performing the sum. Illumination from edges is therefore always

constructive, rather than destructive.

In practice, many incoming dark edges from a dense neighbourhood of particles from
the UE may suggest we should be more sceptical of particles with very few weakly
bright incoming edges. This is because the collimated structure of QCD emissions
implies that hard partons should give rise to dense clusters in the detector.

We could apply a LeakyReLU to let some “negative light” in to dim the node. Recall that
a hyperparameter « is chosen for the gradient of negative inputs, rather than
assuming it to be zero, see equation 5.3. By selecting larger values of a, we could
effectively choose how much to allow dark edges to influence the classification result
on the node.
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(a) A node illuminated by in- (b) A node illuminated by it- (c) A dark node, which has
coming bright edges. self via a self-loop. no incident bright edges to
illuminate it.

Figure 10.2: Cartoon depiction of the node illumination from incoming bright edges. If
just one incoming edge is bright, then the node itself is illuminated / bright. Otherwise,
the node is dark. A node may self-illuminate via a self loop.

Rather than biasing the activation layer with assumptions regarding how sensitive the
output should be to incoming dark edges, we instead apply a PReLU activation to each
logit in the sum. As we discussed in chapter 5.1.2, « becomes a learnable parameter, so

takes on an appropriate value during training based on the data itself.

Therefore, the bright edge activation for a given node i is given by

y; = BrightEdgeClassifier(i) = Sigmoid | ) w (Nm PReLU
JEN (D)

Z(Pk €ji ] ’

(10.7)
where ¢} are update functions which map high-dimensional edge embeddings to
scalar logits. This is then mean averaged over K heads in order to improve stability,
such that there are K updates for each head, inspired by multi-head attention
(Velickovic et al., 2018). We weight incoming edge logits by the Al/‘ﬁlative pr of the
uy
]

incoming node with the sum of node i’s neighbourhood pr, w , to ensure the

bright edge classifier is IRC safe.

Not only does this map the link prediction task proposed by Ju and Nachman (2020)
to a node prediction task, but it makes the model’s confidence for an individual node’s
membership within a cluster continuous and differentiable. This enables analysis of
this confidence distribution, and confidence-weighted metrics to be used during

training and evaluation.

10.2.3 The feed-forward mechanism and hyperparameter tuning

We train a GNN with 4 graph layers. During the edge embedding step, source and
destination node features are concatenated, and passed through batch normalisation.
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Dropout is applied with a probability of 6.6 x 1073°. The result is concatenated with
existing edge features, and passed through an MLP update function to produce a new
edge embedding.

Dropout is a regularisation technique which prevents overfitting with specific nodes
of a NN. It achieves this by randomly eliminating nodes with a certain probability
during training, forcing the NN not to rely too heavily on any given node. During
inference, the dropout is then removed, and all nodes are active. Remarkably;, it is
conceptually equivalent to training multiple NNs with different structures
simultaneously, and taking the averaged result, since with dropout nodes are

effectively removed from the NN, then added back at inference time.

The node embedding is computed by forming a message for each node from a
pr-weighted sum of incident edge embeddings, described by equation 5.31. The
node’s current feature vectors are then concatenated with the message incoming
message, and a node update MLP is applied to obtain the new node embedding. The
edge and node embedding steps define a single GNN layer.

These layers are stacked, and a final bright edge classification layer with 8 heads is
applied to obtain the node logits. Even though the class balance is substantially more
even since we formulated the task as node prediction, the majority of particles are still
background. Further, many of these background particles are often easy-to-spot, since
they exist in sparse neighbourhoods over wide ranges of the 17 — ¢ plane. Hence, we
apply a focal loss equation 10.8 to address the class imbalance and de-prioritise the
optimiser from responding aggressively to positive / negative predictions made with
high confidence, ie. the easy predictions.

Focal loss is given by

FL(pt) = —ar(1 — pi)" log(pr), (10.8)

where p = Sigmoid(x), and for a targety, p; = pify =1, orp; =1—pify =0;
likewise, oy = aif y = 1, or ay = 1 — a if y = 0. This ensures that «; adjusts the relative
loss contribution of each class, helping mitigate class imbalance; y > 0, and setting it
to higher values down-weights the loss so that well-classified examples (with high py)
contribute less, concentrating learning on harder, misclassified samples. See the
torchvision source code on sigmoid_focal loss() for implementation details

(maintainers and contributors, 2016).

So as training progresses and the low-hanging fruit have been picked, the model can
focus on the harder classifications. We choose values of & = 0.45 based on measured
class imbalance on the Higgs dataset, and choose a value of v = 2.0 to set the strength

of focus on the challenging examples (Lin et al., 2018).

5This value was found via hyperparameter tuning.
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We train batches of 256 graphs per step with the Adam optimiser (Kingma and Ba,
2017) at a learning rate of 3.84 x 1072, applying weight decay regularisation at

1.0 x 10~* on the non-PReLU parameters. The model is trained over 80 epochs, and
due to the data augmentation, the numerical representation of the node input features
is different in each epoch. Model hyperparameters are comprehensively listed in
table 10.1.

Table 10.1: Hyperparameters configuring our Higgs reconstruction GNN. Hyperpa-
rameters marked with * indicate these were tuned using random search.

Hyperparameter Value
Learning rate* 3.84 x 1072
Number of GNN layers* 4

Dropout* 6.63 x 1072
MLP nonlinearity PReLU
Neighbourhood radius* 1.093
Latent node dimension 64

Node MLP depth 2

Latent edge dimension 32

Edge MLP depth 3

Number of bright edge heads 8

Focal loss « 0.45

Focal loss y 2.0

Weight decay 1.0 x 107*
Number of epochs 80

10.3 Dataset generation

Data was generated using Pythia8 version 8.307 and MadGraphb version 3.5.4. Two
datasets were produced, for processes p p — H® Z, and g b — t W~. Both the Higgs
boson and top quark had a generation-level cut applied, such that their respective
pr € [500,550] GeV, and their pseudorapidities satisfy || < 2.5. For the Higgs
process, Z decays leptonically, and H decays hadronically via the H* — b b channel.
MadSpin is used to ensure that the Higgs decays with a Breit-Wigner mass
distribution®. A Breit-Wigner distribution is a probability density function used in
HEP to model resonances (Wikipedia contributors, 2025b). For the top process, W~
decays leptonically, and t decays hadronically via the t — b W channel. The

®MadSpin is a tool used in conjunction with MadGraph that can model particle decays while preserving
spin correlation information. However, we only use it as it allows for us to preserve the physical Breit-
Wigner distributions for the Higgs boson resonances
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generated datasets are split into 1IM:100k:100k events for training, validation, and

testing, respectively.

Data was processed using various tools, including graphicle, see chapter 7.2, and
FastJet (Cacciari and Salam, 2006; Cacciari et al., 2012) for comparisons with standard
pipelines. Graphicle clusters are computed and stored as boolean arrays alongside the
final state particle data, which does not have detector-effects applied. Rather than
performing an expensive detector simulation for this exploratory study, we apply
kinematic cuts to the particles such that their pr > 0.5 GeV and |y| < 2.5. This is used
to crudely approximate the threshold sensitivity of a detector calorimeter, and the
detector’s range along the beam axis. Events are stored using the heparchy interface to
HDF5 (Chaplais, 2025b).

10.4 Results

We find the model successfully outperforms anti-k1 on our test dataset when

comparing against the invariant mass reconstruction histograms’

, see figure 10.3.
Anti-k is used to cluster the resulting b quarks from the decay channel H' 0 5 bb,
where Monte-Carlo truth information for the location of the hard bb pair in the 7 — ¢

plane is used to tag the b jets. No grooming is used on the b jets.

The model is evaluated on traditional metrics describing both the classification
performance, and the resulting momentum reconstruction. Precision and recall have
already been described, and we additionally use F1 scores as the harmonic mean
between them to determine if one is being traded off for the other. We achieve an
accuracy score of 93.7%, where 65% is expected for a totally random classifier.
Additionally, an impressive precision score of 95.2% is obtained by our model. The
recall score is lower, at 88.7%, suggesting that the model is prioritising noise reduction
over capturing the full signal. Even so, an F1 score of 91.8% is encouraging,
suggesting that the imbalance between precision and recall is not severe. We compute
the mass of every reconstructed cluster, and compute the mean absolute error (MAE)

in mass as 24.1 GeV. These metrics are summarised in table 10.2.

The model was trained for 80 epochs over the 1M event training set, which took 24
hours on an NVIDIA GTX 1080 Ti consumer GPU, consuming on average roughly 11
GB of GPU memory. The model was tested over the 100k event test set, which took ~
2.5 minutes on an NVIDIA RTX 8000 GPUS.

"There are other performance metrics for jet reconstruction, eg. Jet Energy Resolution, Jet Reconstruc-
tion Efficiency, Jet Matching Efficiency, etc. but these are beyond the scope of this work.
8GPU memory consumption was not recorded for any of the testing runs.
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GNN based Higgs boson mass reconstruction
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Figure 10.3: Comparison of mass reconstructions of boosted Higgs bosons. The graph-
icle trace represents the target based on ancestry information. The Predicted trace rep-
resents the model. Anti-kt is shown for comparison with standard techniques.

Table 10.2: Model performance metrics, evaluated over the test dataset after training
has completed in the final epoch.

Metric Value
Accuracy 0.937
Precision 0.952
Recall 0.887
F1 0.918

Mass MAE (GeV) 24.1

It is more indicative to observe the histograms for the Higgs mass reconstruction. Our
model shows modest improvement over anti-k7 in terms of peak sharpness, see

figure 10.3. In this figure, we see three mass histograms: our model, the Monte-Carlo
truth ancestry based clusters (graphicle), and anti-k7. While the improvement is not
qualitatively large, it is particularly impressive due to the limited expertise required to
produce these clusters. Our model precludes the combinatoric challenges of b-jet
tagging and matching to form the Higgs, instead yielding clusters in a single shot

from the four-momenta across the event.
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Note that the Monte-Carlo truth based “graphicle” reconstruction shows a steep
cut-off beyond the 125 GeV mark. This is because, prior to applying detector level cuts
on 77 and pr, the Higgs peak’s resolution is very fine. However, following these cuts, a
range of lower mass distributions are reconstructed, which broadens the peak. This
only occurs in the low mass direction, since removing cluster constituents can never
result in reconstructing a higher mass. As this has elicited surprise and scepticism

among several senior HEP researchers, I include a brief proof for this in Appendix B.

Finally, we show that our architecture is indeed IRC safe, by computing the
confidence-weighted mass for reconstructed clusters. The mass is
“confidence-weighted”, in the sense that when the logits for node classification are
passed through the sigmoid nonlinearity, we obtain a “confidence” value between 0 -
1. Usually a threshold of 0.5 is applied, such that if the particle i is assigned a
confidence c;, the particle is considered a Higgs constituent if c; > 0.5.

If the model were a perfect classifier, it would output values of only 0 and 1, creating a
vector with a size equal to the number of detector-level particles in the event, c. The
momentum of the cluster could therefore be found by taking a dot product of this
vector with the matrix containing the four momenta of the corresponding particles

along its rows P, ie..

Pt = ¢ P. (10.9)

Notice that equation 10.9 generalises intermediate values in the interval ¢; € [0, 1].
Therefore, in general, a confidence weighted mass can be computed from this
equation, applying a Minkowski inner product to square the result and obtain the

mass. We can use this to test the IRC safety of our trained model®.

We take 10 events from the test dataset. Then, finding the hardest constituent of the
Higgs cluster, we split it across a 100 x 100 grid, shown in figure 10.4. The constituent
is split into two particles in a way which conserves total momentum, with varying
energy and angular separation. This does not conserve mass. The hardest constituent
is rotated within the plane generated by the hardest and softest constituents, up to a
maximum angle of 7t radians. The energy fraction of one outgoing particle is split
within the range [0, 0.5], since this completely determines the energy fraction of the
other particle, and the effect is symmetric about the 0.5 mark. The
confidence-weighted mass is computed before and after the split, so a deviation Am

can be computed.

9We use the confidence-weighted mass, since this continuous value is more likely to be sensitive to
effects of particle splits, rather than the discrete mask we obtain from applying a threshold to these confi-
dence scores.
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Mass deviation due to hardest constituent splitting
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Figure 10.4: Demonstrating the deviation of Higgs boson mass reconstructions pro-
duced by our model when the hardest constituent of the Higgs cluster undergoes a
split with a range of energy fractions and angles to the original particle.

Figure 10.4 shows a heatmap where each pixel is the mean average of 10 events, each
evaluated by our trained GNN. The result we obtain shows that, as emissions tend
towards the soft limit (the left hand side of the plot), the confidence-weighted mass
deviation tends towards zero. Equally, as we tend towards the collinear limit (the
bottom of the plot), confidence-weighted mass deviation also tends towards zero.
Hence, we confirm that our architecture satisfies the requirements for IRC safety.

This Higgs study serves as a strong proof-of-concept for our methods. We now move
our attention to see if we can apply our Monte-Carlo based approach beyond the case
of colour-singlet bosons, specifically focussing on the top quark.
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Chapter 11

Top quark reconstruction with
cluster double sifting

Ju and Nachman (2020) state that simulation truth data can provide supervision labels
for ML models to reconstruct colour-singlet boson ancestors, but go no further. They
recognise that there is no unique way of associating hadronic final states with the
quark / gluon degrees of freedom which generated them. In this section, we
systematically respond to the difficulty of the problem raised by the authors. While
we agree that it is not possible to assign supervision labels to detector-level particles
identifying a unique quark / gluon ancestor, in chapter 9.2 we show that in the case of
boosted top quarks, we may augment topological ancestry with heuristic applications
of intermediate state four-momentum data to achieve excellent reconstructions. In this
chapter, we describe how we have applied this work to our GNN architecture from

chapter 10.

We find our GNN model performance to be comparable with anti-kt when applied
without architectural modification from chapter 10. While this is impressive, since the
problem of tagging and jet combinatorics are superseded by the use of a single-shot
GNN classifier trained on clustering, we develop a new architectural approach to
improve performance. To this end, we introduce cluster double sifting, which provides a
substantial improvement in performance for top quark mass reconstruction compared

with anti-kr.

To our knowledge, this works represents the only ML algorithm developed capable of
top quark reconstruction by identifying the set of detector-level particles which
descend from top quarks in p p collision events!. As such, our results represent a

1An CNN based segmentation method of jet images (Choi et al., 2023) was brought to our attention
in the late stages of editing this thesis. The paper gives little consideration to IRC safety, and due to
information loss in the production of jet images, it cannot identify cluster consituents directly. Instead, the
authors must rely on regression techniques to construct the kinematic variables. Strikingly, they appear
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landmark step forward in applications of ML to boosted particle reconstruction,
beyond colour singlet bosons.

11.1 Dataset generation

The simulation was carried out using MadGraph5 version 3.5.4 for the hard process
generation and Pythia8 version 8.307 for parton showering, hadronisation, and
modelling of the underlying event.

The hard scattering process was modelled as p p — t W~, where the W™ boson was
forced to decay leptonically (W~ — £~ vy), while the top quark decayed via

t — b WT. The W' boson was forced to decay hadronically (W — g §). These decays
were chosen to ensure a well-defined final state suitable for studying the
reconstruction of boosted top quarks, without the production of significant noise from

the extraneous W~ boson.

MadGraph5_aMC@NLO computed the matrix elements for the hard scattering
process, ensuring an accurate description of the kinematics and dynamics of the
events. The resulting partonic events were interfaced with Pythia 8.3, which
performed the following tasks, whose settings are given in listing 11.1. These are the
same settings as shown in listing ??. In this case, as well, these settings are generic;
they just switch on the following physics effects to enable better simulation results:

¢ Parton Showering: Initial and final state radiation (ISR/FSR) were enabled to
account for QCD corrections and ensure a realistic distribution of emitted
partons.

¢ Hadronisation: The Lund string model in Pythia was employed to convert
partons into colour-neutral hadrons.

¢ Underlying Event (UE): Multiple Parton Interactions (MPI) were included to
simulate the soft interactions accompanying the hard scattering process.

¢ Colour Reconnection and Beam Remnants: These features were enabled to
ensure the modern QCD-based model of colour flow between partons was used.

The simulation was performed in the centre-of-mass frame with a collision energy of
/s = 13 TeV, consistent with the LHC experimental setup. To reduce computational
overhead and focus on the desired phase space for boosted objects, generation-level

cuts were applied:

¢ The transverse momentum of the top quark was required to satisfy
500 GeV < pr < 550 GeV.

to have applied similar pre-processing techniques for supervision label construction. A brief comparison
may be found in Appendix D.
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Listing 11.1 Pythia settings for showering and hadronisation of the top quark events.

PartonLevel:ISR = on
PartonLevel:FSR = on
PartonLevel:MPI = on
ColourReconnection:mode = 1
BeamRemnants: remnantMode = 1
Beams: frameType = 4

¢ The pseudorapidity of the W boson was constrained to || < 2.5.

The dataset is divided into three subsets to facilitate training, validation, and testing of
our model:

¢ Training set: 1,000,000 events
e Validation set: 100,000 events
¢ Test set: 100,000 events

The events were generated without including a detector simulation layer such as
Delphes. Instead, the dataset consists of particle-level information, capturing the final
state of the particles after hadronisation. The data will necessarily be less realistic
without detector effects. The responses of the various components will not be
modelled, and the ROOT file based data structures of tracks and towers will not be
present in the output, which will mean that adapting our methods for real
experimental data will require some additional work. However, this choice allows for
direct evaluation of machine learning algorithms against the underlying physical
processes, without introducing detector-specific effects, which we feel at this stage
would be a distraction.

11.2 Applying the model without modification

We may apply the same architectural schematic from chapter 10 to the Monte-Carlo
based top quark supervision labels we obtained in chapter 9. By performing another

random sampling hyperparameter search, we obtain the results shown in table 11.1.

The model was trained for 25 epochs, which took 14 hours on an NVIDIA RTX 8000
GPU, consuming on average roughly 40 GB of GPU memory. The model was tested
over the 100k event test set, which took ~ 3.5 minutes on the same GPU hardware.
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Table 11.1: Results table showing GNN performance metrics of the cluster reconstruc-
tion of the top quark from detector-level data.

Metric Value
Accuracy 0.885
F1 0.857
Precision 0.808
Recall 0.914

Mass MAE (GeV) 79.8

The percentage of elements in the positive class in the top quark data is 13.4% over the
test dataset. This means that a classifier could achieve an accuracy of 0.866 from
merely learning to predict everything as the negative class. However, the other
metrics for precision, recall, and mass show that this is not occurring.

While our recall score at 91.4% appears to be elevated compared with the performance
of our Higgs boson reconstruction in chapter 10, the precision has fallen to 80.8% in
the case of the top quark reconstruction. This is because the top quark descendant
have a considerably greater overlap with UE particles compared to the Higgs. This

makes optimising precision particularly difficult.

11.3 Upgrading performance using a double sift

11.3.1 First sift: considering initial results as noise removal

The disconnected graphs produced by our fixed radius definition of adjacency (see
equation 10.6) makes it impossible for the message-passing algorithm to learn global
event structure, regardless of how deep GNN layers are stacked. To add further insult,
despite only having access to these local communities, the input feature vectors of
nodes are described in terms of global coordinates. A GNN trained with our current
setup must reconstruct the desired cluster, with the additional challenge that it must
learn to account for its location in the 17 — ¢ plane, without reference to the cluster
centroids or the full event context. We can overcome this challenge by defining a new
approach to forming the clusters.

It is a standard pre-processing step for ML-based jet-taggers to translate their centre to
(0,0) in the 7 — ¢ plane (Dillon et al., 2022; Komiske et al., 2019; Mikuni and Canelli,
2020; Olischlager, 2021). This enables the algorithms to learn the geometric properties
of the jets from a standardised location. We propose a similar approach for particle
reconstruction. Our results in chapter 11.2 show that the first pass of a GNN can
remove most of the UE.
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We refer to this first feed-forward pass as a first sift, removing much of the UE, but
leaving some fine-grained contamination in the resulting cluster. Taking our trained
model, we calibrate it to favour high recall over high precision in this step, by
reducing the threshold for the node classification scores to below 0.5. Instead of
viewing this as our end stage, we consider it to be the first pass in a two stage process.
Applying this classification threshold reduces noise, while capturing a large fraction
of the signal in the event.

11.3.2 Second sift: shifting and fully connecting the input

Our remaining particles form an intermediate cluster, whose momentum sum
approximates the true cluster’s momentum. While this may not be precise enough to
reconstruct the mass well, it does provide a good baseline to re-centre our coordinates
on the 17 — ¢ plane. We shift this cluster to be centred on (0,0), and then pass it to
another GNN, whose task is to remove the fine-grained contamination of the cluster.
We call this a double sift.

Intermediate clusters following a first sift have dramatically fewer nodes (O(10) vs.
0(1000)), so it becomes feasible to compute high-dimensional edges over a
fully-connected graph.

Formally, we can write our first sift graph embedding as Ql(Nl) = GNN; (Ql(o) ), where
Nj is the number of message-passing layers in our GNN, and the numeric subscript
refers to the fact that this is the first sift. The second sift involves restricting the
included nodes to all those with a positive activation after passing the bright-edge
classification layer. We then redefine the adjacency between the remaining nodes to be
fully-connected, ie. [Az];; = 1Vi,j € [1, N2]. Encoding the same direction-only
four-momenta components on the nodes to form V;O), the graph passed to the double
sift GNN is given as QZ(O) = (Vgo), Ay).

We propose that restricting the connectivity of the graph to a radius based node
neighbourhood is appropriate in the first sift, since approximate noise removal does
not require detailed structural analysis. By fully connecting the intermediate graph,
the double sift GNN is able to learn global features using the whole graph, centred on
the 7 — ¢ plane. This means that the proportion of meaningful edges in the second sift
is substantially higher, enabling the GNN model to learn graph structure more
effectively, and with much lower computational expense. Due to the much lower
background : signal ratio, we posit that the global structure is likely to be much more
characteristic for the particle we wish to reconstruct.

In order to check that this motivation is well-founded, we analyse the first sift.
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11.3.3 Classifier correlations motivating the double sift approach

Our claim in the previous section effectively reduces to the assertion that we are
failing to produce competitive mass reconstructions for the top quark because we are
adding noise into our clusters. This is supported by the reduced precision and
increased recall scores for the top quark data. To verify that this interpretation is
robust, we further analyse the top quark reconstruction after the first sift. Since we
have ground truth data, we are able to identify the noise introduced into the clusters,
which is simply the false positive (FP) predictions.

We should be able to determine if the model is producing poor clusters due to the
inclusion of FP nodes, and it is not compensating for missing cluster constituents in by
subtly choosing FPs which make up the right momentum. If we simply remove the FP
constituents and the model performance improves, we can determine if there is any
significant gains to be enjoyed from attempting to reduce the noise in the two-stage
process we described above.

Figure 11.1 shows a striking indication that we are on the correct path. If all of the FP
cluster constituents are removed, effectively keeping the recall constant but boosting
precision to 100%, our prediction much more closely matches our Monte-Carlo
reconstruction. However, if these FP constituents have no consistent distribution, our
model may still find it difficult to remove them.

In order to test this, we follow our suggested prescription in chapter 11.3,
approximating the momentum of the top quark cluster after the first sift. We then shift
this candidate cluster to the origin, and plot heatmaps of its FP density, TP density,
and target density (centred on its own basis) on axes with the same scales.

The results in figure 11.2a show that TP and target densities have similar structures,
with a well-defined dense core, surrounded by a tight halo of rapidly dropping
density. The FP density is also distributed with the highest density at the centre, but it
peaks at a substantially lower value compared with the TP and target densities.
Importantly, the characteristic decay length is substantially larger, meaning that
despite peaking at a lower value in the centre, the outer halo is continues to have a
significant density at higher radial distances from the origin than the TP density.

If we plot the pr deposits of the FP, TP, and target constituents, we see even more
encouraging detail, see figure 11.2b. Here the hardness of the constituents is apparent,
and we can see that the halo in the FP heatmap carries significant transverse

momentum, particularly spreading across the azimuthal direction.

We can characterise the differences simply by subtracting the FP heatmap from the TP
heatmap, shown in figure 11.3. Here we see the same characteristic dense core of the

TP constituents. However, we note that the heatmap displays the majority of the 7 — ¢
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Top quark mass reconstruction, with false positives removed
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Figure 11.1: Depicting the predictions after a single application (sift) of our GNN
model, superimposed with the predictions with the false positive predictions removed,
and the ground truth (Graphicle).

plane with zero density. In this modified figure, a negative halo — darkened with
respect to the outer zero-valued background — becomes apparent around the central
dense core. This is a smoking-gun indicator that by using our trained model as a first
pass to sift away the majority of the UE, we can shift the origin of our cluster, exposing
structure in the remaining noise we wish to remove. Simply cutting away the negative
halo should remove constituents in a favourable FP : TP ratio, so it seems reasonable
to expect the sophistication of our GNN to provide improved results.

11.4 Results

Now we have the impetus to do so, we apply our GNN architecture on the fully
connected graphs whose origins have been shifted. Table 11.2 shows the
hyperparameters of both sifts for the top reconstruction model. Between one sift layer
to the next, hyperparameters were hand-tuned. Due to the reduced memory burden of
the noise-reduced graphs, it was possible to increase embedding dimension and MLP
depth. The classification threshold in the first sift is the value applied to produce the
high recall clusters for the second sift, which uses the normal 0.5 threshold.
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(a) Constituent densities across the 77 — ¢ plane for the re-centred first sift clusters.
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(b) Heatmap of pr deposits from the cluster constituents across the # — ¢ plane.

Figure 11.2: 2D heatmaps indicating the distribution of predicted top quark clusters
tiltered by classifier categories of true positive (TP) labels, false positve (FP) labels, and
target supervision labels. The origins are shifted to their respective centres. The TP
and FP heatmaps represent the same underlying cluster, so share an origin. The target
cluster uses its own origin. These are averaged over to 100k events of the test dataset.

Table 11.2: Hyperparameters configuring our two sifts of the top reconstruction GNN.
Hyperparameters marked with * indicate these were tuned using random search. Other
hyperparameters were hand tuned to exploit different resource requirements.

Hyperparameter First sift value Second sift value
Learning rate* 9.82 x 107° 7.92 x 107°
Number of GNN layers* 4 4

Dropout* 0.279 0.279

MLP nonlinearity PReLU PReLU
Neighbourhood radius* 1.13 1.13

Latent node dimension 64 128

Node MLP depth 2 3

Latent edge dimension 32 128

Edge MLP depth 3 3
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Hyperparameter First sift value Second sift value
Number of bright edge heads 8 8

Focal loss « 0.65 0.35

Focal loss y 25 1.5

Weight decay 1.0 x 107* 1.0 x 1074
Number of epochs 25 16

Classification threshold 0.35 0.5

The results are displayed in table 11.3. We see no substantial change in the accuracy
score, and a reduced recall, which contributes to a reduced overall F1 score. However,
the precision does show a marked improvement, which contributes to an overall

lower mean absolute error in the mass.

The model was trained for 15 epochs over the 1M event training set, which took 60
hours on an NVIDIA GTX 1080 Ti consumer GPU, consuming on average roughly 11
GB of GPU memory. The model was tested over the 100k event test set, which took ~
4 minutes on an NVIDIA RTX 8000 GPU.

Table 11.3: Results of the model following double sift classification.

Metric Value
Accuracy 0.884
F1 0.849
Precision 0.840
Recall 0.858

Mass Mean Absolute Error (GeV) 50.7
Mass Median Absolute Error (GeV) 33.5

Cluster double sifting has contributed towards equalising the precision and recall
scores. The improved effect on the mass reconstruction can be observed directly from

figure 11.4.

We see that the mass reconstruction improves upon our single sifted result, and offers
a substantially better reconstruction than anti-k7. We believe these results show a
promising future for GNN-based particle reconstruction methods. We have exceeded
the performance of standard methods in reconstructing top quarks from individual
constituents in the detector-level. What’s more, we have done this without needing
the intervention of top taggers, bottom taggers, or to solve the combinatorial challenge

of matching jets to the decay products of the top quark.
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Figure 11.3: Heatmap of the difference between true positive and false negatives. Neg-
ative regions indicate locations in the # — ¢ plane where FNs are more common than
TPs.

11.5 Further work

There is even some indication that it may be possible to extract error estimates from
the model’s confidence scores. Figure 11.5 shows a series of histograms, each
displayed as a row in a heatmap. Each row represents the distribution of confidence
scores of the model along the horizontal direction. These are grouped by events in
which the mass reconstruction had an error within a certain range. These ranges are
split up into percentiles. This is not an absolute error, but a signed relative error, so a
perfect mass reconstruction would be displayed at the 50% mark. 0% - 5% refers to the
extreme lower bound of mass underestimates, and 95% - 100% represents the extreme
upper bound for mass overestimates.

It is hoped that the model might be able to recognise when it is fudging its predictions,
and give more hedged predictions. This appears to be exactly what figure 11.5 shows.
In particular, notice the low density in the central region of the heatmap. This suggests
that when the mass reconstruction is performing well, the model is more confident
about its predictions. The fact that this decays away as the mass reconstruction error
increases both above and below the 50% mark indicates that the model recognises

these are less clear cases, and adjusts its confidence to lower values accordingly.
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Figure 11.4: We compute histograms to perform a comparison of the top-quark mass
reconstruction, over the 100,000 events of the validation dataset. Graphicle’s clusters
are formed using the complete event record, and then kinematic cuts of || < 2.5 and
pr > 0.5 are applied. The cutoff radius for wide angle radiation used by graphicle
is 1.0. Anti-kt is applied over the final state particles with the kinematic cuts already
applied. We pass R = 0.35, and use a Monte-Carlo truth based tagger to identify the b
and g g jets. Predicted shows the performance of our GNN model with a double-sifting
approach, trained on the graphicle clusters. The resolution of the graphicle mass his-
togram shows a striking improvement to resolution, when compared with the anti-kt
approach. Our model shows that it is able to learn patterns in these improved clusters,
resulting in a significant improvement in resolution to the anti-kr clusters, as well. In
particular, the double-sifting approach reduces the tail of high mass reconstructions
observed both from single-sift and anti-k1 approaches.

One possibility could be to produce a heatmap such as figure 11.5 on the test dataset
after training the GNN model. Then, when the model is evaluated on new examples, a
histogram of its confidence scores might be matched to the closest row in the heatmap,
which would approximate the error.

Regression approaches with deep learning are also possible. Again, one could produce
a confidence score heatmap as in figure 11.5, storing annotating each individual event
with the error. Then it would be possible to aggregate the node-level and / or
edge-level features to obtain a global embedding for the event, and use this as an
input to a MLP which undergoes supervised learning with the mass errors as targets.
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Figure 11.5: Heatmap representing the model’s confidence at various levels of error,
where a perfect reconstruction is at m = 50%. Each row are the distribution of confi-
dence scores for the nodes in all events within that mass reconstruction error range.

It would be interesting to explore whether the application of CNNs to analyse the
heatmaps directly could provide meaningful error bars on the reconstructed clusters.
We leave these ideas for future work, but figure 11.5 shows great promise to provide
these important experimental insights.
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Conclusions

This thesis has explored the application of GNNs for reconstructing boosted objects at
the LHC. The structured data inherent in collider physics simulations has been
utilised to produce high-fidelity labelled data, suitable for various supervised ML
pipelines. GNNSs in particular have demonstrated their utility by reproducing these
labels on individual detector-level particles, successfully reconstructing Higgs and top
quark clusters without the need for jet tagging. The work presented here has offered a
exploratory analysis of the theoretical underpinnings, software contributions, and

experimental validations that define this approach.

12.1 Summary of key findings

1. Graph representations for collider data: the introduction of graph-based data
representations, specifically tailored for high-energy physics, has enabled more
expressive and flexible modelling of particle interactions. By encoding
detector-level particles as graph nodes and their relationships as edges, GNNs
have shown significant promise in capturing the complex dependencies in
collision events.

2. State-of-the-art performance in reconstruction tasks: utilising GNN
architectures tailored for boosted object reconstruction, this thesis has
demonstrated superior performance in reconstructing the mass distributions of
Higgs bosons and top quarks. Techniques such as bright-edge classification and
cluster double sifting have further refined the clustering process, improving
downstream intelligibility, reducing noise, and enhancing resolution.

3. Hierarchical Label Generation Using Monte Carlo Data: The exploitation of
ancestry information from Monte Carlo event generators to create high-quality
supervision labels represents a significant methodological advancement. By
bridging the gap between theoretical event generators and experimental
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12.2

detector data, this approach has improved the training and evaluation of
machine learning models in particle physics. These methods have been made
easily accessible as free and open software on GitHub and the Python Package
Index (PyPI), see:

¢ graphicle, (Chaplais and Cerro, 2025)
® colliderscope, (Chaplais, 2025a)

* showerpipe, (Chaplais, 2025¢)

* heparchy, (Chaplais, 2025b)

Contributions to the Field

The development and validation of graph-based methods for collider data analysis

contribute to the broader adoption of machine learning techniques in high-energy

physics. Specific contributions include:

12.3

Software ecosystem: the creation of graphicle and related tools provides an
extensible framework for handling heterogeneous particle physics data. By
combining semantic data structures with efficient relational querying, this
ecosystem supports the needs of both experimentalists and theorists at their
computational intersection.

Methodological innovations: the application of IRC-safe message passing
techniques to IN architectures, and novel simulation-based clustering
techniques, has expanded the applicability of ML in HEP. This has provided
robust solutions to longstanding challenges in event reconstruction, particularly
regarding reconstruction of hard partons possessing QCD charge.

Theoretical insights: by integrating principles of QCD into ML pipelines, this
thesis has highlighted the potential for cross-disciplinary approaches to yield

significant scientific insights.

Future Directions

While the results presented here mark significant progress, several avenues for further

research remain open:

1.

Generalisation across datasets: extending the methods to other physics
processes, such as the pp — tt decay channel, will validate their robustness and
explore their generalisability. In particular exploring to what extent trained
models can be fine-tuned for these different decay channels.


https://graphicle.readthedocs.io/en/latest/api/graphicle.data.Graphicle.html
https://github.com/jacanchaplais/colliderscope
https://github.com/jacanchaplais/showerpipe
https://github.com/jacanchaplais/heparchy
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2. Real-time applications: Investigating the deployment of GNN-based algorithms
in real-time event reconstruction pipelines at the LHC could enable more
efficient data processing and trigger systems.

3. Diverse training data: Bridging the gap between simulation-based training and
real detector data remains an important goal. Future work should focus on
aligning with experimental tracks and towers instead of particle-level data,
while incorporating systematic uncertainties and detector effects!. At the same
time, we could make resourceful use of our existing simulated data by
introducing noise. This would enable uncertainty estimates and allow us to
perform robustness studies on our GNN models.

4. Exploration of new architectures: other research has shown that GNNs may be
further extended to leverage rotational symmetry about the longitudinal axis,
and provide Lorentz equivariance. These inductive biases could further enhance
performance and theoretical consistency. Additionally, given that the second sift
in the clustering process uses a fully connected graph, the GNN setup is
analogous to a transformer architecture. Cross-pollinating the rapid
advancements of transformer-based models into cluster double sifting, driven
by the current boom in large language models, could offer further directions for

improvement.

12.4 Final Thoughts

The application of GNNs to event reconstruction at the LHC represents a
transformative shift in how particle physics leverages machine learning. This will be
particularly important as we prepare for the upgraded HL-LHC, which will result in
far more dense and complex data, which GNNs show promise in scaling well against
(Thais et al., 2022). By encoding the rich structure of collider data into graph
representations, this work has demonstrated the ability to reconstruct boosted
particles without relying on traditional jet clustering algorithms at any stage of
training or inference. Importantly, these methods introduced a novel approach to
producing clusters of hard partons with a QCD colour charge, advancing beyond
previous work that primarily focused on colour-singlet bosons. As the field continues
to evolve, the methods and findings of this thesis will serve as a foundation for future
innovations, advancing the search for new physics and the understanding of

fundamental particles and forces.

! Additionally, great deal of simulated and experimental used for studies at CERN is collated on
https://opendata.cern.ch/. These would serve as valuable benchmarks for future studies.
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Appendix A

Converting motherList to COO edges

The algorithm for extracting particle ancestry as a Directed Acyclic Graph (DAG) in
COO adjacency list format operates in a series of clearly defined phases. It takes as
input a list of particles, each of which has methods for accessing its parents and
children, and produces a COO representation of the particle ancestry structure.

Step 1: Initialization

The algorithm begins by initializing three key structures:

1. parents: A list to store the indices of all particles.

2. children_groups: A list of sorted child indices for each particle. Particles without
children are assigned a unique pseudo-negative ID.

3. rooted_ids: A list of particle indices for those with no parents, representing the
roots of the DAG.

Additionally, a vertex map (vertices) is created as a dictionary to associate groups of

child particles with their corresponding parent particles.
Step 2: Group Parents and Children

For each particle in the input list:

¢ The particle’s index is added to parents.

¢ If the particle has children, their indices are sorted and stored as a tuple in
children_groups. Particles without children are assigned a pseudo-ID to signify
their leaf status.

¢ Particles with no parents are added to rooted_ids.

A root vertex is then explicitly added to the vertices map, linking the collected
rooted_ids to a special vertex ID of 0.
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Step 3: Construct Vertices

Using the children_groups and parents lists, the algorithm iterates over each particle to
populate the vertices map. This map associates each unique child group with the

parent particles involved in that interaction.
Step 4: Assign Vertex IDs

Vertex IDs are assigned sequentially to each entry in the vertices map. Two
dictionaries, incoming_dict and outgoing_dict, are created to map particle indices to

their corresponding vertex IDs:

¢ Incoming particles use the vertex as their destination (dst).

* Outgoing particles use the vertex as their source (src).

Step 5: Generate Edges

Using the mappings from incoming_dict and outgoing_dict, the adjacency list is
constructed by pairing source (src) and destination (dst) vertex IDs for each particle.
This ensures that the graph representation reflects the original ordering of particles

provided in the input.
Step 6: Output

The resulting edges are stored in a structured NumPy array, ensuring compatibility
with downstream analyses. The COO adjacency list is returned as the final output.
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Algorithm 1: Extract Particle Ancestry as a DAG in COO Format

Input: Particle list P, where each particle has parent and child access methods.
Output: COO adjacency list £ representing the DAG.
Initialize empty lists: parents, children_groups, rooted_ids;
Initialize an empty vertex map vertices < {};
foreach particle p; € P do
Add p;.index() to parents;
if p; has children then
‘ Add sorted child indices as a tuple to children_groups;
else
t Add —i to children_groups (pseudo-leaf ID);

if p; has no parents then
t Add pj.index() to rooted_ids;

Add a root vertex to vertices with rooted_ids mapping to ID 0;
foreach (children,parent) in (children_groups,parents) do
t Append parent to vertices[children];

Assign vertex IDs to vertices and build mappings incoming_dict and outgoing_dict;
Generate edges by pairing incoming_dict and outgoing_dict for all parents;

Store the edges £ as a structured array;

return &;
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Appendix B

Proof: removing cluster constituents
lowers mass

Consider two momenta, p, = (E,, Pa) and p, = (Ey, Pp). Their masses are m, and m;,

respectively. The mass generated by their sum is M.

Lemma: the mass M,;, generated by combining momenta is always greater than the

mass of the individual constituents.

That is, removing recombined constituents never results in an increased mass, or
Mgy, > mg and Mg, > my,.

Mass m is found by taking the difference of squares between mass and

three-momentum,

m? = E? — |p|?. (B.1)
For all timelike or lightlike particles:

E>|p|. (B.2)

Also,

|Pa+ Dol < [Pal + |Pol, (B.3)
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because there may be some component-wise cancellation in the magnitude of the sum,

not present in the sum of the magnitudes of 3-momenta.

So, if

M2, = (Eqa+ Ep)* — |Pa + Pl (B.4)

then

M2, > (Eo+ Ep)* = (|Fal + 1P0])?

2_ |72 2|72 = 7 (B.5)
> Eq — |Pal™ + Ey — |Pb]” + 2(EaEp — |Pal [Py ])-
But we notice that E,E, — |P,||Ps| > 0, due to equation B.2, which implies:
Mgb > mﬁ + mi, (B.6)

and consequently that both conditions M2, > m? and M2, > m? are simultaneously

satisfied.

This generalises to the mass generated by combining any number of particles, since

the momentum p, may be split an arbitrary number of times.
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Appendix C

Performance benchmarks for

graphicle

While exploring the FOSS contributions of this thesis, we have taken into
consideration design, performance, and numerical stability. While it would be difficult
to enumerate all of the decisions we have made, it is useful to consider the strengths
and trade-offs present in our main analysis package, graphicle. To that end, we

explore the computation of mass in a MomentumArray instance.

To start, let’s write a basic numpy implementation of a mass calculation for
four-momentum. The equation for mass is

m* = p,p" = E* — |p[%, (C.1)

s0 we can write a function like so

import numpy as np

import numpy.typing as npt

def calculate mass numpy(
px: npt.NDArray[np.float64],
py: npt.NDArray[np.float64],
pz: npt.NDArray[np.float64],
pe: npt.NDArray[np.float64],
) -> npt.NDArray[np.float64]:
spatial_mag sq = (px * px) + (py * py) + (pz * pz)
energy sq = pe * pe
mass_sq = energy sq - spatial mag sq
sign = np.sign(mass_sq)

return sign * np.sqrt(np.abs(energy sq - spatial mag sq))
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Notice that here we have used np.sign() to extract the signs of the squared difference.
We have noticed a convention in HEP software packages propagate the signs of the
squared mass to the mass itself, rather than representing it as an imaginary number,
and we follow suit. That is, if E? — |p|?> < 0, then the mass will be given as

—VE —Ip~

Let’s get some dummy four-momentum data to test this on. We can do this using
MomentumArray. from_spherical_uniform(), which samples randomly from a spherical

uniform distribution.

import graphicle as gcl

pmu = gcl.MomentumArray.from spherical uniform(

size=10 000, max_energy=100.0, massless=0.01

We can use the %%timeit magic command in a Jupyter notebook to see how fast our

numpy implementation is.

%%timeit

mass = calculate mass numpy(pmu.x, pmu.y, pmu.z, pmu.energy)
63.1 ps + 136 ns per loop (mean + std. dev. of 7 runs, 10,000 loops each)

So our pure numpy solution took 63.1 yis. Before we can compare this against
graphicle’s implementation, we must ensure that they produce similar results. We can
do this with np.isclose(). Note that here we set an absolute tolerance of 107> GeV,
which means we are taking differences of ~ 10 keV to be negligible. Given that
electrons have a mass of 511 keV, this is a reasonable choice.

When we access MomentumArray.mass, under the hood a similar computation is

performed by graphicle, and the resulting array is exposed as an attribute.

mass_gcl = pmu.mass

mass_np = calculate mass numpy(pmu.x, pmu.y, pmu.z, pmu.energy)

if np.all(np.isclose(mass _gcl, mass _np, atol=1.0e-5)):

print("The two mass calculations are very similar.")
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The two mass calculations are very similar.

So within our tolerance, the mass calculations from our numpy implementation and

graphicle are the same. Now we time our graphicle implementation.

%%timeit

mass = pmu.mass

8.66 ns + 0.108 ns per loop (mean + std. dev. of 7 runs, 100,000,000 loops
each)

graphicle appears to be 4 orders of magntiude faster, with a speed of 8.66 ns; however,
this is because MomentumArray automatically caches many of its attributes after first
computation, to prevent duplicate computations. While this does improve
performance in a sense, timing the calculation is complicated. We can resolve this by

clearing the cache, by deleting the mass attribute.

%%timeit
mass = pmu.mass

del pmu.mass

34.6 ps + 83.5 ns per loop (mean + std. dev. of 7 runs, 10,000 loops each)

Clearing the cache gives a more accurate view on the performance of the graphicle
implementation. So, graphicle achieves a 45% speedup to our basic numpy
implementation. This is possible with numba JIT compilation.

If we JIT compile our basic implementation with numba, we can see how the speed is
affected.

import numba as nb

@nb.njit
def calculate mass jit(
px: npt.NDArray[np.float64],
py: npt.NDArray[np.float64],
pz: npt.NDArray[np.float64],
pe: npt.NDArray[np.float64],
) -> npt.NDArray[np.float64]:
spatial mag sq = (px * px) + (py * py) + (pz * pz)
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energy sq = pe * pe
mass_sq = energy sq - spatial mag sq
sign = np.sign(mass_sq)

return sign * np.sqrt(np.abs(energy sq - spatial mag sq))

%%timeit

mass = calculate mass jit(pmu.x, pmu.y, pmu.z, pmu.energy)

52.9 us + 18.9 us per loop (mean =+ std. dev. of 7 runs, 1 loop each)

As you can see, we do achieve a speedup of about 16% with JIT compilation, but this
is substantially less than with graphicle. This occurs because our JIT compiled
function operates on arrays; spatial_mag_sq, energy_sq, mass_sgq, sign, and the return line
are all allocated as new arrays to hold the computed values in memory. However, in
graphicle, we write our implementation using for-loops, enabling element-wise
computation. This allows us to perform only one array allocation, performing
multiple computations on a single element in memory before storing it as an output

array element.

However, we can actually achieve an identical result in numba using the vectorize
decorator instead of njit. vectorize creates what is known as a numpy UFunc. UFuncs
are short for “Universal Functions”, which operate on numpy arrays in an element-wise
fashion. They allow advanced features such as array broadcasting, and automatic type
casting. Other useful methods exist on UFuncs, like np.ufunc.outer, which performs
the outer product when the UFunc is np.multiply, outer difference when the UFunc is

np.subtract, etc.

Applying vectorize to our calculate_mass function will therefore convert it into a
UFunc, although since we have 4 input parameters, methods such as np.ufunc.outer

won't be available. The speed is shown below.

@nb.vectorize
def calculate mass vec(
px: npt.NDArray[np.float64],
py: npt.NDArray[np.float64],
pz: npt.NDArray[np.float64],
pe: npt.NDArray[np.float64],
) -> npt.NDArray[np.float64]:
spatial_mag_sq = (px * px) + (py * py) + (pz * pz)
energy_sq = pe * pe

mass_sq = energy sq - spatial mag sq
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sign exponent (8 bits) fraction (23 bits)
| I |
olo|1]|1]1]|1|1|0|o]o|1|0|0|0|0O|0O|0O|O|0O|O|O|O|O|O|0O|O|O|O|O|O|O|O] = 0.15625
31 30 23 22 (bit index) 0

Figure C.1: Depicting the bit layout of a 32-bit floating point number (Wikipedia con-
tributors (2025a)).

sign = np.sign(mass_sq)

return sign * np.sqrt(np.abs(energy sq - spatial mag sq))

%%timeit

mass = calculate mass vec(pmu.x, pmu.y, pmu.z, pmu.energy)
20.7 ps + 21.7 ns per loop (mean + std. dev. of 7 runs, 10,000 loops each)

As promised, this yields a much better speedup of about 67%. This is, in fact, much
better than the 45% speedup from graphicle. This reduction in speed is a trade-off we

made while writing graphicle, in favour of numerical stability.

In our computational work, we store numbers with floating point representations. The
IEEE 754 standard defines float32 numbers using 32-bits, with 1 bit to store the sign of
the number (positive or negative), 23 bits to store the mantissa (which is a fraction in
base 2), and 8 bits to store the exponent (also in base 2). Figure C.1 visually shows this
layout, with thanks to Wikipedia contributors (2025a).

This is effectively standard form scientific notation, eg. representing x = 123.45 as

x = 1.2345 x 103, but rather than being written in base 10, it is in base 2. If I were to
subtract a number y with the same number of significant figures as x, but a different
exponent, we are likely to encounter a loss of information, eg.

1.2345 x 10° — 5.6789 x 107! = 1.2288 x 10°. In this operation, we’ve lost all digits for
the positions between 1073 — 107 in y.

This is often tolerable for numbers with large differences in exponential scale, since we
rarely need accuracy to very large numbers of signicant figures. However, the
problems gets much worse as the numbers become more similar. In fact, for numbers
with the same exponent, and only very small differences in their mantissa, it becomes

catastrophic.

Formally, the loss of precision that occurs when two very similar numbers are
subtracted from one another is called Catastrophic Cancellation. If two numbers are
close together in floating point representations, a large number of their mantissa bits
will be identical (left-to-right). When they are subtracted, the identical digits become
zeroed out, and the remaining digits are shifted left, until the first bit of the mantissa is
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nonzero (1). The exponent is also changed to reflect the reduction in magnitude of the

number.

Therefore, if the mantissas of two float32 numbers were identical up to the 16th bit,
the 7 bits at the end of the mantissa are shifted left during the subtraction, and the
exponent is reduced by 16. It follows that what fills the 16 spaces now to the right of
the 7 significant bits is not signicant; it’s noise. Reducing the number of significant bits
in the mantissa from 23 to 7 is a substantial loss in precision, hence the name
“Catastrophic Cancellation”. Note that we are actually using 64 bit floating point
numbers, float64, but the principle is the same.

In our work, we study very high energy particles. For such particles, a large fraction
of their energy is made up of their spatial momentum. This means that equation ??

might result in Catastrophic Cancellation.

Additionally, loss of precision due to differences in exponential scales are common
when squaring and taking their sum / difference, since existing differences in
exponential scale get exaggerated when squared.

The fix is simple. We rewrite the mass formula as

m=/E—~Iply/E+p| €2

Of course, if E and |p| are extremely close, we can’t avoid Catastrophic Cancellation.
But it is less likely for less extreme cases, because by performing the difference
operation in linear space, rather than quadratic space, we avoid rounding errors.
Additionally, by square rooting the difference and sum prior to taking their product,
we avoid quadratic space altogether, which again protects our result from rounding

error.

An equivalent operation in numpy could be:

@b.njit

def magnitude(x: float, y: float, z: float) -> float:
max_component = max(abs(x), abs(y), abs(z))
max_recip = 1.0 / max_component
X *= max_recip
y *= max_recip
z *= max_recip

return max_component * np.sqrt(x * x +y *y + z * z)

@nb.vectorize
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def calculate mass stable(
px: npt.NDArray[np.float64],
py: npt.NDArray[np.float64],
pz: npt.NDArray[np.float64],
pe: npt.NDArray[np.float64],
) -> npt.NDArray[np.float64]:
spatial mag = magnitude(px, py, pz)
diff = pe - spatial mag
sign = np.sign(diff)
return sign * np.sqrt(np.abs(diff) * (pe + spatial mag))

Where we have found the magnitude of a three-vector via another numerical trick; we
divide all components by the largest component. The result is that the largest
component become 1, and all other components are fractional. Therefore, the sum of
squares of the components will be between 1 - 3, and likely just a small fraction above
1. This avoids rounding error, and has the additional benefit that approximations of
/1 + x are more accurate when x is small (since square roots are often implemented

as a truncated Taylor expansion).

Timing this gives

%%timeit

mass = calculate mass stable(pmu.x, pmu.y, pmu.z, pmu.energy)
65 s + 147 ns per loop (mean + std. dev. of 7 runs, 10,000 loops each)

This results in a similar performance as our pure numpy implementation. graphicle
improves upon this by using for-loops explicitly with njit, reducing the overhead
introduced by vectorize. Additionally, cached versions of intermediate variables such
as spatial_mag (which is often used for computing other attributes during analyses)

improves performance.

Ultimately, graphicle attempts to trade-off performance for numerical stability. The
specific choices we made when writing graphicle make it difficult to benchmark it
against other libraries (such as Scikit-HEP’s Vector), for each individual routine we
have written, and how we have tailored it to intended use-cases. However, a detailed

analysis of this would be excellent for future work.
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Appendix D

Top quark reconstruction with
ancestry information using jet

images

In the late stages of drafting this thesis, one recent ML algorithm was uncovered to
attempt top quark reconstruction from the set of detector-level particles in collision
events (Choi et al., 2023). Detailed analysis and results comparisons in the main body
of this thesis were not possible, as this work came to our attention late in the editing
phase approaching submission, but we congratulate the authors for their work. Their
model yields high performance and the areas of top jet tagging and mass prediction
via regression, further vindicating the usage of ancestry-based Monte-Carlo
simulation knowledge in the preparation of supervision labels for reconstructing
colour charged partons. We hope that our contribution will bring additional attention
to these techniques for the community at large, and more resourceful use of
Monte-Carlo ancestry information will continue to bridge the gap between theory and

experiments via computational simulations.

Despite this, we briefly highlight some limitations of their approach which our

method improves upon.

The authors provide supervision labels by using a similar approach to ours, using
Monte-Carlo truth based ancestry, overcoming ambiguous parentage detector-level
particles descending from the top quark by assigning it if its close to the top in 7 — ¢
space. However, the authors add ambiguous final state particles to top quark jets until
a desired mass has been reached, namely 1.05 X ., where myp is the accepted mass
of the top quark from existing theory and measurement. This is in contrast to our

approach, which does not enforce consistency using prior knowledge, avoiding bias.
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The model applied frames particle reconstruction as an image segmentation problem,
learning masks over the images. This is an interesting and exciting use case for jet
images, however it comes with limitations. Namely, it does not provide the set of
constituents of the top quark from the final state particles in the model’s readout, so
reconstructing momentum via summation is impossible. The authors instead use a
regression model to predict the mass based on the masks segmenting the images,
using the mass obtained from Monte-Carlo truth. This, however, is also biased from
the prior knowledge of the top mass which they explicitly enforce in the construction

of their Monte-Carlo truth clusters.

While the authors do not explore infrared and collinear safety considerations in their
calculations, collinear safety seems likely due to collinear splits in the 17 — ¢ plane
being captured within the same mask. However, it seems unlikely that infrared safety
can be intrinsically ensured with this technique, since without pr cuts, soft emissions

would change the jet image (though this may be mitigated with pr weighting).

D.1 Disclaimer

We would like to note that our methods — refining ancestry with momentum
comparisons of detector-level cluster constituents vs. the hard partons — were
published with the official release of graphicle v0.2.4 on February 23rd 2023, prior to
the first appearance of Choi et al. (2023)’s pre-publication on arXiv. Our method was
subsequently presented later that same year, at PyHEP23 (Chaplais, 2023), while
demonstrating our package ecosystem. Our approach was developed concurrently,
but independently, to that of Choi et al. (2023).

Prior to both works, to the best of our knowledge, simulation-based ancestry had not
been used in this way to produce reconstructions for coloured partons, such as the top
quark. We are excited to see further adoption of such techniques, and how these might

bridge the gap between the theory encoded in simulations with experimental analysis.


https://graphicle.readthedocs.io/en/0.2.4/api/graphicle.matrix.parton_hadron_distance.html
https://arxiv.org/abs/2302.13460v1
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