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Abstract—Learning-based Multi-View Stereo (MVS) meth-
ods, typically reliant on cascaded cost volume formulations,
perform well on small-scale scenes. However, as the depth range
of captured images becomes broader and more varied, the coarse-
to-fine d epth s ampling p rocess, w hich d epends s olely o n feature
matching, is increasingly prone to local optima. Despite recent
advancements in feature representation, depth sampling patterns,
and cost aggregation techniques, challenges related to model
generalization and computational efficiency persist. In this paper,
we propose SR-MVSNet, a novel framework that integrates
multi-view feature matching and RGB-D cross-modal structural
consistency learning to achieve high-quality 3D reconstruction.
Our approach begins with the construction of Low-Resolution
(LR) cost volumes for initial LR depth estimation, which are
then enhanced to full-resolution via a tailored uncertainty-
aware guided depth super-resolution module. To ensure cross-
view consistency, the depth maps undergo further refinement
through multi-view feature matching. By avoiding high-resolution
cost volume processing, our framework improves depth esti-
mation robustness and efficiency. A dditionally, w e i ntroduce an
iterative depth fusion post-processing strategy during inference
to improve reconstruction in ambiguous matching regions, a
critical challenge for MVS methods. Experiments show that our
method achieves top-3 performance on the DTU and Tanks
& Temples datasets and ranks first o nt he E TH3D dataset.
Furthermore, it uses significantly fewer GPU resources than most
high performing methods, offering a favorable trade-off between
reconstruction quality and computational efficiency.

Index Terms—Multi-view stereo, depth estimation, guided
depth super-resolution, 3D reconstruction.

I. INTRODUCTION

Multi-View Stereo (MVS) aims to reconstruct 3D struc-
ture of objects or scenes using images captured from multiple
known camera viewpoints. Traditional MVS methods [1], [2]
have relied on hand-crafted image features and matching
metrics, allowing accurate reconstruction in well-textured,
ideal Lambertian regions but adversely impacted by occlusions
and varying lighting conditions. To address these limita-
tions, recent deep learning-based approaches [3]-[6] employ
Convolutional Neural Networks (CNNs) to extract high-level
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image features that enable more reliable matching, leading to
improved performance on various MVS benchmarks [7]-[10].
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Fig. 1: Comparison with recent [11]-[13] and coarse-
to-fine [14]-[22] methods on the DTU, Tanks & Temples, and
ETH3D benchmarks [7]-[9]. Our approach demonstrates competitive
reconstruction performance while utilizing less GPU memory than
most existing methods.
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Learning-based MVS approaches typically follow the
cost volume pipeline [3], which constructs 3D cost volumes
using generated depth candidates to capture feature match-
ing between reference and source views. These volumes are
then processed by 3D CNNs for cost aggregation, enabling
depth map inference. A straightforward way to improve depth
estimation accuracy is to increase the number of depth can-
didates (e.g., [23], [24] use 256 candidates). However, this
significantly increases memory usage and slows inference.
To address this trade-off, previous methods [14], [15] have
employed cascaded cost volumes, progressively increasing
the feature map resolution while reducing the number of
depth candidates, focusing on a narrower range around the
previously estimated depths. This coarse-to-fine strategy offers
a balance between accuracy and efficiency and has been
widely adopted. Further performance improvements and mem-
ory optimization have been achieved through advanced feature
representations [17], [18] for more robust feature matching
and through optimized cost aggregation modules [19] as
alternatives to 3D CNNs. Additionally, several studies have
focused on refining pixel-wise depth candidate sampling to
create more efficient cascaded cost volumes [11]-[13], [20],
with some incorporating iterative processes to reduce memory
consumption.

Despite these advancements, cascaded cost volume meth-
ods [11], [12], [14]-[22], [25] often struggle to balance
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Fig. 2: The left and right diagrams illustrate the key differences between conventional cascaded MVS methods and our proposed framework.
The left diagram represents standard cascaded MVS approaches, which build cost volumes across multiple scales for depth estimation
and perform a one-time geometric consistency check during post-processing for depth fusion. The right diagram depicts our method, which
replaces HR cost volumes with an uncertainty-aware Guided Depth Super-Resolution (GDSR) module and a matching-based depth refinement
module. Additionally, we introduce an iterative depth fusion strategy to enhance reconstruction quality, particularly in regions with ambiguous

matching issues.

performance with memory usage. Most of these methods
require at least 4000 MB of memory to estimate depth at
resolutions around 1200 x 1600, as depicted in Fig. 1. Further-
more, they often face challenges when handling large-scale
scenes in benchmarks such as Tanks & Temples (TnT) [8]
and ETH3D [9], particularly with fewer images per scene.
Previous studies have shown that GPU memory usage and
runtime increase cubically with the resolution of the cost
volume, rendering full-resolution cost volume processing and
depth estimation highly computationally expensive. Besides,
as the scene scale expands and the image number decreases,
the depth range for each view becomes broader and varied.
This makes it challenging for the progressively narrowed
depth sampling in the cascaded architecture to consistently
cover the ground truth accurately. Meanwhile, ambiguous
matching situations become severe. Both negative aspects
lead to degradation in reconstruction performance. Then, a
motivating question arises: Is there an alternative approach
to achieving high-quality, full-resolution depth estimation that
minimizes the negative impact of unreliable matching results
while maintaining algorithmic efficiency?

Our intuitive idea is to achieve depth estimation by
leveraging not only multi-view feature matching results but
also the semantic and structural consistency between RGB-
D modalities. To this end, we propose a novel “cost volume
+ depth super-resolution” framework (as shown in Fig. 2).
This involves constructing Low-Resolution (LR) cost vol-
umes to estimate the LR depth map, which is subsequently
super-resolved to full-resolution using the corresponding full-
resolution RGB image as a structural guide. Compared to
directly handling High-Resolution (HR) cost volumes, our
Guided Depth Super-Resolution (GDSR) manner is less sensi-
tive to variations in depth range and operates more efficiently
in 2D space. However, existing GDSR methods [26]-[28]
cannot be directly applied to our MVS task, as they typically
assume that the input LR depth map is from a single view
and is only affected by reduced spatial resolution and noise,
with regular sampling and no outliers. More importantly,
these methods focus on exploring structure-consistent content
between the LR depth map and the HR guidance image
without considering multi-view geometric constraints, as this

falls outside their research scope. In contrast, LR depths
derived from cost volumes in our framework are prone to
outliers due to ambiguous matching, and the enhanced full-
resolution depth map needs to consider critical multi-view
feature matching consistency.

To address the issue of handling LR outliers and am-
biguity, we propose an uncertainty-aware GDSR approach
for matching-based LR depth super-resolution, extending the
classic GDSR method, AHMF [27]. Our approach is driven
by two key modules: a Cost Feature Extraction (CFE) module
and an Uncertainty-aware Multi-modal Fusion (UMF) module.
The CFE captures unreliable LR estimates by applying entropy
to the cost volume along the depth dimension, effectively ac-
tivating cost features in regions of high uncertainty. The UMF
module then integrates depth, cost and guidance features into
an uncertainty-aware mutual structure feature representation,
facilitating RGB-D structurally consistent HR depth predic-
tion. To further enhance this learning process, we incorporate
a confidence mask in the loss function. This mask encourages
larger residual corrections in uncertain regions where cost
features are activated, while preserving reliable estimates in
well-matched areas, ensuring a balance between correction and
stability.

To ensure geometric consistency, we propose a matching-
based refinement module that involves explicit multi-view
geometric constraints to further optimize the obtained depth
maps. Specifically, refinement is performed through depth self-
reintegration of learnable neighboring information, weighted
by their feature matching scores.

Furthermore, we propose an iterative depth fusion post-
processing strategy (as shown in Fig. 2) to improve the
reconstruction performance of ambiguous matching regions.
Our post-processing alternates between conventional geomet-
ric consistency filtering and filtered depth self-reintegration, a
simplified, non-parametric version of our previous matching-
based refinement step. By progressively filtering outliers and
reintegrating cross-validated points across iterations, our ap-
proach generates accurate and complete reconstruction.

Our main contributions are summarized as follows:

- A “cost volume + depth super-resolution” framework.
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We introduce an uncertainty-aware guided depth super-
resolution module to replace the processing of HR cost vol-
umes. By integrating feature matching with RGB-D struc-
tural consistency learning, our method enhances matching-
based LR depth maps to full resolution, improving both
robustness and efficiency of depth estimation.

- A matching-based depth refinement module. We propose
a feature matching-based depth self-reintegration procedure
to ensure multi-view consistent final depth estimation.

- An iterative depth fusion post-processing strategy. We
alternate between conventional geometric consistency filter-
ing and simplified filtered depth self-reintegration to im-
prove reconstruction performance in regions with ambiguous
matching issues.

Experimental results demonstrate that our approach
achieves competitive reconstruction performance on the DTU,
TnT, and ETH3D benchmarks [7]-[9], while reducing memory
usage compared to most learning-based methods [11], [12],
[14]-[22], [25]. This highlights the advantages of our approach
in terms of both generalization and efficiency (see Fig. 1).

II. RELATED WORK
A. Learning-Based MVS

The advent of deep CNNs has greatly advanced MVS
3D reconstruction. The seminal work MVSNet [3] introduced
an end-to-end pipeline combining 3D cost volume formulation
with 3D CNN regularization. However, the high computational
and memory demands limit input resolution. To address this,
previous studies like CasMVSNet [15], UCSNet [14], and NP-
CVP-MVS [29] introduced cascaded cost volumes to reduce
memory usage. Recent works have focused on enhancing
feature representation [17], [18] [30] and optimizing cost
aggregation [19], [31] [32]. CDS-MVS [17] enhanced fea-
ture representation by computing normal curvature along the
epipolar line. MVSTR [30] introduced intra-view and cross-
view Transformer modules to improve 3D-consistent feature
learning across multiple views. MVSFormer [18] leveraged
pre-trained Vision Transformer (ViT) models to facilitate
feature extraction in the MVS task. MVSTER [31] and WT-
MVSNet [19] designed epipolar-guided, window-based cost
transformers to generate more complete and smoother proba-
bility volumes. Most recently, GoMVS [32] proposed a geo-
metrically consistent cost aggregation process that effectively
integrated adjacent pixel costs, leading to improved depth
estimation accuracy.

Some other works have employed pixel-wise depth sam-
pling to formulate more fine-grained cost volumes [11], [12],
[20], [25], [33]-[35]. PatchmatchNet [12] introduced depth
propagation by sampling from learnable neighboring loca-
tions but lacked consideration of the implicit depth distribu-
tion within scenes. DS-PMNet [33] addressed this with the
DeformSampler, which learns a distribution-sensitive sample
space. NR-MVSNet [34] generated depth candidates from
neighboring pixels with similar normals. UGNet [20] and
ARAI-MVSNet [35] proposed uncertainty-guided sampling
to adaptively adjust the depth search range, creating more
compact cost volumes. GBi-Net [11] introduced a generalized

binary search strategy for efficient depth candidate generation.
Building upon this, ICV-Net [13] integrated a dense-to-sparse
search mechanism with identity cost volumes, further reducing
memory overhead and showing stronger robustness in the early
stages.

To reduce GPU memory consumption, several meth-
odss [11], [12], [25] adopted iterative processes that sample a
small number of high-probability depth candidates in each iter-
ation to formulate cost volume at the same size multiple times.
Although this strategy significantly reduces computational
demand, the extremely limited number of depth candidates
sampling inevitably sacrifices generalization to large scenarios
to some extent.

Beyond improving depth estimation, several works focus
on the quality of the reconstructed point cloud. DMVS-
Net [21] proposed predicting two depth values per pixel
and selecting the final value using a checkerboard-shaped
strategy, thus reducing errors from interpolation during the
multi-view fusion post-processing step. Other studies refine
the widely used one-time photometric and geometric filtering
strategy from MVSNet [3], which requires multiple heuristic
hyper-parameters. D?HC-RMVSNet [36] proposed a dynamic
consistency filtering strategy for generating more accurate,
reliable dense points. More recently, HAMMER [22] reduced
manual parameter tuning by learning an entropy-based filtering
mask combined with two-view geometric verification.

In contrast to existing cascade-based MVS methods
that rely entirely on cost volume formulation for full-
resolution depth estimation, our framework (Fig. 2) propose
an uncertainty-aware GDRS module designed to incorpo-
rate mutual structural cues from RGB-D images for recov-
ering high-quality, full-resolution depth maps. By avoiding
the construction of HR cost volumes with narrow sampling
depth ranges, our method demonstrates advantages in handling
images with diverse depth ranges while maintaining lower
resource demands. Additionally, unlike conventional single-
pass depth fusion post-processing, our iterative fusion strategy
improves the reconstruction of ambiguous matching regions by
reintegrating cross-validated points across multiple iterations
until convergence.

B. Guided Depth Super-Resolution (GDSR)

GDSR utilizes the HR color image to enhance the
spatial resolution of the corresponding LR depth map. It
has been primarily applied to depth data from active sen-
sors, i.e., consumer-level time-of-flight cameras or structure
light scanners, and aligned color imagery from internally
fixed digital cameras. Various approaches have been proposed
over the last few years, including filtering-based [37], [38],
optimization-based [39]-[41], and dictionary learning [42],
[43] and deep learning [27], [28], [44]-[46] techniques (see
survey [26] for more details). Different from color image
super-resolution methods that adopt a single-branch network,
most deep learning-based GDSR methods [27], [28], [44]
utilize dual-branch architectures to extract depth and color
features independently and then fuse them to rebuild HR
depth maps. However, naive multi-modal feature fusion by
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Fig. 3: The overall architecture of SR-MVSNet. LR cost volumes are constructed for matching-based LR depth estimation at W /4 x H/4.
The last cost volume, probability volume, LR depth map, and HR reference image are then input into the uncertainty-aware guided depth
super-resolution module to predict the full-resolution depth map at W x H. The obtained depth map is subsequently refined through the
matching-based refinement module, which leverages multi-view feature consistency. Finally, the multi-view depth maps are fused into the

final point clouds using the proposed iterative depth fusion strategy.

concatenation or multiplication is subject to texture-copying
artifacts since features from different modalities are equally
treated. Recent works incorporated additional components to
improve fusion and suppress artifacts, such as residual learning
strategy [44], deformable convolutions [45], and co-structural
feature exploration [28]. The state-of-the-art AHMF [27]
adaptively selects and effectively fuses modalities through a
critical multi-modal attention-based fusion module (MMAF)
and further explores the complementarity of multi-level fused
features to realize HR depth reconstruction. However, existing
GDSR methods focus on improving spatial resolution and
assume LR inputs are regularly sampled without outliers. In
the context of MVS, we extend AHMF [27] to address the
uncertainty inherent in matching-based LR depth. The pro-
posed uncertainty-aware guided depth super-resolution module
seamlessly integrates with the MVS task, facilitating efficient
and reliable full-resolution depth estimation.

III. METHODOLOGY

In this section, we introduce the detailed structure of
the proposed SR-MVSNet. We begin with an architectural
framework overview in Subsection III-A, which also briefly
introduces matching-based LR depth estimation from GBi-
Net [11]. The following subsections elaborate on three key
modules that enhance baseline performance:

- The uncertainty-aware GDSR module (Subsection III-B),
which is designed to predict full-resolution depth map from
matching-based LR depth map.

- The matching-based depth refinement module (Subsec-
tion III-C), which refines the depth map based on explicit
multi-view geometric constraints.

- The iterative depth fusion post-processing strategy (Subsec-
tion III-E), which is advantageous for complete and accurate
3D reconstruction in ambiguous matching regions.

Subsection III-D defines the loss functions used for
model training. These contributions collectively enhance the
robustness of HR depth estimation while balancing algorithmic
efficiency.

A. Network Overview

The overall architecture of SR-MVSNet is shown in
Fig. 3 Given a reference image Iy and several source images
{I, } 1> with I; € R3XWxH ' oxtrinsic transformation from
the reference to the source views {T;}.\ , intrinsic matrixs
{Kl-}ilio. SR-MVSNet aims to estimate the reference depth
map Dy € RW*H and fusing multi-view depth maps to
reconstruct scene 3D point cloud.

First, we conduct matching-based LR depth estimation
by iteratively constructing LR cost volumes four times using
generalized binary searched depth candidates [11]. Following
standard cost volume construction and regularization proce-
dures, including group-wise correlation, pixel-wise weighted
fusion, and 3D-CNN, we derive the LR depth label/map Dy,
cost volume V; € REXPXT T and probability volume
P, € RP *¥ x4 from the final iteration, with C 32
and D = 4, denotes the feature channel number and depth
candidate number, respectively. Our LR depth estimation phase
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consumes approximately half the memory compared to GBi-
Net, with detailed parameter settings provided in Appendix A.
Subsequently, the proposed uncertainty-aware GDSR and
matching-based depth refinement modules are employed to
achieve full-resolution depth estimation while ensuring multi-
view consistency. Although our method ultimately outputs
depth maps at the same resolution as mainstream MVS
approaches [3], [11], [18], the integration of RGB-D cross-
modal feature interaction and depth self-reintegration modules
strengthens both robustness and efficiency in depth estimation.
Finally, the estimated multi-view depths undergo iterative
fusion to produce dense 3D point clouds.

B. Uncertainty-aware GDSR

The proposed uncertainty-aware GDSR module predicts
full-resolution depth from matching-based LR inputs, guided
by HR image and uncertainty cues from LR cost volume. As
shown in Fig. 3, the input data includes HR reference image
I € R3>*WxH 1R cost volume V; € ROXDX¥ x4 [R
probability volume P € RP* T4 and LR depth D. We
adopt the GDSR model AHMF [27] as our baseline, with
upscale factor fixed at 4. Our uncertainty-aware GDSR follows
the four-step structure: (1) multi-modal feature extraction,
(2) multi-modal feature fusion, (3) bi-directional hierarchical
feature collaboration (BHFC), and (4) full-resolution depth
reconstruction. In our framework, we enhance the first two
steps to handle uncertainty in the input LR depth. The latter
two steps, BHFC and final depth reconstruction, remain con-
sistent with AHMF [27]. For brevity, these two steps are not
elaborated in the methodology. The key improvements in our
uncertainty-aware GDSR module, highlighted in red in Fig. 3,
are summarized as follows:

- A novel Cost Feature Extraction (CFE) module and an
associated cost branch are added in the multi-modal feature
extraction step to explicitly model the uncertainty in the LR
depth.

- We replace the core multi-modal feature fusion step of
AHMF with our Uncertainty-aware Multi-modal Fusion
(UMF) module, which more effectively integrates RGB and
depth features by incorporating uncertainty.

- During training, we normalize the HR RGB image and LR
depth map to [0, 1] as inputs and recover the predicted HR
depth map to its original scale before loss computation, en-
suring accurate depth prediction our MVS task. Additionally,
we introduce a novel confidence mask for loss calculation
to retain high-confidence LR estimates.

1) Multi-modal Feature Extraction: Our multi-modal
feature extraction includes three branches to extragt multi-level
depth, cost, and guidance features Ffi,FJ FJ } from LR

depth, cost volume and HR guidance separately. Helre m, the
number of layers for feature extraction, is set to 4, following
the baseline [27]. The depth and guidance feature branches
remain consistent with the baseline model, and an additional
cost feature branch has been introduced. In this new branch,
the proposed CFE module is first applied on the obtained cost
and probability volumes (V,Pr) to extract MVS-specific
cost feature FO. Subsequently, the cost feature is processed

using the same network structure as the other two branches.
The procedures of the three feature extraction branches are
detailed in Appendix A.

Here, we introduce the newly proposed CFE module,
designed to encode the uncertainty in matching-based LR
depths. It generates cost features F, which are selectively ac-
tivated in regions with high uncertainty. We begin by filtering
out unreliable matching results from the cost volume V, &
REXD* x4 ysing the probability volume P € RPXT X1
This step diminishes the scores of ambiguous matchings by
assigning lower probability values, formally expressed as:

c
_ Z P%w,h o ‘[z,d,w,h7
c=1
where ©® denotes element-wise multiplication. The confidence
map U; € R4, encoding depth uncertainty, is then
derived by applying entropy along the depth dimension:

1 YW, YW,
szu( gD ZPd " log(P; h)) @)

where log(D) normalizes the Values to the range (0, 1], and
fu(+) denotes a shallow 2D CNN to enhance the representation
ability, following [20], [47]. Next, the cost feature FS is
extracted from the filtered cost volume V', and the confidence
map Uy, as follows:

)

= Con? (|V},ULl), (3)

where |a, b|. denotes a cut-off function that outputs a when b
exceeds the threshold 7, and O otherwise. Com;(l) refers to a
1 x 1 convolutional layer that controls the cost feature channel
number to be 32. The hyper-parameter 7, representing the
confidence threshold, is set to 0.3 in this paper.

2) Uncertainty-aware Multi-Modal Fusion (UMF): Af-
ter extracting multi-modal features, the key step in our
uncertainty-aware GDSR is identifying and integrating rel-
evant multi-modal information, incorporating uncertainty, to
establish consistent structures for HR depth inference. Fol-
lowing the feature enhancement and fusion stages proposed
in [27], depth, cost, and guidance features are systematically
fused. First, reliable structures within each modality are em-
phasized to enhance depth, cost, and guidance features. Then,
depth-uncertainty and depth-guidance features are separately
identified to extract supportive signals, which are subsequently
fused into a unified uncertainty-aware mutual structure repre-
sentation.

Specifically, the feature enhancement stage employ gated
convolution [48] to obtain enhanced depth, cost and guidance
features (Fj s FJ FJ) formulated as follows:

v

Fé = (Convd 1(Fi1>) © d)(convd Q(Fgﬂ)
Fi = o(Comw),(F)))© ¢(Convi,(F])), 4
Fg = (Convg,l(FJ)) ® ¢(Conv (Ff,))7

where Com;d 1 C’onvd2, Conv’ PRE
C’onvi2 are convolutional kernels for depth, cost and guid-
ance, respectively, the subscripts 1 and 2 represent two differ-

ent convolutional operations, and ¢(-) is the sigmoid function

vl Com;vz, and Conv’
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to limit the output within the range of 0 and 1.

The feature fusion stage selectively emphasizes relevant
signals from the depth and guidance streams before fusion,
accounting for their distinct characteristics across depth, cost,
and guidance modalities. First, depth-uncertainty and depth-
guidance features are generated through concatenation, pool-
ing, and pixel-wise summation. These features are then mul-
tiplied to obtain uncertainty-aware mutual structure features,
denoted as (F7,). Finally, the depth-uncertainty (F7,) and
uncertainty-aware mutual structure (FZ,) features are further
encoded as excitation signals to guide the fusion of depth and
guidance features. Formally, this process is expressed as:

Fﬁl =0 C’onv?l([ﬁg,f‘{]) ,
Fly = o(Conv}, ([F5, ),
F!, = MaxPool (Fl,) + VarPool (F,),
Fl, = (Angool (FZQ) + VarPool(Fzz)) OF,, (5
Ei =9 CO””?@([lev FézD)v
EZ] =¢ C’onv;’4 (FJEQ)),
F, =E,0F,+E 0 FJ,
where [,-] denotes concatenation operation, Conv}lyn de-

notes convolutional operations, Eg and Efi are guidance and
depth features excitation signals, respectively, MaxPool(-),
AvgPool(-) and VarPool(-) indicate the maximal, average
and variance pooling operations, respectively. ch represents
the final fused multi-modal feature. As will be shown later
in Fig. 8 of Subsection IV-D Ablation Study, unlike the
baseline whose fused features exhibit error-copying artifacts,
our uncertainty-aware GDSR effectively mitigates such issues.
This underscores the effectiveness of the CFE and UMF
modules in accurately perceiving and handling the uncertainty
inherent in LR depth (encoded by the cost features), thereby
facilitating the exploration of correct mutual structures across
RGB-D modalities to achieve reliable HR depth prediction.

3) Supervision of Uncertainty-aware GDSR: After the
multi-modal feature fusion step, we employ the bi-directional
hierarchical feature collaboration (BHFC) and final HR depth
reconstruction (RC) blocks of AMHF [27] to output HR depth
Dgg, formulated as follows:

sr =RC({BHFC;(F),FLF})}, ),
DSR :Dg’R + DE)

(6)
(7

where DTL denotes the bicubic upsampled LR depth map. The
applied Super-Resolution (SR) loss and confidence mask are
described as follows:

1 1
ESR:MZHD%R*DSRHm+@ZMC”D/SR”1’ ®
Q Q

where (2 is the ground-truth reference depth valid region, ng R
is the ground-truth reference depth, ||-||; denotes the L1 norm,
and || - ||s1 denotes the smoothed L1 norm, while M. denotes
the proposed confidence mask.

The first term in Eq. (8) encourages global accuracy

in the depth super-resolution process. Different from AMHF
that formulates the loss function using the L1 distance in
the normalized space, we rescale the output HR depth to
the original depth range and replace the L1 distance with
the smooth L1 distance, to promote accurate depth value
prediction in our MVS scenario.

The second term, a residual loss, is devised to preserve
reliable matching-based depth estimates and enable large cor-
rections in uncertain regions. To supervise the residual depth
D’y . we introduce a confidence mask M., derived from the
upsampled LR confidence map UE as follows:

M.(p) = {exp (- (“hzs). vl <

207,

1, Ul(p) > e,
where UE (p) denotes the depth confidence of pixel p, derived
from Eq. (2) through the entropy operation along the depth di-
mension, while the parameter € signifies the confidence thresh-
old. When the confidence of a pixel exceeds ¢, indicating high
confidence, we assign the value 1 to the corresponding pixel
in the confidence mask. In these highly confident regions, the
residual depth is encouraged to remain small to preserve the
matching-based LR estimates. Conversely, for pixels falling
below the confidence threshold, a soft constraint is applied via
the pre-defined Gaussian distribution of mean p and standard
deviation o, to reduce the influence of their residuals (see
Fig. 11 of Appendix A for an illustration of Eq. (9)). In
ambiguous regions, the first term in Eq. (8) becomes dominant,
allowing the model to predict larger residual corrections. To
cautiously constrain depth residuals only for highly reliable
regions, hyper-parameters i, €, and o, are set to 0.9, 0.9, and
0.049, respectively.

€))

An example of resulting confidence mask will be shown
in Fig. 7(b) of Subsection IV-D Ablation Study. It aligns
closely with the upsampled LR error map in Fig. 7(i), indicat-
ing that our confidence mask can accurately identify reliable
point depths. In these regions, residuals are constrained to
remain small. Conversely, in less reliable areas, the first term
in Eq. (8) dominates, guiding RGB-D structure-consistent HR
depth prediction. A comparison between Fig. 7(j) and Fig. 7(k)
demonstrates a noticeable reduction in depth estimation errors
when incorporating the proposed confidence mask.

C. Matching-based Depth Refinement

After the uncertainty-aware GDSR step, we propose
refining the obtained depth map Dgp by incorporating critical
multi-view feature matching consistency, which is essential
for our MVS task. Inspired by learnable PatchmatchNet [12],
which utilizes deformable convolutions to find related neigh-
bor depths, our refinement involves depth self-reintegration
with learnable neighbor depths, weighted by their aggregated
feature similarity scores. Our intention is to evaluate the
reliability of current depth estimation through multi-view
observations and then reintegrate related neighbors to the final
refined depth, weighted by their reliabilities. Our refinement
process is more lightweight than the cost volume one because
the neighbor weights are computed based on their current esti-
mation Dgp, allowing evaluation with a single depth candidate
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rather than a set of candidates. For each pixel, we first sampled
K. related neighbor locations, which is determined by adding
two components: (1) Eredeﬁned grid offsets within the local
spatial window, {py},.°, , and (2) per-pixel adaptive offsets,
{ Apk}kK:"‘l, derived from the reference feature map Fg. Then,
the refined depth D(p) and the corresponding confidence map
U(p) are defined as follows:

1 Ke

D(p) =—7—— ) _m(p+pr+ Aps)
E?:el my ;
X Dsr(p+ pr + Apk), (10)
Ke
U(p) =Y m(p+pi + Apy), (11)
k=1

where K, is the hyper-parameter defining the number of sam-
pled neighbors, which is set to 12, and my, is the weight factor
of the k-th neighbor, calculated based on their aggregated
similarity scores.

The computation of neighbor similarity scores involves
common operations of the cost volume pipeline, including
differentiable warping, group-wise correlation and multi-view
cost aggregation operations. This process is formulated as
follows:

p =K, T(K;'Dsr(p)), (12)

S.(p)? =< (Folp)?, Fu(p)"). (13
Z]i_ll W; (P)Si(P)g

S(p)9 === , 14

P =S W) ()

m(p) =¢(Convi(S(p)?)). (15)

Given the reference and source feature maps, Fy,
{Fi}fil, and the intrinsic parameters, Ko, {K;};_;, the
extrinsic transformation from the reference to the source view
is denoted as T, based on the current estimation Dggr, and
the pixel coordinates p’ in source view ¢ corresponding to the
pixel p in the reference view can be calculated via Eq. (12).
The warped source feature is obtained through bilinear inter-
polation, denoted as F;(p’). Then, we organize the channels of
the feature maps into G groups along the channel dimension,
resulting in Fo(p)? and F;(p’)9. The similarity within the g-
th group, denoted as S;(p)? € RW*H*E is computed using
(Eq. 13), where (-, -} denotes the inner product. Once the two-
view feature similarity scores are calculated for each group,
pixel-wise view weights {Wl}f\:ll, W, ¢ R %%, obtained
during the LR depth estimation step, are upsampled to the
consistent spatial resolution for final per-group similarities
calculation, resulting in S(p)? € RW*H*G Subsequently, a
small network with 2D 1 x 1 convolution (Conwv;) and sigmoid
non-linearity function (¢) is applied to output per-pixel weight
value m(p).

D. Loss Function

To optimize the estimated depth, we employ three com-
ponents of depth loss dedicated to supervising the outputs of
the three distinct steps:

Lrotat = LLr + LsR + LRef- (16)

L1 r defines the Cross Entropy (CE) loss that applies
on the iteratively produced probability volume P and the
ground-truth one-hot occupancy volume G for valid pix-
els [11], defined as follows:

4 D
LLR = Z ﬁ Z Z _Glt(d7p) IOg (Pg(d7p))’ (17)
it=1 peQ d=1
where € denotes the set of valid pixels, and |{2| represents the
count of valid pixels.
Lsgr, defined in Eq. (8), serves to supervise the output
of the GDSR step.

Lres represents the uncertainty-aware loss function ap-
plied to the refined depth, following [20], [47], [49]:

1
il

‘CRef = Q
1 « |DP%x(») —D(p)
T 2 e~ loa(U(p)

where U(p) denotes the predicted confidence map. The first
term encourages the network to produce lower confidence for
pixels exhibiting higher biases and vice versa. The second
regularization term is designed to prevent the model from
outputting uniformly low confidence for all pixels. This dual-
term formulation aids in implicitly learning uncertainty during
the training procedure.

Z ]DHR(S)(p_) D(p)| +log(U(p))

peQ

+log(U(p)), (18)

E. Iterative Depth Fusion for 3D Reconstruction

Estimated multi-view depth maps often exhibit biased
estimates in challenging regions such as the sky or textureless
surfaces. To address this issue, a common approach is to
fuse high-confidence and multi-view consistent depth points to
generate the final point cloud. Current methods typically apply
one-time photometric and geometric consistency filtering to
each depth map. However, while this effectively eliminates
unimportant background areas, it can also result in holes in
textureless regions, leading to incomplete reconstructions. To
improve this process, we propose to apply iterative depth self-
reintegration and geometric consistency filtering until the num-
ber of valid points stabilizes. Initially, we perform one-time
photometric filtering by applying confidence map U(p) < &,
as in the previous works [3], [11], [14]. Next, we alternate
between geometric consistency filtering and a simplified, non-
parametric depth self-reintegration process.

We begin with the geometric consistency filtering. For
each estimated reference depth Dg(p), each pixel p in the
reference image I, is back-projected into 3D space using
camera parameters and the estimated depth, yielding a 3D
point P. This point is then projected onto neighboring images
I, to generate the corresponding pixel g, and the process is
reversed by back-projecting the pixel g from the neighbor view
with the estimated depth D;(q) into 3D space and reprojecting
it back to the reference image, denoted as p’. Based on these
operations, the 3D point P is considered consistent in the
neighbor image I; if it satisfies the following pixel and depth



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY

reprojection error thresholds:

o —p'll, <&, (19)
Do (p) = Do(P)ll _ 20
DO(p) 7£d7 ( )

where £, and &; are the pixel and depth reprojection error
thresholds, respectively. If at least £y neighboring images
satisfy these thresholds, the depth of pixel p is deemed multi-
view consistent and is preserved. This results in a cross-
validated mask defining geometrically consistent pixels.

Subsequently, with the cross-validated mask and filtered
depth map, a non-parametric depth self-reintegration pro-
cedure is applied to fill cross-invalidated pixels, similar to
the earlier refinement step. The neighbor pixel positions are
accessed by offsets {Apk}fzﬁl of Eq. (10). However, in this
step, neighbor depth values are reintegrated by averaging,
without using separate weights from feature matching scores.
Meanwhile, the valid mask is applied to reintegrate only the
depths that have been cross-validated.

After each iteration, we track the growth rate of the
validated pixel count in the filtered depth map. If the growth
rate R between the current and previous iterations is less than
¢r = 0.01, we consider the contribution of this reference
depth map to the point cloud as stabilized. Then, we stop
iterating and process the next estimated reference depth map.
The calculation of the growth rate is formulated as follows:

_ [Ne = Ny
N,

where NN, is the validated pixel count in the current iteration,

and NV, is the validated pixel count from the previous iteration.

R 21

TABLE I: Point cloud quantitative results on DTU [7]

Methods Year Mean Error Distance (mm) Mem. (MB) | Run-Time (s)
Acc. Comp.  Overall
Gipuma [50] 2015 | 0.283  0.873 0.578

Colmap [1] 2016 | 0.400  0.664 0.532 - -
MVSNet [3] 2018 | 0396  0.527 0.462 10823 1.21
UCSNet [14] 2020 | 0.338  0.349 0.344 4057 0.37
CasMVSNet [15] 2020 | 0325  0.385 0.355 4591 0.49
PatchmatchNet [12] 2020 | 0.427  0.277 0.352 1629 0.51
PVA-MVSNet [51] 2020 | 0379  0.336 0.357 25466 1.01
Vis-MVSNet [47] 2020 | 0369  0.361 0.365 4775 0.58
CDS-MVSNet [17] 2022 | 0352 0.280 0.316 4492 0.66
NP-CVP-MVSNet [29] | 2022 | 0356  0.275 0.315 6054 1.20
GBi-Net® [11] 2022 | 0312 0.293 0.303 2108 0.61
Prior-Net [49] 2023 | 0351  0.287 0.319 8397 0.64
UniMVSNet [16] 2022 | 0352 0.278 0.315 6139 0.83

UGNet [20] 2022 | 0334 0.330 0.332 - -
NR-MVSNet [34] 2023 | 0331  0.285 0.308 5649 0.57
PFR-MVSNet [52] 2023 | 0.289  0.383 0.336 15063 3.76
ARAI-MVSNet [35] 2023 | 0292  0.334 0.313 5386 0.61
MVSFormer [18] 2023 | 0327  0.251 0.289 4970 0.48
WT-MVSNet [19] 2023 | 0.309  0.281 0.295 5221 0.79
DMVSNet [21] 2023 | 0338  0.272 0.305 6672 0.88
MVSTR [30] 2023 | 0356  0.295 0.326 3879 0.82

HAMMER [22] 2024 | 0326  0.270 0.298 3175 -
GoMVS [32] 2024 | 0347  0.227 0.287 7901 0.70
ICV-Net [13] 2025 | 0.286  0.347 0.317 1221 0.59
SR-MVSNet* (Ours) - 0372 0.212 0.292 2839 0.46
SR-MVSNet (Ours) 0387 0215 0.301 2839 0.46

Lower is better for Accuracy (Acc.), Completeness (Comp.), and Overall.
The best results are in Bold and the second best are in underlined. ©
denotes that GBi-Net is re-tested with same post-processing threshold to
all scans for fair comparisons with other methods.

IV. EXPERIMENTS
A. Datasets and Evaluation Metrics

Datasets: We employ the following four datasets for training
and evaluation, namely, 1) DTU [7], which consists of 124
scenes captured in laboratory settings, under seven lighting
conditions, 2) Tanks & Temples (TnT) [8], which con-
tains more complex and realistic 14 scenes captured in real
environments, provided as a set of video sequences with
image resolutions about 1920 x 1080. 3) BlendedMVS [10],
a synthetic dataset, which contains 17k images of 113 diverse
scenes, and 4) ETH3D [9], which contains 13 scenes in
training set and 12 scenes in test set with HR images of
6212 x 4140. Following previous works [12], [18], [34], we
regard the training set of ETH3D as one of the test sets.

Evaluation Metrics: For the DTU benchmark, we adopt
the mean accuracy (Acc.) and completeness (Comp.) of the
distance metrics for point cloud evaluation. The Overall
metric takes the average of Acc. and Comp., providing a
comprehensive measure of reconstruction quality. Notably,
there is sometimes an inherent trade-off between accuracy and
completeness. In our analysis, the Overall is the most critical
metric for reconstruction performance evaluation. Besides, we
adopt the mean absolute depth error (MAE), the area under
sparsification error curve (AUSE), and precision metrics (e,
ey4, eg) for the depth map and confidence map evaluation. The
precision metric e, is defined as the pixel percentage within
amm error, the bigger the better. For the TnT and ETH3D
benchmarks, we adopt the F-score and F;-score metrics for
point cloud evaluation. they are the harmonic mean of points
percentages with precision and recall at 2 mm distance thresh-
old. The evaluation procedure is conducted online through
official platforms after submitting our reconstruction results.

B. Implementation Details

Our models were initially trained on the DTU [7] training
set and evaluated on the DTU testing set. Then, the model is
fine-tuned on BlendedMVS dataset [10] for generalizability
evaluation on TnT [8] and ETH3D [9] benchmarks.

Following common MVS training protocols [3], [12],
[14], [16], [17], [25], [34], [35], we trained “SR-MVSNet”
using half-resolution DTU data (640 x 512) with 5 input
images. Fine-tuning on BlendedMVS employed a resolution
of 768 x 576 and 7 input images. The network was trained
for 16 epochs [11], [15], [19], [25], [34] with the Adam
optimizer, starting at a learning rate of 0.0001, which was
halved after epochs 10, 12, and 14. The batch size was 4, and
training was conducted on two NVIDIA RTX 3090 GPUs.
In line with recent advancements [11], [18], [19], [21], [22],
we train the model “SR-MVSNet*” with full-resolution DTU
data (1600 x 1200) and employ the random cropping pre-
processing step as GBi-Net [11], while other training setups
followed common protocols. For TnT evaluation, we expanded
the candidate source views similar to MVSFormer [18], en-
hancing performance in complex scenes. Both models applied
the proposed iterative fusion post-processing strategy, using
consistent hyper-parameters throughout the dataset.
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TABLE II: Quantitative results of F-score on Tanks & Temples dataset [§]

Method Year Inter@ediate Advanced

Mean Fam. Fra. Hor. Lig. M60. Pan. Pla. Tra. Mean Aud. Bal. Cou. Mus. Pal. Tem.
COLMAP [1] 2016 | 42.14 5041 2225 2563 5643 4483 4697 4853 42.04 27.24 16.02 2523 3470 4151 18.05  27.94

UCSNet [14] 2020 | 54.83 76.09 5316  43.03 5400 5560 5149 57.38  47.89 - - - - - - -
CasMVSNet [15] 2020 | 5642 | 7636 5845 4620 5553  56.11 5402 58.17  46.56 31.12 19.81 3846  29.10 4387 2736 28.11
PatchmatchNet [12] 2020 | 53.15 66.99 5264 4324 5487 5287 4954 5421 5081 3231 2369 3773 30.04 4180 2831 3229

CDS-MVSNet [17] 2022 | 60.82 | 78.17 6174 5312 6025 6191 5845 6235 50.58 - - - - - - -

NP-CVP-MVS [29] 2022 | 59.64 7893 6409 5182 5942 5839 5571 56.07 5271 - - - - - - -
GBi-Net [11] 2022 | 6142 | 79.77 67.69 5181 6125 6037 5587 60.67 53.89 37.32 2977 4212 3630 4769 31.11 3693
Prior-Net [49] 2022 | 60.63 79.02 6093  51.65 6052 6178 56.19 61.37  53.59 34.61 2699 4046  30.76 4781 2896 3271
UniMVSNet [16] 2022 | 64.36 8120 6643 5311 6346 6609 6484 6223 5753 38.96 2833 4436 3974 5289 3380 34.63
UGNet [20] 2022 | 63.12 | 79.61 6335 5032 6636 6480 60.84 6225 5741 37.12 2328 4349 3604 5059 3181 37.54
NR-MVSNet [34] 2023 62.94 80.78  63.55 53.09 60.61 6529 6220 60.65 5731 37.20 2676 4321 3579 50.01 3335  34.08
PFR-MVSNet [52] 2023 64.56 8157 6550 5443 6337 6644 65.65 6231 5723 39.22 2873 4497 3983 5346 3379 3452
ARAI-MVSNet [35] | 2023 61.09 | 79.48 6683 5415 59.56 5858 5738  56.51 5627 38.68 26.13 4301 3863 4888 3539  40.01
MVSFormer [18] 2023 | 66.37 | 82.06 69.34 6049 68.61 6567 6408 6123 5953 40.87 2822 4675 3930 5288 3516 4295
WT-MVSNet [19] 2023 65.34 8187 6733 57776 6477 6568 6461 6235 5838 3991 2920 4448 3955 5349 3457 3815
DMVSNet [21] 2023 64.66 8127 6754 59.10 63.12 6464 6480 59.83  56.97 41.17 | 30.08 46.10 40.65 53.53 3508 41.60
MVSTR [30] 2023 56.93 7692 59.82  50.16 5673 5653 51.22 56.58  47.48 32.85 2283  39.04 3387 4546 2795 2797
HAMMER [22] 2024 | 61.70 | 78.45 5925 5433 6280 6320 5957 6172 5423 36.13 24.17  40.07 38.14 4956 3154 3331
GoMVS [32] 2024 | 66.44 | 82.68 69.23 69.19 6356 6513 62.10 5881  60.80 | 43.07 | 35.52 47.15 4252 52.08 3634 44.82
ICV-Net [13] 2025 55.56 7205 5687 4127 5232 5866 5359 59.10 50.64 34.70 26.01  41.53 3370 4198 2934  35.63
SR-MVSNet* - 6536 | 82.55 69.52 57.69 6511 6496 62.66 59.56 60.78 | 4148 | 2448 4787 4286 5294 3640 4434
SR-MVSNet;yC - 64.84 8126 6937 5783 6423 6393 6261 58838 60.59 | 41.18 2507 4746 4157 5221 3655 4424

We report the F-score metric. “Mean” refers to the average F-score of all scenes. The best results are in Bold and the second best results are in underlined.

All the values, including ours, are available in the website [53].

TABLE III: Results on Tanks & Temples dataset [8] using the same fusion parameter setting across all scenes.

Method Year Mean Fam. Fra. Hor. Lig. M60. Pan. Pla. Tra. Mean Aud. Bal. Cou. Mus. Pal. Tem.
GBi-Net [11] 2022 | 6032 | 7929 6507 4935 6041 5979 5530 5952 53.80 | 3393 | 2269 37.30 3296 4637 2923 3503
UniMVSNet [16] | 2022 | 6039 | 7928 6559 4167 6371 6158 5877 6033 5218 | 2805 | 1377 2995 2670 4612 2840 23.36
MVSFormer [18] | 2023 | 6341 | 80.62 6580 5435 6473 6447 61.88 5694 5851 | 36.67 | 2299 4238 3493 4922 3317 37.33
HAMMER [22] | 2024 | 61.70 | 7845 5925 5433 6280 6320 5957 6172 5423 | 3613 | 24.17 4007 3814 4956 3154 333l
GoMVS [32] 2024 | 62.16 | 8148 6921 4597 6409 6335 5639 5583  60.92 | 3637 | 2052 3923 3162 4920 3436 4327
SR-MVSNet - 64.06 | 80.68 6723 5794 6627 6229 60.58 6058 57.19 | 39.52 | 25.63 4612 37.57 5095 3525 41.60
SR-MVSNet, . - | 63.69 | 8052 6708 57.92 6543 6214 60.53 5835 57.56 | 39.19 | 2456 4602 3750 5077 3519 4110

GoMVS [32] is re-tested using the average parameter configuration recommended by the authors. MVSFormer [18] results are derived by retraining on
the mainstream half-resolution DTU data and using consistent candidate source views with other methods. Results for GBi-Net [11], UniMVSNet [16] and

HAMMER [22] are from the paper [22].

C. Comparisons with State-of-the-art Methods

Results on DTU Dataset: We evaluate our proposed method
on the DTU dataset with a fixed testing resolution of 1600 x
1152 and using five views (/N = 5). Our evaluation comprises
two protocols: firstly, using the official DTU evaluation tool-
box [7] to compare reconstructed point clouds against ground-
truth 3D scans; secondly, evaluating depth map accuracy
using MAE and precision metrics, as detailed in Subsection
Appendix B.

Quantitative results of reconstruction evaluation are
shown in Table I, and qualitative ones are shown in Fig. 12
of the Appendix. Our best-performing model, SR-MVSNet*,
ranked third in the overall metric. Compared to the first-
place method, GoMVS [32], which incorporates geometric-
consistent propagation during the cost aggregation step, our
model achieves higher completeness but lower accuracy.
GoMVS’s well-designed geometric-consistent cost aggrega-
tion is effective in both generally textured regions and local
weakly textured areas. Moreover, its use of denser depth
sampling across multiple stages enables more precise depth
estimates, which is particularly advantageous in small-scale
DTU scenes. However, this comes at the cost of efficiency:
GoMVS’s cascaded cost volume formulation results in ap-
proximately 2.8 x higher GPU memory consumption and
significantly longer inference time compared to our approach.

In comparison to the second-place method, MVSFormer [18],
a recent transformer-based model also built upon the cascaded
cost volume framework, our model achieves competitive re-
construction quality while reducing memory usage by 42%.
Notably, our method obtains the highest completeness score,
suggesting that the proposed RGB-D structural consistency
learning effectively improves the robustness of depth estima-
tion, particularly in handling scenes with local or large areas
of ambiguous matching. When evaluated against lightweight
and iterative MVS approaches such as PatchmatchNet [12]
and GBi-Net [11] (used for our LR depth estimation), our
model demonstrates superior overall performance with re-
duced inference time, while with slight increase in memory
usage (731 MB). Overall, these results illustrate that our
approach effectively integrates the complementary strengths of
cost volume and depth super-resolution techniques to achieve
advanced reconstruction quality while decreasing memory
footprint and runtime as much as possible. This represents
a novel and efficient alternative to conventional cascaded cost
volume architecture for MVS reconstruction.

Results on Tanks & Temples Dataset: We evaluate the gener-
alization capability of our approach using the TnT benchmark,
with N = 11 input images, and the input image sizes are
1920 x 1024 or 2048 x 1024 to make the images divisible
by 64. Table II compares our method with state-of-the-art
MVS methods, noting that these methods are trained with



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY

Fig. 4: Depth estimation of GBi-Net [11], MVSFormer [18] and our method on Tanks & Temples benchmark.

different data and employ distinct post-processing methods,
as summarized in Table VIII of Subsection Appendix A.

Our best-performing model, SR-MVSNet*, achieves the
third-highest F-score on the intermediate set and the second-
highest F-score on the advanced set of the benchmark. In com-
parison to high-performing methods such as GoMVS [32] and
MVSFormer [18], both methods require the time-consuming
manual search for optimal fusion parameters for each scene.
In contrast, our proposed post-processing strategy does not
rely on per-scene hyperparameter adjustment, which, while
more practical, is challenging to achieve the highest F-score
in every scenario. Additionally, our uncertainty-aware GDSR
module may face challenges in indoor and outdoor scenes
with complex lighting conditions, such as point light sources,
strong shadows, or reflections. These factors may limit our
uncertainty-aware GDSR module’s ability to capture real
depth-discontinuous structural information crucial for accurate
HR depth estimation. In such cases, setting stricter post-
processing thresholds could filter out depth error but require
tuning fusion parameters as done in some previous works [11],
[18], [21], [32]. Furthermore, MVSFormer [18] necessitates
multiple data augmentation steps and elaborate multi-scale
training processes to achieve optimal results. GoMVS [32]
needs to perform time-consuming preprocessing of monocular
normal estimation in a divide-and-conquer manner. In con-
trast, our model, SR-MVSNet*, delivers competitive recon-
struction performance without these additional complexities.
More importantly, our method significantly decreased GPU
memory consumption and inference time compared to other
high-performing methods, including MVSFormer [18], WT-
MVSNet [19], DMVSNet [21] and GoMVS [32], as demon-
strated in the DTU evaluation. Qualitative comparisons in
Fig. 4 show that our HR depth estimations excel in captur-
ing detailed structures by leveraging both multi-view feature
matching and the structural consistency of RGB-D data. In
contrast, GBi-Net [11] and MVSFormer [18], which rely
solely on feature matching in cascaded cost volumes, tend to
reach locally optimal solutions in certain areas and struggle in
large-scale scenes due to insufficient depth sampling. GBi-
Net, in particular, produces significant errors in textureless
regions due to its limited use of only four depth candidates
per iteration.

Table III further compares our mainstream-trained model,
SR-MVSNet, with several high-performing methods on the
benchmark, using consistent training data and invariant hyper-
parameter settings across the entire dataset. Notably, under
this more rigorous and fair experimental setup, our method
demonstrates clear performance advantages over the listed

approaches, including recent state-of-the-art models such as
MVSFormer [18] and GoMVS [32]. When adopting the com-
mon dynamic fusion post-processing strategy [36] (Table II,
Table III), both models, SR-MVSNetg,. and SR—MVSNetl’;yC,
still achieved good performance and show advantage on the
TnT Advanced set, which includes more complex indoor
scenes, exhibits greater variation in depth ranges for each
reference view compared to the Intermediate set. These results
underscore the effectiveness of our primary contribution: the
“cost volume + depth super-resolution” framework, partic-
ularly in addressing wide-baseline, large-scale scenes with
diverse depth ranges for each reference view, regardless of
the post-processing strategy employed.

Courtyard

GBi-Net

Reference Images MVSFormer Ours

Fig. 5: Depth prediction of GBi-Net [11], MVSFormer [18]
and our method on ETH3D benchmark.

Results on ETH3D Test Set: We further evaluate our SR-
MVSNet* model on the ETH3D test set, with image resolution
1920 x 1280 and input view number N = 7. Quantitative
comparisons with state-of-the-art learning-based MVS meth-
ods are presented in Table IV. Our method achieves the
highest F;-score across most scenes, demonstrating its strong
generalization capability in handling wide-baseline, large-scale
scenes. Fig. 5 shows depth predictions from sampled reference
views generated by the baseline GBi-Net, MVSFormer [11],
[18] and our method. The baseline GBi-Net [11] produces
noticeable errors in textureless areas, where its iterative binary
search strategy struggles in large-scale scenes with wide and
varied depth ranges. This increases the risk of converging
to local optima, leading to inaccurate depth estimation. In
comparison, our method effectively corrects these outliers
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TABLE IV: Quantitative results of F;-score on ETH3D test set [9].

Method Year Mean Bot. Bou. Bri. Door Exh. Lec. Liv. Lou. Obs. Old. Sta. Ter.
PatchmatchNet [12] 2020 73.12 83.18 60.85 79.63 7857 64.13 7173  79.81 51.2 85.97 57.4 76.36  88.66
CDS-MVSNet [17] 2022 79.07 87.6 68.23 84.4 86.2 6749 7636 8654 61.54 90.79 61.86 8733  90.49

GBi-Net [11] 2022 78.4 87.6 63.01 88.39 89.28 71.63 7534  87.28 54.8 91.11 62.72  79.57  90.09
UniMVSNet [16] 2022 81.6 80.06 64.41 87.6 93.02 7842 7856 88.16 69.78 9326 69.58 76.49 91.6
NR-MVSNet [34] 2023 80.23 87.8 63.34  86.31 91.09 79.01 7217  89.07 67.2 92.81 66.08  75.65 92.2
MVSFormer [18] 2023 82.85 8735 70.21 90.5 90.38  68.55 81.32 89.47 61.68 9346 7898  90.26  92.05

GoMVS [32] 2024 85.91 89.84 69.44 9045 93.00 76.70 88.01 91.23 73.28 9391 81.50 88.80 94.77

SR-MVSNet* - 86.73 94.11 7211 9237 9256 7450 86.84 94.65 67.31 95.77 84.80 9285 92.84
SR—MVSNet;yC - 85.77 93.06 70.63 91.88 9227  73.53 85.69 9445 6500 9556 82.75 91.87  92.50

The evaluation metric is the Fy-score using percentage metric, which considers both accuracy and completeness of final reconstructed point cloud results.
Higher F1-score means a better reconstruction quality. All the values, including ours, are available in the website [54].

while remaining robust to variations in depth range across
reference views, producing RGB-D structurally consistent HR
reconstructions. Additionally, multi-view feature matching is
performed both before and after the depth super-resolution
step to ensure procedure accuracy. Ultimately, our method
demonstrates superior capability in recovering depth for views
with large and varying depth ranges, outperforming both the
baseline GBi-Net [11] and recent state-of-the-art methods, in-
cluding MVSFormer [18] and GoMVS [32]. When employing
the common dynamic fusion post-processing strategy [36],
our variant SR-MVSNetZyC still surpasses MVSFormer by a
significant margin and achieves comparable performance to
GoMYVS, while requiring substantially less GPU memory. The
ETH3D test set, characterized by its broad depth range distri-
bution, particularly highlights the strength of our approach. By
effectively exploring uncertainty-aware mutual structural cues
from RGB-D inputs, our method shows clear advantages over
cascaded MVS architectures in terms of both robustness and
efficiency under challenging conditions. Apart from that, our
iterative depth fusion post-processing strategy further enhances
reconstruction performance across all benchmark evaluations.
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Fig. 6: GPU memory and run-time vs. input resolution on the
DTU evaluation set [7]. The original resolution is 1600 x 1200
(100%), the highest tested resolution is 1600 x 1152 (96%).

Run-time and Memory Analysis: In this section, we eval-
uate the memory consumption and run-time of the proposed
method. Since the depth super-resolution process constitutes
the primary computational overhead in our framework, we
compare our “cost volume + depth super-resolution” approach

(¢) SR Depth

(with Confidence Mask)
,tials

. o f\:‘ g
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e
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() SR ErrorMap i Confidence Mask)

Fig. 7: Illustration of each component’s influence on a reference
depth estimation. (b) presents the produced confidence mask using
Eq. (9), and colors vary from black to white, representing values
ranging from O to 1. (c) and (i) show the results after the LR depth
estimation step, and colors in the error maps vary from white to red,
representing values ranging from 0 to 6 mm. (d),(e),(j),(k) show the
results after the proposed uncertainty-aware GDSR step. (f) and (1)
show the results after the uncertainty-aware refinement step.

(¢) Reference Image  (h) Source Images (i) LR Error Map (1) Refined Error Map

with the conventional cascaded cost volume formulation on the
DTU evaluation set using different input image resolutions.
Specifically, the compared methods include CasMVSNet [15],
GBi-Net [11], and MVSFormer [18], with results shown in
Fig. 6. Recent methods have significantly improved both
memory consumption and run-time compared to the naive cas-
caded MVS approach, CasMVSNet. However, MVSFormer,
which integrates Vision Transformer for multi-view feature
extraction, demonstrates a rapid increase in memory usage
as input image resolution increases. On the other hand, GBi-
Net reduces computational demands by restricting cost vol-
ume formulation to a small number of high-likelihood depth
candidates. However, due to its iterative process, its inference
time increases quickly as the resolution grows. In contrast, our
method shows a slower increase in both memory consumption
and run-time compared to other approaches. We attribute this
efficiency to our super-resolution procedure, which operates in
2D space rather than the more computationally demanding 3D
space. This design choice ensures a more scalable and efficient
solution for HR depth estimation. Consequently, we conclude
that the “cost volume + depth super-resolution” paradigm is
advantageous for efficient HR depth estimation.

D. Ablation Study

To validate the contribution of each component in our
method, we perform extensive ablation studies on the DTU
dataset using identical settings to GBi-Net [11], namely,
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TABLE V: Ablation Study of Each Component of our proposed SR-MVSNet on DTU evaluation dataset [7]

Model CDE DSR Fusion Depth (mm) Point Cloud (mm) Mem.(MB) | Run-Time (s)
MAE FMAE Acc. Comp.  Overall
Model-A UCSNet AHMF Geo. 36.67 0.97 0.452 0.316 0.384 2784 0.34
Model-B GBi-Net AHMF Geo. 21.12 0.82 0.372 0.352 0.362 1769 0.33
Model-C GBi-Net  CFE+UMF(w/o CM) Geo. 14.35 0.84 0311 0.351 0.331 2508 0.37
Model-D GBi-Net CFE+UMF Geo. 13.14 0.83 0.306 0.346 0.326 2508 0.37
Model-E GBi-Net CFE+UMF+Refine. Photo.+Geo. 10.37 0.55 0.330 0.294 0.312 2839 0.46
Model-F GBi-Net CFE+UMF+Refine. Dynamic. 10.37 0.62 0.386 0.228 0.307 2839 0.46
Model-G (Ours) GBi-Net CFE+UMF+Refine. Iter. Fusion 10.37 0.57 0.387 0.215 0.301 2839 0.46

CDE, DSR, Fusion indicates the coarse LR depth estimation, depth super-resolution and multi-view depth fusion steps, respectively. Column Mem. (MB)
measures the memory consumption of single HR depth estimation. CFE denotes the proposed Cost Feature Extraction module, UMF denotes the uncertainty-
aware multi-modal feature fusion, CM denotes the confidence mask. Refine. denotes the proposed matching-based depth refinement module. Iter.F. denotes
the proposed iterative depth fusion approach. The metric EMAE stands for the filtered depth MAE.

1600 x 1152 image resolution and 5 input views. As for
the photometric and geometric consistency filtering for final
depth maps fusion, the photometric filtering threshold is set
to & = 0.8, the pixel reprojection error threshold to &, = 1,
the depth reprojection error threshold to £; = 0.01 and the
minimum number of consistent views to £y = 3. Results
in Table V summarize a progressive series of seven model
variants to isolate the impact of each component:

1 Model-A: Employs UCSNet [14] with default model set-
tings for LR depth estimation, employs vanilla AHMF [27]
for depth super-resolution, and employs default geometric
consistency filtering (Geo. [3]) for multi-view depth maps
fusion to final reconstruction.

2 Model-B: Replaces UCSNet [14] with GBi-Net [11].

3 Model-C: Incorporates the proposed Cost Feature Extrac-
tion (CFE, described in Subsection III-B1) and Uncertainty-
aware Multi-modal Feature Fusion (UMF, described in
Subsection III-B2) to vanilla AHMEF, without confidence
mask constraint.

4 Model-D: Further incorporates the Confidence Mask (CM,
described in Subsection III-B3) constraint.

5 Model-E: Adds the proposed matching-based depth refine-
ment module (Refine., described in Subsection III-C) and
applies photometric and geometric consistency filterings
(Photo.+ Geo. [3]) to get the final reconstruction.

6 Model-F: Replaces the photometric and geometric consis-
tency filterings with dynamic consistency checking (Dy-
namic. [36]) to get the final reconstruction.

7 Model-G (Our full model): Uses the proposed iterative
filtering manner (described in Subsection III-E) to get the
final reconstruction.

The performance of seven ablation models in terms
of depth estimation, 3D reconstruction, memory usage, and
average running time for single-depth-map inference are sum-
marized in Table V. Initially, we simply connect GBi-Net [11]
or UCSNet [14] for the LR depth estimation and classic GDSR
network AHMF [27] for predicting full-resolution depth maps
(Model-A and Model-B). We observe that the memory re-
quirement and inference time are significantly lower than
those of most MVS methods. However, the depth estimation
and reconstruction performance are relatively poor. This can
be attributed to the fact that AHMF primarily focuses on
improving spatial resolution, assuming that LR measurements
are clean and regularly sampled. However, LR depth estima-

tion obtained from the cost volumes inevitably contains noise
and outliers. Hence, directly connecting these two techniques
makes it difficult to achieve good results. Comparing the
performance of Model-A and Model-B, GBi-Net shows better
performance. Furthermore, GBi-Net constructs cost volumes
iteratively with only four depth candidates each time, making
it both lightweight and efficient. Therefore, we select GBi-Net
for the LR depth estimation in the subsequent experiments.

1) Benefit of Uncertainty-aware GDSR: As shown in
Table V, the comparison between Model-B and Model-C
demonstrates improved depth estimation and 3D reconstruc-
tion performance by incorporating the Cost Feature Extraction
(CFE) and Uncertainty-aware Multi-modal Feature Fusion
(UMF) modules in Model-C. This result confirms that lo-
cal optimal LR outliers can be effectively managed during
the depth super-resolution phase. Furthermore, Model-D in-
tegrates the Confidence Mask (CM) into the loss function,
encouraging larger corrections in uncertain regions while
minimizing residuals in multi-view consistent and reliable
areas. As a result, Model-D exhibits a further performance
enhancement over Model-C. When comparing Model-B and
Model-D, we validated that the three modifications introduced
in the uncertainty-aware GDSR module, including CFE, UMF,
and CM, collectively improved depth estimation accuracy by
37.8% (MAE) and enhanced reconstruction performance by
9.9% (Overall), while requiring only an additional 739 MB of
memory and increasing inference time by just 0.04 seconds.

Fig. 7 (i) and Fig. 7 (k) present the error comparisons for
the traditional bicubic interpolation and our super-resolved
depth. The results demonstrate that the uncertainty-aware
GDSR module not only significantly reduces errors compared
to bicubic interpolation but also requires less memory than
most cascaded MVS methods.

We further visualize the extracted cost features, the input
and output features of the original MMAF, and the proposed
UMF in Fig. 8. It is observed that: 1) unimportant texture
details are present in the extracted guidance feature; and
2) for LR depth input that contains errors, the original MMAF
exhibits error-copying artifacts, whereas our UMF corrects
these biased estimates based on extracted cost features. This
enhancement is attributed to the proposed CFE and UMF,
specifically tailored for matching-based LR depths.

2) Benefit of Matching-based Refinement: Models-A, B,
C, and D solely produce HR depth maps without associated
confidence maps, they rely only on geometric consistency
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(f) Cost Feature (g) Depth Feature (h) Guidance Feature

(i) UMF,

Fig. 8: Visualization of feature maps generated in the uncertainty-
aware GDSR step. (b) and (g) are depth features derived from the
LR depth map. (c) and (h) depict guidance features obtained from the
HR guidance image. (f) illustrates the cost features generated by the
proposed CFE, from the LR cost and probability volumes. (d) and
(e) display feature maps fused by the original MMAF [27], without
considering the uncertainty of LR depths. (i) and (j) showcase feature
maps fused by the proposed UMF.
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Fig. 9: Visualization of iteratively fused point clouds and
filtered depth maps.

Filtered 3D Points and Growth Rate Over Iterations
37.26%

Point Number Growth Rate (%)

400000

300000 1

200000 1---1

100000 +

0

0 2 4 6 8

Fig. 10: The filtered depth point number and growth rate in
each iteration of Fig. 9, with resolution 1600 x 1152.

filtering for multi-view depth fusion. In contrast, Model-E
incorporates the proposed uncertainty-aware refinement mod-
ule, yielding both refined HR depth maps and corresponding
confidence maps. Therefore, conventional one-time photo-
metric filtering based on confidence maps and geometric
consistency filtering is employed for multi-view depth fusion.
The lower depth MAE of Model-E in Table V indicates that
our matching-based depth self-integration enhances the depth
estimation accuracy. Meanwhile, Model-E applies strict outlier
filtering based on predicted confidences, contributing to the
lowest EMAE and better overall quality of the reconstructed

point clouds. Fig. 7 (k) and Fig. 7 (1) further provide the visual
quality comparisons of the super-resolution and the refined
results. It can be seen that the depth errors are further reduced
in both rich and weak textured regions via our refinement. Fi-
nally, after incorporating the matching-based depth refinement
step, SR-MVSNet requires 2839 MB of memory and 0.46
seconds for single-depth-map inference. The refinement step
further enhances depth estimation accuracy by 21.1% (MAE)
and improves reconstruction performance by 4.3% (Over-
all). With default depth fusion post-processing [3], Model-E
achieves an overall score of 0.312 on the DTU evaluation set,
comparable to most state-of-the-art MVS methods.

3) Benefit of Iterative Depth Fusion for 3D Reconstruc-
tion: As indicated in Table V, Models-E, F, and G maintain
fixed LR depth estimation and guided depth super-resolution
steps, enabling a fair comparison between the proposed itera-
tive depth fusion, the default photometric and geometric con-
sistency filtering [3] and the dynamic checking strategy [36]
post-processing strategies. The results demonstrate that the
proposed iterative depth fusion strategy achieves the best
reconstruction completeness and overall quality. The results
verify that our iterative depth fusion is effective and beneficial
to achieving complete and accurate 3D reconstruction.

To illustrate the iterative fusion process, we present the it-
eratively fused point cloud (first row) and an iteratively filtered
depth map (second row) in Fig. 9. In Fig. 9 (b) and Fig. 9 (f),
where geometric consistency filtering is applied once, small
and large holes appear in the point cloud and filtered depth
map. Subsequently, in Fig. 9(c) and Fig. 9(g), depth self-
integration is applied once, and geometric consistency filtering
is applied twice, resulting in the filling of many small holes,
although some larger textureless regions still exhibit unfilled
portions in the depth map and fused point cloud. Finally, in
Fig. 9(d) and Fig. 9 (h), the proposed iterative depth self-
integration and filtering are applied until converged, lead to a
nearly complete fused point cloud. Simultaneously, the filtered
depth errors (FMAE) remain very small, as the geometric con-
sistency checking conditions remain unchanged. The growth
rate and filtered depth numbers after each iteration of Fig. 9,
are visualized in Fig. 10. For this reference view, the valid
depth points converge in nine iterations.

V. CONCLUSION

In this work, we presented SR-MVSNet, a novel deep
MYVS approach that achieves full-resolution depth estimation
and 3D reconstruction by learning RGB-D structural consis-
tency through the depth super-resolution technique. Unlike
mainstream cascaded architectures that rely on coarse-to-fine
depth sampling, struggling to balance performance with mem-
ory usage and varied depth ranges, we designed an uncertainty-
aware guided depth super-resolution and a matching-based
refinement module to avoid constructing high-resolution cost
volumes. By leveraging mutual structural cues from RGB-
D images and feature-matching metrics, SR-MVSNet delivers
high-quality, full-resolution depth estimation while conserving
computational resources. Finally, to generate the final point
cloud, multi-view depth maps are fused using our proposed
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iterative fusion post-processing strategy. Experiments on the
DTU, Tanks & Temples, and ETH3D benchmarks demon-
strate that our approach achieves competitive performance,
particularly excelling on the ETH3D test set, which features
wide-baseline, large-scale scenes with diverse depth ranges for
each reference view. While not the highest across all metrics,
our method offers an effective balance between reconstruction
quality and computational efficiency, making it a practical
solution for real-world reconstruction tasks. Ablation studies
further confirm the effectiveness of our proposed contributions.
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