ShinyCell2: an extended library for simple and sharable visualisation of spatial, peak-based and multi-omic single-cell data
ShinyCell2: an extended library for simple and sharable visualisation of spatial, peak-based and multi-omic single-cell data
Single-cell technologies now span multiple modalities, generating large, complex datasets that challenge analysis and sharing. We present ShinyCell2, an enhanced R package for interactive visualisation of single-cell multi-omics and spatial transcriptomics data. ShinyCell2 retains the simplicity and lightweight deployment of its predecessor while introducing advanced visualisations, cross-modality comparisons, and statistical tools tailored to spatial and multi-omic data. It enables intuitive, rapid exploration of high-dimensional data without requiring extensive computational expertise.
Chen, Bei Jun
32b1e6a8-b619-4e8f-9da4-df221bdece06
Lim, Yi Yang
e7b2d25c-5a91-4a79-aa46-da13703ebe0a
Yang, Xinyi
6a26a466-dd18-41cc-baa1-5cef55570a41
Wang, Lijin
7338ba90-6b70-4268-8c41-e0aef64d4dab
Rackham, Owen J.L.
8122eb1f-6e9f-4da5-90e1-ce108ccbbcbf
Ouyang, John F.
ce6f93a5-b40f-4add-8d7b-3ae795c1a4cb
23 April 2025
Chen, Bei Jun
32b1e6a8-b619-4e8f-9da4-df221bdece06
Lim, Yi Yang
e7b2d25c-5a91-4a79-aa46-da13703ebe0a
Yang, Xinyi
6a26a466-dd18-41cc-baa1-5cef55570a41
Wang, Lijin
7338ba90-6b70-4268-8c41-e0aef64d4dab
Rackham, Owen J.L.
8122eb1f-6e9f-4da5-90e1-ce108ccbbcbf
Ouyang, John F.
ce6f93a5-b40f-4add-8d7b-3ae795c1a4cb
[Unknown type: UNSPECIFIED]
Abstract
Single-cell technologies now span multiple modalities, generating large, complex datasets that challenge analysis and sharing. We present ShinyCell2, an enhanced R package for interactive visualisation of single-cell multi-omics and spatial transcriptomics data. ShinyCell2 retains the simplicity and lightweight deployment of its predecessor while introducing advanced visualisations, cross-modality comparisons, and statistical tools tailored to spatial and multi-omic data. It enables intuitive, rapid exploration of high-dimensional data without requiring extensive computational expertise.
Text
2025.04.22.650045v1.full
- Author's Original
More information
Published date: 23 April 2025
Identifiers
Local EPrints ID: 502680
URI: http://eprints.soton.ac.uk/id/eprint/502680
PURE UUID: 2e529b0c-058b-4b6b-a94d-5ed79f244bc7
Catalogue record
Date deposited: 04 Jul 2025 16:38
Last modified: 22 Aug 2025 02:30
Export record
Altmetrics
Contributors
Author:
Bei Jun Chen
Author:
Yi Yang Lim
Author:
Xinyi Yang
Author:
Lijin Wang
Author:
John F. Ouyang
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics